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ABSTRACT

The problem of detecting hazardous radioactive materials is receiving consid-

erable attention due to emerging threats of clandestine nuclear attacks. Protection

against these threats requires a multilayered defense approach, combining border se-

curity through cargo screening with overseas nonproliferation enforcement. Current

technology is insufficient for applications that involve searching or mapping in unstruc-

tured environments. Instead of using large expensive radiographic imaging sensors at

controlled security stations, many applications require the use of multiple less sophis-

ticated sensors. These sensor networks can be mobile in general and can adaptively

reconfigure themselves to collect more useful measurements (e.g. moving sensors closer

to inspect a potential source).

Determining how to optimally control sensor networks and process collected

information for quick and confident detection is a difficult problem that has driven

recent theoretical developments. And although the physics behind emission and sensing

radiation is well understood and our models typically work well, there is still a need

for experimental testing of newly developed theory. Not only can experimentation

validate our expectations of system behavior, but it can also provide valuable insight

for improving our models and control strategies. However, using actual fissile materials

for experiments would be hazardous and impractical.

The aim of this research is to develop a novel system that emulates the pro-

cess of nuclear emission to use as an innocuous proxy for experimental testing. The

device developed uses a modulated laser pointer to produce sporadic pulses of light

and a rotating mirror that reflects each pulse in a random direction, mimicking the

way in which gamma rays are emitted from a radiation source. The performance of

this emulation is compared to that of a weakly radioactive source through side by side

viii



experiments. First, the pulse frequency distribution is shown to conform to the desired

Poisson process, which is the underlying process used to model weak radiation detec-

tion. Next, the distance-dissipation effect is verified through static tests at various

distances. The device is then applied to two simple detection regimes: static fixed in-

terval detection and detection of a source moving in a straight line with a combination

of static and mobile sensors. The results show a strong agreement with simulations

and thus, the device is concluded to be a viable proxy for experimentation. The pros

and cons of using the device are discussed and careful attention is given to analyzing

the conditions under which it can be used.
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Chapter 1

INTRODUCTION

1.1 Motivation

The post 9/11 threat of nuclear terrorism is being taken very seriously by the

U.S. government. In 2005, the Domestic Nuclear Detection Office was established

and over $3 billion has been invested in R&D for improved nuclear threat detection

systems [1]. While preventing nuclear attacks requires a multilayered approach which

combines policy, intelligence, and enforcement, a principle component of defense is our

capability of detecting these potentially hazardous materials. Just like any other type

of illicit cargo such as guns or drugs, terrorists would presumably conceal radiological

materials when crossing border security checkpoints. However, unlike guns and drugs,

radiological materials are characterized by their continuous decay and electromagnetic

emissions, which can be detected at a distance with the right type of sensors. But

because these emissions can be shielded with heavy metals and decay over distances,

their “detectability” depends on what types of sensors we use and how we use them.

Generally speaking, this problem can be approached from two angles. The first

and most obvious approach is to improve the capabilities of individual sensors, which

includes technology such as radiation-based spectroscopy, radiographic imaging, active

interrogation etc. The goal on this front is to identify, isolate, and amplify signals

coming from a potential source to differentiate them from background noise. Research

in sensor technology has been carried out for over 60 years, and recent advances in

many areas hold promise for significant improvements in sensor capabilities. However,

the inescapable trend in this research is that, in order to improve sensor performance,

they must be larger, heavier, and more expensive. As a result, advanced technology is
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limited to stationary Radiation Portal Monitors (RPMs), which are typically located

at cargo screening checkpoints along international borders. RPMs have a high rate of

false alarms and are very slow, requiring vehicles to slow down or stop temporarily.

The second approach is to employ networks of smaller sensors, which can be

cooperatively coordinated to collect more information about the environment. One

advantage of such an approach is that sensor networks can be spatially distributed and

cover a larger region than stationary point sensors. And because individual sensors are

smaller, they can be mobile and adaptively move towards regions of greater interest.

This opens up a whole realm of possibilities for radiation detection, allowing for new

applications in unstructured and dynamically changing environments. For example, a

network of sensor-equipped mobile robots could be deployed in a suspicious environ-

ment to search for threats before humans move in. However, it also forces us to ask

some new and difficult questions such as how to control such multi-agent systems, how

to optimally fuse their measurements to make a collaborative decision, and how to use

collected information to plan trajectories. These questions have only recently been

investigated and there are still many open problems to be addressed.

1.2 Detecting Poisson Emissions

1.2.1 The Underlying Physics

As radioactive materials decay, they emit alpha particles, beta particles, and

gamma rays. Sensors exist to detect all three forms of emissions, but alpha and beta

particles are easily shielded. It typically takes thick layers of heavy metals such as lead

to shield high energy gamma rays. So for detecting these materials at large distances,

gamma ray sensors are preferred. Also, as with any type of electromagnetic emissions,

the intensity of the source dissipates as the observed distance increases, which scales

with the inverse square of the distance. So proximity is highly advantageous from a

detection standpoint.

So why are weak signals problematic? It isn’t a matter of exceeding a sensitivity

threshold, as is often the case with light sensors. It is because they blend in easily with
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naturally occurring background radiation. Environmental radiation is usually weak

enough that it isn’t harmful to humans, and it can come from sources like cosmic

radiation, minerals in the bedrock, or even building materials. Background levels vary

from location to location and can even fluctuate throughout the day. From a detection

standpoint, the background radiation is simply everything that is not the source in

question. However, because sensors cannot usually discern the origin of incident gamma

rays, the signals they measure are simply the additive intensities of both source and

background signals. The signal to noise ratio (SNR) is a common metric for describing

the relative intensities of the two signals. High SNRs indicate a strong source signal

and low SNRs indicate a weaker signal, and it is has a strong correlation with the

“detectability” of a source.

The most common types of sensors used for detecting gamma radiation are

called Geiger counters. Invented over 80 years ago, Geiger counters are simple sensors

that consist of a tube filled with inert gas that briefly conducts electricity when a high-

energy ionized particle strikes it (see Fig. 1.1). A cathode and anode are separated by

this inert gas so that each gamma ray captured produces a pulse of electricity. The

discrete pulses give rise to a counting process, which is fundamentally different from the

way that sensors typically work at other wavelengths. Photoresistors, for example, are

the most common type of sensor for visible light and they are made of a photosensitive

material that changes resistivity in proportion to the mean light intensity, or photon

flux. This technique of flux measurement works well for most wavelengths because the

intensities are typically large enough that photon “streams” can be well approximated

by an average count rate. However, if the lights are dimmed low enough, the average

photon flux becomes difficult to estimate because the separation between photons is

large. This is the region that is most prevalent when dealing with low level gamma

radiation. As an analogy, think of visible light as a steady flow of water through

a hose and gamma radiation as a slowly dripping faucet. We would need different

measurement techniques to estimate the flow rate of each. To put this difference in

perspective, the units typically used for photon frequency in the gamma region is counts

3



Figure 1.1: A schematic diagram of a Geiger counter

per minute (cpm), whereas visible light is often measured in GHz (billions of photons

per second).

