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ABSTRACT

Colloidal particles and “soft matter” materials are essential parts of many con-

sumer goods we utilize in all facets of life. The utility of these materials stems from

their chemical and structural versatility, ease of customization, and response to exter-

nal stimuli. As a result, soft materials are ubiquitous in industries such as electronics,

performance composites, personal care, cosmetics, paints and pharmaceuticals. Engi-

neering these materials relies on a fundamental understanding of their phase behavior

and structure-property relationships that dictate various microstructural states for par-

ticular applications. Regardless of the chemistry of various colloids, whether they are

particles, polymers, micelles, or proteins, the combination of interaction forces (e.g.,

dispersion, hydrogen bonding, hydrophobic, electrostatic) can be represented as an ef-

fective potential energy field, or interaction potential, which determines the diversity

of equilibrium and non-equilibrium states. This thesis examines the influence of a com-

bination of a short-range attraction (SA) and long-range repulsion (LR), ubiquitous to

protein systems, on the phase behavior and associated material properties.

The competition of attractive and repulsive forces is unique in its ability to

produce self-assembled clusters with a preferred size. This type of cluster has been

observed in a variety of materials. For example, the biopharmaceutical industry is

concerned with large solution viscosities in highly concentrated therapeutic formu-

lations that are hypothesized to arise from cluster formation. In general, SALR (or

competing) interactions may have a significant impact on material properties stemming

from the large diversity of states they may form. Thus, theoretical calculations and

experimental observation of thermodynamic and material properties (e.g., viscosity)

are necessary to more accurately understand the phase behavior of SALR systems.

xxx



Characteristic features of cluster formation in SALR systems are investigated

and identified using scattering techniques. In contrast to early experimental studies,

the presence of a unique intermediate range order (IRO) peak in small angle scatter-

ing patterns is found not to be an experimental representation of cluster formation.

Using the particle level details provided by Monte Carlo (MC) simulations, several

microstructures are studied and distinguished using well defined definitions according

to the cluster size distribution. The contribution to the scattering intensity is decom-

posed into correlations between monomers and clusters. The results indicate that a

significant contribution to the IRO peak is from monomers in each type of microstruc-

ture. Some specific properties of this peak are found to be useful identifiers of clustered

states in the one phase region.

The widely used extended law of corresponding states for colloidal systems with

only an SA interaction is extended in this thesis to systems with competing interactions.

A generalized phase diagram for systems with isotropic SALR potentials has been iden-

tified to distinguish different liquid states including clustered fluid states. Fluids with a

preferred cluster size driven by SALR interactions are identified using MC simulations,

and are found to form exclusively within the two-phase region of a purely attractive

reference system. The additional repulsion frustrates phase separation, driving particle

localization on intermediate range order (IRO) length scales. Multiple potential forms

and interaction parameter sets are investigated and demonstrate identical behavior,

ensuring that this generalized phase diagram is a generic feature of systems with com-

peting interactions. This phase diagram serves as an effective and efficient method of

identifying cluster formation for the community.

A model protein solution is used to experimentally study the relation between

cluster formation and dramatic increases in viscosity. Using neutron scattering tech-

niques, the structure and dynamics of this nearly isotropic system under concentrated

conditions are accurately quantified. Interaction parameters are extracted by fitting

neutron scattering data with a thermodynamically self-consistent integral equation the-

ory. The extent of cluster formation is identified by mapping these states onto the new
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generalized phase diagram and generating structures using MC simulations. Unique

glassy-like behavior and large viscosities are shown to arise from structures with IRO.

A new viscosity model is developed for SALR systems to capture the additional impact

of cluster interactions.

These methods are applied to understand the anomalously large viscosities

sometimes apparent in concentrated monoclonal antibody solutions, which are used

as biopharmaceutical therapeutics. The formation of dynamic clusters had been hy-

pothesized to be the underlying driving force behind the viscosity increase at higher

concentration. Three different mAbs are studied over a wide range of commercially

relevant formulation conditions to distinguish the thermodynamic properties of vis-

cous solutions. The formation of long-lived dimers is consistently found to cause the

larger viscosities. Differences in the magnitude depend on the subsequent association

of these small clusters into supramolecular structures. Model systems could be used

as a foundation to semi-quantitatively characterize the extent of cluster formation and

its influence on viscosity.
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Chapter 1

INTRODUCTION

1.1 Colloidal Particles as Engineered Materials

Modern processes and devices call for highly specific material properties in or-

der to optimize manufacturing operations and/or enhance the user experience (subse-

quently maximizing margins and profitability). Rarely does a pure material optimize

or even meet all the requirements for a given application. Most materials must be engi-

neered, either as a composite or a unique synthetic material, to obtain properties that

satisfy a range of specifications such as thermal and mechanical stability (e.g. turbine

blades), chemical stability and conductivity (e.g. photovoltaics), or colloidal stability

and bio-compatibility (e.g. pharmaceuticals). Engineering these preferred macroscopic

or bulk properties is accomplished by directly altering the material’s microscopic prop-

erties. The inherent correlation between bulk and microscopic properties is typically

referred to as a structure-property relationship, although the structure is not always

the only criteria of merit. Linking the pertinent parameters on such disparate length-

scales requires a hierarchy of knowledge regarding material behavior as shown in Fig.

1.1.

Represented in Fig. 1.1 is a pyramid at the top of which is a given application

for which a material must be developed. The final product is supported by increas-

ingly larger, and more fundamental, layers of supporting information that include the

material’s bulk properties, its phase behavior, the microscopic interactions, and finally

its chemistry. Phase behavior lies directly below properties as it indicates which state

of matter is most stable, whether thermodynamically or kinetically, at a given set of

environmental conditions. For example, whether a material is a solid or a liquid clearly

1



Figure 1.1: A schematic representation of the hierarchical relationship between mi-
croscopic and macroscopic properties used to engineer materials.

plays a significant role in determining material properties. One of the most fundamen-

tal intensive properties, material density, is typically utilized in a phase diagram to

distinguish between these states. Since van der Waals proposed a new equation of

state in 1873,[97] for which he won a Nobel prize in 1910, the coexistence of a low and

high density state (and phase behavior in general) has been understood in terms of

interactions between atoms or particles.[2, 35, 46] The strength and range of these in-

teractions are dictated by the underlying chemistry of the materials of interest.[48, 50]

In the case of pure materials, these interactions are dictated by the atomic structure.

However, colloidal particles provide a platform for customizing the chemistry, size, and

shape of particles to have direct control over these microscopic forces.

Colloidal particles, typically silica, titania, or gold spheres but also inclusive of

polymers (e.g., poly-(methylmethacrylate), PMMA) and proteins (essentially polymers

of amino acids), are versatile materials important to the electronics, performance com-

posites, personal care, cosmetics, paint, food and biopharmaceutical industries, among
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others. They are also of great fundamental scientific interest due to their size scale, typ-

ically within the range of a few nanometers to hundreds of microns, which allow their

structure and dynamics to be treated independently of the solvent (only Angstroms in

size).[48] In addition, their chemistry can be tuned to create a customized potential

energy field by which two particles interact, referred to as an interaction potential. The

effective interactions can be tuned by manipulating the chemistry of these particles and

the solvent within which they are dispersed.[50] Having control over these properties

then provides a method to study the impact of interactions on the phase behavior,

which is the foundation for further study of material properties.

In this dissertation, the particular combination of short range attraction (SA)

and long range repulsion (LR) is examined to quantify the corresponding phase be-

havior and associated solution viscosity at a range of environmental conditions. The

competition of two potential features provides an opportunity to engineer a diverse set

of structural states, which may offer desirable properties through reproducible sponta-

neous structures.[83, 87] Therefore, engineering materials with SALR interactions will

benefit from developing a direct connection between dispersion microstructure (and

its associated properties) and the inter-particle potential. Further understanding of

these complex systems will build upon the well established behavior of systems with

the more fundamental interactions of which SALR potentials are composed.

SALR systems are of particular interest as they can produce liquid states com-

prised of equilibrium clusters.[14, 15, 16, 75, 82, 85, 93, 94] Colloidal dispersions

with these competing interactions are of great scientific interest due to the diver-

sity of materials they represent. These include polymer nanocomposites,[66] colloidal

dispersions,[14, 85] as well as several types of proteins including membrane proteins,[18,

70] globular proteins[16, 75, 93] and therapeutic monoclonal antibodies.[52, 101] Each

of these materials has demonstrated the ability to form equilibrium clusters due to

SALR interactions, though their impact on material properties is not fully understood.

For example, several studies within the biopharmaceutical industry on concentrated
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solutions of therapeutic proteins have hypothesized that cluster formation is the under-

lying cause for large viscosities that are detrimental to the manufacturing and delivery

of these invaluable drugs.[56, 101, 103] Hence, the importance of each tier in Fig. 1.1

will be addressed before presenting important advances in the understanding of cluster

fluids as Landmark Observations.

1.2 The Chemistry of Colloidal Interactions

Despite the large size differences between individual atoms and colloidal par-

ticles, their behavior can be represented within the same framework of an effective

interaction potential. When the distances over which these forces act are normalized

by the corresponding size of the individual unit, the potentials of a nitrogen atom with

a diameter σ ≈ 1.2 Å and, for example, that of a 1.0µm diameter PMMA particle could

be remarkably similar (though the type of interaction(s) responsible for their respec-

tive potentials will most likely be different). Therefore, with respect to the equilibrium

thermodynamic structure, these two systems (atomic and colloidal) can serve as proxies

of each other. In the case of a colloidal particle, the potential is an “effective” potential

since the forces are mediated by the solvent that is considered a continuous medium.

However, atomic forces are the result of quantum mechanical fluctuations of electrons

relative to the nucleus in a vacuum.[48] Equilibrium pockets with a high probability

of finding an electron, known as orbitals, vary in size and shape depending on the

energy state of a given electron bound to the nucleus.[102] Large gradients in electron

density within these orbitals can produce a dipole, which is a closely coupled pair of

oppositely charged points in space. Therefore, similar to a bar magnet, fluctuations

in electron density produce forces between atoms, generally referred to as dispersion

forces or van der Waals (vdW) forces, which can be decomposed into induced-induced,

induced-permanent and permanent-permanent dipole interactions (though vdW forces

do not include hydrogen bonds, these are also an important class of dipole interactions).

Distinguishing an atomic dipole as permanent or induced depends on the chemi-

cal composition of a given molecule and how the individual atoms interact. Permanent
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dipoles exist in molecules that are held together by sharing electrons in communal

orbital space surrounding adjacent nuclei.[102] Therefore, regions of high and low elec-

tron density remain in a particular orientation to maintain a stable chemical structure.

The interaction between two permanent dipoles is known as the Keesom force. A

prevalent example of a highly directional interaction between two permanent dipoles

is a hydrogen bond, which is an orientation dependent association of a hydrogen atom

in one molecule with an electron pair of an electronegative atom in another molecule.

In contrast, the location of electrons bound to a particular atom fluctuate and

can perturb the surrounding electromagnetic field. These perturbations can subse-

quently influence the location of electrons bound to an adjacent atom, creating an

induced dipole. Theoretical calculations of electromagnetic fluctuations indicate that,

after averaging over all possible orientations, the resulting vdW forces have a depen-

dence on inter-atomic spacing of F (r) ∼ 1/r6.[48] A manifestation of the Pauli exclu-

sion principle, which states that two electrons can not exist in the same quantum state

(classically interpreted as not occupying the same physical space), is that a very short

range repulsive force is also produced between atoms. As a result, atomic interactions

are typically represented by a Lennard-Jones 12-6 interaction potential of the form

U(r) = 4(r−12 − r−6)/T ∗, where 1/T ∗ is the magnitude of attraction strength.[79]

These microscopic quantum mechanical forces can be extended to colloidal in-

teractions by integrating the volume of a body composed of atoms.[45] The functional

form (i.e., the dependence on center-of-mass separation) of dispersion forces varies de-

pending on the type of bodies interacting (e.g., walls or spheres), but generally the

form F (r) ∼ 1/rα is used, where the range of colloidal interactions (α < 6) is much

longer compared to atomic materials (α = 6),[48] though this is not strictly true for

macromolecules such as proteins. Colloidal bodies also have a unique capability for

their dispersion interactions to be customized. The constant of proportionality be-

tween the magnitude of dispersion forces and the range of interaction, referred to as a

Hamaker constant, can be manipulated via the chemical composition of the particles

and the suspending medium. While vdW forces are always attractive for atoms, they
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can be made attractive, repulsive or zero for colloids by choosing materials with an

appropriate refractive index.[48, 50]

An additional consideration for colloidal particles is the interaction with solvent

molecules. The cumulative rearrangement of this sea of small molecules introduces

an interesting phenomenon of random fluctuations by a colloidal particle, known as

Brownian motion.[13] Einstein demonstrated that this “random” motion is Gaussian

in nature for most cases and is a thermally regulated process due to particle-solvent

collisions.[32] Interestingly, as particles diffuse via Brownian motion they create flow

fields in the medium that can then produce shear forces on other particles, potentially

quite far away, known as hydrodynamic interactions.[28, 67] Hydrodynamic interac-

tions involve multiple particles and therefore, inherently depend on the equilibrium

microstructure, making quantitative calculations very difficult. Typically, however,

the net effect is to resist particle motion. As the density of colloids increases, hydrody-

namic interactions will become a significant contribution to the cumulative forcefield

of all interactions imposed on a given particle.[67]

In addition to forces of hydrodynamic and quantum mechanical origin, effective

interactions between colloids can be induced from other features of their chemical

composition. Additional attractive forces can be generated from a solute being partially

or completely immiscible in the suspending medium. Also known as the hydrophobic

force, the resulting association of solutes is driven by a minimization of free energy

accomplished by reducing the surface area of interfaces with high interfacial energy.

Also, introducing a second component of much smaller size than the original one (but

still large relative to solvent molecules) into a suspension may induce an apparent

attraction between larger particles. This so called depletion attraction is induced by

maximizing the free volume available to the smaller, non-interacting solutes due to

overlap of excluded regions surrounding the larger ones. If the small solutes do interact

with the larger ones, they may also cause bridging attraction in which they weakly bind

to two (or more) entities, holding them in close proximity.

Repulsive interactions are typically present, which stabilize colloids from these
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associative driving forces. Steric repulsion is a physical barrier simply caused by the

finite volume of molecules preventing neighbors from coming into contact. Further,

Coulomb repulsion is an electrostatic repulsive force between two charged solutes of

the same sign due to the perturbation of the local electric field (a repulsive analog to

the vdW force). The magnitude and range of repulsion varies depending on the charge

of the solute, the permittivity of the solvent and concentration of small counter-ions. A

simple mathematical representation is provided by Debye-Hückel theory, which relates

the surface potential (related to the surface charge via the Grahame equation) to the

interaction potential. The counter-ions play an important role by forming a diffuse

density distribution around a charged particle, known as a Debye layer,[48] which

screens the charge on the surface of a solute from a neighboring solute and is thereby

called a screened Coulomb repulsion.

A powerful capability of colloidal suspensions is the customization of the ef-

fective interaction potential by combining these various forces. Historical precedent

for this has been set since the study of colloidal stability using the DLVO potential,

which combined attractive dispersion forces and Coulomb repulsion.[29, 73] Further,

it is quite common for multiple attractive forces to contribute to the total attraction

in the effective interaction potential. In the interest of producing SALR interactions,

previous work has combined large charged colloidal particles with “built-in” repul-

sive interactions with smaller non-adsorbing, randomly coiled polymers to induce a

depletion attraction.[14, 53, 86, 93] Other studies have taken advantage of a mate-

rial that naturally produces SALR interactions, small globular proteins (specifically,

lysozyme).[15, 16, 34, 62, 75, 91, 93] Although several other compositions could pro-

duce these forces that may better suit a particular application, for now these two

systems have provided a powerful framework to experimentally corroborate theoretical

and simulation studies.
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1.3 Interactions and Phase Behavior

While several observations of various structural states in SALR systems, includ-

ing cluster fluids, have been presented in the literature, relatively little progress has

been made in physically rationalizing or summarizing the conditions at which they

form. In particular, while a wide range of microstructures can be produced with sev-

eral tuning parameters (i.e., strength and range of interactions), it is a daunting task

to explore the full parameter space of an SALR potential. Therefore, a theory for the

generalization of the phase behavior of systems with competing interactions will facili-

tate the development of structure-property relationships for these systems by enabling

the rapid location of interesting states exhibiting clusters. Fortunately, a consequence

of the fact that an SALR potential is a summation of an attractive and a repulsive

potential is that SALR phase diagrams contain aspects of the phase behavior observed

in purely attractive systems and purely repulsive systems. Therefore, previous studies

of these “simpler” systems can be used as a basis for understanding the more complex

influence of competing interactions.

By choosing appropriate chemistry, the influence of the effective interaction

potential can be systematically studied as demonstrated in Fig. 1.2. The simplest in-

teraction is a hard sphere (HS) interaction, where the finite size of the particle produces

an excluded volume in which no two particles can exist simultaneously. Theoretical cal-

culations demonstrate that the HS phase diagram includes a single equilibrium phase

transition between a fluid at a volume fraction of φ = 0.494 and a crystal at φ = 0.545,

shown in Fig. 1.2b.[49] Such samples can be generated experimentally by matching

the refractive index of particle and solvent (i.e., removing vdW forces by reducing the

magnitude of the Hamaker constant) and/or grafting a steric stabilization layer on the

surface of the colloid. Previous experimental work demonstrated this technique nearly

quantitatively reproduced the HS phase behavior.[76] Interestingly, non-equilibrium

transitions can exist at large volume fractions if samples have sufficient polydisper-

sity to prevent crystallization.[2] In particular, HS samples have a glass transition at

φ ≈ 0.58 forming a disordered solid (not shown in Fig. 1.2).[76] In addition to a
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Figure 1.2: (a) Interaction potentials of HS (black solid line), short range attraction
(red dashed line) and long range attraction (blue dotted line) are plotted
together for comparison. Representations of the phase behavior resulting
from the corresponding potentials in (a) are plotted for (b) hard sphere,
(c) short range attractive and (d) long range attractive fluids. Letters
distinguish the type of phase in each region of the diagrams. The dashed
line in (d) represents the triple point (gas-liquid-solid coexistence).
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divergence of zero-shear viscosity and the onset of a yield stress,[67] particles in an

ideal glass become dynamically arrested, which is indicated by a plateau in the auto-

correlation function due to density fluctuations representative of non-ergodicity (i.e.,

non-equilibrium behavior).[98, 99]

Attractive interactions, with two additional tuning parameters (i.e., attraction

strength and range), produce much more diverse phase behavior that is acutely sensitive

to the range of attraction, which is graphically represented by comparing the diagrams

in Fig. 1.2.[2, 5, 35, 36, 68] The equilibrium phase behavior of long range attraction

contains a gas-liquid-solid triple point in addition to separate gas-liquid and liquid-solid

coexistence regions.[2, 35, 68] (These features are reminiscent of atomic systems, as

the Lennard-Jones potential falls into this category). As the range is reduced, the gas-

liquid (or liquid-liquid) coexistence becomes metastable within the gas-solid region.[35,

36] This liquid-liquid region can typically be accessed due to the slow dynamics of

crystallization and/or particle size polydispersity. Several studies have demonstrated

that, if attractive forces are less than roughly 10% of a particle diameter, this two

phase region can be normalized onto a generalized phase diagram, referred to as the

extended law of corresponding states.[55, 71, 72]

While Fig. 1.2 represents the qualitative trends in colloidal systems with isotropic

HS and attractive interactions, the phase behavior can become significantly different

if the interactions are anisotropic. Although throughout this dissertation the use of

isotropic interaction potentials will be utilized to numerically extract parameters to

describe the effective forces between colloids, it is important to recognize the signifi-

cance of directionality on their behavior. This fact is particularly relevant to proteins

(as will be explored in detail later in this dissertation), which typically have a complex

distribution of surface residues responsible for protein-protein interactions. Recent ex-

perimental and modeling work demonstrated the accuracy of a so called “patchy” model

in representing the interactions between lysozyme that could successfully reproduce the

experimentally observed phase behavior.[42] A more expansive theoretical investigation

has also demonstrated the quantitative changes in phase behavior as a function of the
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number of patches and their angle of (purely attractive) interaction.[89] For example,

Ref. [89] showed an expansion of one-phase liquid stability over a broader range of so-

lution conditions with increasing patches and angle of interaction, which would greatly

influence the resulting properties affiliated with the fluid microstructure.

Short range attraction can induce an equilibrium connectivity known as perco-

lation, in which at least one cluster spans the sample volume. Stochastic models and

simulations demonstrate that percolation precedes liquid-liquid phase separation.[20,

68, 84] This transition depends on the strength and range of attraction and can have

a significant impact on the dynamics in these systems.

Attraction also produces a rich landscape of non-equilibrium states (not shown

in Fig. 1.2) in addition to the diverse equilibrium phase diagram. In the limit of very

weak attraction (i.e., a HS fluid), attractive systems will transition through the so

called “repulsive driven” glass (RPG) transition at high volume fractions. Addition-

ally, these systems contain an “attractive-driven” glass (ADG) transition at sufficiently

strong attraction and high volume fractions.[80] A kinetically arrested state at interme-

diate φ has also been found that precedes the ADG transition, known as gelation.[104]

Despite the difference in their volume fractions, gels and glasses are similar in that the

viscosity diverges and a yield stress develops, indicating a mechanically robust struc-

ture. However, the physical origin of gelation remains heavily debated. Gel states have

been shown to correlate with both random percolation[31] and rigidity percolation,[96]

but have also been associated with an arrested spinodal decomposition.[63]

As may be expected, introducing two additional parameters to a potential with

HS plus attractive interactions, by combining with it a repulsive interaction resulting

in an SALR potential, produces an even richer variety of structural and dynamic states

with distinct properties. Simulations have demonstrated that systems with long range

attraction and longer range repulsion (or LALR interactions) may still have a stable

gas-liquid coexistence, similar to systems with purely long range attraction.[4, 21] How-

ever, the two-phase region of LALR systems is much more complex as compared to

long range attractive systems,[3, 22] consisting of spontaneous micro-phase separation
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into self-assembled structures with similar geometry to block copolymers,[23] which in

and of themselves have a rich phase behavior.[6]

In the case of SALR interactions, this dissertation will demonstrate that the

phase behavior of systems with competing interactions is very similar to purely short-

range attractive systems. In particular, the phase behavior of these two systems will

be shown to be so similar that the extended law of corresponding states[71] can be

used to construct a normalized phase diagram for SALR systems, analogous to that

for purely attractive interactions.[40] The most significant differences between SA and

SALR phase behavior is that the additional LR interactions shift the liquid-liquid

binodal to lower temperatures[51] and the percolation transition to smaller volume

fractions.[95] Below the percolation line, simulations indicate that equilibrium fluids of

clusters form at sufficiently strong attraction in balance with repulsion.[38, 40, 82, 94]

At higher volume fractions, clusters can act as building blocks of more complex mi-

crostructures leading to cluster-induced glassy states[53] or gelation.[14, 40, 82] These

macromolecular structures likely have a significant influence on the solution viscosity,

to be discussed in the next section, which heightens the importance of more accu-

rately and generally identifying the phase space of these states to further study their

properties.

1.4 Solution Viscosity - The Influence of Interactions

Viscosity, η, is one of the most important physical properties to the manufac-

turing and use of nearly every consumer product. The formulation of materials ranging

from toothpaste to paint must be carefully optimized to maintain the structural in-

tegrity and flow behavior necessary for the application of interest. Simultaneously, the

properties must be suitable for the unit operations needed to initially produce each

product. Therefore, an accurate model of solution viscosity as a function of concentra-

tion and interactions can serve as a powerful tool for successfully engineering a wide

range of materials. This is true whether one is traversing up or down the pyramid

in Fig. 1.1. In the case of SALR systems, previously developed models for HS and
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attractive systems can serve as a foundation, similar to the phase behavior, but the

simultaneous influence of competing forces presents significant challenges.

Phase diagrams provide an important physical rationalization for the behav-

ior of colloidal suspension viscosity, which is intricately related to the microstructure.

The viscosity represents the stress supported under flow when applied at a given shear

rate. Therefore, the stress depends on the relative timescale of the imposed flow and

the microscopic mechanisms of particle relaxation (i.e., rearrangement) that dissipate

stress.[67] In the limit of small shear rates the static microstructure (whether equilib-

rium or non-equilibrium) is essentially unperturbed. Hence, the resistance to “flow”

by this structure is reflected in the zero-shear viscosity, ηr0, measured under these

conditions. The dynamic corollary of ηr0 is an oscillatory shear force imposed at a

fast enough frequency that the equilibrium structure is essentially unchanged, known

as the high-frequency viscosity, η∞, which is representative of purely hydrodynamic

forces. At high shear rates, perturbations alter the solvent flow field relative to the

static microstructure since the particles, which are orders of magnitude slower than

solvent molecules, can be considered to remain static. Therefore, the stress response

in the low or high shear limit can be estimated according to the sample’s equilibrium

structural state within the phase diagram.

Glass transitions in HS and attractive (specifically, adhesive hard sphere) col-

loidal systems serve as a useful example of the viscosity dependence on the microstruc-

tural state. At elevated volume fraction, approaching either the RDG or ADG transi-

tions, the zero-shear viscosity diverges. Prior to the glassy state, these samples become

non-ergodic due to dynamic arrest and a majority of the population of particles coming

into direct contact with several neighboring particle. By definition, once becoming a

glass, the particles are caged by many neighbors and no longer move on long length-

scales. Therefore, these dynamically arrested structures resist shear flow and produce

the divergence in viscosity. In fact, both the structural and dynamic parameters are

proportional to the proximity of the sample volume fraction to an effective maxi-

mum volume fraction, φmax, which has been closely associated with the experimentally
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identified glass transition.[78] By accounting for both contributions, they accurately

account for the power law behavior of the viscosity according to the semi-empirical re-

lation lim
φ→φmax

ηr0 ∝ (φ−φmax)−2.[11] In the case of the ADG transition, which depends

on the strength and range of attraction, this divergent behavior can then be used to

accurately identify φmax for a given interaction potential.[54, 77]

As a macroscopic material property, viscosity is a manifestation of several mi-

croscopic parameters that make modeling its dependence on solution conditions quite

challenging.[67] While empirical models utilize the glass transition as an upper limit to

estimate the viscosity at high volume fractions, calculations for samples at intermediate

φ requires knowledge of the microscopic properties. Decomposing the microstructural

contributions to stress dissipation under shear flow has proven to be a powerful and

reliable method.[11, 58] In particular, the viscosity can be differentiated into hydrody-

namic, Brownian, and inter-particle contributions.[11]

Each viscosity contribution term highlights the importance of interactions, struc-

ture, and dynamics. The hydrodynamic contribution is a many-body interaction that is

difficult to calculate. Therefore, it is determined by experimentally measuring the high-

frequency viscosity. The Brownian and inter-particle terms are proportional to the self

diffusion coefficient and the probability of finding two particles in contact, which can

be estimated using thermodynamics. However, since the steady-state microstructure

is a perturbation of the equilibrium structure under flow, the resulting viscosity model

will depend on the specific flow field. As a simplification, most models estimate the

viscosity by assuming only minor perturbations to the equilibrium microstructure.[11]

By combining the three individual contributions, the viscosity can be estimated

as an expansion in terms of the particle volume fraction. A widely used representation

includes only one- and two-body contributions through the form

ηr0(φ) = 1 + 2.5φ+ kHφ
2 +O(φ3) (1.1)

where kH is the Huggins coefficient. This functional form can be directly compared

with experimental viscosity data to quantitatively estimate the contribution of particles
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and their interactions, as well as the subsequent structure and dynamics resulting from

those interactions, to the solution viscosity. In this sense, Eq. 1.1 turns a rheology

experiment into a probe of thermodynamic and dynamic properties.

In contrast, Eq. 1.1 can be used as a tool to predict solution viscosity by

estimating Huggins coefficients. Values of kH have been theoretically predicted for HS

fluids with equilibrium liquid[100] and shear-induced[7] structures. Similar calculations

have also produced Huggins coefficients for charged and attractive colloids. For purely

repulsive systems, kH is a function of the Debye length[11] and for weakly attractive

systems it is a function of the well depth of the potential, whether an adhesive hard

sphere,[24] square well,[8] or some other functional form.

Although exact for dilute solutions, extending the approach presented in Eq. 1.1

to concentrated solutions requires approximating many-body calculations. Thus, the

development of accurate predictive models for attractive and especially SALR systems

becomes quite difficult. As of yet, no definitive theory exists for systems with SALR

interactions. In part, this is due to the novelty of SALR systems. This thesis will

build upon previous models developed separately for an attractive and a repulsive

force by combining their most effective features into a functional form that represents

the cumulative contribution of SALR interactions. Many of these details are provided

in the Appendix.

1.5 Landmark Observations

1.5.1 Cluster Formation Fundamentals

Cluster formation was shown to theoretically occur from the combination of

short range attraction and long range repulsion by Sciortino, et al.[81] The attractive

force draws particles together and initiates association into larger aggregates. If left

unimpeded, aggregation will continue until the aggregate is so large that it either spans

the whole system or precipitates out of solution (if the particle and solvent densities

are sufficiently mismatched). However, the accumulation of repulsion on each of the

individual particles within a cluster eventually becomes large enough to prevent further
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Figure 1.3: (a) Four SALR interaction potentials are plotted together with the same
range and strength of attraction but varying range and strength of repul-
sion. (b) The configuration energy per particle is plotted for each of the
potentials in (a) with the corresponding colors using simulation results
form [81] (symbols) and new numerical calculations (lines) of close-packed
spherical configurations, an example of which is shown in the inset.

growth. If the repulsive force is sufficiently strong, it would prevent any aggregation

from taking place. Therefore, a delicate balance of a weak but non-zero repulsion and

a relatively strong attractive well (however, not so deep particles are unable to escape)

are necessary for the formation of equilibrium clusters with a finite size.

Achieving the necessary delicate balance of attraction and repulsion to form

a cluster is manifested as a minimum in the configuration energy as a function of

cluster size.[69, 81] Previous work relied on a complex basin-hopping algorithm in

Monte Carlo (MC) simulations to identify the ground state (zero temperature, infinite

dilution) configuration that minimized the free energy.[81] The calculations utilized

an interaction potential that combined a short range equivalent of Lennard-Jones type

attraction (known as the 2α−α form, with α = 100 rather than α = 6) with a screened

Coulomb repulsion, examples of which are provided in Fig. 1.3a. However, these

cluster configurations can also be accurately represented by a spherical close-packed

crystal structure.[69] The similarity of simulation and analytical calculation results is

demonstrated for all four potentials in Fig. 1.3b. The top curve has a clear energy

minimum as a function of cluster size, indicating a stable cluster of about 24 particles.
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The other three potentials have insufficient repulsion and therefore, the configuration

energy continually decreases with increasing size. Thus, systems with these potentials

are expected to exhibit bulk phase separation rather than form a clustered fluid, at least

at zero temperature. With a simple extension of the model, four orders of magnitude

of both interaction parameters are sampled to observe stable cluster formation.[69]

1.5.2 Cluster Configuration and Solution Microstructure

The simple ground state calculations demonstrating the fundamentals of cluster

formation were a significant step in understanding what clusters are and the condi-

tions under which they form. However, at finite temperature and concentration the

influence of entropy and Brownian motion become significant contributions to the free

energy landscape of colloidal systems with SALR interactions, and the sum of these

interactions determines whether clusters are energetically favorable.[82, 94] For exam-

ple, entropy favors a highly polydisperse cluster size distribution compared to enthalpy,

which as shown in Fig. 1.3 would result in a single minimum energy cluster size. To

accomplish a similar calculation for a sample at finite φ and T , the free energy of a

particular cluster size would need to be calculated while accounting for the ensemble

average microstructure within which it exists. Simulations provide an effective means

to quantify cluster properties under experimentally relevant conditions.[1, 37]

While simulations are powerful techniques that offer significant details into the

solution microstructure, they can be time consuming. Therefore, efforts have been

made to develop models to predict the onset of clustering. Models developed thus

far estimate an average cluster size in a monodisperse solution, which may simplify

determining the conditions at which significant clustering occurs.[30, 43] As a result,

these calculations treat clustering analogously to micellization.[30, 44, 103] However,

these models miss potentially important details such as the cluster polydispersity and

internal configuration and rely on input parameters such as cluster surface energy that

are very difficult to experimentally identify (and likely infeasible to determine).
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Identifying the additional influence of entropy and excluded volume on cluster

formation at finite temperature and concentration can be accomplished by quantifying

the cluster size distribution via simulation techniques. To do so requires defining a

separation distance between particles, within which they are considered connected or

associated.[25] This is a point of contention in the soft matter community involved

in studying cluster formation and will be discussed in more detail in later chapters.

