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ABSTRACT 

Modeling human movement using a computational based algorithm to 

predict muscle forces, ligament strains, and joint loads requires several inputs 

including normalized electromyographic (EMG) signals.  Normalizing EMG reduces 

signal variability caused by electrode placement.  EMG inputs scale the model’s output 

muscle forces and employing normalized values greater than 100% implies muscles 

are generating supramaximal forces.  Signals from maximum voluntary isometric 

contractions (MVIC) are typically used for normalization, even though ballistic tasks 

can produce larger EMG singals.  Ballistic task EMG signals normalized to MVIC 

EMG maximums could yield EMG values greater than 100%.  Normalizing to 

maximal values ensures EMG signals remain below 100%.   

This thesis investigated dynamic signal repeatability and differences 

between MVIC EMG maximums and maximums from sprinting, jumping, and 

isokinetic movements to ascertain whether dynamic tasks produce significantly greater 

signals in search of a task which elicits reliable, maximal EMG.  These maximum 

dynamic signals and the maximum MVIC values were used to normalize the model 

inputs.  The model outputs of the two cases were compared. 

The results showed a significant increase of peak EMG values between the 

dynamic and MVIC cases for the lateral gastrocnemius (LG), medial gastrocnemius 

(MG), soleus (SL), vastus medialis (VM), and vastus lateralis (VL).  The peak EMG 

was significantly greater between the ballistic and MVIC cases for the LG, MG, and 

SL.  Divergences of signal magnitudes were repeated across testing sessions.  Intra-

session analysis revealed reliability in almost all peak EMG values.  The two EMG-

driven model outputs established the MVIC normalization procedure as the superior 



 x 

method.  The r
2
 value of the knee moment for the MVIC case was 0.94 while the sprint 

case was 0.91 and the MVIC case produced a significant decrease in peak knee 

moment error, with respect to the moment calculated using inverse dynamics. 

This thesis identified MVIC EMG values as the better choice for 

normalizing dynamic EMG signals for the EMG-driven model and the results of this 

work establish a greater confidence in the model’s applicability to highly dynamic 

activities. This thesis also determined dynamic tasks exist which produce significantly 

larger, repeatable peak EMG signals than the MVIC tasks.  
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Chapter 1 

INTRODUCTION 

Analysis of muscle activation produced during activities ranging from the 

daily life motions of walking and stair climbing to the athletic motions of running and 

jumping requires the collection of reliable EMG signals measured under dynamic 

conditions.  EMG signals are recordings of the electrical activity that are associated 

with muscle contractions; these signals give insight into muscle function based on 

contraction timing and intensity.  EMG collects signals from the muscle motor units in 

response to a neural command.  Though EMG is representative of muscle activation, 

muscle force production and muscle activation do not equate to each other in a linear 

manner [Buchanan 2004].  Muscles’ EMG signals are independent of one another and 

no inherent relation exists between them.  EMG is measured as a voltage and is highly 

dependent on many factors other than contraction intensity, including electrode 

placement, skin impedance, joint angle [Farina 2001], and joint velocity [Bigland 

1954].  Due to the factors affecting the signal, it is important to normalize the EMG 

values for comparison of muscle activations across muscles, testing sessions, subjects, 

and as inputs into an EMG-driven muscle model.   

The EMG-driven muscle model is a computational based model which 

requires a series of inputs, including EMG, to predict individual muscle forces.  The 

EMG inputs are used to determine the muscle activation intensity.  The muscle 

activation intensity scales each muscle’s output force based on its maximum 

producible force [Buchanan 2004].   The model has been tested repeatedly for low 
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intensity movements, normalized to the consistent EMG values produced during 

maximum voluntary isometric contractions (MVIC).  After normalization, the EMG 

values were less than 100% activation.  Higher velocity, or ballistic, tasks often 

produce EMG magnitudes greater than those generated during MVIC tasks [Gazendam 

2007].  Each muscle’s maximum isometric force and cross sectional area is not 

uniquely input into the EMG-driven model for each subject.  This requires the model 

to adjust the maximum isometric force of each muscle starting from the average values 

reported in literature [Winter 1990].  Therefore, normalizing to EMG values produced 

by isometric tasks could produce muscle activations much greater than 100% and lead 

to the incorrect conclusion that a muscle is producing forces outside of reasonable, 

physiological bounds.  This mistake is avoided by normalizing to the maximal EMG 

value.   

Finding an activity to yield a maximal EMG signal requires attention to 

many factors including joint angle, velocity, contraction magnitude, and fiber 

alignment.  Muscle contraction intensity strongly influences EMG [Guo 2010].  The 

EMG signal is a result of the quantity of active motor units and the rates at which they 

are firing.  As a contraction increases, the firing rate of the active motor unit increases.  

Once reaching a frequency threshold, an additional motor unit is recruited and this 

continues until the system reaches its maximum output [Person 1972], therefore a 

maximum contraction is needed to produce the maximal EMG.  A MVIC is an 

example of a task requiring maximum contraction intensity while holding other 

variables constant leading to a muscle producing its maximum force [Hill 1938].  

Holding other variables constant and exerting a maximum contraction is what causes 

MVIC to have an excellent reliability, which directly contributes to its use as a 
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common normalization value.  Previous studies have shown MVIC to be reliable 

during a variety of isometric tasks including knee and ankle position being fixed by a 

researcher, by a dynamometer, or by a stationary cycle [Lin 2008, Norcross 2010, 

Rouffet 2008].   The MVIC EMG value, because of the other influential factors, is 

unfortunately not maximal.   

MVIC tasks produce reliable EMG data and yield the greater forces than 

concentric contractions of a muscle but this is not always the normalization value of 

choice, depending on the desired comparison.  Ballistic EMG normalized to MVIC 

values could lead to EMG values above 100% activation [Burden 1999].  Since 

maximum force does not guarantee maximum EMG production [Buchanan 2003] and 

dynamic tasks exist that produce larger EMG signals, dynamic EMG has an important 

role in normalization.  There is a wide variety of movements from which to record 

dynamic EMG signals ranging from controlled isokinetic contractions (ISOK) to the 

much more variable ballistic movements.  Clinicians use ISOK movements for 

assessment [Maupas 2002] and muscle hypertrophy [Melegati 1997] and the EMG 

data produced by these movements are reliable [Larsson 2003].  Lower velocity 

dynamic movements, having unconstrained motion, have proved reliable as well.  A 

single, shallow squat, to an approximately 45° knee flexion angle, produced reliable 

EMG from the quadriceps [Earl 2001].  EMG values collected from the gastrocnemius 

produced during self-selected walking gait were also found to be reliable [Karamanidis 

2004].  Higher velocity dynamic trials provided reliable EMG signals in only limited 

instances.   

Reliability varies depending on the dynamic movement and the muscle 

being tested.  Ballistic tasks in previous studies of the leg muscles yielded repeatable 
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EMG in several cases including: the lower leg muscles during running at a fixed speed 

on a treadmill [Chapman 2009, Gollhofer 1990, Karamanidis 2004] and during 

rhythmic hopping at a single frequency [Gollhofer 1990], the quadriceps muscles 

during maximum vertical jumping [Goodwin 1999], and the quadriceps and 

hamstrings during sprinting into a 45° cut maneuver and drop jumps from a fixed 

platform height [Fauth 2010].  Sprinting and maximal vertical jumping have 

repeatable kinematics [Yoon 2006, Queen 2006] and requires peak exertions to 

perform which meets the criteria for finding a task which produces a reliable, maximal 

EMG signal.   

Ballistic tasks differing from jumping and hopping to running and cutting 

have been studied briefly, but previous research has not compared the magnitudes of 

the resulting EMG nor have studies been performed on the primary muscles acting at 

the knee and ankle joints during a single collection of data.  The EMG-driven muscle 

model needs to be processed with differing normalization techniques to look at the 

models sensitivity to normalization techniques.  This work impacts those capable of 

performing maximal tasks, which can be applied as model inputs.  The applications of 

computer based muscle models for use during rapid dynamic tasks are numerous and it 

is important to evaluate the model’s output variation when altering normalizing 

methods of maximal and submaximal tasks. 

1.1  Focus of the Thesis  

 The purpose of this study was to identify a task which generates reliable 

and maximal EMG signals for 9 lower leg muscles; the biceps femoris (BF), lateral 

gastrocnemius (LG), medial gastrocnemius (MG), rectus femoris (RF), soleus (SL), 

semimembranosus (SM), tibialis anterior (TA), vastus lateralis (VL) and vastus 
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medialis (VM).  These maximal signals, found during the ballistic task, were applied 

to the EMG inputs in order to evaluate the model’s ability to predict joint moments of 

rapid dynamic movements.   

1.1.1 Aim 1: Determine which task will produce the largest EMG signal 

 EMG signals were collected from 9 leg muscles during isometric, 

isokinetic, sprinting, and jump tasks.  Maximum EMG values were found from a linear 

envelope created by filtering the signal.  Planned comparisons were performed on the 

EMG signals to establish significant differences between each of the tasks.  Our 

hypothesis was that the ballistic tasks would produce larger EMG signals than the 

MVIC and isokinetic tasks. 