1.2.2 The Poisson Process

Since the direction that gamma rays are emitted from a source is random, it

follows that the gamma rays received by a sensor are also random. And because the

signal intensity can be defined as a mean frequency and collisions of gamma rays are

independent, this phenomenon can be modeled as a Poisson process. A Poisson process

is a stochastic process defined by the exponential probability density function (PDF )

for the time between events with mean 1/λ given by

P (x;λ) = λe−λx, x ≥ 0 . (1.1)

Figure 1.2 shows what the sensor would observe over time and Fig. 1.3 shows

the resulting Poisson distribution for a few example means. In the context of radiation

detection, the Poisson distribution governs the probability that a certain number of

gamma rays will be measured over a given timespan.
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Figure 1.2: Sample Poisson counting process with mean λ = 4Hz; the vertical axis
is the cumulative number of counts and the horizontal axis is time.

Figure 1.3: Sample Poisson distribution with means λ = 1, 4, 10 cpm; the vertical axis
is the probability of k occurrences within 1 minute; Note: the function is
only defined at integer values of k. The connecting lines are only guides
for the eye.
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It turns out that Poisson processes are ubiquitous in modeling natural phenom-

ena and are not restricted to describing radioactive decay. Generally, most continuous-

time counting processes with independently occurring events can be well modeled with

this process; some examples include the number of goals scored during a basketball

game, hits on a web page, and the number of raindrops falling within a specified

area [2].

1.2.3 Detection

In detection problems, it is usually the case that we need to simply determine

whether or not there is an emitting source present. In other words, based on the

information gathered by the sensors, is there more evidence to suggest that a source is

present or not. Consider the following regime: we have two radiation sources generating

independent Poisson emissions in parallel with intensities λ1 and λ2. At t0, λ1 is turned

on and at t1 = 1 s, λ2 is turned on. They both emit the same frequency gamma rays,

such that a nearby sensor can only pick the sum of both emissions λ1+λ2. Now suppose

that this nearby sensor—with no knowledge of the binary states of each source—needs

to decide between two hypotheses H0 and H1 at a given time T after the second source

is turned on, where

(i) H0: only λ1 is turned on, and

(ii) H1: both λ1 and λ2 are turned on.

This is an instance of an inverse problem, posed as a binary hypothesis decision prob-

lem.

An example of what this sensor might observe in this fixed interval detection

paradigm is illustrated in Fig. 1.4 for three values of T . These three plots help to

visualize why the ability of a sensor to make a decision between H0 and H1 is highly

dependent on the observation interval T . The naked eye can tell that there is clearly

a change in count rate for T = 1, but it becomes less obvious at T = 0.1 and almost

indistinguishable at T = 0.01. Similarly, any decision made betweenH0 andH1 exhibits
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Figure 1.4: A MatlabTM simulation of a Poisson process with λ1 = 300 Hz at t > 0
and λ2 = 600 Hz at t > 1.

a confidence level roughly proportional to T . Indeed, the fundamental goal of the binary

detection problem is to make a decision between the two hypotheses as quick as possible

while minimizing the chances of error.

This emission regime has many practical applications when dealing with the

detection of a radiation source. Physically, we can think of λ1 as the background

radiation that is confounding the source (λ2) we are trying to detect. We will denote

these two emissions with the letters β and R, respectively. In general, the background

intensity β is non-homogeneous and position dependent (i.e. β = β( ~X, t), ~X ∈ R3),

but for most cases we can assume β to vary only with position, where the radiation

map β( ~X) is known [3].

The radiation due to the source is also non-homogeneous in nature and is pre-

sumed to be proportional to the square of the distance of the sensor from the source

(i.e. R ∝ 1/r2)1 [4]. This reflects the dispersion of gamma ray density from a point

source in R3. Therefore, it is important to distinguish between the “source intensity”

and the “perceived intensity.” The source intensity is a physical property of the source

material, whereas the perceived intensity is a function of the source intensity and sev-

eral other factors such as the distance, degree of shielding, and size of the sensor. So

1 Relationship suggests that R increases unboundedly as r → 0, but is valid under the assumption
that the sensor maintains a minimum distance δ > 0 from the source. A better relationship is given
in chap. 2
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even though a weak source signal is observed, it may still be a very strong source that is

either shielded or sufficiently far from the sensor. In fact, many important applications

of low-level detection such as mobile searches for dirty bombs or passive surveillance

screening for hazardous radioactive materials [5] deal with high intensity sources ob-

served at a distance over a short period of time, making them more difficult to detect.

The 1/r2 relationship suggests that there are two ways to enhance the intensity of the

source signal: (1) make better sensors or (2) move the sensors closer to the source.

This project focuses on the later.

1.2.4 Hypothesis Testing

We have already seen that signals generated by radiation sensors produce a

dicrete counting process and that estimating the mean count frequency of the signal

takes time. Consequently, to test the two hypothesis,

(i) H0: λ = λ0

(ii) H1: λ = λ1

we cannot simply query the sensors at a point in time. Rather, a sequential testing

method is typically used in which the data is evaluated as it is collected, and a conclu-

sion is reached when the data provides enough evidence to support either (i) or (ii) with

a certain level of confidence. When the PDFs for both λ0 and λ1 are know explicitly,

the procedure is known as the sequential probability ratio test (SPRT) [6]. Developed

by Wald in the early 1950s, the SPRT method takes consecutive data samples and

calculates the probability that the sample (xi) belongs to each of the PDFs (fλ0(x)

and fλ1(x)). A statistic called the log-likelihood ratio (log Λi) is then computed and

the cumulative sum of log-likelihood ratios gives us the log-likelihood function (LLF),

Si = Si−1 + log Λi (1.2)
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The LLF constantly changes as the sensors pick up new information—increasing

when there is more evidence to support H1 and decreasing when there is more evidence

to support H0. When Si eventually exceeds either the upper (b) or lower (a) threshold,

a choice between H0 and H1 is finally made. Therefore, the stopping rule says

a < Si < b : continue monitoring

Si ≥ b : accept H1

Si ≤ a : accept H0

where a and b (0 < a < b < ∞) are dependent on the desired probabilities of type

I (PFA) and type II (PFN) errors. In radiation detection, these errors correspond to

the rates of false alarms and false negatives, and PFA and PFN are chosen to control

the probability of these errors. There is therefore a tradeoff between detection speed

and error minimization because it takes longer for the LLF to reach extreme values.