However, features of the resulting cluster size distribution are used to define various

types of structural states. As such, evolution of extensive clustering has been found to

occur at relatively small concentrations and temperatures.[38, 40, 82, 94, 95]

Previous work has also observed the effect of interaction potential parameters

on cluster shape via experimental and simulation studies. Studies of a relatively short

range repulsion (0.5σ and 0.65σ) demonstrate that larger clusters are quite condensed

with a fractal dimension between 2.1 and 2.5 while smaller clusters are more linear

with a fractal dimension of about 1.5.[14, 82, 95] However, large clusters can transition

from relatively compact to more elongated, with a fractal dimension of about 1.3, by

making the repulsion very strong while still short ranged or longer ranged (2σ) while

still weak.[94, 95] Under very strong attractive interactions, more spherical clusters are

preferred at smaller sizes[82, 94] due to the larger driving force for aggregation. In

addition to the interaction parameters, cluster structure is also dependent on temper-

ature and particle volume fraction. However, cluster fluids are generally observed at

low to intermediate φ and relatively low temperature.

Depending on the volume fraction, as well as the interactions, the cluster size

distribution may show a predominant cluster structure in solution. An experimental

system with a small range of repulsion formed predominantly small (more spherical)

clusters at low volume fractions (φ ≤ 0.08) until becoming larger, and thus more linear,

above φ ∼ 0.1.[14] Simulations using similar interaction parameters corroborated these

results.[82] Within these experimental[14, 85] and simulation[82, 94] studies, small

clusters at small φ exist in equilibrium with monomers. In contrast, the large linear

clusters eventually percolated at larger volume fractions (φ ≈ 0.14). Thus, in addition
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to stable, reversible aggregates, clusters can act as building blocks that aggregate into

larger structures.[14, 16, 38, 82, 85, 94]

1.5.3 Cluster Dynamics

In practice, clusters have both structural and dynamic features that determine

their stability. Clustered fluids are composed of reversible aggregates with a preferred

average size (with finite polydispersity) that coexist with individual particles.[69, 81,

82, 94] The equilibrium coexistence of monomers and clusters indicates that clusters

likely have a finite lifetime. The delicate balance of relatively weak attraction and

(typically) weaker repulsion dictates that, if sufficient thermal energy is available to a

given particle, a finite probability exists for it to “escape” a cluster. Types of clusters

can be categorized according to the timescale of this process into regimes of transient,

dynamic and permanent clusters as depicted in Fig. 1.4.[75] While transient clusters

can be defined as the instantaneous or random dynamic correlation of 2 or more par-

ticles, dynamic and permanent clusters can be distinguished by their lifetime relative

to the characteristic diffusion time of a single particle. A dynamic cluster exists over

a similar timescale as a single particle diffuses its own size, while the timescale over

which particles in a permanent cluster remain correlated can be orders of magnitude

longer.

An interesting feature of colloidal systems with competing interactions is the

possibility that structural correlations can be independent of dynamic correlations.

Depending on the solution conditions, the dynamic behavior of colloidal particles in-

teracting with an SALR potential can be diffusive or kinetically arrested, yet under

both conditions these systems have been observed to contain structural correlations

over intermediate range lengthscales. Originally observed in molecular glasses, in-

termediate range order has been associated with clusters of molecules.[33, 64] It is

hypothesized that these clusters then become percolated, which may cause the hin-

dered mobility associated with glassy behavior.[33] In addition to this additional order
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Figure 1.4: The difference in transient (#1), dynamic (#2) and permanent (#3)
clusters are distinguished according to the time scale of their dynamic
correlations. Though structurally correlated, cluster #1 is never dynam-
ically correlated while cluster #2 diffused together for a finite time and
cluster #3 moves collectively for an extended time period.

at intermediate lengthscales, molecular glasses contain structural order over short dis-

tances and disorder over long distances and thus, resemble molecular liquids. However,

molecular liquids remain mobile over sufficiently long times such that they behave as

fluids, despite the fact that molecules in these liquids are percolated. Therefore, this

lack of intermediate range order is correlated with diffusive motion. Hence, in general,

the structure and dynamics of molecular systems are directly related. Similarly, in the

case of purely attractive colloidal materials, Hansen and Verlet identified a correlation

between the magnitude of the monomer peak in the solution structure factor with the

freezing transition (i.e., kinetic arrest).[46] In contrast, due to the prevalence of IRO in

systems with competing interactions, identifying the state of a colloidal SALR system

will require measurements of particle dynamics in addition to the solution structure.

Equilibrium clusters in an SALR system should be distinguished from widely

studied systems of fractal aggregates, or flocs, that form irreversibly. Both flocs and

clusters can form in systems with SALR interactions, but the primary attractive well

is much deeper to cause flocculation and the repulsive strength is insufficient or non-

existent to prevent further growth. One important difference between flocs and re-

versible clusters is their stability. Floc size grows irreversibly and continuously in
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the reaction- or diffusion-limited regimes until it percolates or sediments.[57, 65] In

contrast, clusters in an SALR system can have a thermodynamically preferred size

distribution and these clusters are reversible, or in other words, particles within the

clusters may have a finite rate of exchange with particles in the bulk. Despite the

long lifetime of permanent clusters, the net repulsive force that stabilizes them to a

particular size ensures that their growth is suspended and that they remain in equilib-

rium. Nevertheless, clusters can still interact to form larger structures, but the effective

interactions between these structures are primarily repulsive.[69, 81]

Several studies have provided examples of cluster-induced kinetic arrest. Both

simulations and theoretical calculations demonstrate that, for the right combination

of potential parameters, clusters can form Wigner crystals or glasses comprised of

clusters.[53, 81, 94] For less repulsive inter-cluster interactions, percolation (and there-

fore possibly gelation[31]) can occur with increasing volume fraction as a result of

association between clusters rather than monomers.[14, 16, 53, 82, 85, 86, 94] Thus,

clustered states can exhibit many properties similar to those found for traditional col-

loidal dispersions, but the pertinent dynamic parameters pertain to the mobility of

clusters as opposed to monomers.

Due to the importance of short-time dynamics on the viscosity, it is critical to

model the diffusion of particles, and possible clusters, in SALR systems. A signifi-

cant hurdle to this task is the inherent polydispersity of cluster sizes and their finite

lifetime.[75] If clusters exist as equilibrium aggregates, it may be possible for the parti-

cles composing a cluster to freely exchange between the cluster and monomer “state”.

Further, clusters can potentially associate into larger scale structures. Therefore, care

must be taken to ensure that the different timescales associated with different types

of clusters in SALR systems can be distinguished by experimental techniques. Recent

work on highly concentrated solutions of lysozyme[34, 39, 62, 75] and monoclonal an-

tibody proteins[103] have taken some initial steps in distinguishing individual cluster

mobility and their collective motion by comparing neutron scattering and light scat-

tering techniques that probe time scales differing by multiple orders of magnitude. In
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Figure 1.5: The structure factor of an SALR system and a HS system are compared
for a system at φ = 0.15.

the short time limit, shorter than the apparent lifetime of a cluster, the self-diffusion

coefficient can be used to estimate the hydrodynamic radius of clusters.[75, 103]

1.5.4 Experimental Identification

Several methods have been used to observe the formation of clusters experi-

mentally. For micron-sized particles, clusters can be directly imaged using confocal

microscopy.[14, 53, 85, 86, 93] By direct tracking of particle movements, these exper-

iments can yield a distribution of cluster sizes as well as information regarding their

diffusivity and lifetime. Unfortunately, the resolution limit of microscopy prevents its

use in studying colloids on the nanometer size scale, such as proteins. The typical

technique of choice for these material is small angle scattering experiments. However,

which features can be used to experimentally identify clustered fluids in nanoscale

SALR systems is still debated in literature.[15, 60, 61, 62, 75, 88, 90, 92, 93]

Given the disordered structure of any fluid state, the extent of order is typically

represented by a function called the pair distribution function, g(r), which represents

the probability of finding a neighboring particle at a distance r from a reference particle.

Small angle scattering experiments are able to obtain the solution structure factor,
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S(q), which can be calculated from g(r) through a Fourier transformation. S(q) is a

function of q-vector, or momentum transfer, where q ∝ 2π/r. Features of both g(r)

and S(q) obtained experimentally can be compared with thermodynamic calculations

to be discussed in Chapter 2.

Early small angle X-ray and neutron scattering studies of lysozyme protein[91,

93] identified an interesting peak at small q-values, indicative of structural correlations

over intermediate range lengthscales (or intermediate range order). An example of

such a peak in the S(q) of an SALR system is provided in Fig. 1.5 relative to a

HS fluid at the same volume fraction. This anomalous low-q peak was considered

to arise from cluster formation and hence, termed the cluster peak.[93] Simulation

studies and thermodynamic calculations of S(q) have determined the dependence of the

low-q peak position and magnitude on SALR potential parameters.[9, 12, 59] Cluster

states estimated in this way have been mapped onto an effective SALR system phase

diagram.[26] However, recent experimental studies[62, 75] have provided evidence that

low-q peaks are not necessarily a consequence of forming clusters of a preferred size, but

are a general repercussion of SALR interactions resulting in a distribution of cluster

sizes. Hence, the physical significance of cluster fluid phases demarcated in SALR

phase diagrams according to the presence of a low-q peak is unclear. As a result,

further study is required to confirm the phase space of cluster fluids, which will be

explored further in this dissertation.

1.5.5 Clusters in the Biopharmaceutical Industry

Given that proteins are naturally able to produce SALR interactions due to

their chemistry, the biopharmaceutical industry is concerned with possible detrimental

effects of clustering in therapeutic protein solutions. Understanding cluster forma-

tion by these “large molecules” at higher concentrations is important for improving

pharmaceutical production and product stability and providing new and better deliv-

ery methods. Human therapeutics based on monoclonal antibodies (mAb) and other

protein-based biologics (drugs derived from biological sources) have grown into one of
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the largest sectors of the pharmaceutical market in the past few decades.[27, 47] The

high selectivity and reproducibility of antibodies combined with few side effects has

made these materials successful in treating several forms of cancer and a broad range

of auto-immune disorders such as rheumatoid arthritis, psoriasis, Crohn’s disease and

transplant rejection.[27, 47]

Clarification of the phase behavior of clustering systems is of significant tech-

nological importance for biological materials, ranging from model globular proteins

to therapeutic mAbs. Recent experimental work on high concentration solutions of

mAbs[10, 17, 56, 74, 103, 105] and lysozyme[15, 16, 19, 34, 62, 75, 93] suggest exten-

sive formation of clusters in solution. In particular, the presence of mAb clusters has

been shown to strongly affect the solution viscosity and hypothesized to depend on

the type of clusters formed.[41, 103] These commercial products provide an important

framework to test the current understanding of the fundamental driving forces leading

to the complex and diverse range of structures produced by SALR interactions as well

as the implication of these structures on the solution viscosity.

1.6 Dissertation Goals and Outline

Due to the social and economic importance of soft matter materials, the main

goal of this dissertation is to develop the theoretical understanding and experimental

methods to explore the prevalent, but poorly understood colloidal systems with SALR

interactions, with the intent to apply these developments to protein solutions. The

discussion thus far has presented several proposed features of competing interactions,

including the formation of cluster fluids and its effect on the solution viscosity. Devel-

oping a further understanding of these two features will have a significant impact on all

colloidal materials with competing interactions. Within this diverse range of materials,

biopharmaceutical therapeutic products can serve as an important and pertinent test

of the current understanding of materials with SALR interactions and how to engineer

their properties. To begin to address the remaining questions of cluster formation and

stability, this work will focus on the hypotheses that (1) a generalized phase diagram
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of cluster states exists and that, building upon this phase behavior, (2) cluster fluids

can be identified as a significant driving force behind the observed increase in solution

viscosity in certain concentrated protein solutions. By setting a precedent with this

particular class of SALR systems, the fundamental connection between competing in-

teractions, clusters and solution viscosity can be extended to understand the behavior

and properties of colloidal materials in general, but based on a more solid theoretical

foundation.

The progression of chapters through this dissertation will be concerned with

these two hypothesis and therefore, two components of Fig. 1.1 for colloidal disper-

sions with competing interactions. By defining inter-particle interactions with an SALR

potential, the scientific method will be used to explore (1) the influence of these interac-

tions on the phase behavior relative to simpler interaction potentials as well as (2) the

solution viscosity of new structural states composed of clusters. These broad initiatives

have been decomposed into several successive fundamental studies, requiring a com-

prehensive combination of simulation and experimental techniques to identify charac-

teristic properties of cluster fluids. The unique experimental and analytical framework

developed in this dissertation will be separated into its individual components for each

to be described in detail in Chapter 2.

In order to explore the material properties of cluster fluids, the solution con-

ditions at which they form must first be determined. However, no experimentally

accessible signatures, such as the magnitude and/or location of peaks in S(q) or g(r),

have been confirmed as representative of clustered states. Identification of clusters

will be accomplished through the use of detailed analysis of particle-level simulations.

A thermodynamically relevant, but specific definition will be developed to distinguish

clustered states based on the distribution of cluster sizes in the microstructure (Chap-

ter 3). Next, these characteristics will be utilized with a variety of SALR potentials to

map the regions of phase space where clustered states are formed. By appropriately

normalizing these results, the compilation of all state points produces a generalized

phase diagram of clustered states (Chapter 4), applicable to a wide range of materials
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and conditions.

With a theoretical understanding of the conditions leading to cluster formation

observed experimentally, the remaining fundamental task is to quantify the influence

of clusters on solution viscosity. The globular protein, lysozyme, is used as a model

experimental system to study the connection between structure and dynamics and the

cluster-viscosity relationship. Initially, the interactions, structure, and dynamics are

characterized in detail over a wide range of concentration and temperature. Significant

viscosities as well as glassy dynamics are found to be qualitatively related to structural

heterogeneity stemming from intermediate range order. The influence of these large-

scale structures is quantified by developing a novel viscosity model that associates

effective cluster-cluster interactions with the increase in viscosity. As a result, the

model can extract an effective measure of cluster formation in these solutions (Chapter

5).

Finally, these fundamental studies are used as a foundation for identifying clus-

tered states in formulations of biopharmaceutical therapeutic proteins. Specifically,

two monoclonal antibodies are used as representative examples of cluster forming mAb

formulations that produce large viscosities. Despite their more complex structure and

interactions, the structural and dynamical features are semi-quantitatively related to

the viscosity. In particular, formulation composition and protein surface chemistry are

correlated with effective inter-protein interactions to provide generic metrics to iden-

tify clustering in these materials. One mAb is found to produce elongated, long-lived

dimers that raise the viscosity due to enhanced excluded volume and repulsive inter-

cluster interactions (Chapter 6). The other system appears to form small clusters at

low concentrations with little effect on viscosity, which merge at higher concentrations

to form large-scale, transient clusters leading to large viscosities (Chapter 7). These

results are summarized and discussed with proposed future work in the conclusion of

the dissertation (Chapter 8).
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intermediate-range order in amorphous materials. Nature 419, 6905 (Sept. 2002),

381–4.

33



[65] Meakin, P. Formation of fractal clusters and networks by irreversible diffusion-

limited aggregation. Phys. Rev. Lett. 51, 13 (1983), 1119.

[66] Meth, J. S., Zane, S. G., Chi, C., Londono, J. D., Wood, B. A.,

Cotts, P., Keating, M., Guise, W., and Weigand, S. Development of

Filler Structure in Colloidal Silica-Polymer Nanocomposites. Macromolecules 44

(2011), 8301–8313.

[67] Mewis, J., and Wagner, N. J. Colloidal Suspension Rheology. Cambridge

University Press, New York, 2012.

[68] Miller, M., and Frenkel, D. Phase diagram of the adhesive hard sphere

fluid. J. Chem. Phys. 121, 1 (July 2004), 535.

[69] Mossa, S., Sciortino, F., Tartaglia, P., and Zaccarelli, E. Ground-

state clusters for short-range attractive and long-range repulsive potentials. Lang-

muir 20, 24 (2004), 10756–10763.

[70] Mulheran, P., Pellenc, D., Bennett, R., Green, R., and Sperrin, M.

Mechanisms and Dynamics of Protein Clustering on a Solid Surface. Phys. Rev.

Lett. 100, 6 (Feb. 2008), 068102.

[71] Noro, M. G., and Frenkel, D. Extended corresponding-states behavior for

particles with variable range attractions. J. Chem. Phys. 113, 8 (2000), 2941.

[72] Orea, P., Tapia-Medina, C., Pini, D., and Reiner, A. Thermodynamic

properties of short-range attractive Yukawa fluid: simulation and theory. J.

Chem. Phys. 132, 11 (Mar. 2010), 114108.

[73] Overbeek, J. T. G. Recent Developments in the Understanding of Colloid

Stability. J. Colloid Interface Sci. 58, 2 (1977), 408.

34



[74] Pathak, J. A., Sologuren, R. R., and Narwal, R. Do Clustering Mono-

clonal Antibody Solutions Really Have a Concentration Dependence of Viscosity

? Biophys. J. 104 (2013), 1–11.

[75] Porcar, L., Falus, P., Chen, W.-R., Faraone, A., Fratini, E., Hong,

K., Baglioni, P., and Liu, Y. Formation of the Dynamic Clusters in Con-

centrated Lysozyme Protein Solutions. J. Phys. Chem. Lett. 1, 1 (Jan. 2010),

126.

[76] Pusey, P. N., and van Megen, W. Phase behaviour of concentrated suspen-

sions of nearly hard colloidal spheres. Nature 320 (1986), 340–342.

[77] Rueb, C. J., and Zukoski, C. F. Rheology of suspensions of weakly attractive

particles: Approach to gelation. J. Rheol. (N. Y. N. Y). 42, 6 (1998), 1451.

[78] Russel, W. B., Wagner, N. J., and Mewis, J. Divergence in the low shear

viscosity for Brownian hard-sphere dispersions: At random close packing or the

glass transition? J. Rheol. (N. Y. N. Y). 57, 6 (2013), 1555.

[79] Sandler, S. I. Chemical, Biochemical, and Engineering Thermodynamics. 2006.

[80] Sciortino, F. Disordered materials: One liquid, two glasses. Nat. Mater. 1

(2002), 145–146.

[81] Sciortino, F., Mossa, S., Zaccarelli, E., and Tartaglia, P. Equilib-

rium Cluster Phases and Low-Density Arrested Disordered States: The Role of

Short-Range Attraction and Long-Range Repulsion. Phys. Rev. Lett. 93, 5 (July

2004), 5.

[82] Sciortino, F., Tartaglia, P., and Zaccarelli, E. One-dimensional clus-

ter growth and branching gels in colloidal systems with short-range depletion

attraction and screened electrostatic repulsion. J. Phys. Chem. B 109, 46 (2005),

21942.

35



[83] Sear, R. P., Chung, S. W., Markovich, G., Gelbart, W. M., and

Heath, J. R. Spontaneous patterning of quantum dots at the air-water interface.

Phys. Rev. E 59, 6 (June 1999), R6255–8.

[84] Seaton, N. A., and Glandt, E. D. Aggregation and percolation in a system

of adhesive spheres. J. Chem. Phys. 86, 8 (1987), 4668.

[85] Sedgwick, H., Egelhaaf, S. U., and Poon, W. C. K. Clusters and gels

in systems of sticky particles. J. Phys. Condens. Matter 16, 42 (Oct. 2004),

S4913–S4922.
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Chapter 2

METHODOLOGY: THEORY, SIMULATIONS, AND EXPERIMENTS

2.1 Background

Cluster fluids are an equilibrium state of matter that have a unique combination

of structural and dynamic features. Previous studies have discussed these characteris-

tics, but the feasibility of experimentally distinguishing these states is still unclear in

the literature. Therefore, this work aims to develop a rigorous methodology to identify

clustered states and utilize this framework to study their properties.

Accurately quantifying clustered states and their associated properties requires

several approaches. The foundation of these characterization efforts is a thermody-

namic description of equilibrium behavior. Therefore, a short discussion of important

statistical thermodynamic functions is presented with respect to colloidal particles.

Detailed information of cluster microstructure is extracted from simulations used to

generate equilibrium configurations in conjunction with calculations of thermodynamic

parameters. This work will be corroborated with small angle neutron scattering, dy-

namic light scattering, and rheology experiments. These theoretical, simulation and

experimental techniques are outlined in detail below.

2.2 Thermodynamics of Colloidal Systems

Several methods are available to study the structure and phase behavior of

systems with a given interaction potential, including experimentation, simulation and

theoretical calculations. Each has their own merits and deficiencies. Through experi-

mentation, the phase(s) produced at each state point can be directly observed, but this

technique requires several samples to be prepared and may also require multiple experi-

mental techniques to accurately distinguish between phases. Several types of simulation
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protocols, such as the canonical and Gibbs ensemble Monte Carlo (MC) methods, en-

able the calculation of phase behavior for a model potential of interaction, but require

some a priori knowledge of the states to be examined. Theoretical approaches have

also been used to calculate phase transitions, including Barker-Henderson, thermody-

namic, and discrete perturbation theories, integral equation theory (IET) approaches

with various closure relations, and density functional theory.[26] As with simulation

methods, theoretical calculations require the definition of some pre-determined dis-

tinction between states. In this work, experimental techniques, canonical ensemble

MC simulations, and IET calculations will be used to characterize solution structure

and produce phase diagrams of SALR systems. The fundamental concepts, upon which

these methods are based and unified, are borne from statistical thermodynamics.

The solution structure of liquids are difficult to quantify due to the relatively

high density and the inherent disorder in their structure. An important concept is that

each system (defined by the density and interaction potential) contains an ensemble

of configurations that are each weighted to produce an average structure. Under any

set of sample conditions, a material is continuously fluctuating and attempting to

reach a minimum on a complex energy landscape that is a function of every particle’s

coordinates and momentum.[19, 26] Despite this complexity, the ergodic hypothesis

postulates that if a system is in equilibrium the (stochastic) ensemble average of a

given thermodynamic property is identical to the time average.[25]

Within the context of ergodicity, calculating a weighted average structure is a

function of all realizable configurations.[13] Depending on the potential and the relative

spacing of each set of particles within a particular configuration, that realization of

the system may have a low configurational energy and therefore be a low point on

the energy landscape. As a result, that orientation would be preferred, occurring more

frequently than others and therefore be heavily weighted in the average structure of the

system. Artificially creating millions of configurations and performing such a weighting

is exactly the premise of MC simulations. Theoretical calculations attempt to avoid

the time consuming task of realizing these configurations by estimating the statistical
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weighting using relations of varying orders of simplification.

2.2.1 Interaction Potentials

Several functional forms have been used to represent the SALR potential, typi-

cally with variations of the attractive term. Repulsive interactions are well known to be

accurately represented by a Yukawa form in accordance with Debye-Hückel theory.[15]

Throughout this work two SALR potentials will be referenced. A representative po-

tential of each type is shown in Fig. 2.1.

The first type of potential used, known as a hard sphere double Yukawa (HSDY)

potential, combines hard sphere excluded volume with an additional short range at-

traction and a longer range repulsion as:

UHSDY (r)

kT
=

 ∞ r ≤ 1(
1
r

)(
−K1 exp[−z1(r − 1)] +K2 exp[−z2(r − 1)]

)
r > 1,

(2.1)

where r is the particle-particle separation normalized by the particle diameter (σ), z1

and z2 are the inverse ranges of attraction and repulsion, respectively, and K1 and

K2 are the strengths of attraction and repulsion, respectively. The equation can be

recast as a function of reduced temperature, T ∗ = (K1 −K2)/kBT , which represents

the relative strength of the well depth to thermal energy, and the relative strength of

attraction to repulsion, λ, such that K1 = 1/[T ∗(1− λ)] and K2 = λ/[T ∗(1− λ)].

The HSDY potential is a widely studied model potential chosen for its demon-

strated ability to qualitatively reproduce the solution structure and phase behavior

of protein and micellar solutions and thus, its applicability to experimentally relevant

systems.[7, 18, 29] Further, the HSDY potential has been demonstrated by previous

integral equation theory calculations to form intermediate range order (IRO) peaks

pertinent to cluster fluids.[4, 5, 8, 16] Though the model potential is not derived from

specific molecular interactions, it is widely adopted because it quantitatively represents

the total effective force acting between particles.[14]
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Figure 2.1: Two functional representations of an SALR potential, the HSDY and
LJY potentials, are compared.

Another convenient and popular choice is a pair wise potential that combines

a Leonard-Jones 2α - α form of short range attraction with a longer range Yukawa

repulsion, called the Leonard-Jones-Yukawa (LJY) interaction potential:

ULJY (r)

kT
=

1

T ∗

[
4
(
r−2α − r−α

)
+ A

(ξ
r

)
exp

(−r
ξ

)]
. (2.2)

where α is inversely related to the range of attraction, ξ is the range of repulsion,

and A is the ratio of strength of repulsion to strength of attraction. This potential

has been previously shown to produce clustered and percolated states[28, 30] and is

representative of attractive interactions arising from dispersion forces.[15]

2.2.2 Structural Functions

Structure can be quantified by particle correlation functions, which are typically

represented by the pair distribution function, g(r). The pair distribution function is
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Figure 2.2: A characteristic structure factor (left) and pair distribution function
(right) for a hard sphere fluid are shown with a physical representation.
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the normalized probability of finding two particles a distance r12 apart in the presence

of all possible configurations of the remaining particles:

g(r12) =
V 2

N2

1

ZN

∫
· · ·
∫

exp[−βUN(r3· · ·rN ; r12)]dr3 · · · drN (2.3)

where N is the number of particles, V is the volume of the system, β = 1
kT

, UN is the

energy of the given configuration of N particles, and ZN is the configuration integral

ZN(r1· · ·rN) =

∫
· · ·
∫

exp[−βUN(r1· · ·rN)]dr1 · · · drN (2.4)

that represents a Boltzmann average probability of all possible configurations that can

be realized in a sample of N particles in a volume V .[13] As an example, the regularly

repeated spacing between particles in crystals would produce sharp peaks at those

distances defining the crystal structure. However, the inherent disorder in fluids will

produce broad peaks corresponding to spherical isotropic shells of particles oriented

relative to some central particle. Figure 2.2 provides a representative g(r) for a hard

sphere fluid (at a volume fraction φ = 0.15), which contains a characteristic peak

at contact followed by a depletion zone and a weak secondary peak. The pictorial

representation at the bottom of Fig. 2.2 highlights the various shells within which the

centers of neighboring particles reside relative to the central (unfilled) sphere. Eq. 2.3

clearly indicates the direct impact of the interaction potential on the resulting average

microstructure and thus the phase behavior.

An experimentally relevant function that is directly obtained from small angle

scattering measurements is the inter-particle structure factor, S(q). The structure

factor is the Fourier transformation of a function of the radial distribution function:

S(q) = 1 + ρ

∫ ∞
0

sin(qr)

qr
[g(r)− 1]4πr2dr (2.5)

which is a function of particle separation r, solution density ρ and the scattering vector

q defined as

q =

(
4π

λ

)
sin

(
θ

2

)
(2.6)
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Figure 2.3: The structure factors of colloidal systems with potentials including HS
(black dashed line), attractive (red dash-dot-dot line), repulsive (blue
dotted line) and SALR (green solid line) interactions are compared at
the same volume fraction.

with the incident wavelength, λ, and scattering angle, θ, as parameters.[13, 19, 25] This

function will produce peaks similar to that observed in g(r) that will appear in the

frequency spectrum at q-values corresponding to roughly 2π/q. The resulting S(q) for

the hard sphere fluid at φ = 0.15 is also provided in Fig. 2.2. The peaks in S(q) result

from the frequency of density fluctuations due to the particle excluded volume. In

addition to its experimental relevance, S(q) provides a more sensitive measurement of

long lengthscale correlations compared to g(r), which will be important for conditions

that produce clusters.

In particular, the influence of interactions on the solution structure factor are

most prevalent at small q-values that represent intermediate to large lengthscales. Sev-

eral S(q) examples are compared in Fig. 2.3 for different forms of interaction potentials,

with the HS result serving as a basis to interpret the effect of the interactions. From

the specific scenario present in Fig. 2.3, the general implication of attractive forces

is shown as an increase in the magnitude of S(q) at low-q, while repulsive forces de-

crease the magnitude. A physical interpretation arises from the relationship between

the isothermal compressibility, χT , and the zero q-value limit of the structure factor:
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S(0) = kBTρχT , where ρ is the particle density.[19, 25] For example, more repulsive

systems will resist compression more strongly and therefore the change in volume with

pressure will decrease via χT and thus S(0). Interestingly, SALR interactions are capa-

ble of producing a unique feature introduced in Chapter 1. Although not observed for

all SALR potentials, an appropriate combination of attraction and repulsion results

in a peak at small q-values, which is never observed in the S(q) produced by other

isotropic potentials.

2.2.3 Integral Equation Theory

Integral equation theory (IET) calculates the pair distribution function by first

decomposing g(r12) into a direct and indirect component, as proposed by Ornstein and

Zernike. The resulting Ornstein-Zernike (OZ) equation is typically written in terms

of a “total correlation function”, h(r12), that represents the change in probability of

finding a second particle a distance r12 from a central particle due to its presence.[22]

The two contributions to the OZ equation

h(r12) = g(r12)− 1 = c(r12) + ρ

∫
c(r13)h(r23)dr3 (2.7)

are the direct component captured by the “direct correlation function”, c(r12), and the

indirect component represented by the integral term. In essence, c(r12) represents the

direct influence of particle 1 on particle 2, while the indirect component is a result of

the direct influence of particle 1 on particle 3 that in turn influences particle 2. The

relation is more conveniently written in reciprocal space, as the convolution theorem

can be applied to the Fourier transform of the indirect term resulting in

Ĥ(k) = Ĉ(k) + ρĈ(k)Ĥ(k) (2.8)

where Ĥ(k) and Ĉ(k) are the Fourier transforms of h(r12) and c(r12), respectively. Both

h(r12) and c(r12) must be solved simultaneously, which requires the second component

of IET – a closure relation. One can imagine that the indirect interaction between

two particles by a third particle can be perpetuated ad infinitum with any number of

46



“middle man” particles. Therefore, closure relations are used, and named, for their

resolution of this issue by relating higher order interactions to some combination of the

individual two-body interactions involved.

Throughout this work, a thermodynamically self-consistent closure relation will

be used that has been outlined previously and demonstrated as highly accurate for

SALR potentials.[5, 16] The closure utilizes the rHMSA functional form

h(r) + 1 = exp

[
−Urep(r)
kT

](
1 +

exp
[
f(r)

(
h(r)− c(r)− Uatt(r)

kT

)]
− 1

f(r)

)
(2.9)

where r has replaced r12, Uatt(r) and Urep(r) are the attractive and repulsive compo-

nents of the potential, respectively, f(r) = 1 − e−1/(αr), and α is a mixing parameter

shifted to equate the compressibility calculated by both the virial equation and fluctu-

ation routes (i.e., to fulfill thermodynamic self-consistency).[5, 16]

2.3 Monte Carlo Simulations

In order to study the microstructure of colloidal suspensions with SALR inter-

actions in more detail, MC simulations using the Metropolis algorithm[1, 11] are used

to generate configurations consisting of 1728 particles in the canonical (NVT) ensem-

ble with periodic boundary conditions. Each configuration is weighted, or accepted,

according to a Boltzmann factor, e−βUN . Starting from a simple cubic lattice, each

system is thermalized for 2x107 steps, where a step is the (attempted) move of a single

particle. After equilibration, thermodynamic and structural parameters are averaged

over 4x104 independent configurations. The initial displacement distance of 0.1, where

all distances are normalized by the particle diameter σ, is dynamically adjusted to

maintain an acceptance ratio of 30%. All parameters were averaged over 10 different

seeds to reduce the intrinsic uncertainties. System size effects were also monitored un-

der a few conditions, but in all cases N = 1728 particles provided a reasonable system

size to optimize the computational time.

