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ABSTRACT 

 

Efficient development of offshore wind power will require accurate information about the 

wind field on a wide range of spatial and temporal scales.  Lidar and Satellite Microwave 

Radar/Radiometry have been evaluated and used for wind speed measurement.  

Numerous studies have been published that examine the error, bias, and performance 

characteristics of variants of both technologies under a range of conditions.   This paper 

reviews recent research and technological advances and outlines strategies for applying 

the technologies to reduce costs, increase energy production and improve energy 

forecasting through advanced rotor controls and more accurate resource estimation and 

mapping.   

 

A literature search was conducted to identify the most recent and relevant correlation and 

validation studies of Lidar, synthetic aperture radar, scatterometers,  and radiometers used 

for estimating wind speed.   Database queries were conducted to estimate inventory for 

satellite wind data.  Estimates of the accuracy (bias and uncertainty) and availability 

(sample density) of these technologies were developed based on the literature search and 

database queries.  Both “snapshot” wind speed and energy density estimates were 

compared for satellite microwave systems and Lidar technologies.  Offshore, where 



xxi 

 

turbulence is lower,  Lidar is found to have very high accuracy and availability, 

comparable to cup anemometers at a range of up to 200m on fixed platforms. Floating 

Lidar is rapidly approaching the same level of accuracy and availability, and is easily re-

positioned.   However, the short time series of Lidar is less useful for long term indexing, 

and it is limited to a single site per sensor.  Satellite microwave wind retrievals are 

available over a 20 year period and are found to have good time-averaged accuracy at 10 

meters above sea level for wind speeds between 3 and 15 m/s, but are subject to minor 

bias (below +/- 0.2 m/s) from the use of inaccurate shear profiles, from  diurnal effects,  

and from local metocean conditions.  Three strategies for use of these technologies are 

outlined and evaluated.  

 

 Siting and Resource Assessment - By processing all available satellite 

microwave  data sets, calibrated with data from a one year field campaign 

using floating Lidar systems, cross-correlated through a parametric 

geophysical model function,  bias and error of wind speeds generated from 

the satellite data can be reduced, and  wind mapping can be significantly 

improved in resolution and accuracy.  

 

 Energy Production Estimates- By using wind profile data from floating 

Lidars, deployed on site, and indexed to a 20 year time series from 

calibrated satellite wind data,  Annual Energy Production estimates can be 

greatly improved by reducing uncertainty (and thus, the risk premium on 



xxii 

 

financing).    In the near future, this methodology can obviate the need for 

a met tower for resource assessment. 

 

 Rotor Control - By using nacelle or hub mounted Lidar to look upstream, 

new Lidar-assisted control systems can adjust blade pitch and nacelle yaw 

pro-actively to match rapid changes in wind speed or direction.  This can 

reduce fatigue and extreme gust loading on components, allowing longer 

blades and greater swept area.  It can also improve efficiency be reducing 

yaw mis-alignment.  

 

In addition to power production benefits, rough, first-order costs were developed to check 

economic justification, and the expected change in Breakeven Price was calculated for 

two different build-out scenarios of the study area.  The analysis indicates that the recom-

mended strategies for improving Rotor Control and reducing uncertainty of AEP esti-

mates can reduce the Breakeven Price of power for the base case wind farm by at least 

4%.    

 

The benefits of improved mapping are more difficult to monetize due to high levels of 

uncertainty in all the primary factors, so two different scenarios are considered.  If the 

benefits of improved mapping and better siting (2% to 3% lower BP) are available to the 

first ten or twelve projects,  and the mapping effort is federally funded, or the costs are 

somehow distributed industry-wide over full build-out of the study area,  the Breakeven 



xxiii 

 

Price for the first phase of wind farms could be reduced by a total of around 6% to 7%.   

If mapping benefits are assumed to diminish over time as the study area builds out,  the 

long term, annualized reduction in Breakeven Price over the entire study area will be 

lower, at around 4% to 5%.  In either case the mapping effort is justified, and the cost can 

be reduced by about $120 million using Lidar equipped met buoys.    

 

Keywords: offshore wind power, wind resource assessment, satellite radar, Lidar, 

floating Lidar, AEP estimates, wind turbine pitch control, wind turbine yaw control, wind 

energy mapping
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1.1. Introduction 

This paper investigates  three applications of Light Detection and Ranging (Lidar) and 

Satellite Microwave Radar and Radiometer (hereafter referred to as “SMRR”) remote 

sensing systems and their potential for improving performance and reducing the cost of 

energy from offshore wind, which faces challenges unique to the ocean environment.  

The applications operate on temporal and spatial scales ranging  from multi-year, re-

gional wind mapping to single turbine,  high frequency upstream sampling, and are de-

scribed briefly below.    

 

 Energy Mapping and Site Selection : By enabling faster, cheaper collection of 

orders of magnitude more wind data, Lidar and SMRR can allow assessment of 

offshore wind resources with unprecedented spatial and temporal resolution and 

accuracy.  Orbiting SMRR sensors can provide wide coverage wind speed 

estimates over multi-year sampling periods, which can be calibrated and corrected 

using meso-scale modeling and multiple observational data sets from existing met 
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stations and Lidar buoys.  These data can then be spatially resolved and time 

averaged to produce accurate, detailed wind resource atlases, ensuring selection of 

the optimal wind farm location.  

   

 Annual Energy Production (AEP) estimates:  The use of in situ Lidar combined 

with SMRR data can reduce uncertainty in AEP in two ways. First, by providing a  

twenty+ year time series, SMRR can help determine where the shorter Lidar time 

series falls on the wind index1.   Second, by providing accurate, high frequency 

measurements up to 200m ASL, Lidar can reduce the uncertainty associated with 

horizontal and vertical extrapolation of the SMRR data.   Reducing the 

uncertainty in wind speed measurements increases the “P90” value (AEP level 

that has a 90% probability of being met or exceeded in any year), which is a 

principal measure of the “bankable” value of a wind project.   

 

 Rotor Control (RC): Lidar units can be mounted on the nacelle or rotor of a 

turbine to look upwind to scan the wind field up to 200 m away.  The information 

can be used to direct the rotor control system, providing more accurate 

information and advance notice of changes in speed or direction of the incoming 

wind stream.   This allows time for pitch and yaw controls to pro-actively 

                                                 

1 The wind index accounts for the spectrum of both monthly and inter-annual variability.  

For example if the Lidar time series covered a particularly energetic year, the AEP may 

overstate the long term average.  
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optimize the rotor aerodynamics to synchronize more closely with wind speed and 

direction changes.  Lidar assisted pro-active control can increase power output 

and reduce fatigue loads on turbine components by reducing mis-alignment of the 

rotor (yaw control) and by feathering the blades to attenuate gust loading during 

normal operation (pitch control).  These load reductions can allow lighter, cheaper 

components, or conversely, changes to operation that capture more energy (e.g., 

higher cut-out wind speed or longer blades). 

 

 No comprehensive analysis can be found in the published literature that looks at the 

benefit  potential of all three from a power production/cost perspective.   Most of the 

cited studies looked at only one instrument or control system or wind regime, and they do 

not all share uniform simulation environments or assumptions.  Although this makes 

direct comparison difficult, some valid and valuable conclusions can be synthesized from 

a careful examination of the overall results.   

 

This paper examines future Lidar and SMRR applications for offshore wind energy and 

provides a forward looking, first-order estimate of the costs and benefits of implementing 

the  three strategies outlined.  The introduction outlines the need for renewable energy in 

the US and explains why offshore wind power is the only feasible option for meeting that 

need in the mid-Atlantic region in the foreseeable future.  The introduction also discusses 

the importance of characterizing the wind offshore and the shortcomings of conventional 
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technology.  It then outlines the methodology used,  setting up the evaluation of remote 

sensing technologies and the cost benefit analysis. 

 

1.2. Background -Need for Renewables  

 

Although modern civilization was built on fossil fuels, the vast amounts used to get us 

here did not come cheaply or cleanly.  Coal, oil, and gas extraction, refinement, transport, 

and combustion release toxins and carcinogens, and are the primary source of 

atmospheric CO2 emissions, and thus the primary source of anthropogenic climate 

change (IPCC 2007, Gale et al 2006) and ocean acidification, (Orr et al 2005)  Fossil 

fuels burned for power generation and transport alone created 63% of global CO2 

emissions in 2010 (IEA 2012, Figure 5).   In addition, structural economic dependence on 

a limited commodity for which global demand will exceed supply by ever increasing 

margins is a recipe for disaster.   There are also huge indirect costs of using fossil fuels.  

A recent public health study by the Harvard Medical School found that the price of coal 

energy would nearly double if the public health and environmental costs were included 

(Epstein et al 2011).  Another study from the Brookings Institution estimated it would in-

crease by more than 170% (Greenstone and Looney 2011).   The U.S. spends over a 

quarter trillion dollars a year to buy foreign oil,  comprising over half of our trade deficit 

(US Census, 2009-2011).  Dependence on this foreign oil has hobbled our nobler policy 

objectives in the middle east for decades, arguably costing the U.S.  thousands of lives 

and trillions in defense dollars.  Last but certainly not least, the looming threat of a 
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catastrophic, heat-trapping overdose of atmospheric CO2 can no longer be ignored by any 

rational, informed person. The recent shift towards cheaper natural gas may attenuate fuel 

price escalation for a while,  but a recently published, peer-reviewed study found that 

only by rapidly switching our power generation over to zero emissions sources can we 

prevent global warming continuing through the second half of this century, potentially 

reaching 4o C (Mhyrvold and Caldeira 2012).   

 

Renewable energy represents much more than just a safer way of powering the grid or 

pushing our vehicles; it will transform modern civilization in many ways,  powering the 

transformation from the depletion-combustion-pollution paradigm into the renewable-

sustainable-production paradigm.   Technology is rapidly advancing to the point where 

renewable energy can provide much of our electricity and transportation needs without 

any of the negative impacts of fossil fuels (Kempton et al 2007,  Delucchi and Jacobson 

2011, Budischak et al 2013).  With strategic public investment in research, development, 

and infrastructure, renewable energy costs will come down steadily. As experience is 

gained and technology improves, this trend will continue until most renewables can be 

commercially developed without public support.  In contrast, fossil fuel costs will 

continue to go up, as one would expect with growing demand for a limited resource with 

rising environmental impacts and production costs.   

 

Unless we discover some long-shot breakthrough such as fusion or safe fission, 

economics will force a large scale transition to renewable energy over the next few 



6 

 

decades.   In this author’s opinion, the losers will be those nations that continue to foster 

their fossil fuel dependency in the face of  rapidly mounting costs, looming carbon taxes, 

and inevitable depletion over the long term.  The winners will be those nations with the 

foresight to invest in new wind, solar, biomass, hydrogen, and geothermal industries now, 

while developing the technologies and supply chains that will dominate the global energy 

market for decades to come.   

 

1.2.1. Need to Reduce Cost of Offshore Wind Power 

 

Wind power is by far the fastest growing renewable energy sector, and rivals natural gas 

for new capacity additions since 2007  (US EIA 2013).  It also has the greatest potential 

for scaling up in the U.S.  Many onshore wind farms in the plains states are already 

operating at grid parity, and a recent study predicts overall grid parity (competitive 

witihout subsidies) for the industry average wind farm by 2016 (BNEF 2011).  In the 

northeast US  however, there are not a lot of open, windy spaces left for large scale 

onshore development, but there is great potential offshore.  A recent study conducted by 

the National Renewable Energy Laboratory (NREL) concluded that the available offshore 

wind power resources of the US exceeds the 2010 US electrical generation capacity by a 

factor of 4 (Schwartz et al 2010).  An even more recent study found that with the 

exception of summer time peak demand, all East Coast states’ electrical demand could be 

satisfied using east coast offshore wind energy (Dvorak et al. 2012).  The study also 

found that the mid Atlantic Bight of the U.S. outer continental shelf (MAB-OCS) 
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presents the most favorable area for development, with high winds, shallow water, and 

low hurricane risk.  This revelation has led to a significant interest in offshore wind 

power to serve the major load centers of the eastern seaboard.  At present, finance, 

construction, and operating costs are much higher offshore (Levitt et al 2012), since the 

industry is relatively new, the environment is more challenging, and risks are higher.    

 

1.2.2. Need to Measure Complex  Energy Field 

 

Many new offshore wind turbine technologies are coming on line that can help achieve 

the needed cost reductions, including larger rotors, newer generator designs,  lower cost 

foundations, faster installation methods,  and advanced monitoring and data acquisition 

systems.   All these technologies are power plant focused, but there is also a great need 

for information and innovation that is energy supply focused.  There is a good reason the 

wind is used as allegory for something that is unseen, uncontrollable, and unpredictable.  

Meteorologists can statistically characterize the behavior of weather systems or the wind 

speed over a given area or a given length of time, but any prediction of the precise wind 

speed at a single point, more than a few minutes ahead would be highly uncertain.     

 

1.2.3. Different Paradigm than Conventional Generation 

 

A unique feature of wind energy compared to other forms of electrical power generation 

is that it exists in a space that is effectively bounded on one side only (the earth surface),  
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is constantly changing at every point, and is beyond human control.   Conventional power 

plants (natural gas, steam, and hydro turbines) also rely on fluid flows to turn a shaft to 

generate electricity,  but they all extract power from a tightly controlled, physically 

constrained, regulated fluid flow.  These older technologies control the flow field inside a 

machine, while wind turbines control the machine inside the flow field – a fundamental 

paradigm shift.  Since the wind cannot be controlled, it must be closely studied and 

monitored.   For this reason, information about the wind field can help determine the 

safest and most cost effective siting and operation of the turbines and the wind farm, 

significantly increasing power output  and reducing the cost of energy. 

 

1.3. Methodology  

 

The study methodology is executed in three steps; described below; 

 Literature Search and Synthesis - Using over 40 recently published case studies 

on the use of Lidar and SMRR for wind speed and power production estimates,  

the sensor and database characteristics of Lidar and SMRR are investigated.  This 

is presented in Chapter 2  and Chapter 3 . 

 

 Strategy Development - In the second step,  strategies are developed to make use 

of the technologies in an optimized program to increase energy production and/or 

reduce costs.  This is presented in  Chapter 4. 

 

 Net Benefit Calculations and Discussion - In the third step,  the costs and bene-

fits of the strategies are evaluated in terms of their effect on the Breakeven Price 

(BP) for a base case wind farm in intermediate waters of the mid Atlantic Bight 

OCS.  This is presented in Chapter 5 to 7.  Chapter 8  presents a discussion of the 

costs and benefits,  and presents some conclusions. 
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1.3.1. Study Area 

 

The study area is a roughly rectangular area between the 30m and 60m isobaths in the 

mid Atlantic Bight Outer Continental Shelf (MAB OCS).  Shallower depths in this area, 

suitable for monopile foundations (up to 30 m) have already been analyzed for 

developable space, and “Wind Energy Areas” (WEAs) have been identified and are being 

made available for leasing by the Dept. of Interior (BOEM 2011).   The benefits of 

improved resource assessment will not be as high in the WEAs, since available area is 

limited due to large exclusion zones.   Dvorak et al (2012) estimated that in the MAB 

region, in depths up to ~30m, where monopile foundations are usually optimal, only 

about 3–4% of peak mid-Atlantic states (PJM-ISO) grid power demand could be 

generated, but the fraction goes up to ~ 20%  for depths between 30 and 60 m.  Beyond 

about 60m, floating foundation technology will likely be required, which is proving more 

difficult than anticipated, and is probably at least ten years away from commercial utility 

scale deployment.  Depths from 30m to 60m are generally considered suitable for 

existing, proven bottom mounted foundations such as tubular strut tripods, quatropods or 

lattice jackets.  The study area for this analysis is therefore this “intermediate” depth zone 

of the MAB (offshore Virginia to New Jersey, inclusive), which could begin to see 

development in the next five to ten years, and could benefit from improved resource 

mapping.   
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1.3.2. Base Case Turbine, Foundations, and Control System 

 

The costs and benefits are estimated by first defining a base scenario which does not 

employ any of the technologies evaluated.  For the sake of standardization and more 

direct comparison to other simulation studies, the  analysis uses the NREL reference 

5MW offshore turbine2 on a jacketed quattropod foundation (Jonkman et al 2009).  This 

foundation  was selected based on its suitability for the depths considered and its record 

of service in the North Sea.   

 

1.3.3. Base Case Siting, AEP 

 

To estimate economic benefits of an improved resource assessment strategy,  a baseline 

must be defined.    Although there are commonly used standards in the EU for 

determining AEP, in the U.S no clear strategy for Resource Assessment (RA) is yet 

emerging, especially for intermediate depths.  Changes in energy production can be 

monetized relative to a base case production fairly easily,  but site selection benefits from 

improved resource mapping are more difficult to quantify.  A realistic base case scenario 

would include a timeline analysis to optimize the siting process, including the selection 

and deployment of equipment and the sequencing of the RA campaign, because that is 

                                                 

2 NREL has developed power curves and other specifications for a standard 5 MW tur-

bine for use as a baseline reference for aero elastic numerical modeling and other sys-

tems.  See Jonkman et al 2009 for specifications. 
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what developers do before committing to the cost of a met tower.  After that, a statistical 

analysis of the outcomes of employing this strategy over the entire study area would be 

required to characterize the expected value of power production over the complete 

timeline of full build-out.  However, that is beyond the scope of this first order analysis, 

so a different methodology is required to assess the benefits of improved resource 

mapping.   For the purpose of the present study, this methodology consists of estimating 

the average accuracy of AEP using the new technologies/strategies within the study area, 

then estimating the cost of obtaining the same level of accuracy using hub height met 

towers with conventional anemometry.   Although hub heights may vary, they are 

assumed 90m above sea level (ASL) for this analysis unless otherwise noted.  

 

1.3.4. Cost Benefit Calculations 

 

Two of the most useful indicators of the value of a wind project are the Levelized Cost of 

Energy (LCOE) and the Break Even Price (BP).   The LCOE is fundamentally the net 

present value of financial costs divided by the net present value of energy production.  It 

assumes a standard federally indexed discount rate for return on investment and 

amortization, but includes no tax or policy inputs, no price change, and no risk premium 

on finance costs (Levitt et al 2012).   It is useful for comparing different technical aspects 

of wind farm design and operation, but does not capture market conditions like finance 

costs,  price escalation, policy incentives, and tax structures.  Breakeven Price (BP), as 

defined by Levitt et al (2012), includes all these things and more closely reflects the 
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economic viabililty of a project from the developers perspective,  and thus the value of 

any change in these parameters, and is therefore the basis of the cost benefit analysis.   

There are myriad investment and banking entities and instruments available for financing 

offshore wind farm projects worldwide, and risk premium can vary significantly from 

project to project, making accurate projections of finance costs problematic (Levitt et al 

2012).  The instability of State and Federal wind energy incentive programs adds further 

uncertainty to any estimate of the cost of capital.   

 

This study therefore makes no attempt to estimate the absolute BP for a wind farm,  but 

only seeks to estimate the change in BP  (Δ BP) from  implementing new technologies, 

thus avoiding many of the uncertainties inherent in a fixed estimate.   Levitt et al (2012) 

derived sensitivity curves for BP vs. capital costs,  operating costs, and capacity factor, 

and finance rate, which is a function of risk premium.  Thus, the sensitivity of BP to 

changes in input factors, modelled by Levitt et al,  is relevant, while the actual BP 

estimated by Levitt et al is not used in this study.  This also allows scaling of benefits to 

larger, or multiple projects, since the value can be expressed as Δ BP times the AEP.    

This provides a realistic first order estimate of the value of new remote sensing 

technologies to wind energy development in intermediate waters of the mid Atlantic 

bight.    
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2.1. Conventional Technology  

 

 

Surface based sensors include traditional cup and ultrasonic anemometers, Lidar (light 

detection and ranging), Radar (radio detection and ranging), and Sodar (sonic detection 

and ranging).   Radar requires large amounts of power, making the technology unsuitable 

for stand-alone offshore deployment for any extended period, and Sodar is susceptible to 

noise interference from the environment, including high winds (Brower 2012).  Radar is 

suitable for deployment on satellites, but that is the subject of Section  3.1-“Satellite 

Microwave Radar/Radiometry (SMRR)”.  Of these three remote sensing technologies, 

only Lidar has the practical capacity to be deployed offshore on a buoy or small platform.   

The discussion in Section 2 is therefore limited to cups, ultrasonic anemometers, and 

Lidar.  Other types of mechanical anemometers can be as accurate as cups, but cups are 

 

 

 

 

Chapter 2   
 

 

SURFACE SENSOR EVALUATION 
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most commonly used in calibration and resource assessment, so other types are not 

considered further. 

 

 

2.1.1. Cup and Ultrasonic Anemometers 

 

For about 150 years, the primary sensor used for wind speed measurements has been the 

vertical axis cup anemometer.   The sensor must be positioned in the wind stream and 

kept free of ice and debris and the internal friction must remain constant.  Because a 

structure is required to hold the sensor in place,  a disturbance is introduced into the free-

stream wind field and invariably some wind data must be “corrected” or discarded.  Cup 

anemometers are known to be influenced by turbulence, air temperature, air density, and 

flow inclination (DNV 2011).   A significant vertical component to the wind vector can 

cause overspeeding of cup anemometers.  More recently, ultrasonic anemometers (USAs) 

have been used to more precisely measure wind fields.  These sensors detect doppler 

shifts in an ultrasonic wave transmitted between nearfield (~ 20 cm) transducers. 

Ultrasonics also are subject to structure flow disturbance effects, however, as the device 

must be mounted on a “lightning cage” structure to ground out lightning, and the sensed 

volume must be bracketed by transducer elements.   All anemometers have operational 

characteristics that are subject to external conditions that may influence the wind speed 

measurement and introduce error.  Despite these shortcomings, the error of class I 
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anemometers is extremely low – it cannot exceed 0.1  m/s at wind speeds below 16 m/s 

(IEC61400-12-1, ISO 16622). 

 

 

2.1.2. Conventional Meteorological Buoys 

 

To collect wind data offshore, the sensor platform can either be bottom-mounted or 

floating and moored.  The most common ocean deployment method is to mount the 

sensors and power systems on specially designed buoys that are anchored to the seafloor 

as shown in Figure 1.    Typically, the anemometers are installed atop a short mast on the 

buoy at 3 to 6 m above sea level (ASL)3.    These buoys are designed for capsize 

resistance and survivability, but can undergo severe motions in all six degrees of freedom 

during high sea states.  Severe motion will corrupt information about turbulence, and bias 

can be introduced to the time-averaged wind speed or direction if the buoy trim (pitch or 

roll) is biased, since cup error appears to increase with tilt angle (Bergen 2012).  Wind 

speeds at this height are also subject to sea surface effects depending on sea surface 

temperature, wave height, and other factors (Karagali 2012).   

 

                                                 

3 ASL (above sea level) is usually in reference to Mean Sea Level, but is used in this pa-

per to denote height above the sea surface, i.e., tides are neglected unless otherwise indi-

cated.   



16 

 

The National Oceanic and Atmospheric Administration (NOAA) runs the National Data 

Bouy Center (NDBC) program, which deploys and maintains metocean data buoys 

around the world, and provides the data to the public (NDBC 2009, 2013). The nominal 

accuracy of NDBC buoy anemometer time-averaged wind speed data  is given as +/-  

1m/s or 10%, whichever is greater4.  This is sufficient for many applications,  including 

short term marine forecasting, numerical weather prediction (NWP) model validation, 

and  storm warning systems, but was never intended nor designed for wind farm siting or 

wind energy density5 estimates.  Data from the buoy must be extrapolated at least to hub 

height to be useful.  Without an accurate model of the wind profile, this extrapolation 

introduces significant uncertainty.   

   

2.1.3. Meteorological Towers 

 

For estimating wind farm power production, the relevant wind field includes the entire 

rotor disk plane.  Since these data are rarely obtainable, the usual alternative is to erect a 

tall offshore tower to mount sensors and measure the wind speeds up to hub height.  The 

Cape Wind met tower in Nantucket Sound reaches approximately 60m, as shown in 

Figure 2.  Onshore,  the cost to erect a tall (90-100m)  meteorological mast  is on the 

order of ~$250,000, but offshore, a tall tower can cost from $5 million to $10 million, 

                                                 

4 Accessed at (http://www.ndbc.noaa.gov/rsa.shtml)  21 Jan 2013. 
5 Energy density is based on the total kinetic energy in the wind over one year, expressed 

in Watts per square meter normal to the wind direction.  It is dependent on height and lo-

cation. 

http://www.ndbc.noaa.gov/rsa.shtml
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depending on water depth, tower facilities, and other factors (Wisseman 2009, Brower 

2012).  The use of conventional anemometers on a fixed met tower is thus problematic 

for the following reasons: 

 

 it severely limits the spatial coverage and data that can be collected cost 

effectively; 

 

 It raises the cost and time required for resource assessment and project 

development; 

 

 It creates a  barrier to competition among developers, limiting the pool to well 

capitalized firms that can risk the cost of a met tower; 

 

 It creates potential environmental impacts,  viewshed impacts, and human use 

conflicts (e.g., fishing, shipping, aviation). 

 

 

Figure 1- NDBC 44025, from NOAA/NDBC website 

Figure 2- Cape Wind Met Tower, from US Dept of Interior, BOEM website 
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2.1.4. Conventional Nacelle Mounted Anemometers 

 

After a wind farm is commissioned, the wind speed and direction at each turbine are 

monitored, primarily for turbine system controls.   Conventional anemometers (cups and 

ultrasonics) are  installed on top of each nacelle, but the upwind rotor design (used by all 

major turbine manufacturers) subjects the nacelle to near-field wake from the rotor.  This 

renders the data nearly useless for accurate measurement of the free-stream wind 

velocity, but still useful for triggering start-up and shut-down of the turbine and 

estimating wind direction for turbine yaw control.   

 

2.2. Light Detection and Ranging (Lidar) 

 

A recent adaptation of a common remote sensing technology can help provide the type of 

wind data required to measure the energy field on the relevant time and spatial scales.  

Although other remote sensing methods exist for measuring wind speeds (e.g., Sodar, 

Radar), Light Detection And Ranging (Lidar) using a coherent laser provides the most 

accurate and versatile way to provide remote measurements.   Lidar has been in use for 

decades to accurately measure distances and generate digital elevation models for 

topography and mapping.   In the last ten years or so it has been adapted to measure wind 

speed and direction, and in the last few years it has begun to appear in the offshore wind 

industry.  Wind Lidar instruments are capable of  providing diverse benefits, including 



19 

 

better resource assessment (ECN 2012) and better turbine control systems (Harris et al 

2006).   

 

Lidar measures reflected light just as radar measures reflected radio waves and sonar 

measures reflected sound underwater. The basic principle underlying Doppler Lidar (the 

dominant technology for wind speed measurement) is the measurement of the Doppler 

shift of  the reflected radiation from a coherent laser6.  The laser beam, at frequency ωo,  

hits natural aerosols carried on the wind and is reflected and scattered. Some of the light 

is reflected back at a frequency altered by the doppler shift (Δf), and the Doppler-shifted 

frequency of the reflected light is detected by a sensor (see Figure 5). Wave interference 

between the two signals creates a “beat” frequency that is proportional to the wind speed 

vector component along the laser   By probing the laser along three or more radial 

vectors, the wind direction can be resolved7, providing an accurate estimate of the 

average wind speed and direction at the focal distance sampled. Although the detectors 

may be focused at a set distance, they actually sense the backscatter from a probed 

volume defined by depth of the focal field. This results in a narrow Gaussian distribution 

of Doppler shift which must be interpreted with algorithms. A weighting function, φ,  is 

used in the algorithm to target the center of the probed volume.  

 

                                                 

6 One new model uses a different strategy – timing the transit of aerosol structures across 

the sensor cone (SPIDAR 2012) 
7 Some units provide two dimensional vectors at varying heights, and some can resolve 

three dimensional vectors. 
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The Leosphere WindCube™ and the Natural Power ZephIR™ Lidar models are the two 

most common and most tested models,  pictured below.   Figure 6 shows the radial vec-

tors and wind vectors for two types of lidar probe patterns, used in The azimuth and zen-

ith angles are labelled θ and ϕ, respectively.  The probed volumes may each be 20m to 

30m long and be separated by 100m, and the shear and aerosol distribution unknown.  

First order uncertainties arise from sensing range error and Lidar hardware.  Second order 

uncertainties can arise from necessary assumptions regarding aerosol distribution, hori-

zontal shear, cross-flow and turbulence (Marsden 2009).  Though these second order ef-

fects may be significant in complex terrain, they are not significant in the offshore envi-

ronment because aerosol distribution and wind vector fields are generally more homoge-

neous offshore due to lack of topography and much lower surface roughness. 

 

 

Figure 3- Leosphere WindCube, reprint courtesy Leosphere                      

Figure 4- Natural Power ZephIR, reprint courtesy Natural Power 
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Table 1 - Basic Performance Specs of Two Wind Lidars 

 

 WindCube v2 ZephIR 300 

Measurement Height 
Range:  

40m to 200m 10 m to 200 m  

Probe Length: measurement 
height;  

20m @ all hts. 0.07 m  @ 10 m                         
7.70 m  @ 100 m 

Number of Measurement 
Heights:  

12 hgts in 4 sec. 10 hts in 10 sec., user configu-
rable 

Sampling Rate*  1 sec 50 Hz 

Averaging Period:  4 sec  1 sec. per height level 

Wind Speed Accuracy: <0.1 m/s < 0.5 %  

Wind Speed Range:  0 to 60+ m/s < 1 m/s to 70 m/s 

Wind Direction Accuracy:  2° < 0.5 % 

(*) – WindCube laser pulse rate is 30 kHz.  

 

 

The first generation of wind Lidar units came to market in 2005 and for the next seven 

years, validation testing and calibration was conducted by independent, government 

funded, university-led research teams in Denmark, Germany, and the UK.  In that period, 

the technology improved significantly in terms of performance and accuracy 

demonstrated both onshore (Mann et al. 2007; Mann et al. 2009) and offshore (Kindler et 

al. 2007; Pena et al. 2008, Pena 2010).   Offshore testing was conducted for survivability 

and data availability and to understand the effects of sea surface heat exchange and other 

factors that can significantly affect the wind profile.  This research culminated in 

2011/2012 with the introduction of a second generation of commercially available wind 

Lidar units. These units have upgraded hardware for offshore survivability, improved 
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laser geometry, and updated calibration of cloud correction and probe volume-averaging 

algorithms.  

 

 

Figure 5--Doppler Shift Lidar, Beat Detection Schematic , from Pena et al 2008 

 

 

Figure 6- Laser vectors and scan configurations of WindCube (L) and ZephIR (R), 

from Pena et al 2008. 
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2.2.1.  Pulsed Laser (PL) vs. Continuous Wave (CW) Lidar 

 

Although each Lidar system is slightly different, they are primarily characterized by their 

laser emission waveform, which is either continuous wave (CW) or pulsed laser (PL).  

This distinction is the most germane to understanding the subtleties of Lidar wind 

measurement.  A good technical description and comparison of the strengths and 

weaknesses inherent in  PL and CW Lidar can be found in Hill et al (2010), Simley et al 

(2011), or Courtney et al (2008).   The summary below draws information from these 

three sources.  

 

Continuous Wave -The CW laser emits a continuous (non-pulsed) beam and optically 

focuses the receiver at the target distance, resulting in a distribution of return signal gain 

around the focal distance, as shown in Figure 5.   Due to its optical focus,  the probe 

length of CW increases with the square of the range (for example, the ZephIR has an 

effective probe length of ±1m, ±6m and ±15m at 40m, 100m and 150m ranges 

respectively).  This larger sample volume boosts the signal while the longer distance at-

tenuates it, resulting in a fairly constant carrier  to noise ratio (CNR) over the target range 

of the unit.  Although there is greater potential for range (height) error with the longer 

probe volume at greater heights, it may not be significant because the wind profile is gen-

erally more vertical at greater heights.  Beyond several hundred meters, however, the 

probed volume becomes too large to render a meaningful point estimate, and clouds and 

other factors come into play (Marsden et al 2009).    
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Pulsed Laser - The strategy used in PL is to send discrete laser pulses and set timing 

gates on the receiver to capture the pulse reflection from around the target range.  Thus 

the probe length is proportional to pulse duration (which is fixed) and the reflected signal 

gain exhibits a Gaussian distribution.  PL can probe several different ranges near-simulta-

neously through the use of multiple range gates, making it valuable for capturing turbu-

lence structures.  On the downside, the CNR of PL decreases with distance since the 

probed volume does not increase to offset the signal fade.  This can only  be overcome by 

increasing laser power.  Also, PL must use a minimum pulse duration related to the 

Nyquist frequency8, thus a minimum pulse length and a minimum probe length, currently 

around 30m (distance between targets).    PL is therefore ill-suited to ranges below the 

minimum probe length. 

 

There is no simple, single trade-off between the two technologies, but in general, CW is 

necessary at short ranges (<30m) and PL is necessary at long ranges (>200m).  The 

transitional region lies between approximately 100 – 150m, (see Figure 7) where various 

factors could drive selection either way (Simley et al 2011).  For example, power draw 

may be a factor if deployed remotely, and some CW units draw more power than PL.  

 

                                                 

8 Nyquist frequency is one half the highest sampled frequency. Frequencies above the 

Nyquist frequency cannot be observed in a discretely sampled time series. 
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Figure 7- Error Comparison for CW and Pulsed Lidar by Height, from Simley et al 

2011, a report prepared by NREL for the U.S. Dept of Energy.   

 

2.2.2. Lidar vs. Conventional – Range and Accuracy  

 

Generally speaking, commercial wind Lidar systems can sense wind speed anywhere 

from ~20m to several kilometers, with varying performance depending on system power 

and design, atmospheric conditions, software settings, and hardware configurations.  

Scanning Lidars may be mounted on nacelles to sense the incoming wind, as discussed in 

later sections.  Long range scanning Lidars with ranges over 5 km are available, but 

require a larger space on a fixed platform, a cooling system, and a larger power supply. 

 

The fundamental difference between Lidar and conventional sensors is that in the field,  

Lidar measures a volume, not a point.  The sources of uncertainty, and thus the conditions 

that affect error,  are different for Lidar, cups, and ultrasonics.  For a point measurement 
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of scalar velocity along the laser axis, Lidar requires only a simple waveform beat 

detection9, whose accuracy is  independent of source voltage.  This is considered to be 

essentially calibration free, with error measured at 0.003 m/s against a calibrated moving 

belt target (Bergen 2012).  Calibrated wind tunnel tests of wind speed measured by an 

axial, single probe Lidar against a pitot tube show zero bias and a linear regression slope 

of 1.0042 (Cayla 2010).   However, practical application of wind Lidar requires the use of 

at least three lasers at three different angles to resolve axial components along each laser 

into a single 2 or 3 dimensional wind vector, which is assumed to represent the wind at 

the aggregate centroid of the probed volumes.  Uncertainty comes from potential error in 

the technical characteristics of the Lidar (focus, laser angle, range estimate) and from the 

assumptions required for averaging the wind speeds within the probed volume (aerosol 

distribution, wind veer, shear).   The first source of uncertainty can be mitigated through 

hardware and calibration improvements, but the second is a function of natural, stochastic 

processes that are difficult to model. 