Thresholds a and b are calculated as2

a ≈ log
PFN

1− PFA
and b ≈ log

1− PFN
PFA

. (1.3)

Let us consider a simple example of how this would be applied to the case of

radiation detection. For this example, we will take the background intensity (λ0) and

source signal intensity (λ1 − λ0) to be known a priori (which is not true in general).

The sequential sampling technique could either be the number of gamma rays observed

within a given time frame or simply the time between each consecutive gamma ray

arrival. Considering a sample (xi) to be the time between consecutive counts, we must

use the exponential distribution for P (x;λ0) and P (x;λ1) as given by (1.1). For one

2 Approximation is used for the discrete case when the LLF may cross the threshold between samples.
Equality holds for the continuous case.
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sample, the log-likelihood ratio is

log Λ(xi) = log

[
P (xi;λ1)

P (xi;λ0)

]
= log

[
λ1 exp (−λ1xi)
λ0 exp (−λ0xi)

]
= log

[
λ1
λ0

exp (λ0xi − λ1xi)
]

= (λ0 − λ1)xi + log
λ1
λ0

(1.4)

and the LLF is

Sn =
n∑
i=1

log Λ(xi)

= (λ0 − λ1)
n∑
i=1

xi + n log
λ1
λ0

. (1.5)

So according to the stopping rule,

a < (λ0 − λ1)
n∑
i=1

xi + n log λ1
λ0
< b

log 1−PFN

PFA
− n log λ1

λ0
< (λ0 − λ1)

n∑
i=1

xi < log PFN

1−PFA
− n log λ1

λ0
. (1.6)

This traditional SPRT approach works well for cases where both background and

source intensity can be well approximated. But in most cases of radiation detection,

the source intensity is not known a priori. Typically, an object can be identified as

a potential source and investigated to determine if local sensors produce higher than

normal count rates. For this case, a more appropriate hypothesis to test is,

(i) H0: λ = β

(ii) H1: λ > β

This is a one sided hypothesis test because there is no physical significance to

observing a signal weaker than the background. One application that could use this
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hypothesis test is a simple passive radiation sensor with no knowledge of the potential

existence or location of a source. It would simply send out an alert when local radiation

levels are high enough to reject H0. The approach to computing the log-likelihood ratio

for this case is similar to the previous example, and can be found in [7].

To illustrate the impact that source signal strength has on detection, consider

the four graphs in Fig. 1.5. The two plots on the left show the results of a Poisson

process simulation with SNR = 1, and the two on the right show the results for SNR

= 1/2. The log-likelihood ratio in the SNR = 1 simulation crossed the threshold to

reject H0, but it did not in the SNR = 1/2 simulation. In other words, the stronger

signal is detected and the weaker signal is not, as we would expect. The selection

of the threshold depends entirely on the situation and the relative penalties for false

alarms and missed detections. A lower threshold will decrease the probability of missed

detections, but it also increases the probability of false alarms. In practice, higher

thresholds are set to minimize the probability of false alarms, directing the operators’

attention to only serious threats.

Sequential testing works well in applications with passive monitoring, but it is

not usually the best choice for situations where the potential sources are moving. In

these cases, the SPRT may not have enough time to make a decision with a preset

threshold and must make the best decision it can within a finite time interval of expo-

sure. This is called the “fixed interval” hypothesis test, and it has the advantage of only

considering data of interest, allowing maximum information to guide the hypothesis

decision. This approach will be revisited in more detail in section 4.2.

1.3 Related Work

The mathematics of decision theory has grown significantly over the past few

decades. Some of the groundwork done in Poisson detection can be attributed to its

application in optical communications. It turns out that an avalanche photodiode

(APD) attempting to pick up a modulated optical signal transmitted through a noisy

medium often faces the same type of detection regime as a radiation sensor attempting
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Figure 1.5: Example of two Poisson processes simulations with the same background
levels (λ1) but different source signal strength (λ2). The top plots show
the counting step plot with the vertical lines marking the region when
the source (λ2) is present. The lower plots show the time-varying log-
likelihood ratio in blue and the threshold corresponding to 99% confi-
dence in red.
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to pick out a weak signal from background noise [8, 9, 10, 11, 12]. The roots of sequential

hypothesis testing were established in the early 1950s with Wald’s SPRT [6]. The test

provides a time-optimal strategy for hypothesis testing of continuous processes such

as the Poisson process. However, applying this method to different applications often

requires more specific formulations, with adapted time-optimal solutions. For example,

the regime outlined in Section 1.2.3 for a decision between two intensity values (λ1 or

λ1 + λ2) is known as the classical Bayesian approach and a formal solution to this

problem can be found in [13].

Another popular testing method for this binary decision problem is the Neyman-

Pearson test [14], which is discussed in the context of fixed interval detection in Section

1.2.4. A formal solution to this formulation can be adapted from a Bayesian approach

and can be found in [7] (see also [15, 4] for network variants). Moreover, there can be

various ways to define the detection specifications within each hypothesis formulation.

For the case of radiation detection, we can think of a case where a sensor is given a

finite time interval in which it must make a decision (fixed-interval test [16, 17]), or

another case in which the sensor will only make a decision if its confidence level exceeds

a threshold [18]. Other variables that also increase the complexity of the problem are:

• The sensor’s knowledge of a potential source

• The sensor’s knowledge of the source location and trajectory

• The directionality of a sensor (i.e. is it facing a certain direction)

• The orientation of multiple sensors in an array

• The ability of sensors to move in their environment

• The types of communication between sensors (i.e. networked or global)

These are just a few examples to illustrate the breadth of possibilities when im-

plementing an optimal decision strategy. In fact, most of the work since the 1980s has
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been more application focused to develop formal solutions for more specific formula-

tions. Even within our narrow scope of radiation detection are numerous applications

and parameters that can change the problem significantly.

However, there are still unanswered questions in the world of radiation detection.

Consider the general example of detecting a mobile source that traverses a restricted

area of observation in 2D. We know how to interpret the data gathered from a single

sensor and even how to fuse data from multiple sensors, but the problem of detection

with mobile sensor networks observing mobile targets is still open. Introducing mo-

bility on the sensor side of sensor networks may significantly enhance their detection

capabilities. It also raises many new questions such as how to optimally configure

sensor positions and plan trajectories to gather a maximum amount of information or

how to fuse data from a network of stationary and mobile sensors.