1.1.2 Aim 2: Determine whether the static and dynamic EMG 

maximums are reliable 

 Each of the subjects performed several trials for each of the tasks listed in 

Aim 1.  The maximums of each trial were recorded and used to establish an intraclass 

correlation coefficient (ICC) to show reliability of the tasks in a single testing session.  

On a separate day, subjects returned and performed the protocol again.  The maximum 

EMG signals from the first collection session were compared to the maximum signals 

of the second collection session.  As an inter-day comparison of maximal tasks, the 

significant differences found of the first day were compared to the significant 

differences found on the second day.  Our hypotheses are that the static tasks will 

produce repeatable EMG maximums and the sprint EMG maximums will be as 

reliable as the isokinetic EMG maximums.  Additionally, the maximum EMG signals 

for each task will not be significantly different between test and retest sessions. 
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1.1.3   Aim 3: Determine whether EMG inputs greater than 100% 

activation affects joint moment outputs. 

 The EMG inputs for modeling the stance phase of a run trial were 

normalized to MVIC maximums and sprint maximums separately to produce two sets 

of inputs.  These inputs were processed through the model to produce two separate 

knee moment outputs.  The difference between these moment outputs was determined.  

Our hypothesis is the smaller input activations, determined by normalizing to larger 

EMG maximums, will produce small joint moment outputs from the EMG-driven 

model. 

1.2 Significance of the Research 

 EMG signals are an excellent tool for the understanding of muscle 

contractions and relative activation magnitudes.  Task assessment can be performed 

with EMG but an improper normalization technique used on the data can alter the 

conclusions [Benoit 2003].  Normalizing to a muscle’s maximal EMG signal allows 

for calculating accurate co-activations and determining optimal exercises for peak 

muscle excitation [Ebben 2009].     To our knowledge, there have only been limited 

studies performed on few tasks and muscles examining the magnitudes of peak EMG 

signals during several tasks, static or ballistic.  Our first aim was to understand which 

task a subject could perform in order to elicit a maximal EMG signal magnitude. 

 The maximal signal also impacts EMG-driven, musculoskeletal modeling.  

Musculoskeletal modeling allows researchers to understand the effects of pathologies 

[Winby 2009] and provide a more precise understanding of muscle kinetics which 

could indicate high risk kinematic movements [Lloyd 2001].  The EMG-driven model 

has been thoroughly tested for low velocity movements, such as walking, normalized 

to MVIC and has also been tested for EMG inputs normalized to the maximum EMG 
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values of the task being modeled [Besier 2009].  The model has the potential to be 

used for much more dynamic tasks involving rapid contractions.  This study creates a 

better understanding of the effects of normalizing to different values or processing the 

model with EMG values greater than 100%.   

1.3 Thesis Outline 

The next chapter will explain the source, background, and importance of 

EMG.  Chapter 3 presents the data from the static and dynamic collections for 

comparison to establish a maximal and reliable signal.  Chapter 4 establishes 

differences found in the outputs of the model after altering the inputs by varying EMG 

normalization techniques.  Chapter 5 addresses each of the hypotheses of this study 

and remarks on possible future works for these maximal EMG data. 
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Chapter 2 

BACKGROUND 

2.1 EMG 

EMG is the abbreviation for “electromyogram” or “electromyography,” 

which is the signal, or the collection of signals, detected from the change in membrane 

potential of the muscle cells [Gasser 1930].  The detectable activation elevates with 

increased muscle fiber recruitment required to perform a task.  The more strenuous the 

task, the more muscle fibers are required. The increased demand spurs the recruitment 

of additional activation of motor units which incorporates a greater number of fibers.  

As the task increases in difficulty, more motor units are recruited until all of the motor 

units are stimulated and the system is at its maximum output [Person 1972].  Muscle 

activations, determined with EMG signals, establish recruitment timing within a task 

[Winter 1983], the understanding of neurological and pathological deficits [Hallett 

1975, Crenna 1998, Hubley-Kozey 2006], and contraction intensity to perform a 

particular task [Byrne 2007].   EMG allows researchers to identify which muscle is the 

primary contractor for a given task and identifies synergistic muscle activity in the co-

contractors.  The degree of co-contraction leads to the understanding of joint control 

and stability [Buchanan 1995, Zeni 2010].  The possible applications of EMG data are 

numerous, but the diversity of EMG utility is comparable to the variety of collection 

techniques and processing methods available which warrants the need for caution with 

the application of this tool.   
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2.1.1 Instrumentation 

The EMG signal is collected through two different methods of signal 

detection.  The first method is fine wire.  Two fine wires are inserted into the muscle 

with a needle and detect activation within the muscle.  The other method is much less 

invasive and does not affect subjects’ movement patterns as drastically.  This method 

is surface EMG.  The electrical potential generated within the muscle is detected from 

the surface of the skin using two electrodes.  The intensity of the signal from the 

surface electrodes is on the order of magnitude of millivolts [Nigg 2007] causing the 

need for the signal to be amplified.  The amplification is at the researcher’s discretion 

based on the equipment available.  The placement of two separate electrodes can cause 

a discrepancy of inter-electrode distance so it is now common to use a single unit with 

with dual electrodes, fixing the collection area and preventing variations between 

muscles, subjects, and tests.  The distance between the electrodes determines the 

muscle area from which the signal is being collected and based on that distance the 

signal can change significantly.  Twenty (20) mm is the recommended spacing 

between the electrode poles [Farina 2002]. 

2.1.2 Anatomical variance 

Electromyograms are sensitive to a variety of factors including the 

subject’s physical condition, length of the muscle at the time contraction, and the 

location of the electrode in reference to the muscle’s motor units.  Surface EMG 

electrodes are non-invasive, but have the limitation of receiving a signal through the 

skin.  Each layer of tissue presents an impedance which can vary within a subject over 

time [Nicander 2000].   Included in this layering of tissue is adipose, which greatly 

changes between subjects and recording location.  Adipose tissue also increases the 
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chance of the electrode moving in relation to the muscle during a collection, 

specifically during a dynamic activity, thus altering the signal [Farina 2006].  Muscle 

length change has been theorized to alter the signal in the same manner since a muscle 

contraction moves the muscle under the skin and not necessarily uniformly in relation 

to the electrode [Rainoldi 2000].  Others research has theorized the variability in EMG 

magnitude is a due to a neural inhibition caused when the joint is at a disadvantaged 

angle [Azegami 2007, Maffoietti 2003, Suter 1997].  Ideally, the line created by the 

two poles of the electrode should be aligned with direction of the muscle fibers being 

tested, but a muscle’s fiber orientation changes with contraction [Maganaris 1998] 

which creates another anatomical shift in reference to the electrode.  The rotational 

changes in fiber alignment in relation to the electrode during the contraction affect the 

output signals [Farina 2006]. 

2.1.3 Physiologic variance  

Effectors of signal changes in the muscle during a contraction range from 

muscle contraction velocity to contraction intensity, which are independent of one 

another.  Contraction intensity is paramount in the collection of EMG signals.  Based 

on effort, the subject can control the magnitude of EMG elicited within a certain 

degree of accuracy [Guo 2010].  The rate of contraction at designated intensities also 

manipulates the signal.  Ramping up effort during a static contraction creates a 

different signal than contracting in a very rapid, or ballistic, effort [Ricard 2005].  

Motor units are rapidly recruited in response to a ballistic demand versus constant 

contraction intensities.  The muscular response to the rapid motor unit recruitment 

produces a completely unique EMG signal to that of a steady, ramp up contraction 

[Semmler 2002].  In the same context, joint angular velocity has been correlated to 
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EMG magnitude changes.  Specific muscles have shown a relationship between 

increased contraction velocity and elevated EMG signals [Bigland 1954, Soderburg 

1984].   

2.1.4 Fatigue 

When collecting data on any mechanical or biomechanical system, fatigue 

must be taken into account and EMG data are no different.  The effect of muscle 

fatigue depends greatly on the use of the muscle.  If a muscle is sub-maximally 

activated, the signal acts differently over time than a muscle maximally activated.  

Once a muscle has been fatigued recovery time becomes a factor [Hultman 1983] and 

sufficient time must be allotted for rest to prevent fatigue effects on the signal.   

Static contractions have been looked at for EMG fatigue because of their 

ability to be held for as long as the muscle can maintain a contraction.  Dynamic cases, 

limited by range of motion, do not provide long contraction durations, nor show 

significant fatiguing effects [Babault 2006].  EMG signals during maximum effort 

static tasks behave differently compared to that of sub-maximal activities.  Maximal 

static contractions demonstrate a large EMG signal at the commencement of 

contraction, but then quickly fall asymptotically with fatigue [Babault 2006, Hultman 

1983, Stephens 1972].  Contracting sub-maximally leads the EMG signal to actually 

increase with time [Kuroda 1970, Adam 2005, Mottram 2005, Kirsch 1992, Thomas 

2006, Lind 1979].  Initially, during a sub-maximal contraction, the EMG signal 

increases.  The duration of this increase depends on the relative intensity compared to 

the maximal activation.  If the sub-maximal contraction is held for enough time, the 

EMG signal actually begins to fall, similarly to the maximal contraction case.  This 

phenomenon occurs because the initially active motor units, which are the higher 
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frequency, lower amplitude units fatigue and the system responds by activating the 

lower frequency, higher amplitude motor units in order to maintain the same level of 

contraction [Lloyd 1971].  The EMG of the sub-maximal activation is not able to 

exceed the EMG signal of the MVIC case regardless of the duration of contraction.  

