
Composition of Context-Free Motion Description Languages

Wenqi Zhang and Herbert G. Tanner

UD MEEG Technical Report
Number MEEG TR-2010-0002
August 2010

Department of Mechanical Engineering
University of Delaware
Newark, Delaware
URL: http://www.me.udel.edu



Composition of Context-Free Motion Description Languages

Wenqi Zhang and Herbert G. Tanner

University of Delaware, Department of Mechanical Engineering
MEEG TR-2010-0002

August 2010

Abstract

We introduce a new formalism to define compositions of interacting heterogeneous systems, described by ex-
tended motion description languages (MDLes). The novelty of the formalism is in producing a composed system with
a behavior that could be a superset of the union of the behaviors of its generators. We prove closedness of MDLes
under this composition and we indicate that in the class of systems modeled using MDLes, language equivalence is
decidable. Our approach consists of representing MDLes as normed processes, recursively defined as a guarded sys-
tem of recursion equations in restricted Greibach Normal Form over a basic process algebra. Basic processes have
well defined semantics for composition, which we exploit to establish the properties of our composed MDLes.

1 Introduction
As robotic systems are called to perform increasingly complex tasks, control designers are resorting more frequently
to switching or hybrid control algorithms. A need arises for a methodology to “stitch” together different controlled
robotic behaviors in a way that a final objective is ultimately met. The task of deciding on the sequence of behaviors
currently falls on the control designer. In fact, it is quite natural for humans to develop plans that solve complex
problems. It is not so for machines.

Automating the process of planning has traditionally been a problem in the realm of artificial intelligence, and the
complexity issues involved in discrete planning are well known [1]. It has also been recognized that there is a gap
between such discrete high level planning algorithms, and low level motion control implementation (see [2] and the
references therein). The approach in [2] attempts to bridge this gap using linear temporal logic (LTL) to describe the
task to be performed in a formalism similar to natural language, and then translate the logic formula into an automaton
that gives rise to a hybrid controller.

The approach followed in this paper is along similar lines, but it is rather “bottom-up.” We start by assuming the
existence of a set of designed behavioral primitive, and we proceed by developing a framework that dictates how
these behaviors are sequentially synthesized into plans that drive the system into a desired state. In that sense our
behavioral primitive form an alphabet of actions. We need to emphasize that neither [2] nor this paper suggest another
programming language, such as any one of the high level languages that are currently being used to implement robot
controllers and drive hardware. In fact, this paper attempts to utilize an existing motion control “meta-language,” [3, 4]
to abstract low level controllers —implemented in any possible programming language— into elementary behaviors
in a way to facilitate high level planning.

Motion Description Languages (MDLs) [5] translate collections of control algorithms into robust and reusable
software [3]. MDLe is an extension of the early definitions of motion description languages [6]. It is a device-
independent programming language for hybrid motion control, which allows one to compose complex, interrupt-driven
control laws from a set of simple primitives, and a number of syntactic rules [3, 4]. MDLes (e standing for “extended”)
have been criticized for not capturing interaction between systems. This paper is an attempt to address this issue,
and set a framework in which MDLes can be composed, verified, and allow automated motion and task planning for
collections of heterogeneous robotic systems.

We identify MDLes as recursive systems in some basic process algebra (BPA) written in Greibach Normal Form
(Lemma 1). We propose a simple context-free grammar that generates MDLes and then we use the machinery available
for BPAs to formally define a composition operation for MDLes at the level of grammars. The technical core of this
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paper indicates how appropriately defined MDLe grammars can be composed (Definition 8), and language equivalence
(whether two such grammars generate the same finite traces), is decidable up to bisimulation. The main difference
of our composition operation is the appearance in the composed system of events (transitions) not enabled in the
generators: the composed system can behave in ways its generators cannot. In our approach, one still needs to identify
beforehand these events that can be activated after the composition. But the proposed definition partially captures the
fact that the whole can be more than the sum of its parts.

Our definition of MDLe composition, viewed independently, is not based on the BPA technical machinery. How-
ever, by identifying MDLes as a subclass of BPAs we are able to borrow the syntax and semantics of the BPA merge
operator (instead of defining a new MDLE operator), and thus establish closeness and decidability properties for MDLE
compositions.

Are basic process algebras a good formalism to map hybrid robotic systems to discrete models of computation? It
is a formalism out of many possible. Our justification for choosing BPAs comes first from our desire to model robotic
systems using MDLes. In [7, 8], it is shown that deterministic pushdown automata are decidable up to bisimulation
equivalence. In this paper, we arrive at an equivalent statement by exploiting BPA properties.

Another modeling formulation is that of maneuver automata [9], which are finite automata that produce sequences
of predetermined maneuvers for unmanned vehicles. Admissible motion is expressed as the set of traces the automaton
accepts. Maneuver automata, however, generate regular languages, a set that does not include MDLes [4].

Concurrent systems can also be expressed as petri nets [10]. Petri nets generate context-sensitive languages. They
are therefore more expressive than BPAs but this comes at a cost: bisimulation is undecidable for petri nets [11], which
poses an obstacle for further analysis and abstraction. MDLes, on the other hand, are context-free [12]. The tools we
use to arrive at this decidability result are the properties of BPAs introduced in [13, 14, 15], and refined in [16].