1.4 Scope and Organization

Since research in radiation detection is highly theoretical and the application of

interest involves materials that cannot be readily handled, there is a gap between the

theory that is developed in the academic world and practical implementation. There is

a need for a bridge between theory and implementation—a method of experimentation

that is safe to use in a laboratory setting. Not only can experimentation validate

our expectations of detection performance, but it can also provide valuable insight for

improving our models and control strategies.

There are weakly radioactive materials that are innocuous for humans and could

be used for small scale experiments. Highly enriched uranium is the primary target for

detection in the field, but many common items in our everyday lives are also weakly

radioactive such as bananas, Brazil nuts, and cat litter. In the lab, we have a weakly

radioactive bead of Vaseline glass about 1cm in diameter which can be picked up by

a Geiger counter at a very close distance. However, the signal to noise ratio becomes

prohibitively small as the bead is moved just a few centimeters away from the Geiger
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counter. This would restrict the size of our experimental workspace to a scale that is

too small for implementing sensor networks and sensor mobility.

Instead of using actual radiation sources and Geiger counters, an emulation of

the radiation detection process can be used for mesoscale experimentation with mobile

ground robots in the lab setting. Specifically, we need a way to controllably emulate

the physics of radiation emission in a way such that the observations of a nearby sensor

mimic the response of a Geiger counter in the presence of radiation. Using an emulation

should also allow for precise control of various physical parameter on both the emission

and detection end such as source intensity, sensor/source separation, sensor size, etc.

One example of an experimental emulation that has been demonstrated in [19]

uses a red light bulb in a field with mobile robots equipped with IR sensors. The light

intensity measured by each robot is passed through a Poisson distribution filter as the

mean for that sample. The filter returns a random number generated from a Poisson

distribution with a mean of the measured light intensity. This works well because

the IR sensors naturally pick up the ambient background light and the source light

intensity also falls off like 1/r2. However, this is not much different from a simulation,

which is doomed to succeed, so to speak. A critical component of experimentation is

that it is an imperfect system and captures the potential “flaws” in the real world. In

other words, experiments should be isolated from the assumptions made in the model.

Our aim is to develop an emulation that inherently captures the physics of discrete

emissions without the use of a filter.

The remainder of this thesis will discuss in detail exactly how this is achieved.

Chapter 2 outlines the problem scope more thoroughly and breaks down the problem

into various design constraints that need to be addressed. Chapter 3 describes exactly

how the emulation works, how it meets the design specifications, and its various ca-

pabilities and limitations. Chapter 4 outlines the experimental results that verify the

system performance, and the thesis concludes with Chapter 5.
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Chapter 2

PROBLEM STATEMENT

Motivated by a need to augment the experimental efforts in networked radiation

detection, the chief problem to be addressed in this thesis is how to enable those

without the facilities to handle radioactive materials to conduct experiments. To avoid

using fissile materials, an emulating proxy is needed to mimic the process of radiation

emission and detection. The proxy used in place of fissile materials must be controllable

so that it can be applied to various detection scenarios.

In order to better define the problem at hand, we must take a closer look at

the Poisson process, which is at the heart of all weak signal detection. By definition,

a Poisson process is a continuous-time counting process, where {N(t), t ≥ 0} denotes

the number of events (in our case gamma rays) that are observed since t = 0. It is

further defined by the following properties:

• N(0) = 0.

• Independent intervals: the number of events in disjoint intervals is mutually

independent. That is if t1 < t2 < t3 < t4, then N(t2 − t1) and N(t4 − t3) are

independent for a given Poisson process.

• Stationary increments: the probability distribution of events in any sub-interval

(t∗) is only dependent of the length of the interval N ≡ N(|t∗|).

• No counted events occur simultaneously.

• The probability distribution of N(t) is a Poisson distribution:

P(N(t) = k) =
m(t)k

k!
e−m(t), m(t) =

∫ t

0

λ(u) du, k = 0, 1, 2, ...
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• The probability of time between events is exponentially distributed given by (1.1).

• The two Poisson processes we deal with in detection theory are defined as

β ≡ β( ~X), ~X ∈ R3, and

Ri(r, t) , f(ri)λi(t), f(ri) ,
1

1 + ( ri
K1/2

)2
(2.1)

Here, the background intensity β is only a function of spatial position, and is

known to the sensor. This is often refereed to as a background radiation map. Variable

Ri is the intensity of the signal from source i and is separable into functions of position

and time.1 Variable ri is the distance between the sensor and source i, and K1/2 is the

distance at which its intensity falls off to half its maximum value (λi). This form of

function f(ri), suggested in [20], incorporates the 1/r2 falloff but does not blow up at

ri → 0. A key assumption that is being made about the source is that it emits gamma

rays uniformly, meaning that Ri is not dependent on the direction of a sensor w.r.t.

source i. Most concentrated “point sources” of radiation do emit uniformly, but it is

possible that they can be housed in an enclosure with non-uniform shielding (e.g. a

lead plate on one side). This is not usually predictable from an outside perspective, so

we are forced to assume uniformity in most cases.

In our emulation we would like to have control over the following variables:

• β( ~X): Intensity and distribution of background Poisson process;

• λi(φ, t): Total source emission as a function of direction (for shielding cases) and

time;

• K1/2: Half-intensity distance is controlled by the area of the sensor;

• ri: Radial distance between the source and sensor.

1 We will often take λi(t) to be constant, but this is the more general non-homogeneous representation.
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The more control we have over these variables, the more versatile the emulation

will be. If the sensor/source distance (ri) is fixed, for example, then the emulation

would only be useful for static detection problems. The ability to use the emulation

on mobile robots is critical for testing theory that is currently being developed.
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Chapter 3

TECHNICAL APPROACH

3.1 Device Design

The proposed solution consists of a laser pointer that produces short pulses of

light to mimic the emission of discrete gamma rays. These pulses are modulated by

a software program that draws random samples from a Poisson distribution with a

desired mean. The downward facing laser beam is then reflected at a 90o angle by a

mirror. The mirror is fixed to the shaft of a stepper motor which rotates to a random

orientation for each laser pulse, thereby creating a 360o planar emission spectrum.

Consequently, any light sensor (or array of sensors) that is positioned in the plane of

emission only picks up a fraction of the laser pulses. And because the light sensor

has a finite area of sensitivity, the fraction of laser pulses it receives (i.e. the source

signal intensity) is dependent on its distance from the laser source. Figure 3.1 depicts

a SolidWorksTM rendering of the device.