When the muscle is fatigued enough through the course of a sub-maximal contraction, 

the EMG curve begins to behave like the MVIC case with a similar level of exhaustion 

[Lind 1979].  The EMG increases produced through sub-maximal contraction also 

apply to compounding fatigue.  Multiple sub-maximal contractions with limited 

recovery time cause the EMG signal to increase as though it were contracted statically 

for an extended period of time [Mendez-Villanueva 2009].  Appropriate rest for 

subjects during EMG collections is paramount to obtaining accurate results.  Hultman 

et al. found EMG returning to its maximum levels during MVIC contractions after 

only 30 seconds of rest [Hultman 1983] which provides the minimum amount of rest 

recommended for EMG studies.       

2.2 Processing 

 The processing method of the collected EMG data is equally important as 

the collection techniques.  Since the data are returned in volts and with jagged, 

positive and negative values, several steps must be taken to obtain a functional signal 

for analyses.  EMG signals yielded during dynamic movements, as previously stated, 

possess the potential error caused by skin motion artifact.  This artifact occurs at 1-10 

Hz and therefore it is recommended to pass the signal through a high pass filter with a 

cutoff of greater than 10Hz [De Luca 2010].  Since this study used rapid movements 

which potentially adds higher frequency artifact, 30Hz was the high pass filter limit.  
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The voltage signal from the EMG system is a positive and negative signal 

reflecting over a floating voltage caused by a lack of ideal grounding.  It is common to 

place a grounding electrode on the subject to establish a reference voltage, but that 

does not guarantee the signal is based at 0.0 volts when it is compared to the actual 

ground on the analog to digital board.  This requires a DC offset component to be 

removed to prevent a shift in signal magnitude which would skew EMG evaluations. 

This is done by finding the mean of the baseline noise and subtracting the offset from 

the entire signal, setting the voltage reference to 0.0 volts.  After properly referencing 

the signal, it can be rectified.  Since the signal emanating from the muscle is not 

directionally specific, the signal returns positive and negative voltages.  The signals 

intensity is of interest and not the direction of the differential, therefore the negative 

component can be made positive.  

Smoothing out the jagged EMG, which is riddled with local minima and 

maxima, allows for researchers to gain an understanding of the contraction patterns 

during common movement patterns.  Low pass filtering of the EMG signals creates a 

linear envelope with a continuous shape for making activation timings more easily 

identifiable.  The envelope is especially useful with a repeating pattern, such as gait, 

and can be averaged over several cycles.  The filter cut off of choice is based on the 

primary component of the frequency spectrum.  It is recommended that 95% of the 

signals power is contained in the filtered signal in order to avoid cutoff error [Shiavi 

1998].  As the intensity of the activity increases, the power shifts towards the lower 

frequencies so more dynamic activity should use a low pass filter with a lower cutoff.      
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2.3 Summary 

EMG is a multipurpose tool which is used in determining muscle timings, 

intensities, and co-activations in healthy and injured populations.  This data can easily 

be misused and misinterpreted with the wrong collection and processing techniques.  

Proper collection locations should be established through an understanding of the 

target muscles’ physical size, fiber orientation, line of action, and proximity to other 

muscles.  Researchers must consider the muscle’s function to gain a full understanding 

of the output and take into account contraction duration, compounding exhaustion, and 

resting time between trials when collecting EMG data.  Following the collection, 

determining desired comparisons and knowing the frequency of the task leads to the 

application of suitable filters to the signals. The application of each of these details 

aids in the generation of a quality signal that can be used for comparing subjects, 

muscles, tasks, and many other important research details.  
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Chapter 3 

COMPARING EMG MAGNITUDES OF STATIC AND DYNAMIC 

MOVEMENTS 

3.1 Introduction 

Electromyographic (EMG) signal recording is an essential tool for muscle 

activation assessment.  EMG allows researchers and clinicians to establish muscle 

recruitment patterns, timing, and intensities during human movement [Ounpuu 1997, 

Prosser 2011].   A series of surface electrodes collecting EMG from various muscles 

identifies the contraction intensity needed to perform an action, but EMG signals are 

highly variable due to several differing anatomical traits including skin thickness and 

tissue conductivity [Farina 2001].  Electrode placement alone can result in a 

significant shift in the EMG values due to motor unit depth and fiber orientation 

relative to the surface EMG electrode [Campanini 2007].  Comparing across muscles, 

tasks, subjects, and testing sessions requires EMG signals to be normalized to a 

reference value [Knutson 1994, Mirka 1991, Burden 1999].  Normalizing signals to 

maximum voluntary isometric contraction (MVIC) values helps reduce the extrinsic 

variability in the EMG signal, but analyses between muscles and tasks within a subject 

may benefit from a more robust normalization method.   

Whether the intent is to discover an injury mechanism, musculoskeletal 

response to pathology, or analyze elite performance, referencing to the maximal signal 

establishes a common relation between each of the active muscles during a task.  Co-
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contraction is the activation of an antagonist muscle group, opposite to the muscles 

acting in the contraction direction, to increasing joint stability [Lin 2007, Caty 2007] 

or in response to pathology [Hortobagyi 2005, Zeni 2010].  Assessing the effort 

required by the antagonists to create joint stability effectively is easily evaluated if 

each muscle’s EMG signal is below 100% of its possible activation.  The only way to 

ensure this fact is to normalize each muscle to its maximal signal.  Besides 

establishing co-contraction, the result from normalizing to the maximal value 

determines the contribution of each muscle during a movement [Chapman 2008].  This 

information proves useful for comparing subjects of different performance abilities or 

tracking a subject’s improvement over time.  Normalized EMG is also used for the 

comparison of muscles between tasks and limbs during athletically demanding 

activities. Comparing activation magnitudes between these tasks requires a maximal 

EMG signal to differentiate between the more muscularly demanding exercises [Behm 

2005] as well as the activation strategy each subject utilizes to perform the same 

motion. 

Though important, the maximal EMG signal is a difficult value to collect.  

Many variables require the attention of the researcher.  Anatomical factors such as 

fiber pennation angle, joint angle, and joint velocity impact the EMG signal magnitude 

[Farina 2001, Cresswell 1995, Bigland 1954].  Physiologic effectors act on the EMG 

signal repeatability as well.  Rapid motor unit recruitment versus a slow increased 

recruitment pattern causes a significant alteration of the EMG magnitude [Ricard 

2005].  The electrode can shift in location relative to the muscle body and motor units 

during a muscle contraction.  The movement is an inherent factor of surface electrodes 

since the skin and muscle are not rigidly fixed to one another.  This sliding motion can 
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create signal alterations [Farina 2006].   Minimal publications have been presented on 

a subjects ability to elicit a maximal EMG signal.   

The ability to reproduce a signal is paramount to its functionality as a 

reference value.  Dynamic movements provide many hurdles to collecting reliable 

EMG signals.  Each effect that causes a shift in EMG signal magnitude adds 

variability to the signal. Despite the added variability to the signals, previous studies 

have yielded within day repeatable EMG signals of the leg muscles in several ballistic 

tasks including: the lower leg muscles during running at a fixed speed on a treadmill 

[Chapman 2009, Karamanidis 2004] and rhythmic hopping [Gollhofer 1990], the 

quadriceps muscles during maximum vertical jumping [Goodwin 1999], and both the 

quadriceps and hamstring muscles during a sprint into a 45° cut maneuver and drop 

jumps from a fixed platform height [Fauth 2010].  Confidence in an EMG signal 

eliciting a maximum signal requires retest reliability in addition to within subject 

reliability and only a limited number of muscles have been compared for reliability of 

peak EMG signals either within day or between days [Ball 2010].   

It is the purpose of this study to analyze the magnitude of EMG signals of 

9 leg muscles during MVIC tasks, isokinetic (ISOK) tasks, and ballistic tasks, 

including counter-movement jumping and sprinting, to establish a task which reliably 

produces EMG signals greater than those produced by other activities.  Since Rouffet 

and colleagues showed that EMG maximums elicited by dynamic tasks are greater 

than those produced during MVIC tasks for select muscles [Rouffet 2006], it is our 

hypothesis that the ballistic tasks will produce larger EMG signals than the static and 

controlled dynamic cases.  Along with the findings of the EMG magnitude, within 
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subject reliability and between day reliability will be established for a number of 

dynamic tasks.   

3.2 Methods 

3.2.1 Subjects 

A sample of fifteen (15) healthy, uninjured males and females (mean age 

of 24.13±4.64 yrs, average height of 1.725±0.10m, and an average weight of 

72.7±13.47kg) were recruited for study participation.  Each subject participated in at 

least 50 hours per year of Level I, II or III activities as described by the International 

Knee Documentation Committee.  Subjects were excluded from the study if they had 

any physical or neurological condition preventing them from walking, running or 

jumping normally.  Subjects were also excused from the trials if they sustained any 

injury that would affect their movement patterns between testing sessions.   