 

Three Lidar validation  studies are discussed below.   Unless otherwise noted, this paper 

defines bias of a co-incident measurement relative to a reference cup anemometer, and 

defines accuracy as one standard deviation.  

 

                                                 

9 The beat is generated by the frequency of the source beam combining with the doppler-

shifted frequency of the return signal beam. The beat frequency is thus a function of the 

doppler shift.  
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2.2.2.1. Westerhellweg et al 2010 

 

 In a study conducted by the German Wind Energy Institute (DEWI) as part of Research 

at Αlpha Ventus (RAVE),  one year of measurements from a Leosphere WindCube™ 

Pulsed Lidar were taken on the FINO-1 met tower and compared to the cup anemometer 

data (Westerhellweg et al 2010).  Of all the Lidar validation studies performed, this is one 

of the most pertinent and useful because it covers the longest time series, involves the 

shortest distance between the tower and the Lidar,  and was conducted 45 km offshore, as 

opposed to an onshore coastal research station used for many of the other studies.  Two 

figures from the DEWI study are included below.  The first,  

Figure 8,  shows the scatter plot for the two data sets at 90m ASL, and indicates 

extremely high correlation at all speeds above 4 m/s, with R2 values of 0.998.  An 

analysis of uncertainty was also performed, and used to generate Figure 9, below, 

comparing data from the cup and the Lidar at 103 m ASL.   Availability of Lidar data 

was 98% at this height.    The vertical red bars represent the standard deviation (%) of the 

Lidar data and the purple line represents the uncertainty (%) of the cup measurements.  

After binning the ten minute averaged data into 1m/s bins,  the range of uncertainty is 

nearly identical at wind speeds above 4 m/s, with Lidar proving slightly more accurate 

above approximately 23 m/s.  The correlation coefficient (R2) was higher than 0.99 at all 

heights.  Bias varied from –0.15 m/s to 0.08 m/s and this was attributed to mast and 

lightning cage effects on airflow. The authors made two important observations regarding 

accuracy and uncertainty;  
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 The mean deviation between Lidar and cup measurement is smaller than the 

uncertainty of the cup measurement. 

 

 The standard deviation of the deviation between Lidar and cup measurement is 

approximately in the same range as the uncertainty of cup measurement.   

 

The study concluded that any further verification of Lidar accuracy using a met tower is 

limited by the uncertainties inherent in the cup measurement and the geometrical sensor 

setup, causing flow disturbance. 

 

 

 

Figure 8-Scatter Plot and Correlation Values (Westerhellweg et al 2010) 
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Figure 9- Deviation and Uncertainty of Cups vs. Lidar (Westerhellweg et al 2010) 

 

 

2.2.2.2. Marsden 2009 

 

In research conducted at the Danish Technical University Wind Energy Dept (DTU),  the 

error and uncertainty of Lidar vs. cup anemometers was examined using three months of 

data from a Wind Cube and from calibrated cups mounted on a met tower on the coast 

(Marsden 2009).  The met tower data were filtered to remove wake sectors and periods of 

frozen cups, and the Lidar data were filtered to remove points of low CNR, scrubbing 

about 6% of the data set.  The data were further separated into sectors to represent a 

coastal climate (wind from offshore) and an inland climate (wind from inland).  941 ten 

minute average data points were left in the coastal climate set.  The data sets were used to 
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predict AEP for a reference 2 MW turbine with 100m hub height.  The study found that 

AEP predictions using hub-height cup vs. Lidar measurements differed by 1.1 % for the 

coastal climate.  The study concluded that cup-traceable Lidar can likely provide AEP 

predictions with an accuracy of  +/- 2.5%.   The study also estimated that a calibrated 

boom mounted cup has an uncertainty of about 0.2 m/s in the operating range of a typical 

turbine, which compared to a standard deviation of Lidar error of about 0.21 m/s, and a 

bias of -0.03 m/s. 

 

2.2.2.3. ECN 2012 

 

In November 2012, the Energy Research Centre for the Netherlands (ECN) completed a 

60 week offshore measurement campaign as part of the project “Meteorological 

Research- Wind at Sea”.  Data from the  ZephIR 300™ were compared to conventional 

anemometry data from the 108 m Met Mast Ijmuiden at the ECN Wind Turbine test 

facility, 75 km offshore in the Dutch sector of the North Sea.  Measurements were taken 

in accordance with IEC 61400-12.  Availability of the ZephIR was over 98%, with the 

only downtime attributed to an external power supply failure.  Although the study has not 

yet been published,  the researchers have stated that the ZephIR 300 can be a valid stand-

alone system (on a fixed platform) for wind resource assessments, especially given the 

unit’s ability to reach the top of the rotor disk (ECN 2012).   
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2.2.2.4. Summary – Fixed Platform Lidar 

 

Five additional Lidar validation studies from DTU and others using coastal and offshore 

met towers were also reviewed, and showed nearly identical results  (Kindler et al. 2007; 

Pena et al. 2008, Pena 2010, Mann et al 2010), with Pearson correlation (R2) values of 

0.98 - 0.99  for 10-minute average velocities at heights up to 200 m.  These studies 

demonstrate that the accuracy of the newest Lidar technology is comparable to a cup ane-

mometer for estimating power production, primarily because there are no tower wake ef-

fects to disturb the wind stream and no vertical extrapolation required to reach blade tip 

height.  Extensive testing of the two models with the longest track records (the Leosphere 

WindCube™  and the Natural Power ZephIR™), against a met tower on the Danish coast 

indicates that between 2005 and 2009,  improvements in hardware and data processing 

reduced the mean error in the ten minute average wind speed from 0.1 m/s to 0.05 m/s 

(Marsden 2009). 

 

Since  2009, every published fixed platform Lidar validation study that includes a 

regression analysis compared to calibrated cups on an offshore or coastal met tower has 

found correlation coefficients around 0.99 and biases that rarely exceed 0.1 m/s, which 

occurs only at wind speeds below ~ 5 m/s.  It is becoming clearer with each validation 

study that  Lidar has advanced to the point where it provides accuracy and availability at 

least comparable to cup anemometry.   In a pair of 2013 position papers from 

Germanischer Lloyds-Garrad Hassan (GL-GH)  (Tindal 2012a, Tindal 2012b),  a leading 
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certification and verification agent for the wind industry,   states that the use of validated 

Lidar on fixed platforms is determined to have essentially the same uncertainty as 

conventional cups on towers, and is deemed to be suitable for offshore Resource 

Assessment.  If cup anemometry data must be extrapolated to height using a wind shear 

model,  the added uncertainty likely exceeds that inherent in Lidar probe volume 

averaging10 (see Figure 9).    

 

2.2.3. Long Range Lidars 

 

In addition to the upgraded WindCube V2, Leosphere has also introduced several new 

models with extended ranges and scanning capabilites. The specifications are given in 

Table 2.   The most recent addition (not listed in the table), model 400S, has a specified 

scan range of 10km, with a display resolution of 200m and a nominal accuracy of 0.5m/s. 

The fundamental technology is based on the V2, but the effective range of the newer 

models is increased by using a more powerful laser coupled with greater accumulation 

time, larger range gates and less temporal resolution.  Bi-axial motorized heads provide 

motion for the laser and sensors to scan 360 degrees of azimuth and over 190 degrees of 

elevation (full coverage).  

 

                                                 

10 If wind speeds to the blade tip height are desired offshore, Lidar is the only practical 

solution, because engineering limitations currently make it cost prohibitive to build off-

shore towers taller than ~110 m in most areas.  

 

http://www.leosphere.com/pdf/BrochureDef_BD.pdf
http://www.leosphere.com/pdf/BrochureDef_BD.pdf
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Table 2- WindCube Extended Range Performance Specs, reprint courtesy of Leo-

sphere 

 

 

2.2.4. Other Scanning Lidars 

 

Lidar technology has recently been adapted to rapidly scan large areas or volumes.   

These units can be either fixed multi-beam type (e.g., conical pattern) or “steerable” de-

signs with programmable scan patterns using servo-motors to control the laser head or the 

mirror.  The systems can sweep selectable probe vector patterns at multiple ranges, 

providing data for reconstruction of a 3 dimensional wind field (Mikkelsen et al 2010, 

SGURR 2013).   

 

This scanning technology can be used to  improve control of wind turbines in real time 

operation.  Single Lidar units mounted on top of the nacelle can probe the incoming 

windfield from 30m to 200m away, providing the weighted average velocity and 

direction within the probed volumes.  More accurate upstream windspeed measurements 
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can also produce more accurate power curves, reducing uncertainty in AEP estimates.  

However, nacelle mounted Lidar has a significant drawback - the line of sight is blocked 

whenever a blade passes in front of the unit, about 30% of the time (Schlipf 2012).  This 

restricts the timing of the probes, reduces available data, and increases uncertainty.   

Lidar mounted in the rotor can avoid this problem, and scanning units mounted on 

adjacent turbines can also effectively “image” the incoming wind field. 

 

2.2.4.1. ZephIR Spinner Hub- Mikkelsen et al 2010 

 

Hub mounted scanning Lidar systems have been developed to obtain a clear view of the 

incoming wind field.  Field testing has demonstrated the ability to mount a Lidar in the 

nose of the hub, eliminating rotor and nacelle shadow and allowing detailed scanning of 

the upwind projection of the rotor disk (Mikkelsen et al 2010).  Although these multiple 

probe scanning units improve spatial resolution, the assumption of linear translation of 

turbulent structures is still required to account for the scan cycle times (Simley et al 

2011).  This is known as Taylor’s Frozen Turbulence Hypothesis  (Taylor, 1938). 

 

As part of the Wind Scanner project at DTU, The “Tjæreborg Spinner-lidar Experiment”  

(Mikkelsen et al 2010),  mounted a conically scanning CW Lidar (modified ZephIR 175)  

inside the hub of a large 80 m diameter, 59 m hub height, 2.3 MW Vestas NM80 turbine.  

Figure 20 shows the dual-conical scan pattern of the Lidar unit mounted in the rotor hub.  
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Figure 10- Hub Scanning Lidar, from Mikkelsen et al 2010 

 

The experiment measured the approaching wind and turbulence structures by scanning 

the wind field about the rotor axis in real time.  The approaching wind field was meas-

ured at distances of 53m  and 160m upwind,  using 30 degree and 15 degree optical 

wedges, respectively.  The Lidar radial measurement resolution was estimated to be about 

20 m at the 103 meter range and about 5 m at the 53 m range.  Data from an adjacent me-

teorological mast as well as data logged within the wind turbine’s control system were 

used to evaluate the results.  The system showed high reliability and data availability 

throughout the measurement period of April through August 2009.  Figure 11 shows a ra-

dial plot of the incoming wind speed at the edges of the rotor disk, projected about 53 m 

upstream, and indicates a relatively coherent windfield, with lower velocities near the 

ground (180 degrees).  Information about the incoming wind profile across the rotor disk 

can thus be obtained from the plotted data.  Figure 12 shows a comparison of the spinner-
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lidar measured (10 minute averages) vertical wind profile (blue dots) with data from a co-

located adjacent instrumented met mast (red dots).    

        

Figure 11- Radial Plot of U of Incoming Wind Field Profile, from Mikkelsen et al 

2010 

Figure 12- Wind profile, Spinner Lidar vs. Cup, from Mikkelsen et al 2010 

 

The authors concluded; 

… the integration of the lidar in the spinner of a wind turbine has proven 

very useful for the research of the incoming wind towards the rotor plane. 

Furthermore this innovative measurement concept offers the possibility of 

active control of a wind turbine through a wind lidar. Incorporation of re-

mote sensing wind data into the turbine control system can lead to im-

proved energy yield and load reduction, through yaw, rpm and pitch con-

trol. …. Implementation of enhanced control algorithms …is envisioned to 

contribute to the improvement of active control of wind turbines in the 

near future. 

 

The research proved that it is possible to accurately measure the incoming wind field 

160m upstream of the rotor plane, providing unprecedented ability to define wind 
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velocity across the rotor disk and provide 2 or 3 dimensional maps of upstream wind 

fields.  With these recent developments, nacelle/rotor mounted Lidar can provide an 

accurate (+/- 0.1 m/s) vector image of the incoming wind field across the rotor disk at 

least 5 seconds in advance.   

 

2.2.4.2. Galion G4000 – SGURR 2013 

 

Figure 13 shows an image of wake fields generated using three identical SGURR Galion 

G4000™ scanning Lidar units mounted on the nacelle of an Areva M-5000-116 Turbine.   

This type of deployment (nacelle top) is not a typical placement of the G4000, but 

demonstrates the potential for mapping winds across multiple turbines in a wind farm.  

Although no independent validation studies have yet been published for the G4000, the 

fundamental PL technology employed is the same as that used in the WindCube.    
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Figure 13- G4000 Image of Turbine Wakes-Alpha Ventus, from Sgurr 2013 

 

 

2.2.4.3. Latest Entries – Nacelle Mounted 

 

Two recent entries into the market are designed specifically for Rotor Control applica-

tons; the Windar Photonics™ system and the Windiris™ from Avent Technologies, a 

joint venture of NRG and Leosphere. The Windar system is a simplified two beam sys-

tem based on technology developed by DTU, but designed specifically for mounting on 

the nacelle to scan incoming wind.  With a unit price around $35,000, the system may be 

deployed on every turbine, providing accurate wind speeds and directions up to 60 m up-

stream of the rotor, using only a semiconductor laser and polarization switching to split 
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the beam.   The strategy is to correct yaw error and use proactive pitch to reduce fatigue 

loading.  The manufacturers claim a payback period of 12 to 24 months.  

 

The Windiris is a more powerful PL system with a longer range, and is designed to be de-

ployed on the nacelle for a defined calibration campaign.   The strategy is to collect 

enough data to determine yaw bias from the legacy anemometer, calibrate the control al-

gorithm to take out the bias, then move to the next turbine.  In summary, new Lidar tech-

nology can be expected to improve control systems, wake modeling, rotor blade design, 

power curve testing,  condition monitoring and wind farm layout.   

 

2.2.5.  Floating Lidar Systems 

 

Until very recently, wind Lidar systems required a fixed platform for operation, which 

made their  offshore deployment cost nearly the same as an offshore met tower since 

most of the cost is for the foundation and platforrm, not the tower.  In the last few years, 

at least four Lidar systems – the SeaZephIR™, WindSentinel™, WaveScan™, and 

FLidar™ - have come to market mounted on specially designed floating platforms.    

 

Two basic design philosophies for these platforms are emerging. The SeaZephIR limits 

the motion of the platform with a vertical spar buoy and a tension leg anchoring system, 

keeping pitch/roll very close to neutral.  This strategy intends to negate the need for a 

motion compensation algorithm.  The other three are based on a barge hull buoy with 
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catenary anchor lines.  The barge buoy data are processed with a digital algorithm to 

reduce the effects of platform motion.   This motion-compensation algorithm subtracts 

the buoy motion effect from the wind vector data.  Processing can occur internally in the 

unit or in a separate algorithm after data is downloaded.  The Wavescan, the 

WindSentinel and the FLidar systems use some variation of this design.  These units 

include renewable power systems designed for long term (6-12 months) deployments, 

and they can store the data or transmit via satellite or cel network, in bursts at regular 

intervals.  They can be deployed adjacent to a turbine or far away from the wind farm, 

depending on the application, and can be easily re-deployed by a buoy tender or similar 

working vessel, providing the ability to easily and quickly collect data to blade tip height 

at almost any location. Several recent studies in the US and EU examined the accuracy of 

these systems, and some validation field tests are currently underway.  These are 

discussed below.   

 

2.2.5.1. GVSU WindSentinel Study 

 

As part of the DOE offshore wind acceleration program, researchers at Grand Valley 

State University in Michigan are leading a team that is validating a WindSentinel for 

resource assessment in Lake Michigan.  The latest and longest deployment was 36 miles 

offshore, and lasted from May to December 2012.  The system ran continuously, with 

100% system availability and no deviation from specified performance, even during the 

peak winds of Superstorm Sandy, which were measured at hub height at 29.9 m/s, with 
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wave heights of over 8 m.  Issues arose with the satellite uplink and a component of the 

renewable power supply, but redundant systems performed as designed until repairs 

could be made, resulting in no loss of data or communications11.  Although only limited 

data are available at this time, the experience to date in Lake Michigan indicates that the 

system is robust enough for long term (multi-year with 6 month maintenance cycle) 

offshore deployment.   

 

Table 3-WindSentinel Performance Specifications, from Axys Technologies 

 

 

 

 

 

 

 

 

 

                                                 

11 Personal communication with Arn Boezaart, GVSU, 14 Jan 2013. 

Performance 
Spec 

WindSentinel 

Measurement 
Height Range:  

30m to 150m 

Probe Length +/- 20m - all hts 

Number of 
Heights:  

5 user   
selectable 

Sampling Rate:  1 sec 

Data Validity 
(all hts) 

>90%  

Wind Speed Ac-
curacy: 

0.1 m/s 

Wind Speed 
Range:  

0 to 90 m/s 

Wind Direction 
Accuracy:  

2° 
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Figure 14 - WindSentinel Metocean Buoy System, reprint courtesy AXYS Systems 

 

2.2.5.2. Fixed Lidar vs. Moving (Floating) Lidar 

 

A Norwegian consortium led by the University of Bergen and Statoil (the Norwegian 

national energy company) recently assessed the ability of buoy mounted Lidar to 

accurately measure the wind profile (Bergen 2012).   A ZephIR 300 and a WindCube v2 

were mounted on a motion simulation platform programmed to simulate 56 different sea 

conditions, and matching units were placed on the ground beside them.  Measurements 

were taken at 10 levels between 40m and 197m. The test showed little difference between 

ten minute averages from the fixed units and the moving units, or between the two Lidar 

models. Most measurements were within the uncertainty criterion of 0.2m/s (or 2%) even 

without motion compensation.  Figure 15, below, shows a typical three minute time series 
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of the deviation between the ground unit (u-ref) and the “floating” unit (u-obs) 

WindCubes, at 80m height, before the motion compensation algorithm was applied. 

 

 

Figure 15-U bias between fixed and moving Lidar, from Bergen 2012 

 

2.2.5.3. Fixed ZephIR vs. Floating Wavescan ZephIR 

 

The second part of the Norwegian study (Bergen 2012) compared a ZephIR on land to a 

ZephIR mounted on a Fugro Wavescan™ buoy 3 km offshore.  The deployment lasted 

from 24 March 2012 until 19 April 2012.   The buoy Lidar recorded 10 minutes average 

wind profile at 10 heights from 12.5m to 218m every third hour, while the reference 

Lidar measured the wind at 53 m height continuously.  The period included times of 

significant wave height exceeding 3.5 m.  The scatter plot of the data, shown in Figure 

16, shows very close correlation and almost no bias.  The authors noted that most of the 

scatter is likely due to the stations being 3 km apart.   
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Figure 16- Scatter Plot and Correlation Analysis, from Bergen 2012 

 

2.2.5.4. Fixed ZephIR vs. SeaZephIR  

 

In a study conducted by Natural Power in 2009, a SeaZephIR (spar buoy design) was 

deployed in waters off the coast of Norway about 800m from a land based ZephIR on a 

small, flat island (Smith 2012).   Figure 17, below, shows the two data streams of ten 

minute average wind speeds at 90m for the period 5-23 November for the SeaZephIR 

(red), and shore ZephIR (blue).   The figure was generated from unfiltered data using an 

early prototype of the SeaZephIR.  The data show high correlation, with low deviation 

and no significant bias, especially considering they were separated by 800m.  This early 

test proved that the concept was worthy of further development.   
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Figure 17- SeaZephIR and LandZephIR wind speed at 90m, from Smith 2012. 

 

2.2.5.5. US Deployments – WindSentinel and NJORD 

 

Floating Lidar systems are gradually gaining acceptance by the wind industry for 

producing  accurate, investment-grade offshore wind data.  At their August board 

meeting in 2010 ,  the New Jersey Board of Public Utilities approved the use of  both a 

SeaZephIR and a WindSentinel  for Resource Assessment for two wind projects off the 

coast of New Jersey .   This approval allowed Fishermen’s Energy and Garden State 

Offshore Energy to tap the state’s  Offshore Wind Rebate Program for the cost of their 

floating Lidars, and prompted them to shelve their plans for offshore meteorological 

towers.   Fishermen’s Energy has since purchased and deployed a WindSentinel, and 

GSOE has developed and deployed their own floating Lidar/metocean unit.  The spar 
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buoy supports the ZephIR 300 and was re-named the New Jersey Ocean Research Device 

(NJORD), shown in Figure 19.   

 

 

Figure 18-New Jersey Offshore Research Device (NJORD), built by SEAROC, sup-

porting a ZephIR 300.  Reprint courtesy of SEAROC 

 

Zephir Ltd., developers of the technology,  recently completed (May 2012) field trials of 

the NJORD, comparing Lidar wind speeds at hub height to an onshore reference met 

mast  with cups, 3.5 km distant, on complex terrain.   Despite the distance and significant 

wave heights up to  3.5 m,  the accuracy was found to be reasonable, with the correlation 

plot showing a linear fit slope of 1.01 and R = 0.96. (Rutherford et al 2013) 
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2.2.5.6. Fixed WindCube vs. Floating FLidar WindCube 

 

A more recent entry into the floating Lidar market is FLidar™,  a product of 3E, a Bel-

gian manufacturer.  The system uses a WindCube v2 with a novel mechanically stabilized 

barge hull design.  The strategy is to minimize motion before applying a motion compen-

sation algorithm to the data.  Data from preliminary sea trials indicate high correlation of 

wind speeds at 100m compared to a WindCube on shore nearby, as shown in Figure 19.  

 

Figure 19-Scatter Plot and Correlation Analysis, from Thevenoud et al 2012 
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2.2.6. Summary – Floating Platform Lidar 

 

Although independent validation studies are not yet complete, the simulations,  

preliminary reports and early data from manufacturers and other investigators, discussed 

above, indicate that commercially available floating Lidar technology can currently (or 

will within a few years); 

 provide data continuously (with system availability >98%) for at least 6 months; 

 provide at least 90% data validity at hub height  

 provide 10 min data to 200 m ASL to within +/- 0.1 m/s; 

 provide 10 minute average wind speed data that is accurate across the turbine 

operating range of wind speeds; 

 survive extreme conditions   

With a market price ~ 10% - 20%  of  a met tower and much greater range and flexibility, 

this new technology could greatly improve the way turbines and wind farms are designed,  

sited, and operated.  The buoys can also record a full suite of metocean parameters, which 

is valuable for calibration of hub height extrapolation and for modeling other geophysical 

effects, discussed in the following sections.   

 

The analysis in this study therefore assumes that at least one commercially manufactured 

floating Lidar system is, or will be in a few years, as accurate and reliable as the onshore 

Lidar units that share their core technology.    
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Like Lidar, orbiting remote sensing systems detect radiated energy, but at very different 

scales than surface-based sensors, scanning thousands of square miles in a few seconds.  

On the downside, they only provide a few data readings per day at any given site.   Orbit-

ing instruments are not capable of providing data in real-time for turbine control, so the 

focus of this analysis is on their use for wind energy mapping and annual power produc-

tion estimates.  Although the technology has some parallels to surface sensors,  the appli-

cations are somewhat different.  Data sets and products from earth-observing satellites 

are often made availa ble to the public at no cost since the programs are publicly funded.  

This can enable low-cost, desktop, first-order resource assessment studies that do not re-

quire deployment of any instruments.   It also provides a long time series (20+ years) for 

 

 

 

 

Chapter 3   
 

 

ORBITING SENSOR EVALUATION 
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research and indexing purposes12.  These technologies can improve accuracy, spatial cov-

erage and resolution, yielding more optimal project siting (Christiansen et al 2006; Hasa-

ger et al 2008, 2011). 

 

3.1. Satellite Microwave Radar/Radiometry (SMRR) 

 

Satellite Microwave Radar/Radiometry (SMRR is used to generate  (“retrieve”) vector 

wind estimates (“products”)  at 10m ASL 13.  Orbiting radars (active) and radiometers 

(passive) measure the spectral intensity and polarization of the microwave energy from 

the sea surface.  They can sense millimeter-centimeter waves on the sea surface because 

the reflected signal spectral power is dominated by Bragg scattering and is critically 

dependent on the surface roughness at that scale (Naderi et al 1991).  Since roughness is a 

function of capillary waves that are generated by wind in under 1 sec.,  roughness is 

closely correlated to the local, instantaneous surface wind speed.  The systems collect 

vast amounts of data, scanning swaths up to 1800 km wide, sweeping the surface at over 

6 km per second.  Different systems may use different signal frequencies, wave 

polarizations, antennae configurations, or scan patterns,  but most active radar 

                                                 

12 To ensure accuracy for indexing one or two year data sets, Nielsen et al (2002) indi-

cates a minimum fifteen year length 
13 The extrapolation of SMRR data from the sea surface to 10m assumes a neutrally sta-

ble profile. 
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instruments operate at either around 5 GHz (C-band), or around 13 GHz (Ku-band), 

while some can operate on multiple frequencies.   

 

SMRR technology has fulfilled its original purpose by vastly improving operational 

marine weather warnings, analysis, and forecasting models.  The original criteria for 

SMRR wind products  (@ 10m ASL) were: wind speed accuracy better than 2 m/s (or 

10%), and wind direction accuracy of ± 20 deg., within the range of  ~3 to 20  m/s 

(NASA 2013).  However, recent advances in both software and hardware have taken 

accuracy well beyond these early markers.   To characterize the true accuracy and 

resolution of SMRR wind products, numerous correlation studies have been performed 

which analyzed Level 1 data and Level 2 wind products and compared them to: each 

other, to in situ data from met towers and buoys, and to output from calibrated, short term 

numerical weather prediction (NWP) models.  Several of these studies are discussed 

below, but first, some background information is provided which describes the most 

salient aspects of SMRR satellites and wind retrievals, common to all three types of 

SMRR systems. 

 

3.1.1. Data Sets and Product Level 

 

As each antenna sweeps a path along the sea surface, the raw data are stored as  pixels of 

radar signal intensity  that are then processed to geo-locate and sequence the data streams 

to produce images.  These images are then normalized to account for the effect of the 
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beam azimuth, angle of incidence, and satellite motion on the reflected signal strength.  

Additional processing may be required to synthesize multiple scans from different angles.  

This produces normalized radar cross section (NRCS) data that describe the measured 

backscatter coefficient (if active radar) or brightness temperature (if passive radiometer) 

of the sea surface in the form of a pixelated image.  The NRCS image (comprised of 

“sigma-0” data) is then translated into wind speed at the surface and re-mapped into area-

averaged gridded wind speeds at 10m ASL assuming a stable reference wind profile, and 

these are published as wind map products.  SMRR data sets and wind products are 

roughly classified by the level of data processing as follows14. 

 

 Level-0   Unprocessed backscatter signal data  

 Level-1A  Reformatted “scrubbed” signal data plus metadata  

 Level-1B  NRCS (Sigma-0) data, image corrected, time ordered and geo-

located.  

  

 Level-2  Mapped wind vectors at 10m ASL resolved to the scene grid    

 Level-3  Mapped wind vectors at 10m ASL, resolved to user preference 

grid 

 

 

 

                                                 

14 Definitions derived  from   http://www.ssmi.com/qscat/qscat_browse.html 
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3.1.2. Geophysical Model Functions and Wind Retrieval 

Tools  

 

The Geophysical Model Function (GMF) is the algorithm used to make these conversions 

according to physical relationships, calibrated with empirical data. There are two main 

stages of data processing in a GMF; one to convert return signal data (Level-0 or 1A)  

into a NRCS image (Level-1B), and one to convert the NRCS image to wind vectors 

(Level-2).  In the first stage, relationships are based primarily on the  beam azimuth, 

angle of incidence, and sometimes polarization, and the GMF may also include an 

algorithm that can account for changes in orbit or instrument performance over time.  In 

the second stage, the normalized radar image is translated into wind speeds to create 

Level-2 wind products.   This is the translation where most error occurs, and where 

correct modeling of the effect and calibration of the algorithm is most important.  In 

mathematical terms,  the GMF is a transfer function that maps Level 0 or 1A raster data 

to Level 2 or 3 vector products.   

 

GMFs undergo periodic revisions as they can be empirically tuned, based on correlation 

studies and input from other satellites, in situ measurements and NWP model simulations.  

GMFs are combined with graphical user interfaces to create a software package called a 

wind retrieval tool.  Since 1984, when the first GMF was developed for satellite wind re-

trieval (Wentz et al 1984) several international consortiums of government, industry, and 

academia have developed new GMFs and wind retrieval tools and made them publicly 
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available.  A wind retrieval tool may incorporate data sets from more than one instrument 

to flag corrupted data or improve accuracy.  Some incorporate global calibrations, such as 

a correction for sea surface temperature (Karagali 2012).  Others contain modifications to 

improve accuracy for specific site conditions or wind classes.  For example, CMOD-5  

(C-band Modeling) is a GMF developed for retrieving C-band radar products.  It was em-

pirically calibrated using in situ data to improve high-wind speed estimates (Hersbach 

2002).  Other GMFs have been developed for Ku-band scatterometers, including  

NSCAT-2 and Ku2011 (Karagali 2012).  ANSWRS 2.0 is a retrieval tool that was re-

cently upgraded to accept  data from six different satellites (Monaldo 2012).   ANSWRS 

2.0 is modular, making it easier to incorporate new GMF’s and new data sets as they be-

come available.  

 

3.1.3. Satellites and Instruments 

 

There are three main SMRR sensor types that are used for wind mapping; Synthetic 

Aperture Radar (SAR), Scatterometry (SCAT), and Passive Microwave Imaging (PMI).  

The first two are active antennae instruments that emit a  signal and measure the 

backscatter coefficient, and the last, PMI, is a passive system that measures the brightness 

temperature (ambient microwave radiation) of the sea surface. Figure 20 shows the 

primary earth observing SMRR instruments and satellites launched by the US, Europe 

and India in the last 20 years,  and the service life of each.  The list is not 
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comprehensive15, but includes  the longest running programs, the largest databases and 

the most commonly cited sources.  The three arrows represent  six currently operational 

(Febrary 2013) satellites, plus OceanSAT makes a total of seven operational.  The 

analysis in this paper is focused primarily on these fifteen satellites.  Other systems were 

not included because they were either short lived, prohibitively costly, or the wind 

products are still considered experimental.  

 

Figure 20- - SMRR Systems Included in Analysis 

 

 

 

                                                 

15 e.g., it does not include ALMAZ, JERS-1, PALSAR,TerraSAR-X, WindSAT, Senti-

nel-1, AMSR-E, Cosmo-SkyMed  
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Table 4- SMRR Satellites Used in This Analysis and Their Service Lives 

 

Satellite /Instr.                Launch           Life(yrs)   

ERS-1/SAR  Jul-91 8.8 

ERS-2/SAR Apr-95 16.4 

EnviSAT/ASAR  Jun-02 8.3 

RADARSAT-1/SAR-1 Nov-95 17.1(+) 

RADARSAT-2/SAR-2 Dec-07 5.1(+) 

Metop-A /ASCAT  Oct-06 6.3(+) 

Metop-B /ASCAT Sep-12 0.2(+) 

OceanSAT/SCAT Sep-09 3.3(+) 

SeaWinds/QuikSCAT Jul-99 10.4 

F11 SSM/I- Passive Dec-91 8.5 

F13 SSM/I- “” May-95 14.5 

F14 SSM/I-“’ May-97 11.3 

F15 SSM/I –“” Dec-99 6.7 

F16 SSMIS-“” Oct-03 9.3(+) 

F17 SSMIS-“” Dec-06 6.1(+) 

(+) – still operating as of Feb. 2013 

 

3.1.4. Orbits and Coverage, Swaths and Scenes 

 

All earth observing SMRR satellites use sun synchronous orbits, which follow a nearly 

N-S track that crosses the equator twice per orbit at a polar inclination of ~ 8.0 to 8.5  de-

grees (see Figure 21).  These orbits are designed to pass over the equator (or any other 

parallel) at the same local solar times each day, providing a constant illumination angle 

for optical sensors.  Although SMRR is not an optical sensor, and is impervious to clouds 

or darkness, this “clockwork” orbit can result in bias due to undetected diurnal effects.  

Coverage is defined as the average number of scans of a given location, daily, annually or 
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as a percentage16.  Because tracks converge near the poles, coverage generally increases 

with latitude.  Coverage in non-polar regions varies from ~ twice a day to ~ 2 or 3 times a 

month, depending primarily on the latitude and the satellite swath width and ground 

speed.  The repeat cycle (time to cover all orbit ground tracks and repeat the pattern) is 

about 35 days for polar orbiting SMRR satellites.   

 

Data from across the swath are processed and stored in “scenes” the width of the swath, 

with roughly rectangular dimensions. This is shown in Figure 22, where three scenes 

intersect in Denmark.  These three scenes have been processed through a GMF to 

represent wind speed by color coding.   Each scene takes ~ 1 to 3 minutes to capture.  

The different arrow directions and scene orientations reflect ascending and descending 

satellite passes.   

 

    

Figure 21- Polar SunSynchronous Orbits, courtesy  European Space Agency 

Figure 22 – SAR scenes around Denmark, from Hasager et al 2012 

                                                 

16 Once a day would be 100% coverage  
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3.1.5. Data Flagging, Masking, and Scrubbing  

 

Before processing data for wind retrievals, it must be “scrubbed” clean of corrupted sam-

ples or areas.  Four conditions can cause significant data corruption, and these are out-

lined below; 

 

 Surface Anomalies -Land, breaking waves, and sea ice do not support capillary 

waves, and so will contaminate wind retrievals.  They must be flagged and either 

masked out (removed from the scene or image) or scrubbed (removed from the 

data set) before wind speeds are estimated (Alsweiss 2007).   

 

 High or Low Winds - Error is  also higher at very low or high wind speeds 

(Karagali 2012).  To reduce error,  corrupted data can either be scrubbed or 

corrected in the GMF, depending on the SMRR instrument characteristics and the 

methodology of the wind retrieval. 

 

 Precipitation - Rain can cause a positive bias at low wind speeds and a negative 

bias at high wind speeds, and the effects are non-linear and poorly understood 

(Ricciarduli et al 2011, Table 1, Alsweiss 2007, Figure 5.11).  Rain is therefore 

almost always scrubbed. 