Although other modeling tools may be available, we feel that BPAs strike a reasonable balance between complexity
and expressiveness when it comes to modeling systems expressed by, and controlled through, MDLes. Showing that
under the extended notion of composition we introduce, the resulting system is an MDLe (Lemma 3), and that the
decidability properties are preserved (Corollary 2), gives us hope that the resulting (big) system can be abstracted to
the point that some of the available model checkers [17, 18, 19] can be used to construct admissible motion plans in
the form of “counterexamples.”

In Section 2 that follows we provide some introductory technical material on motion description languages (the
interested reader is referred to [4] and [20]). Section 3 serves as a brief introduction to basic process algebras. Our
contribution is contained in Section 4: there we show that MDLes are a subset of BPAs, we define MDLe composition,
we show that composition is closed, preserves bisimilarity, and indicate why language equivalence in MDLes is decid-
able. Section 5 presents an example that illustrates how MDLes are composed to produce systems with behaviors not
existent in the component systems. Section 6 summarizes the paper.

2 MDLe Preliminaries

2.1 Definitions
Every MDLe string consists of a control part, an interrupt part, and the special symbols “)”, “(”, and “,”. A dynamical
system can generally be described in the form

ẋ = f (x,u), y = h(x); x ∈ Rn, u ∈ Rm, y ∈ Rp, (1)

where x is the state of the system; u is the control input; and y is the measurable output. Let U be a finite set of feedback
control laws (or quarks [12]) u : Rn×R→ Rm, for (1), and B a finite set of boolean functions ξ : Rp×R→{0,1} of
output y and time t ≤ T ∈ R+ (the interrupt quarks [12]).

The basic element of an MDLe is an atom, denoted (u,ξ ), where u is a control law selected from U , and ξ is the
interrupt selected from set B. To evaluate or run an atom (u,ξ ), means to apply the input u to (1) until the interrupt
function ξ evaluates true (ξ = 1). An MDLe plan is composed of a sequence of atoms. For example, evaluating
the plan a = ((u1,ξ1),(u2,ξ2)) means that the system state x, flows along ẋ = f (x,u1) until ξ1 = 1 , and then along
ẋ = f (x,u2) until ξ2 = 1. Plans can also be composed to generate higher order strings, as in b = ((u3,ξ3),a,(u4,ξ4)).
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2.2 MDLes are context-free
The pumping lemma is utilized in [12] to show that an MDLe is not a regular language; rather, it is context-free.
Context-free languages are generated by context-free grammars (CFGs), which can always be expressed in Chomsky
normal form. A variation of the Chomsky normal form, is the Greibach normal form.

Definition 1 ([16]). A context-free grammar in which every production rule is of the form A→ aα , where A is a
variable, a is a terminal, and α is a possibly empty string of variables, is said to be in Greibach normal form (GNF).
If, moreover, the length of α (in symbols) does not exceed 2, we say that the context-free grammar is in restricted
Greibach normal form.

3 Basic Process Algebras

3.1 Definitions
A BPA is essentially a mathematical structure consisted of set of constants, A = {a,b,c, . . .}, called atomic actions, a set
ΣBPA of two binary operators on these constants (the alternative composition + and the sequential composition ·), and a
set of axioms EBPA that determines the properties of the operations on the atomic actions [16]. When the set of atomic
actions A is assumed known, a basic process algebra is denoted simply as a couple in the form BPA = (ΣBPA,EBPA).
The set ΣBPA is called signature, while set EBPA equation set (hence the symbols). The theory associated to a BPA is
considered to be parameterized by the set A, which is specified according to the particular application.

The symbol · denoting sequential composition is typically omitted, and we usually write xy instead of x · y. We
assume that · binds stronger than +, thus (xy)+ z = xy + z (brackets omitted). The set EBPA consists of five axioms
(or equations), appearing in Table 1. Composing atomic actions according to Table 1, yields more complex processes.

x+ y = y+ x A1
(x+ y)+ z = x+(y+ z) A2
x+ x = x A3
(x+ y)z = xz+ yz A4
(xy)z = x(yz) A5

Table 1: The axioms of a BPA.

Any such process, is an element of some algebra satisfying the axioms of BPA, and all processes produced in this way
make up the set P. The axiom system of Table 1 is the core of a variety of more extensive process axiomatizations:

• x · y is the process that first executes x, and upon completion of x, process y starts.

• x+ y is the process that either executes x, or executes y (but not both).

Just as in the case of finite state machines, processes are identified by the set of action sequences they admit.
Some [21] prefer to include a set Atom of atomic processes or atoms. The set Proc of processes contains all terms in
the free algebra over Atom generated by sequential composition and disjunction. Then a process algebra is defined by
a finite set Π of productions of the form X a→ P, where X ∈ Atom, a ∈ A, and P ∈ Proc. The semantics of the above
production is as follows: atomic process X performs action a and evolves into process P. Let us identify a process with
an automaton, in which a transition denotes the execution of an atomic action. The states of this automaton are all the
processes derived through the set of production rules. Action relations are presented in Table 2, in which x a→ y, with
x and y being processes and a an atomic action, means that process x evolves into process y after the atomic action a
is executed.