3.2.2 Instrumentation 

The data for this collection was taken on a multitude of devices to collect 

specific data sets.  The Biodex 3 System (Biodex Medical Systems, Shirley, New 

York) was used to fix joint angles and fix angular velocities during the MVIC and 

isokinetic (ISOK) tasks.  EMG data were collected with a MA-300 EMG System 

(Motion Lab Systems, Baton Rouge, LA) for 9 leg muscles.  The muscles included the 

medial and lateral vasti (VM, VL), rectus femoris (RF), biceps femoris (BF), 

semimembranosus (SM), medial and lateral gastrocnemius (MG, LG), soleus (SL) and 

tibialis anterior (TA).  Bipolar silver/silver chloride EMG surface electrodes 

(Myotronics, inc., Kent, WA) were placed over these muscles in accordance with the 

Anatomical Guide for the Electromyographer [Perotto, 1994].  To ensure good 
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conductivity, the electrode sites were shaved and lightly abraded with alcohol.  Wires 

transmitting from the electrodes were connected to a receiver which was then 

connected to a long coaxial tether leading back to the data acquisition system.  The 

receiver was placed on a backpack worn by the subject using Velcro.  Electrodes were 

held in place with elastic wraps. 

3D motion analysis was used for collecting joint angles, velocities, and 

ground reaction forces (GRF).  Retro-reflective markers were placed on anatomical 

landmarks and marker motion was captured by an eight camera arrangement (Qualysis 

Motion Capture System, Gothenburg, Sweden).  Rigid markers attached to shells were 

placed on the thighs, lower leg, and feet to establish a joint segment reference.  Once a 

static trial is performed to gather calibration data, motion capture collected data for 

each of the dynamic movement trials. 

3.2.3 Data acquisition and processing 

EMG signals were collected at 1000Hz and motion data were collected at 

a frame rate of 200Hz.  Data were processed using Visual 3D (C-Motion Inc., 

Bethesda, MD) and were visually inspected for excessive motion artifact or external 

signal noise.  Signals were processed by high pass filtering using a 4th order 

Butterworth filter with a 30Hz cutoff frequency, removing DC offsets and full wave 

rectifying.  A linear envelope was creating by low pass filtering the signals at 4Hz.  

The peak value of the linear envelope during the region of interest was the value used 

as the maximal signal of the trial.   



 20 

3.2.4 Procedure 

Subjects, informed of the experimental procedures, read and signed the 

informed consent document [Appendix B].  Following EMG electrode placement, 

subjects performed MVIC and ISOK trials on the Biodex 3 system.  Contractions 

about the ankle and knee joint, at 90° and 60° of flexion respectively, were performed 

for the MVIC trial with the subject exerting maximal effort for three seconds of 

dorsiflexion, plantar flexion, knee flexion, and knee extension.  The subjects 

performed ISOK tasks at 60° per second through the positive and negative directions 

of their full range of motion at each joint.  Between each trial on the Biodex, the 

subject rested at least one minute to avoid fatigue.  The subjects were given verbal 

encouragement throughout each of the contractions. 

Following the completion of the Biodex trials, retro-reflective markers 

were placed on the subject and a standing calibration trial was performed followed by 

the dynamic trials of sprinting and counter movement jumping.  The order of task was 

randomized to avoid compounding fatigue effects.  The subject was permitted several 

practice trials to become comfortable with each dynamic task and then performed 

several acceptable trials.  A Brower Timing Systems’ timing system (Draper, Utah) 

and a 20-meter walkway with a floor level force plate was used in the laboratory for 

the dynamic trials.  The sprint trial was performed at the subject’s maximum running 

effort.  Accepted trials required the speed to be within 5% of the other trials.  The 

counter movement jump consisted of the subject moving from a standing position, into 

a squat, and then a maximal jump, using their arms to aid in reaching their maximum 

take-off force and height.  A trial was accepted if the takeoff force was within 5% of 

the other trials.  Subjects returned within a month for retesting. 
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3.2.5 Statistical Analysis 

Analyses of the data were performed with the Statistical Package for the 

Social Sciences version 19.  An ANOVA (alpha level set to p<0.05) with planned 

comparisons between the MVIC case, ISOK case, and the ballistic cases determined 

significant differences between peak EMG values.  Intraclass Correlations Coefficients 

(3,1) were computed for each muscle during each task with in a single test session to 

establish reliability.  Two-tailed paired t-tests (alpha level set to p<0.05) was used to 

find between day differences in EMG magnitudes. 

3.3 Results 

Statistical analysis of the data revealed several significant differences in 

peak EMG production across tasks of varying dynamic degree.  The LG, MG, SL, VM, 

and VL all produced significantly larger signals during the dynamics cases, i.e. ISOK, 

sprinting, and jumping, compared to the MVIC case.  The ballistic tasks were 

significantly larger than the controlled ISOK tasks for the triceps surae muscles, but 

the ISOK task was statistically larger than the ballistic tasks for the SM.  Comparisons 

between the ballistic cases revealed sprint EMG maximums significantly exceeded 

those of the jump case for the SM and BF (Figure 3.1).  Significance was established 

for only 5 muscles, but the mean EMG value for the MVIC case was the smallest 

condition for 7 of the 9 muscles. 
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The establishment of peak EMG reliability required the ICC values to be 

greater than 0.75 [Fleiss 1986] and that limit was exceeded for every muscle across all 

tasks except for a single muscle during a single task (Table 3.1).  Only the SM was not 

able to reach the reliability threshold during the jump condition.  It is worth noting that 

Figure 3.1. The mean peak EMG and standard deviation across the MVIC, ISOK, sprint, and jump tasks from 
the first collection session.  The asterix (*) denotes a significant difference between the maximums of the 
MVIC and dynamic cases.  The number sign (#) indicates a significant difference between the ballistic and 
the ISOK tasks and the plus sign (+) indicates a significant difference between the sprint and jump cases.  
Note: The MVIC is the smallest mean EMG value for 7 of 9 muscles. 
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the EMG from the sprint method produced exceptionally reliable data with the signals 

from all muscles reaching an ICC value of 0.92 or greater. 

 

 

 
Table 3.1. The within subject ICC values for each muscles’ EMG maximum, with 0.75 being considered 
reliable. Note:  The sprint trials’ EMG signals were the most reliable and the jump trial was the only 
task with an unreliable signal (SM).  

 

 

 

The inter-day EMG data set possessed only one significantly different 

alteration between peak EMG.  The SL changed significantly across days for the ISOK 

task (Figure 3.2).  The variability of all the muscles ranged from 2% to 38% between 

collection sessions for all of the mean peak EMG signals.  The average difference 

between collection sessions across tasks was 11% for the MVIC, 22% for the ISOK, 

17% for the sprinting, and 17% for the jumping conditions.  The VL, on average, 

varied the least between days while the TA had the most day to day change.   

ICC MVIC ISOK Sprint Jump 

BF 0.89 0.94 0.95 0.89 

LG 0.86 0.85 0.96 0.95 

MG 0.95 0.87 0.97 0.97 

RF 0.92 0.97 0.92 0.95 

SL 0.81 0.77 0.93 0.90 

SM 0.91 0.88 0.94 0.68 

TA 0.99 0.99 0.96 0.91 

VL 0.93 0.86 0.95 0.95 

VM 0.92 0.93 0.94 0.96 
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Assessment of statistical significance of the second collection session 

determined similarities in maximal elicited signals between days.  The LG, MG, and 

SL EMG values of the ballistic cases repeated the significantly larger magnitudes in 

relation to the MVIC and dynamic cases which were determined on day 1.  (Figure 3.1, 

Figure 3.2).  The second collection session maintained statistically increased 

maximums of dynamic cases versus the MVIC for the VL and VM (Figure 3.2).     
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Figure 3.2.  The differences in mean peak EMG signals collected on day 1 and day 2.  The cross-hatched 
area represents the magnitude of change between the two collection sessions.  The EMG collected 
from the soleus during the ISOK task the first day was significantly different than the maximum 
collected on the second day, denoted by the diamond (◊).    The asterix (*) denotes the significant 
differences determined on the first day were same as the significant differences found on the second 
day.  Note: The second day significant differences matched those of the first day for the LG, MG, SL, 
VL, and VM. 
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3.4 Discussion 

3.4.1 Maximal task 

The data clearly showed that the MVIC task does not produce the maximal 

EMG signal, which is supported by the literature.  The varying anatomical and 

physiologic factors occurring during the ballistic tasks were enough to cause a 

significant increase in EMG.  The muscles which yielded a significant increase in 

EMG during the ballistic tasks were the propulsive muscles used for push-off for both 

the sprint and the jump cases.  The vasti are used exclusively as knee extensors and 

were recruited rapidly to generate a maximum speed for sprinting and jumping to a 

maximal height.  The rapid muscle recruitment was accompanied by massive joint 

velocities (Table 3.2).  To further understand the relationship between EMG and joint 

angular velocity, the percent difference between the maximum EMG of the MVIC and 

sprint cases were compared (Figure 3.3).   The uniarticulate VM and VL provide an 

excellent joint angle to muscle length relationship, and therefore were analyzed during 

sprint task for comparison.  The VM and the VL had a positive correlation between the 

EMG of the knee extensors and the joint velocity. The LG, MG, and SL during the 

ballistic tasks also produced significantly increased maximum EMG values so it would 

be logical to compare the ankle joint velocity to the EMG, but the anatomical 

dissimilarities of preventing a similar extrapolation.  The ankle velocity during push 

off of both the jump and sprint phase were greater than the 60°/s of the ISOK case 

(Table 3.2), but the EMG/velocity plot does not correlate well to the shift in EMG 

from the MVIC to the sprint or jump cases.  The lack of correlation may be attributed 
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to the variable nature of the Achilles tendon length in loading and unloading based on 

force applied or operational velocity [Herbert 2002].  The Achilles tendon does not 

yield a uniform muscle fiber length change with joint angle change, thus  preventing a 

reasonable regression fit. 