 

 Other Capillary Effects - The signal is also affected to some degree by factors 

that influence small wave physics including shallow bottom features (Christiansen 

et al 2004), internal waves, tidal currents, or changed surface tension caused by 

surfactants like oil spills or algal blooms (Hasager et al, 2005).   These effects can 

be more difficult to discern. 

 

This cleansing of the data set reduces the inventory of valid scans.  The percent of the 

original data set that is removed is called the “scrub rate”.  Most of the cited research uses 
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correlation studies with met towers or buoys to estimate the accuracy of SMRR wind 

estimates, so the scan inventories in those studies reflect only valid co-located pairs. This 

means that problems with the reference data stream (in most studies, cup anemometer 

readings) increase the scrub rate.   From published data, it is not always possible to 

determine how many pairs were scrubbed due to anemometer shortcomings  vs. due to 

bad satellite data.  This analysis adopts the conservative assumption that scrub rates 

derived from cited studies are entirely the fault of bad satellite data. This reduces the risk 

of underestimating the scrub rate for satellite data. 

 

3.1.6. Polarization  

 

Microwave radiation propagates in waves that can be polarized in two orthogonal 

directions, designated by convention as horizontal and vertical.   Although SMRR 

polarizations share these designations,  they are in reference to the direction of signal 

propagation, not the earth’s surface.  Depending on the incident angle of the radar beam 

with the capillary wave direction,  one polarization produces a more robust correlation 

between backscatter and wind speed17  (Beal et al 2004, p.5).  For older instruments, 

polarization was either absent, fixed or manually selectable via remote control.  For some 

newer instruments, polarization can be selected independently  for the transmitter and 

receiver, and  with at least one instrument (ScanSAR), polarization can be automatically 

                                                 

17 The same principle is applied when sunglasses are polarized in the horizontal plane to 

reduce the sun’s glare reflecting off the water. 
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and rapidly switched between vertical and horizontal, creating two interlaced data sets.   

If the wind direction is known, this information can be used in the GMF to select or favor 

the dataset with the optimal polarization geometry for each pass according to the wind 

direction.   In general, polarization adds information about the sea surface geometry that 

can remove wind and wave directional ambiguity (Yueh et al 1994).   

 

3.1.7. Multi-Modal Operation 

 

Some SMRR instruments operated in a number of different modes with different 

polarizations, scan patterns and swath widths, further complicating estimates of scrub 

rates and inventory.  The instrument settings are (were) routinely changed to 

accommodate specific user needs.  Although a “background mission” is defined which 

determines the default scan mode, for some instruments, it is difficult to determine 

average annual coverage accurately without access to complete operational records for 

the life of each satellite.   Unfortunately, these records are not published in any 

aggregated, geo-referenced format, so a different methodology is adopted which is 

sufficiently robust for the purpose of this analysis. 

 

3.1.8. Cross Check Inventory Methodology 

 

Coverage and inventory are estimated by two methods and cross-checked.   First, in order 

to establish an upper bound, the maximum theoretical coverage is calculated based on 
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full-time background mission mode (widest swath) and 100% availability. Second, this 

upper bound is compared to actual SMRR database queries and retrievals performed in 

this study and in other studies, and scrub rates and discrepancies are investigated.  This is 

done to determine if the coverage estimates generated in this analysis are supported by 

both theory and practice.   Table 5 summarizes the maximum coverage at the 39th parallel 

(off Cape May, NJ, near the center of the MAB) and the 56th parallel (North and Baltic 

Seas – study area for most cited studies).   The ratio of theoretical coverage between the 

two latitudes is 1.4, which is the ratio of the lengths of the two parallels18.  The calcula-

tions supporting Table 5 are presented in Appendix A.  

 

Some of the studies reviewed in this report provide information only on accuracy,  some 

evaluated only inventory, and some provided enough data to estimate both.  The 

following sections discuss the coverage, resolution, and accuracy of SMRR instruments 

based on a survey of published research, databases, and online wind product catalogues.  

 

 

 

 

 

 

 

 

                                                 

18 The orbital inclination of 8 degrees has an insignificant effect on this ratio at the lati-

tudes under investigation. 
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Table 5- Maximum Theoretical Coverage, SMRR, from Appendix A   

 

Maximum Theoretical Coverage, SMRR Theoretical  
Maximum Daily  

Coverage 

Theoretical 
Maximum 
Scans/yr 

 Satellite/Instrument 
Max Swath 
Width (km) 

39th 
paral. 

56th 
paral. 

39th 
paral. 

56th 
paral. 

Synthetic  
Aperture 
(SAR) 
  

ERS-1,2/SAR 100 9% 13% 34 47 

RADARSAT-1,2  500 46% 64% 169 234 

EnviSAT/ASAR  400 37% 51% 135 187 

Scattero- 
meters 
  
  

ERS-1, 2/ESCAT 400 37% 51% 135 187 

Metop-A, B /ASCAT  1000 92% 128% 337 468 

Sea-
Winds/QuikSCAT 1800 166% 231% 607 843 

OceanSAT/SCAT 1400 129% 180% 472 656 

PMI (SSMI) F11 – F 17 SSM/I 1400 129% 180% 472 656 

 

 

3.2. Synthetic Aperture Radar 

 

Synthetic Aperture Radar (SAR) uses an active pulsed, phased-array antenna that 

emulates a much wider antenna by using the satellite motion to collect data along a path 

spanning the  length of an imaginary antenna (synthetic aperture) in an imaginary 

geosynchronous orbit.  The data are processed to reconstruct the synthetic aperture signal, 

compensating for time delay caused by satellite transit (Beal et al 2004).  This simulates a 

snapshot from an imaginary kilometer scale stationary antenna.   The concept is also used 

in widely spaced, terrestrial dish antenna arrays that simulate one huge antenna for 

detecting radio waves from deep space.  The SAR frequency usually used for ocean wind 

sensing is C-band, and the signal may be polarized either vertically or horizontally.  A 
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thorough description of the technology can be found in Olmsted (1993).   Additional 

satellite SAR sensors operating at L band (~1.2 GHz) and X band (~10 GHz) have 

recently come online and new GMFs are being developed and validated for wind retrieval 

(Thompson et al 2012).   These wind products show potential, but the data were not 

included in the inventory since they are either very sparse or still considered 

experimental. 

 

SAR has low swath width (~60 to 100 km), but the radar images have very high 

resolution (~10 m – 100 m) and in most instruments the scan mode is selectable.  Figure 

23 shows an example for RadarSAT –2 .  The image resolution (NRCS pixel size) is on 

the order of 5 – 50 m, but noise at this level produces “speckle” in the image which must 

be normalized by area averaging to reduce random noise (Christiansen 2006).  The 

resolution of wind retrievals from SAR is therefore not quite as good, but can be sub-

kilometer at any swath width.  Some SAR instruments can also operate in wide scan 

mode with a ~ 500 km swath width 

 

A study conducted by researchers at DTU estimated that SAR images contain sufficient 

information to produce reliable wind speed estimates on a 500m grid (Christiansen et al 

2006).   Most SAR wind retrievals in published studies are mapped to a 400 m or 500 m 

grid.  SAR images can be processed closer to the coastline because their higher resolution 
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allows a “tighter” coastal mask than scatterometers19.  SAR images have also been used 

successfully to estimate significant wave height and direction (Plant et al 1997), which is 

useful for calibrating geophysical model functions, as described in Section 4.2.24.3, “Re-

processing Archival Datasets With Tuned GMFs” 

 

On the downside, SAR instruments are “single look” sensors that can not reveal wind 

direction since the backscatter coefficient depends partly on the wind speed relative to the 

incident angle of the radar beam (Korsbakken et al. 1998).  Since the reflected signal 

strength is partially a function of capillary wave orientation, wind direction must be 

known to resolve the wind speed. The direction information can come from any source, 

including in situ sensors, special algorithms built into the GMF (Horstmann et al 2003),  

NWP models (Monaldo et al 2001), or scatterometer products (Monaldo et al 2004).  

Error in the input wind direction increases error in the output wind speed.  Another 

disadvantage is that in most cases, SAR data are provided in radar image format only, not 

wind products.   With a few exceptions for government and academia, SAR images must 

be purchased commercially and wind products must be retrieved by the user with a SAR 

wind retrieval tool such as ANSWRS (publically available, previously discussed).    

   

                                                 

19 Any averaging cells within ~ 3 km of the shoreline are “masked” out of the analysis to 

avoid any land reflections corrupting the radar data.  The larger the averaging cell, the 

more area removed near the coast.  
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Figure 23 - RadarSAT-2 SAR Scan Patterns, from Canadian Space Agency 

 

3.2.1. SAR - ERS-1 and 2  

 

The first successful multi-year program to collect global satellite wind data began in 1991 

with instruments launched by the European Space Agency (ESA) aboard the European 

Remote Sensing  satellites ERS-1 and ERS-2 (ESA 2012).  ERS-1 launched on 17 July 

1991 and ERS-2 launched on 21 April 1995.  These two satellites carried the C-band 

Active Microwave Instrument (AMI) which offered the  unique ability to operate in two 

modes.  In image mode, the SAR swath width for ERS-1 and 2 is 100km, and the NRCS 

image resolution is ~25 m.  Figure 24 shows a sample  ERS-2/SAR wind product 

retrieved from a SAR image from 25 Feb 2003 covering the wind farm at Horns Rev, 

Denmark (black trapezoid). The velocity deficit downwind of Horns Rev and the land 
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shadowing effect are clearly visible.  For estimating scale, Horns Rev is ~ 6 km wide.  

The wind speed resolution is ~ 500m.  

 

The AMI instruments aboard ERS-1 and ERS-2 could also operate in scatterometer 

mode, but only upon user request, so the data are sparse (ESA 2011).  Other 

scatterometers (discussed later) have since compiled far more data and some still collect 

data full-time, with capabilities beyond those of the ERS scatterometer. ERS wind 

scatterometer data were therefore not included in this analysis. 

 

 The ERS SAR program lasted far longer than expected, and experienced a series of  

systems failures as time passed, including the loss of on-board gyroscopes, the loss of the 

on-board data recorder, and the depletion of hydrazine propellant.  Despite these 

setbacks, most failures were managed with technical workarounds.  For example, the loss 

of propellant forced the adoption of a new navigation strategy which allowed orbital 

inclination to drift, but the drift was known and the data could be calibrated, so it had no 

significant impact on wind retrieval accuracy or resolution20.  The ERS-2 mission ended 

when contact was lost with the satellite in April 2012.  

 

                                                 

20 For the 1.5 years of  drifting inclination, coverage actually increased by about 15% be-

cause the average repeat cycle went from 35 days to 30 days -from  

http://earth.esa.int/download/envisat/Impact-of-Envisat-Mission-Ext-SAR-data-

aug10.pdf 
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Figure 24 Sample SAR Wind Product around Horns Rev - from Christiansen 2006 

 

 

3.2.1.1. SAR -ERS- EOLI Inventory 

 

The ESA operates the Earth Observation Link (EOLI) server 21, which provides a 

comprehensive database of available historical Envisat and ERS-1 and 2 scans.   A 

sample 25 km x 25 km block was selected centered on the study area off Cape May, NJ, 

and the database was geographically queried for SAR products from these two satellites.  

                                                 

21 EOLI Server URL -  http://earth.esa.int/EOLi/EOLi.html 
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For ERS-1 and ERS-2, 453 SAR wide swath mode and 202 SAR wave mode images 

were identified beginning Sep 30, 1991,  and ending 31 Dec 2008, a period of  about 16.2 

years.  Within that period, the two instruments collected over 24 years of data sets, for a 

mean sample rate of about 30 ERS  -SAR images per satellite year.  This compares well 

to a theoretical maximum of 34 per year from Appendix A, and to two other estimates  of 

about 3 per month in the Baltic Sea, (Hasager et al 2006, Christiansen 2006).  

 

3.2.2. ASAR 

 

EnviSAT was launched in 2002 with advanced synthetic aperture  (ASAR) onboard, 

which allowed sub-kilometer resolution.  ASAR could operate in 27 different modes,  but 

only one at a time.  Because the background mission22 for ASAR is ScanSAR,  most of 

the scans are in this mode.  In ScanSAR mode, the instrument used a checkerboard 

scanning technique to sample a 400km swath with resolution of about 150 m. Other, user 

selected  modes range from 56 to 100 km swath width, with a resolution of ~ 30 m.  

ASAR could operate in four polarization modes, independently selectable for transmitter 

and receiver (designated HH, VV, VH, and HV) and could also operate in alternating 

polarization (AP) mode,  using high frequency switching of polarization to generate two 

                                                 

22 The “background mission” default setting of WSM is designed for widest coverage, at 

the cost of resolution 
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interlaced data sets which can be processed independently.    The Envisat mission ended 

on 08 April 2012, following the loss of contact with the satellite23.   

  

3.2.2.1. ASAR Coverage-Handbook Theoretical Maximum  

  

ASAR wide swath image inventory per 35 day repeat cycle at a given latitude can be 

estimated by using Table 6 , taken from the ASAR Handbook, produced by the European 

Space Agency (ESA 2007).  Based on  trigonometric interpolation to  39o  latitude (Cape 

May, NJ),  about 6.8 samples should be available per 35 day cycle, counting only 

descending passes, or 13.6, including ascending passes.  There are 10.4  35-day cycles in 

a year, for a theoretical maximum of  ~ 140 ASAR samples per year at 39 latitude.  This 

estimate  agrees well with the theoretical maximum of 135 scans/ year calculated in 

Appendix A. 

Table 6- ASAR coverage per 35 day cycle, by latitude. Data from Table 1.2, ASAR 

handbook (ESA 2007) 

 

ASAR Cyclical Coverage by Latitude 

Latitude (degrees 
N) 0 39 45 60 70 

Scans per 35 day 
/cycle 

5 
 

6.8(*) 
 

   7 
11 

 
16 

 

(*) – interpolated based on cos(latitude) 

                                                 

23 Information from European Space Agency, available at  

(https://earth.esa.int/web/guest/missions/esa-operational-eo-missions/envisat/con-

tent?p_r_p_564233524_assetIdentifier=asar-faq-3829) 
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3.2.2.2. ASAR Coverage- EOLI Query vs DTU Estimate 

 

The ESA operates the Earth Observation Link (EOLI) server24 which provides a fairly 

comprehensive database of available historical SMRR data including Envisat scans at no 

charge.   A sample 25 km x 25 km block was selected centered on the study area off Cape 

May, NJ, and the database was geographically queried for ASAR products.  905 Envisat 

ASAR images were identified over the life of the EnviSAT mission - about 9.8 years.   

841  of the images were taken in Wide Swath or Global mode, with a scan width of 400 

km, and 64 scans were in Image, Wave, or Polarization modes, with effective scan 

widths25 at or below 100 km.  To ensure a conservative estimate of inventory, these 

narrow scans (~7% of the total)  were discarded.  This translates to  an average coverage 

of  about 86 scans per year, which is about 64% of the theoretical maximum of 135 scans 

on the 39th parallel.   A DTU study (Hasager et al 2006) estimated the availability of wide 

swath ASAR images at about 8 per month, or 96 per year, which also agrees reasonably 

well with the EOLI Cape May query, since the higher estimate in Hasager et al (2006) 

reflects higher coverage at the 56th parallel. 

 

 

                                                 

24 Data available at http://earth.esa.int/EOLi/EOLi.html 
25 Some scan patterns use alternating or checkerboard patterns, so “effective scan width” 

reflects the proportional coverage in these cases 
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3.2.2.3. ASAR Accuracy and Resolution – Horns Rev Wake Study 

  

Wind speed deficits are important in the study of wake effects, where the primary 

concern is quantifying the velocity differential between free stream and wake, not 

precisely measuring the absolute wind speed.  In a PhD dissertation at  DTU 

(Christiansen et al 2005), the snapshot velocity deficit in the lee of the Horns Rev 

offshore wind farm was estimated using 5 ERS-2 SAR and 14 ASAR images and 

compared to the deficit indicated by calibrated wake models.  The study concluded that  

SAR data are useful for measuring wind farm wakes for wind speeds anywhere between 

4 and 15 m/sec.  At speeds below this range, speckle noise dominated the signal, and at 

speeds above, the signal began to show signs of saturation. 

 

 Figure 25 shows a sample SAR image (Soprano 2013), and Figure 26 shows a plot of 

return signal strength along a transect within the image.  The NRCS image (Level-1 

product) was taken on 7 feb 2012, at 21:19 UTC around Horns Rev 1 and 2 using the 

ASAR instrument.  The small white dots are turbines with spacing of ~ 650m.  The pixel 

size is ~30 m.   The velocity deficit can clearly be seen as a darker region in the wake of 

the wind farms.  The figure provides a clear illustration of  SAR image resolution relative 

to a wind farm.   It also provides a good visual sense of why some area-averaging is 

required to reduce noise in the signal (“speckle”) before wind products can be retrieved.  

Figure 26 plots the normalized radar reflectivity across the wake of  Horns Rev 2  along 

the transect indicated in white.  The observed maximum signal deficit  is about 10%, or 
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about 1 m/s26.   Although the graph in Figure 26 suggests senstivity on the order of ~1% ,  

uncertainty and bias associated with other factors preclude universal claims to this level 

of accuracy for estimating absolute wind speed.   However, within a single scan,  the 

quantification of spatial variation should be possible with great accuracy, since much of 

the error is scene-dependent and creates nearly uniform  bias within a scene (e.g., error in 

the input wind direction or the NRCS calibration).   These types of errors have no 

significant affect on velocity differentials from spatial vaiation within a scene.   

 

    

Figure 25- Envisat ASAR image, Horns Rev. downloaded from http://so-

prano.cls.fr/?p=1159 

Figure 26 Backscatter Across Transect, Horns Rev, downloaded from http://so-

prano.cls.fr/?p=1159 

 

 

                                                 

26 A Level 2 wind map product, downloaded26 from the EUMETSAT portal for the same 

7 Feb 2012 scan indicates that the wind speed upwind of Horns Rev at the time was ap-

proximately 10 m/s, therefore the observed velocity deficit was around 1 m/s, since the 

relationship between reflectivity and wind speed is roughly linear at this scale (see Chris-

tiansen et al 2006, Figure 1). 
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3.2.2.4. ASAR Coverage and Accuracy– Hasager et al 2011 

 

In a 2011 study published by DTU as part of the NorseWind project (Hasager et al 2011), 

ASAR scans co-located with ten met towers were correlated with the met tower data.  

FINO-2 wind readings were collected from 09 Dec  2007 to 21 September 2009, a period 

of  about 1.8 yrs.  After scrubbing the data for rain and sea ice and using a ~ 1 km 

footprint averaging methodology, 180 valid co-located data pairs were identified, for an 

average rate of about 100 data points per year,.   This is about 53% of  the theoretical 

maximum of 187 ASAR wide scans per year along the 56th parallel.  
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Figure 27-ASAR Product around Denmark, from Hasager et al 2011 

 

The wind products were resolved to 500 m grid cells and then compared to calibrated 

wind data from 10  meteorological masts in the Baltic Sea and North Sea around 

Denmark.   The Wind Atlas Analysis and Application Program (WasP) developed by 

DTU27 was used to extrapolate the mast data from the lowest anemometer height down to 

10 m ASL to match SAR retrieval height.   The study provided a rigorous statistical 

analysis of SAR wind products, and the results clearly show that accuracy is much better 

                                                 

27 WAsP – Software package from Risø DTU for calculating wind distributions/ 

production based on the Wind Atlas Methodology. Includes roughness model, flow 

model (orography) and obstacle model. Download and info avail. at http://www.wasp.dk 
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than the nominal ±2 m s−1  estimated in Stoffelen, 1997.  For the 875 collocated data pairs 

identified for the ten towers, the correlation study produced the descriptors in Table 7.  

FINO-2 results are broken out because the sample size was largest of all the 

meteorological towers.   The study scrubbed wake sectors from the tower data, but did 

not filter out low or high wind speeds, and  noted a negative bias above 15 m/s, where the 

signal shows the first indications of saturation. 

 

 In the same DTU study (Hasager et al 2011),  images from ENVISAT ASAR were 

processed with  the APL/NOAA SAR Wind Retrieval System (ANSWRS)28.  Figure 27, 

from Hasager et al 2011, shows a sample map of wind speed generated with ANSWRS 

from an EnviSAT ASAR scene acquired Oct 22 2004 in wide swath mode over Danish 

waters.    

 

3.2.2.5. ASAR Accuracy – SATWIND (Christiansen et al 2006b) 

 

Project SAT-WIND was a wind mapping research project from 2003 to 2006, funded by 

the Danish Technical Research Council.   The goal of the project was to verify the 

applicability of satellite wind maps derived from passive microwave, altimeter, 

scatterometer and imaging SAR technologies for wind energy tools for wind resource 

                                                 

28  ANSWRS was developed jointly by The Johns Hopkins University Applied Physics 

Laboratory (APL) and  NOAA.  ANSWRS uses the CMOD-5 GMF (Pichel et al 2000) 

and was recently upgraded to ANSWRS2.0, which can process most SAR databases. 
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mapping. The SAT-WIND project examined wind products from EnviSAT/ASAR, 

retrieved using three different GMFs and a box averaging method, and compared them to 

hourly average Horns Rev met mast data for wind speeds between 2-15 m/s (Christiansen 

et al 2006 b).    Ninety-one collocated data pairs were identified.   Using the CMOD-

IFR2  GMF, the standard deviation of error observed was 1.1  m/s and the linear 

regression showed the slope near 1.0  and a bias of –0.26  m/s.  Energy density calculated 

using a box averaging method was 421 W/m2,  compared to 422 W/m2  using in situ data 

from Horns Rev met mast.  The results of the two ASAR correlation studies are 

statistically summarized in  Table 7.  The standard deviations observed in Hasager et al 

2011 are higher because very low and high wind speeds were not scrubbed from the data 

in that study.   

 

3.2.2.6. ASAR Coverage, Accuracy for Energy Density, -Badger et al 

2010 

 

In this study (Badger et al 2010), researchers investigated the ability of ASAR to generate 

accurate energy density estimates by comparing them to estimates generated using four 

years of in situ data from three met masts in the North Sea (Horns Rev, Hovsore29, FINO-

1).  627 ASAR images were identified, each including one or more of the met towers.  

The ASAR scans covered a four year period, so the average scan rate per location is the 

                                                 

29 Hovsore wind data was translated to a site 9 km away, offshore. 
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average no. of samples divided by 4, which is (422/4 = ) 105 per year, which is about 

56% of  the theoretical maximum of 187 (See Appendix A).  

 

Algorithms were developed for estimating Weibull A and k parameters, which are often 

used to describe the Probability Density Function (PDF) of wind speed (Weibull 1951).  

The scale parameter, A, can be considered analagous to the most frequent wind speed, 

and the shape parameter, k, to the standard deviation.  These parameters can be used to 

estimate energy density (Manwell 2007).  Table 7 is extracted from Table 3 of Badger et 

al 2010, which summarizes the error statistics.  The average wind speed bias of the full 

data set was 0.0 and the error of the energy density estimates varied from ~ 1% to 4%. 

The authors noted that these deviations (from estimates using calibrated in situ data) are 

better than most results reported from mesoscale modeling. 

 

Table 7- Error statistics for three met masts vs. SAR Retrievals - adapted from Ta-

ble 3, Badger et al 2010 

 

 

 

N 
 

U SAR 

(m/s) 

UMet 

(m/s) 

U Bias ESAR 

(W/m2) 

E Met 

(W/m2) 

ESAR 

σ(%) 

Hovsore 444 7.86 7.79 +0.9% 551 +/- 40 532 3.6% 

Horns Rev 464 7.72 7.78 -0.8% 504 +/- 33 499 0.9% 

FINO-1 359 8.11 8.12 -0.1% 584 +/- 43 561 4.1% 
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3.2.3.  ScanSAR/ RadarSAT-1 and 2 

 

Radarsat- 1 and Radarsat-2 are Canadian Space Agency (CSA) earth observing satellites 

that both carry SAR sensors operating at a single frequency of 5.3 GHz, in the C band.  

Radarsat offers 7 different scan modes and could be programmed to look either right or 

left.  They range from fine, with a scan grid of 50 km by 50 km and a resolution of 25 m, 

to ScanSAR, with a scan width up to  500 km and a resolution of  ~100 meters.  

 

Figure 28 shows an NRCS image  acquired off Cape May, NJ, by RadarSAT 1 in 

ScanSAR mode (on the left) . Figure 29 (on the right) shows the image converted to 100 

m resolution raster data wind speed using ANSWRS.  Topographic images were added to 

the land mask on the right. The image was acquired May 13 2003 at 22:55:00 UTC.   The 

figures clearly show the streak features on the NRCS image which translate to streaked 

wind patterns in the ANWRS image.   For scale, the Delaware Bay entrance is about 18 

km across.  
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Figure 28- NRCS Image from RADARSAT-1, from http://ceocat.ccrs.nrcan.gc.ca 

Figure 29- ANSWRS retrieval, from Monaldo 2012. Blue is higher wind speeds. 

 

RadarSAT-1 ScanSAR was somewhat hobbled by a “non-linear, scene-dependent instru-

ment transfer function” that made accurate calibration between scenes impossible for 

high winds (Beal et al 2004).  However, it did not affect retrievals below ~ 15 m/s, and 

because the function was scene dependent, it had no effect on spatial differentials within 

a single scene.  Radarsat-2 was launched on December 14, 2007 with a more advanced 

C-band SAR system that improves on the NRCS (radar pixel) resolution of RadarSAT-1 

(from 10 m to 5 m).  The sensor also doubles the options for signal polarity.   
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3.2.3.1. ScanSAR Inventory  

  

In a study led by Johns Hopkins’ Applied Physics Lab (APL-Monaldo 2012), 1495 total 

RadarSAT-1 scans were identified between 1996-2008 for an area off the coast of MD, 

very close to Cape May.    44 images were scrubbed due to processing failures and 12 

were invalidated for “anomalies”, leaving 1439 valid images.   The average number of 

images  was around 115 per year.  This is about 68% of the  theoretical maximum of 169 

scans per year given in Appendix A, and reflects the scrubbing of corrupted or invalid 

scans and those that were not taken in  ScanSAR mode.   

 

3.2.4. SAR Inventory Summary 

 

To bracket the rangae of possibilities,  Table 8 shows both the theoretical maximum 

number of scans and the lowest number of scans retrieved in cited studies and database 

queries.   

 

 For ERS SAR, the annual rate is assumed to be 30, which agrees well with all 

sources evaluated.   

 

 For ASAR, queries and estimates ranged from 86 per year to 105 per year, so the 

lower bound (86) was selected to ensure a conservative estimate, given the 

uncertainty. 

 

 For  ScanSAR, the annual rate is 115 based on Monaldo 2012.  
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To summarize, there should be well over 4,000 valid, SAR scans available for a typical 

39 degree latitude site such as the study area offshore Delaware.   The number of valid 

samples increases at a rate of about  230 per year from the two ScanSAR instruments.  

The estimates are based on the scrub rates observed in the North Sea, where sea ice 

sometimes reduces the valid sample size.  In the study area, sea ice is extremely rare, so 

the coverage could be under-estimated.   

 

Table 8-SAR Coverage and Inventory Summary 

 

Satellite/Instrument 
Active 

Life (yrs) 

Swath 
Width 
(km) 

Max. 
Scans/yr 

39th parallel 
Scrubbed 
Scans/ yr 

Total 
Scans 
Avail. 

ERS-1/SAR/ (1) 8.3 100 34 30 249 

ERS-2/SAR 16.4 100 34 30 492 

RADARSAT-1/ScanSAR 17.1 500 169 115 1966 

RADARSAT-2/ScanSAR-2 5.1 500 169 115 586 

EnviSAT/ASAR  wide mode 9.8 400 135 86 843 

TOTAL SAR scans avail.     4137 

 

 

3.2.5. SAR Accuracy Summary 

 

Newer GMFs for SAR images are able to generate wind speed products with sub-

kilometer resolution and accuracy that far exceeds the original SAR wind product 

specifications.   The five cited studies show that when SAR wind products are compared 

to time averaged in situ data from met tower anemometers, bias is typically less than  
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0.25 m/s.  Standard deviation of the error varies between ~1 and 2 m/s, depending on the  

number of data points, the amount of data scrubbing,  the distance offshore,  the spatial 

and temporal criteria for “co-located” and other factors.  If wind speeds below ~ 2m/s and 

above ~15 m/s are scrubbed,  standard deviation is much closer to 1 m/s.   Pearson 

correlation coefficients of SAR products compared to offshore met towers average 

around R= 0.9.   Estimates of energy density using SAR wind speeds deviated between 

1% and 4% from estimates using calibrated, scrubbed met tower data.  Uncertainty in 

snapshot SAR wind retrievals is comprised primarily of error in the NRCS image, the 

input wind direction, and the wind profile model.   

 

3.3. Scatterometers 

 

Scatterometers are active pulsed, real aperture radars that operate at either C-band or Ku-

band and can scan a wide swath (~1000 km to 1800 km).  Scatterometer data must be 

area averaged to improve the CNR using geometric sampling strategies, resulting in 

much larger (~10 km to 20 km) averaging areas.  They provide twice daily coverage, but 

their wind product resolution is limited to 12.5  km30.  Most scatterometer products begin 

at least 12.5 km offshore to avoid “pixels” contaminated by coastal effects and land 

surfaces.  Sea ice and rain are flagged most accurately using data from PMI systems 

(discussed in the following section), and this can be managed automatically in the GMF 

                                                 

30 One new GMF resolves to 2.5 km, but is still considered experimental 
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(Ricciarduli 2011).   Because PMI systems have a lower resolution (spatial averaging cell 

size is larger), this flagging is only effective to within 10  to 15 km of the shoreline.  

 

Unlike SAR, the wind  direction is derived by scatterometers by using multiple look 

antennae.  The configuration may employ moving beams or three fixed, separate beams, 

as shown in Figure 30    Three backscatter measurements are taken of the same point 

from different angles as each beam passes over in rapid succession.  Each “triplet”  may 

then be resolved into a  wind vector.  One other advantage of scatterometers is that the 

products are numerous and free, providing a large data sample at no cost.  On the down 

side, the signal can’t be resolved beyond a 10 to 15 km grid due to area averaging for 

boosting the CNR. 

 

Theoretical coverage is simpler to estimate for scatterometers since the swath width is 

constant.  The maximum theoretical coverage, based on the scan width and latitude, is 

given in  Table 5 (see Appendix A  for calculations).  In practice, coverage is lower since 

it is affected by the scrubbing of corrupted data.   Scatterometers have a nominal wind 

speed accuracy of ±2 m/s  in the range 3 to 20 m/s (for ASCAT, valid from 2 m/s to 25 

m/s) (JPL 2001), however the studies cited below show that accuracy is much higher. 
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Figure 30- Scatterometer Scan Pattern Example, from 

https://earth.esa.int/ers/eeo4.10075/scatt_design.html 

 

The  analysis in the following sections provides a reasonable, conservative first-order 

estimate of the coverage, accuracy, and resolution of scatterometers for use in wind 

products and wind mapping.  Three scatterometer instruments and the reasons for their 

selection are presented below :  

 

 QuikSCAT is considered the workhorse of the wind retrieval world and represents 

the largest scatterometer database;   

 

 ASCAT (Advanced Scatterometer) is a more advanced system with the fastest 

growing database, since there are currently two operating instruments; and  

 

 OceanSCAT is another wide scan (~1400 km) workhorse launched by the Indian 

Space Agency in 2009.    
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Other instruments were not included due to their short time series, their experimental 

nature, or both. 

 

3.3.1. QuikSCAT  

 

QuikSCAT (a.k.a. SeaWinds) was a Ku-band scatterometer launched on 19 June 1999.  It 

was designed and launched quickly (thus the name) as an emergency replacement for a 

failed satellite.  It was planned for only a three year mission but finally failed on 23 

November 2009.  It used two active, conically scanning pencil beam radars directed at 

incident angles separated by 6°  , centered on 50°.  The scans covered an 1800 km swath, 

and  provided about ten years of data   (NASA 2012a, NASA 2013).   Level-2 wind 

products with 12.5km  or 25 km spatial resolution are available from NOAA/NESDIS 

(NESDIS 2007, NOAA 2012). 

 

3.3.1.1. QuikSCAT JPL study (Pickett et al 2003) 

 

An early but often cited study of QuikSCAT was conducted by a consortium of the Jet 

Propulsion Laboratory at Cal Tech  (JPL), NOAA, and the Naval Postgraduate School.  

After comparing QuikSCAT wind retrievals to NDBC  met buoy data from the 

U.S.Pacific coastline  5741 co-located samples (defined as wind vector being within 25 

km and 30 min of the buoy data) from 12 buoys were identified between Point 

Conception and the Canadian border.  All buoys were less than 27 km offshore.  The 
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correlation coefficient for wind speeds from all the buoys vs. QuikSCAT was  0.9   After 

removing rain corrupted records and wind speeds below 6 m/s, 3314 data pairs remained, 

and a bias of 0.2 m/s and an RMS error of 1.3 m/s were observed.   The test period was 

August 1999 to December 2000, about 1.3 years.  This implies a sample rate of about  

(3314 samples/12 buoys/1.3 years  = )  212 valid co-locations per year per buoy, 

averaged over a wide range of latitudes.   

 

3.3.1.2. QuikSCAT SAT-WIND Study (Hasager et al 2006a) 

 

Project SAT-WIND was a research project from 2003 to 2006, funded by the Danish 

Technical Research Council.   The goal of the project was to verify the applicability of 

satellite wind maps derived from passive microwave, altimeter, scatterometer and 

imaging SAR technologies for wind energy tools for wind resource mapping.  As part of 

the study, about 300 data points from QuikSCAT wind products were compared to data 

from the met tower at Horns Rev and the wind speed correlation was analyzed for all 

wind speeds between 0 and 25 m/s (Hasager et al 2006a). The scatter plot is shown in 

Figure 31 . When hourly averages were used, the standard deviation observed was 1.31 

m/s and the bias was –0.3.  The regression analysis showed the slope near 0.96, and most 

of the error and bias occurred at wind speeds below ~ 2 m/s and above ~ 15 m/s.  

 

As part of the SAT-WIND study, QuikSCAT data were also retrieved for the entire  

southeast Baltic from July 1999 to Feb 2007, a period of about 7.5 years.  The number of 
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scrubbed data points at a given location varied from about 2000 closer to the shoreline 

(within 25 – 50 km) to over 5000 in open water.   This translates to a yearly scan rate of 

between 267 and 667.  This represents between 32% and 80% of the theoretical 

maximum coverage (843/yr) at that latitude. 