As a typical representation of the inter-particle structure obtained from scatter-

ing experiments, the ensemble average pair distribution function and structure factor
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are calculated for each state. All particle configurations are used to calculate the

average g(r) using direct summation according to:

g(r) =
V 2

N2

〈 N∑
i=1

N∑
j=1

δ(rij − r)
V

〉
(2.10)

using standard methods,[1, 11] where δ is the Dirac delta function. To avoid artificial

long-range correlations due to implementing periodic boundary conditions, the box size

sets the upper limit of distances for which g(r) is calculated. The solution structure

factor is then determined by combining Eq. 2.10 with Eq. 2.5. All other pertinent

calculations using simulated configurations are outlined in the appropriate chapter.

2.4 Small Angle Neutron Scattering

Small angle neutron scattering (SANS) experiments were conducted on the D-22

and D-33 beamlines at the Institut Laue-Langevin (ILL) in Grenoble, France and on

the NG-3 (now NG-B30), NG-7, and NG-B10 (nSoft) beamlines at the NIST Center

for Neutron Research (NCNR) in Gaithersburg, MD. The scattering intensity was

obtained over scattering vectors (or q-values) ranging from 0.0028 Å
−1

to 0.5296 Å
−1

.

Samples were studied at multiple temperatures using either quartz Hellma (banjo)

cells or standard NCNR SANS cells with quartz windows with a 1 mm pathlength.

All samples were studied using a water bath with a temperature control of roughly

0.1◦C. The main goal of these studies is to extract effective interaction parameters

under various conditions by fitting experimental S(q) functions with the above IET

calculations, according to Eq. 2.5.

Scattering intensity is initially obtained on a two-dimensional detector. Absolute

scattering intensities on each pixel are determined by normalizing the sample intensity

by several important factors, including the background and sample cell scattering and

their corresponding transmissions. The normalization procedure is documented in Ref.

[17], which was conducted using software provided by the NCNR and ILL, depending

on the facility that was used to obtain the raw data. Finally, one-dimensional intensities
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are obtained by an annular average over all pixels within a ring with a radial distance

and thickness corresponding to a particular q-value.

The scattering intensity, I(q), from a solution of spherically isotropic, monodis-

perse scatterers is:[31]

I(q) = φV (∆ρ)2P (q)S(q) +B (2.11)

Here, q is the scattering vector defined in Eq. 2.6, B is the background scattering

intensity, φ is the particle volume fraction, V is the particle volume, and ∆ρ is the

scattering length density different between the particle and solvent. The remaining

functions of q are the inter-particle structure factor, S(q), also defined previously in

Eq. 2.5, and the normalized form factor, P (q), which is the Fourier transform of the

intra-particle density correlations,

P (q) =
1

Vp
2 〈|F (q)|2〉 (2.12)

where Vp is the volume of a particle and

F (q) =
1

V

∫
Vp

ρ(r)e−iq∗rdr (2.13)

In the case of a uniform spherical particle of radius, Rp, the form factor is simply

P (q) =

[
3

qRp

(
sin(qRp)− (qRp) cos(qRp)

(qRp)2

)]2

(2.14)

In practice P (q) is typically obtained by the scattering intensity of a dilute sample and

subsequently fitted with appropriate models to extract relevant parameters.

In the case of dispersions of non-spherical particles, the intra- and inter- particle

structure factor, P (q) and S(q), can no longer be conveniently decoupled. Under such

conditions, as will be encountered later in this work, the total scattering intensity

becomes

I(q) = φV (∆ρ)2P (q)Seff (q) +B (2.15)

where Seff (q) = 1+β(q)[S(q)−1] is an effective structure factor and β(q) is a decoupling

function[6, 18] defined as

β(q) =
|〈F (q)〉|2

〈|F (q)|2〉
(2.16)
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Once an appropriate structure is found to model the form factor, β(q) can be numeri-

cally calculated as it is only a function of intra-particle orientation. Normalizing Seff (q)

by β(q) to produce S(q) subsequently allows the underlying interactions to be modeled

using IET. However, current numerical methods are only able to determine spherically

symmetric interaction potentials. Considering the anisotropic shape of the particles,

such a representation is likely inaccurate and the resulting interaction parameters need

to be interpreted carefully.

2.5 Neutron Spin Echo

Neutron spin echo (NSE) experiments were conducted on the IN-15 beamline

at the ILL in Grenoble, France.[27] Samples were prepared on site, pipetted into 1 mm

square quartz cells, and stored in a custom temperature controlled sample chamber.

All samples were allowed 30 to 60 minutes to reach thermal equilibrium at each of the

temperatures studied. Intermediate scattering functions (ISF), represented as Fs(q, t),

were obtained up to correlation times of 50 ns at 30 to 35 q-values ranging from 0.03

Å
−1

to 0.20 Å
−1

at each sample condition studied.

NSE experiments measure the ISF by directly detecting on a two-dimensional

detector the shift in polarization of an initially polarized neutron beam due to its

interaction with the sample at a range of correlation times. The experimental set-up is

represented in Fig. 2.4, which shows the path of the neutron beam through the first and

second magnetic fields (“coils”) located before and after the sample, respectively.[12]

Different Fourier times are acquired by changing the field strength of the two main

coils at a given neutron wavelength. Specifically, a larger field strength and wavelength

produce a longer correlation time.

The final state of a given neutron depends on its initial state and the dynamics of

the sample, which will cause the state of the neutron to change (if they interact). While

the beam contains neutrons with a spread of velocities (or wavelengths or energy), the

amount of time an individual neutron spends in the first coil depends on its specific

velocity. As a result, the direction of its polarization will rotate (or “process”) an
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Figure 2.4: An ideal configuration of an NSE spectrometer. The neutron beam enters
the first coil and passes through a spin (π) flipper before interacting with
the sample. Scattered neutrons then pass through the second coil before
being analyzed and detected on the two-dimensional detector.

amount proportional to the field strength and its speed. Upon interacting with the

sample, three things may happen to any given neutron. The neutron may have it’s

spin flip with a probability of 2/3, it may scatter at a particular angle (or q-value) from

its original trajectory, and it may lose or gain energy relative to it’s initial state. The

quantum mechanical probability of spin flipping is accounted for by a procedure known

as polarization analysis, which sets the lower and upper limit of the total polarization

of the beam. The corresponding q-value of each pixel on the detector is determined in

the same manner as with SANS measurements, as shown by the various rings on the

detector in Fig. 2.4. Finally, any change in a neutron’s velocity due to quasi-elastic

scattering causes it to spend a different amount of time in the second coil compared to

the first coil, resulting in a change in polarization.

Due to the quantum mechanical nature of neutrons, combined with an inherent

polydisperse distribution of wavelengths (velocities) within the neutron beam, a pattern

of intensities will appear on the detector that reflects the relative probability of a given

neutron to traverse the instrument geometry and arrive at that given location (or q-

value). An additional “phase coil” sits within the first coil that shifts the strength of its

magnetic field relative to the second coil, which alters the observed intensity. Changing

the phase coil field strength probes the phase shift in the polarization of the neutron
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beam by creating an offset in the total field strength between the first and second main

coils. As a result, the intensity as a function of phase coil field strength is a damped

cosine functional form. The phase coil field strength producing an intensity maximum

is known as the echo point and depends only on the mean and standard deviation of

the neutron beam’s wavelength. The scattering intensity of a sample measured at the

echo point is directly related to the polarization. An ISF for that sample is acquired

at a given q-value and Fourier time by normalizing its polarization by that of an ideal

elastic scatterer under the same conditions.[24]

In the short-time limit, the ISF can be fit with a single exponential decay to

extract a q-dependent collective diffusion coefficient, Dc(q), according to

Fs(q, t)

Fs(q, 0)
= exp[−q2Dc(q)t] (2.17)

where Dc(q) = D0
H(q)
S(q)

.[2, 21] H(q) is the hydrodynamic function, which represents

the change in particle diffusion at a given q-value (lengthscale) caused by solvent flows

resulting from the motion of nearby particles. In the limit of large q-values,S(q) ap-

proaches a value of 1 and limq→∞H(q) = Ds

D0
, where Ds is the short-time self diffusion

coefficient. Consequently, limq→∞Dc(q) = Ds.[10, 23]

2.6 Dynamic Light Scattering

A DynaPro NanoStar instrument (Wyatt Technology Corp., Santa Barbara,

CA) was used for dynamic light scattering (DLS) measurements over a range of con-

ditions. All samples were allowed to thermally equilibrate at each temperature for 30

minutes before taking 5 independent measurements of the scattered intensity over a

correlation time range of 500 to 5x107 ns. The instrument was operated with a 663 nm

wavelength laser at 90◦ scattering angle. The scattering wave vector was calculated

according to q = 4πn
λ

sin( θ
2
), where n is the refractive index of the sample.

The output from the DLS experiments is a digital autocorrelation of the scat-

tered intensity. When normalized by the average count rate at the given scatter-

ing vector, the output function is related to the heterodyne autocorrelation function,
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F1(q, t),[3] according to the Siegert relation[15]

C(q, t)

[I(q)]2
= 1 + A

∣∣∣∣F1(q, t)

F1(q, 0)

∣∣∣∣2 (2.18)

The heterodyne and self-intermediate scattering functions are related by F1(q, t) =

〈N〉Fs(q, t),[3] from which the collective diffusion coefficient can be extracted as demon-

strated in Eq. 2.17. The parameter A is a coherence factor and is an instrument-

dependent fitting parameter. Additionally, the data can be analyzed using the Cumu-

lant method according to

Fs(q, t)

Fs(q, 0)
= exp

[
− q2Dc(q)t

](
1 +

µ

2
t2 − · · ·

)
(2.19)

which captures non-linearity by the first order deviation term µ, where the variance of

the average diffusion coefficient is related to σ2 ∝ µ/(q2Dc(q)).

In the limit of infinite dilution, where Dc(q) ≈ D0, the hydrodynamic radius,

Rh, of the particle of interest can be estimated by the Stokes-Einstein relation[20]

Rh =
kT

6πηsD0

(2.20)

where k is the Boltzmann constant, T is the temperature, and ηs is the solvent viscosity.

2.7 Rheology

Viscosities were obtained for each sample by means of either a bulk rheometer

or a capillary viscometer. The details of each geometry used will be described in the

appropriate chapter. However, in general the viscosity, η, is defined as the ratio of an

applied shear stress, τ , to the resulting shear rate, γ̇, when subjected to that shear

force. While the viscosity is independent of shear rate for a Newtonian fluid, many

colloidal dispersions display more complex rheological behavior such as shear thinning

or thickening in which the viscosity decreases or increases with increasing shear rate,

respectively.[20] Therefore, viscosity data is obtained as a function of shear rate for all

samples and solution conditions of interest.

In the case of a bulk rheometer, the shear stress is applied as a torque, T , to

turn a cylindrically symmetric confining wall relative to a stationary wall with a well
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Figure 2.5: The (A) cone and plate, (B) couette, and (C) capillary viscometer ge-
ometries used during rheological measurements in this work are depicted
with their characteristic parameters.

defined gap separating them. The two geometries used in this work are a cone and

plate and a coaxial cylinder, or couette, configuration, shown in panes (A) and (B) of

Fig. 2.5, respectively. A cone is defined by its radius, R, and cone angle, α. In a cone

and plate geometry, the plate is stationary below the sample while the cone rotates

with a stress of τ = 3T
2πR3 and shear rate of γ̇ = Ω

α
, where Ω is the rotational velocity.[20]

Under these conditions, the shear rate is the same at all points within the sample as

long as the cone angle is sufficiently small. A couette geometry is composed of a cup

with radius, Rcup, and a bob with radius, Rbob, and length, L. Typically the cup acts

as the stationary outer wall while the bob, as the inner wall, rotates. Unlike the cone

and plate geometry, the shear stress and shear rate vary in a couette cell as a function

of the radial distance from the center of the bob, r. At any given position, r, the bob

imposes a shear stress of τ(r) = T
2πLr

with an average shear rate of γ̇ = Ω(Rcup+Rbob)

2(Rcup−Rbob)
.[20]

A capillary viscometer measures the viscosity by imposing a pressure driven

flow through a cylindrical tube of radius, Rt, and length, Lt, depicted in pane (C) of

Fig. 2.5. Once again, the shear stress under these conditions is a function of the radial

position within tube according to τ(r) = ∆Pr
8Lt

, where ∆P is the pressure drop across

the tube.[9, 20] The shear rate is defined as the value at the wall of the tube, which is

the maximum value due to the parabolic flow profile (assuming Newtonian flow with

no slip boundary conditions). To account for any non-Newtonian flow behavior, the

54



shear rate is calculated using the Rabinowitsch-Mooney equation[20]

γ̇(r) =
Q

3R3

(
3 +

d(lnQ)

d(ln[τ(Rt)])

)
(2.21)

2.8 Materials and Sample Preparation

Experimental investigation of cluster phenomena are accomplished by study-

ing formulations of several proteins. In particular, experimental parts of this work

study the behavior of a model globular protein lysozyme as well as three different

commercially available therapeutic proteins produced by Genentech, Inc. known as

monoclonal antibodies (mAbs). Lysozyme was obtained from MP Biomedicals and

carefully purified to remove ion impurities, minimizing the residual ion content. Sam-

ples were prepared by dissolving the purified lyophilized lysozyme in deuterium oxide,

D2O. Low concentration samples (< 300 mg/mL) were filtered through 0.22µm filters,

while higher concentrations required 0.45µm filters as these samples were too viscous

to filter through smaller pore sizes. High concentration samples (≤ 350 mg/mL) were

prepared at 50 ◦C to aid in dissolution during reconstitution due to their resulting

high viscosities. All mAbs are humanized IgG1 proteins expressed in Chinese hamster

ovarian (CHO) cells. The antibodies were subsequently purified in multiple chromatog-

raphy steps before being dialyzed into various buffers in deuterium oxide (D2O), the

details of which will be discussed in the appropriate chapter.

55



REFERENCES

[1] Allen, M. P., and Tildesley, D. J. Computer Simulation of Liquids. Oxford

University Press, 1987.
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Chapter 3

INTERMEDIATE RANGE ORDER AND OTHER STRUCTURAL
FEATURES OF COMPETING INTERACTIONS

3.1 Introduction

Early observations of cluster formation in SALR systems were accomplished with

micron sized colloidal particles, which could be observed directly by microscopy.[7, 42,

43, 45] However, clustering of nanoparticles is much more difficult to observe as they are

unable to be resolved by microscopy techniques and therefore it remains an active area

of research. This intriguing state of matter has been studied with the use of lysozyme, a

globular protein whose chemistry has been found to naturally produce a combination of

short range attractive and long range repulsive interactions.[8, 10, 13, 30, 37] Previous

work has inferred the formation of clusters in aqueous lysozyme solutions from small

angle neutron scattering (SANS) measurements. Theoretical integral equation theory

(IET) calculations and simulation studies have demonstrated that the same SALR

interactions capable of producing clusters can also produce an additional peak in the

structure factor at small scattering angles or q-values experimentally accessible by

SANS.[5, 6, 17, 29] The simultaneous study of colloidal and lysozyme systems initially

linked this low-q peak to the formation of an ordered solution phase of clusters, where

the additional peak was attributed to the correlation of stable clusters in solution.[45]

Several studies have also observed low-q peaks in the scattering patterns of lysozyme

solutions under specific conditions.[8, 10, 13, 30, 37]

Recent work has brought into question the use of this low-q peak as an experi-

mental indicator of cluster formation.[30] By studying both the structure and dynamics

of lysozyme, the magnitude of the low-q peak was found to decrease while the effec-

tive hydrodynamic radius (related to the average cluster size) increased. In general,
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peak formation in a scattering pattern signifies the presence of a correlation length

between scattering centers in a sample. Consequently, this low-q peak has recently

been suggested to arise from intermediate range order (IRO) between scattering cen-

ters, of which a fluid consisting of clusters is only one specific scenario.[20, 30] While

scattering patterns contain the contributions from all scattering centers, it is desirable

to distinguish the contributions from particles within different structures, such as those

contained in clusters. Direct particle simulations thus provide particle-level details of

the cluster size distributions and corresponding contributions to the structure factor.

By distinguishing cluster and monomer species, the contributions leading to the IRO

peak can be explicitly calculated.

The goal of this chapter is to separate the correlation of monomers and clusters

as distinct species within SALR systems and quantify their relative contributions to the

formation of an IRO peak in the structure factor.[20] Monte Carlo (MC) simulations

are used to study a model system with realistic interactions parameters across a range

of volume fractions to assess the validity of using the IRO peak as an indicator of cluster

formation. The microstructure of several states exhibiting IRO are decomposed into

contributions from monomer, cluster, and cross correlations. A new, self-consistent

method is proposed to identify the state conditions at which clustered fluids exist based

on the cluster size distribution. This method provides an unambiguous classification

of states in SALR systems and a method by which to identify them in practice. The

structure of each state and its relation with the IRO peak are discussed in detail. The

work detailed in this chapter is published in [20].

3.2 Methodology

3.2.1 Simulation Details

All simulations in this chapter were performed using the protocol outlined in

Chapter 2. Particle interactions are defined by the hard sphere double Yukawa (HSDY)
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potential using the parameters λ = 0.1, z1 = 10, and z2 = 0.5 for all state points. Physi-

cally, the value of z1 reflects the relative interaction range of a short-range attraction ob-

served among globular proteins (roughly 10 % of the globular protein diameter).[13, 30]

The values of λ and z2 represent long range and relatively weak repulsion, as in the case

of proteins with low ionic strength and small surface charge and/or relatively strong

attractive forces. Practically, this parameter set was chosen because it was observed

to produce an IRO peak in the structure factor over a range of reduced temperatures

and volume fractions by previous studies.[4, 17, 25] Here, the pair distribution func-

tion g(r) and structure factor S(q) of the system are calculated by direct summation

and averaged over the trajectory using standard methods.[1, 19] At significantly large

strengths of attraction, or small reduced temperatures (T ∗ < 0.25), the system energy

and pressure could not reach a steady value (i.e., a thermodynamically stable state)

after 1x108 simulation steps, such that T ∗ = 0.25 is the practical lower limit for these

investigations.

Particles within any given configuration can be distinguished as monomers or

contained in a cluster. If two neighboring particles are within some cut-off distance rc

of each other, they are defined as belonging to a specific cluster. Particles not contained

in a cluster are referred to as monomers. This calculation determines the cluster size

distribution, n(s), or the relative population of aggregates ranging from monomers to

clusters of each possible size. Here, the cluster size distribution is normalized by the

cluster size, s, and system size, Np = 1728:

N(s) =

(
s

Np

)
n(s) (3.1)

similar to that used previously.[14, 44] The function N(s) represents the average frac-

tion of particles contained in clusters of size s as opposed to the average number of

clusters of s particles existing in the system. N(s) provides a normalized function for

all cluster sizes, while n(s) is biased towards smaller cluster sizes. The normalized

cluster size distribution, N(s), henceforth referred to as the cluster size distribution, is

used to identify the state of the fluid at each state point. The sensitivity of statistical
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thermodynamic calculations to the cut-off distance are studied in detail in the next

section.

Each sampled configuration is also tested for dynamic percolation, defined as

when a cluster spans the entire system size in at least one dimension for 50% of the

time. Such a cluster is effectively infinite in size when periodic boundary conditions are

employed and is denoted as a percolated cluster. Dynamic percolation at a given state

point is defined when at least 50% of the configurations sampled contain at least one

percolated cluster.[41] States that fulfill this criterion can be further distinguished as

cluster percolated states, rather than random percolated states, which will be discussed

later.

3.2.2 Phase Transition Calculations

Liquid-liquid phase separation (binodal) in an HSDY system is difficult to cal-

culate. However, it is known that the addition of a long-range repulsion to attractive

potentials shifts the liquid-liquid coexistence region to lower temperatures.[24] There-

fore, a convenient reference system in identifying the HSDY states is the phase behavior

of a corresponding purely attractive potential. Here, the attractive component of the

HSDY potential is taken as a reference potential, shown in Fig. 3.1, and defined as:

Uref (r)

kT
=


∞ r < 1

1
T ∗(1−λ)r

(−e−z1(r−1) + λe−z2(r−1)) 1 ≤ r ≤ rc

0 r > rc

(3.2)

where rc = 1.2424 for the given set of interaction parameters used in this chapter. The

rationale for using this as the cut-off distance defining connectivity will be discussed

in more detail in the next section.

The binodal of the reference attractive potential is calculated using discrete per-

turbation theory (DPT) calculations.[3, 11, 47, 48, 49] DPT represents the interaction

potential by numerous discrete square well-like steps and is known to calculate accu-

rate gas-liquid binodals and critical points. The dynamic percolation transition line of
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Figure 3.1: The hard sphere double Yukawa (HSDY) potential, black line, used
throughout this chapter (“full HSDY”) is plotted with the attractive
component of the potential, red dashed line (“attractive HSDY”), used
to estimate phase transitions of a purely attractive reference system in
order to provide context to the HSDY state points.

the reference attractive fluid is estimated by the phenomenological model proposed by

Miller and Frenkel[33] for an adhesive hard sphere fluid:

ρperc(τB) =
−10.09 + 182.4τB + 606.9τ 2

B + 15.31τ 3
B

1.0 + 507.9τB + 548.9τ 2
B

(3.3)

where ρperc is the particle density at percolation for a given Baxter parameter τB,[2, 33]

which is a representative measure of the strength of attraction. For this calculation,

the reference potential is mapped to an adhesive hard sphere fluid in agreement with

the Noro-Frenkel extended law of corresponding states for systems with short range

attraction.[36] The reference potential is first integrated to determine the reduced sec-

ond virial coefficient B∗2 according to

B∗2 =
B2

BHS
2

= 1 + 3

∫ rc

1

(
1− exp

[−U ref (r)

kT

])
r2dr (3.4)

which is converted to τB by the relationship

τB =
1

4(1−B∗2)
. (3.5)
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3.2.3 Decomposing the Structure Factor

In order to understand the influence of competing interactions in SALR systems

on the resulting structure, the system is decomposed into its individual constituents.

In this regard, monomers and clusters are treated as distinct components in a pseudo-

two-component solution. As this work is concerned with clusters in general rather than

those of a specific size, individual particles are segregated into monomer or cluster

categories.

The definition of this pseudo-two-component fluid comprised of monomers and

clusters enables calculating the total structure factor with respect to the partial struc-

ture factors for each component as:[35]

S(q) = xMSMM(q) + xCSCC(q) +
√

2xMxCSMC(q). (3.6)

Here, subscripts represent the type of particle (M for monomers and C for particles in

a cluster), xi represents the fraction of each type of particle in the current configura-

tion of the system, and the structure contributions arise from the monomer-monomer,

SMM(q), monomer-cluster, SMC(q), and cluster-cluster, SCC(q), correlations. By defi-

nition, correlations involving clusters are calculated by summing over each individual

particle within a cluster. Therefore, SCC(q) is to be distinguished from a correlation

between the centers of mass of the clusters in solution.

The three partial structure factors are calculated by the relationship between

the structure factor and the radial distribution function:

Sij(q) = δij + ρ(xixj)
1
2

∫ ∞
0

sin(qr)

qr
[gij(r)− 1]4πr2dr, (3.7)

where δij is the Kronecker delta and ρ is the fluid density. The radial distribution

function of each contribution is calculated according to:

gij(r) = V 2

〈 ni∑
i=1

nj∑
j=1

δ(rij − r)
ninjV

〉
, (3.8)

where subscripts (i, j) represent the component, n(i,j) is the number of particles of each

component in a given configuration, and V is the volume. Restricting the calculation
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of Eq. 3.8 to include only particles contained in clusters, and explicitly accounting

for each particle within the double summation, generates cluster-cluster correlations

defined by gcc(r), the radial distribution function of clustered particles. This function

represents the degree of order between clusters and helps in distinguishing between

structural states formed by SALR systems. Corresponding cluster-cluster structure

factors, SCC(q), can be further decomposed into intra- and inter-cluster correlations

by counting only those particles within the same or different clusters, respectively.

3.3 Self-consistency and Implications of Defining a Cut-off Distance

The details of the microstructure are sensitive to the cut-off distance used to

define connectivity.[20] Subsequently, the prevalence of clusters will influence the rela-

tive contribution of monomer and cluster correlations to the solution structure factor.

Therefore, prior to understanding the influence of cluster formation on the structure,

this section explores the sensitivity of the cluster size distribution to the choice of rc.

Groupings or clusters of particles arise naturally in any fluid state regardless of

interactions, simply due to density fluctuations.[23, 50] Therefore, an arbitrary defini-

tion of cut-off distance can produce clustering and percolation without physical signif-

icance. To provide a meaningful interpretation of solution structure, a self-consistent

representation of connectivity is rationalized and used in this chapter. The cut-off dis-

tance, rc, is defined here as the separation at which the HSDY potential first reaches

net zero interaction energy beyond the attractive well: rc = 1.2424. According to

this definition, two particles are connected if they experience an attractive interactions

with each other. This cut-off distance is independent of temperature and is intuitively

related to the range of attraction that drives particle aggregation. Therefore, it is con-

sistent with the potential used to produce the phase behavior of a reference system of

purely attractive particles. By distinguishing states according to the structural features

resulting from this connectedness, their location in the phase space of this reference

system can provide additional understanding of the relative influence of attractive and

repulsive forces.
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Figure 3.2: Cluster size distributions, N(s), calculated for a hard sphere fluid at a
volume fraction of 0.15 using a range of cut-off distances. The effect of
this distance defining connectivity on the apparent distribution of cluster
sizes is significant.

By defining a geometric connection between hard sphere (HS) particles, HS clus-

ter size distributions can be used as a basis to compare with those found in the HSDY

system. The HS N(s) function is always monotonically decreasing with cluster size un-

til the percolation transition is reached. Figure 3.2 shows the cluster size distributions

for hard sphere systems at a volume fraction of 0.15 and a range of relevant cut-off

distances. At small enough values of rc the cluster size distribution monotonically de-

creases with cluster size, while at a large cut-off distance (1.4) the system incorporates

almost all particles into a single large cluster indicative of percolation. This shift in

the connectedness from varying rc in a HS system directly indicates the sensitivity of

N(s) and the importance of choosing a physically significant value.

Three cut-off distances that reflect characteristic length scales of the HSDY in-

teraction potential are tested. These distances represent (1) the separation distance at

which the energy barrier for a particle to leave its nearest neighbor is 1.5 kT (rc = 1.035

for T ∗ = 0.46), (2) the particle separation at which the interaction energy is zero

(rc = 1.2424), and (3) the separation distance of the energy maximum (rc = 1.4744).
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Choice (1) is associated with the separation distance at which the energy barrier to es-

cape the primary attractive well is sufficient to suppress about 80% of escape attempts.

Thus, it can be thought of as representative of a dynamic connectedness cut-off dis-

tance. Choice (3) is rationalized as being inclusive of all attractive forces, as the force

is the derivative of the potential energy function. Again, this is related more closely

with the dynamics as would influence the results in Molecular Dynamics (MD) simula-

tions. Choice (2) is more directly related with equilibrium thermodynamic properties.

Previous works have focused on choice (3) to investigate the system structure[9, 40, 46]

while this work will rely on choice (2).

Comparing cluster size distributions at multiple cut-off distances will help con-

firm that the methodology used to distinguish states is not sensitive to rc. The effect

of competing interactions on the cluster size distribution will be reflected in the differ-

ence between the N(s) of a given HSDY system and a HS system at the same volume

fraction. N(s) functions calculated using the three cut-off distances mentioned above

are compared in Fig. 3.3 for three state points studied in this chapter. The states

shown in Fig. 3.3 will be referred to throughout this chapter as (a) state B, (b) state

C, and (c) state E, which represent different types of states (to be defined in the fol-

lowing section) that for now are not necessary to distinguish. Regardless of the cut-off

distance defined, characteristic features of the cluster size distribution corresponding

to each state remain consistent.

The HSDY interactions clearly shift the N(s) to larger clusters when compared

with the HS systems with the same rc for all three states. Only for state E at the

largest rc do the HSDY and HS functions overlap. This indicates the simulation box is

influencing the calculations, but also that the definition of connectivity may be inap-

propriately large. Similarly, while the cluster size distribution of state B remains larger

than the HS value, the two begin to approach each other at larger cut-off distances

even before the onset of percolation. The same can be said for state C. However, the

HS fluid is unable to reproduce the unique appearance of a peak in the N(s) of State
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Figure 3.3: A comparison of N(s) resulting from three different cut-off distances
for three states points to be discussed in more detail later: (a) state B,
(b) state C, and (c) state E. Filled points are calculations from HSDY
simulations while lines are HS results.

C, which is used to define a clustered state. The maximum seen in N(s) of the clus-

tered state can only form due to the competing HSDY potential features. The peak

shifts slightly in position and magnitude with rc, but remains as a distinct feature.

Therefore, if a particular state point is a clustered state according this definition, then

the choice of cut-off distance will not influence this distinction. However, varying rc

will shift the extent of clustering and influence the relation between N(s) and S(q) and

the relative magnitude of each species’ contribution. When rc is too large the effect

of interactions becomes convoluted with random density fluctuations observed in HS

fluids. For these reasons, it appears that the definition of rc = 1.2424 is the most

physically representative value (of the options tested previously and explored here) to

define connectivity and will be thermodynamically consistent when compared with the

phase behavior.

3.4 State Definitions

Simulations are performed on six state points exhibiting an IRO peak in S(q).

These state points are defined as: State A (φ = 0.01, T ∗ = 0.25), State B (φ = 0.05,

T ∗ = 0.46), State C (φ = 0.05, T ∗ = 0.25), State D (φ = 0.15, T ∗ = 0.25), State E (φ =

0.15, T ∗ = 0.46), and State F (φ = 0.25, T ∗ = 0.46). States are determined according to
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Figure 3.4: Cluster size distributions, N(s), are plotted together for each of the six
state points studied, which fall into four categories of states: dispersed
fluid (states A and B), clustered fluid (state C), cluster percolated (state
D), and random percolated (states E and F).

the cluster size distribution and fraction of percolated configurations and are classified

as dispersed fluid (A, B), clustered (C), cluster percolated (D), and random percolated

(E, F) states. The cluster size distributions of all six states are shown in Fig. 3.4. The

method of determining percolated clusters described in the Simulation Details section

is used to identify a percolated state. By combining the cluster size distribution,

percolation criterion, and details of the inter-particle structure, a cluster percolated

state can also be defined. In this state, the percolated cluster is comprised of well-

defined particle clusters, in contrast to the “usual” random percolation state.

Features of the cluster size distribution are used to distinguish dispersed and

clustered states. When N(s) is monotonically decreasing with cluster size, the state

point is defined as a dispersed fluid state. The most probable species are monomers

and there is no preferred cluster size within the distribution. Note that this is similar to

a hard sphere fluid, as shown in Fig. 3.2 in the previous section. The development of a

probability maximum in N(s) at a size larger than a monomer is used to identify a state

as a cluster fluid. Previous studies have defined clustered states by an average cluster

size greater than two.[10, 31] However, it is uncertain if the (random, polydisperse)
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cluster sizes of a state defined in this manner are a significant contribution to the

material properties. Further, N(s) of such states is similar in appearance to a HS

fluid. Requiring clustered fluids to contain a peak in N(s) is more indicative of a state

whose properties result from the dominant cluster species. While monomers may be

the most abundant single species in solution by the definition of a cluster fluid imposed

here, they are typically less prevalent than the total amount of particles in all clusters

(i.e., N(1) <
∑Np

x=2N(x)), though this is not strictly a requirement.

Examining the six states points in Fig. 3.4, both state points A and B have a

monotonically decreasing distribution of cluster sizes and are correspondingly defined

as dispersed fluids. As may be expected, the probability of finding clusters (1−N(1))

increases with volume fraction with these two states. State C has a peak in N(s) and is

therefore a clustered state. It has almost 85% of particles in clusters with most of those

being roughly the most preferred size of around 12 particles. The finite peak in the

cluster size distribution indicates a dominating size scale, although the distribution of

sizes is broad. Note that the percolated states (states D, E, and F) exhibit a large peak

at a large cluster size corresponding to the box size, but this should not be confused

with the cluster peak defined as a local maximum in N(s) indicating the formation of

finite-size particle clusters. According to Fig. 3.4, at least 93% of particles in each of

the percolated states are part of a cluster, with varying amounts of those contributing

to the percolated cluster.