The system is controlled by a MatlabTM function, and the pseudo-code can be

found in Appendix A. The inputs are mean pulse frequency (λ, given is pulses/sec) and

the length of the experiment (RunTime, given in seconds). After the laser, motor, and

sensors have been initialized, a vector is generated, the elements of which are random

numbers sampled from an exponential distribution with mean (1/λ). The elements of

this vector serve as the time that is waited between two consecutive laser pulses, as

per the definition of the Poisson process defined in Chapter 2. After each laser pulse is

emitted, the stepper motor rotates to a random angle and the software pauses for the

time indicated by the next element of the wait-time vector. This is repeated until the

experiment duration is reached.
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Figure 3.1: SolidworksTM rendering of the experimental setup: r is the distance
between sensor and mirror; w is the sensitive width of sensor.
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A light sensor positioned near the laser indicates a high light intensity when

the laser beam is incident on it, and ambient levels at all other times. In order for

it to behave like a Geiger counter, it must register the time stamp of each incident

pulse. However, the light sensor works in a fundamentally different way than a Geiger

counter because it is not a passive monitor. It can only return the light intensity value

when interrogated by the software. This creates a problem because the sensor can only

sample finite instants in time, which is not acceptable for measuring a continuous-time

Poisson process. In other words, there is a chance that the sensor could miss a pulse if

it occurs between queries. We can eliminate this problem by controlling the laser and

sensor through the same software process, such that the sensor only checks for a light

pulse if the laser is told to pulse. In this way, we can ensure that the sensor is “on”

when the laser sends a pulse.

3.2 Directional Randomness

The randomness in direction we observe in radiation emission is caused by the

decay of a high energy nucleus, resulting in a continuous range of emission in R3.

We can come close to generating a continuous spectrum in R2 with a stepper motor.

The motor we are currently using has a resolution of 6400 steps/revolution, which is

sufficiently fine to create this continuous effect. In other words, even at the farthest

distance a sensor can be from the laser in our lab, there are still several consecutive

angular steps that span across the width of the sensor.

At first, we tried to control the laser pulsing and mirror movement independently

by having the mirror constantly in random motion. However, because the laser pulse

has a finite duration (not like an instantaneous gamma ray), each pulse produced a

diffracted beam when reflected by the moving mirror. This is not acceptable because

the distance/intensity falloff relationship only holds for pulses restricted to 1D (i.e.

each laser pulse must produce a dot, not a line). To overcome this problem, the

stepper motor is synchronized with the laser pulses so that it only rotates to a random
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location immediately after each pulse. This guarantees that the laser only pulses while

the mirror is stationary but still maintains the randomness in direction.

This approach also allows for the possibility of imposing directional bias or non-

uniformity in the emission such that λ = λ(φ, t). Recall the discussion on shielding

and non-uniformity in Chapter 2. This capability is useful for experiments in which we

want to observe the effect of shielding. To achieve this, instead of having the mirror

rotate to a random location, it would be biased with a higher probability of rotating to

certain angular regions. Another convenient use of this ability is for experiments when

sensors are known to be restricted to a certain region. Discussed further in Section 3.6,

the laser turns out to have a limit on the pulse frequency; so restricting pulses to the

half plane (0o < φ < 180o), for example, allows us to effectively double the maximum

source strength observed in that region.

3.3 Mixing Background and Source Signals

The laser device created has only one emitting source, but experiments require a

background signal as well. There are a few ways in which we can generate (or effectively

generate) two parallel Poisson processes (β and λ). For the most restricted case of a

fixed sensor and source (i.e. dr
dt

= 0), both β and λ can be generated directly with the

laser by superposing their intensities such that the total intensity is the sum of source

and background signals.

For the more general case in which the source and sensors can move, β cannot

be generated with the laser because it too would dissipate over distance, which would

not be in agreement with an assumption of a uniform ambient background. The most

direct way to create the background emission is to simulate the background signal and

send it directly to the sensor software. This can be done without using the light sensor

as long as the detector cannot tell if a pulse is coming from β or from λ. Furthermore, if

source localization can be attained, the radiation map β( ~X) can also be incorporated.

22



Figure 3.2: (a) Schematic of laser emission in R2; (b) element of laser beam scattering

3.4 Distance from Sensor to Source

Recall from Section 1.2.3 that the intensity of radiation incident on a sensor

exhibits a 1/r2 falloff given by (2.1). For simplicity, our emulation is restricted to

emission in R2, so the falloff will instead be proportional to 1/r. This fundamental

difference arises because in R3 the sensor area creates a solid angle as viewed by the

source (measured in radians squared); whereas a sensor in R2 creates a standard angle

to the source. Since the solid angle is given by Ω ≈ α2 and α ∝ 1
r

(α � 1), it follows

that the fractional incidence in R3 is proportional to 1/r2 but only proportional to 1/r

in R2. This is sufficient for experimentation, and we can easily extrapolate the effects

observed in R2 into the R3 domain.

Let us examine more closely how well the 1/r relation holds. Figure 3.2a shows

a simplified schematic of the laser and sensor with a view orthogonal to the emission

plane. Let’s define the fractional incidence (fik(r)) to be the angular scope (θi) of

sensor k w.r.t. source i divided by the total angular range of emission (typically 360o).

At close range, the fractional incidence function f(r) is given by,

f(r) =
1

π
tan−1

( w
2r

)
. (3.1)

23



However, as w
r
→ 0 , we have that

lim
w
r
→0
f(r) =

w

2πr
. (3.2)

Practically, this approximation is accurate to within 1% when w < 3r. This relation-

ship also relies on two assumptions concerning the laser beam (refer to Fig. 3.2b):

(i) that the width of the laser beam is significantly smaller than the sensor width,

(i.e., ε� w), and

(ii) that the scattering angle of the beam is significantly less than the incidence angle,

(i.e., α� θi).

In our case, both assumptions are valid:

(i) εmax ≈ 5 mm, wmin ≈ 50 mm

(ii) α ≈ 10−3 rad, θi min ≈ 0.02 rad (at r = 10 ft).

In summary, the sensor incidence will be proportional to 1/r if 3 < r
w
< 100 and

w > 2 inches. These requirements may be relaxed if a more focused laser is used.

3.5 Scaling

When running experiments with this laser device, we need to ensure that ap-

propriate parameter scaling is used so that the light sensor collects the same amount

of information as a Geiger counter would. Because the laser pulse frequency is limited

by the rotation speed of the mirror and the laser pulse duration, our light detectors

require larger scopes than typical radiation sensors. To establish a link between our

experiments and an actual radiation detection scenario, these larger detectors can be

viewed as an equivalent replacement of multiple smaller sensors. Consider n sensors

of the same (this assumption can be relaxed) characteristic surface constant χ, at dis-

tances r1, ..., rn from a point source of intensity α. On the plane, the perceived activity

at the sensor will be
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Ri =
χα

1 + ri
.