 

 

Figure 31 -Scatter Plot, QuikSCAT vs. Horns Rev. from Hasager et al 2006 

 

3.3.1.3. QuikSCAT (Pimenta et al 2008) 

 

As part of a 2008 study of offshore wind resources for Brazil (Pimenta et al 2008),  6 

months of QuikSCAT Level 2-B wind products on a 50 km grid were retrieved and 

compared with wind data from 18 met stations (buoys and platforms) along the coast of 
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Brazil and the Atlantic and Pacific Coasts of North America.   The database covers 7.8 

years of records from August 1999 to June 2007, processed to yield daily average wind 

speed.   The hourly wind speed readings of the buoy data were interpolated to match the 

time of each QuikSCAT scan, producing 32,934 co-located data pairs, which are plotted 

in Figure 32. The linear regression analysis shows a slope of 0.975 and an offset of –

0.146 m/s with a Pearson correlation coefficient of 0.83  This compares to nominal 

accuracy of +/- 1m/s or 10% for the buoy mounted anemometers.  Based on the co-

located pairs, the scan rate translates to about 234 per year per met station, or an average 

coverage of about 64% . It should be noted this low coverage estimate reflects a wide 

range of latitudes,  scrubbing of buoy data, and buoy downtime. 

At buoy 44009, near the study area, the  bias was 0.2 m/s and the Root Mean Square 

Error (RMSE) was 2.0 m/s.  The study also compared theoretical AEP of a GE 3.6 

turbine using the buoy data and compared it to estimates using QuikSCAT data.  The 

QuikSCAT data underestimated output by 4.4%.  The authors also noted that much of the 

scatter is likely due to the buoy data being time averaged over a day, while the 

QuikSCAT wind is a snapshot,  unlikely to match the daily mean. 
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Figure 32-Scatterplot- QuikSCAT vs. 18 Buoys/Stations (from Pimenta et al 2008) 

  

3.3.1.4. QuikSCAT BYU Study (Plagge et al 2009) 

 

In a separate study published in 2009 (Plagge et al 2009),  researchers at Brigham Young 

University (BYU) developed an ultra high resolution (UHR) wind retrieval tool that 

resolves  QuikSCAT data to 2.5 km.  The accuracies of the UHR product and the 12.5km 

and 25km QuikSCAT were each estimated by correlation with buoy anemometry data 

collected in 2006 from 19 metocean buoys anchored throughout the Gulf of Maine.   Co-

location of QuikSCAT and buoy data pairs is defined by a 10 km radius around each 

buoy and a +/- 30 minute time window.   For the study year, 2006,  the average observed 

bias (wrt buoy data) of the UHR data was –0.29, which broke down as -0.48m/s 

nearshore (< 100 km) and -0.09 m/s offshore.  The authors noted that all wind speeds 
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were included, so most of the error likely occurs during very low or very high wind 

periods.  The study found that the UHR bias and standard deviation (SD) were very close 

to those for the 12.5 km QuikSCAT products, as shown in Table 9.  They conclude that 

the QuikSCAT UHR tool is very useful for improved identification and study of the 

marine atmospheric boundary layer and other processes that occur at length scales of 5 to 

20 km.  This research also helped validate the QuikSCAT 12.5 km resolution product.  

 

Wind Speed Bias and Deviation Nearshore Offshore All 

Ultra Hi –Res 
(UHR) 

Bias -0.48 -0.09 -0.29  

Std Deviation 2.65 1.98 2.33 

12.5 km product 
Bias -0.62 0.07 -0.29  

Std Deviation 2.29 2.07 2.18  

25 km product 

Bias -0.54 0.33 -0.11  

Std Deviation 1.99 2.05  2.02 

 

Table 9- Bias and SD for three resolutions –adapted from Plagge et al 2009 

 

3.3.1.5. QuikSCAT and Ku2011 (Ricciarduli et al 2011) 

 

In a 2011, Remote Sensing Systems™ (RSS) introduced a new QuikSCAT GMF  that 

takes advantage of recent advances in PMI wind products such as SSM/I or WindSat v7.   

These data sets can help improve accuracy in two ways.   PMI radiometers are much 

better at detecting rain and sea ice, and can be used to flag and scrub QuikSCAT data, 

which is biased by rain.  The GMF also uses PMI data to calibrate QuikSCAT retrievals 
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at higher wind speeds.  A technical report by RSS  using this methodology  found that 

after scrubbing for rain,  Ku2011 produced mean wind speeds with a bias of 0.01 m/s and 

a standard deviation of 0.9 m/s when compared to 5 years of  wind records from 200 

global buoys (Ricciardulli et al 2011).  Figure 33 show the normalized PDF for all buoy 

data compared to Ku2011 wind speeds.  The similarity of the curves indicate nearly 

identical Weibull parameters, which are highly correlated with energy density.   

 

 

Figure 33- Ku2011GMF QuikSCAT vs. Buoy Data - Wind Speed PDF (from Ric-

ciarduli et al 2011). 
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3.3.1.6. QuikSCAT DTU study (Karagali 2012) 

 

As part of a DTU PhD dissertation (Karagali 2012), a series of analyses were performed 

on QuikSCAT data which  compared QuikSCAT wind products with three offshore met 

masts in the North Sea - Greater Gabbard, Horns Rev, and FINO-1.   After scrubbing for 

rain and winds below 3 m/s, 1629  co-located pairs were identified, and bias and standard 

deviation fell noticeably.   Table 10 summarizes the error statistics of the QuikSCAT 

relative to the tower data, after scrubbing.  Bias varied from about –0.1 to –0.2, R 

averaged 0.94 and the standard deviation ranged from around 1 to 1.4.  The study noted 

that Greater Gabbard had the fewest samples by roughly an order of magnitude, so the 

higher standard deviation and bias are to be expected.  It also noted that Greater Gabbard 

estimates were handicapped by inability to estimate the shear profile as accurately as the 

other towers.   

 

 The study also compared energy density31 at a single spot, calcluated with in situ data 

from FINO-1 vs. QuikSCAT data.  The estimates using FINO-1 data ranged from 564 to 

577 W/m2, depending on the shear profile selected to extrapolate the FINO-1 data down 

to 10m ASL, while the QuikSCAT estimate was 592 W/m2, a difference of between 

2.6% and  5%.  The authors also noted that QuikSCAT availability was around 99% 

                                                 

31 The energy densities were estimated using a Weibull fit and time series and steady 

state energy equation 
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before scrubbing for rain and ice, and a few cells retained over 95% of the scans even 

after the scrub. 

Table 10- Error and Correlation Statistics, QuikSCAT vs. Met Towers, adapted 

from Karagali 2012, Table II 

 

 
 

Horns Rev FINO-1 Greater Gabbard All 
 

Bias(m/s) -0.09 -0.07 -0.19 -0.09 

SD (m/s) 1.32 0.96 1.43 1.21 

R .93 .96 .92 0.94 

N 951 594 84 1629 

  

To estimate the frequency of rain contamination and its effect on estimates of power 

production, the study also looked at all 7417 scans of the North Sea available between 

August  1999 and October 2009, a period of about 10.2 years.   Each scan was broken 

into ~17 km x 28 km grid cells for flagging rain and mapping wind vectors. The results 

are shown in the color-coded Figure 34.  After scrubbing the data for rain and sea ice,  a 

few cells retained nearly 7000 scans, while most cells retained around 6000 valid scans, 

but this number decreased close to shore.  In the North Sea, within ~25 km of the 

shoreline the average sample density per cell dips below 3000 in some areas. In the Baltic 

Sea, the authors found very high scrub rates due to sea ice, so these data are not relevant 

to the study area (Cape May) inventory estimates .  This indicates QuikSCAT yearly 

coverage (valid products, post scrub) ranging from about 300  nearshore to about 700  

offshore, or between 36% and 83% of the theoretical maximum of  843 scans/yr on the 

56th parallel, derived in Appendix A .     
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Figure 34- Density of Scrubbed QuikSCAT Scans, North and Baltic Seas, from Ka-

ragali 2012 p. 131 Fig 1a 

 

Karagali also assessed the impact of the low sampling frequency and regular timing of 

scatterometry on the wind index by comparing wind indices generated from different data 

sets.  Over 50,000 ten minute averaged data points from the met tower at FINO-1 were 

compared to 956 co-located QuikSCAT retrievals and time coincident output from a 

Weather Research and Forecasting (WRF) model32. Some filtering of the scatterometer 

data was done to remove rain and ice corrupted samples and winds below 3 m/s.  FINO-1 

                                                 

32 WRF is a public domain simulation model 
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data had to be extrapolated to 10 m ASL, so the equivalent neutral wind (ENW) was 

calculated at 10 m to match the ENW profile of  the QuikSCAT retrieval.  FINO1 ENW 

is the Equivalent Neutral Wind  and FINO1 SDIS is the 10 m ASL extrapolated met 

tower based on Stability Dependent In Situ shear.   

 

A wind index was generated for both shear profiles for FINO-1and also generated for the 

956 co-located QuikSCAT retrievals and two different WRF model runs – one using all 

the available hourly WRF fields (up to 87,480) and one using only the WRF fields 

coincident with QuikSCAT  scan times (up to 6,913).  Figure 35  shows the five different 

wind indices.   Wind speeds are indexed to the average.  There does not appear to be a 

significant difference between the two FINO-1 indices calculated with different profiles 

(ENW vs. SDIS).  There is significant deviations between the WRF and FINO-1 indices, 

but QuikSCAT matches FINO-1 very closely,  with small deviations in Nov, Dec, Jan. 

and Feb.   This error is likely due to contamination or scrubbing of data due to winter ice, 

both floating on the surface and on met tower anemometers.  The study shows the 

scatterometers ability to index wind more accurately than the WRF models used.  The 

authors also conclude;  “Such results indicate that there is a small impact in the average 

statistics [wind indices and power density] when 2 daily values are used, instead of 24 

hourly values”.   This observation is useful when assessing the impact of  low frequency 

sampling and diurnal bias on energy density estimates. 
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Figure 35- Wind Index for Various Sources of  Wind Data, from Karagali et al 2012 

  

3.3.1.7. QuikSCAT Inventory  

 

QuikSCAT  coverage estimates from the 7 studies reviewed ranged from 212 scans/yr to 

700 scans/yr, reflecting  a wide range of latitudes and varying degrees of data scrubbing.  

However, only two of the QuikSCAT studies (Hasager et al 2006 and Karagali 2012) 

included “atlas inventories”- estimates of available scan density over a wide, gridded 

region, unencumbered by co-location critieria or correlation studies.  These estimates are 

more appropriate than correlation studies for assessing coverage for resource assessment.  

After scrubbing for rain and sea ice, Karagali (2012) found between 500 and 700 scans/yr 

at almost every cell more than ~ 25 km offshore (beyond the land mask) in the North Sea. 

This compares reasonably well to a theoretical maximum  of 843 in the North Sea region.  
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To account for the longer parallel at Cape May, this figure should be divided by the ratio 

of 1.4 (see Appendix A A).  An estimate based on the mid-range of the North Sea annual 

rate (600- from Karagali 2012)  translated to Cape May latitude would thus be  (600/1.4 

=) about 430 scans per year.   Sea ice had some impact on the North Sea inventory, but is 

not an issue in the study area, so this estimate is considered conservative. 

 

The other two QuikSCAT studies cited for coverage estimates (Pickett et al,-234 

scans/yr, Pimenta et al - 212 scans/yr) are correlation studies. The correlation study scrub 

rates are higher than the atlas inventory rates primarily due to scrubbing of the reference 

in situ data set in the correlation studies.  In addition,  Pickett et al scrubbed data sets for 

wind speeds below 6 m/s, a relatively high threshold, and Pimenta et al noted that many 

of the buoys in the study experienced significant downtime.  As expected, those estimates 

reflect scrub rates significantly higher than what would typically occur without co-

location criteria.    In order to estimate how much higher, the scrub rates would need to be 

determined and broken out for each data set and for each critierion (rain, ice, wind speed, 

technical, etc.)  That analysis would require information that is not published, and would 

be beyond the scope of this paper.  Valid QuikSCAT coverage is therefore assumed to be 

430 scans/yr for the 39th parallel, which represents a scrub rate of ~30%, and is based on 

a conservative interpretation of the atlas inventories translated to the 39th parallel.  This 

translates to around 4300 QuikSCAT scans available for the study area.   
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3.3.2. ASCAT -Metop A and B 

 

The European Space Agency launched the Advanced  Scatterometer (ASCAT) in 2006 

on their Meteorological Operational  (MetOp A) satellite. This program was extended 

with the launch of  MetOp B in 2012 and will continue through 2020 with the launch of 

Metop C in 2017.  ASCAT is a C-band radar that uses vertically polarized antennae. 

There are now two active ASCAT units on Metop satellites.  Each satellite carries the 

same sensor package including six antennae that scan two parallel tracks 500 km wide on 

the sea surface (see Figure 30).   The data are spectrally analyzed and used to create 

global ocean wind products that are available from the European Organisation for the 

Exploitation of Meteorological Satellites, Ocean and Sea Ice Satellite Application 

Facility (EUMETSAT OSI-SAF).   The products are available at a 12.5 km resolution, 

and begin 20 km off the coastline (EUMETSAT 2011)33.   

 

Figure 36 and Figure 37, below, show two images of the Mid-Atlantic Bight (MAB) 

created from ASCAT data and retrieved retrieved from the EUMETSAT data portal 

(OSI-SAF 2012) on 2 Dec 2012.  The images are not cartographically projected, so the 

aspect ratio is slightly distorted.   The products were generated using the High 

                                                 

33 In the US, NOAA and NASA maintain online catalogues of ASCAT products at 

(http://manati.star.nesdis.noaa.gov/products/ASCAT.php) and at  (http://po-

daac.jpl.nasa.gov/dataset/ASCAT-L2-

12.5km?ids=Measurement&values=Ocean%20Winds). 

 

http://manati.star.nesdis.noaa.gov/products/ASCAT.php
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Resolution, Limited Area Model (HIRLAM) a GMF algorithm developed by the Applied 

Physics Laboratory at Johns Hopkins University.  The second image shows a portion of 

the wind product off the Delmarva peninsula.  The purple dots represent the center of the 

wind vector cells for the high resolution coastal product.  The 12.5 km spacing of the dots 

can be seen in the zoomed figure. 

 

 

Figure 36- ASCAT Coastal Product, 12.5km resolution, retrieved from NOAA por-

tal at http://manati.star.nesdis.noaa.gov/products/ASCAT.php 

Figure 37- Zoom in, ASCAT Coastal Product, 12.5km resolution, retrieved from 

NOAA portal at http://manati.star.nesdis.noaa.gov/products/ASCAT.php 
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3.3.2.1. ASCAT KNMI Hi-Res Product (Verhoefen et al 2011) 

 

 A validation study of ASCAT wind mapping, including the 12.5 km coastal product,  

was conducted by the Royal Netherlands Meteorological Institute using scatterometer 

data from the Metop-A satellite (Verhoefen et al 2011).  Six months of Level 1 ASCAT 

data were analyzed using different backscatter averaging cut-off radii.   Wind products 

were generated for 20 km, 15 km, and 12.5 km wind vector cells,  and mapped to 

corresponding grid nodes along the coastline of North America.    The 12.5 km resolution 

wind products were then compared to co-located, co-incident (<30 minutes apart) 

anemometer data from 35 coastal met buoys between 10 and 50 km offshore of the 

Atlantic and Pacific coastlines of North America.  For the 6 month study period a total of 

4,596 scrubbed, collocated data sets were identified for these 35 buoys and analyzed.  

This translates to an average of 263 samples per buoy per year, reflecting a wide range of 

latitudes.  For comparison, this is 78% of the theoretical maximum of 337 at Cape May.  

The wind speed bias of the 12.5 km ASCAT vectors compared to the met buoy 

measurements was found to be –0.25 m/s, with vector component standard deviations 

between 1.45 and 1.57  m/s. 

 

 In a triple co-location correlation study, little difference was found in error 

characteristics between the three grid sizes, with zero bias between them, and standard 

deviations that differed by less than .05 m/s.  The study concluded that all three products 
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(20 km, 15 km, and 12.5 km) can be considered to have the same error characteristics, 

and reaffirms the findings of Plagge et al, who used QuikSCAT data. 

 

3.3.2.2. ASCAT Inventory, Accuracy 

 

ASCAT coverage is estimated at 263 samples per year based on the number of valid 

samples retrieved in (Verhoefen et al 2011).  This is ~ 78% of the ASCAT maximum 

theoretical coverage of 337 samples per year for the study area. No latitude correction is 

applied because Verhoefen et al (2011) co-locations covered a range of latitudes roughly 

centered on the study area latitude.   For 6.3 years of operation this would produce ~ 

1660 ASCAT samples total.  The inventory increases at a rate of ~ 525 valid samples per 

year because there are now two operational ASCAT instruments.  ASCAT accuracy is 

assumed to be at least as accurate as QuikSCAT based on the work of Verhoefen et al 

and the fact that ASCAT is more advanced than QuikSCAT. 

  

3.3.3. OceanSAT-2 

 

In September, 2009 the Indian Space Research Organisation (ISRO)  launched OceanSat-

2, which provides scatterometry-based wind speed products at a 25 km resolution (ISRO 

2012).  It uses an active pencil-beam scanning scatterometer called SCAT , with 

performance specifications higher than QuikSCAT.   Wind retrieval tools developed for 

ASCAT can be modified and used to  improve the resolution down to 12.5 km with no 
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loss of accuracy from the 25 km product, allowing wind speed estimates in near coastal 

areas, as demonstrated by Verhoefen et al (2011).   The swath width of OceanSCAT is 

1400 km, which is 7/9 of the QuickSCAT swath, so OceanSCAT theoretical maximum 

coverage can be estimated by assuming proportional coverage. 

 

3.3.3.1. OceanSAT-2 Inventor, Accuracy 

 

Because OceanSAT is relatively new, there are few published reports from which to 

extract the scrub ratio of wind products.  The  annual coverage is estimated based on the 

ratio of OceanSCAT to QuikSCAT swath width (1400 km vs. 1800 km).   This is a 

reasonable assumption based on similar scrub rates, since the instruments are otherwise 

very similar and have the same orbital characteristics.   OceanSCAT annual rate is 

therefore (430 x 7/9=) 334 scans.   It has been operating ~3.3 years, for a total of  ~1100 

valid samples.  OceanSCAT accuracy is assumed to at least match that of QuikSCAT 

based on the fact that OceanSCAT is more advanced and has a narrower swath width. 

 

3.3.4. Scatterometer Inventory Summary 

 

Table 11  summarizes the scatterometer inventory and shows that there are currently over 

7,000 valid scatterometer products available for a given location at 39 degrees N latitude.  

All the scans have been taken since 1991, and the inventory increases by over 700 valid 

samples per year.   These figures do not include scatterometers that were launched before 
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1991 or that operated for less than two years.  Study area inventory can only fall below 

this estimate if the study area scans must be scrubbed at a rate significantly higher than 

that observed in the North Sea, and this is extremely unlikely.  

   

Table 11- Scatterometer Inventory 

 

Instrument Swath Width 
(km) 

N-
Estimate 

N-Annual 
Increase 

QuikSCAT 1800 4300 0 

ASCAT 1000 1660 525 

OceanSCAT 1400 1100 200 

Total Inventory  7,060 725 

  

 

3.3.5. Scatterometer Accuracy Summary 

 

Table 12 summarizes the published correlation and error statistics for the seven 

scatterometer studies reviewed, which used both buoy and met tower data for correlation.  

Not all statistics were published in all studies.  Standard deviation of the error varies 

between ~ 1 and 2 m/s.  Much of the scatter found by Pimenta et al was attributed to the 

buoy data being time averaged over a day, while the QuikSCAT wind is a snapshot,  

unlikely to match the daily mean.  For those studies that scrubbed lower wind speeds, SD 

does not exceed 1.3 m/s.  The two outlier data points for bias (Hasager et al 2006 and 

Verhoefen et al 2011) did not scrub for wind speed.  In addition, Verhoefen et al used 

buoy correlation and Hasager et al did not scrub for rain, two more potential sources of 
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bias.  Neglecting these two outliers, bias ranged from –0.15 m/s to +0.2 m/s.   Energy 

density estimates generated from  QuikSCAT products (Karagali 2012) differed by 1% to 

5% from in situ tower estimates, depending primarily on the wind shear profile selected 

for extrapolation to match the two data sets. 

Table 12- Scatterometer Accuracy Statistics 

 

Study 

U 
Range 
(m/s) 

Tower 
or 

Buoy 
SDE, 
RMSE R Slope 

Bias 
(m/s) 

Pickett 6 to 25 B 1.3 0.9  0.2 

Pimenta- all buoys 0 to 25 B  0.83 0.98     -0.146 

Pimenta -buoy 44009 0 to 25 B 2.0   0.2 

Hasager 2006 0 to 25 T 1.3  0.96 -0.3 

Hasager nearshore 0 to 25 T 1.3   0.2 

Karagali 3 to 25 T 1.2 0.94  -0.09 

Ricciarduli  Ku2011 0 to 25 B 0.9   0.01 

Verhoefen/ASCAT 0 to 25 B 1.5   -0.25 

Plagge BYU(*) 0 to 25 B 2.02   -0.1 

(*) – The UHR product is considered experimental, thus not included in the 

summary table 

 

 

3.4. Passive Microwave Imaging (Radiometers) 

 

Passive Microwave Instruments measure brightness and temperature of polarized 

microwave energy from the earth’s surface at multiple frequencies.  There are several 

PMI systems and databases including the Advanced Microwave Scanning Radiometer-
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Earth (AMSR-E)34,  WindSAT35, and the Special Sensor Microwave Imager36 (SSMI).  

Each has particular strengths and weaknesses as a result of different scan techniques, 

temperature ranges, and polarization schemes. For example, different frequencies have 

different sensitivity levels to rain and water vapor, which can be useful for cross-

calibrating with other data sets (Atlas et al 2010).  PMI (and SAR) can be used to 

supplement scatterometry by providing better flagging for rain and sea ice (Zhang et al 

2006, Bentamy et al 2007, Ricciarduli 2011).   

 

3.4.1. WindSat (Meissner and Wentz 2006) 

 

WindSat is  a polarimetric microwave radiometer developed by the Naval Research 

Laboratory and the Naval Center for Space Technology.  It was launched aboard the 

Coriolis satellite in 2003 and continues to operate despite its 3 year design life.   It is the 

first radiometer to measure wind direction, and is capable of retrieving wind speeds in 

light rain.  It operates in several discrete bands between ~ 6 GHz and 40GHz (WindSAT 

2013a, 2013b).  Meissner and Wentz (2006) developed a GMF for WindSAT data that 

uses this multi-spectral data to retrieve wind vectors, sea surface temperature, columnar 

atmospheric water vapor, columnar liquid cloud water, and rain rate.  These parameters 

can be used by other GMFs to calibrate scatterometer and SAR retrievals.  The study 

                                                 

34 Details available at http://www.ghcc.msfc.nasa.gov/AMSR/ 
35 Details available at http://www.nrl.navy.mil/WindSat/Description.php 
36 Details and downloads available at  http://www.ncdc.noaa.gov/oa/rsad/ssmi/swath/in-

dex.html 
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tested the GMF using ~ 48,000 co-locations, and average bias compared to buoy data was 

found to be +0.17 m/s,  with a SD = 1.12 (Meissner and Wentz, 2006, Table IV).  

WindSAT products are offered by RSS in time-averaged (daily, 3 day, weekly, monthly) 

25 km grid form only (WindSAT 2013c).  

 

3.4.2. SSMI (Mears et al 2001) 

 

This analysis focuses primarily on the SSMI database because it is the largest and fastest 

growing PMI database and has the longest running progarm of the PMI class of 

instruments. The  program uses overlapping serial missions carrying successively 

improved versions of the Special Sensor Microwave Imager (SSMI)37.   The SSMI was 

developed as part of the Defense  Meteorological Satellite Program (DMSP) (Hollinger et 

al 1987, Wentz 1997).  There have historically been two to four systems orbiting 

simultaneously for most of the program - a significant advantage compared to other 

SMRR instruments (Hasager et al 2006, NESDIS 2007).  The SSM/I measures at four 

frequencies from 19.35 GHz to 85.5 GHz, with both vertical and horizontal polarizations. 

The system sweeps a 1400 km wide swath.  25 km wind vector products are available 

from RSS (RSS 2013).  The nominal performance specification of SSMI systems is 

accuracy of  +/ 2.0 m/s, and a root mean square error  of <1.3 m/s for winds between 3 

and 25 m/s.  There have been six succesful SSMI satellites launched since 1991, two of 

                                                 

37 Details available at  http://www.ssmi.com/ssmi/ssmi_description.html 
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which are still operating as of Dec. 2012. The satellites are enumerated F11, F13, F14, 

F15,  F16 and F17 (SSMI 2013).  

 

In a comprehensive 2001 study (Mears et al 2001), wind speed estimates for the period 

June 1987 through June 1998 were retrieved from SSM/I data from four satellites and 

compared to data from all operational Tropical Atmosphere Ocean (TAO) and NDBC 

buoys,  for a total of 150 met stations.  The TAO array uses Atlas buoys, which measure 

winds for 6 minutes every hour at a height of 3.8 m with a stated  accuracy of 0.3 m/s or 

3%, which ever is greater. The nominal accuracy of wind  speed from the NDBC buoys  

is +/- 1 m/s . The latitude of the buoys in the study ranged widely.  The study analyzed 

over 88,000 co-located (defined as separated by < 2 hrs and < 25 km) data points and the 

study noted,  “Typically, a year in which both the buoy and satellite were completely 

operational resulted in 200-300 collocated observations for the pair.” . 

 

Table 13 shows the error characteristics broken out by satellite.  The study concluded that  

the significant improvement in performance with F11 and F13,  reducing bias to  ~0.1 

m/s,   was probably due to upgrades and improved system calibration in those 

instruments.  
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Table 13- Error Characteristics by Satellite Number, adapted from Mears et al 2001 

 

Satellite No. Mean 
(WSSMI – W Buoy) 

 SD 
 (WSSMI – W Buoy)  

No. 
Observ’ns  

F08 -0.20  ± 0.07 1.39 31233 

F10 -0.41  ± 0.05 1.25 88857  

F11 0.11  ± 0.05 1.26 86780  

F13 0.09  ± 0.05 1.25 46959  

 

Figure 38 shows the deviation of the mean wind speed for all buoys compared to the 

SSMI wind estimates, arranged in order of mean error, negative to positive.  The error 

bars show one standard deviation, and the dashed red lines, added for clarity, show a 

range of  +/- 0.5 m/s.  Around 85% of the buoys fall within 0.5 m/s of the SSMI 

estimates.  Figure 39 shows wind speed difference between NDBC 44004 in the 

Northwest Atlantic and Satellite F11 for wind speeds up to 15 m/s.  At NDBC 44004, the 

F11 error is minimal (< 1 m/s) between around 4 m/s and 13 m/s. 

 

 
     

Figure 38- All Buoys, Mean SSMI Deviation, modified from Mears et al 2001 

Figure 39- NDBC 44004 vs.  SSM/I F11 Deviation, from Mears et al 2001 
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In October, 2003 and in December 2006,  two new satellites (F-16 and F-17) were 

launched carrying the improved  Special Sensor Microwave Imager/Sounder (SSMIS) 

onboard.  SSMIS provides slightly higher resolution and more channels for sea surface 

temperature and water vapor pofile sensing.  This additional information can be used to 

calibrate the GMF to improve retrieval of all wind products, archived and future.  SSMI 

wind products are offered by Remote Sensing Systems, Inc. (RSS 2013).  

 

3.4.3. PMI/SSMI Accuracy, Inventory, Resolution  

 

The inventory and analysis done for this paper begins in 1991 with satellite F11, so 

previous data sets from the outmoded F8 and F10 are  not considered.  Based on the work 

of Mears et al (2001), the bias of F11 and later systems is about half that of the other 

SMRR types evaluated, with data sets showing a  bias around +0.1 m/s and a standard 

deviation of  ~ 1.25  m/s.    Meissner and Wentz found a bias of +0.17 m/s and SD of 

1.12 for WindSat retrievals, closer to the accuracy of SAR and scatterometer systems.   

 

 Based on scan width, the theoretical maximum coverage of SSMI for the study area 

(from Appendix A A) is 129%, or 472 scenes per satellite year.  Mears et al found a 

typical rate  of 200-300 scans per satellite year over a wide range of latitudes, from the 

tropics to the Bering Sea.  Therefore, a conservative assumption for SSMI coverage, 

based on this and on scrub ratios observed in other data sets (ranging from 11% to 36%),  
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would be an overall scrub rate of 50%, leaving about (472/2 = ) 236 per year.  This is 

adopted as the estimate for SSMI coverage.  Since 1991, SSMI satellites have logged a 

total of ~56.4 years of operating time. The number of valid SSMI samples should 

therefore be around (236 samples/yr x 56.4 years= )  ~ 13,300 samples increasing at a 

rate of ~ 472 annually, since there are currently two satellites orbiting.   

 

SSMI product resolution is currently 25 km gridded vectors, although similar 

methodologies to those used by Verhoefen et al (2011) could be applied to re-sample the 

data and resolve the wind vectors  to 12.5 km.    

 

3.5.  Summary - SMRR Inventory  

 

Table 14 summarizes the SMRR inventory for the study area.  The number of valid 

samples  is estimated at over 24,000, comprising over 20,000 gridded vector products 

from scatterometers and radiometers plus ~ 4,000 SAR images. This number increases 

annually by about 1200 gridded vector products and 230 SAR images.   It bears repeating 

that this inventory does not include several other satellite data sets used for ocean wind 

speed estimates, so it represents only a subset of all possible sources. 
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Table 14 - SMRR Inventory Summary 

 

 Satellite/Instrument 
Active 
Life (yrs) 

Theoreti-
cal Max. 
Scans/yr 

Valid 
scans/ 
yr 

Scrub 
rate 
(pct) 

Scans 
Avail. 

SAR ERS-1/SAR 8.3 34 30 11% 249 

  ERS-2/SAR 16.4 34 30 11% 492 

  
RADARSAT-
1/ScanSAR 17.1 168 115 32% 1966 

  
RADARSAT-
2/ScanSAR-2 5.1 168 115 32% 586 

  EnviSAT/ASAR  9.8 135 86 36% 843 

                                             SAR subtotal  4137 

Scatterom-
eters Metop-A/ASCAT(7) 6.3 336 250 26% 1575 

  Metop-B/ASCAT(7) 0.1 336 250 26% 25 

  SeaWinds/QuikSCAT 10.4 605 430 29% 4472 

  OceanSAT/SCAT 3.3 471 334 29% 1102 

                           Scatterometer subtotal  7174 

PMI - SSMI F11 SSM/I 8.5 471 235 50% 2001 

  F13 SSM/I 14.5 471 235 50% 3413 

  F14 SSM/I 11.3 471 235 50% 2660 

  F15 SSM/I 6.7 471 235 50% 1577 

  F16 SSMIS 9.3 471 235 50% 2189 

  F17 SSMIS 6.1 471 235 50% 1436 

    
  
                                      SSMI Subtotal  13277 

 

 

3.6. Summary - SMRR Snapshot Accuracy  

 

The accuracy of SMRR based resource assessment must be examined at two levels;  the 

snapshot wind retrieval (this section) and the time-averaged energy density estimate 

(following section).  Table 15 summarizes the correlation and error statistics for the 21 

separate analyses discussed above.  As the spreadsheet shows, some bias (usually 
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negative vs. in situ) persists in all of the studies.  The relatively wide range of  SD and 

bias reflects the wide range of technologies, site conditions, sample sizes, and scrub 

criteria for the data sets.  The independent effects of rain scrubbing on bias and scatter 

were not clear, due to the non-linear effect of rain on wind retrievals, the dependence on 

wind speed, and the lack of sufficient data on scrub rates.   

Table 15- SMRR Error Statistics Summary 

 

Study N 
U Range 

(m/s) 
Rain 

scrub 
Tower/ 
Buoy 

SDE, 
RMSE R 

Regr. 
Slope 

U 
Bias 
(m/s) 

Energy  
Error (%) 

SCATTEROMETERS          

Pickett 3,314 6 to 25 y B 1.3 0.9  0.2   

Pimenta- all buoys 32,394 0 to 25 n B  0.83 0.98 -0.146   

Pimenta -buoy 44009 8,292 0 to 25 n B 2   0.2 4.4% 

Hasager - all data 315 0 to 25 ? T 1.3  0.96 -0.3   

Hasager- Horns Rev  0 to 25 ? T 1.3   0.2   

Karagali -Horns Rev 951 3 to 25 y T 1.3  0.93  -0.09   

Karagali - Fino1 594 3 to 25 y T 0.96 0.96  -0.07 ~2.6% - 5% 

Karagali- Greater Gabbard 84 3 to 25 y T 1.43 0.92  -0.19   

Karagali -all 1,629 3 to 25 y T 1.21 0.94  -0.09 ~1% - 4% 

Ricciarduli  Ku2011 >10,000 0 to 25 y B 0.9   0.01   

Verhoefen/ASCAT 4,596 0 to 25 y B 1.5   -0.25   

Plagge BYU  0 to 25 n B 2.02   -0.1   

SAR          

Hasager et al 2011 FINO2 180 0 to 25 ? T 2.04 0.87 1.03 -0.21   

Hasager et al 2011 ALL 875 0 to 25 ? T 1.88 0.89 0.96 -0.25   

Christiansen et al 2006 91 2 to 15 ? T 1.1  1.00 -0.26 0.00% 

Badger et al - Hovsore 444 0 to 25 ? T    0.07 3.60% 

Badger et al - Horns Rev 464 0 to 25 ? T    -0.06 0.90% 

Badger et al - FINO-1 359 0 to 25 ? T    -0.01 4.10% 

PMI          

Meissner et W. (WindSAT) 48,000 0 to 25 n B 1.12     0.17   

Mears et al (SSMI - F11) 86,780 0 to 25 n B 1.26   0.11   

Mears et al (SSMI -F13) 46,959 0 to 25 n B 1.25     0.09   

(*) – The 2.5 km UHR product in Plagge et al is considered experimental, thus not included 

(**) Pimenta et al estimated AEP change for a GE 3.6 MW turbine 
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Although it is difficult to isolate single parameter effects across studies, four important 

observations can be made; 

 

1. With the exception of one outlier (Christiansen et al 2006) that used an extremely 

small number of samples (91), every study that restricted wind speed found a bias 

below ~0.2 m/s, with the mean magnitude of bias being  0.13 m/s.  

 

2. Wind speed bias is found to be lowest (< 0.2 m/s, absolute) for wind speeds  of ~ 

3 to 15 m/s, for all three technologies.  This agrees with theory, and reflects the 

range where capillary waves are most closely correlated with microwave 

reflectivity/emissivity.   

 

3. Some of the remaining bias can be corrected by improving the GMF, but only if 

the source of the bias can be accurately modeled.  This is not always possible, so 

data are often rejected as contaminated (e.g., by rain, sea ice, very low, or high 

winds).   