Although the features presented in Fig. 3.4 cannot distinguish the three perco-

lated states, their cluster size distributions differ in shape. In particular, the cluster

size distribution for state D exhibits a weak peak at roughly the same preferred size

as state C, which is at a lower volume fraction but the same temperature. This dis-

tinguishes state D from states E and F, which have cluster size distributions typical

of percolated fluids.[50] Further analysis of the microstructure as a function of rc (dis-

cussed in a later section) will demonstrate that state D is fundamentally different from

states E and F, despite all three exhibiting percolation.

71



3.5 Phase Behavior

All six state points, now appropriately defined, are mapped onto the phase

diagram of reduced temperature T ∗ as a function of volume fraction φ in Fig. 3.5.

Also included, for perspective, are the binodal (phase separation) line and percolation

transition of the reference attractive fluid defined earlier. By comparison, the two-phase

region of the HSDY system is expected to exist at lower temperatures than studied here

(T ∗ < 0.25) where simulations were unable to equilibrate. Technically, all six HSDY

state points are metastable (one-phase) systems within the bulk gas-solid coexistence

region of the HSDY phase diagram,[24] (see Fig. 1.2c for an analogous example of

a purely short-range attractive system) but these states exist in equilibrium in these

simulations.

In general, dispersed fluid states transition to clustered states upon lowering

temperature. Progressively increasing the volume fraction from state B to E and F leads

to percolation, which is qualitatively consistent with the reference attractive system,[15,

33] as shown by the dotted line, or even a hard-sphere fluid.[16] Interestingly, a clustered

and a cluster percolated state are found within the binodal of the reference state

diagram. Thus, the long-range repulsion in an HSDY system frustrates the phase

separation expected in its absence (i.e., pure attraction). Increasing volume fraction

at this lower temperature leads to the percolation of clusters of a preferred size. The

microstructure of the cluster percolated state might then have a preferred lengthscale

set by the clusters. This difference could be important for the material properties of

gels and glasses formed from such systems, such as ceramics, zeolites,[18, 32, 38] and

membranes[12, 34] in which clusters act as intermediates.

The results shown here suggest that the binodal of an appropriately defined ref-

erence attractive potential may act as an indicator of clustered states. This hypothesis

will be explored in more detail in the following chapter. The relative location of these

states will provide a physical basis to understand the formation of IRO peaks in S(q).

Three of these state points (at a constant T ∗ of 0.46) are shown in Fig. 3.6 to

highlight the trend in the magnitude of their IRO peaks. The total structure factor
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Figure 3.5: The phase diagram shows the relative location of six state points of a
HSDY fluid with z1 = 10, z2 = 0.5, and λ = 0.1. The state points
represent dispersed fluid systems (diamonds), clustered systems (square),
cluster percolated systems (circle), and “randomly” percolated systems
(triangles). The reference attractive potential, outlined in the text, is
used to estimate the binodal (grey solid line) and percolation transition
(grey dotted line).
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Figure 3.6: The S(q) (open dots) and contribution of cluster-cluster correlations
SCC(q) (filled dots) are shown for states B, E, and F (all at T ∗ = 0.46).
S(q) results are compared with IET calculations (solid lines). For clarity,
simulation and IET results are shifted vertically for states B and E by a
value of 1.5 and 0.5, respectively.

and the partial structure factor of particles in clusters (i.e., cluster-cluster correlations)

obtained from MC simulations are given for states B, E, and F. The dependence of IRO

peak formation on temperature and volume fraction has been studied previously by

integral equation theory.[4, 17, 25, 29] These studies have assumed that a direct connec-

tion exists between the formation of an IRO peak and the formation of a clustered state.

Contrary to these previous works, all three states studied here exhibit an IRO peak.

The magnitude clearly decreases with increasing volume fraction and simultaneously,

cluster-cluster correlations, SCC(q), are an increasingly large contribution to the total

structure. Figure 3.6 shows that the IRO peak is not trivially indicative of correlations

between clusters and its denotation as a “cluster peak” is misleading and incorrect.

Rather, this low-q feature in the scattering arises from a complex combination of cor-

relations of monomers and particles in clusters as well as their cross-correlations. In the

following sections, the ability to manipulate rc in MC simulations is utilized to further

distinguish structural states before exploring the influence of these microstructures on

the relative contributions to the IRO peak.
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Figure 3.7: The dependence of the fraction of particles contained in clusters Xclusters

on rc for state A (open diamonds) and state B (filled diamonds).

3.6 Cut-off Distance as a Probe of Solution Structure

3.6.1 Monomer Dominated IRO Peak

The extent of clustering, represented by the fraction of particles in clusters

Xclusters = 1 − N(1), in states A and B are shown in Fig. 3.7 for comparison. Both

states remain dispersed fluids despite the fraction of particles in clusters increasing

steadily with increasing rc.

However, state B has up to twice as many particles (75%) in clusters at the

largest cut-off distance (rc > 1.47) compared to state A, which has roughly the same

number of particles in clusters at all values of rc > 1.1. This is reflected in the cluster

size distribution, which spans to much larger sizes for state B while state A is almost

unchanged. Thus, as more particles are in clusters they populate larger sizes relatively

evenly while smaller sizes are slightly less likely. States A and B have nearly identical

cluster size distributions at a cut-off distance of 1.035 and also have the same fraction

of particles in clusters, which provides a basis for comparing the microstructure of two

states with an IRO peak under different conditions (φ, T ∗).

While the sensitivity of S(q) to N(s) will be addressed in the next section, it is

essential to emphasize the additional sensitivity of IRO peak formation on the relative
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orientation of particles and clusters. Uncertainty as to the physical significance of

the IRO peak arises from the non-trivial convolution of the real space orientation,

represented by g(r), upon its Fourier transformation into the S(q) according to Eq.

3.7. As an example, a cut-off distance of 1.035 is used to compare states A and B

because they have similar contents of monomers and clusters, but produce IRO peaks

with different magnitudes. The microstructures of these two states are represented by

their respective decomposed structure factors in Fig. 3.8. It is important to note that

altering rc from 1.2424 does not change the structure or state of each state point, but

provides a unique method of probing the lengthscale dependence of connectivity and

the corresponding relationship between N(s) and S(q).

While SCC(q) is nearly identical for both states across the entire q-range, shown

in Fig. 3.8a, S(q) of state A has a larger IRO peak. In the same figure, the magnitude of

SMM(q) appears to differ most significantly in the low-q region between states A and B.

Further, both SMM(q) and SMC(q) of state A exhibit a small IRO peak. By plotting the

magnitude of SMM(q) and SCC(q) for state A relative to state B in Fig. 3.8b, the larger

magnitude of monomer correlations almost perfectly overlaps the relative magnitude

of S(q) over the full q-range. At the q-values of the IRO peak, the relative magnitude

of monomer correlations drops slightly below that of S(q) and cluster correlations

become slightly more significant. Thus, an enhanced correlation of monomers, rather

than clusters, is the most significant factor contributing to the more pronounced low-q

peak at lower volume fraction and reduced temperature. However, it is a combination

of both monomer and cluster correlations that produces the exact magnitude of the

IRO peak in S(q). These features demonstrate that the magnitude and position of IRO

peaks cannot, in general, be simply interpreted in terms of cluster size and spacing.

3.6.2 Analyzing Moments of the Cluster Size Distribution

From studying trends in the cluster size distribution with respect to cut-off

distance, the clustered state can easily be distinguished from dispersed fluid and per-

colated states. In particular, clustered fluids display a distinguishing (and therefore
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Figure 3.8: (a) Comparison of S(q) for state A (dotted line) and state B (solid line)
and their corresponding partial structure factor contributions (triangles
and circles, respectively) for connectivity defined by rc = 1.035. (b) The
magnitude of S(q), SMM(q), and SCC(q) for state A relative to state B
as a function of q-value.

possibly characteristic) trend in the product of the average and skewness (i.e., the first

and third moments), or ASK factor, of the cluster size distribution. The skewness is

a measure of an excess of values to one side of the distribution relative to the mean

(normalized by the variance). As an example, the skewness approaches zero when the

distribution becomes evenly distributed about the average. Figure 3.9 demonstrates

the change in ASK with rc for a HS fluid at three volume fractions (a) and all six

HSDY states (b).

Every state in the HS fluid and HSDY system except the clustered state displays

some divergence in the ASK factor. Clustered states maintain a steady value of ASK

throughout the range of cut-off distances due to a steady average and skewness. For

state C, these moments of N(s) balance to a value of about one, but it is unclear

whether this is by chance or not. In general, this is a distinguishing characteristic of

states with a preferred cluster size in systems with SALR interactions.

In contrast, dispersed states diverge at small rc while percolated states diverge

at both extremes of rc. The same trends in the ASK factor are observed for HS systems
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Figure 3.9: The product of the average and skewness of the cluster size distribution
are plotted as a function of cut-off distance for (a) HS fluids at three
volume fractions and (b) each of the six HSDY state points studied here.
The trend in this parameter with rc appears to be a distinguishing feature
of clustered states.

at small φ and large φ, respectively. Due to the cluster size distribution being purely

positive, the skewness arises mainly from the extent of the tail away from the average

size. Therefore, dispersed fluid states (and low φ HS fluids) have a large positive

skewness in conjunction with a small average cluster size. Consequently, the small

probability of larger clusters creates a large skewness that causes a large ASK factor.

For a percolated state, the average cluster size is so large that a small cluster size “tail”

forms. Thus, both the skewness and average cause the ASK factor to diverge at small

rc while at large rc the average cluster size accentuates even a small skewness value,

causing large values of ASK.

3.6.3 Distinguishing Percolated States

The difference between a random percolated state and a cluster percolated state

can be further illustrated by varying the cut-off distance, which highlights the proxim-

ity of particles. Systematically increasing the cut-off distance probes the lengthscale

dependence of local order and provides insight into the microstructure and particle

correlations. Note that the actual microstructure does not vary, just the definition of
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Figure 3.10: The cluster size distribution for three values of rc ( 1.005, 1.035, and
1.2424) for (a) state D and (b) state E.

cluster membership. Cluster size distributions for states D and E are shown in the Fig.

3.10 for three cut-off distances (rc = 1.005, 1.035, and 1.2424). State D evolves from a

monotonically decreasing N(s), to a preferred size with a peak at roughly 23 particles

per cluster, and finally to a percolated cluster near the system size. This transition

indicates the presence of clusters of a preferred size prior to percolation, which become

integrated into the resulting percolated cluster structure. State E appears to transition

directly from a monotonically decreasing N(s) to a percolated N(s) associated with a

random dynamic percolation transition.

Figures 3.11 and 3.12 illustrate the trends in gCC(r) and characteristic particle

configurations with cut-off distance for the cluster percolated and random percolated

states (state D and state E, respectively). A single configuration with a representative

cluster size distribution of the average for each percolated state is selected for the

analysis. Configuration snapshots show only particles that are part of clusters and

each cluster is labeled with a different color. When comparing the microstructure of

states D and E (Fig. 3.11f and 3.12f), the cluster percolated state D appears to have

a more ordered network that is similar to states found previously in experiment[26]

and simulation.[46] Quantitatively, this order is evident by a pronounced doublet near

r = 1.8 and a smaller peak at r = 2.6 in gCC(r) (Fig. 3.11c and 3.12c). These peaks

help to distinguish state D from the other two percolated state as a cluster percolated
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Figure 3.11: The gCC(r) as well as the intra-cluster and inter-cluster components are
shown for cut-off distances of (a) 1.005, (b) 1.035, and (c) 1.2424 for
state D. The snapshots (d-f) are of a characteristic configuration with
the corresponding rc of the plot above and show particles within a given
cluster as the same color.

state.

The intermediate range peaks in the gCC(r) of state D are present for all choices

of cut-off distance. At a small cut-off distance of 1.005, the structure is already dom-

inated by clusters. Further increase of the cut-off distance to 1.035 and 1.2424 shifts

the preferred cluster size to larger sizes until a system spanning percolated cluster is

evident. Interestingly, the location and magnitude of the peaks in g(r) change little

over this variation in cut-off distance indicating that the particle-level microstructure

of state D is relatively homogeneous through the clustered fluid. This analysis sup-

ports a mechanism of percolation in state D, upon increasing φ from the clustered

state, resulting from the merging of clusters. This is consistent with the stabilization

of clusters at T ∗ = 0.25 by well-understood cluster-cluster repulsion.[39]

In contrast, the structure of state E in Fig. 3.12 exhibits a gCC(r) that contains

a peak at contact and a weak, broad peak at r = 2.0 for all bond distances. At
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Figure 3.12: The same details as given in Fig. 3.11 for percolated state E.

the smallest cut-off distance of 1.005, the system is composed mainly of monomers and

very small clusters. Upon increasing the cut-off distance to 1.035, more clusters appear

with larger size and more polydispersity. Further increase of the cut-off distance to

1.2424 leads to percolation. For each choice of cut-off distance the gCC(r) is composed

mainly of inter-cluster correlations with a small peak just above the bond distance

value. Thus, clusters are randomly dispersed in the simulation box. Further, the

dramatic drop in magnitude of the contact peak in the gCC(r) when increasing the

cut-off distance is indicative of particle by particle growth of clusters. In contrast, in

a percolated cluster state, aggregation of two clusters reduces the number of particles

at cluster surfaces, which enhances the number of nearest neighbors and maintains a

large contact peak. From this analysis we can conclude that the percolated structure of

state E forms from the aggregation of monomers and small polydisperse clusters that

eventually span the system. While the IRO peak indicates an inherent internal length

scale, the correlations are weaker than those observed for the cluster-percolated state

due to the size polydispersity of small clusters that comprise the percolated cluster.
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Figure 3.13: The relative magnitude of the IRO peak compared to its maximum
value as a function of the cut-off distance. For comparison, the data
are plotted relative to the cut-off distance at which 50% of the sampled
configurations contain a percolated cluster.

Considering the large content of particles in percolated clusters in states D, E,

and F (Fig. 3.4), as well as the large contribution to S(q) from SCC(q) (Fig. 3.6) and

g(r) from gCC(r) (Fig. 3.11, Fig. 3.12), it is apparent that particle correlations and

the IRO peak are mainly due to the intra-cluster correlations. By analyzing the height

of the IRO peak in SCC(q), the cluster percolated state may also be distinguished

from the other two percolated states. Figure 3.13 shows the magnitude of the peak

in SCC(q) relative to its maximum value as a function of the cut-off distance relative

to the value at which the system is percolated, rpercc (i.e., the smallest cut-off distance

where at least 50% of configurations have a percolated cluster). Immediately upon

increasing the cut-off distance from a particle diameter, the SCC(q) peak magnitude

increases dramatically before reaching a maximum for all three states, which is not

necessarily at the percolation transition. States D, E, and F percolated at rpercc values

of 1.0422, 1.2141, and 1.0843, respectively. The cluster percolated state reaches the

maximum at the onset of percolation then remains relatively constant. However, the

IRO peak in SCC(q) of the two random percolated states reaches a maximum at a cut-

off distance before the onset of percolation and slowly decreases until approaching its
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own plateau. The relatively constant magnitude of the IRO peak with cut-off distance

beyond percolation in state D indicates that the characteristic length scale separating

clusters is maintained in the network, while randomly percolated states lack any such

order.

3.7 Decomposing Contributions to the Solution Structure

Monomer-monomer, cluster-cluster, and cross-correlation contributions as well

as the total system structure factor are presented in Fig. 3.14 for each of the six states

studied. Each state has a unique combination of these features, which are compared

in detail with respect to the structural features outlined in previous sections.

The three correlation components of the structure factor of the two monomer

states (states A and B) are shown in Fig. 3.14a and 3.14b, respectively. As a reminder,

these results are at the rc of 1.2424 as opposed to the earlier analysis comparing states

A and B using an rc of 1.035. As shown in Fig. 3.7, monomers are the most abundant

species in both monomer state solution structures at rc = 1.2424, and similar to Fig.

3.8a both states have a structure with a pronounced IRO peak (at q ≈ 1) relative to

the monomer peak (at q ≈ 7.3). The magnitude of the monomer correlations SMM(q),

which are roughly 50% of the magnitude of the total structure factor over the full q-

range, demonstrates the large content of monomers in both dispersed states. Although

the magnitude of cluster correlations is smaller than monomer correlations, the presence

of an IRO peak in SCC(q) in the low-q region is more representative of the shape of

S(q). However, the location of the IRO peak in SCC(q) for both state A and state B are

shifted from that of S(q). This shift is caused by the drop in magnitude of SMM(q) and

SMC(q) in the range of q-values around the IRO peak. Thus, the preferred length scale

represented by the IRO peak in S(q) is a complex combination of monomer and cluster

correlations in solution. Interestingly, state B, which has roughly 50% more clusters

in solution relative to state A, has a more significant peak in SCC(q) but a smaller

total magnitude of the IRO peak in S(q) relative to state A. These results suggest that
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the weaker IRO correlations result from monomers and particles in clusters becoming

significantly less correlated despite a larger extent of clustering.

Fig. 3.14c shows the partial structure factors for state C. Cluster-cluster corre-

lations clearly dominate the structure factor at all q-values and are largely responsible

for the IRO peak. The IRO peak has a magnitude of roughly 3.3, which is larger than

the Hansen-Verlet criterion for crystallization of HS systems (2.85).[22, 27] However,

these MC simulations and previous findings for SALR systems with short range at-

traction (z1 ≥ 8)[28] show no evidence of crystallization under conditions that produce

IRO peaks above the Hansen-Verlet criterion. Although Ref. [22] has demonstrated

that the Hansen-Verlet criterion is indeed applicable to SALR systems, crystalliza-

tion is avoided with a short enough range of attraction. The delicate balance of short

range attraction and long range repulsion produces sufficient polydispersity that pre-

vents crystallization. Thus, the small “residual multi-particle entropy” described in

Ref. [22] as the mechanism preventing crystallization is manifested in the intermediate

range order correlations in SALR systems. In the case of a clustered state (state C),

the polydispersity of the cluster size distribution prevents the formation of a Wigner

crystal state of clusters.

The original hypothesis that an IRO peak can be used to quantify an average

cluster size[45] can be shown to hold under conditions where the cluster size distribution

has a defined, preferred size. The IRO peak position of these clustered states can

be used as an estimate of the characteristic spacing between clusters, as previously

reported in literature,[39] according to r = 2π/q. The q-value of the IRO peak for state

C (q = 1.2) results in a cluster spacing estimate of r ∼ 5.2σ. Assuming a monodisperse

system of clusters of 12 particles, which is the preferred cluster size according to the

maximum in N(s), the average spacing (d ≈ ρc
−1/3) between clusters is estimated as

5σ. Thus, the preferred cluster size can be estimated from the location of the IRO peak

for state points corresponding to a clustered fluid. However, this methodology will be

misleading if applied more broadly to experimental results for dispersed fluids with

an IRO peak. The broad polydispersity of clusters and a non-zero contribution from
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Figure 3.14: Structure factors and the three partial structure factor contributions are
shown for (a) state A, (b) state B, (c) state C, (d) state D, (e) state E,
and (f) state F. The diversity of microstructures that produce an IRO
peak is direct evidence of the inaccuracy in using it as an indication of
cluster formation.
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Figure 3.15: IRO peak magnitudes are shown for state points along the two isotherms
studied. Trend in IRO peak height with volume fraction are distinctly
different when below the critical reduced temperature (T ∗ = 0.25) com-
pared to systems outside the two phase region of the reference attractive
system (T ∗ = 0.46).

SMM(q) and SMC(q) are responsible for the general lack of correspondence between the

location of the IRO peak in S(q) and the physical microstructure of the fluid.

The percolated states have been analyzed in detail in previous sections, but the

decomposition of S(q) for states D, E and F are shown in Fig. 3.14d, 3.14e and 3.14f,

respectively, to further demonstrate the generality of IRO peak formation. Clearly,

cluster correlations are the main contribution to the structure factor. Although the

IRO peaks formed by these states are in roughly the same position as in state C, they do

not contain a preferred cluster size associated with its corresponding real space length

scale. Depending on the type of percolated state, the magnitude of the IRO peak will

differ significantly. This further indicates the danger in generalizing the presence of an

IRO peak to cluster formation.

The magnitudes of each of the six states’ IRO peak are summarized and provided

in Fig. 3.15 as a function of volume fraction. The dotted lines display a possible

distinguishing trend between the size of the IRO peak and volume fraction along the

two isotherms studied here. Below the critical reduced temperature (T ∗ = 0.25), the
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Figure 3.16: The average number of neighbors, IRO peak height S(qc) and IRO peak
location qc are given for all six HSDY states studied.

magnitude of the IRO peak increases with volume fraction while above T ∗c (T ∗ = 0.46)

the magnitude decreases with increasing volume fraction. Thus, as clusters form and

become more abundant with increasing volume fraction, they order or localize more

significantly. In contrast, at higher temperatures, where a dominant cluster size does

not form, increasing volume fraction produces an increasingly more disordered solution

structure on the IRO lengthscale. These findings further support the distinction of

cluster percolated and randomly percolated states. By systematically increasing φ

during SANS experiments, the corresponding change in the IRO peak magnitude can

be used to identify states with a preferred cluster size.

The large difference in the magnitude of the IRO peak between the clustered

and dispersed/random states (both percolated and fluid) is highlighted in Fig. 3.16.

Both the clustered state and the cluster percolated state have a distinctly larger IRO

peak than the corresponding monomer states. Both state C and state D have an IRO

peak magnitude greater than three. Previously, a large sharp IRO peak (S(q) ≥ 3)

has also only been observed in conjunction with the formation of a peak in the cluster

size distribution (i.e., the formation of a cluster phase as defined in this work),[39, 40]

although this trend was not emphasized. These literature results and the state points
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studied in this chapter lead to the hypothesis that clustered states can be identified by

an IRO peak greater than three in magnitude. This point will be expanded upon in

the next chapter.

IRO peak magnitude can be understood in terms of its location (q-value) and

the average number of neighbors of any given particle. These values are shown in Fig.

3.16 for each state point. The dotted lines distinguish the two reduced temperatures

studied and highlight the effect of T ∗ on the location of the IRO peak. States (A, C and

D) at low temperature consistently formed IRO peaks at smaller q-values than at higher

temperature (states B, E and F). The enhanced order at increasingly smaller q-values

(larger lengthscales) for the lower temperature can be attributed to the larger strength

of the repulsive barrier, which increases with decreasing T ∗ in addition to the attractive

well. However, the decomposition of correlations in S(q) discussed earlier are sensitive

to the balance of these two forces. Also, the average number of neighbors N varies

substantially between states. As expected, the clustered and percolated states have

more neighbors compared to monomer states. The small value of N for the monomer

states indicates less widespread association compared to the random percolated states,

yet the IRO peak magnitude of states A and B is actually larger than that of states

E and F. Therefore, it is largely the localization of monomers over larger lengthscale

that generates the observed IRO peak, which further demonstrates the lack of a direct

relationship between cluster correlations and an IRO peak.

3.8 Conclusions

In this chapter, MC simulations were used to distinguish four distinctly different

fluid microstructures that exhibit an IRO peak: dispersed, clustered, cluster percolated,

and random percolated systems. These results support IRO peak formation as a general

occurrence in dispersions with an SALR potential. The particle-level detail allows

for the decomposition of an IRO peak into the contributions from both monomer

and cluster correlations. The results indicate that the location of the IRO peak is

not an accurate representation of inter-cluster spacing except in the specific scenario
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of a preferred cluster size in solution. This study suggests that IRO peaks with a

magnitude of roughly three or greater is a helpful “rule-of-thumb” to identify clustered

and cluster percolated states. Further, under conditions conducive to cluster formation

(T ∗ < T ∗c ), increasing the volume fraction appears to enhance IRO in the system, while

the opposite is true for states without distinct cluster formation. These trends may

serve as experimentally useful criteria for identifying possible clustered states.

The clustered and cluster percolated states as defined in this chapter and Ref.

[20] exist within the binodal of a reference attractive system. This relative location

indicates cluster formation is driven by the short-range attraction that corresponds to

phase separation for the reference state under identical conditions (T ∗, φ). The long-

range repulsion suppresses the macroscopic phase separation, resulting in the formation

of clusters with a preferred, finite size. The possible connections between the clustered

fluid and the phase behavior of the reference attractive system are explored in more

detail in the following chapter and documented in Ref. [21].
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Chapter 4

GENERALIZED PHASE BEHAVIOR AND PROPERTIES OF
CLUSTER FLUIDS

4.1 Introduction

Based on early scattering studies that associated the formation of a low-q peak

in the structure factor with cluster formation,[45, 47] several studies have explored the

influence of competing interactions on the formation of a low-q or IRO peak.[3, 6, 27]

Relying on this definition of a cluster state, effective phase diagrams have been made

of cluster fluids.[14] However, in the previous chapter, these interesting peaks that

appear in the structure factor of solutions with competing interactions were shown to

be a general consequence of intermediate range order (IRO)[18] rather than due to

cluster formation as previously proposed. Therefore, identification of clustered fluid

states in SALR systems based on this criterion of a low-q peak are a misidentification

and inaccurate.[18]

Clarification of the phase behavior of clustering solutions is of significant techno-

logical importance for biological materials of varying complexity, ranging from model

globular proteins to therapeutic monoclonal antibodies (mAbs). Recent experimen-

tal work with high concentration solutions of mAbs[5, 11, 26, 35, 55, 56] and glob-

ular proteins, such as lysozyme,[9, 10, 13, 15, 30, 37, 47] suggest extensive forma-

tion of clusters in solution (though, not necessarily of a preferred size). In addition

to stable clustered fluids, aggregation of such clusters have been reported as precur-

sors or building blocks of gels.[7, 10, 18, 40, 42, 48] However, the fundamental issue

of experimentally identifying clustered fluids in protein solutions is still debated in

literature,[9, 28, 29, 30, 37, 43, 44, 46, 47] which further complicates the matter.
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This chapter expands upon the link between the existence of clustered fluid

states and the gas-liquid phase behavior of a reference potential fluid suggested in the

previous chapter. Although clustered states were found to exist in the two-phase region

of an appropriately defined reference fluid with excluded volume and a short range at-

traction, the transition boundary from random fluid states to clustered states was not

precisely determined. In this chapter, by investigating a large number of state points

and a wide range of potential parameters, this observation is conclusively demonstrated

to be a general trend in SALR systems. A corresponding states diagram is found for

the reference attractive potentials, which is used to create a generalized state diagram

for clustered fluids. The resulting localization of state points is consistent with pub-

lished results.[7, 39, 40, 48] Clustered states are also shown to consistently produce

characteristically large IRO peaks and average coordination number of particles in the

fluid, providing a new, semi-empirical method for identifying clustered fluids directly

from scattering experiments. The majority of the work in this chapter has appeared

as published research.[19]

4.2 Simulation and Analysis Methods

4.2.1 Simulation Protocol

Monte Carlo (MC) simulations[1, 17] are used as outlined in Chapter 2 to study

the phase behavior of spherical particles by explicitly accounting for isotropic, two-body

interactions including a short range attraction and longer range repulsion (SALR).

Two representative SALR interaction potentials are shown in Fig. 4.1, which were

described in detail in Chapter 2. The hard sphere double Yukawa (HSDY) and the

Leonard-Jones-Yukawa (LJY) interaction potentials are used for their representation

of experimentally relevant clustering materials[9, 10, 13, 30] and to allow for direct

comparison between these MC simulation results and literature values.[7, 32, 40, 48]

The solution structure is represented by the pair distribution function g(r) and

structure factor S(q) for each state, which are experimentally relevant functions ob-

tained from scattering experiments. As a reminder, the pair distribution function is
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calculated by averaging all particle configurations using direct summation according

to:

g(r) =
V 2

N2
p

〈 Np∑
i=1

Np∑
j=1

δ(rij − r)
V

〉
, (4.1)

using standard methods.[1, 17] Here, rij is the separation of two particle centers, Np is

the number of particles in the system, V is the sample volume, and δ is the Dirac delta

function. Restricting the calculation of Eq. 4.1 to include only particles contained

in clusters, and explicitly accounting for each particle within the double summation,

generates cluster-cluster correlations defined by gcc(r), the radial distribution function

of clustered particles. This function represents the degree of order between clusters and

helps in distinguishing between structural states formed by SALR systems as discussed

in the previous chapter. The structure factor is calculated using the radial distribution

function according to

S(q) = 1 + ρ

∫ ∞
0

sin(qr)

qr
[g(r)− 1]4πr2dr, (4.2)

which is identical to Eq. 2.5 in Chapter 2 with q defined as the scattering vector.

Structure factors and radial distribution functions calculated from all simulations were

found to quantitatively agree with numerical calculations using a thermodynamically

self-consistent closure relation for the Ornstein-Zernike (OZ) equation.[18, 22]

4.2.2 Thermodynamics of a Reference Attractive System

A reference potential is defined for the HSDY and LJY potentials as the purely

attractive portion of each potential. These are shown in Fig. 4.1 as dashed lines with

their corresponding “full” potential. The HSDY reference potential is defined as:

U ref
HSDY (r)

kT
=


∞ r < 1

1
T ∗(1−λ)r

(−e−z1(r−1) + λe−z2(r−1)) 1 ≤ r ≤ rc

0 r > rc

(4.3)

and the LJY reference potential is:

U ref
LJY (r)

kT
=


1
T ∗

[
4
(
r−2α − r−α

)
+ A

(
ξ
r

)
exp

(
−r
ξ

)]
r ≤ rc,

0 r > rc

(4.4)
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where r is the separation distances normalized by the particle diameter σ and rc is

the cut-off distance defined as the separation at which the potential produces a zero

interaction energy.[18, 19] For consistency, this cut-off distance is also used to deter-

mine connectivity as discussed in the previous chapter. The interaction parameters and

corresponding cut-off distance of each of the potentials studied in this work, including

those of previous studies used for comparison, are provided in Table 4.1. The choice

of parameters is motivated by research that models physically meaningful systems ob-

served in experiments and also overlap with potential parameters studied in literature.

This range is extensive and covers many physically realizable systems of interest to the

protein, biopharmaceutical, nanoparticle, and colloid communities.

Binodal lines representing liquid-liquid phase separation for the reference at-

tractive potentials of each system in Table 4.1 are generated by discrete perturbation

theory (DPT).[2, 12, 49, 53] DPT represents the interaction potential by numerous

discrete square well-like steps and is known to calculate accurate gas-liquid binodals

and critical points of purely attractive systems. The critical point obtained from DPT

is compared with estimates for the reference attractive potentials using the law of

Figure 4.1: The HSDY1 (solid line) and LJY1 (dashed line) potentials from Table 4.1
are shown as representative of each function form of interaction potential.
The attractive component of the potential (dotted lines) is used as a
reference potential.
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corresponding states.

The thermodynamic basis for a corresponding states representation of materials

is well understood as a result of similar underlying interactions. This can readily be

shown for different simple fluids interacting with an attractive potential, such as the

classic Leonard-Jones fluid.[38] However, the phase behavior of systems with attractive

interactions is sensitive to the range of attraction. Therefore, any two systems with a

hard sphere excluded volume and attractive interactions will not necessarily represent

each other within the construct of corresponding states.[16] In the particular case of

sufficiently short range attraction, Noro and Frenkel demonstrated that these systems

uphold such a relationship.[33] Though this original extended law of corresponding

states (ELCS) restricted the range of (isotropic) attraction to less than ∼ 10% of a

particle diameter, recent work has shown ELCS to remain accurate for a range of

attraction as large as 0.25σ.[50] Therefore, the phase behavior of fluids interacting

Table 4.1: The inverse range of attraction, inverse range of repulsion, relative strength
of repulsion to attraction, and cut-off distance are provided for all HSDY
(z1, z2, λ, rc) and LJY (α, 1/ξ, A, rc) potentials used in this chapter.