The symbol
√

stands for successful termination. It is said that a relation is true if and only if it can be derived
from the relations of Table 2. Note the distinction between the relation operator (→) and sequential composition (·):
the fact that x a→ y does not imply that y = x ·a, since a is an action executed as x runs, not after it is completed. The
only thing that can be inferred about action a is that it is an action that process x can execute.
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a a→
√

R1
a a→ x′⇒ x+ y a→ x′ and y+ x a→ x′ R2
x a→
√
⇒ x+ y a→

√
and y+ x a→

√
R3

x a→ x′⇒ xy a→ x′y R4
x a→
√
⇒ xy a→ y R5

Table 2: The operational semantics of BPA.

3.2 Recursive and guarded BPAs
Let us focus on a special type of BPAs with slightly finer semantics. The additional properties of this type of systems
enable us to define composition more comfortably, and establish the decidability of language equivalence for the
systems produced by means of composition.

Definition 2 ([22]). A recursive equation over a BPA is an equation of the form X = s(x), where X is a variable that
can take values in P and s(x) is a term over the BPA containing X, but no other variable.

A set of recursive equations give rise to a specification:

Definition 3 ([22]). A recursive specification E over a BPA is a set of recursion equations over the BPA.

We thus have a set of variables V = {x0, · · · ,xn}, and equations of the form X = sx(V ) with x ∈ V , where sx is a
term over the BPA containing variables in V . Set V contains one distinguished variable called the root variable x0. A
variable in V is called guarded in a given term, if it is preceded by an atomic action:

Definition 4 ([22]). Let s be a term over a BPA, containing variable X.

• An occurrence of X in s is said to be guarded, if s has a sub-term of the form a · t, where a is an atomic action,
and t a term containing this occurrence of X; otherwise this occurrence of X in s is said to be unguarded.

• A term s is completely guarded if all occurrences of all variables in s are guarded. A recursive specification E
is completely guarded if all right hand sides of all equations of E are completely guarded terms.

Just as production rules can be thought to be in Greibach normal form, so can equations over a BPA.

Definition 5 ([22]). If a system E of recursion equations is guarded and without brackets, then each recursion equation
is of the form Xi = ∑ j a j ·α j, where α j is a possibly empty product (sequential composition) of atoms and variables.
Now if, in addition, α j is exclusively a product of variables, E is said to be in Greibach normal form, analogous to
the same definition for context-free grammars. If each α j in E has length not exceeding 2, E is in restricted Greibach
normal form.

3.3 Composition and bisimulation of BPAs
BPAs can be equipped with a merge operator, ‖. Process x‖y is the process that executes process x and y in parallel.
Notice that we do not assert that the first action has terminated when the second one starts; this can depend on the
implementation of a process. The left merge operator, T, describes two processes that occur in parallel, in a way
similar to ‖, but with the restriction that the first step must come from the process on the left of the expression. With
the new operators, the BPA axioms are expanded as shown in Table 3, and the action relations are enriched as shown
in Table 4.

Two BPA processes p1 and p2 are bisimilar, if whenever p1 performs a certain action, p2 can perform the same
action, and vise versa. The following definition of bisimulation equivalence for processes is quoted from [23], and
is chosen only because of its conceptual association to similar definitions of bisimulation for transition systems, that
have appeared in the controls literature [24].

Definition 6 ([23]). A binary relation ≈ on the set of processes Proc is a bisimulation, if the following conditions are
satisfied:
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x+ y = y+ x A1
(x+ y)+ z = x+(y+ z) A2
x+ x = x A3
(x+ y)z = xz+ yz A4
(xy)z = x(yz) A5
x‖y = xTy+ yTx M1
aTx = ax M2
axTy = a(x‖y) M3
(x+ y)Tz = xTz+ yTz M4

Table 3: The BPA axioms, expanded with the intro-
duction of merge (‖) and left merge (T) operators.

a a→
√

R1
a a→ x′⇒ x+ y a→ x′ and y+ x a→ x′ R2
x a→
√
⇒ x+ y a→

√
and y+ x a→

√
R3

x a→ x′⇒ xy a→ x′y R4
x a→
√
⇒ xy a→ y R5

x a→ x′⇒ x‖y a→ x′‖y and y‖x a→ y‖x′ R6
x a→
√
⇒ x‖y a→ y and y‖x a→ y R7

x a→ x′⇒ xTy a→ x′‖y R8
x a→
√
⇒ xTy a→ y R9

Table 4: The action relations of BPA, expanded using the
composition operators.

• for all p, q, and p′ in Proc, and a ∈ A such that p ≈ q and p a→ p′, there exists q′ ∈ Proc such that q a→ q′ and
p′ ≈ q′.

• for all p, q, and q′ in Proc, and a ∈ A such that p ≈ q and q a→ q′, there exists p′ ∈ Proc such that p a→ p′ and
q′ ≈ p′.