 

4. The average SD of all studies that restricted wind speeds and scrubbed for rain 

was around 1.2 m/s, and did not exceed 1.4 m/s. Conversely, every study that 

found a SD >1.5 m/s scrubbed neither wind nor rain.     

 

 

The studies also demonstrate how SMRR wind retrieval accuracy has been improving 

and should continue to improve due to the following four trends and new techniques; 

 

1. With each new SMRR system launched, instruments upgrade through the  use of 

better system calibration, improved antennae,  navigation, and tracking systems, 

and/or new features such as multi-polarity and multi-frequency functionality.    

 

2. Co-processing data sets from the same systems but with different frequencies and 

polarizations reduces error by adding information about the atmosphere and sea 

surface. 
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3. Co-processing of datasets from different systems can reduce error by providing 

more accurate wind direction inputs for SAR retrievals, and more accurate and 

higher resolution flagging and coastal masking.  SAR images provide wind speeds 

within a few km of the coastline,  helping to fill information gaps along the shore 

in scenes from Scatterometers and PMI sensors.  It can also help identify diurnal 

patterns and reduce associated error. 

 

4. New GMFs can flag outliers and mitigate biases in wind retrievals, and these 

GMFs can be applied to incoming data from operational instruments, or 

retroactively to archival data sets.   

 

In light of the above, for SMRR snapshot wind retrievals between ~ 3 and 15 m/s, the 

mean bias can be assumed below  0.2 m/s.  Accuracy can be expected to improve as the 

technology advances and GMFs are upgraded and calibrated.  With proper scrubbing and 

retrieval, some data sets such as SSMI are capable of producing time averaged bias less 

than 0.1 m/s, however, this is the low end of the range observed, and would not constitute 

a conservative assumption. 

 

3.7. Summary – SMRR for Energy Density, AEP 

 

Snapshot retrieval products must be collected and translated into histograms, PDFs or 

time series in order to calculate energy density at any location.   A turbine power curve 

must then be applied to the data to estimate AEP (see Figure 58- Turbine Operating 

Regions).  A turbine produces power only between ~ 3 m/s and ~ 25 m/s.  For the lower 

part of that range (~3-13 m/s) power output is a function of the wind speed and for the 

upper half ( ~ 13 m/s to ~25 m/s), power output is at capacity.  The lower half is known 

as Region 2, and is represented by the sloping section of a turbine power curve.  Outside 
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of Region 2, the power is either zero (shut down) or at rated capacity.  Therefore, for 

estimating AEP, wind speed accuracy is only critical in Region 2.  This range (~3-15 

m/s) matches the range of lowest bias for SMRR retrievals, so the estimate of bias (below 

0.2 m/s) for snapshots within this range  is justified. 

 

Table 16 summarizes the key findings of those studies that assessed energy correlation.  

Every study calculated average energy density except Pimenta, which calculated AEP of 

a GE 3.6 MW turbine.  The table shows no clear correlation between the amount of wind 

speed bias and the error in energy density estimates.  This is because the energy density is 

only loosely correlated to the mean wind speed.  Mean wind speed gives no information 

about the distribution of wind speeds or the Weibull k parameter, which is required for 

accurate energy density estimates (Pryor et al 2004)).   

 

 The high (low) end of the error ranges found by Karagali (2012) reflects the least (most) 

accurate shear profile used. The only outlying data points for wind speed bias are 

Pimenta and Christiansen et al 2006.   The high bias of Pimenta is likely due to use of a 

buoy for the reference dataset and the inclusion of all wind speeds. The high negative 

bias found by Christiansen et al does not jibe with the near-zero energy error found, 

except in light of the fact that the energy density is a function of the entire distribution, 

not just the mean wind speed, and the  sample size of Christiansen et al (2006) was very 

small, making the distribution and error statistics highly suspect.  Excluding Christiansen 

et al (2006), the wind speed bias ranges from about –0.1 to +0.2 and the energy error 
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ranges from about 1% to 5%.  Choice of the correct shear profile can cut error in half, 

based on the range of error observed in Karagali (2012) using three different shear 

assumptions at FINO-1.  With the exception of Christiansen et al (2006), Table 16 does 

not suggest any clear correlation between the number of samples and bias,  but that is not 

surprising given the wide range of study conditions and methodologies.  A better method 

of evaluating correlation between sample size and uncertainty is given in the following 

section. 

 

Table 16-SMRR Energy Density Error Statistics 

 

Correlation Study N 
U Range 

(m/s) 
Rain-

scrub? 
Tower/ 
Buoy 

U Bias 
(m/s) 

Energy Error 
(%) 

Pimenta -buoy 44009 8,292 0 to 25 n B 0.2 4.4% (GE3.6)* 

Karagali - Fino1 594 3 to 25 y T -0.07 ~2.6% - 5% 

Karagali -all 1,629 3 to 25 y T -0.09 ~1% - 4% 

Christiansen et al 
2006 91 2 to 15 y T -0.26 0.0% 

Badger et al - 
Hovsore 444 0 to 25 n T 0.07 3.6% 

Badger et al - Horns 
Rev 464 0 to 25 n T -0.06 0.9% 

Badger et al - FINO-1 359 0 to 25 n T -0.01 4.1% 

(*) – Pimenta used GE 3.6 MW turbine to estimate AEP instead of energy density. 

 

  

3.7.1. Sample Size and Uncertainty 

 

To determine empirically how many samples are required for a robust estimate (+/- 10% 

with a confidence level of 90%) of the mean wind speed and the Weibull parameters, a 
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statistical analysis was performed by researchers from Indiana University and Riso 

National Laboratory in Denmark, using data from four met buoys representing four 

different wind climates (Pryor et al., 2004).   

 

Table 17- Sample Size for Accurate Estimates of Wind Statistics, from Pryor et al 

2004 

Descriptor N required for 
P90 +/-10% 

Mean 91 

Std dev 150 

Skewness 7599 

Kurtosis >10 000 

Weibull k  1744 

Weibull A  91 

Energy density  1744 

 

The analysis included 24 years of hourly averages  from NDBC buoys, including buoy 

44004, 370 km east of Cape May, NJ..  This buoy is the closest of the four buoys to the 

study area, and its long service record provided around 20,000 samples.  For the entire 

dataset analysis, the study estimated that between ~ 70 and 150 randomly selected 

samples are sufficient for mean wind speed and Weibull A, whereas between ~ 500 and ~ 

2000  samples are needed for Weibull k and the mean energy density.    Table 17 shows 

the six descriptors of wind speed distribution analyzed for NDBC 44004 only.  The 

analysis first derived the descriptors for the complete data set, then derived them for a 

range of sample sizes up to N= 1,000, and plotted the results (solid line).  The descriptors 
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were also generated using a Weibull distribution function fitted to the NDBC data 

(dashed lines). The plots clearly show the confidence bands narrowing, indicating that 

accuracy should continue to improve between N=1,000 and  N=10,000.    

 

An imprecise but revealing graphical analysis was conducted by extrapolation.  Figure 40 

shows the number of samples needed for estimating three key parameters within +/-10%  

with  90% confidence.  The solid lines represent data from only buoy 44004, and the 

dashed lines represent all the buoys in the dataset.  For illustration purposes, Figure 40 

was adapted from Pryor et al (2004) by adding the red lines, and it  indicates that 

increasing from N=1,000 to around N=7,000 samples (for example, the number of 

scatterometer products from the study area inventory) should reduce the P90 band of 

uncertainty around mean wind speed from about 0.5 m/s to about 0.1 m/s.   Other 

statistical parameters could be expected to show similar improvements depending on the 

convergence rate of the two curves.   

 

 

Figure 40-No. of samples needed for +/-10% estimate, adapted from Pryor et al 

2004. 
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From the SMRR inventory estimate in Table 14  there are now around 24,000 valid 

SMRR scans of the study area.  This is 14 times more samples than Pryor et al estimated 

would be needed to achieve the target energy density accuracy of +/- 10% with 90% 

confidence.  It is about 25 times more samples than Karagali (2012) used, and about 48 

times more samples than Badger et al used, and those studies found energy density error 

ranging from ~ 1% to 4%.  Based on the cross-check methodology used for the study area 

inventory, the estimate for N (24,000) could have uncertainty as high as 25%.    Even if 

the true inventory of valid samples were only half of the estimate, N would still be very 

large statistically and would still represent a time series of over 20 years.  In light of this 

analysis,  AEP uncertainty should be closer to the low end of the range found by Karagali 

(1% to 4%). 

 

3.7.2. Time Series Length and Uncertainty 

 

The Danish Wind Energy Consultant EMD is one of the leading power performance con-

sulting firms in the EU and has been doing wind indexing for hundreds of clients around 

the world for 15 years.  Their expertise lies in estimating power production over the life 

of a wind farm based on a short time series of wind data.  In collaboration with Riso-

DTU and several turbine manufacturers, EMD performed detailed case studies for 20 of 

their projects and estimated the potential error in production estimates from using a short 
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term data set and a wind-indexed short term data set versus a reference 14 year time se-

ries (Nielsen et al 2002). 

Table 18 summarizes the overall results.   The authors noted that even with nearly four 

years of data, some production estimates were off by over 10%.   This study highlights 

the value of long time series for wind indexing, and indicates that a time series on the or-

der of 15 years or longer may be required for accurate indexing of short time estimates. 

 

Worst case long-term pro-
duction estimates 

1 year of 
data 

2 years of 
data 

3 years of 
data 

Production error-no index-
ing 

+/- 30 % +/- 20 % +/- 10 % 

Production error- w/ index-
ing 

+/- 15 % +/- 10 % +/- 5 % 

 

Table 18-The Effects of Time Series Length on Production Estimates, adapted from 

Nielsen et al 2002 

 

3.7.3. Case Study - Project NorseWind 

 

A major effort was recently completed which built on some of the research cited above to 

generate energy density estimates for the North, Irish, and Baltic Seas.  Project 

NorseWind was a groundbreaking, four year, EU consortium project which culminated in 

the publication in Sep. 2012 (NorseWind 2012) of a high resolution (2 km x 2 km) wind 

atlas.  This project combined six sources of data; 

 SAR data from Envisat, ERS, ALOS, TSX, Radarsat 

 SCAT data from QuikSCAT, ASCAT, ERS 
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 numerical modeling using four complete years of WRF simulation,  

 wind (profile) data from 20 Lidar units,  

 wind (profile) data from ten met masts 

 metereorological data from numerous offshore oil and gas platforms 

 

Researchers demonstrated a method by which SAR and scatterometer data can be 

combined to produce high spatial resolution and high coverage maps and how sea surface 

temperature can be sensed and used to calibrate wind profile estimates (Karagali 2012).  

Other NorseWind papers demonstrate how weighting scans by wind class can improve 

accuracy (Badger et al 2009),  and how the wind profile up to hub height can be modeled 

using all available data in a multi-variant correlation analysis (Pena et al 2012).  These 

and other papers listed at http://www.norsewind.eu/norse/index.php/publications   detail 

the methodologies underlying the production of the NorseWind Atlas. 

 

Figure 41 shows the geographic extent of the project using the “Full Capacity – V80” 

product layer, which shows the number of annual hours wind speed exceeds its rated 

value for a Vestas V80.  The “full capacity” factor is closely correlated to AEP and is 

often used as an indicator of production potential.  
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Figure 41- NorseWind Map Product Sample -   # Hrs. at Full Capacity for a Vestas 

V80, retrieved from NorseWind server at http://geoportal.lneg.pt/ArcGIS/rest/ser-

vices/Norsewind/MapServer 

 

The satellite data used by the NorseWind team comprised over 120,000 scenes of the 

region over a 14 year period.  The large inventory is due in part to the size of the study 

area.  First, two maps were produced - one based only on SAR data, and one based only 

on scatterometer data.  These were compared to each other, to the WRF results, and to the 

in situ measurements.  Different shear profiles were developed for different locations, and 

reproducible methodologies were developed and demonstrated for synthesizing the data 

into a wind resource atlas with unprecedented resolution and accuracy.     The Atlas 

includes GIS layers for the following parameters; 
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 Annual long term corrected mean wind speed 

 Monthly  long term corrected mean wind speed 

 Standard deviation of annual values 

 Weibull parameters (k & A) 

 Wind direction distribution 

 Average Wind shear – α exponent 

 Temperature 

 Static stability 

 Uncertainty of all physical parameters 

 

The server can provide all listed parameter layers at 100 m ASL in GIS format.  Figure 

42 was retrieved from the NorseWind Map Server on 28 Nov. 2012, and show the mean 

wind speed at 10m.  The area around Horns Rev, off the west coast of Denmark, is shown 

at two scales.  The blow-up clearly shows the 2 km. resolution of the averaging cells, and 

the mean wind speed in increments of  0.2 m/s.  

  

   

Figure 42- Mean Wind Speed Around Horns Rev- retrieved on 28 Nov. 2012 from 

http://geoportal.lneg.pt/arcgis/rest/services/Norsewind/MapServer 
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Figure 43 and Figure 44 show the NorseWind product around Horns Rev for 100m 

corrected wind speed and for the uncertainty of the wind speed.  Shear profiles were 

found to be  a function of atmospheric stability and boundary layer height, and the study 

assigned site specific shear exponents for wind shear for certain locations.   Uncertainty 

of the wind speed more than 10km offshore in this region ranges from  0.05 to  0.15 m/s, 

and is typical of the atlas for the entire NorseWind study area.  Each  color increment 

represents 0.05 m/s uncertainty.  The highest uncertainty is found around Horns Rev, at  

the darkest blue dot  in Figure 44, with a value of 0.2 m/s.   This is because the wake and 

the radar signature of the wind farm increased the scrub rate in the area, increasing 

uncertainty in local averaging cells.  

 

3.7.4. 4C-Offshore 

 

At least one commercial firm has also developed a proprietary global offshore 25 km 

wind atlas product based on satellite data (4Coffshore’s “Global Offshore Wind Speed 

Database”), but there are no published validation studies or methodologies describing the 

derivation of the wind speeds.    The price for access to the monthly averaged wind speed 

atlas is  £ 995 (4Coffshore 2013).   
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Figure 43- Mean Wind Speed at 100m around Horns Rev, retrieved 28 Nov. 2012, 

from http://geoportal.lneg.pt/ArcGIS/rest/services/Norsewind/MapServer/generate-

kml 

Figure 44- Wind Speed Uncertainty at 100m, from http://geopor-

tal.lneg.pt/ArcGIS/rest/services/Norsewind/MapServer/generatekml 

 

3.8. Conclusions - SMRR Wind Mapping and AEP  

 

Although direct, quantitative comparisons of different studies are not always possible, 

several conclusions can be drawn regarding  SMRR wind energy mapping.  These are 

listed below,  with context as needed: 

1. Wind Speed Range – For estimating AEP, wind speed accuracy is only critical in 

Region 2, and SMRR wind retrievals show the highest correlation with in situ 

anemometer data in Region 2 (between about 3 m/s and 15 m/s.), with time-

averaged bias typically between 0.1 and 0.2 m/s, and SD typically between 0.8 

and 1.3 m/s  

 

2. Time Series Indexing– Because AEP is estimated over the life of a project, long 

time series datasets from SMRR can boost confidence levels compared to short 

data sets, because year to year variability can be quite large.  Although NDBC 

buoy data sets can also be used for indexing, they provide a single spatial node, 
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unevenly dispersed, valid only for local indexing. Their  accuracy is low (+/- 1 

m/s for snapshot). 

 

3. Number of Samples - Processing multiple SMRR data sets from different sensors 

increases the sampling times per day and the sample population and tends to 

normalize bias out of AEP estimates.   Theoretically, there are enough samples of 

the study area to provide reasonably accurate (+/-  ~3% vs. hub height cups) AEP 

estimates using existing GMFs. 

 

4. Cross Correlation – Different SMRR data sets can be processed in parallel and 

correlated to improve wind mapping.  The, wide coverage,  large database, and 

wind direction input from scatterometers and polarimetric PMI can be leveraged 

by and supplemented with the high resolution of SAR to reveal differences in 

energy density at sub-kilometer scales, within a few kilometers of the shore.   

 

5. Primary Error Sources -  

 

o Wind Shear Error– Use of inaccurate wind shear profiles is one of  the 

primary sources of error in AEP estimates from SMRR retrievals.  

Extrapolation to hub height requires either in situ measurement or an 

accurate vertical profile function. 

 

o Other GMF Error – Fluctuating metocean conditions such as wave 

height and sea surface temperature can also affect wind shear in the lower 

boundary layer where turbines operate (Lange et al 2004) and Sigma-0 

values (Karagali 2012) and this introduces error into the retrievals. This 

can be partially mitigated by cross-correlation with PMI data sets where 

available. 

 

o Diurnal Error – Potential exists for diurnal bias due to the fixed orbital 

schedules for each satellite.  This can be mitigated by using multiple 

satellite data sets with different orbital schedules. 

 

o Rain Error – SMRR may not be suitable for wind mapping in areas with 

high precipitation like that found in the tropics,  since rain bias is difficult 

to remove, and scrubbing for rain creates its own bias.  In the study area, 

precipitation is much lower than the tropics, so this will likely be the 

lowest bias of the three listed.   
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Table 19, below, summarizes the relevant features and  specifications of the baseline 

methodology and the four technologies evaluated.  The table highlights the sensors’ 

complementary characteristics.  
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Table 19- Properties of Different Wind Sensing Technologies 

Data Sources and Properties, Before Co-Processing 

             
Sensor                         
Data  

Cups on 
Tower 

Lidar on 
Buoy 

Scatterometer 
Synthetic 
Aperture 

Passive 
Microwave  

Height ASL 30-100 m 20 – 200m 10m 10m 10m 

Resolution 
(m) 

0.1 ~30 12,500 400 25,000 

Coverage 
(m2/sec) 

1 (static) 
400-4000 
(static) 

>6,000,000 >200,000 >10,000,000 

Daily 
sampling rate 

1440 1440 ~ 2 ~ 0.1 to 0.3 ~3-6 

Time series 
(yrs) 

1-2 1-2 ~20 ~20 >20 

Wind 
measurement 

speed and 
direction 

speed and 
direction 

speed and 
direction 

speed  only 
spd + 

direction if 
polarimetric 

Coastal Mask 
(km) 

0 0 12.5 ~2 25 

Data cost 
~ $10m 
cost 

~ $1M - 
$2M to   

no cost 
costs  for 
L  1 data 

no cost 

Sensor for 
SST? 

Y Y N N Y 

Sensors for 
other 
metocean? 

all all no 
wave Hs, 
direction 

rain rate, 
vapor, cur-
rents, Hs 

Precip. effects 
Not 
significant 

Low 
availability 
in heavy 
rain 

Rain corrupts 
data 

Corrupted 
by heavy 
rain 

Can detect 
rain and 

wind speed 

Effective 
speed range  

0-25 m/s 0- 50 m/s 4-20 m/s 4-20 m/s 4-20 m/s 

Rotor disk  
coverage  

50% 100% 
10m surface 
vector only 

10 m 
surface 
vector only 

10 m 
surface 
vector only 

Mean accu-
racy (filtered, 
t-avg) 

+/- 0.1 m/s +/- 0.1 m/s +/- 0.2 m/s +/- 0.2 m/s +/- 0.2 m/s 

AEP error 
sources 

Wake 
effects, 
short time, 
point only 

Short time 
series, low 
spatial 
coverage 

Shear, diurnal 
bias, rain 
scrub, spatial 
averaging 

Shear, 
diurnal 
bias, rain 
scrub, wind 
direction 

Shear 
spatial 
averaging 

 



129 

 

The overall conclusion for SMRR wind energy production mapping is that the wide cov-

erage and long time series are significant advantages, while the potential biases from ver-

tical extrapolation and diurnal effects present the greatest uncertainties and challenges.  

As hardware (sensors and satellites) and software (onboard and external GMFs) have im-

proved, so has the accuracy and resolution of the wind products, although this trend may 

be limited by the inherent uncertainty in assuming a static wind shear model and  diurnal 

cycle.  Other fluctuating metocean conditions (besides wind speed) can also affect sur-

face roughness and radar reflections/emissions.  Accurate calibration for these scene-spe-

cific conditions could improve wind retrievals further.  

 

One of the primary impediments to better calibration is the dearth of in situ data, with 

approximately one offshore met station for every 10,000 sq. km. on the OCS (see Figure 

47).  If a one or two year time series of continuous in situ data were available, it could be 

used for calibrating co-incident, co-located SMRR scenes, and developing models of the 

effects of local conditions on wind retrievals.  Theoretically, all three error categories 

could  be reduced to some degree, depending on how accurately the conditions causing 

the error are modeled in the GMF.    

 

This is the same process that was used in Project NorseWind to successfully improve 

high speed wind retrievals and calibrate for sea surface temperature (SST) effects,  

allowing the development of site specific, average wind shear exponents.   Project 

NorseWind was a success due to four years of concentrated effort from a group of 
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dedicated researchers, but it also reaped the benefits of many years of in situ metocean 

data from oil and gas facilities in the North Sea.  These facilities provided numerous 

fixed, powered  platforms on which to place Lidar and other instruments.  Data sets and 

facilities of that type are not available in the present study area, so another approach is 

needed. 
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A broad research and data collection program is envisioned whereby US  industry, 

academia, and government combine resources to develop the next generation offshore 

wind atlas, similar to the NorseWind project, but updated and tailored to the challenges 

and needs of the US OCS.   The NorseWind Project did not include PMI data sets,  and 

the locations of calibration stations were limited to existing fixed offshore platforms.   

The strategy was to develop a static “shear atlas” for the study area,  and apply it to all 

SMRR retrievals.   Though truly groundbreaking, and well suited to the North and Baltic 

Seas, there is room for improvement in the methodology when transferred to U.S. waters.  

Four recent developments enable offshore wind energy mapping to be brought to a higher 

standard in the U.S: 

 

 Critical mass of SMRR databases 

 Recent advances in GMFs and satellite SMRR systems, especially  PMI 

 Development of wind Lidar met buoys 

Chapter 4   
 

 

STRATEGY DEVELOPMENT 
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 Cheaper faster data processing 

 

This can be achieved by using strategically placed, moveable, metocean buoys equipped 

with wind Lidar technology to calibrate SMRR retrievals parametrically.  These two 

remote sensing technologies have complementary qualities that can be combined to 

improve accuracy, coverage and resolution, yielding more optimal project siting and 

resource mapping (Hasager et al 2008 and 2011, NorseWind 2012).  The following 

sections lay out a framework proposal for conducting such an effort.   

    

4.1. Data Collection Campaign  

 

4.1.1. Lidar Buoy -Data Collection 

 

The study area (MAB OCS to 60m depth) comprises a long strip of ocean roughly 100 

km  by 500  km.   A fleet of ten moored, floating Lidar units dispersed roughly evenly 

would provide good coverage of the study area, with about 80% of the area within 30 km 

of a Lidar station, and no point more than ~50 km distant, as shown in Figure 45.  The lo-

cations are approximately 50km apart, along the 45 m isobath, and provide only an exam-

ple, not yet optimized.  Some or all of the units could be moved periodically as the cam-

paign adapts to evolving data needs and priorities.   Floating Lidar units provide accurate 

measurements of the wind vector profile at multiple heights up to 200 m, and the buoys 
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can also record and/or transmit precipitation, humidity, barometric pressure, air tempera-

ture, sea surface temperature, current profile,  and gravity wave height, period, and direc-

tion.  A one year campaign should be sufficient to capture a broad range of conditions, 

suitable for developing site specific parametric models for the lower boundary wind pro-

file (up to ~ 200m) and other metocean conditions that affect SMRR retrievals.  After the 

calibration deployment, the buoys could be serviced and re-deployed to selected develop-

ment sites to reduce uncertainty further, as described in Chapter 6. 

 

Figure 45- Proposed Lidar Buoy Stations (green stars) and  Historic Met Stations 

w/Over 5 yrs. Data (red and yellow dots). 
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4.1.2. SMRR - Data Collection 

 

4.1.2.1. Correlation Data 

 

There are at least seven operating SMRR satellites that could be tasked (programmed  to 

acquire desired data stream) or tapped (collect default data stream from public website) to 

collect scans of the study area  co-incident with the Lidar campaign.  These seven sensors 

include all three types; SAR, Scatterometers, and PMI (radiometers), and each can be 

programmed to use multiple operational modes for optimal detection of  the various 

metocean parameters that can be extracted using GMFs, as described previously.  With 

the Lidar data, this creates multiple  paired data sets for correlation analysis.  This allows 

calibration of the SMRR vertical extrapolation based on local conditions.  It also allows 

calibration for wind direction, SST, wave height, wave direction, ocean currents, air 

temperature, and other parameters that may affect the radar signal/backscatter.   For 

calibration purposes, it may also be advantageous to periodically task some satellites to 

use  alternating polarization or other non “background mission” modes.  

 

 Because meteorology and wind mapping falls under the umbrella of the  primary public 

service mission of  U.S. Earth observing satellite programs, the costs of collecting such 

data could be borne by the federal government through the lead agency, whether NASA, 

NOAA, DOD, DOI or some other branch of government.  
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4.1.2.1. Archival Data Cost 

 

All available archival SMRR data sets of the study area could be collected at a relatively 

low cost.  Some SAR images may have to be purchased, but govt. and/or academia are 

often exempt from this cost, and the PMI and scatterometer data are available at no cost.   

A detailed analysis of the cost of these images was not conducted for this study, but they 

are not expected to be significant based on the inventory estimate and costs for the 

NorseWind study.  

 

4.2. Calibration Campaign  

4.2.1. Sigma-0 Conversion and Vertical Extrapolation Error 

 

Most SMRR retrieval error is introduced from two conversion processes; first, when the 

normalized backscatter/brightness temp 38  (sigma-0, or σ0) value is converted into 

surface roughness, then to shear stress, then to wind speed at the sea surface (Uss); and 

second, when the wind speed is extrapolated from the sea surface, Uss, to the desired 

height, U(z).  Hagerman (2008) estimated that the uncertainty in power law extrapolation 

offshore,  from 40m to ~90m is in the range of 20% to 25%.  Extrapolation from the sea 

                                                 

38 For active instruments (SAR and Scat) this is the backscatter signal strength, and for 

pasive radar it is the brightness temperature/emissivity, but in both cases it may be de-

noted σ0. 
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surface introduces the potential for even more uncertainty.  The greatest improvements to 

accuracy can therefore be had by examining and correcting retrieval errors in the sigma-0 

conversion and the vertical extrapolation. 

 

4.2.2. Parametric USS Correction 

 

Standard GMFs estimate Uss as a function of σ0, wind direction, and a few other 

geometric parameters, and they assume fixed values for metocean conditions that can 

affect σ0 , of which there are several.  Backscatter can be affected by the average slope of 

the water surface, which is a function of gravity waves, since these waves create steeper 

average slopes, changing the radar incidence angle.  Gravity wave information from the 

Lidar buoy, from NWP models, and from SAR can be fed into the GMF to model this 

effect and remove error from each scene.  Sea surface temperature, surface currents, and 

atmospheric moisture can also affect σ0  values, and can also be measured and modelled, 

as discussed previously in the literature review.  In addition to the standard metocean 

suite, Lidar buoys can also be equipped with capillary wave or surface roughness sensors 

that can provide direct correlation between wind speed, surface roughness and σ0  values.   

A function could be derived through multi-variant regression analysis of paired data sets 

to estimate the bias introduced to the snapshot sea surface wind speed retrieval by each of 

these parameters.  It would take the form;  

 

Bias (Uss)  = fn (SST,  Hs, Hcap, Css. WV,…..)                            (1) 
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where Uss is sea surface vector wind speed, SST is sea surface temp., Hs is significant 

wave height (gravity waves), Hcap is capillary wave height, Css is sea surface vector 

current velocity, and WV is atmospheric water vapor.   This parametric function could be 

used to “train” the GMF to reduce error from fluctuating metocean conditions, improving 

wind retrieval accuracy. With this dynamic GMF, σ0  conversion uncertainty related to 

fluctuation of these parameters can be significantly reduced.  As long as the model is well 

calibrated and the input values accurately reflect local, coincident conditions, σ0  to Uss 

conversion should be more accurate than standard models, which typically use static 

parameters for backscatter39. 

 

4.2.1. Parametric Extrapolation Model  

 

Offshore, the wind profile below 200 m height  is primarily a function of wind speed, at-

mospheric stability and surface roughness from gravity waves (Manwell et al 2009).  The 

relevant parameters are therefore those that affect atmospheric stabililty and sea state, in-

cluding  air temperature at the sea surface (AST), water temperature at the sea surface 

(SST), barometric pressure (for deriving air density, ρ ), and significant wave height (Hs).  

The wind profile or shear can also change with wind speed.  The ability to monitor 

                                                 

39 NorseWind used site specific shear exponents in some areas. 
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metocean conditions, co-incident and co-located with wind Lidar profiles enables devel-

opment and calibration of a parametric wind profile function that is tuned to “real-time” 

local conditions.  Using the Lidar profiles and buoy data, a multi-variant regression anal-

ysis could be performed to define a parametric wind profile function, U(z)  that includes 

terms to account for local metocean parameters, as given below;  

 

U(z) = fn (USS, AST, SST, Hs, ρ, etc. …..)                                (2) 

 

The function could be based on any number of wind shear models, depending which one 

best fits the data.  This “trained” parametric profile function would allow automated, 

customized extrapolation of wind speeds from the sea surface to the top of the rotor disk, 

for each SMRR scene.   

 

4.3. Re-processing Archival Datasets With Tuned GMFs 

 

The wind profile  and sigma-0 conversion models described above can be incorporated 

into a parametric GMF/Wind Retrieval Tool that processes metocean input from multiple 

sources and provides accurate hub height wind speed estimates from multiple sets of 

sigma-0 data.  Many of the metocean parameters that affect the wind profile and 

backscatter (eg. SST, gravity wave height, rain rate, atmospheric vapor, etc.) can also be 

retrieved from archives of NWP and other metocean models, and from archival data sets 

from PMI radiometers and X-band and L-band SAR.  
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This retroactively tuned40 , Lidar calibrated, cross-correlated, parametric GMF (hereafter 

referred to as “LCGMF”)  would more accurately reflect local metocean and wind shear 

conditions at the time of each historic scan.   The LCGMF can be applied to the archival 

SMRR scene/data set to retrieve hub height wind speeds and AEP, producing maps with 

a 5 km resolution41.    

 

The flowchart in Figure 46 shows how the methodology could be employed to produce 

more accurate energy production estimates and maps.  The first phase includes the field 

campaign to collect Lidar data and a satellite scanning program to collect co-incident, co-

located SMRR data.  This phase will develop the parametric algorithms used to determine 

the wind profile and USS  correction values.  The second phase involves retrieving all 

archival SMRR scenes and re-processing them through the LCGMF that incorporates 

both models.  By filtering for wind speeds between ~ 3 and 15 m/s (Region 2),  SMRR 

bias is kept at its lowest42.  For AEP estimates, accuracy below 3 m/s is not required since 

the turbine is shut down, and accuracy above 15 m/s is not critical because the turbine is 

operating at capacity.  For estimating shut down time during extreme winds,  NWP model 

hindcasting and/or archival records would be sufficiently accurate.  SMRR wind 

                                                 

40 The term “tuning” is used for changing the parametric inputs, to differentiate from 

“calibration” which applies to changing the underlying GMF algorithm software. 
41 For comparison, NorseWind produced maps on a 2 km grid. 
42 Energy density or mean wind speed maps would require accurate data from the full 

range of wind speeds.    
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retrievals can still be used beyond this range for determining turbine operational status 

(Region),  although with reduced accuracy (~ +/- 1 m/s).     

 

Lidar metocean buoys can also detect recurring or cyclical metocean conditions, and 

these can be modeled retroactively to improve retrievals. For example, archived sigma-0 

from an area with strong tidal or seasonal currents could be re-processed using historic 

current data or tide tables, which have in turn been validated, calibrated using the Lidar 

buoy.  Knowing the historic time series, the calibrations can be applied in the LCGMF to 

re-process archival SMRR data sets. 

 

 

Figure 46- Flowchart  of Proposed Methodology  
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. 

4.4. Remaining Bias and Mitigating Factors 

 

With this strategy, the largest remaining sources of  error for AEP estimates are: 

1) Weibull Parameter Error – This arises from a low number of samples, resulting 

in a fitted Weibull PDF distribution that does not reflect the true distribution of 

wind speeds, and thus may not reflect the true energy density.  

 

2) Diurnal Coverage Bias- Time averaging bias can be an issue if there is any 

statistically significant correlation between time of day and wind speed, since the 

satellites scan a location at nearly the same local solar time(s) each day.  If, for 

example, there is a persistent low level jet in the late afternoons during hot 

summer days, the satellite scans may miss it completely, or may capture it almost 

exclusively. 

 

3) Rain Scrubbing Bias – Rain bias is difficult to remove because the effects on 

radar images are highly variable, non-linear, and different for C-band and Ku-

band.  Rain in the atmosphere reflects but also dissipates microwave energy.  Rain 

on the sea surface can increase roughness but also degrades capillary wave 

coherence. Hence, rain is almost always scrubbed, but this in itself can create bias 

if there is a statistically significant correlation between rain and wind speed.  

 

4) Parametric Input Biases - The LCGMF will require scene-dependent input 

values for a number of parameters (e.g., wave height, sea surface temperature, 

atmospheric vapor content).   If any of these input values or assumptions are 

biased, it may bias the output to a lesser degree. 

 

 

 

 

 

 

 

 

 



142 

 

Table 20 is a matrix outlining how each of these SMRR error sources should be mitigated 

by the proposed methodology.   

 

 

Table 20- SMRR Based AEP Error Sources and Mitigating Factors 

 

 Mitigating Factor 

AEP Bias/ 

Error 

Source 

High Number 

of Samples 

High Spatial 

Resolution 

Long Time 

Series 

LCGMF  

Weibull  

fitting (PDF) 

error 

More samples 

produce better 

curve fitting,  

regression 

More site spe-

cific, hub height 

Weibull param-

eters 

Better index-

ing for 

Weibull  

parameters 

More accurate 

profile, geo-

physical  

models 

Diurnal  Multiple observa-

tion times/day, 

Lidar full time for 

a year (min.) 