 

 

 
Table 3.2 The mean kinematic data found for the ballistic trials.  The angular velocities and range of 
motion (RoM) measurements were collected during the stance phase of sprinting and the takeoff 
phase of jumping.  These values are supported by the findings of Dutto and Mann [Dutto 2004, Mann 
1980]. 

Kinematics Sprint Jump 

Knee Velocity (°/s) 151.44 373.01 

Ankle Velocity (°/s) 197.45 538.50 

Knee RoM (Degrees) 29.16 102.82 

Ankle RoM (Degrees) 38.20 74.98 
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Figure 3.3.  The percent change in maximum EMG from MVIC to sprint as 
compared to the angular velocity about the knee.  Figure A is the EMG shift of 
the VL and figure B is the EMG shift of the VM.  Note: The regression line slopes 
positively for both muscle groups. 
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The hamstrings, which operate primarily as knee flexors, were not 

significantly different between the static case and the dynamic cases.  While the ISOK 

was consistently larger than the MVIC task, the sprint kinematic variability 

contributed to a large standard deviation and a lack of significance between the sprint 

maximums and the MVIC maximums.  The subjects’ hamstring recruitment deviated 

from one another because of the level of sprint training each subject had received.  

while the novice runners use the hamstrings as an eccentric, momentum reducing 

muscle during the swing phase, the elite runners use the hamstrings as a concentric, 

pulling muscle to aid in propulsion during stance.  While novice and elite runners both 

use the quadriceps and triceps surae as propelling muscles, the variation between 

trained runners’ hamstring recruitment patterns and those of the untrained runners 

[Novacheck 1998] lead to a large deviation in task maximum.  The functionality of the 

hamstrings during the jump task was the cause of the decreased SM and BF EMG 

signals.  The jumping task was collected during the push off phase in which the 

hamstrings are acting only as hip extensors and not knee flexors.  The hamstrings are 

most active during leg flexion and therefore this constriction of functionality produced 

non-maximal EMG signals. 

Previous studies have shown EMG magnitudes change as a function of 

joint angle during a task.  The ISOK trials encompassed the subjects’ entire range of 

motion and the jump trials were very similar, but the sprint had a very limited range of 

motion during the stance phase of gait (Table 3.2).  Babault and colleagues showed the 

quadriceps producing their largest signals when the muscle was at its most 

disadvantaged, i.e. at its shortest length [Babault 2003].  With the ISOK and jumps 

trials acting over the entire joint range and the knee extensors and ankle plantar flexors 
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at the end of travel during the sprint, these muscles were at their maximum EMG joint 

angles during each of dynamic activities.  In the context of the signal collection, when 

the muscle was fully contracted and at its shortest length, the electrode was collecting 

from the maximum volume of that electrode location [Rainoldi 2000] also supporting 

the conclusion that the dynamic tasks were at the optimal joint angle for maximum 

signal output. 

The maximal signal is a tool that will be used for a healthy and capable 

population, since that is the group which is able to sprint and jump at their maximal 

efforts, but the ability to perform the task is not the only factor limiting participation.  

The first points of the correlation graphs (Figure 3.3) are located at approximately 

100%.  If a subject is unable to perform a dynamic task maximally, it may imply they 

would not generate an EMG greater than the signal they could elicit during a static, 

constrained task. This removes the need for a ballistic collection when attempting to 

find a maximal EMG signal on an injured or incapable population. 

3.4.2 Within subjects reliability 

The within subjects reliability produced very acceptable results.  The 

MVIC reliability for each muscle exceeded an ICC value of 0.80, as predicted by 

previous literature.  Along with the static case, the reliability of the controlled ISOK 

case met expectations.  Potential variability was introduced into the ballistic trials 

which could have drastically decreased reliability; however the added motion artifact, 

potential inconsistency of kinematics, and increase risk of fatigue did not alter the 

consistency of the ballistic EMG.  The limited amount of motion artifact seen in the 

ballistic trials was able to be removed through high pass filtering of the signal.  The 

mitigation of fatigue was achieved though the allowance of proper rest between trials, 
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which successfully prevented altered kinematic performance and signal loss.  The ICC 

values for 17 of the 18 ballistic cases successfully exceeded the acceptable 0.75 value 

for reliability.  While other studies have reported reliability for similar tasks such as 

drop jumps, running, and cutting [Fauth 2010, Chapman 2009, Gollhofer 1990], it has 

not been previously demonstrated that sprinting and maximal vertical jumping are 

capable of being reliable for this number of muscles.   The exceptional reliability 

produced by the sprinting tasks (ICC ≥ 0.92) showed the ability to successfully collect 

EMG during gait tasks at any velocity.  The single muscle, which did not reach 

reliability, was the SM during the jump.  These findings were similar to the results of 

Goodwin and colleagues [Goodwin 1999].  The SM, acting as a hip extensor and not a 

leg flexor, was not acting in its primary force-generating capacity during the jump 

trials; the resulting changes in jumping technique to produce major changes in signal 

output. 

3.4.3 Inter-day repeatability 

Significant increases of peak EMG values of the maximal task must be 

present across testing session for the value to be considered constructive.  To establish 

reliability of the maximal values, the retest peak EMG values were assessed for 

significant differences as well.  This resulted in the discovery that the significantly 

larger values of the first day also were large on the second day of testing.  The signals 

of the LG, MG, SL, VL, and VM were significantly greater during the dynamic cases 

than the MVIC trials.  The reliability of these signals can be attributed to the reliability 

in kinematics.  Previous studies have demonstrated subjects able to consistently repeat 

a range of motion and joint velocity for both sprinting and maximal counter movement 

jumping [Yoon 2006, Queen 2006]. 
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3.4.4 Conclusion 

The EMG maximums of 9 muscles were compared across 4 tasks with 

maximal exertion held constant and joint velocity, joint range of motion, and various 

degrees of kinematic freedom.  The limited range of motion of the sprint task did not 

prevent the propulsive muscles from emitting maximal signals that rivaled the 

maximum EMG signals of the jump task.  Contrary to range of motion not being the 

definite cause of maximal EMG production, the joint velocity positively correlated to a 

shift in EMG magnitude, when analyzing a single joint muscle (VL and VM).  The 

significant EMG maximums (Figure 3.1) demonstrated that ballistic movements can 

produce reliable peak EMG values (Table 3.1) that are close to maximal.  

Unfortunately, no single activity was identified as the producer of maximal signals, 

since neither ballistic EMG activity yielded a statistically greater peak EMG than the 

other.  The small changes to the EMG means and the repeated significance between 

days combined with the inter-subject reliability creates a confidence in using data from 

the ballistic test for normalization and other comparisons.  This understanding enables 

future studies to normalize to these values, compare muscles across activities, and 

compare co-activation between subjects and tasks. 
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Chapter 4 

EMG NORMALIZATION EFFECTS ON AN EMG-DRIVEN MUSCLE 

MODEL 

4.1 Introduction 

Analysis of muscle activation produced during activities ranging from the 

daily life motions of walking and stair climbing to the athletic motions of running and 

jumping requires the collection of reliable electromyography (EMG) signals measured 

under dynamic conditions.  EMG signals are recordings of the electrical activity that 

are associated with muscle contractions; these signals give insight into the function of 

the muscles based on contraction timing and intensity.  EMG collects signals from the 

muscle body after being stimulated by the muscle’s motor unit impulse, which is in 

response to a neural command.  Though EMG is representative of muscle’s activation, 

muscle force production and muscle activation do not equate to each other in a linear 

manner [Buchanan 2004].  An EMG signal of a single muscle is an independent value 

in regards to other EMG signals of separate muscles.  EMG is measured as a voltage 

and is highly dependent on many factors other than contraction intensity, including 

electrode placement, skin impedance, joint angle [Farina 2001], and joint velocity 

[Bigland 1954].  Due to the factors affecting the signal, it is important to normalize the 

EMG values before the signal is input into an EMG-driven muscle model. 

 The EMG-driven muscle model is a computational based algorithm 

model which requires a series of inputs, including EMG, to predict individual muscle 
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forces.  The EMG inputs are used to determine the muscle activation intensity.  The 

activation intensity scales each muscles output force based on its maximum producible 

force [Buchanan 2004].   The model has been tested repeatedly for low intensity 

movement inputs, which were normalized to the consistently repeatable EMG values 

produced during maximum voluntary isometric contraction (MVIC) tasks.  After 

normalization, the EMG values of the lower intensity movements were below 100% 

activation.  Higher velocity, or ballistic, tasks often produce EMG magnitudes greater 

than those generated during MVIC tasks [Gazendam 2007].  Subjects’ individual 

maximum muscle forces and cross sectional areas are not input into the EMG-driven 

model.  This requires the model to adjust the maximum isometric force of each muscle 

starting from the average values reported in literature [Winter 1990].  Therefore, 

normalizing to EMG values produced by isometric tasks could produce muscle inputs 

much greater than 100% and lead to the incorrect conclusion that a muscle is 

producing forces outside of reasonable, physiological bounds.  This mistake is avoided 

by normalizing to the maximal EMG value. 