4 Main Results

4.1 MDLes are a special class of BPAs
The representation of an MDLe as a BPA requires an intermediate step, which is the expression of the former as a
context-free grammar. We define a context-free grammar G = (N,η ,R,S) so that it generates a motion description
language MDLe = {(u,ζ ) : u ∈U,ζ ∈ B}, in the following way [12]:

• N is the finite set of non-terminal symbols E, where E is a valid variable;

• η = {ui,ξi,(,), ,} is the finite set of terminals, which are the atoms of L,

• S is the start symbol in N;

• R is the rules by which we create MDLe strings:

S→ E (2a)
E→ EE (2b)
E→ (ui,ξi) (2c)
E→ (E,ξi) (2d)
E→ /0 (2e)

Rule 2d is called “encapsulation” [12], which is essentially a while-structure, and gives MDLe its context-free character.
We now define the push-down automaton that is equivalent to the context-free grammar described above, as in [25].
Definition 7 allows us to conveniently switch between representations.

Definition 7. P = (N,η ,Σ,Γ,δ ,S,Z0) where

• N is the set of states, defined the same as variables in G;

• η = {ui,ξi,(,), ,} is the set of enabled events, associated with transitions in P;

• Σ = N∪η is the stack alphabet;
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• Γ : E→ Γ(E) is the active event function;

• δ : E×η → E is the transition function, δ (x,E) = y means that there is a transition labeled by event η from
state x to y;

• S ∈ N is the start state, defined the same as the start state in G;

• Z0 is the start symbol in stack;

The range of Γ defines all active events, the ones that correspond to transitions the automaton can autonomously
take. Note the distinction between η and Γ(E): this is what enables us to capture actions the system cannot execute
autonomously, but potentially can in collaboration with another system. We allow Γ(E) 6⊆ η , but the transitions which
the automaton can autonomously take are in Γ(E)∩η . The next Lemma confines MDLes to set of languages generated
by a special class of context-free grammars (CFGs).

Lemma 1. An MDLe is produced by a CFG in Greibach normal form.

Proof. We rewrite (2) in Chomsky normal form, an intermediate stage before we arriving at the Greibach normal form.
Rewriting (2) in Chomsky normal form involves a sequence of steps, in which a transformation rule is applied to the set
of rules written on the left to result in the rule set depicted on the right. Let us first combine rules (2) into a single one,
using the disjunction operator |, for compactness. Then we give the resulting set of rules after each transformation.

E→ EE
E→ (ui,ξi)
E→ (E,ξi)
E→ /0

E→ EE|(ui,ξi)|(E,ξi)| /0.

Step 1: Define a new start symbol S0 to replace S.

S→ E
E→ EE|(ui,ξi)|(E,ξi)| /0

S0→ S
S→ E
E→ EE|(ui,ξi)|(E,ξi)| /0

Step 2: Remove /0 from the rules that involve variable E.

S0→ S
S→ E
E→ EE|(ui,ξi)|(E,ξi)| /0

S0→ S
S→ E|EE|(ui,ξi)|(E,ξi)
E→ EE|(ui,ξi)|(E,ξi)

Step 3: Eliminate the original start variable S.

S0→ S
S→ E
E→ EE|(ui,ξi)|(E,ξi)

S0→ E|EE|(ui,ξi)|(E,ξi)
E→ EE|(ui,ξi)|(E,ξi)
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Step 4: Eliminate the unit rules.

S0→ E|EE|(ui,ξi)|(E,ξi)
E→ EE|(ui,ξi)|(E,ξi)

S0→ EE|(ui,ξi)|(E,ξi)
E→ EE|(ui,ξi)|(E,ξi)

Step 5: Convert the remaining rules into the proper form by adding variables and rules.

S0→ EE|(ui,ξi)|(E,ξi)
E→ EE|(ui,ξi)|(E,ξi)

S0→ EE|Lui,ξiR
|LE,ξiR
E→ EE|Lui,ξiR
|LE,ξiR
L→ (
R→)

S0→ EE|Lui,B|A,B
E→ EE|Lui,B|A,B
L→ (
R→)
A→ LE
B→ ξiR

S0→ EE|D,B|A,B
E→ EE|D,B|A,B
L→ (
R→)
A→ LE
B→ ξiR
D→ Lui

S0→ EE|DF |AF
E→ EE|DF |AF
L→ (
R→)
A→ LE
B→ ξiR
D→ Lui
F →,B

S0→ EE
E→ EE|DF |AF
L→ (
R→)
A→ LE
B→ ξiR
D→ LK
F →,B
H→,
J→ ξi
K→ ui

(3)

Then we translate (3) into Greibach normal form, by first eliminating left-recursion.

Step 1: Add a new rule T → E|ET to eliminate left-recursion E→ EE.

S0→ EE|DF |AF
E→ EE|DF |AF
L→ (
R→)
A→ LE
B→ ξiR
D→ LK
F →,B
H→,
J→ ξi
K→ ui

S0→ EE|DF |AF
|DFT |AFT
E→ DF |AF |DFT |AFT
L→ (
R→)
A→ LE
B→ ξiR
D→ LK
F →,B
H→,
J→ ξi
K→ ui
T → E|ET
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Step 2: The next step is to make all the other rules start with a terminal.