ID distinct diur-

nal features like 

coastal jets, 

tides 

ID long term 

changes in di-

urnal patterns 

Diurnal cycle 

measured and 

modelled in 

GMF 

Rain  

Scrubbing 

More samples 

available for rain 

scrub/flag calibra-

tion 

Allows smaller 

rain mask, less 

spatial scrub-

bing 

More data to 

investigate 

correlations  

Scrub opti-

mized and au-

tomated using 

PMI data sets 

GMF input, 

other GMF 

Error 

Helps correlation 

between 

metocean param-

eters and SMRR 

retrievals 

Allows isolation 

of local condi-

tions for GMF 

calibration 

?? LCGMF tuned 

to in situ shear 

and metocean 

using multiple 

sources 
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4.5.  Conclusions-  Accuracy of LCGMF Based AEP Mapping 

 

The proposed methodology,  using optimized, cross-correlated, Lidar-calibrated 

algorithms, along with more selective data scrubbing and parametric tuning, can 

significantly reduce error and increase confidence in AEP estimates, with accuracy 

comparable to hub height met towers.  With over 20 years of data,  it is likely that AEP 

error will be at or below the low end of the range found by Karagali (2012); that is,  

within ~ 2.0%  of  estimates using cups on a hub height met tower.  This is made possible 

by leveraging four important developments: 

 

1) The large and growing databases of SMRR.  

 

2) The recent advances in satellite microwave sensors and Geophysical Modeling 

Functions.   

 

3) The ability to process large amounts of data faster and cheaper than before. 

 

4) The technical breakthroughs and capabilities of floating Lidar. 

 

 

This error (2%) is comparable to the uncertainty in the met tower estimates,  so it is likely 

that at some sites,  the LCGMF data would be more accurate than the tower estimates.   If 

the met tower does not reach hub height,  the proposed methodology is likely more 

accurate than using data from the tower, under the assumption (discussed in Section  

2.2.6-Summary – Floating Platform Lidar) that floating Lidar performance will be 

equivalent to fixed platform Lidar performance within less than 3 years.   
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At present, AEP maps based on LCGMF may not inspire sufficient confidence for 

obtaining project financing in the U.S., but the value for site selection and resource 

assessment is immediate and significant, and will become greater as development moves 

into deeper water, where the areas available are much larger,  wind data are scarcer, and 

SMRR retrievals are not subject to land masking or coastal effects like shallow water and 

tidal currents. 
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5.1. Resource Assessment – Background and Purpose 

 

Resource Assessment (RA) is the collection and analysis of in situ wind data and model 

simulations to characterize the wind resource at a site43.  It is analogous in many ways to 

mapping of mineral resources.   It is performed as part of site selection (macro-siting), 

and to project Annual Energy Production (AEP) of a wind farm.  This allows a compari-

son of available energy between different sites and an estimate of the potential revenue at 

a given site.  It requires a sufficient number of wind speed observations to account for di-

urnal and seasonal changes in the wind field.  Typically, measurements are taken at 10 

                                                 

43 RA can also include other characteristics such as wave climate, annual wind direction 

distribution (typically represented by a wind rose), turbulence intensity, and extreme 

wind speeds,  and can also be useful in optimizing the layout of the wind farm and select-

ing the optimal rotor and turbine, but these are secondary considerations outside the 

scope of this analysis, and are not considered further.   

 

Chapter 5   
 

 

SITE SELECTION BENEFITS 
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minute or 60 minute intervals over one to two years and observations of wind speed are 

grouped into intervals (bins) by wind speed or wind direction.  A probability density 

function is then used to describe the wind speed distribution over a year. (Manwell et al 

2009, Troen et al 1989, DNV 2011).    

 

The discussion of RA begins with siting and how it can be improved with better resource 

mapping, then proceeds to AEP, how it is generated and used, and how it affects project 

finance costs. Table 21  lists three key wind parameters typically generated for RA and 

briefly describes their use in each application. 

Table 21 - Wind Parameters for AEP and Site Selection 

 

Parameter AEP Estimates Site Selection 

Mean Wind Speed Indicator of wind class Identify sites with highest 

wind class 

Wind Speed Energy 

Spectrum (Weibull 

Parameters) 

PDF or Weibull curve 

used for AEP estimates 

Identify sites with highest 

energy density 

Extreme Wind 

Speeds 

No production for winds 

above cut-out speed 

Avoid/Design for “hot 

zones” (hurricane prone 

regions) 

 

 

 

 



147 

 

5.2. Site Selection- Current Practices   

 

Site selection (a.k.a. macro-siting) is the selection of the optimal wind farm location 

based primarily on the available energy, seafloor geology, metocean conditions, distance 

to shore, distance to load center, environmental impacts and human use conflicts.  It is 

analogous to prospecting for mineral resources in many respects.  Ideally, a production 

estimate would be generated with in situ data and used to generate projected revenues for 

multiple sites within the area of interest.  The production estimates would be compared to 

the costs and impacts of developing and operating in each zone, enabling an informed 

selection of the optimal site or zone (whether a wind farm or a mine) within the region 

surveyed.  For offshore wind power, this procedure is not practical because of the high 

cost of obtaining in situ data with met towers.   In practice, selection of the site begins 

with an examination of available lease areas and existing wind maps.  In the MAB, in situ 

data are scarce, and offshore hub-height towers are non-existent44, so hub height wind 

speed maps are usually generated using meso-scale numerical simulation models 

calibrated with NOAA met station historical data sets45.  These are discussed below.  

 

 

 

                                                 

44 There are a few offshore platforms with sensors up to ~45m, and at least one existing 

platform, the Chesapeake Light Tower, may be retrofitted with a tall tower in 2013/2014. 
45 MesoMap was validated using lmited SMRR snapshot data 
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5.2.1. Historic In Situ Datasets  

 

Historical data provide the best starting point for projecting seasonal, stochastic, natural 

processes like the wind from year to year.  Multi- year, offshore, continuous wind 

observational data sets on the US MAB OCS are available from only one source - NOAA 

met stations and buoys.  At any given time, there are between four and eight offshore 

NOAA met stations with operational anemometers  in the  MAB OCS, an area of about 

60,000 sq. km., leaving an average coverage per station on the order of 10,000 sq km.  In 

reality, the stations are somewhat clustered.  Figure 47 shows the location of all seven 

buoys that have provided data records exceeding 5 years46, including both 

decommissioned and operational stations.  It also shows the service life of each.  Only 

three stations; 44009, 44014, and CHLV2 have data records exceeding ten years, and 

these are shown in red.  The average data record of the red stations is 26 years.  The 

average time series for the remaining stations, shown in yellow, is about 7 years.  NDBC 

44012 and 44001 are included on the map but they are no longer operational, leaving a 

240 km gap between 44009 and 44025.  If those two decommissioned buoys are 

included, the gap is still about 190 km. The gap in the southern half of the MAB is also 

about 190 km, between NDBC 44009 and CHLV2.   

 

                                                 

46 Data records of less than 5 years have little value for indexing, and high uncertainty for 

AEP estimation, though they can be used for meso-scale model calibration. 
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 For wind energy mapping, some method of horizontal interpolation is required to fill in 

the huge spaces.  Wind speed data must also be extrapolated vertically, from the buoy 

sensor height (3 to 5 m) to the turbine hub height (90-110 m) for energy estimates.  This 

is typically done using meso-scale numerical modeling, discussed in the following 

section. 

   

 

Figure 47 –NDBC Offshore Met Stations in MAB with > 5 yrs. Of Data. Red dots 

have over 20 years of data, yellow dots have less than ten (locations and service life 

from NDBC website) 

 

 

Station ID Yrs of Service

44065 6

44001 7

44025 8

44012 9

44014 22

44009 28

CHLV2 28
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5.2.2. Wind Models and Resource Mapping 

 

Current offshore wind resource maps are based on regional (meso-scale) numerical 

simulation models. These models are validated and calibrated offshore using coastal met 

stations, NDBC buoys, and, in some cases a few selected SSMI and QuickScat snapshots 

for calibration.  Although the grid scale of the models can be set as low as one hundred 

meters,  the true accuracy and resolution are limited by the amount of field data available 

to calibrate the models.  These maps are primarily used to obtain gross estimates of 

available offshore wind energy at various water depth zones, by state or region, and to 

guide further field investigation. 

 

5.2.2.1. History of Wind Energy Mapping and Exclusion Zone Analysis 

 

Offshore wind energy mapping is a relatively new science,  born of the need for resource 

assessment data for offshore wind energy production.  In addition to mapping the energy 

density at hub height,  exclusion zones must also be identified where it is not feasible or 

advisable to install wind turbines.   This exclusion analysis must consider numerous 

competing human uses and sensitive habitats.  A concise but comprehensive history of 

the development of wind resource mapping in the U.S. can be found in Baker (2011),  

from which the summary below was extracted.   

 

Baker (2011) on the history of onshore resource assessment and the original WERA- 
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The national Wind Energy Resource Atlas (WERA) – produced wind 

power estimates and maps in order to promote further detailed site 

investigation for wind energy development (Elliott et al., 1987). ……It was 

the earliest large-scale wind resource assessment (land-based) that 

estimated wind speeds and wind power density over a vast area using a 

combination of quantitative and qualitative methods based on wind power 

measurements from various meteorological stations around the U.S. and 

topographic and meteorological indicators that influence the wind 

resource, ….…. The WERA (1986) took wind speed measurements at 

various heights and extrapolated them to ten meters and fifty meters (10m 

and 50m) using the log law. ….. The study then converted wind speeds at 

the reference heights to power densities. Power density was chosen as the 

preferable metric for the WERA resource assessment, rather than just 

wind speed, because it combines “the distribution of wind speeds and the 

dependence of the power density on air density and on wind speed  (Elliott 

et al., 1987; Appendix A A).  

 

Baker (2011) summarizes the status of offshore resource mapping and exclusion zones: 

Initial offshore wind resource studies extended models developed for land-

based wind analysisto the areas over the ocean via modeling techniques 

(Musial and Butterfield, 2004; Elliott and Schwartz, 2006; Heimiller et 

al., 2007). The Musial and Butterfield (2004) and Heimiller et al. (2007) 

studies (hereafter, NREL studies) both use mesoscale models that estimate 

wind speeds at 50 meters height. However, those models were only 

extended a limited distance from shore, employed proprietary algorithms, 

and did not consider actual exclusion for other ocean uses. ..… studies of 

the Atlantic region have used offshore wind speed readings from buoy or 

satellite measurements, converted them to power output at hub height, and 

made extensive use of actual data on competing uses to develop exclusion 

areas (Kempton et al., 2007; Pimenta et al., 2008; Garvine and Kempton, 

2008; Dhanju et al., 2008). …..The most recent effort …, using MesoMap, 

now calculates wind speeds at 80 and 100 meters. MesoMap was 

developed with support by the U.S. Department of Energy …and has been 

used to update the WERA to provide detailed wind power resource 

assessments for the U.S. and individual states.  (Elliott and Schwartz, 

2006). ……. (the maps) also report annual average wind speeds and 

potential installed capacity in Megawatts as a  function of the wind energy 

capacity factor, …. (NREL, 2010).  
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The MesoMap-generated estimates were validated by NREL using data from ocean 

buoys, marine automated stations, Coast Guard stations and lighthouses, and satellite-

derived 10-m wind speeds over the ocean estimated from the “state of the sea” as 

measured by snapshot SMRR data.  Figure 49 shows the NREL/MesoMap 90m wind 

speeds out to the 60m isobath off NJ. 

 

 

Figure 48- Meso Map Generation Process Diagram,  reprint courtesy of  B. Bailey, 

AWS Truewind 
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Figure 49- MesoMap Wind Map offshore NJ, from Schwartz et al 2010, original 

map created by NREL for US Dept of Energy. 
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5.2.2.2. Exclusion Areas – Baker 2011 

 

Most of the offshore resource studies before 2010 estimated the area of different catego-

ries of exclusion zones by using a reducing fraction, not a comprehensive localized analy-

sis.   Baker (2011) performed a comprehensive  exclusion zone analysis of the MAB OCS 

to estimate available area for power production.  The total area,  pre-exclusion, for each 

bathymetric class (depth zone) is shown in Figure 50.  The study estimated that, post-ex-

clusion, the zone between 35 m and 60 m  could accommodate enough turbines to gener-

ate over 250,000 GW-hr. annually, as shown in Table 22.  The analysis assumes a 5 MW 

turbine and typical offshore spacing and wake losses.  The wind speeds were estimated 

from models developed by AWS Truepower using MesoMap.   
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Figure 50-MAB OCS  Depth Zones by Foundation Type, from Baker 2011 
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Table 22- Post-Exclusion Area and Production Capacity by Depth Zone, MAB OCS, 

from Baker 2011 

 

 

 

5.2.2.3. Advanced WRF-Based Mapping –Dvorak et al 2012 

 

A slightly different approach towards estimating resources was taken by Dvorak et al 

(2012).  This study mapped mean offshore wind energy resource on the basis of 5 years 

(2006 to 2010) of high-resolution mesoscale model results from ARW (Advanced 

Research WRF) at 90 m height.  The study area included the entire US East Coast OCS 

out to 60m depth.  A 5 km grid spacing was adopted to better resolve localized sea 

breezes.  Model output was evaluated against 23 buoys and nine offshore towers.  The 

north domain of the study included the study area, and found annual mean wind speed 

bias (ARW vs. in situ) ranging from 0.04 to 0.21 m/s over the five years of analysis.  

Annual RMSE ranged from 2.06 to 2.6 m/s.  Figure 51 shows the vector component 

absolute error of wind speeds at CHLV2, for August 2008, for ARW output versus a cup 

anemometer.  Although the RMSE was significantly higher than that found for filtered 
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SMRR retrievals (2.45 m/s versus ~ 1.3 m/s), the bias was roughly the same magnitude 

for time averaged mean wind speeds. 

 

 

Figure 51-Absolute Error, WRF vs. CHLV2, August 2008, from Dvorak et al 2012 

 

Optimal locations for large-scale development of offshore wind energy from Florida to 

Maine were identified based on the wind resource, bathymetry, hurricane risk and peak-

time generation potential. The offshore region from Virginia to Maine was found to have 

the greatest potential, with annual turbine capacity factors47 (CF) between ~ 45% and 

50%,  shallow water and low  hurricane risk.    

 

A second analysis by Dvorak (2012b) used the same ARW model at a higher resolution 

to develop maps of mean wind speed, power density, and capacity factor for areas off the 

coasts of MD, DE and NJ.  Figure 52 shows the results mapped as mean wind speed at 

90m ASL.  An additional analysis was performed for a site within the study area near 

                                                 

47 Based on a RePower 5M turbine power curve 
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Wilmington Canyon.  As expected, a slightly higher wind energy resource was found on 

the E side of the project area, with difference of approximately 0.2 m/s, 46 W/m2, and 

1%; in mean wind speed, mean power density, and capacity factor, respectively (see 

Figure 52). 

 

 

Figure 52-Mean Wind Speeds @ 90m, MAB OCS, reprinted with permission of M. 

Dvorak and A. Bates (UD, Center for Carbon Free Power Integration) 
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Figure 53- Mean Wind Speeds @90m, Wilmington Canyon, from Dvorak 2011 

 

Although Dvorak et al (2012) found bias of mean wind speed estimates from the model 

comparable to that from available SMRR products, the large amount of deviation 

exhibited by the model wind speeds (as evidenced by root-mean-square error values 

almost twice as high as SMRR products),  makes their use for energy density estimates 

problematic, since there is greater uncertainty in the Weibull k parameter.   Further 

research is needed to reduce model output deviation to more closely match observations. 

 

Commercially available models and maps are not yet considered by financiers in the 

offshore wind industry to be accurate, reliable, or detailed enough for site selection or 
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raising capital in the US market48.  Meso-scale wind maps can provide reasonable 

interpolation between met stations and help identify large scale features and processes, 

but are not yet considered “bankable” data for AEP estimates in the industry.  However 

they are extremely useful for estimating historic metocean conditions for derivation 

and/or calibration of satellite data, as previously described in Section 4.3-“Re-processing 

Archival Datasets With Tuned GMFs”.  A separate program is envisioned whereby the 

vast SMRR data sets could be used to improve meso-scale modeling, but that is beyond 

the scope of this study. 

 

5.2.3. Site Selection - Shortcomings 

 

Under the current OCS leasing regime for the US,  developers cannot place any met 

tower or other fixed structure in federal waters without a  Department of Interior limited 

lease or research lease and an approved Site Assessment Plan (BOEM 2011).  Before 

erecting any structure to mount anemometers, they must select lease blocks based  on 

existing wind maps and the limited, flawed data sets that support them.   Once the five 

year lease is granted, the developer may erect a structure and conduct a RA to raise 

capital.  The current recommended practice for RA includes a hub height offshore 

meteorological mast mounted to the sea floor (DNV 2011).  The mast supports both 

ultrasonic and Class I cup anemometers at a range of different heights.  These towers 

                                                 

48 Personal communication, Peter Mandelstam, Arcadia Wind Power, 10 October 2012 
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require substantial permitting effort, an up-front capital outlay on the order of  $2.5 

million -$10 million (Wisseman 2009, Brower 2012), and a minimum of two years for 

planning and construction.  The high cost of these towers limits deployment to one per 

wind farm, and they are often simply placed at the shallowest spot within or near the site 

to control costs.  A single tower measures the resource at one spot, but does nothing to 

ensure selection of the optimal site.  In effect, developers are compelled to select a site 

with blinders on.  If the site proves commercially viable, the developer can apply for a 20 

year production lease, never knowing if the adjacent block has more wind.   If the site 

doesn't prove viable, the tower investment is stranded.  This strategy brings to mind the 

man who was looking only under the streetlight for his lost keys, because that was where 

he could see. 

 

5.3. Variability of Resource on the MAB OCS 

 

In the MAB, beyond a few km offshore, available maps show a general trend of 

increasing energy offshore and a noticeable increase at higher latitudes, closer to Long 

Island, NY (see Figure 49, Figure 52, Figure 53, and Figure 54).   These maps show some 

detail and unexpected features, but are still based on numerical models calibrated 

primarily with buoy data.  However, there is a growing body of evidence that low level 

coastal jets,  ocean thermal upwelling, submarine canyons,  Gulf Stream gyres,  and other 

oceanographic and meteorological phenomena can cause significant, and likely persistent  
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spatial variation of average annual wind speed (Pichiguna et al 2011, PERI 2012, Beal et 

al 2005, Chelton et al 2004,  O’Neill et al 2010, Ancona 2012).    

 

 In a 2011 study led by NOAA,  scanning Lidar was mounted on a ship and survey 

transects of wind speed were taken off the coast of New England, with most tracklines 

between 6 and 60 km offshore (Pichiguna et al 2011).  The authors investigated this and 

other scanning Lidar coastal datasets extending over multi-week periods, and concluded 

that low level jets, in the height range of turbine rotor disks,  are a regular occurrence in 

coastal waters of the area.  This research showed that the zone of sea-breeze influence 

can extend up to 50 km offshore.  Sea breeze circulation cells develop in the study area 

during warm afternoons, which mostly occur during peak power demand in summer 

months, so the power they generate during these periods is more valuable to grid 

operators.  This specific effect is not analyzed in the present study, but is worth noting. 

The study concludes:  

…the measurements indicate strong spatial and temporal variability of the 

wind field in the offshore region, in the atmospheric layer aloft occupied 

by turbine rotors….Scanning, pulsed Doppler Lidar instruments operated 

from fixed platforms or ships …. are well suited for providing much 

improved characterization of offshore wind fields for use in evaluating 

potential wind energy sites. 

 

Chelton et al. (2004) used SMRR data to retrieve SST and to examine small scale 

features in ocean winds. They found persistent small-scale variability in the surface wind 

field related to SST modification of the low-level winds, through air- sea heat fluxes.  

More recently, large horizontal variations in surface wind speed near meandering SST 
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fronts  are indicated by O'Neill et al (2010) in the mid-latitudes.  Warmer (cooler) sea 

surface water temperature was found to be correlated with stronger (weaker) mean wind 

speeds. 

 

5.3.1. Wind Gradients and Variability 

 

For most of the MAB OCS, water depth increases with distance offshore and up the 

coast, and existing maps generally show mean wind speeds following the same trend, as 

seen in Figure 54.   The isotachs (lines of equal average wind speed) generally run 

parallel to the shore and are relatively evenly spaced.  State by state NREL MesoMaps of 

the MAB show many areas with a wind speed gradient of about 0.5 m/s per 50 km  

(NREL 2010, Figures B4, B11, B16, B25).  Dvorak found an offshore gradient of about 

0.2 m/s per 30 km in the intermediate depth zone (off the coast of northern Delaware).  

The Dvorak analysis used an upgraded version of WRF and a higher resolutions,  so it is 

likely more accurate.  Assuming this gradient (0.1 m/s per 15 km)  represents a typical 

condition in the intermediate depth zone,  two locations 100 km apart could easily have 

mean wind speeds that differ by over  0.7 m/s. 

 

All else being equal, and given a relatively uniform offshore gradient, a logical siting 

method would use an optimization algorithm to find the distance offshore that maximizes 

the return on investment.  However, the selection of latitude (alongshore) in the MAB 

south of Long Island is less determinate.  Along any isotach indicated on a  wind map,  
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the true mean wind speed will vary to some degree.  Persistent, localized sub-regional 

variability of wind speed (e.g., coastal jets) can create  “peaks and troughs” of annual 

energy density.  In fact, the gradient of wind energy density could be steeper alongshore 

than it is offshore in many areas.  At present, no comprehensive, regional analysis of this 

variability or these features exists for the mid-Atlantic OCS.  

 

 

Figure 54- 90m Mean Wind Speeds, adapted from Schwartz et al 2010, figure B1; 

original map created by NREL for US Dept of Energy.  

 

5.4. Site Selection Benefits– With LCGMF AEP Mapping 

 

The benefits of improved mapping are dependent on many factors and difficult to 

quantify, but it is likely that such maps will reveal variations of energy density on scales 

and with accuracy suitable for wind farm siting.  Assuming these variations exist, as the 
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research cited herein strongly suggests they do, this mapping should assure that the first 

wind farms in the study area are sited in areas with higher energy than if sited using the 

baseline methodology  In a metaphorical-statistical sense,  it moves the archer a few feet 

closer to the target, increasing the odds of a bulls-eye.  Based on the estimated accuracy 

of 2% for AEP maps,  and the high likelihood of  sub-regional variability of this 

magnitude,  a reasonable assumption would be that a wind farm sited with such a map 

could produce between 2% and 3% more energy per year than it would at a site selected 

with the baseline methodology.    

 

However, these benefits would only apply to the first wave of projects.  After that, 

available area is significantly reduced and site selection is less critical.  Under a full 

build-out scenario, in constant dollar terms, the net benefit would be closer to zero 

because the last projects would occupy the lowest energy areas.  However, if the time 

value of money is taken into consideration,  developing the best sites earlier will increase 

the Net Present Value (NPV),  since the “disbenefits” of developing the low energy sites 

in the out-years are discounted heavily.    

 

Two other factors that can affect the NPV of the mapping effort are technology 

development and power pricing structures.   At higher energy sites, the turbines are 

operating at capacity (Region 3) more often,  while at lower energy sites, the turbines are 

operating below capacity (Region 2) more often.  Current design efforts intended to 

increase energy production are therefore primarily focused on Region 2.   The benefits of 
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these improvements will accrue primarily to sites that are developed in the latter stages, 

where new technologies will squeeze out more power from less wind.  This effect 

partially mitigates the inferior energy density of the sites, and increases the NPV of the 

mapping effort.    

 

Power pricing structures can also affect the NPV of mapping benefits, since they affect 

the time stream of revenue.   Various arrangements are available; for example, a Power 

Purchase Agreement (PPA) may be used, which can be any number of fixed or changing 

pricing structures, or the power may be sold on the PJM market at various clearing cycles 

(i.e.,  day ahead, hour ahead), with variable unit prices.    

  

Each of these highly uncertain factors can have a significant effect on the benefits, which 

are therefore highly uncertain.  A thorough NPV analysis would include a range of build-

out scenarios,  technology development curves, pricing structures, and a financial 

analysis, but is beyond the scope of this study.  A simpler methodology may be employed 

for this first order analysis, as outlined below. 

 

5.4.1. Cost Reduction vs. Benefit Increase 

 

An alternate method of evaluating the effects of improved mapping is to estimate the 

accuracy it would provide across the study area, then estimate the cost of achieving the 

same accuracy with conventional technology.  This puts the focus on the cost of 
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achieving an equivalent output, instead of the benefit of using a different input, and this is 

the approach taken.  

 

5.4.2. Reference Station Proximity Effect 

 

Due to the nature of calibration, error of the  maps will increase with distance from the 

calibration station.   This effect was observed by the NorseWind project when calibrating 

to existing offshore platform observations.   It is assumed that this proximity effect is the 

same for the baseline methodology (met towers) and for the LCGMF maps (Lidar 

stations).  This is a conservative assumption because the Lidars are assumed to be fixed,  

when in fact they can be re-deployed periodically to reduce uncertainty from horizontal 

extrapolation between stations.  

 

5.4.3. Conclusions – Site Selection/Improved Mapping Bene-

fits 

 

The LCGMF regional mapping strategy makes 3 fundamental changes from the baseline   

regional modeling/mapping strategy; 

 

 It replaces (avoids) met towers using floating Lidars;   

 It replaces numerical models, calibrated using hub height anemometer 

measurements,  with satellite data, calibrated using Lidar profiles to 200 m;    
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 It improves the basis for climatology indexing – replacing unevenly distributed 

NDBC met stations of the study area  (only three of which have records exceeding 

10 years),  with SMRR datasets,  whose record exceeds 20 years for the entire 

study area.  

 

Taken together with the previous conclusions regarding floating Lidar and met tower 

accuracy, these findings and assumptions lead to the following conclusion; In order to 

meet the target average AEP mapping accuracy across the study area (achieved by the 

LCGMF strategy),  the base case must, at a minimum, include a met tower for model 

calibration at every location where a Lidar is deployed for calibration of SMRR data.  

 

Since it was estimanted that ten Lidar buoys could provide the required coverage, the 

mapping benefits can thus be formulated as the cost savings between ten met towers and 

ten floating Lidar met buoys.   Current market prices of floating Lidar units are in the 

range of about $1.5 million, and deployment and O&M for a two year campaign would 

add about 10 % of the purchase cost per year 49,  for a total of about $1.8 M per unit.  A  

fully equipped 90 m met tower installed in 45 m of water (roughly the average water 

depth of the study area) would cost around $15 million50.   Since ten met stations would 

be required to provide the required accuracy in the study area,  this first-order analysis 

indicates a base case cost of at least $150 million, versus a Lidar buoy cost of $18 

million.  Project Norse Wind cost approximately $6 million, but this included the 

purchase of several fixed platform Lidars.  Even so,  this is increased to $10 million to 

                                                 

49 Based on estimated WindSentinel costs 
50 This is based on the highest cost of existing offshore met towers, in shallower waters 
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account for the extra size and complexity of the proposed mapping strategy.  Thus, the 

LCGMF Atlas would cost no more than $28M, for a savings of  $122M versus the base 

case. 

 

5.4.4. Coordinated Vs. Individual RA Efforts 

 

With the proposed strategy, it is envisioned that after selection of a site using the 

LCGMF- generated Atlas,  developers would deploy floating Lidar units at their site, in 

order to produce “bankable” AEP estimates with higher P90 values, as described in 

Chapter 6.  

 

If, on the other hand,  the  proposed strategy is not adoped and there is no coordinated, 

regional, strategic planning,  developers may  opt to construct their own met towers for 

each project, maintaining separate, proprietary databases.   Although the met towers 

would remain well beyond two years, continuing to collect data for research,  their value 

to the wind farm operator is primarily in pre-finance RA.    After that, much of the 

investment is considered a stranded cost.  This scenario would likely result in more met 

towers being built than necessary, since there would be no strategy for sharing data.   
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6.1. Financing and Uncertainty 

 

Wind farm financing in the U.S. comes primarily from commercial banks and private 

equity, and the finance cost is largely a risk premium (Levitt et al 2012).   Projects that 

have a low perceived risk can obtain cheaper financing, and can thus borrow a larger 

portion of the project cost.   Projects with high perceived risk, such as offshore wind 

development, will have higher borrowing costs, but likely lower leverage.  In either case, 

the risk premium is a significant portion of project finance cost.  The most commonly 

used indicator for projecting revenue risk in financial analyses is the P90 AEP -  the 

Annual Energy Production  of the project that has a 90% probability of being exceeded in 

any year.   There are no formal standards for the calculation of AEP, but recommended 

Chapter 6   
 

 

AEP P90 BENEFITS 
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practices and procedures have been published by several organizations, including Det 

Norske Veritas51 (DNV 2010).   

 

The mean expected value, P50, is also useful, but P90 (or in some cases, P99) represents 

greater certainty  to investors, and is normally used as the basis for  “bankable” projected 

revenue.  In this context,  finance costs can be reduced as much by greater certainty in the 

AEP as by a higher projected AEP, since they both increase the P90 value.  This is 

simply a generalized statistical model of  “ a bird in the hand is worth two in the bush”.   

It is illustrated by the PDF function in Figure 55.   

 

6.1.1. Boquet et al 2010 

 

In this study from Leosphere (WindCube manufacturer) and NRG Systems (Resource 

Assessment and Renewable Energy consultant), uncertainty of AEP estimates were 

evaluated for a small (50 MW) wind farm using one year of data from a 60 m mast alone 

versus using one year of the mast plus a moveable Lidar.   The study found that by 

removing uncertainty from hub height extrapolation and from horizontal extrapolation 

from the met tower to the turbine site , the Lidar data produced a ~3% decrease in 

uncertainty of the P50 and a 4.5% increase in the P90 AEP value.  Figure 55 illustrates 

this effect.  The blue curve represents the stand alone mast estimate, with 15% 

                                                 

51 DNV, the international standards and certification organization, is one of the top two, 

with the greatest offshore wind experience worldwide 
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uncertainty,  and the red curve represents the 12% uncertainty with the addition of Lidar 

data.   This case reveals for each percent lower uncertainty, P90 increases by 1.5%.   

Although this can be taken as a rule of thumb, the exact ratio is dependent on the shape of 

the  PDF (or Rayleigh parameters), which is site specific.    

 

 

 

Figure 55- Effect of Uncertainty on P90 AEP using PDF Curve, from Boquet et al 

2010 

 

6.1.2.  DNV Uncertainty Model 

 

DNVKEMA is a subsidiary of Det Norske Veritas specializing in renewable energy in 

the US market.  They have developed and demonstrated a model for estimating the value 

of different RA techniques (Rogers 2011, 2012).   The model uses a risk premium to put 
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a cost on the uncertainty inherent in different RA strategies.  Three cases were assessed, 

using different combinations of platform Lidar, floating Lidar, and a met tower.   In each 

case, equipment was deployed on a timeline designed to minimize unnecessary costs as 

the potential of the project was being evaluated.  Equipment costs were levelized over the 

useful life.  Met tower construction was modeled at different points in time and costs 

were amortized over different periods in the three case studies.  The model uses 

uncertainty estimates to compute both P50 (median estimate) and P99 Net Capacity 

Factors (NCF). 

  

The first case study looked at a hypothetical build out of the Virginia Wind Energy Area 

using a high technology resource assessment- with one Lidar on the Chesapeake Light 

(CHLV2) tower and one floating Lidar.  The second and third case studies looked at a hy-

pothetical offshore wind farm in deeper waters with a higher CF.  One scenario added a 

fixed Lidar in Year 2 and a floating Lidar in Year 4.   The other added a platform Lidar in 

Year 2 and a tower in Year 4.  The resulting change in P99 NCF of the project are shown 

in   Table 23.  The Year 0 case in the DNV model is different than that defined for this 

paper,  so the change between Year 0 and Year 1 is not relevant to the present analysis.  

However, general trends in uncertainty between Year 2 and Year 5, as Lidar is added,  

are indicative of a consistent increase in the P99 NCF each year, in all three cases, as 

more information about the resource is collected.   The analysis by DNV reached several 

conclusions regarding the use of floating Lidar vs. met towers for resource assessment, 

summarized below (Rogers 2012); 
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 Each project is unique 

  

 Representative, long term measurements are essential but can be supplemented 

with short term data 

 

 A combination of technologies/approaches may offer the best results (lowest 

uncertainty) at lowest costs 

 

 Minimum requirements are clear, but measurement campaigns must be designed 

for individual projects with full consideration of objectives, risk tolerances, and 

impacts on uncertainty 

 

Although this results in a wide range of benefits, depending on the project, a general rule-

of-thumb observation can be made from the data in Table 23, which allows a first-order 

estimate of the benefits.  Each Lidar-year of deployment adds about a point to the P99 

NCF, increasing it by 1% of rated capacity, e.g., from 25% to 26%.  These three case 

studies highlight the ability of Lidar to reduce project finance costs by reducing the risk 

premium.  
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Table 23 - DNV Model Results – Three Case Studies 

 

 

 

 

 

 

 

 

 

point 

wind 

speed

area 

wind 

speed 

annual 

wind 

speed

othe

r

com- 

bined 

P99 

net CF

YR 1 baseline 8 4 3 2 9.6 27

2 Lidar on platform 4 4 3 2 6.7 32

3 Lidar yr2 3.5 4 2.8 2 6.3 33

4 add Floating 3 3 2.3 2 5.2 35

5 Floating yr2 3 3 2 2 5.1 35

6 add tower 2.5 2 1.8 2 4.2 37

 

YR 1 baseline 8 4 3 2 9.6 21

2 Lidar on platform 5 4 3 2 7.3 24

3 Lidar Yr2 4.5 4 3 2 7 25

4 add tower 3.5 3 2.5 2 5.6 27

5 Tower Yr2 3 2.2 2 2 4.7 28

6 Tower Yr3 3 2.5 1.8 2 4.7 28

YR 1 baseline VA WEA 8 4 3 2 9.6 21

2 Lidar on platform 4 4 3 2 6.7 25

3 Lidar Yr2 3.5 4 2.8 2 6.3 26

4 add 2 floaters 3 2.5 2.3 2 5 28

5 floaters Yr2 2.8 2 2 2 4.5 28

6 add tower 2.5 2 1.8 2 4.2 29

Uncertainty Source

Case Study No. 1

Case Study No. 2

Case Study No. 3
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6.1.3. Ecofys 2013 

 

Ecofys is a Dutch renewable energy systems consulting firm that has been advising the 

wind industry in Europe for over 25 years, and using wind Lidar for the last 5 years or so.  

This study examined different resource assessment strategies for a flat coastal onshore 

site and  found AEP uncertainty of 17% using climatology models, 14% using a 60m met 

mast only, versus 12% using a fixed Lidar (WindCube v2) and 10.8% using the 

WindCube, re-deployed around the site periodically.   The P90 value went from 82%, to 

85%, to 86%, respectively.  