(it will be r2i in 3D)

The whole distributed collection of sensors can be replaced by a single “equiva-

lent” sensor at a distance r0 having a characteristic surface constant χ0. The latter is

found by computing the “equivalent” component of each sensor when it is moved from

distance ri to distance r0:

χα

1 + ri
=

χiα

1 + r0
, χi =

χ(1 + r0)

1 + ri
.

Thus, having all the sensors distributed at different distances should have the

same collective effect as a single bigger sensor at r0, with characteristic surface constant

χ0 =
n∑
i=1

χ(1 + r0)

1 + ri
,

yielding a perceived activity at the sensor’s end

R0 =

α
n∑
i=1

χ(1+r0)
1+ri

1 + r0
.

The background signal can be scaled in the same way because it is proportional

to the size of the sensor. For a uniform background, the “equivalent” background signal

for the larger sensor is

β0 = β
χ0

χ
= β

n∑
i=1

1 + r0
1 + ri

.

Using these scaling transformations, we can use a larger sensor with the laser

device in place of several smaller radiation sensors in our model of interest. Also, when

dealing with mobile sources, we must scale the speed of the source and the observation

window to produce equivalent information. For example, a source of activity α traveling

at a speed v past a stationary sensor is functionally equivalet to a source of activity
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2α traveling at a speed 2v. The information collected is the same, but one experiment

takes twice as long. Due to the frequency limitations of the laser, we often need to

extend the timescale of the experiment and reduce the traveling speed of the laser.

3.6 Computational Delays and Frequency Limitations

Recall from Section 3.1 that the laser pulsing sequence is generated by a vector

of random numbers sampled from an exponential PDF. However, the pulsing statistics

cannot be an exact Poisson process because there is a small time delay for each pulse.

This delay (δt) is the sum of the time it takes to rotate the mirror, turn the laser on

and off, and compute one loop iteration in the software. The delay adds to the desired

wait time, effectively shifting the Poisson distribution to the right. For our current

hardware, δt is typically between 0.1 and 0.2 seconds, meaning that no two pulses can

be separated by less than that amount of time. In theory, we could still generate a

maximum frequency of 1/δt, but it would not be exponentially distributed. Therefore,

to maintain the distribution shape, it is better to use lower frequencies. For a given

system of hardware, there is not much we can do to reduce δt, but we can scale back

the experiment such that λs = kλ, k < 1, and the time restrictions imposed on the

decision center are also adjusted by the same factor.

The maximum frequency that should be used with the current hardware is 2 Hz

or 120 cpm. The biggest contribution to the lag is the time it takes the laser to reach full

intensity after being turned on. Lasers do not turn on instantly like most incandecent

light bulbs—they take time to warm up. Higher frequencies can be achieved if a laser

with lower latency is used.
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Chapter 4

EXPERIMENTAL RESULTS

4.1 Conforming to Poisson Statistics

As discussed in Chapter 3, there are two essential criteria that must be captured

by this emulation for it to be an adequate radiation detection proxy: (1) it must produce

a Poisson process at the sensor and (2) the intensity of the source signal (laser pulses)

must dissipate over distance. The later is expected to fall off with the inverse of the

distance because the laser pulses are restricted to R2.

It is typically assumed that radiation emissions conform to Poisson statistics,

but for validating the performance of the laser device, we went straight to the source

to compare it with an actual Geiger counter signal. The weakly radioactive source

used is a bead of Vaseline glass (Fig. 4.1a), which contains small amounts of uranium

oxide [21]. The bead has a diameter of about 1 cm and has an activity of less than

70 Bq/g, making it safe to handle. The Geiger counter used is a GM-10 from Black

Cat SystemsTM (Fig. 4.1b), which has a 1 cm2 scope [22]. It measures a background

radiation level of about 10-15 cpm in the lab, and over 50 cpm when touching the

Vaseline bead.

To test the signal statistics, the distribution of background radiation collected

by the Geiger counter was compared with the laser device. The Geiger counter was

left to collect background measurements for a 24-hour period, during which it recorded

over 18,000 counts with a mean frequency of 12.7 cpm. The output signal from the

Geiger counter is a chronological time stamp vector of gamma ray events, which can

then be manipulated to produce a vector of times between consecutive events. This

theoretically should be exponentially distributed. The data was sorted into 1 second
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Figure 4.1: (a) bead of Vaseline glass; (b) Geiger counter

bins and an plotted against relative frequency. Figure 4.2 shows the result of an

exponential regression to the data which is a very strong fit (R2 = 0.9993), as expected.

In a similar manner, the laser device was set up to run a long background

trial, with the light sensor at an average distance from the mirror.1 Over a three-hour

period, the sensor collected over 6000 counts with a mean frequency of 36 cpm. The

exponential fit to this data is shown in Fig. 4.3, which also displays strong convergence

(R2 = 0.997). Note: recall from Section 3.6 that each laser pulse takes a finite amount

of time, which essentially shifts the desired exponential PDF by (δt) to the right. One

way to compensate for this lag is to simply subtract the measured error (δt) from each

wait-time datum measured by the sensor, shifting the PDF back to the left.2 The data

in Fig. 4.3 has been adjusted using this technique.

The comparison of Figs. 4.2 and 4.3 indicates that the device is capable of

producing the Poisson process. An interesting observation made during this experiment

was the fluctuations of the background radiation over time. Even though the Geiger

1 The background signal will not typically be generated by the laser; it will usually be simulated and
with the source signal directly in the software. This will be exponentially distributed by design, so
this test instead reflects the accuracy of the source signal.

2 This technique cannot be used in all applications, so it is best to be cautious and use lower pulse
frequencies whenever possible.
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Figure 4.2: A 24-hour sample of background radiation (n ≈ 18, 000) as measured by
a Geiger counter

Figure 4.3: A three-hour sample from the laser device emitting Poisson background
(n ≈ 6, 000)
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Figure 4.4: Geiger counter samples in range of radioactive glass bead

counter was left in the same position for the full 24 hours, the background intensity

seemed to fluctuate significantly throughout the day, with higher intensities during the

day and lower intensities at night (ranging 10 - 15 cpm). This highlights the stability

advantage of our controlled emulation.

Now we can explore the validity of our second requirement: the distance rela-

tionship. The Vaseline bead was placed in front of the Geiger counter and the signal

was measured for 20 minutes at each of 5 different distances. Figure 4.4 shows a plot

of mean intensity (in cpm) vs. 1/r2 for the 5 samples collected, which exhibits a strong

linear regression correlation (R2 = 0.975). The data does show a slight downward

curvature, which could be caused by a combination of two effects: (1) the closest dis-

tances of 1.5 and 2 cpm probably violate the point source assumption and (2) the

actual Geiger tube is inset into the Geiger counter housing meaning that r should be

measured to a point behind the face of the Geiger counter. Also, the fit would likely be

better if longer samples were taken. The intercept of the linear regression represents

the background level (i.e. as r →∞), which is close to the background measurements

in Fig. 4.2.