HSDY z1 z2 λ rc
HSDY1 10.0 0.5 0.10 1.2424
HSDY2 11.30 0.5 0.0945 1.2184
HSDY3 11.93 0.5 0.0923 1.2085
HSDY4 8.134 0.5 0.20 1.2108
HSDY5 20.0 0.5 0.175 1.0894
HSDY6 5.0 0.5 0.20 1.3577
HSDY7[3] 10.0 0.5 0.01 1.4847
HSDY8[3] 10.0 0.5 0.05 1.3153
LJY α 1/ξ A rc
LJY1 16.676 0.5 0.0910 1.2665
LJY2 32.0 0.5 0.17 1.1005
LJY3[48] 100.0 0.5 0.20 1.0282
LJY4[39] 100.0 0.5 0.05 1.0433
LJY5[40] 18.0 2.0 8.0 1.1358
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with the reference potentials defined in this chapter will also reduce to a common

corresponding states diagram according to ELCS.

According to ELCS, the equilibrium phase behavior is less sensitive to the exact

shape of the potential than the total effective strength of attraction. Therefore, the

critical point can be recast in terms of a universal measure of total attractive strength

such as the critical normalized second virial coefficient B∗2c calculated according to

B∗2c =
B2(T ∗ = T ∗c )

B2(T ∗ =∞)
= 1 + 3

∫ rc

1

(
1− exp

[−U ref (r, T ∗c )

kT

])
r2dr, (4.5)

which is equivalent to Eq. 3.4 in the previous chapter, but specified at the critical point.

Previous studies have then converted this measure to an effective range of attraction

δ of an “equivalent” square well (SW) fluid (i.e., with the same B∗2c value) by

1 + δ =
(

1− 1−B∗2c
1− exp[1/T ∗c ]

)1/3

, (4.6)

where T ∗c is the critical reduced temperature and 1/T ∗c is the well depth.[24, 33, 34] This

mapping methodology is accurate for systems with short range attraction with either

SW or Yukawa functional forms.[24, 34, 50] Normalizing the binodal of each reference

potential by its corresponding critical point (φc, T
∗
c ) produces nearly identical results

for all systems in Table 4.1, consistent with the concept of corresponding states.

4.2.3 State Definitions

A particle is defined as part of a specific cluster when it is less than a distance

rc from a neighboring particle. These calculations distinguishing particle “species”

are summarized by the normalized cluster size distribution N(s) represented by Eq.

3.1 in the previous chapter. The state of the fluid is determined by N(s) at each

set of conditions using definitions established in the previous chapter and in Ref.[18].

Figure 4.2 shows representative cluster size distributions of each of the four states

found in SALR systems: dispersed fluid, clustered fluid, random percolated and cluster

percolated states. Between 5 and 15 state points are chosen for each potential in Table

4.1 and associated with one of the four states.
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Figure 4.2: Characteristic cluster size distributions used to define each state point
are shown for each of the four states identified in SALR systems (specifi-
cally for potential HSDY1): dispersed, clustered, random percolated and
cluster percolated states.

A monotonically decreasing N(s), which represents a state where monomers are

the most abundant species in the system and clusters form without a preferred size,

is used to identify a dispersed fluid. Several previous studies have defined clustered

states by an average cluster size of 2 or greater[10, 31] or a large effective hydrody-

namic radius,[37] which will fit the definition of a dispersed fluid used here. Although

dispersed fluids are composed mainly of monomers, they will still contain some clusters

that can influence material properties. In contrast, a clustered fluid state is defined

by the formation of a local maximum in N(s) for s > 1. Such a cluster size distribu-

tion indicates the ensemble average contains an energetically preferred range of cluster

sizes. Therefore, unlike dispersed fluids, clustered fluid properties are expected to be

governed predominantly by clusters around the preferred size. The combination of this

particular state classification and definition of rc provides a self-consistent and physi-

cally significant solution structure and correlation with both the particle interactions

and mechanical properties.

Percolation is defined as described in Chapter 2 when at least 50% of the sampled

configurations contain a system-spanning cluster.[41] Both percolating states produce
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a single peak in N(s) near the system size. Clustered states will also percolate upon

increasing the concentration and their N(s) may exhibit a cluster peak in addition to

the system-size peak, as shown in Fig. 4.2. This is a distinctly different structural

state from a randomly percolated state due to the association of “building blocks” of

a preferred size to form the cluster percolated network. As detailed in the previous

chapter, these two percolated states can be distinguished by analyzing their structural

order.

4.3 Results and Discussion

4.3.1 Corresponding States of the Reference Potentials

The diversity of interaction potentials used in this chapter is demonstrated by

plotting them together in Fig. 4.3 with a value of T ∗ = 0.5. The range of repulsion

is constant among all potentials (fixed at 2σ) while the effective range of attraction

varies from 1.0282σ to 1.4847σ and the relative strength of repulsion to attraction

varies from 0.01 to 8.0. These parameters produce maximum repulsive interaction

energy values ranging from 0.05kT to 3.0kT and energy well depths ranging from

−1.74kT to −10.85kT (as a function of T ∗ values used with each potential).

Although ELCS is anticipated to apply to the reference potentials studied in

this chapter, it is explicitly tested and compared with literature results. The values

of T ∗c from previous studies are shown in Fig. 4.4a with simulation results of HSDY

states and two representations of the LJY states. In the case of the LJY potential,

the value of δ depends on the definition of the well depth, while the HSDY potential

is normalized such that the well depth is always equal to 1/T ∗c . Figure 4.4b compares

the LJY2 potential to the SW potentials that result from defining the well depth as

the same value as the HSDY potential 1/T ∗c (labeled T ∗c ) or as the minimum in the

potential at T ∗c (labeled Umin). The effective square well potentials plotted in Fig.

4.4b produce the effective range of attraction of the circled stars in Fig. 4.4a. Despite

having identical values of B∗2c, the definition based on Umin is significantly shifted

from the T ∗c definition and literature results. From Fig. 4.4a, this appears to be a
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general failure of this methodology for LJY potentials. Therefore, T ∗c is the more

appropriate representation of an effective SW potential and also provides consistency

with the estimates used for HSDY potentials. As such, the dependence of the critical

temperature on the effective range of attraction for the reference attractive potentials

(filled stars and green open stars) are consistent with literature results for square

well[24] and attractive Yukawa[34] fluids. Only when approaching an effective range

of about 1.1 do the reference potentials deviate from expected trends. However, these

correspond with HSDY potentials whose rc is larger than even the longest reported

range accurately represented by ELCS.[50]

According to the Noro-Frenkel ELCS,[33] the Baxter parameter τB = 0.25/(1−

B∗2) should be about 0.1 at the critical point of any system with short range attraction.

In Fig. 4.5, the τB for all potentials used in this work are compared to this expected

value for the set of calculated effective ranges of attraction. The majority of the

critical points calculated for the 13 potentials used in this chapter appear to follow

the expected ELCS behavior. However, two potentials with large effective ranges have

critical temperature values that are greater than expected. This is likely because

Figure 4.3: Interaction potentials are plotted for each condition in Table 4.1. Each
has a different color and lines alternate between solid and dotted for
clarity.
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Figure 4.4: (a) The critical reduced temperature is plotted for HSDY (filled stars)
and LJY (open stars) systems as a function of the effective range of
attraction for a SW fluid with the same τB value (1 + δ). Also plotted
are literature results for SW[24] (solid line) and Yukawa[34] (dotted line)
fluids. (b) Two definitions of the effective range of attraction (dashed
lines) for SW potentials are shown compared to potential LJY2 (solid
line). Open stars in (a) correspond to the definition of δ with the same
color in (b).

the range of these potentials is near the upper limit of validity of ELCS. Further,

three (circled) points deviate significantly from a τB of 0.1, which correspond to the

potentials with the shortest ranges of attraction. The deviations most likely arise from

inaccuracies in the DPT method used to estimate T ∗c under these conditions.[50]

Normalization of effective strengths of attraction in HSDY systems may also

provide a useful universal measure of intermediate range order in the solution struc-

ture factor. Figure 4.6 shows the location of the IRO peak qc formed in several systems

studied in this chapter as well as results from two previous studies.[3, 40] This data set

includes the location of IRO peaks for all four types of states defined in the previous

section. Interestingly, when qc is plotted by a measure of the strength of attraction

T ∗/T ∗c combined with a convoluted measure of the strength and range of attraction

(1 − B∗2c), the data appear to fall onto one single linear curve. One noticeable as-

pect of this normalization is that the peak locations are insensitive to variations in
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Figure 4.5: The Baxter parameters at the critical point of each HSDY (filled stars)
and LJY (open stars) potential are plotted relative to the prediction from
ELCS (dashed line)[33] as a function of the effective range of attraction.

volume fraction and repulsive interactions (that act to produce a larger effective vol-

ume fraction). Previous work has highlighted the fact that the location of the IRO

peak is insensitive to volume fraction, but shifts when changing temperature or salt

concentration (subsequently altering the effective interactions).[47]

Increasing values along the x-axis indicate stronger and possibly longer range

attraction, which leads to smaller correlation lengths (larger qc). As was shown in the

last chapter and will be demonstrated more generally later this chapter, the location

of clustered states (with large IRO peaks and therefore strong IRO correlations) below

the binodal of a reference attractive system suggests that particle localization to any

extent is driven largely by attractive interactions.[18] Regardless of volume fraction,

if particles interact by some form of long range repulsion, the strength and range

of attraction appear to dictate the lengthscale of spacing between different cluster

species/sizes.

The empirical correlation shown in Fig. 4.6 is an additional representation of the

general relationship between competing interactions and IRO. While clustered states

have significantly larger IRO peaks relative to other states, the universality of this
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Figure 4.6: The location of the IRO peak qc appears to be a universal (linear) function
of an effective strength of attraction represented by (T ∗/T ∗c )(1 − B∗2c).
Diamonds are simulation results of new states studied in this chapter,
triangles are from Ref. [40] and squares are from Ref. [3].

trend in qc for all four types of state points suggests a common fundamental driving

force for association on intermediate lenthscales. The consistency of the data with the

given x-axis parameter (as a function of B∗2) in Fig. 4.6 also further implicates using

an rc determined from the point of zero energy in the potential as the most physically

representative value as discussed in Chapter 3.

4.3.2 Generalized Cluster State Diagram

Binodal lines of all reference attractive potentials are plotted together in Fig.

4.7a. The critical points of these systems are found to vary in volume fraction from

roughly 0.2 to 0.4 and critical temperatures vary from about 0.15 to 0.55. This diversity

is reflected in the different location and shapes of the two-phase regions of each SALR

system. Each of the binodals is then normalized by their corresponding critical points

to reduce the diversity into a consistent set of lines encompassing the same region of

phase space.

The reduced temperature (T ∗/T ∗c ) is plotted as a function of reduced volume

fraction (φ/φc) in Fig. 4.7b, consistent with the law of corresponding states. When
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Figure 4.7: (a) Binodals corresponding to a subset of the potentials studied in this
chapter are plotted together. The inset shows the associated reference
attractive potential of each binodal with the same line color and style.
(b) Binodal lines of all reference attractive potential are normalized by
their respective critical points and shown to overlap (except for HSDY5,
LJY3, and LJY4 that are discussed in the text).

plotted together, almost all systems overlap, displaying excellent congruence for all but

three systems. Binodal calculations for potentials HSDY5, LJY3, and LJY4 produces

the greatest inaccuracy when applying ELCS. These potentials show the largest devia-

tions from the average behavior and were also circled as outliers in Fig. 4.5. However,

DPT calculations become more difficult for potentials with ranges of attraction less

than 1.1σ, or less than 10%, and deviations from exact behavior have been reported

to be as large as 15%.[49] Specifically, if the range of attraction is too short, DPT

calculations have been shown previously to bias the liquid branch of the binodal,[50]

as observed in Fig. 4.7a for these potentials. Therefore, the differences observed be-

tween the majority of normalized binodals and the three outliers is roughly within

the uncertainty of DPT. In the previous section, the behavior of all critical points

(T ∗c ) was shown to be consistent with reported results for square well[24] and attrac-

tive Yukawa[34] fluids. Therefore, in general, the binodals show a universal behavior

and potential HSDY1 is used to represent all SALR systems for the remainder of the

chapter.
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Several equilibrated state points for the potentials given in Table 4.1 are clas-

sified into one of four structural states, which are subsequently normalized by the

corresponding critical point of their reference potential. These normalized state points

are plotted in Fig. 4.8, which is a master corresponding states diagram within reduced

phase space (φ/φc, T
∗/T ∗c ). The four types of states are observed to lie in defined

regions of the state diagram (distinguished by color and pattern) relative to the refer-

ence attractive fluid binodal. Note that although the binodal of the HSDY1 potential

is used here, the binodal of any other potential can be substituted without alteration of

this interpretation (see Fig. 4.7b). As might be expected, dispersed fluids and random

percolated states lie above the binodal of the reference attractive fluid at low and high

volume fractions, respectively. Similarly, clustered fluids and cluster percolated states

lie within the two-phase region of the reference attractive fluid. The overlap between

the dispersed and clustered fluid regions highlights the uncertainty in the binodals cal-

culated by DPT and the semi-quantitative nature of the relationship between a purely

attractive system phase separation and cluster formation.

The results in Fig. 4.8 distinctly demonstrate that the two-phase region of a

reference attractive system can be used to identify the behavior of clustered fluids and

cluster percolated states of (isotropic) SALR systems. This confirms the hypothesis

presented in Chapter 3 and extends it to a much broader range of potential parameters.

Below the reference binodal, the fluid would phase separate due to the absence of

repulsion. Therefore, cluster formation is similar to, but not literally, a frustrated

phase separation. The long range repulsion balances the strong attractive driving force

initiating aggregation, thereby preventing the unbounded growth of clusters. The result

is clusters with a preferred size. As φ increases, more clusters of the preferred size

form until they merge and span the system (i.e., percolate), producing a network-like

structure with strong intermediate range order.

The observation of a corresponding states diagram for cluster fluids provides an

efficient and robust method for identifying the presence of clusters of a preferred size

for a diverse range of materials with (isotropic) SALR interactions. By extracting an
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Figure 4.8: Normalizing several state diagrams according to ELCS,[33] a generalized
phase diagram for clustered states is produced. New state points from
this chapter are combined with literature results from Ref. [40], Ref.
[32] and Ref. [7] (orange, dark cyan, and grey points, respectively).
The color of each state point corresponds with the potential in Fig. 4.3
used in that simulation. Four distinct regions are found for dispersed
(up-right), clustered (down-right), random percolated (criss-cross), and
cluster percolated (vertical).
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effective square well range of attraction (δ) from any HSDY potential, as demonstrated

in Fig. 4.4b, known empirical relationships between δ and T ∗c (see Fig. 4.4a) and φc can

be used to estimate the location of the critical point for the system of interest.[24, 34]

Using this point, the region of phase space expected to contain cluster fluids can be

easily estimated.

4.3.3 IRO Peaks in Clustered States

The previous chapter demonstrated that IRO peaks alone are insufficient to

indicate the formation of clustered or cluster percolated states. However, the work

in Chapter 3 as well as previous studies provide evidence of a possible correlation

between the magnitude of IRO peaks and the formation of a peak in the cluster size

distribution (i.e., clustered states as defined here).[39, 40] It is logical to hypothesize

that a large peak magnitude, which indicates greater structure in the fluid, would

correlate with the presence of a preferred cluster size in the solution structure. Fig.

4.9 shows the IRO peak magnitudes for all states explored in this work. Data from

literature[39, 40] is also shown in Fig. 4.9 as open and half-filled systems. Both new

simulation and previous literature results for clustered and cluster percolated states

appear to form larger IRO peaks than dispersed fluid and random percolated states.

In particular, an IRO peak magnitude of ∼ 2.7 distinguishes these two subsets of

solution structures, with dispersed and clustered fluids at low volume fractions and

the two types of percolated states at larger volume fractions. Experimental results

from concentrated lysozyme protein solutions, an experimentally relevant material with

similar SALR interactions as these simulations, also agree with these results. Lysozyme

solutions do form IRO peaks in S(q), but with a magnitude below 2.7,[8, 10] which

consistently corresponds with a broad cluster size distribution (i.e., a dispersed fluid

as defined here).

Figure 4.9 also indicates that clustered and cluster percolated states can form

IRO peaks with a magnitude of 10 or greater. As mentioned in the previous chap-

ter, a peak in S(q) with a magnitude greater than 2.85 is indicative of a freezing
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Figure 4.9: The magnitude of IRO peaks are plotted as a function of reduced volume
fraction. All clustered and cluster percolated states lie above an apparent
critical magnitude of ∼ 2.7 (dashed line) separating them from monomer
and monomer percolated states below this value. Filled symbols are from
the new simulations performed here, open symbols are from Ref. [7], and
half-filled symbols are from Ref. [32].

transition.[20, 23] Previous work has shown this empirical Hansen-Verlet criteria to

accurately predict phase transitions for the HSDY interaction potential[25] and, in

particular, the formation of Wigner crystals in cluster fluids.[39] However, short range

attraction (z1 ≥ 8), as used in the current simulations, maintain a fluid state in SALR

systems. In agreement with these expectations, there is no evidence of crystallization

in the simulations reported here, despite the significantly larger peaks found in this

chapter compared to Chapter 3. Most likely, non-ergodic behavior is prevented by the

significant polydispersity of cluster sizes and shapes in cluster percolated and clustered

states.[19]

4.3.4 Internal Cluster Structure in Clustered Fluids

In the presence of short-range attractive interactions, particles (or molecules) re-

quire at least 2.4 neighbors on average to produce what is known as “rigidity percolation”[21]

as shown by theory and experimental studies of atomic glasses. Theoretically, the

rigidity percolation transition assumes that a minimum number of neighbors or caging
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elements is required to restrict the degrees of freedom available to particles in three

dimensions.[36] A minimum of 2.4 nearest neighbors (or coordination number) has been

reported as a criterion for dynamically arrested states in atomic systems[36] and, more

recently, in colloidal systems.[52] Therefore, the ability to distinguish states according

to the average particle coordination number 〈N〉 as a function of the average cluster

size 〈s〉 is tested in Fig. 4.10. For systems that can be directly imaged by optical mi-

croscopy, this distinguishing feature will be more easily accessible than the magnitude

of the IRO peak in scattering patterns.

Instead of defining states through the structure factor, as demonstrated in the

previous section, the identification by coordination number shows that all four states

appear to reside in distinct regions of Fig. 4.10. This plot includes all state points stud-

ied in this work as well as those from a previous study.[40] As expected, the two types

of percolated states consistently have larger average cluster sizes than the dispersed

and clustered fluids. Interestingly, both clustered fluid and cluster percolated states

have distinctly larger coordination numbers than the other two states. Specifically, the

transition from a dispersed fluid state to either a clustered state or random percolated

state occurs at an average coordination number of ∼ 2.4 (shown by the dashed line in

Fig. 4.10), which is consistent with rigidity percolation. A random percolated state

is distinguished from a cluster percolated state at a coordination number larger than

2.4, which is a function of 〈s〉 (shown by the solid line in Fig. 4.10). Due to the

separation between these regions of state points, it appears that 〈N〉 can be used as a

semi-empirical criterion for distinguishing between states.

As clusters grow in size, the relative amount of particles on the surface to those

composing the “core” decreases. This is strictly true for spherical clusters, but holds

for clusters whose fractal dimension df is more spherical, df ∼ 3, than linear, df ∼ 1,

which is true of the clusters formed by the SALR systems listed in Table 4.1 and

in a previous work with similar potentials.[51] The internal particles have a higher

number of neighbors as compared to those at the cluster surface or free in solution.

Therefore, as the average cluster size increases, it is not surprising that the average
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Figure 4.10: Average coordination number 〈N〉 is plotted as a function of average
cluster size 〈s〉. The minimum value of 〈N〉 = 2.4 (dashed line) for
rigidity percolated[21] separates dispersed fluids from all other states.
Clustered and cluster percolated states are further distinguished by Eqn.
4.7 (solid line). Open symbols are taken from Ref. [7].

coordination number does as well. This explains the general increase in the range

of 〈N〉 values obtained with increasing 〈s〉 in Fig. 4.10. Interestingly, the minimum

average coordination number required to form clustered states follows the empirical

relationship between the average cluster size:

〈N〉 = 1.5(ln〈s〉)0.5, (4.7)

given by the solid line in Fig. 4.10. This minimum average coordination number is

indicative of the local order necessary for cluster formation to be energetically preferred.

A larger coordination number produces an enthalpic contribution to the free energy

(from the short range attraction component of the potential) that compensates for the

reduction in entropy in the compact structure. The net result is a lower free energy

for cluster sizes around the average, making them preferential to other sized clusters.

As a measure of the local order necessary to form clusters represented by Eq. 4.7,

these values of the average coordination number are compared with those calculated

numerically for spherical clusters of s particles with four cubic lattices: face-centered,

body-centered, simple cubic and diamond cubic (FCC, BCC, SC and DC, respectively).
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Figure 4.11: (a) The dependence of 〈N〉 on cluster size is plotted for spherical clus-
ters with four different crystal lattices and Eq. 4.7. The bulk values of
〈N〉 for each crystal structure are also provided. (b) Normalizing 〈N〉 of
the four crystal lattices by Eq. 4.7 produces constant values, which ap-
pear to increase linearly with the crystal volume fraction (φcrys) relative
to the FCC lattice (φcrit). The equivalence point of the coordination
numbers provides an estimate of the minimum volume fraction needed
to form clustered states (0.384± 0.035).
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These structures have well-known packing fractions (0.74, 0.68, 0.52 and 0.34, respec-

tively) and coordination numbers that are directly correlated. By comparing these

non-linear relationships, the local volume fraction of clusters formed in clustered states

can be estimated. Figure 4.11a shows the trends in coordination number with cluster

size for all four crystal lattice based cluster structures and the empirical cluster line,

Eq. 4.7. Remarkably, the empirical function is nearly identical to the trends in each of

the four crystal structures, producing constant values when normalized by each other

over the range of average cluster sizes. This indicates a consistent relationship between

local packing fraction and coordination number regardless of cluster size. By taking

the ratios of coordination number (〈Nclus〉/〈Ncrys〉), a value of one would indicate the

volume fraction of a well-defined crystal lattice that represents the local cluster struc-

ture in clustered states. Plotting these points as a function of the difference in volume

fraction from the maximum possible packing (φFCC = 0.74) in Fig. 4.11b results in

a linear fit. The resulting equivalence point produces an estimate of the local volume

fraction of cluster formation at φ = 0.38 ± 0.04. Previous experimental work in Ref.

[7] estimated the cluster packing fraction to be ∼ 0.42 at all bulk volume fractions

in which clustering was observed, strikingly similar to that found here. These values

may also serve as an upper limit of clustered fluid states, above which the bulk den-

sity makes individual clusters unable to be distinguished, likely leading to states being

defined as cluster percolated.

While rigidity percolation theory predicts the average coordination number dis-

tinguishing dispersed fluid and random percolated states observed in Fig. 4.10, the

applicability of this criterion to the formation of clustered fluids is unexpected. Inter-

estingly, no cluster states form at 〈s〉 < 8 or 〈N〉 < 2.4. The value of 2.4 does not

strictly demarcate dispersed and clustered fluids, but Eq. 4.7 consistently lies above

this value at all average cluster sizes for which clustered states are found to exist. The

significant IRO peak magnitudes shown in Fig. 4.9 can be used to extend the con-

cept of restricted degrees of freedom to this empirical correlation. Strong intermediate

range order indicates a large degree of localization, both within individual clusters and
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correlations between monomers and clusters, as demonstrated in the last chapter. Ap-

parently, when particles are localized to a density of about φ ∼ 0.38, the motion of

particles and clusters is hindered in a similar fashion to the caging observed in glassy

and percolated states of fluids interacting only with short range attraction. Further,

the long-range repulsive forces between monomers and clusters make caging possible

over the intermediate range lengthscale as well.

According to mode-coupling theory, a very large magnitude of the IRO peak

indicates the formation of a cluster glass.[54] Within this physical picture, particles in

a cluster are caged in the traditional sense by many neighbors. Therefore, despite the

seemingly low local volume fraction inside a cluster from Fig. 4.11b, clusters likely

have locally glassy structures that are sustained by a minimum average coordination

number. Experimental observations of lysozyme diffusivity using neutron spin echo

appear to agree with this hypothesis.[10, 15, 37] This SALR material has a collective

diffusivity that is independent of lengthscale over small distances (large q-values), which

suggests that local dynamics are slow and possibly glassy in nature (i.e., the dynamics

are dominated by cluster diffusivity).

A possible signature of cluster formation was identified in Ref. [4] as a jump

in the excess entropy Sex of systems interacting with an SALR potential. However,

this jump was associated with the onset of an IRO peak in S(q) as opposed to a peak

in N(s). Therefore, this feature is not necessarily associated with clustered states as

defined here. Their work utilized the same parameters as potential HSDY1 in Table 4.1,

which forms clustered states below the reference attractive binodal, where T ∗c = 0.328.

The jump observed in Sex occurred at a T ∗ of 0.688, far above the reference attractive

binodal.[4] Therefore, this jump is likely a signature of the entropy change related

to intermediate range order, not the formation of clustered states. However, further

study of additional thermodynamic signatures of clustered fluids will progress current

understanding of SALR systems.
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Figure 4.12: The HSDY1 potential is plotted with a variety of z2 values with a
fixed value of B∗2c. The inset highlights the shift in the magnitude and
position of maximum energy of U(r)/kT .

4.3.5 Role of Long-Range Repulsion

So far in this chapter, the range of the repulsion has been fixed to about 2σ

(z2 = 0.5), for which a corresponding states diagram of colloidal systems with an SALR

potential has been shown conclusively to exist. The proposed corresponding states

diagram is expected to remain valid over a wider range of conditions, but it is interesting

to now identify the extent of repulsive interaction conditions for which this holds. SALR

systems with longer range repulsion are still expected to favor the formation of finite

size clusters, but cluster formation may not be energetically favorable when shortening

the range of repulsion.[32] As a result, identifying states having clusters with a preferred

size by the heuristic models described in the previous two sections may be limited to

a specific set of interaction parameters.

One state point interacting with the HSDY1 potential (see Table 4.1 and Fig.

4.3) at φ = 0.05 and T ∗ = 0.25 (a clustered state at z2 = 0.5) is used to study

the implications of altering the range of repulsion on representing clustered states by

the binodal of a reference system. (However, a more complete study of all types of

state points and several potentials is necessary to make more definitive conclusions.)

The repulsion range is varied, both above and below the original value of 0.5, while
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maintaining the reduced second virial coefficient of the reference potential and cut-off

distance (i.e, the point of zero energy). As a result, the range of attraction z1 and

strength of repulsion λ also must be varied, which consequently varies the maximum

strength of repulsion Emax. Values of z1 and the corresponding value of Emax are shown

in Fig. 4.13a as a function of z2. Values of λ needed to maintain B∗2c and rc values are

plotted as a line in Fig. 4.13b over the same range of z2 values. Clearly, as the range

of repulsion decreases (increasing z2) both z1 and Emax decrease while λ increases.

Despite an increase in the relative strength of repulsion to attraction, the range of

attraction increases and the energy barrier decreases. The extreme case of this trend is

the absence of a stabilizing repulsive force, which under any solution conditions would

prevent stable clusters (of a preferred size) to be formed.

Requiring these new states to have identical values of B∗2c causes them to share

the same reference binodal, which can be used to understand the limits of interaction

conditions at which Fig. 4.8 is applicable to SALR systems. Each condition of z2

tested using MC simulations are represented by symbols on the λ line in Fig. 4.13b.

The states at each value of z2 are determined in the same manner as all previous

simulations. Each state point is found to be either a dispersed or clustered fluid, with

all remaining in the one phase region (i.e., the simulations converged) below a z2 of

roughly 2.5. Clustered states are found at long ranges of repulsion (z2 ≤ 0.9), which

transition to dispersed fluid states as the range is reduced. According to the changes

in z1 and Emax with increasing z2, this transition is not unexpected.

To test whether the changes in the interaction potential are a dominant contri-

bution to the transition from clustered to dispersed states at z2 ∼ 0.9 (for the HSDY1

potential at φ = 0.05 and T ∗ = 0.25), a simple cluster model is used to estimate

the configurational energy as a function of cluster size. Previous simulation studies

have identified conditions of stable cluster formation as those with a particular clus-

ter size that minimizes the configurational energy for a particular set of interaction

parameters.[32, 39] This work observed a single cluster, making the results pertinent

to the ground state (e.g., infinite dilution or zero temperature). As shown previously
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Figure 4.13: To maintain a constant value of B∗2c for HSDY1, the value of (a) z1 and
(b) λ shift as a function z2. The shift in the maximum energy is also
plotted in (a). Clustered (squares) and dispersed (diamonds) states at
(T ∗ = 0.25, φ = 0.05) are plotted in (b) relative to the conditions at
which spherical clusters with close packed structures can form clusters
as described in the text (dashed lines).

for an LJY potential,[32] both increasing and decreasing the strength and range of

repulsion too significantly will destabilize the formation of clusters of a preferred size.

When the strength and range of repulsion are too small, unstable aggregation arises

from an insufficient stabilizing force, while when too large, monomers are too stable to

initiate aggregation.

While previous work used a modified basin-hopping algorithm in MC simulations,[32]

this work simplifies the estimation using numerical calculations assuming a spherical

close-packed structure of individual clusters. Each subsequent size cluster is construct-

ing by adding one additional particle to the position in the crystal lattice that minimizes

the average distance to every other particle in the cluster, thereby maintaining the most

compact structure. These calculations using a face centered cubic (FCC) lattice were

shown in Chapter 1 to quantitatively replicate the more time-consuming simulation

120



results.

Simulation state points are compared to the model representation of cluster

stability as a function of these interaction parameters. The numerical model is used

with face centered, body centered and diamond cubic lattice structures (FCC, BCC,

DC, respectively), each with a different color dashed line and labeled and in Fig.

4.13b. The dotted lines demarcate the conditions where a minimum forms in the

configurational energy as a function of cluster size, labeled “clustered” at small values

of z2, from “dispersed” conditions where the cluster energy continually decreases with

increasing size. With a large enough strength and range of repulsion (large Emax and

small z2, respectively), the balance of attraction and repulsion is sufficient to stabilize

finite sized clusters. Conversely, above a z2 of about 0.9, repulsion is not strong or long-

range enough to make additional particles have a positive contribution to the cluster

energy. Note that the value of z2 distinguishing these two states will shift depending

on the original set of interaction parameters before varying z2.[32]

The transition from clustered states to dispersed fluid states corresponds with

a packing fraction model between the BCC and DC lattices. Due to differences in

the relative spacing of particles within a cluster, the transition point estimated by the

model shifts as a function of the lattice used. This finding is consistent with the in-

ternal density of clusters determined in Fig. 4.11b according to the average number

of neighbors separating dispersed and clustered fluids. Accounting only for internal

cluster energetics suggests that enthalpic contributions to the system free energy are

a major factor in forming clustered states. However, at finite temperatures and vol-

ume fractions, entropic contributions will only further destabilize cluster formation.

Therefore, the simple numerical model provides an efficient and accurate method of

identifying the (upper) limit of interaction parameters for which Fig. 4.8 can be used

to identify clustered states. Interestingly, even when the range of repulsion is so short

that a preferred cluster size cannot form, a unique phase will form in Fig. 4.8 between

the binodal lines of the reference potential and the full SALR potential. Thus, there

may be other interesting properties of SALR materials within this phase region, such
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Figure 4.14: The (a) magnitude of the IRO peak and (b) average number of neighbors
for clustered (squares) and dispersed (diamonds) fluids at varying values
of z2 (and 〈s〉) for the HSDY1 potential. Clustered and dispersed fluids
are distinguished in (a) by S(qc) = 2.7 (solid line) and in (b) by 〈N〉 =
2.4 (dashed line).

as the generalized corresponding states behavior shown here.