 

6.1.4. Betancur et al 2008  

 

A paper presented at the WindExpo 2008, organized in Guadalajara by the Latin 

American Wind Energy Association, looked at AEP estimates using data up to 170m  

from a WindCube Lidar compared to a 60m anemometer with a WASP model 

extrapolation to 170m (Betancur et al,  2008).   The field trial ran from April 2008 to June 

2008.   After scrubbing for wake-affected sectors, the two data sets were used to estimate 

energy production for an onshore  2 MW Enercon turbine in a coastal region (Zeebruge 

harbor, NL).   The study calculated that uncertainty of the energy production was reduced 

by 3%  by replacing the WASP extrapolation with Lidar data.   
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6.2. AEP P90 – Benefit Calculations 

 

These four papers provide a total of six different case studies of valuing  higher 

confidence in AEP estimates.  Surprisingly, each of them produced roughly similar 

results, even though the study scenarios,  inputs, and outputs varied significantly.  Boquet 

et al compared a 60m mast alone to a 60m tower plus a floating Lidar, and uses P90 as 

the metric.  The DNVKEMA model tracks changes in uncertainty over a five year RA 

campaign as more wind data is collected with Lidar and met towers.  It begins with a 

baseline of existing information only, and uses P99 for the risk premium metric.   

Betancur compared a 60m mast, extrapolated using WASP,  to data from a WindCube 

Lidar, and estimated uncertainty of the P50 values for the two methods.  The Ecofys 

study presented the scenario that was closest to the base case and conditions of the 

present study, and indicates that a solitary Lidar produces 2% greater certainty than a 

solitary 60m met mast, and if the Lidar is moveable, the first-year advantage goes up to 

3%.  The base case for the present analysis is a 90m met tower, which is higher than the 

base case in two of the studies, so the relative benefits may be lower.  Higher met towers 

reduce AEP uncertainty compared to lower met towers, but even if they reach hub height,  

assumptions about the wind profile above that are still required. 

 

For all the studies reviewed, the range of values found for the increased AEP P(x) 

probability levels using one year of Lidar varies from 1% to 4.5%, with an increase of 

about 1% per year after that.  The large variance is due to different base cases,  PDFs/site 
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climatologies, deployment strategies, and probability levels P(x), making it difficult to 

compare directly across studies without a comprehensive uncertainty and correlation 

analysis, which is beyond the scope of this paper.   

 

In light of this, a conservative value of 2% with one year of data plus 1% in the second 

year, with no further benefits,  is selected as being representative of the decrease in 

uncertainty from the use of floating Lidar compared to the baseline RA methodology of a 

hub height met mast.   Boquet et al (2010) found that for each 1%  lower uncertainty, P90 

increases by 1.5%, but because this factor is site-specific, a conservative ratio of 1:1 is 

assumed for the study area.   Thus,  the addition of Lidar is estimated to decrease 

uncertainty by 3% and increase AEP P90 by 3% with two years of data.  

 

6.2.1. Relating Risk, Finance Cost, and AEP  

 

Levitt et al (2012) conducted a literature survey of offshore wind farm construction and 

financing costs, and also developed a sensitivity model which showed the Breakeven 

Price (BP) of wholesale electricity as a function of capital expenditures, operating 

expenditures, the discount rate, and the estimated capacity factor for a reference turbine.  

The analysis assumed existing policy incentives of the Production Tax Credit and 

accelerated depreciation but not renewable energy credits, investment tax credits, or any 

grants or loan guarantees.  The study found that the BP was nearly as sensitive to the cost 

of capital (as defined by discount rate) as it is to the capital costs (CAPEX), as shown in 
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Figure 56. The graph shows this as the slopes of the solid and dotted lines being very 

similar.   In other words, to reduce the  BP, getting a 1%  lower finance rate is almost as 

effective as cutting capital expenditures by 1%, within the likely ranges of each.   As 

would be expected for a flow-rate commodity such as power, the study also found that 

(ceteris paribus),  a 10% increase in the capacity factor (or AEP) would result in a ~10%  

reduction in the BP of wholesale electricity.  Thus a 3% decrease in uncertainty is 

equivalent to 3% increase in AEP, which is equivalent to a 3% drop in the BP.  

 

 

Figure 56- Sensitivity of BP to Four Cost and Production Factors, from Levitt 2012 
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7.1. Background - Rotor Control Systems   

 

Control systems include three basic elements: sensors used to measure process variables, 

actuators used to manipulate aerodynamics and loading, and algorithms to coordinate the 

two.  For this analysis, “turbine control systems” are defined as rotor control - active yaw, 

pitch, and generator torque controls only, and do not include supervisory control (power 

conditioning, safety systems, fault monitoring, etc.).  A turbine control algorithm should 

have three primary objectives;  

 

1. limiting speed, torque, and power,  

2. maximizing power output and  

3. minimizing fatigue and stress on components.   

 

Chapter 7   
 

 

ROTOR CONTROL BENEFITS 
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Rotor speed, shaft torque, and power output must be kept within design constraints to 

avoid overloading, while at the same time,  the yaw, pitch, and torque must also be 

optimized for power production.   Fatigue damage results from long term cyclical loading 

of components, and affects component residual strength and life, so should be minimized.    

 

7.1.1. Fatigue Life and Damage Equivalent Loading  

 

Fatigue is the cumulative, localized loading that occurs when a component is subject to 

repeated cyclical forces that are well below the ultimate strength or yield strength of the 

material.  These loads are caused by yaw errors, turbulence, wind shear, wind upflow, 

shaft tilt, and the reversing blade root moment from blade weight as the rotor spins (Berg 

et al 2007, Schubel et al 2012).  Turbine components undergo “high cycle” fatigue (de-

fined as between around 103 and 108 cycles), which can be modeled by stress-based pa-

rameters, since it occurs in the elastic deformation region.   The relationship between fa-

tigue loading and failure is illustrated by a Wohler curve, which is empirically derived by 

cyclical, high speed loading of multiple samples to failure.  Also called an S-N curve, it is 

a log-normal graph that describes the number of load cycles that would (on average) pro-

duce failure for any given load amplitude.  Although wind turbine fatigue loading is a 

combination of deterministic and stochastic loads, the curve is useful for estimating fa-

tigue life.   Another useful quantity for estimating fatigue life is Damage Equivalent 

Loading (DEL).  A threshold value of loading is defined where significant fatigue would 

occur after a reference number of cycles, N, at this reference load.  Any load above this 
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threshold is considered a DEL.  It is a first order indicator of fatigue accumulation esti-

mated by rainflow counting52.  Since the S-N curve shows that fatigue life is proportional 

to DEL, any reduction in DEL would produce an increase in fatigue life, or alternately, 

would allow fatigue resistance (strength) requirements to be relaxed.     

 

7.1.2. Control Strategies and Regions 

 

 The control strategy, which is basically the dynamic ranking of the three primary 

objectives,  must change depending on the turbines operational status, or “Region” (see 

Figure 58- Turbine Operating Regions).  In Region 1 (below cut-in wind speed) control is 

generally inactive, in Region 2 (cut-in speed to rated speed)  power output is maximized, 

while in Region 3 (rated speed to cut-out speed), the primary objective is constant power 

output.  Region 4 is above cut out wind speed, where the blades are feathered, the pitch is 

locked, and only the yaw is active (survival mode).  Transitional control zones are also 

established at the boundaries between Regions, where linear interpolation of the control 

signal is implemented to prevent sudden load changes (e.g., when shutting down in high 

wind).  It is also useful to define the effective rotor wind speed, Ueff , as the uniform wind 

speed across the rotor disk that would produce the same shaft power output observed for 

a given turbine.  This is the assumption used in power curves.  Though it is an 

                                                 

52  Rainflow counting is a method of expressing fatigue accumulation through a series of 

different magnitude cyclic stresses as a single magnitude cyclic stress which would pro-

duce the same fatigue accumulation 
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approximation of the non-uniform wind field, it greatly simplifies control system 

analysis.  For estimating AEP,  all Regions must be considered , but only Regions 2 and 3 

are relevant to the use of Lidar for controlling component loading during power 

production, as shown in Figure 57 .  Figure 59 shows an example schematic of how a 

Lidar assisted feed forward control system would work, in this case for pitch control. 

 

 

Figure 57-Lidar Assisted Rotor Control, from Dunne et al 2011 

Figure 58- Turbine Operating Regions 

 

Figure 59- Feed-Forward Controller Schematic, from Dunne et al 2011 
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7.2. Yaw Control – (Regions 2, 3, and 4) Current Practice 

 

The objective of yaw control is to minimize misalignment with the effective rotor wind 

direction53 , for all wind speeds above cut-in.  The turbine should be pointed upwind as 

nearly as practical to maximize power production and reduce asymmetric fatigue loading 

of the entire structure.  To estimate wind direction, commercial wind turbines currently 

rely on vanes and ultrasonic anemometers mounted on the nacelle top.  These sensors 

measure wind behind the rotor, and must be time-averaged and calibrated for direction 

bias caused by the wake of the spinning rotor (Burton et al 2001).  Error can exceed 20 

degrees, and the calibration is extremely problematic (Gaiser et al 2012, Hopkins 2012).  

Yaw actuators are almost always electric  motors, (though hydraulic systems are 

available), and they typically operate at speeds around one degree per second.   The 

limiting factor in yaw speed is the stresses produced on gears, bearings, and structural 

components due to the large moments of inertia of the nacelle and rotor (Hau 2008).  

Increasing this speed would require larger, more powerful servo motors and major 

changes to other components, incurring significant extra costs.   

 

                                                 

53 Effective rotor wind direction is analogous to effective rotor wind speed, defined previ-

ously. 
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Turbine manufacturers have developed yaw control strategies that attempt to balance 

power optimization and yaw component fatigue by using long averaging times and a high 

tolerance for yaw error.  Commercial turbines initiate yawing when the moving average 

exceeds a specified threshold.  The “stop” signal is sent when  the moving average of the 

direction error is zero degrees. Both the moving average time and the yaw error threshold 

are parameters that may be adjusted in the algorithm, but typical values are 10 min 

moving average and 10 degrees error.  

 

7.3. Yaw Control – Lidar Simulation Studies 

 

Lidar mounted on the nacelle or in the rotor can provide “feed-forward” data, so the rela-

tively slow yaw motors are no longer playing catch-up with the moving average, but are 

more closely synchronized.  This is a lower cost strategy than faster mechanical response, 

since it is focused on reducing latency in the control system with better information, not 

overcoming inertia in the machine with larger components.  Controllers can be adapted to 

process incoming Lidar data in real time and optimize orientation of the rotor (steer).  

 

 The use of Lidar also significantly reduces error in the wind direction measurements, 

since it is measuring the upstream-free stream wind, not the downstream rotor and nacelle 

wake.  Additional benefit may be gained by optimizing the yaw control algorithms to 
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make the best use of the Lidar input.  Although no validation studies have yet been pub-

lished using operational turbines with active Lidar yaw controls, several simulation stud-

ies have been conducted to estimate the potential benefits, and these are discussed below. 

 

7.3.1. Yaw Control Study Y1 –Schlipf 2012 

 

In a recent study funded by the EU under Project UpWind  and led by the University of 

Stuttgart’s Wind Energy Center (SWE), a numerical modeling environment was created 

to simulate the effects of Lidar assisted turbine controls and new control algorithms 

(Schlipf 2012).  A full turbulent wind field model, an aeroelastic wind turbine model and 

a wind Lidar model were combined to simulate the use of nacelle mounted Lidar vs. an 

“undisturbed54” idealized nacelle mounted ultrasonic anemeometer  for turbine control.  

The simulation environment was created using a full non-linear turbine model provided 

by the Fatigue, Aerodynamics, Structures, and Turbulence (FAST) software code 

developed by NREL (Jonkman et al 2005).  The NREL TurbSim model (Kelley et al 

2007), a stochastic full-field inflow simulator, was used in combination with 5 months of 

actual nacelle-mounted, forward looking Lidar data, and used to provide realistic wind 

fields for the turbine simulations.  The reference NREL 5MW offshore turbine was used 

(Jonkman et al 2009) along with GH Bladed55 for the blade aeroelastic modeling. 

                                                 

54 In reality, the ultrasonic data would be severely corrupted by blade wake 
55 Information and download available at http://www.gl-garradhas-

san.com/en/GHBladed.php 
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To generate a realistic wind energy spectrum, the Lidar data were analyzed and filtered 

for trajectory, turbine status, and Lidar data quality.  Only data sets of 4 continuous hours 

or longer, during normal turbine operation were included in the analysis.  After filtering 

the data, 223 hours of valid data remained.  The yaw control strategy was typical of oper-

ating turbines, activating when the 10 minute moving average of error exceeds 10 de-

grees.  The study first modeled the effects of simply switching the wind direction input 

signal from the ultrasonic on the nacelle to the Lidar at a focal distance of 116 m, scan-

ning an 87 x 87 m grid with 49 focal points.  Using the reference 5 MW turbine as the 

baseline, the standard deviation of yaw error was reduced from 6.4 degrees (using ultra-

sonic) to 4.1 degrees by using input signal from the Lidar, at a range of 116m,  versus in-

put from an “assumed perfect” nacelle-mounted wind vane and ultrasonic anemometer.   

Since the nacelle sensor was assumed perfect,  only the benefits that came from the feed-

forward aspect of the simulation were able to be evaluated. 

 

The study concluded that this strategy would result in a 1.1% increase in AEP, based on 

the modeled wind regime and using standard control algorithm parameter settings (ten 

minute moving averages and a ten degree activation threshold).   The author also 

estimated that the increase would exceed 2% if control algorithms were optimized for 

Lidar input (Schlipf et al 2011b). 

 

 



188 

 

7.3.2. Yaw Control Study Y2- Blue Scout (Gaiser et al 2013) 

 

This study, conducted by BlueScout Technologies (Gaiser et al 2013) took the UPWIND 

study a step further and estimated the increased power output from optimizing the yaw 

control algorithm using their Optical Control System (OCS- “look-ahead” Lidar).   

 

Both the OCS Lidar and traditional anemometers were mounted on the nacelle of a GE 

1.5 MW turbine, and both sensors recorded wind speed and direction, but the yaw control 

algorithm only used input from the traditional sensors in a standard configuration  (10 

minute moving average, 10 degree yaw error threshold).  The data were fed into a 

simulation, where relative power production (pct. of capacity) over the period of analysis 

was estimated for a range of  values for moving average times and yaw error threshold 

for activation.  For a yaw misalignment of α, the relative power production was assumed 

proportional to cos3 α, since the wind vector component orthogonal to  the rotor disc 

plane decreases by cos α, and power is proportional to the cube of wind speed.  The cos3 

of the convected wind direction error was therefore the metric for performance in this 

simulation study.  The misalignment was assumed to follow a Gaussian distribution with 

zero mean (no bias) and a standard deviation σ(αH) per the method of Burton et al (2001).   

The static power loss was thus expressed as: 

 

(3) 
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This study provides a valid and valuable first order estimate of the magnitude of potential 

benefits from optimizing the yaw control algorithm.  The author summarized the study 

results: 

 For unlimited yaw activity, a power increase of about 6% is demon-

strated. If yaw activity is limited to 8%, it was found that an additional 3% 

power gain may be achieved with settings for the site/turbine installation 

evaluated in the study at a moving average time for the wind direction of 

60 seconds and a yaw direction threshold of 8 degrees. 

 

 

7.3.3. Yaw Control - Fatigue Loading 

 

Yaw related fatigue comes from two source; misalignment, and yaw motor activity.  Yaw 

misalignment causes asymmetric loading on the blades and rotor, increasing fatigue in all 

major structural components.   Increased yaw activity reduces misalignment, but wears 

out yaw motors and bearings faster and thus requires larger, heavier components.  An 

optimum averaging time exists somewhere between 10 minutes and one minute.  The 

UPWIND study (Schlipf et al 2012a) concluded that a moving average of 6 minutes for 

the wind speed input signal would provide near optimal yaw control for a Lidar based 

system, with no significant change in overall fatigue loading compared to the baseline.  

The shorter moving average produced more activation cycles, but also resulted in smaller 

movements.  Yaw control improvements using Lidar is therefore not expected to have a 

significant net effect on fatigue. 
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7.3.4. Yaw Control Simulation Studies, Summary 

 

Table 24 summarizes the results of the Lidar- assisted yaw simulation studies examined.  

Because unlimited yaw activation would require the re-design of major components, 

Lidar case 4 (BlueScout) can be discarded as a data point.  The remaining three Lidar 

simulation studies showed relative AEP improvements ranging from 1.1% to 3%, with 

yaw activity ranging from 5% up to 8% for a shorter moving average and lower error 

threshold. 

Table 24- Summary of Yaw Control Simulation Studies 

 

Sensor 
 
 

Moving 
Average 

(min) 
 

Yaw Error 
Threshold 

(deg.) 

Yaw 
Activation 
Time 

Relative 
AEP 
Gain 

Base Case Yaw Control 10 10 5% 0 

Lidar (UPWIND)        case 1 10 10  1.1% 

                                  case 2 6 10  2% 

Lidar (BlueScout)       case 3 1 8 8% 3% 

      case 4 (*) 1 0 12% 6% 

(*) – assumes no contraints on yaw activity.   

 

 

7.3.5. Lidar Assisted Yaw Control - Future Field Studies   

 

Direct comparison of  power production using two different yaw control systems is 

difficult in the field, since controlled experiments are impossible on operating MW scale 
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turbines.   Spatial variability in the wind and power performance variability between 

turbines complicates the analysis and prevents direct A/B comparison of control systems.  

  

A suitable alternative is to examine the performance of a single turbine with the new 

system engaged vs. bypassed to a traditional controller that uses nacelle mounted vanes 

or ultrasonics. The turbine controls could be switched between the two systems (with 

appropriate transition algorithms) periodically, for a suitable time series, long enough to 

include a representative sample of wind speeds.  The variability between turbines is thus 

removed from the equation, and the variability of the wind is mostly averaged out by 

wind classing.   The data can be separated into bins by wind speed, sector, veer, or 

turbulence intensity, and analyzed a number of different ways, allowing a thorough, well 

calibrated comparison of the two systems and their effect on output.   The test can be run 

on multiple turbines,  providing a clearer picture of variability and uncertainty.   

 

As part of their research and development, BlueScout began collecting data to support a 

similar analysis for Lidar assisted yaw control.  In July 2009, the first integrated OCS was 

installed on a utility scale wind turbine operating onshore, in the U.S. midwest.  Other 

deployments occurred in 2011 and 2012.  The experience generated a wealth of operational 

data and knowledge in controlling the yaw of large wind turbines, but in 2012, legal issues 
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between the project partners related to bankruptcy and corporate restructuring put further 

analysis or release of the data on hold until 2014 at the earliest56.  

 

7.4. Speed Control (Regions 2 and 3) – Current Practice 

 

Rotor shaft speed must be controlled to optimize power output and to limit loading.  Shaft 

speed is determined by active torque from the blades on one end and reactive torque from 

the generator on the other end, so it can be controlled by blade pitch or generator load.  

Control algorithms also enact strategies that keep rotor speed away from resonant 

frequencies of the structure, but that is a second order consideration not relevant to this 

study.  Figure 60 illustrates the idealized steady state relationship between torque and 

blade pitch in Regions 2 and 3. 

 

                                                 

56 Personal communication w/ Brad Gaiser, BlueScout, Feb. 4, 2013 
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Figure 60- Idealized Torque and Pitch in Regions 2 and 3, from  UPWIND 2011a 

 

7.4.1. Region 2 - Torque Control  

  

In Region 2, the objective is to maximize power output, defined by the power coefficient, 

CP, which is the ratio between power production and available power, and is a measure of 

the rotor’s aerodynamic efficiency.  The laws of fluid mechanics predict, and empirical 

evidence shows, that for every rotor there is an optimal Tip Speed Ratio (TSR, or λ; ratio 

of blade tip speed to wind speed) which maximizes CP (Manwell et al 2009).   In Region 

2, standard control systems achieve the optimum TSR by holding the blade pitch constant 

while the generator torque is set proportional to the square of the filtered generator speed.  

Double fed induction generators allow the generator torque to be controlled using the 

induction current, which can be keyed to the rotor speed. This is known as a Single-Input, 



194 

 

Single-Ouput (SISO) controller.  As the wind increases, the speed increases, and the 

generator torque is increased in response.  This ensures the rotor speed stays within a 

narrow range centered on the optimal TSR.  Response time is reasonably short since the 

control signal is based on instantaneous power output and no servo-motors or time-

averaging algorithms are needed.  Only the rotor inertia introduces significant lag in the 

feedback loop.  The baseline pitch controller uses this strategy for Region 2 wind speeds.  

The expressions for CP and TSR are included in Figure 61 which shows a typical graph of 

the relationship between the two dimensionless parameters in Region 2  (P= turbine 

power out,  ρ= air density, A= swept rotor area, U=rotor effective wind speed,  Ω= 

angular velocity, λ= Tip Speed Ratio, R=rotor radius). 

 

 

Figure 61- Tip Speed Ratio versus Power Coefficient, from Lackner 2009.   
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7.4.2. Region 3 - Pitch Control  

 

In Region 3, the objective is to maintain near constant power generation at the turbines 

rated capacity. This is done by keeping generator torque constant and adjusting blade 

pitch to control rotor speed. Because there is excess wind in Region 3, this effectively 

spills wind while maintaining rated output.  Pitch control is more difficult to model than 

yaw control, since its effect on power production is not proportional to some easily 

modeled or measured parameter such as yaw steering error.  Given the complexity of the 

interacting control feedback loops, including non-linear tower dynamics and stochastic, 

turbulent wind fields, instability must be actively mitigated in simulations.  All pitch 

control algorithms therefore include filters to damp undesirable resonant frequencies 

(Soltani et al 2011).  The  control algorithm is usually based on a conventional SISO 

gain-scheduled Proportional-Integral (PI) function that takes into account present error 

(deviation of the signal from optimal) and past accumulated error.  Pitch control is 

updated near continuously, although pitch actuators are limited to eight to ten degrees per 

second to limit dynamic stress on the blade and servo mechanism.   

 

Because they have a simple structure and can be easily adjusted to improve stability, PI 

controllers are widely used in industry.   However, their performance is sub-optimal 

during high shear or rapid changes in wind speed (gusts) (Soltani et al 2011).  This is 

because the use of filters and simplified wind fields results in a loss of information and 

resolution.  This control scheme also has delay issues.  In standard systems, pitch angle is 
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based on the rotor speed itself.  After the wind changes, the rotor inertia must be 

overcome, then after the rotor speed changes, the controller reacts by activating pitch 

servo motors, which then change the pitch.  This introduces additional latency in Region 

3 since it involves rotor inertia and servo motors in the control loop.   

 

7.5. Speed Control With Lidar  

 

The use of nacelle or rotor mounted Lidar for rotor speed control could improve power 

output and reduce fatigue loads, since speed is better optimized when controls are 

proactive instead of reactive.  To illustrate, a simple model of a feed forward pitch 

control system can be constructed by taking traditional nacelle mounted anemometer data 

and time shifting the windspeed input signal so that  the pitch control algorithm is fed 

data based on conditions just upwind of the rotor, not behind it.  The optimum steady 

state pitch angle (θSS) is shifted forward in time by some optimum value, τ, as expressed 

below, where vo (t) is the rotor effective wind speed at time (t) and (θFF) is the feed 

forward pitch angle used in the revised algorithm.  This can be represented as: 

 

θFF (t) = θSS (ν0 (t- τ))                                               (4) 

 

The pitch actuator now applies controls to synchronize more closely with fluctuations at 

the rotor disk. The assumption is made that the 3D wind vector field is translated in space 

and time from the Lidar probe distance to the rotor disk at the average wind speed, without 
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change57. This simple time-shift modification is simple to model, and has the advantage of 

not affecting the stability of the control feedback loop.   

 

7.5.1. Speed Control - Optimal Look Ahead Time and Range 

 

The optimal time or distance is greater for pitch control than torque control, since the 

pitch control feedback loop includes latency from pitch servo motors, and the torque 

feedback loop does not.  The optimal preview time is determined by the lag time in 

system response, which is determined by three processes – actuator mechanics/dynamics, 

algorithm delay (primarily low pass filter processing), and turbine  response 

characteristics.  However, the available preview time is a function of wind speed and 

Lidar range - the higher the wind speed, the longer the required sensor range to achieve 

optimal τ. 

 

A simulation study by NREL and other researchers found that using two Lidar range 

settings, 70 m for low wind speeds and 120 m for high wind speeds,  preview time ranged 

from 5 to 6 seconds, which was easily greater than the optimal times required, as shown 

in Figure 62 (Dunne et al 2011).  Using the simulated controller, setting τ between ~ 2 

and 3 seconds provided near optimal preview time to reduce pitch error.  In another 

NREL sponsored  study, the accuracy of CW Lidar at various ranges was examined for 

                                                 

57 This is known as Taylor’s Frozen Turbulence Hypothesis, from (Taylor 1938)  



198 

 

different cone angles.  At a ¾ rotor diameter scan radius, typical optimal preview 

distances for a variety of wind conditions were between 110 and 150 meters (Simley et al 

2011).   More advanced control systems can use non-linear predictive strategies where τ 

may vary depending on additional sensor inputs and feedback loops.   

 

 

Figure 62-Optimal Look-Ahead Times for Pitch Control, from Dunne et al 2011, an 

NREL report for the U.S. Dept of Energy. 

 

Dunne et al (2011) examined two different Lidar-assisted individual pitch controllers. 

Controller A simulated a CW Lidar and Controller B simulated a PL Lidar.  The study 

summarizes the findings; 

 

Feedforward controller A uses a finite-impulse-response design, with 5 

seconds of preview, and three rotating LIDAR measurements. 

Feedforward controller B uses a static-gain design, with the preview time 

defined by the pitch actuator dynamics, a simulation of a real nacelle-

based scanning LIDAR system, and a lowpass filter defined by the LIDAR 

configuration. These controllers are now directly compared under the 
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same LIDAR configuration, in terms of fatigue load reduction, rotor speed 

regulation... …….The LIDAR configuration with more measurement 

points, covering more of the rotor plane, (B) gives a better estimate of the 

rotor-effective wind speed. …….It was also concluded that a greater 

percent load reduction is possible in more turbulent wind, and that 

feedback gains should be reduced when feedforward control is 

used……….. Third and finally, …… the contributing sources of required 

preview time. The main source is the phase delay of the lowpass filter, 

which is needed to filter out high-frequency components of the wind 

measurements, since these higher frequency measurements are usually not 

accurate enough to be used to mitigate loads. This filter will likely require 

2−3 seconds of preview, with both required preview time and available 

preview time decreasing as wind speed increases.   

 

 

7.5.2. Speed Control Simulation Studies  

 

The UpWind study on yaw control, cited in the previous section (Schlipf 2012), also 

included an analysis of Lidar for speed control, simulated using several different control 

strategies, plus the base case  The base case modeled standard control strategies in all 

Regions, using wind data from traditional nacelle anemometry, and using the simulation 

environment described previously in section 7.3.1 (FAST, TurbSim, GL Bladed, etc.) . 

The study used the NREL 5 MW offshore reference turbine for the analysis, including the 

baseline control algorithm, and these are discussed below. 
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7.5.2.1. Case 1 – UpWind Direct Speed Control (Schlipf 2012) 

 

The first Lidar assisted pitch control case simulated an optimized feed-forward strategy 

as input to torque-speed control in Region 2 and collective pitch control in Region 3.  The 

control strategy shifts the time series of the wind input signal.   The study named this 

strategy Direct Speed Control (DSC), since the TSR can be directly calculated knowing 

the wind speed and rotor speed.  This is in contrast to the base case, which uses “Indirect 

Speed Control” (ISC), where the wind speed is derived based on the rotor speed.  Table 

25 shows the deviation of pitch angle, the energy production and the DEL fatigue on the 

main shaft. 

 

The study estimated an increase of 0.1% in annual power production, but an 8.9% 

increase in DEL on the rotor low speed shaft (LSS) using DSC.   The power benefits 

increase linearly with turbine size, but the fatigue damage increases disproportionately 

due to non-linear inertia effects of a heavier rotor.   The study found that the higher 

fatigue loading of the drive train is not justified by the insignificant gains in power output 

using this control strategy.  In Region 2, the standard deviation of the TSR from its 

optimum value was reduced by 74%.  Even though the TSR tracked much closer to 

optimum in Region 2,  the effect on annual power output was very small. Because the 

maximum power output gain was trivial and the increased fatigue was not, power output 

benefits were not considered further in this case.   
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Table 25 - Production and Fatigue Loading for ISC and DSC, adapted from Schlipf 

2012 

Control 
Strategy 

Std Dev. of 
TSR 

Energy Prod. 
(GWh)   

DEL MLSS    
(MNm) 

ISC 0.271 458.7 2.65 

DSC 0.069 459.1 2.88 

DSC/ISC (%) 25.6 100.09 108.9 

 

 

7.5.2.2. Case 2 – UpWind NMPC (Schlipf 2012) 

 

The second simulation case simulated a novel, nonlinear model predictive control 

(NMPC) strategy which uses the feed-forward Lidar input to optimize both pitch and 

generator torque throughout Region 3.  This is a Multiple Input-Multiple Output (MIMO) 

controller whose objective is stated very roughly as “maximizing energy production 

while minimizing drive train fatigue damage over the life of the turbine”.   Numerical 

methods were used to solve the optimal control problem in iterative solutions, and the 

algorithm was tuned to “have high load reduction on tower and blades together with low 

pitch activity and slightly improved energy production”.   

 

Table 26 shows the DEL for the tower overturning moment (MyT) and out-of-plane blade 

root bending moment (Moopl) over a 20 year life cycle for both the baseline and NMPC 

controllers58.   Expected lifetime energy production and weighted standard deviations of 

                                                 

58 Moopl is resolved normal to the rotor plane, and is nearly identical to flapwise bending 

moment, which reflects a few degrees of blade pre-tensioning away from the tower. 
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pitch activity, rotor speed, and power output are also shown for both cases, and the 

change is calculated for all parameters. 

  

Table 26 - Fatigue Loads, Production, and Deviation of Parameters, Baseline and 

NMPC, adapted from Schlipf 2012 

 

Control Strategy  DEL 
MyT 

(MNm) 

DEL MOOPL    
(MNm)    

DEL MLSS    
(MNm) 

Energy 
Prod. 

(GWh) 

σ(dθ /dt) 
(deg./sec.) 

σ (Ω) 
(rpm) 

σ(Pel)  
(MW) 

Baseline 87.66 12.87 2.89 548.42 0.46 0.59 0.52 

NMPC 62.35 11.37 2.87 550.05 0.32 0.53 0.55 

NMPC/Baseline 
(%) 

71.13 88.35 99.01 100.30 70.19 89.72 106.44 

 

 

Energy production was increased by only 0.3%, while standard deviation of the power 

output increased by approximately 6.4 %.   The simulations also showed a 29% reduction 

in lifetime DEL on the tower and a 12% reduction in DEL on the blades. The SD of pitch 

was reduced by 30% and the SD of rotor speed by 10%.  Pitch activity decreased at all 

wind speeds except around 8 m/s, where  “the increased activity was justified by the 

optimization criteria”.  The trade-off involved in this control strategy appears to be 

reduced fatigue loading on the tower and blades in exchange for greater variance in 

power output, with no significant change in energy production (EP).   
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7.5.2.3. Case 3 – UpWind Cyclic Pitch Control, Region 3 (Schlipf 2012) 

 

The third Lidar analysis simulated a cyclic pitch feed forward controller using the Lidar 

measured horizontal and vertical shear.  Individual blade pitch control allows further 

reduction of blade loads.  The analysis showed a reduction in blade root bending moment 

under this strategy, but the authors indicated that further investigation is required to 

properly quantify any benefits, as it was unclear whether the benefits were any greater 

than those observed with Lidar assisted collective pitch control.  

 

7.5.2.4. Case 4 – UpWind Controller Tuning and Evaluation (Schlipf et al 

2011(a))   

 

A separate but related study (Schlipf et al 2011(a)) included refinements and tuning of the 

UpWind NMPC (Case 2) controller, based on scanning five upstream ranges  (see  Figure 

63) and optimizing the “look ahead” time.  Two different wind turbulence parameters and 

turbine classes were evaluated.  Fatigue loading was considered by simulating A and B-

type turbulence intensity using TurbSim with a Rayleigh distribution with  A=10 and 12 

m/s,   as per IEC 61400-2.   The simulation produced the results in Table 27.  Significant 

reductions in DEL were observed for tower and blades in all simulation runs. 
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Figure 63- UPwind Case 4 Simulated Lidar Scan Configuration, from Schlipf et al 

2011a (EU- funded Project UPWIND Study) 

 

Table 27- DEL Mitigation by Turbine Class and Rayleigh A, adapted from Schlipf 

et al 2011a 

 

Turbine Class Rayleigh 
A (m/s) 

Reduction 
DEL MyT    

m=4 

Reduction 
DEL MyB    

m=10 

A 12 -20.4% -11.4% 

A 10 -15.8% -9.2% 

B 12 -19.5% -8.3% 

B 10 -15.7% -6.1% 
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7.5.2.5. Case 5 – UPWind Extreme Operating Gust Loading 

 

The Extreme Operating Gust (EOG) is characterized by a decrease in speed, followed by 

a steep rise, a steep drop, and a rise back to the original value. The gust amplitude and 

duration vary with the return period, turbulence class, and reference wind speed59.   For 

this UpWind study (Schlipf et al 2012(a)),  the 50 year EOG was used.  Table 28 shows 

that significant benefits were found for the reduction of EOG loads in Region 3.  Peak 

loads were reduced by over 50%,  and rotor speed variance during the gust was reduced 

by over 75%.   No analysis of energy capture was included. 

 

Table 28- EOG Loading for Baseline vs. NMPC Control, adapted from Schlipf et al 

2012a 

 

 EOG 13.2 m/s EOG 25 m/s 

Control Strategy  EOG MyT 
(MNm) 

Δ Ω 
(rpm) 

EOG MyT 
(MNm) 

Δ Ω 
(rpm) 

Baseline 129 2.34 99 3.01 

NMPC 63 0.57 36 0.29 

NMPC/Baseline 
(%) 

49 24 36 10 

 

 

                                                 

59 It is important to note that this is different from the Extreme Event Gust (EEG), which 

is the 3 second sustained gust that has 2% chance of being exceeded in any year (50 year 

gust).  The EEG occurs in Region 4, above cut-out speed, and thus is not an operational 

event. 
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7.5.2.6. Case 6 – UpWind Work Package 5, (UpWind 2011) 

 

This analysis (UpWind 2011) was conducted as part of UpWind Work Package 5, and 

examined the effects of employing a ramping strategy to gradually reduce power output 

above the cut out speed until shut down occurs at a higher speed. The ability of Lidar 

assisted individual pitch controls to reduce extreme loading near the cut-out speed allows 

a more aggressive control strategy, and a resulting increase in AEP.   In this scenario, 

active Lidar controllers act as a limiter on rotor speed and loading during gust events,  

allowing the turbine to operate at higher avg. wind speeds, with less “overhead” needed 

for a safety margin. Most turbines have a cut-out speed of ~ 25 m/s.  This is  based on the 

10 minute average wind speed,  but can also be triggered by a 5 second gust reaching 35 

m/s,  or a one minute average pitch value exceeding a threshold.  The UPWIND study 

used a ramp controller that reduced power output from rated capacity at 25 m/s to zero at 

35 m/s.  The parameters were adjusted to obtain a “crude balance” between fatigue and 

power production and the study assumed a Class 1 wind regime described by a Rayleigh 

distribution with a mean  wind speed of 10 m/s.  For this wind regime, the hourly mean 

wind speed would be expected to exceed 25 m/s for about 64.7 hours per year, and to 

exceed 35 m/s for about 0.6 hours per year.  