Finding an activity to yield a maximal EMG requires attention to many 

factors including various joint angles, velocities and contraction magnitude, and 

muscle fiber alignment.  Muscle contraction intensity and degree of contraction 

impulse strongly influences EMG.  The EMG signal is a resultant of the number of 

active motor units and the rates at which they are firing [Guo 2010].  As a contraction 

increases, the firing rate of the active motor unit increases.  Once reaching a maximum 

frequency threshold of the first motor unit, an additional motor unit is recruited and 

this continues until the system is at its maximum output [Person 1972], therefore a 

maximum effort contraction is needed to produce the maximal EMG.  A MVIC is an 
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example of a task requiring maximum contraction intensity while holding other 

variables constant leading to a muscle producing its maximum force [Hill 1938].  

Holding other variables constant and exerting a maximum contraction is what causes 

MVIC to have an excellent reliability, leading to it becoming a common normalization 

value.  Unfortunately, the MVIC value, because of the other influential factors, is not 

maximal. 

MVIC tasks produce reliable EMG data and yield the maximum force of a 

muscle but this is not always the normalization value of choice.  Ballistic EMG 

normalized to MVIC values can lead to EMG values above 100% activation [Burden 

1999].  Since maximum force does not guarantee maximum EMG production 

[Buchanan 2004] and dynamic trials exist that produce larger EMG signals, dynamic 

EMG has an especially important role in the EMG normalization of high velocity 

movements being assessed in the EMG-Driven model.  There is a wide variety of 

movements from which to record dynamic EMG signals ranging from controlled 

isokinetic contractions to much more variable ballistic movements.  Ballistic tasks 

differing from jumping and hopping to running and cutting have been studied briefly, 

but previous research has only minimally compared the magnitudes of the resulting 

EMG and EMG-driven muscle models have not been assessed with differing 

normalization techniques.   

 The purpose of this study was to determine if EMG inputs of greater than 

100% activation affect the EMG-driven muscle model.  Our hypothesis was the 

smaller input activations, determined by normalizing to larger EMG maximums, 

would produce smaller joint moment outputs from the model.  The applications of 

computer based muscle models for use during rapid dynamic tasks are numerous and it 
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is important to evaluate the model’s output variation between the normalizing methods 

of maximal and submaximal tasks when analyzing faster movements. 

4.2 Methods 

A sample of fifteen (15) healthy, uninjured males and females (mean age 

of 24.13±4.64 yrs, average height of 1.725±0.10m, and a weight of 72.7±13.47kg) 

were recruited for study participation.  Each subject participated in at least 50 hours 

per year of Level I, II or III activities as described by the International Knee 

Documentation Committee.  Subjects were excluded from the study if they had any 

physical or neurological condition preventing them from walking, running, or jumping 

normally.  Subjects were also excused from the trials if they sustained any injury that 

would affect their movement patterns between testing sessions.   

4.2.1 Instrumentation 

The data for this collection was taken on a multitude of devices to collect 

specific data sets.  The Biodex 3 System (Biodex Medical Systems, Shirley, New 

York) was used to fix joint angles and fix angular velocities during the MVIC and 

isokinetic tasks.  EMG data were collected with a MA-300 EMG System (Motion Lab 

Systems, Baton Rouge, LA) for 9 leg muscles.  Those muscles included the medial and 

lateral vasti (VM, VL), rectus femoris (RF), biceps femoris (BF), semimembranosus 

(SM), medial and lateral gastrocnemius (MG, LG), soleus (SL) and tibialis anterior 

(TA).  Bipolar silver/silver chloride EMG surface electrodes (Myotronics, inc., Kent, 

WA) were placed on these muscles in accordance with the Anatomical Guide for the 

Electromyographer [Perotto 1994].  To ensure good conductivity, the electrode site 

was shaved and lightly abraded with alcohol.  Snap wires transmitting from the 
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electrodes were connected to a receiver which was then connected to a long coaxial 

tether leading back to the data acquisition system.  The receiver was placed on a 

backpack worn by the subject using Velcro.  Electrodes were held in place with elastic 

wraps. 

Motion analysis was used for collecting joint angles, velocities, and 

ground reaction forces (GRF).  Retro-reflective markers were placed on anatomical 

landmarks.  Marker motion was captured by an eight camera arrangement (Qualysis 

Motion Capture System, Gothenburg, Sweden).  Rigid markers attached to shells were 

placed on the thighs, lower leg and feet to aid in motion capture, which was used for 

each of the dynamic movement trials. 

4.2.2 Data acquisition and processing 

EMG signals were collected at 1000Hz and motion data were collected at 

a frame rate of 200Hz.  Data was processed using Visual 3D (C-Motion Inc., Bethesda, 

MD) and was visually inspected for excessive motion artifact.  Signals were processed 

by high pass filtering using a 4th order Butterworth filter with a 30Hz cutoff 

frequency, DC offsets were removed and the signal was full wave rectified.  A linear 

envelope was created by low pass filtering the signals with a 4th order Butterworth 

filter with a 4Hz cutoff frequency.  The peak value of the linear envelope during the 

region of interest was the value used as the maximal signal of the trial.   

4.2.3 Procedure 

Subjects informed of the experimental procedures read and signed the 

informed consent document.  Following EMG electrode placement, subjects 

performed MVIC and isokinetic trials on the Biodex 3 system.  Contractions about the 
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ankle and knee joint, at 90° and 60° of flexion respectively, were performed for the 

MVIC trial with the subject exerting maximal effort for three seconds of dorsiflexion, 

plantar flexion, knee flexion, and knee extension.  Between each trial on the Biodex, 

the subject rested at least 1 minute to avoid fatigue.  The subjects were given verbal 

encouragement throughout each of the contractions. 

Following the completion of the Biodex trials, retro-reflective markers 

were placed on the subject and a standing calibration trial was performed followed by 

the dynamic trials of sprinting and running.  The subject was permitted several practice 

trials to become comfortable with each dynamic task and then perform several 

acceptable trials.  A Brower Timing Systems’ timing system (Draper, Utah) and a 20-

meter walkway with a floor level force plate was used in the laboratory for the 

dynamic trials.  The sprint trial was performed at the subject’s maximum running 

effort.  Accepted trials required the speed to be within 5% of the other trials.  A series 

of running trials were performed at 4.0 m/s, within 5%, to create the model inputs.  

The model requires several inputs including EMG, knee and ankle moments, muscle 

tendon lengths and joint moment arms.  The force and motion data were filtered using 

a low pass, 4th order Butterworth filter with a 6Hz cutoff frequency to remove the high 

frequency noise content.  Knee and ankle moments were output from Visual3D.  

Motion data was processed with OpenSim (https://simtk.org/) to create the subject 

specific moment arms and muscle tendon lengths.  To perform a comparison of 

normalization techniques, the model was executed with the same inputs except for 

normalization of the EMG to the MVIC and sprint cases, thus creating separate inputs.   
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4.2.4 Statistical Analysis 

Analyses of the data were performed with the Statistical Package for the 

Social Sciences version 19.  Paired t-tests, with a significance level α=0.05, 

determined significant differences between peak knee moments of the normalization 

methods.  Differences in the r-squared values of the curves, in relation to the inverse 

dynamics, from the output of the model were also compared.  

4.3 Results 

The model was able to match the inverse dynamic the knee joint moment 

with both normalization cases (r
2
 values greater than 0.90).  The MVIC case matched 

the inverse dynamic results better than the dynamic normalization case demonstrated 

by the larger r
2
 values and lower error in peak moment (Figure 4.1).  The average 

differences between the peak moments calculated by inverse dynamic case and the 

model predicted moments were 10.4 N-m from the MVIC case and 32.1 N-m from the 

sprint case.  This represented a significantly different result between outputs.  
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Figure 4.1.  Predicted knee joint moments from the EMG-driven model with EMG inputs normalized to 
the MVIC and sprint maximums and the knee joint moment calculated through inverse dynamics.  The 
asterix (*) denotes a significant decrease in error, with respect to the inverse dynamic value, of the 
peak knee moments from the two different normalization methods.  Note:  The curve matched better 
between the MVIC and inverse dynamic cases as identified by the larger mean r

2
 values (located in the 

legend). 

* 
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4.4 Discussion 

The EMG-driven model generated knee moment curve in both the MVIC 

and sprint normalization cases matched the moment curve calculated by inverse 

dynamics.  These finding were similar to those of Besier and colleagues [Besier 2009].  

Our hypothesis was confirmed.  The sprint EMG normalization produced a decreased 

joint moment compared to the MVIC case, and was less accurate as a result.  The 

increased EMG inputs of the MVIC normalization case allowed the muscles to reach 

the necessary required level of estimated forces to match the knee moment assessed by 

the inverse dynamics.  The muscle moment calculations involved individual joint 

moment arms multiplied by predicted muscle forces.  The muscle force calculation 

combines several optimized musculotendon parameters, including knee flexor and 

extensor gain factors, and the EMG-driven muscle activations.  The gain factors act a 

multiplier of the maximum isometric muscle force, determined from literature 

[Winters 1990], to adjust for individual subjects’ differences in maximum strength.  