New states with varying range of repulsion also exhibit the characteristic values

found in the previous section to distinguish clustered and dispersed fluid states. Struc-

ture factors are calculated for each of the potentials shown in Fig. 4.12 corresponding

to the state points in Fig. 4.13. Each of the states produces an IRO peak even though

above a z2 ∼ 0.9 the states transition from clustered to dispersed fluids. This loss of

a preferred cluster size at large z2 corresponds with a drop in the magnitude of the

IRO peak below a value of about 2.7, as shown in Fig. 4.14a. The dispersed fluid

states at z2 = 1.5 are above this limit. However, the peak position has shifted to

smaller q-values and the magnitude of S(0) has increased, suggesting a shift towards

an attraction dominated microstructure approaching phase separation. The proposed

limit of an average coordination number of 2.4 or greater for clustered states also ap-

pears to be applicable for these same states with varying range of repulsion, shown in

Fig. 4.14b. Therefore, the semi-empirical observations of the IRO peak in the small

angle scattering exceeding ∼ 2.7 in magnitude and of the average coordination number
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exceeding 2.4 seem to be very robust signatures of a clustered fluid.

4.4 Conclusions

This chapter highlights the existence of a generalized corresponding states phase

diagram for a broad range of systems with physically meaningful SALR potentials. Four

distinct types of states are distinguished as dispersed fluid, clustered fluid, random

percolated, and cluster percolated states. The phase behavior of all SALR systems

studied collapses onto a single state diagram when normalized by the critical point

of an appropriately defined reference system, which interact by the excluded volume

and short range attraction portion of the corresponding SALR potential. Importantly,

the liquid state binodals for these reference potentials are nearly identical. Thus, this

work extends the extended law of corresponding states as proposed for systems with

excluded volume and short range attraction by Noro and Frenkel[33] to include this

new and technologically important type of system.

Using the corresponding states normalization, all four types of states formed in

SALR systems are found in distinct regions of the state diagram. Most importantly,

clustered fluids are shown to consistently form within the binodal of the reference

attractive system and in the one-phase region of the SALR system. This finding sup-

ports the notion that cluster fluids arise from the long-range repulsion frustrating what

otherwise would be a phase separated fluid. As calculations of the binodal for fluids

with attractive potentials are inexpensive, this corresponding state diagram is a very

efficient method for estimating the conditions that produce cluster states. Preliminary

evidence is also provided that this identification of clustered fluids is applicable to a

broad range of physically meaningful ranges of repulsion.

Three semi-empirical characteristics of cluster formation in fluids with SALR

interactions were identified by analyzing the solution structure. Expanding upon the

hypothesis in the previous chapter, clustered fluids are shown to consistently have a

large IRO peak magnitude S(qc) ≥ 2.7. Also, particles in a clustered state require

an average number of neighbors greater than 2.4, consistent with rigidity percolation.
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Finally, the local volume fraction of clusters in clustered fluid states is estimated to

be 0.38 ± 0.04, similar to literature results. These results provide several methods to

rapidly identify cluster formation by scattering and microscopy.
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[12] Chapela, G. A., del Ŕıo, F., Benavides, A. L., and Alejandre, J.

Discrete perturbation theory applied to Lennard-Jones and Yukawa potentials. J.

Chem. Phys. 133, 23 (Dec. 2010), 234107.

[13] Chen, S.-H., Broccio, M., Liu, Y., Fratini, E., and Baglioni, P. The

two-Yukawa model and its applications: the cases of charged proteins and copoly-

mer micellar solutions. J. Appl. Crystallogr. 40, s1 (Apr. 2007), s321–s326.

[14] Costa, D., Caccamo, C., Bomont, J.-M., and Bretonnet, J.-L. The-

oretical description of cluster formation in two-Yukawa competing fluids. Mol.

Phys. 109, 23-24 (2011), 2845–2853.

[15] Falus, P., Porcar, L., Fratini, E., Chen, W.-R., Faraone, A., Hong,

K., Baglioni, P., and Liu, Y. Distinguishing the monomer to cluster phase

transition in concentrated lysozyme solutions by studying the temperature depen-

dence of the short-time dynamics. J. Phys. Condens. Matter 24, 6 (Feb. 2012),

064114.

[16] Foffi, G., McCullagh, G., Lawlor, A., Zaccarelli, E., Dawson, K.,

Sciortino, F., Tartaglia, P., Pini, D., and Stell, G. Phase equilibria

126



and glass transition in colloidal systems with short-ranged attractive interactions:

Application to protein crystallization. Phys. Rev. E 65, 3 (Mar. 2002), 031407.

[17] Frenkel, D., and Smit, B. Understanding Molecular Simulations: From Al-

gorithms to Applications. Academic Press, 2002.
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[51] Valadez-Pérez, N. E., Castañeda Priego, R., and Liu, Y. Percolation

in colloidal systems with competing interactions: the role of long-range repulsion.

RSC Adv. 3 (2013), 25110.
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Castañeda Priego, R. Dynamical arrest in adhesive hard-sphere dispersions

driven by rigidity percolation. Phys. Rev. E 88, 6 (2013), 060302(R).

[53] Vidales, A., Benavides, A. L., and Gil-villegas, A. Perturbation theory

for mixtures of discrete potential fluids. Mol. Phys. 99, 9 (2001), 703–710.

[54] Wu, J., Liu, Y., Chen, W.-R., Cao, J., and Chen, S.-H. Structural arrest

transitions in fluids described by two Yukawa potentials. Phys. Rev. E 70, 5 (Nov.

2004), 3–6.

[55] Yearley, E. J., Godfrin, P. D., Perevozchikova, T., Zhang, H.,

Falus, P., Porcar, L., Nagao, M., Curtis, J., Gawande, P., Taing,

R., Zarraga, I. E., Wagner, N. J., and Liu, Y. Observation of small clus-

ter formation in concentrated monoclonal antibody solutions and its implications

to solution viscosity. Biophys. J. 106, 8 (2014), 1763–1770.

[56] Zarraga, I. E., Taing, R., Zarzar, J., Luoma, J., Hsiung, J., and Patel,

A. High Shear Rheology and Anisotropy in Concentrated Solutions of Monoclonal

Antibodies. J. Pharm. Sci. 102, 8 (2013), 2538–2549.

131



Chapter 5

A MODEL PROTEIN WITH COMPETING INTERACTIONS TO
STUDY THEIR EFFECT ON DYNAMICS AND VISCOSITY

5.1 Introduction

Colloidal theory and simulations provide a powerful framework for quantifying

the thermodynamic and kinetic features of complex materials. Thus far, they have

provided the means to gain a more fundamental understanding of intermediate range

order (IRO) and cluster formation, as well as some experimentally identifiable signa-

tures of cluster fluids. However, observing these features in experiments requires the

use of a material with appropriate chemistry to produce the competing inter-particle

potential. This connection between chemistry and interactions is portrayed in Fig. 1.1

as the foundation of engineering complex materials.

Developing a model system requires extensive characterization to identify mate-

rials that produce the desired effective interaction potential and can be manipulated by

readily accessible parameters (e.g., temperature, pressure, pH). Creating such an exper-

imental system will be discussed in Chapter 8 as a goal of future study, focused on iden-

tifying an ideal one-component system consisting of short-range attraction (SA) and

long-range repulsion (LR) to further explore cluster fluid properties. Fortunately, and

interestingly, SA and LR are common for protein solutions at low ionic strength. Previ-

ous studies have identified two readily available systems that interact by SALR interac-

tions: micron sized colloidal particles with a non-adsorbing depletant[19, 47, 76, 77, 85]

and the small globular protein lysozyme.[22, 23, 30, 53, 66, 83, 85] Clusters have

also been observed in systems of nanoparticles in polymer composites[54] and solu-

tions with polymer depletants[19, 76, 77, 85] as well as concentrated antibody protein
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formulations,[49, 94] proteins on surfaces[58] and membrane proteins.[56, 80] There-

fore, understanding the influence of clusters on solution properties will be beneficial to

a wide range of engineered materials.

In this chapter, lysozyme is used as a model system due to its availability,

stability and reproducible globular structure. Further, its natural chemical compo-

sition is similar to commercially relevant antibody proteins and produces an inher-

ent combination of attractive and repulsive forces (under the right solution condi-

tions) that are of particular interest in this work. Although heavily debated in early

studies,[30, 53, 66, 79, 85] lysozyme has been conclusively shown to form clusters at

high concentrations due to competing interactions at low ionic strength.[22, 53, 66]

However, not all globular proteins form clusters. As an example, Bovine Serum Al-

bumin (BSA) remains monomeric at low ionic strength, even at high concentrations,

due to a balance of interactions that strongly favors the electrostatic repulsion.[68] In

general, the use of globular proteins to study colloidal phase behavior has been success-

ful due to their compact shape that, in addition to their interactions, can be modeled

as spherically symmetric.[26, 53, 69, 89] As such, globular protein state diagrams can

be accurately represented from estimates of the strength and range of an isotropic

interaction potential.[1, 35, 39, 59, 69, 89]

Interestingly, solutions of lysozyme[23, 37] and monoclonal antibody (mAb)

formulations[24, 49, 63, 94] at high concentrations have been shown to produce very

large viscosities. For biopharmaceutical companies, the implications of such viscous

products may significantly increase operating expenses during manufacturing and pu-

rification and can invalidate certain methods of delivery.[41] However, studying mAbs

is difficult, in part, due to the convolution of their internal structural and dynamic

features with the inter-protein correlations of interest (though these will be addressed

in the following two chapters). As a result of its similarity in chemical composition

to mAbs, lysozyme is expected to semi-quantitatively represent the influence of inter-

actions on the properties of these proteins with more complex structures. The nearly

spherical tertiary structure of lysozyme (more accurately, an oblate ellipsoid) allows the
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use of colloidal models to distinguish the influence of its excluded volume, represented

by hard sphere (HS) models, from the additional interactions on the phase behavior

and material properties. Any deviations from well known theories for HS systems can

then be attributed to the more complex interaction potential. Therefore, this chap-

ter will focus on identifying structural states by comparing with the phase diagram

presented in the previous chapter[38] and developing a semi-quantitative model of the

macroscopic solution viscosity as a function of their interactions and corresponding

microscopic properties (details of which are provided in the Appendix).

Despite using this nearly ideal experimental system, the ability to model the con-

tributions of SALR interactions on the viscosity has several complications. As demon-

strated in the previous chapter, cluster formation typically occurs at intermediate vol-

ume fractions and modest strengths of attraction where many existing viscosity models

are inaccurate.[55] Further, the competing interactions can produce clusters that often

have elongated structures and strongly interact through charge repulsion.[19, 74, 75]

Therefore, the solution viscosity is expected to increase in excess of the contribution

from competing interactions between monomers as a result of the clusters they may

produce. Though the previous two chapters demonstrated that IRO is not a direct

indication of a preferred cluster size, it is a sign of strong particle localization. In

this chapter, this unique structure is shown to be responsible for the glassy behavior

observed previously in lysozyme.[23] The impact of IRO structures on the viscosity can

be captured by quantifying an effective cluster size representative of the locally dense

regions. The viscosity can then be shown to correlate well with the extracted cluster

size. A large portion of the work presented in this chapter is published research.[37]

5.2 Materials and Methods

5.2.1 Sample Preparation

Lysozyme samples ranging in concentration from 10 mg/mL (φ ≈ 0.008) to 480

mg/mL (φ ≈ 0.345) are prepared by dissolution of purified lyophilized protein in deu-

terium oxide without buffering agents. Lysozyme was purchased in the lyophilized state
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and then carefully purified to remove ion impurities and minimize the residual counter-

ion concentration. These efforts were necessary to enhance the resulting strength and

range of long-range repulsion to a value sufficient to study cluster formation.

Samples with a concentration less than 300 mg/mL were filtered through 0.22µm

filters, while higher concentrations required 0.45µm filters as these samples were too

viscous to filter through smaller pore sizes. High concentration samples (350 mg/mL)

were prepared at 50◦C to aid in dissolution during reconstitution due to their resulting

high viscosities. These samples were returned to 25◦C as soon as they were homog-

enized to minimize the rate of crystallization. Despite the purification process, the

highest concentration samples (481 mg/mL) were observed to eventually form crystals

after long incubation periods of about 12 hours. However, the repulsion sufficiently

stabilized the protein such that all samples remained fluid during the time frame of all

experiments and all experimental results were reproducible.

As a result of not incorporating buffering agents, the pH varies slightly as a

function of protein concentration. However, all samples maintain a pH of roughly 5

due to self buffering, ensuring that the surface consistently contains between 9 and

10 charges over the range of conditions studied.[3, 15] Further, any changes in the

effective protein interactions with solution conditions are explicitly accounted for by

fitting small angle neutron scattering data with integral equation theory using the

hard sphere double Yukawa (HSDY) potential,[51, 52] as described in Chapter 2 and

discussed in the next section.

Protein content was initially determined by the mass fraction of purified lyophilized

lysozyme in deuterium oxide, XL. The “dry” definition of lysozyme volume fraction

is calculated according to the specific volume, ν0, reported in literature (ν0 = 0.717

mL/g)[34] according to

φ =
XLν0

XLν0 + (1−XL)/ρD)
, (5.1)

where ρD is the density of D2O. For consistency with previous studies,[53, 66] all

calculations of the protein volume fraction in this chapter will be completed using this

definition unless explicitly noted otherwise. However, for comparison, recent work has
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Figure 5.1: Estimates of protein volume fraction, φ, as a function of lysozyme weight
fraction, XL, using definitions as discussed in the main text of a “hy-
drated” protein rhydr and “dry” protein with experimental intrinsic vol-
ume rdry, average crystal size ravg and hydrodynamic DLS size rDLS.

highlighted the sensitivity of including a hydration layer in the definition of volume

fraction on fitting protein viscosity to colloidal hard sphere models.[72] The “hydrated”

volume fraction, φhydr, calculated according to

φhydr =
XL(ν0 + δ/ρD)

XLν0 + (1−XL)/ρD
(5.2)

includes an effective additional specific mass of bound water per mass of lysozyme,

δ = 0.33 g/g.[32, 33] The dependence of φ and φhydr on XL (i.e., the dry and hydrated

definitions) are compared in Fig. 5.1. For perspective, two additional XL–φL relations

are also shown in Fig. 5.1 using values of ν0 = (4πr3)/(3Mw) (r is the radius and

Mw = 14.4 kDa). These two calculations of ν0 use the average lysozyme radius, ravg =

(abb)1/3, where a = 2.015 nm and b = 1.343 nm, and the hydrodynamic radius obtained

from DLS measurements, rDLS, in Eq. 5.1 (the dry-φ definition). The similarity

between the hydrated and DLS definitions suggests that bound water plays a role in the

hydrodynamic mobility of the protein. It also provides an upper limit of protein volume

fraction relative to the expectations from the average lysozyme size. Similarly, the dry

volume fraction is a lower limit, assuming no hydration or significant conformation
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change after dissolution. The influence of how φ is calculated on the accuracy of fitting

protein viscosity with colloidal models will be discussed later in the chapter.

In addition to a hydration layer on the protein surface, protein volume fractions

calculated according to the specific volume determined under dilute conditions can

become inaccurate due to non-ideal mixing at high protein concentration. Specifically,

if the partial specific volume of water or lysozyme deviates significantly from their

respective molar volumes (the difference being the excess partial volume), then the

actual volume would be different from the sum of both species’ molar volumes. Under

this scenario, the volume fraction of the protein solution calculated according to either

Eq. 5.1 or Eq. 5.2 would incorrectly represent the solution. However, within the range

of concentrations studied in this chapter, the excess partial volume of water is zero

and that of lysozyme is -0.045 mL/g,[81] which amounts to a maximum relative error

in the calculation of φ using Eq. 5.1 of about 6%. Therefore, this effect is minimal for

this study and the resulting state points (φ, T ) can be quantitatively compared with

the phase behavior determined in the previous chapter.

5.2.2 Small Angle Neutron and X-ray Scattering

Small angle neutron scattering (SANS) was performed to extract the effective

protein-protein interactions as a function of lysozyme concentration and temperature.

Though considered a model system, the interactions vary with temperature and con-

centration so they must be accounted for explicitly by fitting each state point. The

scattering intensity is the ensemble average of all configurations, which may be simpli-

fied when particles and interactions are spherically symmetric (i.e., there is no orien-

tational dependence on particle correlations). Under these circumstances, intra- and

inter-particle spatial correlations can be separated, resulting in the function for scat-

tering intensity I(q) = φV (∆ρ)2P (q)Seff (q), where the pre-factors are the volume

fraction, φ, particle volume, V , and scattering length density (SLD) difference, ∆ρ.[97]

The second to last term is the particle form factor, P (q), which represents its shape,
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and the last term is the inter-particle structure factor, Seff (q), which represents inter-

particle correlations. However, the lysozyme form factor is accurately represented by

an oblate ellipsoid,[87] which must be averaged over all angular orientations

P (q) = |F (q)|2 =

∫ 1

0

[
3
(
sin[qReff (x)]− qReff (x) cos[qReff (x)]

)
[qReff (x)]3

]2

dx, (5.3)

where Reff (x) = Rb

[
1 + x2((Ra/Rb)

2 − 1)
]1/2

and the major and minor axes of the

oblate ellipsoid are represented by Rb and Ra, respectively. As a result of lysozyme’s

non-spherical shape, the spherically symmetric representation of I(q) by Eq. 2.11 must

be corrected by implementing the decoupling approximation for the structure factor

Seff (q) = 1 + β(q)[S(q)− 1], (5.4)

where β(q) = |〈F (q)〉2|/〈|F (q)|2〉 and Seff (q) is the effective structure factor, which is

averaged over all angular orientations, causing the features of S(q) to be smeared.[25]

The same fundamental principles of scattering theory also apply to small angle

X-ray scattering (SAXS) experiments. Treating SAXS data is therefore accomplished

with the same functions discussed above with the only difference arising from the

contrast term, ∆ρ.[97] While the neutron SLD is a function of the atomic structure

and isotope, the X-ray SLD is directly related to the electron cloud density. Therefore,

while SANS is particularly sensitive to differences in hydrogen isotopes (i.e., H2O and

D2O), this difference will be minimal in SAXS experiments.

A low concentration sample (1wt%) was used as an accurate representation

of the protein form factor. SANS patterns were taken at 25◦C and 5◦C with little

difference observed between the two. An ellipsoidal form factor, averaged over all

angular orientations, was used to fit the data.[26, 53] The form factor was used to

extract an effective scattering length density contrast value (∆ρ) used to represent

the protein contrast in the dilute limit as well as the size of the major axis and the

ratio of the length of minor to major axes. The extracted sizes closely resembled

literature values for the ellipsoid axes (22.5 Åx 15.0 Åx 15.0 Å) representing the globular

shape of the protein[14] and theoretical estimates of its neutron SLD[42] based on its
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composition.[20] However, due to dissolution in D2O, labile hydrogens within lysozyme

will experience more significant H-D exchange at higher protein concentrations that

will reduce the neutron SLD contrast.[42, 86] Therefore, (∆ρ)2 is allowed to vary in

fits to all SANS spectra, but remained within a range of values consistent with about

16% of hydrogens being labile in lysozyme.[64]

Protein interactions dictate its solution structure, captured by the structure

factor as well as the resulting phase behavior. That protein interactions arise from

an anisotropic distribution of surface charges makes modeling these thermodynamic

features a significant challenge. Patchy colloidal models have been used to accurately

represent the resulting phase behavior in certain proteins.[39] However, such models are

impractical for understanding the effective interactions in protein solutions. Lysozyme

protein has been extensively studied and its phase behavior and solution structure have

been successfully modeled by effective isotropic interaction potentials.[17, 59, 89] More

recently, a complex combination of short-range attraction and long-range repulsion has

been demonstrated as the most accurate representation. While the most appropriate

functional form is debated in literature,[52, 84] previous work has successfully used both

a hard sphere double Yukawa (HSDY) potential[26, 53] and a 2α − α Leonard-Jones

plus Yukawa (LJY) potential[1, 22, 23] in modeling lysozyme solutions.

In this chapter, lysozyme interactions are represented by the HSDY pair-wise

potential. While fitting the data, z1 is fixed at 10.0, which is calculated by fitting a

Leonard-Jones interaction with an attractive Yukawa potential. This figure is close

to those reported in literature from fits to SAXS[88] and SANS[23, 26] data, produc-

ing a range of attraction only slightly longer than these previous fits. The repulsive

parameters, K2 and z2, are calculated using their relation to the ionic strength, IS,

and particle charge, zp, through the generalized one component model for electrostatic

interactions.[11] Due to effective purification during sample preparation, IS was directly

attributed to protein counter-ions and therefore a function only of concentration. Each

data set is fit allowing the parameters φ, ∆ρ, K1, and zp to vary, while restricting the

limits of φ and ∆ρ to well established values. The radial distribution function, g(r), is
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then calculated by its relationship with the structure factor, Eq. 2.2 in Chapter 2.

5.2.3 Simulation Protocol

Monte Carlo (MC) simulations[2, 31] are performed with HSDY interaction

parameters extracted from SANS experiments as discussed above. Simulations are im-

plemented by the procedure outlined in Chapter 2. Calculations of the thermodynamic

structural functions g(r) and S(q) using MC trajectories in this chapter are identical

to the previous two chapters. When using the parameters extracted from the two

most concentrated samples (for which the IET fitting procedure to SANS data could

converge) at 5◦C, the simulations showed a weak but continuous decrease in energy

with increasing number of attempted MC moves. Therefore, these simulations never

equilibrated, but the results are still provided to demonstrate the discrepancy with

equilibrium experimental data.

5.2.4 Neutron Spin Echo

The dynamics of concentrated protein solutions are probed by neutron spin echo

(NSE) experiments conducted on the IN-15 beam line at the Institute Laue-Langevin

in Grenoble, France. NSE is particularly suitable to the study of protein dynamics by

probing correlation times on the order of 100 ns over a range of lengthscales probed by

SANS. While some studies have suggested that internal protein motion can be observed

within these timescales, the dominant contribution to the intensity is diffusive motion

for these lysozyme samples.[13, 18, 82]

As discussed in Chapter 1, colloidal dynamics (including proteins) can be con-

sidered independent of solvent motion due to their disparate sizes. The timescale at

which colloidal motion becomes distinct from solvent fluctuations is specified by the

Brownian regime τ � τM , where τM = (mD0)/(kBT ) is the momentum relaxation time

(m is particle mass and D0 is the bare diffusion coefficient). Over these relatively long

times, the dynamics can be further separated into short and long time regimes. The
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latter is typically associated with large scale structural rearrangement of the disper-

sion, referred to as structural relaxation τI = r2/D0 where r is the particle radius.[61]

The short-time regime, on the other hand, is defined by τM � t � τI , to which NSE

is acutely sensitive.[61] Within this regime, particles remain localized such that the

equilibrium microstructure is relatively unperturbed. Data is obtained up to a 50 ns

time window for all lysozyme samples.

For these short correlation times, the intermediate scattering function (ISF),

FS(q, t)/FS(q, 0), probed directly by NSE is accurately represented by a single expo-

nential decay function as discussed in Chapter 2. The q-dependent effective short-time

collective diffusion coefficient, DC(q), is a reflection of the structure factor and the hy-

drodynamic function, H(q), according to DC(q) = D0H(q)/S(q).[7, 61] In the limit of

large q-values, S(q) = 1 and D0H(q) is equal to the short-time self-diffusion coefficient,

DS. The high-q limit is reached when q > qm, where qm is the location of the monomer

peak in S(q). However, while qm ∼ 0.2 Å−1 for lysozyme, NSE experiments were limited

to q < 0.16 Å−1 in order to maximize the range of solution conditions studied. De-

spite this apparent discrepancy, previous work has demonstrated that lysozyme short

time collective diffusion remains constant for q > 0.1 Å−1,[30, 66] allowing the high-q

limit of the data collected to remain an accurate representation of the self diffusion of

lysozyme.

In order to qualitatively estimate an effective dynamic cluster radius, an average

hydrodynamic radius, Rh, is estimated from DS as done previously[66] according to

Rh/R0 = (D0/DS)(µ/η′∞)C(φ), where D0 = kT/(6R0πµ) is the bare diffusion coeffi-

cient, R0 is the monomer radius, µ is the solvent viscosity, η′∞ is the high frequency

limit of the dynamic viscosity, and C(φ) is a correction function. Due to its small size,

experimentally obtaining the high frequency viscosity of lysozyme is impractical and is

thus represented by the hard sphere relations η′∞ = 1 + 2.5φ + 5.0023φ2 + 9.09φ3 and

C(φ) = 1 + 0.67φ.[6]
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5.2.5 Microrheology

Viscosity values are obtained for a wide range of lysozyme concentrations and

temperatures through pressure driven flow in a microcapillary. This technique mini-

mizes the necessary sample volume (on the order of 20µL per measurement) and avoids

air-water interfacial effects on rheological measurements that have been shown to have

a strong impact on the bulk rheology of protein solutions.[78] Glass blown microcapil-

lary tubes with a diameter of 25µm are used with measurements taken over a length

of 5mm, which is sufficiently far from the ends to avoid entrance and exit flow effects.

The steady shear viscosity, η, is calculated according to its relationship with pressure

drop, ∆P , and volumetric flow rate, Q, via the Hagen-Poiseuille equation describing

non-turbulent pressure driven flow in a tube by[28]

η =
πR4

t∆P

8QL
, (5.5)

where Rt and L are the radius and length of the tube, respectively. Viscosities are

obtained as a function of shear rate according to the Rabinowitsch equation, which

accounts for possible non-Newtonian flow behavior:

γ̇ =

(
3x+ 1

4x

)(
4Q

πR3
t

)
, (5.6)

where

x =
d ln

(
Rt

2
[−dP
dz

]
)

d ln
(

4Q
πR3

t

) . (5.7)

A more detailed discussion of the device is provided elsewhere.[44] While the range of

shear rates used for each sample is dictated by its viscosity at the given conditions,

shear rates ranged from 1 − 10000s−1. Interestingly, all samples exhibited Newtonian

behavior over the entire range of shear rates under all conditions. Thus, all data points

remained within the low-shear plateau and the average value over all shear rates was

used as the zero shear viscosity for each solution condition.

5.3 Low Concentration Structure and Dynamics

Gaining an accurate understanding of the fundamental structure of an individual

lysozyme protein is imperative to the eventual study of effective interactions and their
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Figure 5.2: Scattering intensities (with arbitrary units, a.u.) obtained by SAXS are
plotted for several lysozyme samples. The effect of solvent conditions
are compared for samples with 0 mg/mL (open symbols) and 8.7 mg/mL
(filled symbols) sodium chloride at a protein concentration of 4 mg/mL
in D2O (triangles) and H2O (squares). A sample at 1 mg/mL (circles)
in H2O is provided to represent the form factor.

subsequent implications to the dynamics, structure, and viscosity. For example, the

bare diffusion, by which all self and collective diffusion coefficients at larger protein

concentrations are normalized, is sensitive to the effective radius of the “particle”.

Thus, any inaccuracies in representing the fundamental shape are compounded in later

analysis. To mitigate the influence of interactions and hydrodynamics on extracting

effective lysozyme structure parameters, it is first studied in the dilute limit.

Low concentration lysozyme samples are studied using SAXS due to the signifi-

cantly higher intensity compared to SANS. Further, due to the nearly identical contrast

between H2O and D2O in SAXS experiments, the effect of altering the solvent on the

tertiary structure of lysozyme (if any) in future SANS studies can be tested. A com-

parison of the 1-D SAXS scattering patterns is shown in Fig. 5.2 for several solution

conditions. Although the remainder of this chapter will deal with salt free samples, the

influence of very low concentrations of sodium chloride (NaCl) are presented to indicate

the importance of purifying the stock protein material to minimize excess counter-ions.

An immediately observable trend in Fig. 5.2 is the increase in low-q scattering
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Table 5.1: Radii of gyration extracted from SAXS experiments at low lysozyme con-
centration without salt for both H2O and D2O as solvents.

Solvent [NaCl] (mg/mL) Rg (nm)
H2O (1 mg/mL) 0.0 1.490± 0.0467
H2O (1 mg/mL) 8.7 1.700± 0.0503
H2O (4 mg/mL) 8.7 1.455± 0.0103
D2O (4 mg/mL) 8.7 1.435± 0.0133

by the addition of 8.7 mg/mL NaCl (∼ 150 mM), even at protein concentrations as

low as 1 mg/mL. This is a well known result of screening the electrostatic repulsion

stabilizing the proteins, causing an overall increase in attractive strength. Interestingly,

for the samples without salt the repulsive strength is sufficiently strong and long range

to produce a peak in the scattering intensity at a protein concentration of only 4

mg/mL. From the low-q regime of the scattering data, a Guinier analysis can be used

to extract a radius of gyration, Rg, of the protein. The Guinier approximation simply

expands the intra-particle density correlations as a McLaurin series, retaining only the

first term, resulting in Rg = [−3d(ln[I(q)])
d(q2)

]1/2.[97] The Guinier analysis is only accurate

for q < 1.0/Rg and solutions free of interactions, which precludes the use of this

method from estimating an effective Rg from the samples at 4 mg/mL without salt.

The resulting values of Rg are provided in Table 5.1 for samples with salt.

While the crystal and fluid structures of lysozyme are not expected to be iden-

tical, they should be similar due to the compact and stable protein structure. For

comparison with the extracted values of Rg in Table 5.1, the effective radius from

calculations of the dry volume (crystal structure) of lysozyme is 1.54 nm. The solu-

tion condition expected to provide the most representative results for an individual

monomer is the 1 mg/mL sample without salt, for which the Rg is within experimental

uncertainty of the crystal structure size. Adding salt appears to have a noticeable

effect on Rg at 1 mg/mL. As with the 1 mg/mL and no salt sample, those with salt

at 4 mg/mL have a similar radius of gyration to the crystal structure, though it may
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Figure 5.3: Structures factors of low concentration lysozyme samples in H2O (open
symbols) and D2O (half-filled symbols) are compared at 25◦C for several
protein concentrations.

be slightly lower in magnitude as a result of protein interactions (due to screening of

repulsion by the added salt). This suggests that lysozyme is quite stable and compact

at low concentrations in both solvents.

Returning exclusively to samples without salt, the influence of solvent (either

H2O or D2O) on the effective lysozyme interactions can be explored by observing the

subsequent changes in solution scattering. At increasingly larger protein concentration,

effective interactions will contribute more significantly to the solution microstructure

and therefore, are more likely to identify any differences between the two solvents.

Structure factors are shown in Fig. 5.3 for lysozyme solutions at slightly elevated pro-

tein concentrations, from 4 mg/mL up to 50 mg/mL. Clearly, interactions become a

more significant contribution to the scattering intensity with increasing protein con-

centration in both solvents, as indicated by the shift in S(q) below a value of one.

Interestingly, the S(q) of samples in either solvent at 4 mg/mL and 20 mg/mL in Fig.

5.3 overlap nearly perfectly. Despite the fact that lysozyme solubility shifts by about

7◦C in D2O relative to H2O,[40] the similarity of the structure factors in both solvents

at these low concentrations (≤ 20 mg/mL) suggests that the effective interactions are

relatively insensitive to the change in solvent.
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Figure 5.4: The structure factor of a 50 mg/mL lysozyme sample at 25◦C in H2O
and D2O obtained by SAXS and SANS, respectively, are plotted together
to demonstrate the similarity of results in both solvents and by both
experimental techniques.

In contrast, the different solvents are expected to produce differences in solu-

tion structure at even higher protein concentrations (> 50 mg/mL) as suggested by

solubility differences.[40] The decrease in low-q intensity of S(q) with increasing con-

centration in Fig. 5.3 signifies an increase in the effective magnitude of repulsive forces

between proteins. This repulsion may be screening shorter range attractive forces that

likely differ in strength between H2O and D2O. As a result, at high concentrations, the

average protein spacing will be small and proteins will sample different configurations

leading to different scattering spectra.

For the remainder of this chapter, in which higher concentration samples will be

of interest, structural functions will be obtained using SANS rather than SAXS. There-

fore, the structure factors obtained from SAXS and SANS for an identical sample will

be used to demonstrate differences in the q-dependence between techniques. (Theoret-

ically, the scattering obtained by both techniques should have identical q-dependence,

but will differ experimentally due to differences in contrast and resolution.) Shown in

Fig. 5.4 are results of S(q) for a 50 mg/mL lysozyme sample (without salt) obtained

by SAXS and SANS. The sample used in SAXS is dissolved in H2O while D2O is used
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for SANS, but it was just demonstrated that the results are independent of the sol-

vent at these protein concentrations. Similarly, the structure factors determined using

X-rays and neutrons are within experimental error of each other over the full q-range.