 

 For the ramp to 35 m/s, the study found that AEP was increased by 0.9%, but more 

significantly, it found that this control strategy actually reduced extreme loading on some 

components due to the greater operational flexibility of the turbine to handle gusts when 
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it is active than when it is idled.  At some wind speeds above 25 m/s,  tower bending 

moment was greater with a parked rotor than a spinning rotor.  No peak loads increased 

by more than 10%.   

 

7.5.2.7. Stanford Study, Extreme Operating Gust Loading (Soltani et al 

2011) 

 

A recent study led by Stanford (Soltani et al 2011) examined the effects Lidar assisted 

rotor control on extreme loads and power fluctuations in control Region 3.  The controller 

solved two optimization problems: one to predict or estimate mean wind speed, given 

Lidar data, and the other to carry out receding horizon control (RHC) to choose the 

optimal control inputs.  The feed forward Lidar input was used to determine optimal pitch 

for a series of discrete time steps. Numerical methods were used to solve the optimal 

control path at each iteration, then the solution was applied to the next horizon/iteration, 

ad infinitum.  The analysis also used a linear parameter varying model to approximate the 

non-linear system to account for tower dynamics, defined by fore and aft nacelle 

displacement.  The method was verified against an existing wind turbine control system.  

Up until recently, the main drawback of this method was the large amount  of 

computation involved and the requisite delay in the control loop.  However, faster 

processors and optimization methods have been developed that solve this problem and do 

the calculations in a fraction of a second.  The optimization model also assigned a 

negative parametric value to pitch activity, set so that life cycle pitch activity was 
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effectively the same as the baseline.  This was done to ensure that any benefits of RHC 

were not negated by higher maintenance costs for blades and pitch systems.  

 

The model was used to estimate response to a reference extreme gust as recommended in 

IEC 61400–3; the so called “mexican hat” gust.  Figure 64 shows the gust time series and 

the blade pitch angle changing in response.  The baseline response was first modeled 

using standard proportional-integral-derivative (PID) torque controls, which modulate 

generator torque to control rotor speed, then compared to response with Lidar and the 

RHC algorithm, which uses feed-forward Lidar to modulate  pitch to control rotor speed 

in Region 3.  The RHC simulation used a prediction horizon of 4 seconds (based on a 

typical ten second gust) and a sampling frequency of 0.15 seconds.  The analysis 

indicated an 88% reduction in power output fluctuation, an 80% reduction in tower top 

fore-aft deflection, and an 82% reduction in the magnitude of fluctuations in main shaft 

torsion, all with no increase in life-cycle pitch activity.  These reductions were a result of 

effectively eliminating the 3-4 second delay between the gust initiation and the pitch 

initiation.  As the graphs show, this practically eliminates the “mexican canyon” in the 

PID power production signal.  Although the Stanford study did not address power gains,  

it is apparent from Figure 65 that the use of RHC results in greater energy production in 

Region 3.  The difference in energy produced is the sum of the scalar areas (pos. and 

neg.) between the two signals over the duration of the gust.  While the first part of the 

gust produces only minor differences that are roughly balanced,  the sudden drop in base 
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case output at 88 seconds produces  significant energy loss compared to the RHC 

controlled power output.  Over time, these losses (“Mexican canyons” ) accumulate. 

 

This is because the baseline control algorithm activates only after the rotor has 

accelerated in response to the gust and the generator has exceeded the threshold output.  

The generator torque can be changed quickly, but even with a time constant an order of 

magnitude faster than that of the rotor speed., there is still a lag of two to four seconds.   

The pitch error over the course of the ten second gust varies between five and ten 

degrees.  At t=88 sec, the baseline controller produces a pitch angle of about 5 degrees, 

when the optimum is about –2 deg. This causes baseline power output to drop from 

2000kW to about 1300kW momentarily.  The lost energy is represented by the area 

between the two curves from about t=87.5 to about t=90.5 seconds.  If the shape of this 

area is approximated as triangular,  the energy loss per gust is approximately ½ (3s x 700 

kW) = 1050 kW-s = 0.3 kW-hr.   

 

 

Figure 64- Wind Speed and Pitch Angle During EOG, from Soltani et al 2011 
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Figure 65-Power Production and Tower Deflection During EOG, from Soltani et al 

2011 

 

7.5.2.8. Gust Frequency Analysis 

  

To estimate the frequency of conditions which create these losses,  a data set was 

obtained and analyzed from a WindSentinel deployed in Lake Michigan in 2012 by 

Grand Valley State University.    The data set includes wind speeds and directions 

sampled at 1 Hz, and ten sequential days in January 2012 were selected as being 

representative of gusty winter conditions.  The data were scrubbed by removing all 

strings of invalid data exceeding 1 minute and extrapolating to fill in gaps of less than 

one minute.  This left 665,027 records, or the equivalent of about 8 days of 

measurements.  An analysis was performed to identify gust events, defined as “saw 

tooth” events, where a sudden rise in velocity is followed by a sudden drop.   These 

events are what causes out-of-sync pitch response and power drops. The data stream was 

scanned multiple times by an algorithm written in the “C” programming language.  The 

algorithm looked for waveforms matching the defining critieria for a “sawtooth gust” 

event on each pass, and accumulated counts of qualifying events. Those counts were 

written to a file/table and imported into an excel spreadsheet for presentation.  Search 



211 

 

criteria were set for 1, 2, 3, and 4, and 5 second windows, and changes in wind speed 

were binned according to magnitude, from 0 to 11 m/s,  in bins of 1 m/s. For example;  

99 events were observed where the wind speed increased by between 3.0 and 4.0 m/s in 

on second, and then immediately following that ramp up, the wind speed fell by the same 

amount in one second.  A spectral analysis of the data would provide the most accurate 

estimate of the potential loss of power, but that is beyond the scope of this study.  As a 

first order analysis, to determine if the benefits pass the threshhold of significance 

(greater than 1.0%), the number of events similar to the reference EOG was estimated. 

 

Figure 66 shows the output data plotted as a 3-D surface for all ramp rates and window 

widths.  The reference “mexican hat”  EOG has a trough to peak duration of about 3 sec-

onds, and raises the wind speed by about 6 m/s in that period, for a ramp rate of about 2 

m/s per second.  In Table 29,  for the 3 second sliding window, there were 996 events 

where the wind increased by 6 m/s over a 3 second period, then dropped back to the base-

line over the following three seconds.  Since this represents about 7.7 days of data,  a first 

order estimate for one year would be (996 x 365 / 7.7  =)  47,212 similar events.  Assum-

ing conservatively that about 25% of the events occur in Region 3 leaves about 11,800 

qualifying events per year.   If each event can be mitigated with Lidar control, saving 0.3 

kWhr per event, this would yield about  3,540 kWhr annually.  This translates to only 

$531,  which is insignificant.    
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Although this analysis has high levels of uncertainty, and is based on data from Lake 

Michigan, not the study area,  it does not show any evidence of significant gains in AEP 

from this methodology of pitch control.   This agrees with other simulation studies 

reviewed, which found no direct, significant increase in power production through Lidar 

assisted pitch control.   Further research is warranted to confirm or revise this obervation. 

However, the reduction in fatigue loading is confirmed by several studies, and can be 

monetized, as discussed below. 

 

Table 29- Sawtooth Gust Frequency from WindSentinel Data, Lake Michigan 

 

 Frequency Count by Change in 
Wind Speed, m/s, binned. 

Sliding Window Width 
(seconds, trough to 
peak) 

0 to 1 1 to 2 2 to 3 3 to 4 

1 11514 1491 328 99 

2 13939 2505 675 215 

3 15474 3292 996 376 

4 16423 3775 1243 456 

5 16692 4141 1348 568 

6 17148 4288 1370 555 

 

 



213 

 

 

Figure 66- Sawtooth Gust Event Frequency 

 

7.6. Summary - RC Benefits 

 

Each simulation study modeled systems slightly differently, but collectively, they 

indicate that  with optimized range settings and control algorithms,  Lidar assisted yaw 

control can significantly improve power production, and Lidar assisted speed and pitch 

control can significantly reduce both extreme operating gust loads and fatigue loading.  

These effects were observed in blade bending moment, tower bending moment, and 

tower top displacement.  For shaft fatigue loading, the effects of Lidar assisted controls 

were mixed, depending on the algorithm applied.  In no case were they observed to be 

larger than +/-10%,  so shaft fatigue was not analyzed further.    



214 

 

 

7.6.1. Extreme Operating Gust and Fatigue Loading 

 

Blade loading from the EOG produces both a shaft torque and a thrust load.  The 

Stanford study (Case 6- Soltani et al) indicated that the tower top displacement produced 

by  the EOG thrust load can be reduced by 80%  with Lidar and improved algorithms.  

Reductions in shaft speed variance and tower bending moment calculated in the UpWind 

studies were anywhere from 49% to 90%.  Considering the range of thrust load reduction 

in the simulation studies reviewed (49% to 64% ) and the cluster of values near 50%, the 

value selected for attenuation of EOG loading with Lidar assisted speed control is 50%.    

These improved control systems were also able to attenuate output drops during the EOG 

by 75%, resulting in slightly higher net energy capture. 

 

Because  the benefits of fatigue reduction involve higher uncertainty, the lower range of 

the fatigue benefit estimates (tuned DSC) is assumed,  yielding a 10% reduction in blade 

DEL and a  20% reduction in tower DEL.  Table 30 summarizes the relevant findings of 

the simulation studies. 
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Table 30- Rotor Control Benefits Summary Table 

 

N 
Study/Case 

No. Notes 
AEP(pct 

gain) 
Yaw time 

(%)-* DEL (t) 
DEL 
(b) 

DEL 
(s) 

TSR SD 
Region 2 

EOG 
Thrust
, OTM 

EOG 
shaft 

spd var 

Yaw  
Control Schlipf -Y1 (10min, 10o) 1.0-2.0% 5.0% nc nc      

  Gaiser-Y2a  (unlim. yaw) 6.0% 12.0%        

  Gaiser-Y2b (1min, 8o) 3.0% 8.0% nc nc      

Speed 
Control Case 1 DSC 0.1%       8.9% -74%     

  Case 2 NMPC  0.3%  -29% -12% -1% -76% -50%   

  Case 3 Cyclic          

  Case 4 Tuned NMPC     -20% -10%         

EOG 
 Mitigation Case 5 EOG low U       -51% -76% 

  Case 5b EOG high U       -64% -90% 

Ext. 
Range Case 6 Hi Cut Out  1.0%           10%?   

  Soltani EOG RHC ??      -50%   

(t)- tower 
(b) – blade 
(s) – shaft 
(nc)- no change 

 

 

7.6.2. Increased AEP from Yaw Controls 

 

Based on the evaluation, a small increase of power can result from Lidar assisted yaw 

control providing more accurate and timely wind direction to they yaw controller.  A 

reasonable estimate would be that using optimized algorithms, annual power output could 

be raised by ~1% to 2% without significantly increasing yaw activity.  This estimate is 

based on the UPWIND study, which was the most conservative estimate.   
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7.6.3. Increased AEP from Speed Controls (Pitch) 

 

The only Lidar assisted rotor speed control study that found gains greater than 0.5%  in 

AEP was Case 7- the UpWind study of extending Region 3 to 35 m/s using a power ramp 

down, which found gains of 0.9%.   However, this strategy cannot be implemented with 

the selected strategy of longer blades (see following section), and so was not considered 

further   

 

7.6.4. New Blade Designs with Lidar-Assisted Load Reduc-

tions 

 

The primary effects of Lidar assisted speed/pitch control were found to be Extreme 

Operating Gust and DEL (fatigue) loading reduction on the blades and tower.  Within the 

study area, reducing fatigue loading on the tower produces no significant benefits 

because the tower and foundation strength requirements in intermediate waters are driven 

primarily by wave and current -driven forces. (ABS 2011, Table 2.45).  Therefore, the 

remainder of this analysis focuses on blades. 

 

In response to reduced fatigue and gust loading with Lidar assisted control, blade design 

can be changed a few different ways, discussed briefly below. 
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 Extending service life? – Lower fatigue loading translates to longer fatigue life.  

However, due to the high cost of mobilizing to replace major components 

offshore, they are all designed for the same service life.  It is thus unlikely that 

blade service life would be increased beyond the service life of other major 

components. 

 

 Reducing strength and weight?-  Blade strength is largely defined by the cross 

sectional modulus of the structure, and thus, the weight per unit length.  Reduced 

loading could allow less structural material in the design, reducing blade weight 

without sacrificing swept area.  Weight reductions can cascade down the tower 

design if nacelle weight or gyroscopic forces drive tower stiffness requirements.  

However, for jacket foundations used in the base case,  peak loading and jacket 

stiffness requirements are driven primarily by extreme wave and current forces, 

not wind or gyroscopic forces (ABS 2011, Table 2.45).  Therefore, it is less likely 

that blade weight would be reduced, since the weight savings would not cascade 

down the tower structure design60.   

 

 Increasing swept area  -  With loading limited by the proactive control system, 

blade length could be increased without adding weight.  Longer blades would 

increase swept area, which is proportional to power production.  The advantages 

of greater swept area are amplifed in summer, when wind speeds are lower and 

electricity prices are higher.  This is the most likely scenario, and is analyzed 

further below. 

 

In order to determine how much blades could be lengthened in response to reduced fa-

tigue loading,  some relationship between increased blade length and DEL fatigue must 

be defined.  

 

 

 

                                                 

60 For a monopile structure, where the foundation and tower stiffness criteria can be de-

fined by resonance and gyroscopic forces, rotor weight is a key factor in tower design.  In 

that case, the greatest benefit may be had by using lighter blades.  
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7.6.4.1. Berg et al 2009 

 

In a 2009 paper from Sandia National Laboratories (Berg et al 2009),  Active Aerody-

namic Load Control (AALC) was investigated for reducing fatigue loading on blades by 

moveable flap control.   Two types of AALC devices were investigated, as shown Figure 

67.  The controller performance was intended to  “…maximize power output while mini-

mizing blade-root bending moment oscillations about a mean value during turbulent con-

ditions.” 

 

The trailing edge technology was developed by FlexSys of Ann Arbor, MI.  The principle 

of the AALC is similar to Lidar assisted pitch control in the sense that they both seek to 

attenuate blade-root bending moment fatigue by adjusting aerodynamic geometry.   Thus 

one would expect to see similar effects regarding fatigue loading and blade length.    The 

simulations used  Normal Type A Turbulence as defined by IEC, and were run with the 

NREL FAST,  AeroDyn, and TurbSim codes, referenced previously.    Fatigue loading 

was monitored including blade root bending moments on both axes.   DEL was estimated 

using rainflow counting with the NREL CRUNCH code (Buhl 2003) and a Rayleigh 

wind speed distribution, and results were binned by wind speed range.  DEL is a more 

versatile measure than fatigue life since it assumes nothing about material properties.   
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Figure 67- AALC Blade Section Schematic, from Berg et al 2009. 

 

 Two separate test cases were run using a standard 1.5 MW WindPACT simulated tur-

bine; one with the flap technology and one with flaps and longer blades.  Table 31 shows 

the results of adding the flap technology to the base case  in the simulation, and the re-

sults of adding the flaps and increasing blade length 10%.  DEL reduction is given as a 

percent change from base case DEL.  Table 31 indicates a reduction of 26.3% in flapwise 

bending moment DEL with the technology, using a typical Weibull distribution with 

mean wind speed of 7 m/s.  When the modified blades are scaled up 10% a net increase 

of 4.3%  from the baseline was observed.  This indicates that in the absence of  AALC 

flaps, the 10% length increase would have increased DEL by ~ 30.6%  (26.3% + 4.3%).   

Assuming a linear relationship within the range considered,  this implies an inverse pro-

portion of about 3:1 between the parameters, so that a reduction of 10% in DEL (esti-

mated by Schlipf 2012 for Lidar assisted control) should be balanced by a 3.3% increase 

in blade length. 
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Schlipf (2012) used a nearly identical simulation environment, except the simulation used 

the NREL Reference 5 MW turbine.  When Berg et al (2009) simulated the  NREL Ref-

erence 5 MW turbine with the AALC technology,  the reduction in DEL for flapwise mo-

ment was just over half that observed in the 1.5 MW turbine simulation (14.3% vs. 

26.3%).   This implies that AALC is about half as effective for fatigue reduction on larger 

rotors and turbines.   No AALC or any other simulations were performed in either study 

using  longer blades on the 5MW turbine. 

 

Taking the conservative assumption that this 5 MW scale effect would also reduce the ef-

fectiveness of Lidar assisted pitch control by the same amount (50%), the following ad-

justment is made to the blade length /DEL ratio:  The allowable increase in blade length 

is reduced by over half, from 3.3%, to 1.6%.   In brief, the 10% reduction in DEL ob-

served by Schlipf (2012) and assumed in the present study would be offset by a ~ 1.6 % 

increase in blade length. This would increase swept area by 3.23%.  Assuming a near 

constant specific load (output per swept area),  this should produce at least  3% more en-

ergy per year.  

Table 31- Blade Root Bending DEL Changes with AALC,  NMPC 

 

 Percent Change in DEL from Base Case 

 1.5 MW+Flaps 1.5 MW + Flaps 
+ 110% Blade 

NREL 5 MW 
+ Flaps 

Schlipf 2012 
NMPC Lidar 

Flapwise Moment -26.3 4.3 -14.3 -10 
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7.6.5. Wake Effects 

 

None of the RC analyses modeled turbine wake effects or estimated AEP for an entire 

wind farm.  Wake effects cause more turbulence within the wind farm,  which increases 

pitch error,  yaw error and  fatigue loading on components, especially blades.  It is 

unclear how the benefits of Lidar controls would change under wake effects, but it is 

likely that the benefits are higher since they derive primarily from the use of pro-active 

controls to manage turbulent conditions (under steady-state winds, they would be 

inactive).  On the other hand, wake effects also reduce the capacity factor of downwind 

turbines in a wind farm, so any proportional benefits from RC are reduced.  Because 

these two effects are opposite and highly uncertain, wake effects are neglected and 

benefits for a single turbine  (as % gain in AEP)  are assumed to be the same for an entire 

wind farm.   

 

7.6.6. Lidar-Assisted Rotor Control – Costs 

 

The cost of nacelle mounted scanning Lidar units is estimated at $300,000, and the ser-

vice life is assumed to be 3 years61, for an estimated annual cost of $100,000.  Table 32 

shows the annualized Benefit Cost breakdown.   The base case 5 MW turbine should 

yield a Net Capacity Factor of about 40% in the study area (Baker 2011, Table 5).   Thus, 

                                                 

61 Typical service life is 3-5 years for electronics in an exposed marine environment 
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the AEP would be approximately (2 MW x 8760 hr/yr=) 17,520 MW-hr/yr.   Assuming a 

power price of $0.15/kw-hr yields a total annual revenue of  ~$2.63 M per turbine.   In-

cluding the AEP increase from yaw controls (1% to 2%) and pitch control/swept area 

(3%) yields a total gain of 4% to 5%.   A 4.5%  gain yields an annual benefit of  $118,260 

per turbine.   Thus the  benefits of Lidar-assisted rotor control appear to be justified, with 

a Benefit-Cost ratio of between 1.05 and 1.31 (averaging ~1.2).  This benefit is included 

in the present analysis,  but further analysis is warranted due to the high level of uncer-

tainty and slim margin of justification.   After accounting for the Lidar cost, the change in 

BP will be approximately  20% of the total AEP gain (20% x 4.5% =)   0.9%     

 

To estimate the total cost of this strategy, the cost of a nacelle based Lidar is multiplied 

by the number of turbines estimated by Baker (2011) in the study area (14,447).   With an 

annualized cost of $100,00 per turbine/Lidar, the total annual cost for the base case wind 

farm would be about  $8 million, but the annual benefits would be about $9.5 million.  As 

mass production drives the cost of Lidar down, this will certainly improve the economics.    
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Table 32-Summary of RC Benefits for Single Turbine, Wind Farm, and Buildout 

 

Power Price = 0.15 $/kWhr  

No. of turbines in wind farm= 80   

No. of turbines in build-out= 14,447   

 Single Turbine Wind Farm Study Area Build-
out 

AEP (MW-h/yr) 17520 1401600 253111440 

AEP gain 4.5% 4.5% 4.5% 

Total Ann. Revenue (*) $2,628,000 $210,240,000 $37,966,716,000 

Ann.Revenue Gain $118,260 $9,460,800 $1,708,502,220 

Annual Cost (**) $100,000 $8,000,000 $1,444,700,000 

Net Benefit $18,260 $1,460,800 $263,802,220 

Benefit Cost Ratio (**) 1.2 1.2 1.2 

(*)- @ $0.15/kWh 

(**) – Costs should go down with quantities for economies of scale, so BC ratio should actually be 

higher for wind farm and build-out.  

 

 

7.6.7. Looking Forward-RC Benefits 

 

The studies discussed herein show that there are many ways to improve the control 

system, from the sensors to the algorithms to the servo controllers.  Lidar assistance 

allows the use of more advanced algorithms, which can be dynamically tuned to prioritize 

and balance multiple competing objectives using multiple input signals.  Feed forward 

Lidar systems can provide pro-active load limiting by feathering the blades when a gust is 

detected, avoiding sudden overloading and subsequent drops in power output.  These 

systems can increase power output and reduce fatigue on the entire turbine by detecting 

incoming wind as a 3D vector field.  Cyclical pitch controls can  take advantage of this 

information by adjusting pitch according to wind shear and rotational position.  Strain 
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sensors placed in the blade can also be used to limit blade loading and rotor thrust.  

Recent research in sectional blade technology, shape memory alloys, and torsional 

clutches will also benefit from Lidar assisted control (UPWind 2011).  These and other 

advances in wind sensors,  self calibrating, recursive, non-linear control systems, blade 

construction, and control surface technology will result in greater and greater efficiency,  

relentlessly approaching the Betz limit while reducing fatigue loading on blades and other 

components.  How the benefits are captured- whether by relaxing design requirements 

(e.g. lighter towers and rotors) or increasing performance specifications (e.g. longer 

blades and more energy)  will have to be decided on a case by case basis,  but it is clear 

that Lidar will play a major role enabling this development in the coming years.  
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8.1. Summary Benefits 

 

This analysis shows that there are significant economic benefits to the use of these new 

technologies.  Table 33 summarizes  the estimated changes in AEP and BP for the four 

benefit categories (Mapping, P90, Yaw Control, Pitch/Speed Control).   The total boost in 

Annual Energy Production is estimated between 6% and 8%, while the boost in AEP P90 

(from greater certainty) is estimated at 3%.    When the costs of strategy implementation 

are taken into account, the Breakeven Price is reduced by between 5. 8%  and 7.0%.  If 

the mapping benefits are counted as a cost savings, the BP is reduced by 3.8% to 4.0%, 

and the cost savings are around $120 million.  
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Table 33 - Summary of Benefits vs. Base Case 

 

 Percent Change in AEP, Cost from Base Case 

 AEP P50    
up 

AEP 
P90 up 

BP down $$ 
down 

 Mapping – LCGMF Atlas Cost Δ     $120M 

AEP Mapping Boost (1) 2%-3%  2-3%   

AEP P90 Boost (2)   3% 3%  

AEP Yaw Control (3) 1%-2%  0.2%-0.4%  

AEP  Pitch/Speed Control (3) 3%  0.6%  

First Phase Buildout (1) 6% - 8% 3% 5.8%-7.0%   

Full Buildout (no AEP-Mapping 
Boost included) 

  3.8% - 4.0% $120 M 

(1)- Benefit only accrues to first wave of wind farms in study area 

(2) –Pct boost in both P50 and P90 roughly equiv. to pct. cut in BP per Levitt et al, 2011 

(3) -BP takes into account the cost of the Lidar on each turbine 

(4) – Benefits assume cost of LCGMF mapping is spread over industry, over full build out 

 

 

8.2. Summary Discussion and Conclusions 

 

While further refinements of the costs and methodologies are needed before implement-

ing the recommended strategies, it appears they are all justified.  

 

8.2.1. Conclusions – Rotor Control Benefits  

 

The addition of Lidar to turbine yaw control systems can increase Annual Energy Pro-

duction by 1% to 2% by reducing yaw error and optimizing rotor efficiency by sensing 

the wind direction in the free stream, upstream of the rotor, instead of in its wake, on the 
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nacelle.   The addition of Lidar to rotor speed (pitch and/or generator torque) controls sig-

nificantly reduces fatigue loading and extreme operating gust loads, but was not found to 

produce significant benefits in power generation.  The benefits of 10% lower fatigue 

loading can allow blade length to increase by about 1.6%, creating 3.2% more swept area 

without additional weight.  This effect translates into a ~ 3.0% increase in Annual Energy 

Production.   The total energy production gain is therefore estimated at between 4% and 

5%  for the rotor control strategies.  After accounting for Lidar system costs, the Breake-

ven Price is reduced by between 0.8% and 1.0%.   

 

8.2.2. Conclusions –Annual Energy Production P90 Benefits 

 

The addition of Lidar met buoys at a proposed site can increase projected annual energy 

production P90 values (value that has a 90% chance of being exceeded in any year) by 

3% over a two year campaign.  This value comes from reducing uncertainty associated 

with horizontal and vertical extrapolation from fixed, hub height met towers.  This has a 

nearly proportional effect on the Breakeven Price because of change in the project fi-

nance cost, which is driven by the P90 value.  Because the cost of the single floating Li-

dar unit is spread over the entire wind farm, and amortized over multiple resource assess-

ment campaigns,  it is considered insignificant, and not counted in this first-order analy-

sis. 
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8.2.3. Conclusions – Mapping Benefits 

 

The strategy of improved resource mapping using Lidar and satellite microwave data, 

processed through trained, tuned, Lidar-calibrated Geophysical Model Functions can re-

sult in better site selection and boost Annual Energy Production by between 2% and 3% 

for the first projects.  However, this boost is reduced after the first phase of build out.   As 

the study area is developed, these benefits would be lower in constant dollar terms, since 

later projects would be forced into the lowest energy sites.  From the perspective of an 

early developer,  the proposed strategies would reduce the Breakeven Price by 5.8% to 

7.0%, assuming the cost of the mapping effort is either publicly funded, or spread out 

over the entire industry.  If the mapping benefits are not included, this leaves a  Breake-

ven Price change of about -3.9%.   In this accounting scenario, the cost savings of the 

proposed atlas vs. the base case atlas add  $120 million to the benefits.    

 

Another way to look at the benefits is to consider only the first group of wind farms in the 

study area.    It is highly uncertain whether all available sites would be developed, as this 

would be a massive undertaking, requiring the installation of well over 10,000 turbines.   

Although this may occur in the longer term, a more reasonable mid-term assumption (ten 

years time frame), based on the number of developers that have expressed interest in the 

Wind Energy Areas, would be the development of ten large wind farms,  of about 100 

turbines each.   Under this scenario,  the $120 million in savings from using ten floating 
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Lidar buoys instead of ten met towers would be distributed roughly evenly among the ten 

developers.    

 

The actual value of improved mapping is difficult to quantify due to high uncertainty 

about financing, future technology developments, and market conditions, but these values 

serve as a first order reference from two different perspectives.  Roughly stated, the over-

all conclusion is that implementing the recommended strategies could save $120 million 

in resource mapping costs over the long term, and reduce the Breakeven Price by be-

tween 4% and 7%, depending on how the mapping benefits are accounted.    

 

8.2.4. Areas for Further Research 

 

Another area recommended for further research is the potential for using the same set of 

ten (or whatever number  is optimal) strategically placed floating Lidar met buoys for cal-

ibration of a numerical weather prediction model such as the Weather Research and Fore-

casting model from NOAA.   This approach has the advantage of high temporal resolu-

tion,  which effectively eliminates the problem of diurnal bias found in satellite retrievals.   

It also eliminates the problem of data scrubbing and coastal masking.   The model can 

also be set up to assimilate snapshot wind speed retrievals from SSMI and QuikScat data 

bases.  Due to advances in computing power and technology, it is now practical to use 

WRF to generate multi-year databases due to the processing time required (Dvorak et al 



230 

 

2012)  Although not investigated in this paper, there appears to be great potential for lev-

eraging the positive attributes of Numerical Weather Prediction models with the proposed 

mapping strategy, reducing error and bias even more.  Further research is recommended.  

 

Although recent advances indicate great potential, substantial research is still needed to 

develop the detailed methodologies for building the Lidar Calibrated Geophysical Model 

Function.   Extremely large data bases will need to be managed and processed.  Parallels 

may be drawn to the early days of sub-surface geophysical acoustic imaging and model-

ing.  Refinements in both sensing and image interpretation will lead to greater levels of 

precision, resolution, and confidence as the technology matures.      

 

As blades and rotors become more actively adaptable,  the benefits of Lidar control will 

increase by allowing control systems to keep parameters in their optimal ranges.    As the 

price of Lidar technology drops,  the justification becomes more robust, and as the sci-

ence of satellite wind retrievals advances, and the database grows, mapping accuracy will 

increase, driving benefits up.  It is clear that remote sensing technologies have much to 

offer in the development of offshore wind power in the U.S.  
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Appendix A – MAXIMUM THEORETICAL COVERAGE 

 

Theoretical daily coverage at each latitude or parallel can be estimated based on the 

instrument’s scan width (SW) and the circumference of the earth along that parallel as 

follows: 

 

Taking the latitude of Cape May as representative of the MAB, the circumference of the 

globe at 39 degrees N is 31,186 km.  Neglecting 8 degrees of orbital inclination62, this 

circumference divided by the scan width yields the number of scans that would provide 

full coverage at the 39th parallel if spaced evenly and contiguously.  Sun synchronous 

orbits circle the earth about  every 100 minutes, in which time the earth rotates ~ 25 

degrees, so the ground track is shifted west by about 25 degrees on each orbit; this is the 

precession rate 63.    

 

Although in reality there are gaps and overlap, the precession of the orbit means the gaps 

shift position with each orbit, so the coverage averages out very quickly.  This provides 

                                                 

62 Sunsynchronous orbital inclination is ~ 8 degrees, so the “effective” scan width (SWE)  

is actually: (cos 8o x SW =)  0.99 x SW 
63 The “precession rate” is the rotation of the earth during one full satellite orbit. 
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roughly the same number of scans per year for all points along the same parallel.   There 

are some differences due to the orbital inclination, but these are not significant at the 

latitudes investigated.  At a latitude of 39 degrees, each degree of longitude covers about 

86.6 km, so 25 degrees covers about 2166 km.  Each satellite completes approximately 

14.4 orbits per 24 hrs, and each orbit crosses the parallel twice, so, neglecting orbital 

inclination and downtime, the expression for maximum theoretical percent daily coverage 

as a function of effective scan width is: 

 

% Coverage  = (Swath Width) x (orbits per day) x (equatorial crossings per orbit) / 

(Length of the parallel) 

 = (SW) x (14.4) x (2) / (L)  

 

Where the length, L, of any parallel can be found by 

L = circumference of equator x cos (latitude) 

    = 6378 km x cos (latitude) 

 

The study area is at a latitude of 39N and many of the reviewed studies cover the North 

Sea, at a latitude around 56N.  The ratio of the lengths of the two parallels (39th to 56th) is 

the ratio of the cosines of the two latitudes.   

cos 39 =  0.78 

cos 56 =  0.56 

ratio  C39/C56 1.393 
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This ratio is useful for translating scan density between the two latitudes. 

Using this basic formula, the maximum theoretical coverages for each instrument are 

given below. 

 

 Daily Coverage Scans/yr 

 Satellite/Instrument 
Max Swath 
Width (km) 39th paral. 56th paral. 

39th 
paral. 

56th 
paral. 

Synthetic Aper-
ture (SAR) 
  
  
  
  

ERS-1/SAR/ (1) 100 9% 13% 34 47 

ERS-2/SAR 100 9% 13% 34 47 

RADARSAT-1  500 46% 64% 169 234 

RADARSAT-2 500 46% 64% 169 234 

EnviSAT/ASAR  400 37% 51% 135 187 

Scatterometers 
  
  

ERS-1/ESCAT(8) 400 37% 51% 135 187 

ERS-2/ESCAT(8) 400 37% 51% 135 187 

Metop-A/ASCAT(7) 1000 92% 128% 337 468 

Metop-B/ASCAT(7) 1000 92% 128% 337 468 

SeaWinds/QuikSCAT 1800 166% 231% 607 843 

OceanSAT/SCAT 1400 129% 180% 472 656 

PMI F11 – F 17 SSM/I 1400 129% 180% 472 656 

 

 

 

Scatterometry and PMI coverage is relatively simple to estimate, since scan width is 

fixed.  In principle, two satellite passes per day should produce two wind products per 

day for a given node or location.  In practice,  the number of scans is reduced by 

scrubbing to remove corrupted data and by systems downtime for (remote) maintenance, 

testing, etc.   There is also downtime for re-setting the instrument between scans.  
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SAR coverage is complicated in practice by numerous different swath patterns causing 

uncertainty about the average effective scan width.   For this reason, the estimates rely 

more on actual database queries.  
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Appendix B – REPRINT PERMISSIONS 

 

Note – Many of the figures used come from publicly funded, open access U.S. , U.K., 

and E.U. government-published studies where reprint permission is implicitly granted.   

The permissions and authorizations below are for the remainder of the figures, where re-

print permission was sought and obtained.  
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Figure 3, Figure 55
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Figure 4 , Figure 17 
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Figure 4  
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Figures 5 and 6
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Figure 7 
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Figures 8 and 9 
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Figures 10-12 
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Figure 13
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Figure 14
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Figure 15, 16
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Figure 19 
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Figure 24, 27.
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Figure 24 
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Figure 29 
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Figure 32 
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Figure 33 
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Figure 35 
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Figure 38, 39, Table 13
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Figure 40 
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Figure 48 permission
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Figure 50, Table 22, excerpts 
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Figure 51-53 
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Figure 52 
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Figure 56  
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Figure 61 
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Figure 63 
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Figure 64, 65 
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Creative Commons License (Figures   xxxxx) 
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Blanket permission for DTU-Orbit Studies (in addition to/redundant with explicit permissions 

above) 
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Blanket Permission for UpWind Figs (Schlipf-in addition to/redundant w/ explicit permissions 

above) 

 

 

 

 