S0→ EE|DF |AF
|DFT |AFT
E→ DF |AF
|DFT |AFT
L→ (
R→)
A→ LE
B→ ξiR
D→ LK
F →,B
H→,
J→ ξi
K→ ui
T → E|ET

S0→ (KFT
|(EFT |(KF |(EF
E→ (KF |(EF
|(KFT |(EFT
L→ (
R→)
A→ (E
B→ ξiR
D→ (K
F →,B
H→,
J→ ξi
K→ ui
T → (KF |(EF
|(KFT |(EFT

Step 3: The final step is to convert all the rules in restricted GNF by adding rules.

S0→ (KFT
|(EFT |(KF |(EF
E→ (KF |(EF
|(KFT |(EFT
L→ (
R→)
A→ (E
B→ ξiR
D→ (K
F →,B
H→,
J→ ξi
K→ ui
T → (KF
|(EF |(KFT |(EFT

M→ KF
N→ EF
S0→ (MT |(NT
|(KF |(EF
E→ (M|(N|(MT |(NT
L→ (
R→)
A→ (E
B→ ξiR
D→ (K
F →,B
H→,
J→ ξi
K→ ui
T → (M|(N|(MT |(NT

M→ uiF
N→ (MF |(NF
S0→ (MT |(NT |(KF |(EF
E→ (M|(N|(MT |(NT
L→ (
R→)
A→ (E
B→ ξiR
D→ (K
F →,B
H→,
J→ ξi
K→ ui
T → (M|(N|(MT |(NT

(4)

The next Lemma states that an MDLe can be translated into a BPA in Greibach normal form [22].
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Lemma 2. The terms of an MDLe are a finite trace set of a normed process p, recursively defined by means of a
guarded system of recursion equations in restricted Greibach normal form over a BPA.

Proof. Lemma 1 allows us to express an MDLe as a CFG in Greibach normal form, which in addition satisfies the
conditions of Notation 4.5 of [22]. We apply Notation 4.5 in conjunction with Proposition 5.2 of [22] to write the CFG
of (4) as a BPA as follows.

• If S is the system represented as a CFG in Greibach normal form, let S′ denote the system represented in BPA by
replacing | by +, and→ by = .

• Let S′ be in restricted Greibach normal form over the BPA, with unique solution p. Then ftr(p) (the set of finite
traces of p) is just the context-free language generated by S.

Applying the change of notation suggested,

M→ uiF
N→ (MF |(NF
S0→ (MT |(NT |(KF |(EF
E→ (M|(N|(MT |(NT
L→ (
R→)
A→ (E
B→ ξiR
D→ (K
F →,B
H→,
J→ ξi
K→ ui
T → (M|(N|(MT |(NT

M = uiF
N = (MF +(NF
S0 = (MT +(NT+
(KF +(EF
E = (M +(N+
(MT +(NT
L = (
R =)
A = (E
B = ξiR
D = (K
F =,B
H =,
J = ξi
K = ui
T = (M +(N+
(MT +(NT

(5)

and thus we have a BPA in restricted Greibach normal form. Note that according to Definition 5, each variable string
in the right hand side of (5) has length of at most two. By applying Proposition 5.2 of [22], to remove the parts of
the system that do not contribute to the generation of the finite traces, we conclude that the BPA of (5) generates the
strings of the original MDLe.

4.2 Composition of MDLes
In the preceding section we distinguished between events associated to transitions a push-down automaton representing
an MDLe can take autonomously, and events that cannot initiate transitions. Among the latter, there can be events that
when synchronized with some of another push-down automaton (synchronization here implies a common interrupt
function), become active and do initiate transitions. Given two push-down automata P1 and P2 defined according to
Definition 7, we define the set H ⊆ η1∪η2 as the collection of events on which P1 and P2 should be synchronized. Set
H includes those events that become active as a result of the composition of P1 with P2. Set H is composed of three
components:

1. (Γ2∪η1)\ (Γ2∪η2)\ (Γ1∪η1), (part I in Fig. 1), which contains enabled events of P1 that P1 can now activate
because of P2;

2. (Γ1∪η2)\ (Γ2∪η2)\ (Γ1∪η1), (part III in Fig. 1), which contains enabled events of P2 that now become active
because of P1; and

3. (Γ1∪η2)∩ (Γ2∪η1), (part II in Fig. 1), which includes common active events in both systems.

Note that the components of H defined in 1 and 2 do not appear in the set of (active) events of the composed system
under the conventional definition of composition [26]. Our definition of composition is stated as follows.
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Figure 1: Enabled, active and common events. Set A includes private active events of P1; set B contains private active
events of P2; sets I, II, and III represent the common active events of the composed system, the ones that make up H.