For the laser device, the same experimental procedure was run for 9 different
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Figure 4.5: Mean intensity at sensor (λ+ β) vs. source distance

distances between 8 inches and 28 inches. A background signal with intensity 15 cpm

was simulated and added to the laser pulses picked up from the source. Each trial

was run for three hours and the mean intensities are plotted in Fig 4.5. The linear

regression shows a very strong relationship between mean intensity and 1/r, and the

y-intercept reflects the preset background intensity. Recall from section 3.4 that the

distance falloff for this device is proportional to 1/r because the emissions are confined

to R2.

4.2 Application to Static Detection

Now that the necessary criteria for emulation have been addressed in isolation,

the device can be applied to the problem of interest: detection. As a preliminary exam-

ple, the device was applied to a fixed interval detection scenario, and it’s performance

was compared to a similar experiment using the Vaseline bead.

The fixed interval detection problem typically arises when the source trajectory

is known, such that a sensor can isolate a window of time in which it is exposed to the

source. For example, a source that travels past a stationary sensor does not register

any counts well before it arrives or well after it has left, so the sensor will provide

the most meaningful measurements in some window of time (t0 < t < T ) bounded
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by the proximity of the source. Instead of a dynamic likelihood ratio that evolves as

information is collected, for fixed intervals we just need to compute the likelihood ratio

once all of the data has been collected and compare it to a preset threshold. If the

likelihood ratio is above the threshold, we declare a detection. The likelihood ratio

(LT ) we use here is calculated with the following formulas (see [20]):

νi(t) =
χα

ri(t)2

µi(t) = 1 +
νi(t)

β

LT = exp

(
−

k∑
i=1

∫ T

0

νi(s)ds

)
k∏
i=1

NTi∏
ni=1

µi(tni)

where χ, α, β, ri(t), T , NT i, and tni are defined as:

χ : shape factor of the sensor (characteristic surface constant)

α : mean emission frequency of the source

β : mean background frequency observed by the sensor

ri(t) : distance between the source and sensor i

T : time span of collected data

NT i : total number of gamma rays received by sensor i during T

tni : time point when sensor i receives the nith gamma ray

This calculation can be used for cases with one mobile source and k mobile

sensors. However, in our experiment with the weak source and Geiger counter, we

use only one sensor, where both sensor and source are static. So the likelihood ratio
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formulas are simplified to:

ν =
χα

r2

µ = 1 +
ν

β

LT = exp(−νT )µNT .

Recall our discussion in section 1.2.4 about the two types of errors associated

with binary detection: false positives and false negatives. The metric we use for com-

parison between the Geiger counter and laser device is the rate or probability of false

negatives, or missed detections. By computing the likelihood ratio for a large num-

ber of observations, we can formulate a relationship between detection probability and

threshold. This process is repeated for various distances to develop a family of curves

that describe how detection probability falls off for higher thresholds. To validate the

laser device as an effective proxy, it must produce similar curves as the Vaseline bead

and Geiger counter.

For this static detection experiment, the Vaseline bead and Geiger counter are

separated from 1 cm to 3 cm apart. At each distance, 100 samples are collected that

are each one minute long (i.e. T = 1 min). The total number of gamma rays collected

by the Geiger counter (NT ) is recorded for each sample. In this case, the sensor shape

factor (χ), the source intensity (α), and the background level (β) are all assumed

to be known, so ν and µ can be calculated for each sample as well as their respective

likelihood ratio (LT ). Finally, the probability of detection at each distance is estimated

as the percentage of samples that yield likelihood ratios higher than a given threshold.

Figure 4.6 shows the resulting family of detection curves for the bead and Geiger

counter at distances 1, 1.5, 2, 2.5, and 3 cm. The curves are downward sloping,

confirming the inverse relationship between detection probability and threshold that

we expected. Not surprisingly, the probability of detection also drops off more abruptly

at farther distances, which means that smaller thresholds must be used to detect more

distant sources with the same probability. However, using smaller thresholds incurs a
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Figure 4.6: Probability of detection vs. likelihood ratio threshold (log10 scale) in
bead experiment at distances 1, 1.5, 2, 2.5, and 3 cm

higher rate of false positives. So again, getting the sensors close to the source is critical

for minimizing the detection errors.

For the sake of comparison, we would like to produce the same type of curves

in Fig. 4.6 with the laser device. However, because the laser device lives in R2, the

adjusted ν value is computed as,

ν =
χα

r
=
λw

2πr
.

So to generate the same curves with the laser device, we must match the ν values.

Since we used a linear sequence of distances for the bead/Geiger counter experiment,

it follows that we must use a quadratic sequence of distances for the laser system (e.g.

4, 9, 16, 25, and 36 inches). At these distances, each sample is collected for one minute

with a pulse frequency of 2.78 Hz and a sensor scope of 4 inches. The signal measured

by the light sensor is added to a background signal to produce similar µ and NT values.

The results shown in Fig. 4.7 closely resemble the curves in Fig. 4.6. Therefore, the

device is capable of producing the data we need for detection experiments.
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Figure 4.7: Probability of detection vs. likelihood ratio threshold (log10 scale) from
experiments with the laser device at distances 4, 9, 16, 25, and 36 inches

4.3 Detection of a Mobile Source

Finally, we are ready to apply the laser emulation to an experiment with mo-

bility. The ultimate goal is to be able to use this device for any type of 2D experiment

in which the laser and light sensors are mobile. To achieve mobility, the laser device

and light sensors were integrated onto two different mobile robots (see Fig. 4.8). The

robot used for the laser is an iCreateTM (see Fig. 4.8a) from iRobotTM (same as the

RoombaTM without the vacuum), which was modified to have multiple platforms. The

top platform carries the laser device and circuitry hardware, the middle platform is

where we place the laptop that controls the laser device, and the batteries for the step-

per motor and laser are housed in the lower cargo bay. The iCreateTM was chosen to

carry the laser because it can fit an on-board laptop, it is user friendly, it can move very

slowly (down to about 0.03 m/s), and it has built-in encoders that are automatically

used to guide the robot along a prescribed trajectory. The robot that was used to

carry the mobile sensor was a CorobotTM (see Fig. 4.8b), which was modified to have

smaller wheels. The smaller and more rigid wheels have lower friction than the soft

tires, which allows the CorobotTM to move slower to follow the source.