However, the error bars in the low-q and especially the high-q limits are significantly

smaller in the SANS data. This is due, in part, to the larger neutron SLD contrast

by using D2O relative to the X-ray contrast using H2O. This is most noticeable by

the peak that forms in the SANS data in Fig. 5.4 at q ∼ 0.09 Å−1 that cannot be

resolved in the SAXS data. Although longer exposure times using SAXS would reduce

the error bars, proteins in solution are vulnerable to radiation damage, especially at

high concentrations, which could produce results that are unrepresentative of equilib-

rium solution behavior. As a result, the remainder of the study will utilize the minimal

influence from using D2O as a solvent and rely on SANS measurements to observe IRO

and monomer peaks at intermediate to high q-values with sufficiently small error bars.

5.4 High Concentration Interactions, Structure and Dynamics

5.4.1 SANS Experiments and Analysis

The primary objective of this chapter is to extract a quantitative measure of

the effective inter-protein interactions under the conditions of interest. All subsequent

trends in the dynamics and viscosity as lysozyme solutions become more concentrated

can be understood in terms of these fundamental forces. For this reason, interaction

potentials will be quantified by means of SANS experiments. Specifically, integral

equation theory will be used to extract the range and strength of interactions in an

HSDY potential. A representative set of SANS data for lysozyme samples at three

select volume fractions and temperatures are plotted together in Fig. 5.5. All data

sets are reproducible upon changing temperature and dilution, indicating that all are

in equilibrium. Each data set is provided with their corresponding best fits using the

HSDY potential with a thermodynamically self-consistent closure[46] combined with

the OZ equation. All extracted HSDY parameters are provided in Table 5.2, including
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Table 5.2: A compilation of parameters determined from fits to the SANS data at sev-
eral values of φ and T , including the fitted volume fraction (φfit), strength
of attraction and repulsion (K1 and K2, respectively), range of attraction
and repulsion (z1 and z2, respectively), and neutron SLD contrast (∆ρ)2.
The Baxter parameter (τB), representing the effective strength of attrac-
tion, calculated from each combination of potential parameters is provided
for each solution condition (to be discussed later).

T = 5◦C
φ φfit K1 K2 z1 z2 charge (∆ρ)2(x106) τB

0.0399 0.0398 6.1837 -4.031 10 1.2238 6.6644 2.9888 0.7627
0.0801 0.0773 7.2 -4.0715 10 1.9061 8 2.792 0.2454
0.1215 0.1263 6.5301 -3.3148 10 2.5337 8.1884 2.6507 0.1901
0.1646 0.1432 6.4666 -3.2868 10 2.7839 8.5537 2.8467 0.1918
0.2070 0.2017 6.3 -3.0811 10 3.6117 9.523 2.855 0.1665
0.2509 0.2388 6.05 -3.0033 10 4.1718 10.23 2.835 0.1842

T = 25◦C
φ φfit K1 K2 z1 z2 charge (∆ρ)2(x106) τB

0.0399 0.0398 6.0291 -4.2743 10 1.2473 6.9176 2.9971 1.3479
0.0800 0.0765 5.7 -3.8857 10 1.8616 7.72 2.87 1.0865
0.1215 0.1286 5.8446 -3.525 10 2.6287 8.6336 2.634 0.4994
0.1646 0.1472 5.8511 -3.5588 10 2.9338 9.1983 2.8497 0.5030
0.2070 0.2099 5.743 -3.3574 10 3.8785 10.441 2.887 0.3955
0.2509 0.24 5.587 -3.3283 10 4.3792 11.2 2.82 0.4284

T = 50◦C
φ φfit K1 K2 z1 z2 charge (∆ρ)2(x106) τB

0.0399 0.0401 6.0136 -4.4161 10 1.2656 7.0734 2.9278 1.7420
0.0800 0.074 5.206 -3.9707 10 1.8335 7.758 2.788 2.7741
0.1215 0.1262 5.4706 -3.8298 10 2.6729 9.1199 2.5194 1.2629
0.1646 0.1551 6.1753 -4.3252 10 3.3055 10.9763 2.7716 0.9561
0.2070 0.2091 5.2251 -3.7215 10 4.0331 11.35 2.8166 1.2886
0.2509 0.2437 4.61 -3.2208 10 4.3814 10.99 2.8 1.3278
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Figure 5.5: The absolute scattering intensity, I(q), is plotted for several 1-D SANS
profiles (symbols) relative to the best fits (lines) using the HSDY poten-
tial at 5◦C (blue), 25◦C (green) and 50◦C (red). All data sets except
that at (φ = 0.0399, T = 25◦C) are shifted for clarity.

the contrast terms, which shift due to the exchange of labile protons on the protein

surface with deuterons (or “heavy protons”) in equilibrium with D2O in the solvent.

All of the values of neutron SLD contrast between the solvent and lysozyme

shown in Table 5.2 are plotted in Fig. 5.6 as a function of protein volume fraction.

Combining theoretical values of the neutron SLD for amino acids[42] and the well

known primary sequence of lysozyme[20] with experimental observation of the most

easily exchanged protons in the lysozyme structure,[64] an estimate of the expected

shift in the SLD contrast can be calculated as a function of the fraction of exchange-

able protons. The result of this calculation is shown as the line in Fig. 5.6, which

demonstrates that the values of (∆ρ)2 corresponding to the expected extent of H-D ion

exchange of 16% by lysozyme[64] corresponds well with the values extracted by fitting

the SANS data. Although the calculation is not a perfect representation of the fitted

values, the qualitative correspondence suggests that the exchange of labile protons on
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Figure 5.6: The neutron SLD contrast determined from fits to the SANS data is
plotted as a function of fitted lysozyme volume fraction for T = 5◦C
(blue), T = 25◦C (green) and T = 50◦C (red). Estimated values (line)
assuming roughly 16% of hydrogen-deuterium exchange are provided for
comparison.

lysozyme is accounted for in the fits to SANS data.

It is worth noting that, while IET calculations have converged for all the best

fit lines provided in Fig. 5.5, the fits become slightly less accurate at φ = 0.2509. At

this large volume fraction, the accuracy of IET in representing the solution structure

diminishes due to several assumptions built into the framework. In part, this is caused

by neglecting multi-body interaction terms of higher order than the two-body potential

considered here. Additionally, the non-spherical shape (and likely anisotropic interac-

tions) will have a more significant influence on the solution structure as the density

increases and proteins are more closely spaced. These effects are most noticeable for

the two high-φ samples at 5◦C in Fig. 5.5.

Normalizing the scattering patterns by the lysozyme form factor (and other

pre-factors) allows the structure factors to be extracted, which are shown in Fig. 5.7.

Also included with the data are calculations of S(q) from IET and MC simulations

using the parameters extracted from fitting I(q). The inaccuracy of the IET fits to

SANS intensity profiles at high volume fraction and low temperature is also apparent
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Figure 5.7: Structure factors, S(q), obtained by normalizing experimental I(q) data
(filled symbols) are plotted relative to best fits (lines) and MC simulation
results using the extracted potential parameters (open symbols) for pro-
tein volume fractions labeled at the left of each row at 5◦C (left column),
25◦C (middle column) and 50◦C (right column).
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when comparing the structure factor data and best fit lines in Fig. 5.7. Similarly,

the simulation results show large differences under these same conditions at low-q as

a result of these simulations not converging. However, under all other conditions,

the data and both analytical methods of estimating S(q) are in excellent agreement.

In particular, the IRO peak discussed in the previous two chapters is prevalent over

a broad range of T and φ and can be accurately captured by the HSDY potential.

Although monomer peaks are noisy at q ∼ 0.25 Å−1 due to the anisotropic shape of

lysozyme[26] and the large incoherent background in aqueous solution, the low-q region

is well resolved, allowing for the distinct trends in S(q) with solution conditions to be

explored.

The position and magnitude of an IRO peak, if present in S(q), can be used

to discern the extent of longer range order as a result of the competing interactions.

Interestingly, lysozyme at φ = 0.0399 produces an IRO peak at all temperatures.

Further, an IRO peak is present at 5◦C for samples of all volume fractions. At higher φ,

the magnitude of the peak weakens with increasing temperature, which in the extreme

case becomes a shoulder at 25◦C and eventually disappears at 50◦C. The higher

the concentration, the more rapidly the samples lose their IRO peak with increasing

temperature. However, the presence of these peaks is not a direct indication of a

cluster fluid, though it suggests clusters are present to some extent.[36] Compared to

previous simulations of HSDY systems, the magnitude of the IRO peaks here are too

weak to suggest the presence of clusters of a preferred size.[38] Further, the decreasing

IRO peak magnitude with volume fraction at 5◦C indicates that these states remain

outside of the generalized phase space of clustered fluids.[36] Still, these results suggest

that clusters may be prevalent at these low temperatures across all volume fractions.

As shown in the previous two chapters, MC simulations are a powerful tool

to extract detailed microstructural information for a given potential if the interaction

parameters are known. Therefore, in addition to the qualitative features interpreted

from trends in the experimental S(q), the parameters determined from fitting these

functions, provided in Table 5.2, can be used in MC simulations to explicitly extract
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Figure 5.8: Interaction potentials extracted from best fits to SANS data at (a) 5◦C,
(b) 25◦C and (c) 50◦C are plotted for a range of protein volume fractions.

a quantitative measure of the extent of clustering. The resulting potentials from each

parameter sets are shown in Fig. 5.8 as a function of temperature and volume fraction.

Trends in the potentials indicate that the strength and range of the repulsive component

is independent of temperature, but the overall strength of repulsion decreases with

increasing φ. Simultaneously, the strength of attraction becomes significantly stronger

with decreasing temperature and increasing concentration, though the attractive force

at contact is nearly φ-independent.

Using the corresponding simulation trajectories, the ensemble average cluster

size distributions, N(s), are calculated and plotted together in Fig. 5.9 for four

protein volume fractions at three temperatures each. Samples at low concentration

(φ = 0.0399) have a small extent of cluster formation, which are present up to a size of

about 6 particles at all three temperatures, yet the corresponding S(q) show that these

clusters have relatively strong correlations with each other and monomers on an IRO

lengthscale. With an increase in volume fraction to φ = 0.1646, cluster sizes approach-

ing hundreds of particles become prevalent, albeit to a minimal extent. However, a

strong temperature dependence can be seen as expected from the difference in the cor-

responding interaction potentials. Further increase of the volume fraction causes the

microstructure to become percolated at low temperatures, as indicated by the peak

at very large cluster sizes (s ≈ 2000) for samples at φ = 0.2070 and φ = 0.2509. At
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Figure 5.9: Cluster size distributions, N(s), determined from MC simulations are
plotted as a function of cluster size, s, at 5◦C (blue circles), 25◦C (green
triangles) and 50◦C (red squares) for four volume fractions labeled in
each panel. The lines are best fits of N(s) using a Weibull distribution
function discussed in the text.

T = 50◦C, the solution structure is not percolated, but the trend is continued in that

the extent of cluster formation and the average size is enhanced at higher concentration.

The decrease in monomer content and large extent of cluster formation with

increasing φ and decreasing T is expected to have a large influence on the solution

viscosity. Similarly, the association of clusters at even higher protein concentrations

into large scale structures and even percolated clusters will also influence the viscosity.

All of the unpercolated cluster size distributions are found to be accurately

represented by a Weibull distribution. By its statistical derivation, the Weibull function

accounts for a random association of entities and has therefore previously been shown
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to represent particle size distributions in particulate systems. The functional form is

p(s; k, λ) =
k

λ

(s− s0

λ

)k−1

exp

[
−
(s− s0

λ

)k]
, (5.8)

where s0 is an offset term since the smallest cluster is a monomer (s = 1), λ determines

the magnitude of the distribution and can therefore be associated with a strength of

association, and k influences the shape of p(s) that can physically be associated with a

change in association rate between clusters. A global fit is performed on all distributions

shown in Fig 5.9, resulting in a constant offset value of s0 = 0.463 ± 0.005 while the

other two terms varied with T and φ according to:

λ = exp
[
− 0.552 + 7.65φ+ (88.34− 1.52T )φ2

]
k =

1.273

1 + exp
[
(83.05− 1.35T )(φ− 0.156− 0.001T )

] , (5.9)

where T is in units of ◦C. Percolated states, shown in Fig. 5.9 for state points at 5◦C

and 25◦C for φ = 0.2070 and φ = 0.2509, are poorly fit by Eq. 5.8 due to the formation

of a system spanning network that can no longer be described as a random association

of entities (on which the Weibull distribution is based). However, including these data

sets in a global fit can provide qualitative trends in the corresponding parameters.

The shift in λ with φ and T suggests that proteins associate more strongly with larger

φ and lower T , in agreement with changes in the interaction potentials with these

same parameters in Fig. 5.8. The decrease in k with increasing φ suggests that the

association of larger clusters becomes increasingly slower. Under these conditions the

fits are poor, but the qualitative trend in k corresponds well with the reduced mobility

of extended networks expected with the onset of percolation, despite the inability to

quantitatively capture the resulting cluster size distribution.

In an effort to generalize the behavior of lysozyme solutions over a broad range

of solution conditions, empirical relationships can be used to identify trends in the

fitted parameters extracted from Fig. 5.5. The significant set of state points as shown

in Table 5.2 can be used to extract an accurate dependence on both T and φ. These

will be useful for the purpose of estimating the protein dynamics and solution viscosity
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later in the chapter. Each of the parameters provided in Table 5.2 explicitly captures

the influence of temperature and protein concentration, which can be more readily

visualized in Fig. 5.10 for the interaction parameters K1, K2 and z2. Immediate

features of each parameter with respect to T and φ are noticeable. In particular, the

magnitude and (linear) rate of change of z2 with protein volume fraction is independent

of temperature. However, the strengths of attraction and repulsion decrease with

increasing protein concentration at each temperature (notice the sign of K2). Further,

while the magnitude of attraction increases with decreasing temperature, repulsion

becomes weaker. Each of these variations with φ and T is captured by fitting with the

following empirical functions:

K1(5◦C) = 7.48− 5.91φ

K1(25◦C) = 5.87− 0.778φ

K1(50◦C) = 5.90− 3.40φ

K2(5◦C) = −2.39φ−0.174

K2(25◦C) = −2.71φ−0.140

K2(50◦C) = −3.08φ−0.113

z2 = 0.708 + 14.62φ,

(5.10)

which are shown by the lines in Fig. 5.10.

As discussed in Chapter 1, the protein chemistry is responsible for the resulting

trends in interaction parameters shown in Fig. 5.10. A decrease in K1 with increasing

concentration correlates with an increase in ionic strength and a subsequent decrease

in repulsive strength, which suggests a possible contribution from electrostatics. One

explanation is a heterogeneous surface charge distribution that could produce dipoles.

This type of interaction is inherently orientation dependent, but may still be captured

by these spherically isotropic HSDY potentials. However, the difference in trends of K1

and K2 and the well known inclusion of non-polar residues on the lysozyme surface in-

dicates that hydrophobic forces also contribute to the total attractive strength. Again,

since hydrophobic residues exist in patches, these forces require specific orientations of
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Figure 5.10: Empirical fits (lines) to the volume fraction dependence of the HSDY
parameters (symbols) for (a) attraction strength, K1, (b) repulsion
strength, K2 and (c) repulsion range, z2 extracted from fits to SANS
data.

two adjacent proteins.[45] As protein concentration increases, the ellipsoidal shape of

lysozyme may restrict rearrangement to achieve the necessary two-body configuration.

Thus, if the forces depend strongly on orientation, the net effective isotropic attractive

strength would likely decrease with concentration.

An additional interesting observation is the difference in temperature depen-

dence of K2 and z2, which both depend on the ionic strength. By implementing

the generalized one-component model,[11] K2 and z2 can be used to calculate the

corresponding ionic strength of lysozyme,[37] which increases from about 0.02 M at

φ = 0.0399 to about 0.2 M at φ = 0.2509. Over the same conditions, the molarity of

lysozyme is roughly an order of magnitude lower. Therefore, association of counter-ions

with the protein surface will cause the ionic strength in solution to decrease very little,

but could cause the surface charge to change significantly. Equilibrium concentrations

of counter-ions can be used to estimate surface association in a similar fashion to the

Henderson-Hasselbalch equation[43]

pC = pKa+ log

(
[R−]

[RC]

)
, (5.11)

where RC and R− represent a residue in the associated and dissociated state, respec-

tively, C+ represents a counter-ion (pC = − log
(
[C+]

)
), and the brackets denote the
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molar concentration. Thus, an increase in the concentration of counter-ions will drive

re-association of counter-ions with surface residues on lysozyme. However, previous

work using Debye-Huckel theory has demonstrated that the dissociation constants of

several amino acids are quite sensitive within this regime of ionic strengths.[60] In par-

ticular, the pKa values decrease with increasing ionic strength and temperature. The

consequence is an increase in surface charge (i.e., repulsion strength, K2) with increas-

ing temperature as qualitatively observed in Fig. 5.10. In contrast, the pKa values

decrease by no more than 10% with increasing ionic strength (i.e., pC),[60] while pC

itself increases roughly an order of magnitude. Thus, K2 still decreases with increasing

protein volume fraction.

5.4.2 NSE Experiments and Analysis

In addition to the change in protein interactions and solution structure with

sample conditions, the dynamics, which will also be intricately related to the interac-

tions, will have a strong influence on the material properties. However, a complication

in dealing with SALR systems is the significant polydispersity of aggregate species

(i.e., cluster sizes) that may contribute to the average dynamic correlations. Such a

system can be represented by a stretched exponential to represent the spectrum of re-

laxation times associated with each cluster size, which is well understood for polymers

above the glass transition temperature[4] and colloidal solutions approaching the gel

transition.[65, 95] Here, the mobility of lysozyme in solution is treated in two ways

to physically represent the influence of N(s) on the dynamics. The dynamic data ob-

tained by NSE experiments are treated with the use of a single exponential to extract

a single effective mobility representative of the total system and with a double expo-

nential to quantify potentially two distinct timescales of motion – those of monomers

and clusters.

A characteristic set of self-intermediate scattering functions obtained from NSE

for a sample at φ = 0.2981 and T = 25◦C are plotted in Fig. 5.11 with their corre-

sponding fits to a single exponential decay function at five q-values. Fits are restricted
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to the first 25 ns to remain within the short time limit, beyond which the data do

appear to deviate slightly from the linear trend on the semi-log scale. Such a deviation

is consistent with the presence of additional slower species, to be discussed later. From

the single exponential fits, the collective diffusion coefficients are obtained, which are

plotted in Fig. 5.12 as a function of q-value for most of the sample conditions studied.

As outlined in previous work,[66] the high-q limiting values of DC(q) are representative

of the self-diffusion coefficients, which are obtained using a linear fit over an appropri-

ate q-range. A sample at φ = 0.0077, not shown in Fig. 5.12, is used to determine the

bare diffusion coefficient by which the results at higher concentrations are normalized.

The normalized short-time self diffusion coefficients, DS/D0, are plotted in Fig.

5.13a as a function of volume fraction at 5◦C, 25◦C and 50◦C. Also provided for

comparison are trends determined by theoretical calculations of HS[50] and charged

sphere (CS)[7, 9, 12] systems. A clear discrepancy arises at larger volume fractions

between HS and CS predictions and the lysozyme data, as expected, due to the complex

interactions between proteins. Note the log scale in Fig. 5.13a, as the decrease in

protein diffusion with increasing concentration is significant. The data were fit to an

Figure 5.11: The ISF (symbols) at several q-values are shown for a lysozyme sample
at φ = 0.2981 and T = 25◦C with the best fits (lines) using a single
exponential function up to only 25 ns to remain within the short-time
limit.
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Figure 5.12: The q-dependence of the collective diffusion coefficient, extracted from
fits to the ISF obtained by NSE, is plotted for several lysozyme samples
at large volume fractions for 5◦C, 25◦C and 50◦C. The lines represent
the average value determined in the high-q asymptotic limit to estimate
DS/D0.

empirical model with the functional form of a sigmoidal shape logistic function

DS

D0

=
A

1 + exp
[
k(φ− φcrit)

] , (5.12)

where T is the temperature in ◦C, on which the remaining three parameters are lin-

early dependent: A = 1.076 + 0.0022T , k = 19.39 − 0.115T , φcrit = 0.129 − 0.0001T .

The parameter φcrit indicates the volume fraction at which diffusion begins to decline

significantly, which may be used as an approximate indicator of the onset of cluster

formation. Similarly, k dictates the decrease in mobility with increasing volume frac-

tion. By analogy with the Fermi-Dirac distribution, k can be related to the energy

state of the cluster size/structure associated with the diffusion coefficient produced at

a particular volume fraction. For example, the larger value of k at lower temperature

could be directly related to a larger cluster size or a larger energy barrier that con-

fines individual particles within a cluster longer. However, future work is required to

uncover a more rigorous relation between these parameters and cluster properties.

The manifestation of the competing interactions is more clearly demonstrated

by the calculated effective hydrodynamic radius, plotted in Fig. 5.13b. With increasing
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Figure 5.13: (a) Short-time self diffusion coefficients (symbols) extracted from the
high-q asymptotic limit shown in Fig. 5.12 are plotted relative to HS
(solid line) and CS (dotted line) estimates as well as empirical fits
(dashed lines). (b) Effective hydrodynamic radii, Rh/R0, estimated
from values of DS/D0 are plotted as a function of φ for each of the
three temperatures studied.

volume fraction, the size of aggregates increases rapidly and even appears to diverge

at 5◦C. While this calculation assumes clusters are spheres and ignores the effect

of viscosity on diffusion, it indicates that clusters become dominating features in the

solution microstructure above a volume fraction of about 0.2. Therefore, the reduced

dynamics from cluster formation and their corresponding interactions are also expected

to have an impact on the viscosity.

Considering that SANS results and corresponding MC simulations suggest sig-

nificant clustering in these samples, especially at low temperature and high volume

fraction, the dynamic corollary may provide additional information regarding the mo-

bility of said clusters. Rather than restricting the fits of the ISF to the first 25 ns, the

use of a double exponential fit over the entire 50 ns obtained from NSE experiments

may yield insight into the extent of clusters and their average hydrodynamic size. The

functional form of the ISF is therefore represented as

FS(q, t)

FS(q, 0)
= (1−XC) exp[−Dmon

C (q)tq2] +XC exp[−Dclus
C (q)tq2], (5.13)

where XC is the weighting function of clusters discussed in more detail in the Ap-

pendix, and Dmon
C (q) and Dclus

C (q) are the effective q-dependent monomer and cluster
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Figure 5.14: The experimental ISF (symbols) of lysozyme samples at several con-
ditions and q-values are plotted with best fits (lines) using a double
exponential function over the full correlation time range up to 50 ns.

collective diffusion coefficients, respectively. The short-time self diffusion coefficients

corresponding to Dmon
C (q) and Dclus

C (q) will be determined from the high-q asymptotic

limit, in an identical fashion to the single exponential fits, and will be represented by

Dmon and Dclus, respectively, shown in Fig. 5.15.

If rescaled appropriately, the drop in diffusivity can provide an estimate of the

effective cluster size as a function of volume fraction.[66] Considering the short time

limit of a lysozyme monomer is about 25 ns, fits of the full 50 ns in the ISF will yield

a second set of q-dependent diffusion coefficients that represent larger structures with

slower relaxation times. However, cluster size distributions in SALR systems are known

to be highly polydisperse, with each cluster size likely having a different diffusion coef-

ficient. As a result, the extracted “cluster” diffusivity by a double exponential will be
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a number average value from the full distribution of cluster sizes in solution, assum-

ing the lifetime of clusters is sufficiently longer than the time window. Therefore, the

reduced short-time diffusivity with increasing concentration and reduced temperature

corresponds to an increase in the number average cluster size in solution. Though these

clusters maintain a lifetime of at least 50 ns, they are expected to remain dynamic in

nature over longer timescales.

All three parameters determined from the double exponential fits are provided

in Fig. 5.15, where Dmon and Dclus are normalized by the bare diffusion coefficient. The

results are plotted as a function of protein volume fraction at each of the three tem-

peratures studied. Interestingly, the monomer diffusivity at 25◦C and 50◦C appears to

decrease drastically at φ ∼ 0.15 before apparently reaching a high-φ plateau. However,

whether the apparent plateau in Dmon/D0 at each temperature is real or an artifact

of the fitting is uncertain due to the small population of monomers (XC ≈ 1) at these

large volume fractions. The increasingly dominant contribution from cluster mobility

to the NSE data is expected when compared with SANS and MC simulation results.

The short-time cluster diffusion coefficient decreases drastically with φ and in general

decreases at all volume fractions with decreasing temperature, which corresponds with

the stronger attractive interactions extracted from SANS data.

Figure 5.15: Empirical fits (lines) to the volume fraction dependence of the nor-
malized (a) monomer and (b) cluster diffusion coefficients and (c) the
scaling factor of clusters (symbols) determined from the high-q asymp-
totic limit of each parameter extracted from fits to NSE data.
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In order to capture the general trends observed in Fig. 5.15 for future estimates

of solution viscosity, much as the interaction parameters were in Fig. 5.10, the dy-

namic parameters are fit with empirical relations. The resulting functional form(s) for

Dmon/D0 is

Dmon/D0 = 0.196 + (1− 0.196)/(1 + [φ/0.103]2.21), (5.14)

for Dclus/D0 at each temperature are

Dclus/D0(5◦C) = exp[−3.38φ− 19.26φ2]

Dclus/D0(25◦C) = exp[0.611φ− 37.21φ2]

Dclus/D0(50◦C) = exp[4.32φ− 62.41φ2]

(5.15)

and finally for XC at each temperature are

XC(5◦C) = 0.974/(1 + exp[−23.08(φ− 0.233)])

XC(25◦C) = 0.969/(1 + exp[−51.78(φ− 0.101)])

XC(50◦C) = 5.357/(1 + exp[−0.21(φ− 7.33)]).

(5.16)

Considering the experimental sensitivity of the monomer diffusion coefficient at large

volume fractions is small due to their almost non-existent population, the values of

Dmon/D0 at 5◦C were ignored when globally fitting the results to a single function.

Upon ignoring this data set, the trend is followed by the remainder of the data points.

Similarly, a cluster diffusion coefficient could not be fit at φ < 0.15 due to the low

population of clusters. However, the functional form of the empirical relation fit to

Dclus/D0 was forced to approach a value of one at low volume fractions to remain

physically meaningful.

Finally, to test the monomer and cluster dynamics of fitting the NSE data

with a double exponential function, an effective diffusion coefficient can be estimated

by calculating the weighted average of Dmon and Dclus. The resulting effective diffu-

sion coefficient is plotted in Fig. 5.16 as D2ex compared with the diffusion coefficient

from the single exponential fit D1ex. The similarity of both estimates of the average

diffusivity at all three temperatures (within the uncertainty) suggests that both repre-

sentations are equivalent. Estimates of D2ex produce such large error bars due to the
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Figure 5.16: Comparison of effective, normalized short-time self diffusion coefficients
determined from fits to the ISF using a single exponential, D1ex, and
a double exponential, D2ex. Both methods of fitting show great agree-
ment, but the weighted combination of two coefficients in the double
exponential method produces large uncertainties (error bars).

large number of parameters needed for the fitting, the individual errors of which are

compounded. However, as a result a more extensive set of information regarding the

system dynamics can be extracted.

5.5 IRO Structure and Glassy Dynamics at High Concentration

Lysozyme viscosity was studied over a range of temperatures from 5◦C to 50◦C

and volume fractions ranging between 0.0077 and 0.345 (11481 mg/mL). The zero shear

viscosity, η0, is calculated as the asymptotic value approached in the low shear limit.

The dependence on shear rate and temperature for the three largest volume fractions

tested (φ = 0.2070, φ = 0.2509, and φ = 0.3448) are provided in Fig. 5.17a, 5.17b, and

5.17c, respectively. Even with such large viscosities as found for these samples at low

temperatures, the behavior is completely Newtonian. Therefore, all data points are

within the low shear plateau regime and η0 of each sample is calculated as the average

over the entire range of shear rates studied. Viscosity values are normalized by D2O

viscosity at each respective temperature to obtain the relative zero-shear viscosities,

ηr0, plotted in Fig. 5.17d. For comparison, the data are plotted along with two models
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of the HS zero shear viscosity, the RWM-MCT model[71] and the Brady model,[16]

both of which are discussed in more detail in the Appendix. The HS results include

hydrodynamic and Brownian contributions to the viscosity.[16]

The range of shear rates (10s−1 < γ̇ < 105s−1) varied for each sample, but the

data are well within the zero shear limit of Pe = 6πηsσ
3γ̇/8kBT << 1, where ηs is

the solvent viscosity and σ is the particle diameter. The highest Pe number (at low

concentrations) only approached Pe ≈ 2x10−3. Comparing an inverse measure of the

relative time of viscous relaxation, γ̇−1, and diffusive relaxation,[47]

τ =
3πηsσ

3

4kBT
, (5.17)

which varies with temperature for lysozyme but is roughly 25 ns, indicates that viscosity

measurements are about 5 orders of magnitude beyond the time for protein diffusion.

Therefore, the large specific viscosities in Fig. 5.17d and corresponding Newtonian

behavior are representative of long-time structural rearrangement.

Protein interaction effects (i.e., the difference between lysozyme data and HS

results) are minimal at low volume fractions. Note the log scale as the magnitude

of viscosity becomes significant above a volume fraction of about 0.20, especially for

lower temperatures. At these elevated concentrations, the viscosity at 50◦C is almost an

order of magnitude above a HS fluid with an equivalent volume fraction. Remarkably,

decreasing the temperature from 50◦C to 5◦C at φ = 0.3448 causes the already high

viscosity to increase an additional two orders of magnitude. Therefore, the zero shear

viscosity is acutely sensitive to inter-protein interactions and the potentially large scale

structures they produce.

Micromechanical viscosity models suggest that the relevant timescale is set by

the short-time self diffusion coefficient of individual particles at a given set of solution

conditions.[16] However, these same models also indicate that interactions contribute

directly and indirectly by the corresponding radial distribution function (i.e., solution

microstructure).[16] Therefore, as a way of inspecting the relative contribution of re-

duced mobility on the increase in viscosity, the product of the reduced viscosity and
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Figure 5.17: Viscosities (symbols) are plotted as a function of shear rate at several
temperatures for (a) φ = 0.2070, (b) φ = 0.2509 and (c) φ = 0.3448
along with fits of the zero shear viscosity (lines). (d) Specific viscosities
in the zero shear limit (filled circles) are plotted as a function of pro-
tein volume fraction at several temperatures relative to HS estimates
according to the Brady model (open squares) and RMW-MCT model
(line).
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self-diffusion coefficient is plotted in Fig. 5.18, in a similar fashion to a generalized

Stokes-Einstein (GSE) plot.[55] Interestingly, lysozyme data maintain a nearly con-

stant value at low to intermediate volume fractions (φ < 0.2) for all temperatures,

consistent with HS predictions. However, due to the lack of interactions in HS fluids,

reduced dynamics are dictated by hydrodynamics. Here, values of lysozyme DS and

ηr0 deviate from HS results due to the presence of competing interactions. Thus, in

this volume fraction regime these interactions affect the viscosity indirectly via their

influence on the reduced short-time self diffusivity.

At elevated concentrations (φ > 0.2) and low temperatures (T = 5 − 25◦C),

lysozyme solution viscosity begins to increase significantly faster than the reduction

in diffusivity (compare Fig. 5.17d and Fig. 5.13a, respectively) as shown by the large

rise in magnitude in Fig. 5.18. Therefore, the viscosity is enhanced by additional

direct contributions from the competing interactions in excess of the drastic drop in

short-time mobility. In part, the influence of SALR interactions on the viscosity can

be physically interpreted as the formation of clusters, but the cause of the quantitative

difference found in Fig. 5.18 between lysozyme and HS systems at high-φ remains

unclear.