Definition 8. Consider two MDLes, expressed as context-free grammars G1 =(N1,η1,R,S01) and G2 =(N2,η2,R,S02),
both with rule sets R of the form (2). Let S1 and S2 be their corresponding representations as a system of guarded
recursive equations, in restricted Greibach normal form over a BPA. The composition of G1 and G2 is defined as the
context-free grammar G = (N,η ,R,S0), where

• N = N1×N2;

• η = η(1‖2) = η1∪η2, which is the set of enabled events;

• S0 = S01×S02;

•

R(N×η) :=


(R(N1,η),R(N2,η)) if η ∈ H,
(R(N1,η),N2) if η ∈ A,
(N1,R(N2,η)) if η ∈ B
undefined, otherwise

The transitions of the composed system still respect the grammar rules (2), however, the composition restricts the
domain of R. The push-down automaton representing the composed system can be defined as follows:

Definition 9. P1‖P2 = (N,η(1‖2),Σ,Γ(1‖2),δ ,N0,Z0), and

• N = N1×N2;

• η = η(1‖2) = η1∪η2

• Σ = (N1×N2)∪η(1‖2) the stack;

• Γ(1‖2) = Γ1∪Γ2

•

δ (N×η) :=


(R(N1,η),R(N2,η)) if η ∈ H,
(R(N1,η),N2) if η ∈ A,
(N1,R(N2,η)) if η ∈ B
undefined, otherwise

• N0 = (N01×N02) start state;

• Z0 = (Z01×Z02) start symbol in stack;
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For the composition of Definition 8 to be well defined, we need to make sure that when we compose variables and
terminals of two systems in (guarded) Greibach normal form over a BPA, the result is a term that conforms to the same
rules. This is established in the section that follows.

4.3 MDLes are closed under composition
The next result establishes that operation T is closed.

Lemma 3. An MDLe written as a system of guarded recursive equations in restricted Greibach normal form is closed
under the left merge T operator.

Proof. Assume that G is written as a system of guarded recursive equations in restricted Greibach form, according
to (4). We prove the claim by taking all merge combinations of variables in this representation, and showing that the
result is a system of equations that are also guarded in restricted Greibach normal form. To simplify the proof, we will
group the variables which have similar form.

P = aX +aY +aXZ +aY Z = {E,T,S0}
Q = aXW +aYW = {N}
Ω = bG = {M,A,B,D,F}
Π = c = {L,R,H,J,K}

(6)

According to Table 3,

ΠTΩ = cTΩ
M2= cΩ

ΠTQ = cTQ M2= cQ

ΠTP = cTP M2= cP

ΩTQ = bGTQ M3= b(GTQ)

ΩTP = bGTP M3= b(GTP)

QTP = (aXW +aYW )TP M4= aXWTP+aYWTP
M3= a(XWTP)+a(YWTP)

Note that reversing the order of variables in the above merge operations yields the same type of expressions encoun-
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tered above:

PTQ = (aX +aY +aXZ +aY Z)TQ
M4= aXTQ+aYTQ+aXZTQ+aY ZTQ
M3= a(XTQ)+a(YTQ)+a(XZTQ)+a(Y ZTQ)

PTΩ = (aX +aY +aXZ +aY Z)TΩ

M4= aXTΩ+aYTΩ+aXZTΩ+aY ZTΩ

M3= a(XTΩ)+a(YTΩ)+a(XZTΩ)+a(Y ZTΩ)
PTΠ = (aX +aY +aXZ +aY Z)TΠ

M4= aXTΠ+aYTΠ+aXZTΠ+aY ZTΠ

M3= a(XTΠ)+a(YTΠ)+a(XZTΠ)+a(Y ZTΠ)
QTΩ = (aXW +aYW )TΩ

M4= aXWTΩ+aYWTΩ

M3= a(XWTΩ)+a(YWTΩ)
QTΠ = (aXW +aYW )TΠ

M4= aXWTΠ+aYWTΠ

M3= a(XWTΠ)+a(YWTΠ)
ΩTΠ = bGTΠ

M3= b(GTΠ)

All expressions above are still guarded recursive equations in restricted Greibach normal form.
Since the left-merge operation T is closed, it follows from M1 in Table 3 that ‖ is closed too.

4.4 MDLe equivalence is decidable
Systems of guarded recursive equations enjoy nice properties in the sense that verifying the bisimulation equivalence
is decidable [22].

Theorem 1 ([22]). Let S1, S2 be normed systems of guarded recursion equations (over basic process algebras) in
restricted Greibach normal form. Then the bisimulation relation ≈, that is whether S1 ≈ S1, is decidable.

Theorem 1 allows us to conclude that

Corollary 1. If MDLes are written in the form of a system of guarded recursive equations in Greibach normal form
over a BPA, the bisimulation relation is decidable.

Proof. Using Lemma 1, each MDLe is written as a context-free language in Greibach normal form. Lemma 2 translates
this representation into a system of guarded recursive equations in restricted Greibach normal form over a BPA. By
Theorem 1 of [22], language equivalence for systems in (guarded) restricted Greibach normal form such as the MDLes
translated using Lemma 2, is decidable up to bisimilarity.

The following section ensures that bisimilarity is not lost as a result of the introduction of operators ‖ and T.