The experiment conducted with the mobile robots was a simple scenario with
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Figure 4.8: (a) laser device mounted on the iCreateTM; (b) light sensor mounted on
the CorobotTM

a constant velocity source moving in a straight line. Figure 4.9 shows a schematic

of this setup. A combination of stationary and mobile sensors were arranged along

a straight line parallel to the trajectory of the source. One sensor was made mobile

while four sensors were stationary. The mobile sensor is told to track the laser source

along a parallel trajectory. To avoid sensors “shadowing” each other, the mobile sensor

moves on the opposite side of the laser in an equidistant parallel line. The laser source

travels a total distance of 3 meters at 0.05 m/s, and the static sensors are located

at x = 0.5, 1.5, 2.5, and 3 meters from the start of the source trajectory. Within

each 60-second long trial, the data collected from each sensor is recorded as the total

number of laser pulses received. This is added to a random background signal so the

total reported signal at each sensor is the sum on laser pulses received and background

counts simulated. A mean source frequency of 2Hz is generated by the laser and each

sensor has a width of 16 inches. A picture of what this experiment looks like is shown

in Fig. 4.10.

The data collected from this experiment was interpreted in a similar way as the

fixed interval static detection example in the previous section. Based on the number of

counts measured during each 60-second trial, the log-likelihood ratio was computed for
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Figure 4.9: Schematic of experiment with 1D source movement

Figure 4.10: Picture of a mobile detection experiment with one mobile sensor and
four stationary sensors
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Figure 4.11: Log likelihood ratios based on data collected from 4 sensor groupings:
two from just the four static sensors (one just background and one
including the source), and two from all 5 sensors (one just background
and one including the source)

each of the the 31 trials run. These results are shown in Fig. 4.11. The data gathered

from each experiment were segmented into four categories to highlight the benefit of

sensor mobility. The top line shows the the log-likelihood ratios for data collected from

all five sensors including both background and source signals. The second line from

the top reflects the source and background signals as measured by just the four static

sensors. The two lower data series show the log-likelihood ratios computed for just the

background signal with data from just the four static sensors, and all 5 sensors.

The first thing we notice about the lines in Fig. 4.11 is that the series including

the data from the mobile sensor significantly increases the likelihood ratios. Without

the mobile sensor, the likelihood ratios average around 105, but with the data from

the mobile sensor, the likelihood ratios are much higher averaging around 1010. This

tells us that there is a much higher probability of detection when the mobile sensor is
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added. Another interesting observation is that the likelihood ratios computed based on

just the background signal are lower when the mobile sensor in included (from 10−3 to

10−7). This is not an effect of mobility because mobile sensors presumably measure the

same background intensity as static sensors. Rather, it is an artifact of simply adding

more sensors and thereby collecting more data. Nonetheless, the lower background

likelihood ratios are desirable for reducing the rate of false positives.

In this example, sensor mobility does not exactly allow the mobile sensor to get

closer to the source—it is still confined to the same line as the static sensors. The reason

that it is so powerful is that it can move as close as possible to the source for as long as

possible. The static sensors only collect data from this minimum distance configuration

for an instant in time, and the measured source signal drops off significantly as the

source moves away. By “tracking” the source, the mobile sensor collected about 3-5

times as many counts as each stationary sensor during the 60 second window.

Using a combination of static and mobile sensors also has advantages from a

resource allocation perspective. Consider an application of monitoring a roadway with

high traffic volume at a way-point by a network of sensors. If all of the sensors are

static, they may not be able to pick up as much information about the environment or

distinguish a specific vehicle as the source of elevated radiation levels. Using all mobile

sensors is also inefficient because the environment may have too many vehicles to track

them all. For such an application, a group of static sensors can be used to passively

monitor the environment and alert idling mobile sensors to further inspect suspicious

targets. This hierarchal technique is an efficient way to zone in on potential sources in

a crowded environment, which would presumably lead to rerouting suspicious targets

for a more detailed inspection.
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Chapter 5

CONCLUSION

Based on the fundamental principals of the Poisson process used to model weak

radiation detection, an emulation process has been developed as a proxy for experi-

mentation with actual radioactive material. To improve the detection capabilities of

weak signals by exploring cases of mobile sensor networks, this device will help those

without the ability to handle fissile materials run experiments in a safe environment.

A laser is modulated to create short pulses of light that follow Poisson statistics, and

a rotating mirror reflects each pulse in a random planar direction. By collapsing the

emissions from the R3 domain to R2, we inherently change the way radiation density

dissipates as the sensor is moved farther from the source. However, the Poisson process

and directional randomness are captured with this device. Thus it can still be used to

run the same detection experiments as a real radiation sensor / source as long as we

tell the sensor to expect a distance falloff of 1/r instead of 1/r2. Preliminary testing

verified that the laser device can in fact recreate the Poisson process of interest. It

also yielded agreeable results during a static detection experiments. Finally, we saw

a simple example of how this device might be used in the future with mobile sensor

networks.

In general, this device is capable of being used for experiments in 2D, not just

restricted to motion along a line. Practically, reliable 2D motion can only be achieved

with position feedback from the motion capture system. The next step could be to

put reflective markers on the robots and set up a trajectory following program. When

permitting 2D motion with the robots, it is also important to remember that the

sensors do have a certain orientation and can only capture laser pulses that come

through the front, not unlike radiation sensors. So if there is a chance that the source
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could move behind the sensor, it may be helpful to incorporate some sort tracking

mechanism to ensure that the sensor is always “facing” the source. Another way this

could be approached is by developing omnidirectional sensors that can detect laser

pulses coming from all directions equally. Finally, the attainable emission frequency

can be increased by upgrading the hardware. The most influential upgrade could be

using a more responsive type of laser, which can be turned on and off quicker. Aside

from that, we could try using multiple lasers and mirrors to increase the total amount

of pulses that can be generated. In most cases however, the robots can move slow

enough to collect enough data.
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Appendix

MATLABTM CONTROL PSEUDOCODE

function = PoissonEmissions(lambda,RunTime)

establish connection with hardware

if connection has been established:

set bounds for stepper motor velocity, acceleration,

and current.

engage stepper motor

collect light sensor values and set ambient threshold value

create "WaitTime" vector of random numbers sampled from the

exponential distribution with mean 1/lambda

i = 1;

start timer

while timer < RunTime

pause for WaitTime(i)

rotate mirror to random direction

turn laser on

pause for 0.15 seconds

get sensor readings - record count if greater than threshold

turn laser off

i = i + 1

end

else

failed to establish hardware communication - terminate program

end

disengage stepper motor and stop communication with hardware

end
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