The muscle and tendon properties of the model were constrained to maintain 

acceptable physiologic values.  The extensor and flexor gains were limited from 0.50 

to 1.50 of the reported average maximum isometric force for each muscle.  The tight 

gain limits prevented the sprint normalization case from obtaining a greater degree of 

accuracy during the moment prediction.  During the optimization, the model reached 

the maximum gain limits of 1.50 which prevented the muscle forces from obtaining 

the necessary maximum forces required to reach the calculated inverse dynamic 

moments.  The restricted forces predicted increased knee moments at heel strike and a 

lower overall peak knee moment at toe off (Table 4.1). 
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Table 4.1.  The mean gain factors of the extensors and the flexors calculated during the EMG-driven 
muscle model optimization.  Note:  The sprint and MVIC cases were both reaching the extensor gain 
limit.  The flexor gain limits were closer to reaching the maximums for the sprint case verses MVIC 
case. 

 
MVIC – 

Extensors 
MVIC - 
Flexors 

Sprint - 
Extensors 

Sprint - 
Flexors 

Gains 1.07 1.50 1.46 1.27 

 

 

 

The gain regulates the increase or decrease in muscle force production.  

Understanding the effects of the gains on the model is paramount in knowing where to 

set the limits of the gain factors.  A sensitivity analysis was performed on the 3 least 

matching trials by increasing the gains from 1.5 to 2.0 and 2.5 (Figure 4.2).  As the 

gain factors were relaxed on the EMG-driven model, the sprint and the MVIC 

normalization cases were able to determine more accurate predictions.  Since the sprint 

case accuracy was the lesser of the two, it produced greater improvements with each 

gain iteration, but was still not able to obtain the lesser deviation from the inverse 

dynamic obtained by the MVIC normalization case. (Figure 4.2).   

 A complete understanding of the better normalization method requires the 

need for an isometric force test which can isolate a group of muscles for the scaling of 

an individual’s maximum, which is not a simple task due to the needed inclusion of 

co-activations and passive elastic tissue stresses.   Since we are not able to determine 
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the actual maximum of the subject, we rely on the models predictions and the limits of 

human physiology. 

 

 

 

 

 
Figure 4.2.  The mean knee extension moment of the 3 least accurate estimations during the stance 
phase of gait.  Normalizations and gain parameters were changed to understand the effects of 
increasing the gain on both conditions.  The sprint normalization method is plotted with dashed lines 
and the MVIC normalization method is plotted with solid lines.  Note:  As the gain was relaxed, i.e. the 
constraints were increased, the curves matched the inverse dynamic case better. 



 44 

4.4.1 Conclusion 

The MVIC normalization input produced a better match to the inverse 

dynamics without having to greatly increase the estimated muscle force gains.  

Normalizing dynamic EMG to a maximal EMG signal was not essential for predicting 

muscle forces.  The EMG-driven model was able to adjust muscle force parameters 

leading to more accurate knee moments with the MVIC normalization method.  

Though our hypothesis was correct in the assumption of the decreased EMG would 

cause a smaller moment, it created too small of a moment to match the inverse 

dynamics without amplification of the subject’s maximum isometric force to abnormal 

physiologic levels.  
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Chapter 5 

CONCLUSION 

This thesis focused finding a single task to produce a maximal EMG 

signal which was also reliable. To perform this test, subjects performed controlled 

dynamic and ballistic tasks while EMG signals were collected from 9 leg muscles.  

Significantly greater signals were found during the ballistic tasks, jumping and 

sprinting, than the static and ISOK tasks for the triceps surae.  Dynamic tasks, 

including both the ballistic and ISOK tasks, were significantly greater than the MVIC 

case for the vasti, gastrocnemii, and soleus.  It was also found that all the EMG signals 

produced during the ballistic tasks were reliable, less the SM during the maximal 

jumping case.   

This thesis also assessed the normalization methods for modeling dynamic 

motion with an EMG-driven muscle force estimation model.  The model’s inputs, 

from the stance phase of a run task, were normalized with the near maximal sprint and 

sub-maximal MVIC EMG signals and the results were compared.  The forward 

dynamic outputs from the model were compared with the calculated inverse dynamic 

knee moment.  The MVIC case produced the more accurate moment results.   Though 

only a single task was used for normalization, to obtain the true maximum of each 

muscle a series of tasks would need to be performed and the maximums would come 

from several tasks.  
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5.1 Major findings  

5.1.1 Maximal EMG signals 

The variable nature of EMG signals creates a difficulty in determining if a 

maximal signal was elicited by a subject.  Typically, if a maximum signal is desired, 

researchers have subjects perform a MVIC task, but this is not the generator of 

maximal signals.  This study showed that if a true maximum is desired, a ballistic task 

must be performed in which the desired muscles are acting in their primary functional 

manner.  This permits the muscles to be fully activated and for the muscle to perform a 

burst contraction to reach its largest possible signal.  The repeatable nature of these 

maximal signals was also established in this study.  The performance of test and retest 

collections determined the ability of subject to maintain the same significant level of 

increased magnitudes between two separate days. 

5.1.2 Dynamic signal reliability 

Collecting EMG at high velocities introduces the possibility of increased 

signal altering factors including increased motion artifact, muscles movement beneath 

the skin relative to the electrode location, and the onset of muscle fatigue.  Though 

there was the possibility of error in the signal, reliable EMG signals were still able to 

be collected with specific details of the collection process being addressed.  Limiting 

motion artifact with adhesive electrodes followed by proper muscle wrapping reduced 

the skin artifact.  The remaining low frequency component caused by motion artifact 

was removed by high pass filtering.  Muscle movement was addressed through 

ensuring repeatable joint range of motion during each of the tasks.  Fatigue was 

managed through sufficient rest for the subjects between trials.  Attention to each of 

these details created reliable ballistic EMG signals. 
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5.1.3 Effects of EMG normalization 

The EMG-driven model has produced estimations of muscle forces and 

knee moments for slower and more controlled movements, but the model is 

progressing towards predicting muscle forces and joint loading for more dynamic 

activities.  The increased EMG signals from the more dynamic conditions called into 

question the typical method of normalizing to MVIC by producing activations above 

100%.  This study determined the increase in EMG signals did not negatively affect 

the model.  To the contrary, the model produced knee moments closer to those of the 

inverse dynamics using the MVIC normalization method versus normalizing to a near 

maximal ballistic task without adjusting muscle parameters outside of reasonable 

physiological bounds.    

5.2 Contributions  

This thesis conclusively determined ballistic tasks exist which produce 

peak EMG signals greater than those produced by MVIC tasks as well as establishing 

that the relative magnitudes increases from the ballistic tasks could be repeated on a 

separate day.  Previous studies alluded to this fact [Gazendam 2007] but no studies 

established significant magnitude changes between static and dynamic tasks nor have 

studies shown this fact for most of the major muscles in the leg.  Significant 

differences found during ballistic tasks aids in the comparison of co-contraction and 

required activation to perform sub-maximal tasks. This study also showed the 

repeatability of a peak EMG value within a testing session of multiple dynamic tasks, 

confirming some of the findings of previous literature [Fauth 2010, Goodwin 1998,  

Gollhofer 1990], but on a much broader array of muscles.  Finally, this study 
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determined normalizing dynamic tasks to the MVIC case is an acceptable method 

when modeling muscle forces with the EMG-driven model.     

5.3  Limitations  

EMG studies are limited by the variability of subject’s physical traits.  

Since this study required individuals to run faster than 4.0 m/s and jump maximally, a 

certain fitness level existed among our subject population.  Much of our population 

consisted of active, young adults, which led to very low body fat.  The decreased 

presence of adipose tissue permitted the collection of much cleaner signals.  It reduced 

the amount of soft tissue error with less tissue to transmit EMG signals through and 

provided a lower skin motion artifact during the very dynamic activities.  It is unclear 

whether the same repeatability would have been reached with a population with a 

higher body fat percentage. 

The study also has a kinematic limitation.  The joint angle range of motion 

for the sprint case was only assessed for the stance phase of gait.  During the stance 

phase of gait, the plantar flexors and knee extensors were at their shortest.  This was 

assumed to be when those muscles were at their peak EMG output, which was 

supported by the literature [Azegami 2007, Maffoietti 2003, Suter 1997].  Due to the 

limited motion capture volume we were not able to collect the range of motion for the 

knee flexors or the ankle dorsiflexors and therefore could not determine if the peak 

EMG values did not reach significance because of the task or because of a limited 

range of motion.  The kinematic limitation also applied to the models force estimation.  

Since the model is tuned to the inverse dynamic knee moment, we were only able to 

calculate the knee moment during the stance phase of gait.   
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The final limitation of the study is due to the unknown forces in the 

individual muscles.  The gain coefficients strongly influence the muscle force output 

and joint moment.  Without knowing the maximum output force of an individual 

subject, it is difficult to determine the limits to apply to the gains.  Our limits were set 

by previous subject research [Winters 1990]. 

5.4  Future work  

The application of EMG signals to human motion analysis, future 

pathologies, and muscle modeling requires a great deal of understanding of the EMG 

tool itself.  While this work was not able to determine a maximal signal between 

ballistic tasks, it was determined that maximal ballistic tasks produce much larger 

signals in the propulsive muscles of those tasks.  This knowledge can be applied to 

finding a ballistic task which can produce maximal activity in the knee flexors and 

ankle dorsiflexors.  Having a complete set of tasks producing near maximal signals 

will enable accurate muscle co-contractions and required muscle exertion within a task 

to be identified.   