4.5 MDLe composition preserves bisimilarity
Proposition 1. The composition operator ‖ preserves bisimilarity. That is, if P≈ Q, then P‖R≈ Q‖R.

MEEG TR-2010-0002 12



Proof. Consider a relation R over the set of processes, such that P‖R and Q‖R belong to R whenever P ≈ Q. We
show that R is a bisimulation.

Case 1. Process P (or Q) executes action a. If P ≈ Q, then (P‖R,Q‖R) ∈R. Assume that P a→ P′. Then by action
relation R6 in Table 4, we have P a→ P′ ⇒ P‖R a→ P′‖R. Since P ≈ Q, there exists Q′ such that Q a→ Q′, and
P′ ≈Q′. By definition, (P′‖R,Q′‖R) ∈R. Similarly, it can be shown that if Q a→Q′, then there exists a P′, with
P′ ≈ Q′ and (P′‖R,Q′‖R) ∈R.

Case 2. Process R executes action a. Since bisimulation is reflexive, this case reduces to the previous one, and
(P‖R,P‖R) ∈R.

Case 3. Process P terminates after executing action a (P a→
√

). Relation R7 of Table 4 implies that P a→
√
⇒P‖R a→

R. Since P≈ Q, we need to have Q a→
√

. Thus, by R7 of Table 4, Q‖R a→ R. By definition, R≈ R and thus the
processes derived with the a-transition belong R. The case where Q terminates after executing a is identical.

Case 4. Process R terminates after executing a (R a→
√

). By R7 of Table 4, R a→
√
⇒ P‖R a→ P. Similarly, R a→√

⇒ Q‖R a→ Q. Given that P≈ Q, the processes derived from P‖R and Q‖R when R executes a, belong to R.

Case 5. Processes P and R are synchronously execute action a. In this case, we resort to axiom M1 of Table 3,
and treat the transitions of P and R separately according to cases 1 and 2 above. The case where Q executes a
synchronously with R is identical.

Case 6. Processes P and R terminate synchronously by executing action a. Axiom M1 of Table 3 allows us to treat
the synchronous transition to termination as an asynchronous one. In this case, we proceed according to cases 3
and 4.

Thus, for all combinations of possible transitions for P‖R and Q‖R, we have that P‖R≈Q‖R if P≈Q. The conditions
of Definition 6 are satisfied and therefore R is a bisimulation relation.

From Proposition 1 it follows that

Corollary 2. The composition of MDLes is decidable up to bisimulation equivalence.

Proof. The operation ′T′ is closed (Lemma 3). It follows from M1 in Table 3 that ‖ is closed too and also preserve
bisimilarity (Proposition 1), which means the composition of MDLes can also be written as a system of guarded
recursive equations in restricted Greibach normal form over a BPA. By Theorem 1, this composition is decidable.

5 A Case Study: the Sliding Block Puzzle
Representing an instance of the sliding block puzzle as a multi-robot hybrid system serves as a reality check, to ensure
that our formulation captures the possible interaction between heterogeneous robot systems. In a general sliding puzzle
puzzle, the challenge is to slide blocks on a flat surface with the purpose of achieving a desired configuration. No block
can be removed from the board. Quoting Gardiner [27]

These puzzles are very much in what of a theory. Short of trial and error, no one knows how to determine
if a given state is to obtainable from another given state, and if it is obtainable, no one knows how to find
the minimum chain of moves for achieving the desired state.

It has been shown that in general, sliding-block puzzles are PSPACE-complete [28, 29]. However, under certain sim-
plifying assumptions and for cases of such puzzles like the one we consider here (Fig. 2), a polynomial algorithm can
be constructed to move a single block from any initial position to any final position [29].

In the simple instance of the sliding block puzzle depicted in Fig. 2, the goal is for the robot (initially at position
30) to move the block at position 1 to location 6. Robot and blocks are thought to be autonomous agents, each with
its own MDLe. A block can do nothing by itself; any transitions within the block’s MDLe may only be activated after
composition with the robot agent, which can push a block to a different location. However, these potential transitions
in the block’s configuration need to be encoded in its enabled event set η .
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71

Figure 2: Realization of a sliding block puzzle.
Square blocks (tiles) cover all but one cell of a 4
× 4 grid. A robot (round object) is moving along
the rows and columns of the grid reconfiguring the
blocks. Blocks and robot are modeled as agents mov-
ing according to their own MDLe.
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31 36 32 37 33

126 27 282
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7 43 448

38 34 39 35

3 29 304

24 20 25 21

Figure 3: Enumeration of agent positions for the
agents in the sliding block puzzle. Positions 1
through 16 can be occupied by blocks. (In Fig. 2,
position 4 is not occupied.) Positions 17 through 81
represent possible positions for the robot agent.

For a block to be able to make a transition (which is synchronized with a corresponding on in the robot’s event set),
the destination location must be unoccupied; thus blocks need to keep track of whether nearby locations are occupied.
We therefore model the state of the block as a triplet, consisting of the state of motion (the analogous of the controller
in a robotic system), its position, and the availability of an empty location in the immediate neighborhood. The block
automaton is B = (Nb,ηb,Nb∪ηb,Γb,δb,N0b,Z0b), where

1. Nb := {Eb1,Eb2,Eb3} is the set of states, where

• Eb1 ∈ {u1, . . . ,u5} is a motion state: u1 (be pushed east), u2 (be pushed west), u3 (be pushed north), u4 (be
pushed south), u5 (stay at location);

• Eb2 ∈ {1, . . . ,16} is the position of the block; and

• Eb3 ∈ {b1, . . . ,b5} are possible empty nearby locations: b1 (east), b2 (west), b3 (north), b4 (south), b5
(none);

2. ηb = {νb | νb = ((ui, j,bk),ξb)}, with i and k in {1, . . .5}, and j in {1, . . . ,16}, includes all events (MDLe atoms;
ξb is the block’s interrupt function) ;

3. Γb : Nb→ 2ηb is the event activation function (initially mapping to /0);

4. δb : Nb×ηb→ Nb is the transition function, also mapping to /0 since the range of Γb is empty, suggesting that
the block automaton can make no transitions on its own (except for the case of u5).

Symbols N0b and Z0b correspond to the initial state and stack symbol, respectively.
For the robot, an atom consists of the state of motion (controller running) and its position. The robot can move

along the rows and columns of the grid, and push against a block in order to move it. The automaton for the robot is a
tuple R = (Nr,ηr,Nr ∪ηr,Γr,δr,N0r,Z0r), where

1. Nr = {(Er1,Er2)} is the set of states, where

• Er1 ∈ {w1, . . . ,w9} are the available controllers for the robot: w1 (push east) w2 (push west), w3 (push
north), w4 (push south), w5 (stay at location), w6 (move east), w7 (move west), w8 (move north), w9 (move
south); and

• Er2 ∈ {17, . . . ,81} are the possible positions for the robot;
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Figure 4: The initial configuration of the robot and blocks.

Figure 5: The final configuration of the robot and blocks.

2. ηr = {νr | νr = ((wi, j),ξr)}, where i is in {1, . . . ,9}, j in {17, . . . ,81}, and ξr is the robot’s interrupt function,
includes all the events associated with possible robot transitions;

3. Γr : Nr→ 2ηr is the activation function determining which events are active at each robot state; and

4. δr : Nr×ηr→ Nr is the transition function.

Similarly, N0r and Z0r are the initial state and the start stack symbol for the robot automaton, respectively.
The system expressing all possible transitions in the sliding block puzzle is generated by composing the robot with

the fifteen blocks. Note that traditional notions of (parallel) composition [26] produce a system where nothing can
happen (the puzzle configuration cannot change). However, by identifying “pushing” events in both systems ui = wi,
for i = 1, . . . ,5 as common, and including them in H = {u1, . . . ,u5}, the composed system can take synchronized
transitions on these events.

According to the distance between these positions, we can define the abstracted atoms as the following (units
correspond to encoder counts): Atom0: moving 1032 units; Atom1: turn left; Atom2: moving 4228 units; Atom3:
turn right; Atom4: pushing 2044 units; Atom5: moving -2044 units;Atom6: moving 100 units; Atom7: moving 2144
units; Atom8: moving 3176 units. All the plans generated by robot system and block system can be abstracted into the
combination of these nine atoms. For example, if the plan for the robot is (1,26),(5,27),(8,27),(8,32),(8,41),(8,46),
the abstracted plan will be (Atom4),(Atom1),(Atom8).
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Figs. 4 and 5 show the position of the robot and the configuration of the block puzzle initially and at the end,
respectively. The goal for the robot is to move blockA from position 1 to position 6. The plan is the following:

(0,2),(1,2),(2,2),(1,2),(0,2),(6,2),(4,2),(5,2),(1,2),(0,2),(1,2),(7,2),(1,2),(0,2),(1,2),(6,2),(4,2),(5,2),
(1,2),(0,2),(1,2),(7,2),(1,2),(0,2),(1,2),(6,2),(4,2),(5,2),(1,2),(8,2),(3,2),(0,2),(3,2),(6,2),(4,2),(5,2),

(1,2),(8,2),(3,2),(0,2),(3,2),(6,2),(4,2),(5,2),(1,2),(8,2),(3,2),(0,2),(3,2),(6,2),(4,2)

In the plan, the first number represents the abstracted atom index and the second one is the interrupt timeout. The se-
quence of the motions is shown in Fig. 6. Such plans can be generated automatically using Floyd Warshall’s algorithm
for shortest paths.
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Figure 6: Successive snapshots of the solution to the sliding puzzle problem. The robot (?) moves a block (©) from
position 1 to position 6.

6 Conclusions
Our approach to composition of MDLes and cooperative behavior between heterogeneous systems is based on allowing
systems to have additional cooperative transitions, that become active only when the systems are composed with
appropriate others. We engineer the mechanics of this interaction by identifying these related, or interdependent,
transitions between systems and placing them in a set H that affects how the transitions of the composed system are
synchronized. By mapping MDLes to a specific type of basic process algebras we obtain well defined semantics to
such compositions, and established computability properties (at least when it comes to language equivalence) for these
processes and their compositions.
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