Reliability knowledge of a healthy population is the first step in using 

EMG for a pathologic population.  Since sprinting is the highest velocity gait task, and 

therefore had the most variability introduced into the signal, it can be reasonably 

assumed that running at a slower speed, for healthy individuals, will be equally 

reliable.  If this is the case, we can assess the variability of different pathologic 

populations to determine decreases in muscle activity and recognize muscle avoidance, 

inhibition, or decreased function.  Knowing which muscles are consistently acting 

maximally during a task will allow us to make changes to those muscles and evaluate 

the kinematic response. 
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 Understanding the more reasonable normalization value permits muscle 

force estimation with greater dynamic conditions.  The model can now be utilized for 

rapid movements without the uncertainty of normalization task.  The model can be 

utilized under dynamic conditions for task retraining, knee compartmental loading 

analysis, identifying risks of injury, and understanding recovery progression. 

5.5  Summary 

This thesis analyzed the maximum EMG signal output of BF, LG, MG, 

RF, SL, SM, TA, VL, and VM muscle during several dynamic tasks for comparison 

against the maximum peak EMG signal of the MVIC.  It was determined that 5 of the 

9 muscles yielded significantly greater EMG maximums during the dynamic tasks 

compared to the static.  It was also seen that the MVIC produced the lowest average 

peak EMG for 7 of the 9 muscles.  The peak dynamic EMG produced reliable signals, 

with the exception of a single case, within a testing session and maintained the large 

differences in reference to the MVIC across days.  The ballistic and MVIC peak EMG 

values were used to normalize running EMG as an input for an EMG-driven muscle 

model.  The MVIC case produced a better knee moment match to the inverse dynamics 

than the sprint normalization methods.  The establishment of the better normalization 

task allows for future dynamic tasks to be optimized by the model with a greater level 

of confidence. 
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APPENDIX 

 

 

Appendix A  

 

MODEL PARAMETERS 

 
Table 6.1.  The physiological limits within the optimization criteria of the EMG drive, muscle force 
estimation model. 

Parameter Description Limits 

ℓo
m

  optimal fiber length 
The length at which the sarcomeres 

are aligned for maximal force 
±20% 

ℓs
t
  resting tendon length 

The amount of tendon stretched 

before tension acts as a passive force 
±20% 

D 
electromechanical 

delay 

Time from EMG signal arrival to 

muscle contraction 
10 - 100ms 

Alen 
non-linear shape 

factor 

A relationship to account for the 

non-linearity of EMG to force 

relationship 

0.01 - 0.12 

γ1, γ2 
recursive filter 

coefficients 

Coefficients to calculate activation 

from EMG with 2
nd

 order dynamics 
-0.9 < γ1,2 <  0.9 

Ge extensor strength gain 
Strength range of extensors based on 

isometric values 

0.5 – 1.5 

Gf flexor strength gain 
Strength range of flexors based on 

isometric values 
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Appendix B 

 

SUBJECT INFORMED CONSTENT 

consent  
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UNIVERSITY OF DELAWARE  

POSTURE AND MOVEMENT BIOMECHANICS LABORATORY 

INFORMED CONSENT FORM 

 

Study Title: Consistency of peak dynamic EMG in leg muscles. 

 

Principal Investigators:   Thomas S. Buchanan PhD, Stephen Suydam, BS 

 

 

 

PURPOSE AND BACKGROUND 

 

 You are being asked, along with approximately twenty other subjects, to 

participate in a study that will evaluate leg muscle activity (EMG) recorded using 

surface electrodes, during several different tasks.  Muscle activity will be recorded 

during static (non-moving) and dynamic (moving) tests. The following tasks will be 

examined:  walking, running at a fixed speed, running at a fixed speed and cutting 

diagonally to one side, running as fast as you can, and jumping as high as you can.    

 

Participation in this research study is entirely voluntary and refusal to participate 

will involve no penalty.  You may withdraw from the study at any time.  You must be 

at least 18 years of age to participate in this study. 
   

 All testing will take place in the Posture and Movement Biomechanics 

Laboratory at the University of Delaware.  The entire testing session will take 

approximately 2.5 hours to complete.  This is a test-retest experiment and you will be 

required to return one time within one month following the first testing session.  This 

second testing session will take an additional 2.5 hours to complete. 

 

 

 

PROCEDURES 

 

Recording Muscle Activity 
 

Surface electrodes will be placed on the skin of your lower leg and thigh.  In 

addition, reflective markers will be placed on easily identifiable points of reference on 

your body.  These reflectors make it easy for the video cameras to collect your motion 

with a large degree of accuracy.   

All electrodes will be taped to your skin to prevent movement and then plugged 

into a small (6” x 4” x 3”) transmitter box that will be attached to the back of a vest, 

which you will be wearing, with Velcro.  Muscle activity will be collected so we can 
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determine when the muscles are working during the activities.  These measurements 

will be taken at the same time as the dynamic testing and the motion analysis testing.   

 

Strength Testing 
 

Strength will be measured of your upper and lower legs while you are seated in a 

device that limits your motion and measures how much force you can produce.  You 

will have your leg placed in a fixed position and you will perform a push and pull 

movement as hard as you can with both your lower leg and foot individually.  

Following that, your movement will be restricted to a speed of 60 degrees per second 

and you will again push and pull as hard as you can with both your lower leg and foot 

with verbal encouragement from the researcher.  Each maximum force trial will be 

repeated three times.  The test will measure the strength of your lower leg and thigh 

muscles and you will be provided with 2 minutes rest between each trial.   

  

Walk, Run, Sprint and Jump Testing 
 

Markers will be placed on your skin and shoes (both legs) using adhesive skin 

tape.  Shells with markers will be placed on your lower back, thigh, calf, and foot and 

will be held in place with elastic wraps.  Video cameras will be used to track the 

markers on your leg during the activities. 
 

You will first perform walking trials at your self selected speed.  The next test will 

be a running test at 9 miles per hour.  After that test, a 45
o
 angle step will added to the 

middle of the run. Following the run/cut trial, you will perform a sprint in which you 

will accelerate to your maximum speed for a distance of 15 meters.  During each of 

these trials you will step on a force plate to calculate the force of your landing.  Lastly, 

you will perform a counter movement jump from the force plate.  This involves 

swinging your arms, squatting down and then jumping as high as you can.  Seven trials 

will be performed for each task.  These trials will give us information about the way 

your legs move during these activities.       
 

Prior to the first collection of data for each type of movement, you will be allowed 

to perform several practice trials with stand-by assistance to allow you to get 

comfortable with the activity and to make sure that you can maintain your speed and 

consistency of each of the tasks.  You will be given time to rest between each trial so 

you do not feel fatigued. 

 

Risks/Discomforts 
 

The risks associated with participation in this study are minimal.  You may 

experience discomfort from the removal of tape holding markers and EMG electrodes 

in place.  If you have an allergy to any adhesives, please let the researcher know.  This 
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may exclude you from the trial.  There will be wires and cameras within the running 

field, but a specific path as been laid out to prevent injury and damage as well as 

having a researcher watching you and the wires to prevent tripping.  The strength, 

sprint and jump testing can cause local muscle soreness and fatigue.  Following testing 

your muscles may feel as if you exercised vigorously. 
 

  

 

 

Benefits 
 

The results of this study may allow for clinicians to use the muscle signals from 

moving trials as a tool for identifying muscles used during movement tasks in future 

research studies; however there will be no direct benefit to the current participants. 

 

 

 

Compensation 
 

You will receive no compensation for participation in this research study 

 

 

 

Confidentiality and Records 
 

All subjects will be identified by number.  Only the investigators will have access 

to the data.  Neither your name nor any identifying information will be used in 

publication or presentation resulting from this study.  A statistical report which may 

include pictures that do not identify you may be disclosed in a scientific paper.  Data 

will be archived indefinitely.  There will be no identifying information of you stored 

with the data. 
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Study Title:  Reliability of Peak Dynamic EMG of the Leg for Test-Retest 

 

Principal Investigators:    
  

Thomas S. Buchanan, PhD 

Stephen Suydam, BS 

 

 

Subjects Statement: 
 

I have read this consent form and have discussed the procedure described above 

with the principal investigator.  I have been given the opportunity to ask questions 

regarding this study, and they have been answered to my satisfaction. 

 

In the case that I am injured or experience an acute medical emergency during the 

study, I will be provided with immediate first aid.  Any  additional care  will be at my 

own expense.  I have been fully informed of the above described procedures, with its 

possible risks and benefits, and I hereby consent to the procedures above. 

 

    

 

_____________________________             _______________________________ 

Subject’s Name     Subject’s Signature      Date 

 

_____________________________ 

Witness     Date 

 

If you have any questions concerning the rights of individuals who agree to participate 

in research, you may contact the Chair of University of Delaware IRB, at               

(302) 831-2137.   

 

Further questions regarding this study may be addressed to: 

Thomas S. Buchanan, PhD 

(302) 831-2401 

Posture and Movement Biomechanics Laboratory 

Department of Mechanical Engineering 

Center for Biomedical Engineering Research 

 