For comparison, the excluded volume in HS fluids lead to a randomly dispersed,

homogeneous microstructure that significantly hinders the relative motion of particles

at large enough volume fractions. Experiments demonstrated that HS systems become

kinetically arrested at φ = 0.58,[67, 93] known as the repulsive glass transition at

which long-time motion is suppressed by caging. Correspondingly, HS viscosity models

such as the RWM-MCT model capture this transition by forcing ηr0 to diverge when

approaching this φ from below. While the cages hinder long-time diffusion, particles

within a glass remain mobile in the short-time limit as they “rattle” within their cage

of nearest neighbors. Therefore, the predicted trend of HS systems in Fig. 5.18 will

diverge, despite having a finite short-time self diffusion when approaching the glass

transition (i.e., lim
φ→0.58

DS/D0 > 0).
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Figure 5.18: The product of relative viscosity and short time self diffusion (symbols)
is plotted similar to a Generalized Stokes-Einstein-Sutherland relation
as a function of volume fraction relative to HS expectations (dashed
line).

As in HS systems, the long-time dynamics of SALR systems must also be ex-

plored to fully understand the resulting viscosity behavior. Calculations of τ in Eq.

5.17 for lysozyme show that the values of DS/D0 determined by NSE probe structural

rearrangement on timescales that are many orders of magnitude smaller than that

probed by rheology. Therefore, it will be useful to explore the correlation between

long-time self diffusion and ηr0 to understand not only differences in the mobility on

these two time scales, but also if structural relaxation on long times is a dominant con-

tribution to the viscosity or if interactions must be explicitly accounted for in addition

to their indirect influence on the dynamics.

Typically, GSE relations relate the long time viscous dissipation, ηr0, with long-

time self diffusion, DL/D0, (i.e., diffusive relaxation) as they represent microscopic

properties on the same timescale. A GSE relationship suggests that slow particle

mobility is the dominant contribution to enhanced resistance to shear flow. For hard

sphere systems, a GSE relation has been debated but generally shown to hold true

with a weak volume fraction dependence.[8, 50] Although above φ = 0.58, the HS

viscosity diverges since particles are effectively frozen, a viscosity can still be measured
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at φ < 0.58 since the systems remains fluid. In order words, particles can still flow

relative to each other. Therefore, cages restricting particle motion will eventually

rearrange if observed over a long enough period. The eventual relaxation of a cage

(i.e., escape of a particle) is quantified by the decay of a long timescale plateau in the

ISF, known as α-relaxation. This structural relaxation mechanism is what DL captures

in HS fluids and will likely be a similar large scale structural rearrangement in SALR

systems.

The long-time self diffusion, DL, of lysozyme is difficult to determine experi-

mentally due to its size and limitations of experimental techniques. However, DL can

be approximately estimated from both the zero-shear viscosity and a normalization of

short-time self diffusion. Using mode coupling theory (MCT), the experimental values

of DS can be used to estimate DL according to

DL

D0

≈
(
DS

D0

)
DMCT
L , (5.18)

where DMCT
L is a volume fraction dependent ratio of DL/DS determined by MCT.[5, 9]

Further, the viscosity can be used to estimate the long-time diffusion according to a

generalized Stokes-Einstein-Sutherland equation[28, 55]

DL

D0

≈ 1

ηr0
. (5.19)

Values of DL/D0 estimated by Eq. 5.18 and Eq. 5.19 are shown in Fig. 5.19 and are

found to be in relatively good agreement for all states points except the most viscous

sample condition.

Distinguishing the disparate short and long time scales in concentrated lysozyme

samples (φ > 0.3) was also accomplished using DLS. Two distinct relaxation times were

observed at all temperatures, which were fully reversible over three temperature sweeps

between 5◦C and 50◦C, and thus not a result of irreversible aggregation on the time

scale of the experiments. By analyzing the correlation functions in a similar manner to

NSE data, but using a double exponential function, both time scales can be extracted

to represent short, Dshort, and long, Dlong, time collective motion. From these two time
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Figure 5.19: Comparison of long-time self diffusion estimated by the reciprocal of
the experimentally determined zero-shear viscosity (y-axis) and MCT
scaling of experimental DS/D0 from NSE (x-axis). The black line is the
equivalence point. The inset shows the same plot on a linear scale to
clarify the correlation at low φ (high DL/D0).

scales, an effective value of Dshort/Dlong and shear rate at the onset of shear thinning

γ̇ ≈ Dlong/(2Rshort)
2, where Rshort = kT/(6πµDshort), are estimated and summarized

in Table 5.3. The temperature dependence of Dshort/Dlong shows an increase in the

effective structural size by roughly an order of magnitude when decreasing T from 50◦C

to 5◦C. This shift corresponds well with the change in ηr0 in Fig. 5.17d at these volume

fractions. The correlation between Dshort/Dlong and the viscosity is a strong indication

that the DLS is probing the α-relaxation time scale as opposed to large aggregates to

which DLS is sensitive/susceptible. Viscosity is a measure of stress relaxation within

the complete microstructure and as such is much less sensitive to individual aggregates

compared to DLS. Further, the shear rate at the onset of shear thinning agrees well with

estimates of the Péclet number indicating that the rheology data are well within the

low shear regime. Although the viscosity measurements conducted here were unable

to reach the shear thinning regime, the estimates of γ̇ in Table 5.3 suggest that a

sufficiently large pressure drop should also be able to generate shear rates necessary to

probe the α-relaxation.

171



Table 5.3: Estimates of Dshort/Dlong and shear thinning shear rate from DLS results.

Dshort/Dlong

φ T = 5◦C T = 25◦C T = 50◦C
0.283 611 337 283
0.335 750 403 218

γ̇ ≈ Dlong/(2Rshort)
2

φ T = 5◦C T = 25◦C T = 50◦C
0.283 1657 11943 24395
0.335 664 5313 41801

Interestingly, the short-time dynamics of lysozyme under concentrated condi-

tions display sub-diffusive behavior. For systems of colloidal particles with purely

attractive interactions in either a gel or glass state, the sub-diffusive behavior persists

for long times. A practical limit of 100s is typically used for most colloidal systems to

determine dynamic arrest.[95] However, while this criterion is satisfactory for studies

of relatively large colloidal particles, the dependence τ ∝ 1/σ3 would exclude pro-

tein solutions from dynamic arrest by this standard. In contrast, the associated mean

square displacement (MSD) of particles also becomes very small at t ∼ τ .[95] These

criteria have been used to identify gelation or glass transitions.[47, 73, 95, 96] NSE can

measure the ISF at relatively large q-values such that NSE can also probe the MSD,

similar to the method used in dynamic light scattering.[92] As a result, NSE is used to

estimate the MSD of concentrated lysozyme solutions. By rearranging the exponential

dependence of the ISF with respect to the diffusion coefficient, the MSD, 〈R2〉, at a

given q-value can be described as

〈R2〉 = 6DC(q)t = − 6

q2
ln[FS(q, t)/FS(q, 0)]. (5.20)

The MSDs calculated using the ISF for q > 0.1 Å−1 are provided in Fig. 5.20

as filled symbols with respect to lines representative of fluid, cluster, glassy, and gel

states that are reported previously for samples with 1.95 µm diameter PMMA particles

with SALR interactions.[47] Despite the large differences in the particle size and the
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time scale of the measurement techniques, the normalized time ranges are similar

for both lysozyme and PMMA particles.[47] At times t/τ < 1, which represents the

short-time limit,[7] all samples follow a power law expected for diffusive motion. At

sufficiently low volume fractions (φ = 0.1646), the data remain diffusive for times

beyond τ at all temperatures. However, for φ ≥ 0.2, the power law exponent drops

below one for t/τ > 1, becoming sub-diffusive with decreasing temperature. These

conditions correspond to the regime in Fig. 5.17d where the specific viscosity increases

significantly. The normalized MSDs of lysozyme samples at high-φ and low-T are well

below the MSDs of glassy and gel samples reported previously for colloidal systems

with SALR interactions.[47] This indicates that at the local length scale, lysozyme

proteins in these samples have glassy behavior. In fact, for the highest concentration

Figure 5.20: The mean squared displacement of all lysozyme solutions at short times
determined from NSE (filled symbols) and long times determined from
viscosity measurements (open symbols) are plotted on a normalized
time scale relative to trends expected for four types of dynamic states
determined previously.[47] Lysozyme in all solution conditions appears
diffusive at t < τ , but deviates from fluid-like behavior at t > τ at
elevated φ and low T .
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sample at 5◦C, the MSD is about the same as values reported for one glassy colloidal

system with depletion attraction,[70] and is even smaller than that of one hard sphere

system in a glass state measured by DLS.[92] Estimation of the MSD at the long time

limit further supports the above observations.

The deviation of short-time and long-time mobility is also directly demonstrated

by plotting the corresponding MSDs together in Fig. 5.20. The long time MSD is

approximated by 6t/ηr0, where DL is approximated using Eq. 5.19. As shown in Fig.

5.20, the short and long time displacements overlap almost perfectly in the limit of

low φ and high T . In the other extreme of high φ and low T , the long time MSD is

cut-off at the magnitude of the short time limit to represent the most extreme scenario

of a plateau (i.e., a gel or glass). In general, the comparison indicates the disparity of

these two time scales and thus, at some time t > τ , the onset of sub-diffusive behavior.

Here, SALR interactions cause an early onset of glassy behavior at φ ≈ 0.3 that varies

slightly with temperature and therefore attraction strength.

Now, the quantitative disparity in short-time and long-time diffusivity can be

leveraged to distinguish their correlations with the resulting solution viscosity. The

ambiguity in Fig. 5.18 is removed by directly plotting ηr0 as a function of both diffusion

coefficients in Fig. 5.21. Estimates of DL/D0 are calculated according to Eq. 5.19,

though the use of Eq. 5.18 would provide similar results. By plotting the data in

this manner, the implicit volume fraction dependence is removed allowing for direct

comparison of HS and SALR systems. The well-known structure of HS fluids, and

its corresponding influence on diffusivity and viscosity, can be used to rationalize the

trends in lysozyme data.

In the case of HS fluids, homogeneous caging of individual particles (repulsive

glasses) has relatively little influence on short-time mobility for relatively low concen-

trations, as particles are allowed to locally diffuse within their cages. However, the

cages themselves are unable to rearrange and therefore long-time motion is restricted

and zero shear viscosity diverges. As a result, the HS correlation ηr0–DS diverges at

a relatively large value of DS/D0 while the correlation ηr0–DL follows a power law of
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Figure 5.21: (a) The specific viscosity of lysozyme is plotted as a function of short-
time (filled symbols) and long-time (open symbols) self diffusivity, rel-
ative to calculations for HS fluids (solid and dotted lines, respectively).
The inset provides examples of fits to the ISF. (b) Structure factors are
plotted for several state points, indicating the formation of IRO peaks.

order ∼ 1 before appearing to diverge at very small DL/D0.

Most notable from Fig. 5.21 may be the lack of a divergence in the lysozyme zero

shear viscosity with respect to diffusivity. For nearly all solution conditions, lysozyme

DS/D0 is slower than that of a HS fluid with an equivalent viscosity. Interestingly,

high temperature and most low volume fraction lysozyme data appear to follow the

HS expectations of viscosity as a function of DL. However, the long-time mobility in

the highly viscous lysozyme states is actually faster than that of a HS system with

an equivalent viscosity. This indicates that the microstructure resulting from SALR

interactions is more conducive to large scale structural rearrangement. Recalling from

Fig. 5.7 the structure factors of these state points, the same solution conditions at

which lysozyme DS is slower than a HS fluid and DL is faster are those that have the

most prominent IRO peaks in S(q).

A physical interpretation of these results is that the balance of competing in-

teractions localizes particles into clusters that then diffuse collectively with reduced

mobility (ignoring possible IRO and inter-cluster interactions). Though these clusters
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Figure 5.22: Structure factors are plotted for samples with volume fractions φ =
0.1215 (triangles), φ = 0.2070 (diamonds) and φ = 0.2509 (circles) at
T = 5◦C (blue), T = 25◦C (green) and T = 50◦C (red) to highlight
shifts in the IRO peak magnitude.

maintain a lifetime of at least 50 ns, they are expected to remain dynamic in nature over

longer timescales. Thus, it is hypothesized that the lower resistance to shear flow in

SALR systems relative to HS fluids with an equivalent short-time self diffusivity arises

from heterogeneous particle localization that opens sufficient free volume for clusters

to rearrange or fragment. Such a microstructure contains a diverse landscape of local

environments that will influence the mobility of individual particles and clusters in a

non-trivial way.

This heterogeneous local density distribution was examined through the solution

structure factor. The formation of IRO peaks in S(q), shown in Fig. 5.22, indicates a

unique localization of proteins that can be used to rationalize the dynamics observed in

Fig. 5.21. While the length scale of the IRO peak is usually associated with distances

between locally dense regions, this is conceptually consistent with an excluded region

separating them. An IRO peak is observed at 5◦C for all volume fractions studied,

which is consistent with the increased viscosity at this temperature. A decrease in the

IRO peak intensity at high temperatures indicates the loss of intermediate range order,

causing the system to become more uniformly distributed over this length scale and
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resulting in the decrease of the viscosity. Eventually at high enough temperature, the

system becomes dominated by the long range repulsion and attractive forces are insuf-

ficient to induce intermediate range particle localization, represented by the transition

from a peak to a weak shoulder that then disappears. Therefore, for a given volume

fraction, the evolution of a peak with decreasing temperature demonstrates a prefer-

ence for strong particle localization that significantly reduces the short-time mobility.

Simultaneously, IRO introduces void space available to proteins, making the exchange

between the local environments of a cluster with reduced short-time mobility and a

monomer in an excluded region with enhanced long-time diffusivity.

Interestingly, as clusters become more abundant with increasing volume fraction

their structural arrangement appears to become weaker. Though the distribution of

cluster sizes shifts to larger clusters with increasing volume fraction, they will eventually

merge and form large dynamic networks as shown in Fig. 5.9. As a result, individual

clusters are no longer distinguishable. Therefore, a weaker peak can be interpreted as a

reduction in the presence of voids in the microstructure, which remain roughly constant

in size according to the constant position of the IRO peak. The resulting viscosity could

possibly be explained by the dynamic nature of the stress bearing network structure

and inter-cluster interactions.

To provide further context for the observed viscosity, all lysozyme states are

plotted relative to the adhesive hard sphere (AHS) phase behavior in Fig. 5.23. The

previous chapter demonstrated the relation between a system with SALR interaction

and a reference system with only the attractive portion of the interaction.[38] Hence,

the lysozyme interaction potentials are used to locate the state points within the gen-

eralized state diagram. Effective strengths of attraction are represented by the Baxter

paremeter τB = 1/4(1−B2), where B2 is the second virial coefficient.[10] Values of τB

are determined from the attractive portion of the full HSDY potential extracted from

fits to the SANS data. Using a potential with 2α − α Leonard-Jones attraction and

Yukawa repulsion as done previously[21, 23, 84] would provide nearly identical results

according to the Noro-Frenkel extended law of corresponding states.[62] Also note that
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Figure 5.23: Lysozyme state points are plotted on the AHS phase diagram (open
symbols represent estimates of τB for state points that could not be
fit by IET) along with the percolation transition of an SALR system
with repulsion representative of lysozyme interactions (gray dotted line).
Shaded regions represent dispersed fluids (blue vertical), random perco-
lated (magenta diagonal) and a new local glassy state determined from
MSD data (black criss-cross).
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due to the inability of IET to converge when fitting the SANS spectra of the two most

concentrated samples, represented by open symbols in Fig. 5.23, the τB values of these

states are calculated as the average of those at 0.1 < φ < 0.25, which appear to have

reached an asymptotic value at each temperature.

Every lysozyme state point in Fig. 5.23 lies above the reference binodal, indicat-

ing from previous simulation studies that under no condition does a preferred cluster

size form in this SALR system.[38] However, state points at high volume fractions are

in the random percolated region,[38] which agrees very well with the percolation transi-

tion determined by previous simulation studies.[90] In addition to the thermodynamic

SALR phase diagram, an additional region of localized glassy dynamics is added, which

was determined from the lysozyme states with MSDs below previously reported glassy

behavior[47]

While certain attractive systems gel at the estimated percolation line,[29, 91]

lysozyme surpasses this transition with no noticeable divergence in the viscosity as a

function of diffusivity or volume fraction. In fact, the viscosity of these states remains

Newtonian. In contrast, the glassy region in Fig. 5.23 exists at larger volume fractions

than the percolation transition. However, in all likelihood, the dynamic nature of

individual clusters persists when large percolated networks form. Depending on the

structure of the network, a large fraction of particles may sit on the surface, which would

accommodate easier particle exchange. However, if the percolated network becomes

more robust, particles could become trapped within the interior of the percolated

cluster, which could be one possible physical mechanism for the sub-diffusive motion

observed in the MSD of high volume fraction solutions at low temperature.

5.6 Testing the Representation of Lysozyme Viscosity by Colloidal Models

Previous work using BSA suggests that colloidal viscosity models are unable

to accurately capture the dependence of globular protein viscosity on various solution

conditions such as temperature and volume fraction.[72] However, by a colloidal model

this work was referring only to HS representations, which ignored the influence of
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protein interactions. The experiments discussed thus far in this chapter provide strong

evidence that complex inter-protein interactions are prevalent at all solution conditions

and therefore must be accounted for to accurately represent the subsequent viscosity

of these materials. Therefore, the lysozyme viscosity is tested in this section against

viscosity models of HS fluids as well as weakly attractive systems to demonstrate the

general applicability of colloidal models and that the incorporation of interactions more

appropriately represents trends in the solution viscosity. However, the functional form

of these specific models are still shown to be quantitatively inaccurate.

Figure 5.24 below compares the trends in zero shear viscosity for the (a) dry

and (b) hydrated definitions of protein volume fraction. The data shift along the x-axis

depending on the definition. Multiple functional forms of HS viscosity are used to try

and reproduce both representations of the lysozyme viscosity. In particular, the Eilers

equation,

ηr0 =

(
1 +

1.5φ

1− φ/φmax

)2

, (5.21)

the Maron-Pierce equation,

ηr0 = (1− φ/φmax)−2, (5.22)

and the Mooney equation,

ηr0 = exp

(
[η]φ

1− φ/φmax

)
, (5.23)

where [η] is the intrinsic viscosity and φmax is the volume fraction where the viscosity

diverges,[55] are fit to the lysozyme data by allowing φmax to vary.

Every function failed to capture the trends in viscosity with both temperature

and volume fraction. Only the volume fraction dependence of the 50◦C data using

the dry volume fraction definition was relatively accurately represented, which was

accomplished using the Eilers equation. All other data sets were poorly fit by signif-

icantly overestimating the low to intermediate volume fraction regime. The cause of

the poor fits stem from the derivation of each of these models, which were designed

to accurately represent the divergent behavior at high-φ. A common feature of each
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Figure 5.24: Lysozyme zero-shear vicsosity (symbols) is plotted for three tempera-
tures as a function of volume fraction according to (a) the dry definition
and (b) the hydrated definition. Best fits of HS estimates using the Eil-
ers (solid line), Maron-Pierce (dashed line) and Mooney (dotted lines)
equations are also provided.

function is a reciprocal dependence on φ/φmax, which is an empirical representation

of the viscosity divergence due to caging. Practically, this lumps all contributions to

the viscosity into one parameter. However, Fig. 5.18 indicated that interactions are

a significant influence on lysozyme viscosity and Fig. 5.21 suggests that its viscosity

is not a result of jamming due to the lack of divergence with diffusivity. Therefore,

the poor representation of lysozyme solution viscosity by these HS models is to be

expected.

That the lysozyme viscosity at high temperature, where inter-protein interac-

tions are the weakest, could be represented by a HS model with a shifted value of

φmax suggests that colloidal models possess some practical value. As a first order ap-

proximation of the influence of the interactions extracted from the SANS data, the

viscosity at lower temperatures could be fit with a perturbation to these HS estimates.

Unfortunately, no viscosity models of SALR systems have been previously developed,

so for now a model accounting for weak attractive interactions is tested in Fig. 5.25.

The so called KW model has a functional dependence on φ and τB according to[48]

ηKWr0 = ηHSr0

(
1 +

1.9φ2

τB

)
, (5.24)
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Figure 5.25: Lysozyme zero-shear vicsosity (symbols) is plotted for three tempera-
tures as a function of volume fraction according to (a) the dry definition
and (b) the hydrated definition. Best fits using the KW attractive model
(lines) are provided using a single value of τB for a given temperature
provided in the legend, where HS indicates τB =∞.

where the HS viscosity, ηHSr0 , represents the data at 50◦C using the φdry definition by

the Eilers equation with a φmax of 0.391 and the data at 50◦C using the φhydr definition

by the RWM-MCT model with a φmax of 0.531. According to both volume fraction

definitions, the attractive term captures the low to intermediate volume fraction trend

at 25◦C quite well. Under these conditions, the attractive forces are still relatively

weak, so cluster formation is not prevalent. However, for samples at high-φ and 5◦C

where this is no longer true, accounting for attraction alone is insufficient to reproduce

the lysozyme viscosity. Still, the ability of colloidal viscosity models to qualitatively

and in some cases quantitatively reproduce the experimental data further supports

their utility, even for globular protein solutions.

While Fig. 5.25 demonstrates that an effective attraction strength can be ex-

tracted from fitting the viscosity, interaction parameters have already been quantified

from SANS experiments. Since the lysozyme viscosity is a result of competing forces,

the relative contribution from the attractive component can be estimated using values

of τB calculated from the extracted interaction potentials. In fact, this procedure can

be performed for both the reduction in short-time self diffusion as well as the increase

182



Figure 5.26: (a) Experimental lysozyme diffusivity (“Full”) is plotted relative to
HS (black line) and CS (pink line) trends and estimates using the
KW attractive model (“Att”) with values of τB extracted from fits to
SANS data. (b) Lysozyme viscosity data are normalized according to a
weakly attractive model (symbols) and plotted relative to HS expecta-
tions (line), which should be identical if the viscosity was driven purely
by attractive forces.

in zero-shear viscosity. The short-time self diffusivity in weakly attractive systems has

been modeled by[27]
DS

D0

= 1−
(

1.8315 +
0.295

τB

)
φ. (5.25)

Further, the viscosity will be estimated using the KW model with the HS component

represented by the RWM-MCT model with φmax = 0.57 as the model was originally

developed. Values of τB will be taken from Table 5.2.

In Fig. 5.26 lysozyme data are plotted relative to estimates of the diffusion[27]

and viscosity[48] if only the attractive portion of the full HSDY potential were present

in solution. The attractive diffusion model provides the correct qualitative trend in

both volume fraction and temperature observed for lysozyme. The similarity of the

data and the model suggest that the attractive component of the interactions might

be the dominant contribution to particle mobility and viscosity. However, as may be

expected, the mobility in SALR systems is not an average of the estimated individual

contributions from attraction and repulsion and therefore the lysozyme diffusion falls

below the model estimates in Fig. 5.26a. Rather, the competing interactions have a
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synergistic effect, which structurally is manifested as the formation of dynamic clusters

under certain conditions. At low temperature, where clusters are qualitatively more

abundant, the estimated diffusion arising from attractions alone becomes close in mag-

nitude to experimental observations of an SALR system. The similarity suggests that

attraction is a strong driving force to the formation of clusters, but particle localization

and structural heterogeneity in the form of cluster formation is necessary to produce

the significant reduction in mobility found in lysozyme. Further, normalizing the vis-

cosity by the expected effect of attractive interactions in Fig. 5.26b does not reduce the

experimental data to HS estimates. The magnitude of the residual difference between

the data and HS line is a direct result of the additional repulsive forces. The significant

increase at elevated volume fraction is then an indication of enhanced contributions

due to cooperative effects of the competing interactions.

The influence of competing interactions on the viscosity appears to grow with

increasing volume fraction in Fig. 5.26. Interestingly, the temperature dependence of

the viscosity disappears when explicitly accounting for the different strengths of at-

traction. Therefore, a stronger repulsive contribution should account for the growth in

viscosity. However, Fig. 5.8 indicates that monomer-monomer repulsion decreases at

each temperature with increasing protein concentration. Therefore, additional repul-

sive forces, or some synergistic effect of the competing interactions that is not being

considered, may account for the discrepancy in Fig. 5.26. By normalizing the experi-

mental data according to the viscosity model developed in the Appendix, the dominant

contribution to the lysozyme viscosity can be distinguished as a function of solution

conditions.

The relative contribution of attractive and repulsive forces can be quantified

by normalizing the experimental viscosity by theoretical hydrodynamic contributions

and experimentally determined values of the structure and dynamics. As a result,

the remaining contributions arise solely from the interaction potential according to

ηB+P
eff = (4/3)

[
1 − 2

∫∞
1
dU(r)/drg(r)/g(2)dr

]
, where the term in square brackets is

simply one for a HS fluid. The sign of the derivative of the potential will indicate the
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Figure 5.27: Combined contributions to the viscosity from the Brownian and Inter-
action terms determined from experimental results (symbols) are plot-
ted relative to the HS estimate (line). Deviations above the HS line
are indicative of predominantly repulsive contributions to increases in
viscosity while points below the HS line represent attractive driven en-
hancements to the viscosity.

dominant form of interaction. Accordingly, attraction dominated solution conditions

should lie below the HS value, while repulsion dominated states are above. Lysozyme

state points are plotted in Fig. 5.27 for three temperatures, which interestingly show

a similar but more dramatic transition as observed in Fig. 5.18.

Clearly, the dominant contribution to the solution viscosity shifts from attrac-

tion at small volume fractions to repulsion at large volume fractions. Such a transition

from attractive to repulsive behavior is characteristic of clustering systems, which rely

on attraction to drive aggregation until sufficient repulsion exists between clusters to

prevent further growth.[74] Theoretically, the resulting clusters should become more

abundant and increase in size with increasing volume fraction. Given that clusters

interact with each other in a purely repulsive manner,[57, 75] they will introduce an

additional contribution to the viscosity. This trend serves as a strong motivation for in-

cluding effective inter-cluster interactions in estimating the solution viscosity of SALR

systems.

Models of colloidal viscosity, including that developed here, indicate that the
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additional contributions will arise from inter-particle interactions. SALR interactions

have been demonstrated to localize particles, which in the extreme case results in

IRO and clustered fluids. Lysozyme states far above HS estimates in Fig. 5.17d have

significant IRO peaks that indicate sufficient void space exists between locally dense

regions.[37] Therefore, as opposed to a jamming transition observed in HS systems,

lysozyme viscosity is likely a result of cluster interactions and dynamics. Such a mi-

crostructure contains a diverse landscape of local environments that will influence the

mobility of individual particles and clusters in a non-trivial way. Therefore, the struc-

tural and dynamic information in hand from SANS and NSE experiments will be used

to rationalize representing this microstructure with effective cluster forces in order to

semi-quantitatively estimate their contributions to the viscosity.

5.7 Viscosity Predictions

At this point in the chapter, several key signatures of cluster formation in

lysozyme solutions have been observed using techniques that probe both structural

and dynamic properties. Therefore, it is well established that clusters can be formed

by lysozyme proteins and, under the appropriate conditions, will play a dominating

role in the resulting solution viscosity. As a means of quantifying those contributions,

a model accounting for contributions from cluster formations and interactions to the

diffusivity and viscosity has been developed in the Appendix.

The first test of this model will utilize the trends in interaction and diffusion

parameters with temperature and volume fraction shown in Fig. 5.10 and Fig. 5.15,

respectively, to extract an effective experimental measure of the average cluster size in

equilibrium with monomers. Specifically, from the three dynamic parameters in Fig.

5.15, three properties of clusters can be calculated at each T and φ: the fraction of

particles in clusters, Xclus, the average fractal dimension of the clusters formed, df , and

the average cluster size, N . As described in the Appendix, XC in Fig. 5.15 is a weighted

function of the extent of cluster formation and therefore XC 6= Xclus. Further, the

hydrodynamic radius of a cluster of size N is sensitive to the fractal dimension, which
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Figure 5.28: Values of (a) Xclus, (b) Dmon and (c) Dclus determined from simulta-
neously fitting the diffusivity parameters using the double exponential
model fits to NSE data (discussed in the main text) are plotted for
T = 5◦C (blue), T = 25◦C (green) and T = 50◦C (red).

makes it necessary to determine its value. Subsequent calculations of the viscosity

due to these clusters require each of these parameters since the abundance and size

of clusters dictates the relative contribution of monomer-monomer, monomer-cluster,

and cluster-cluster interactions.

The results of fitting the NSE parameters extracted from a double exponential

fit to the ISF with the cluster dynamics model in the Appendix are shown in Fig. 5.28.

One of the first observations is a distinct temperature dependence of the population

of clusters at large volume fractions. At 5◦C, clusters start to form at lower volume

fractions and grow larger in size at the same φ compared to higher temperatures. Al-

though the fraction of particles in clusters appears large at small φ, the experimental

values of XC are very small here and thus the extracted values of Xclus are expected to

be unreliable. Regardless, the average cluster size determined at low volume fractions

is essentially zero. In contrast to Xclus, N is larger with higher temperature. How-

ever, this is again a manifestation of the statistical uncertainty of these inter-related

parameters. At 50◦C, no clusters appear to form and therefore the cluster size ex-

tracted from the model is irrelevant. Clusters do appear to be present at the highest

volume fractions at both 5◦C and 25◦C, and become more abundant with decreasing

temperature. Interestingly, effective cluster radii, where R ∝ Ndf , are similar at each

temperature, but have a more compact configuration of more particles (larger df and
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Figure 5.29: Lysozyme viscosity data (symbols) are compared to estimates using the
viscosity model (colored lines) developed in the Appendix by estimating
cluster sizes using diffusion data as well as HS estimates (black line).

N , respectively) at higher temperature. Only by implementing these values in the

cluster interaction model can their synergistic influence on the viscosity be quantified.

By obtaining an estimate of the effective cluster size in solution from dynamic

experiments, the viscosity model of SALR systems with additional cluster contribu-

tions can be utilized in a completely predictive manner. Shown in Fig. 5.29 are the

estimates using the novel model developed in the Appendix (lines) compared with the

lysozyme viscosity determined from capillary viscometry (symbols). The model clearly

underestimates the lysozyme viscosity at higher volume fractions, but are actually quite

accurate for φ < 0.15 at all three temperatures. Further, in defense of this model, the

point at which it becomes inaccurate corresponds with the percolation transition of

lysozyme states, as determined from the cluster size distributions obtained by MC

simulations in Fig. 5.9 and shown in the phase diagram in Fig. 5.23. Thus, under the

conditions at which individual clusters can be distinguished, the SALR viscosity model

appears to capture, at least semi-quantitatively, the contribution of SALR interactions

and subsequent cluster formation on the viscosity in lysozyme solutions.

If additional contributions to the stress dissipation by propagation through the
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dynamic network could be accounted for, the viscosity may be more accurately repro-

duced at higher volume fractions (above the percolation transition). Interestingly, as

discussed previously, despite lysozyme samples becoming percolated they remain fluid

and Newtonian. Therefore, the stochastic cluster size distribution obtained by MC

simulations may not be the most representative measure of the clusters responsible for

the increase in viscosity. Rather, quantifying a so-called “dynamic” cluster size distri-

bution may be worth the attention of future work. In the next and final section, a first

order attempt at identifying the dominant dynamic cluster size at all volume fractions

will simultaneously fit the dynamics and the viscosity as a means of comprehensively

capturing the underlying stresses producing the viscosity in lysozyme samples.

5.8 Effective Cluster Properties from a New SALR Viscosity Model

The full cluster diffusion/viscosity model developed in the Appendix is fit si-

multaneously to the diffusion and viscosity data over a range of concentrations at

three temperatures. A powerful aspect of this model is that the fitting parameters

are constrained by two sets of data, which are uniquely sensitive to cluster formation,

ensuring that the extracted values are robust. The two fit parameters are the fraction

of particles in clusters and the average cluster size, as used in the previous section,

while the fractal dimension is held constant. However, df can be used to tailor the

model’s accuracy. As part of the fitting, a monomer and cluster diffusion coefficient are

weighted to calculate an effective diffusion coefficient to be fit to the values of DS/D0

in Fig. 5.13a. The diffusivity obtained from the single exponential fits to the ISF is

used rather than Dmon and Dclus from the double exponential fit for two reasons. One,

fitting two parameters instead of three was found to greatly enhance the statistics of

the resulting fit parameters and, two, it was less restrictive of the possible cluster sizes

extracted from the model.

The fits to the experimental data at each temperature were optimized by using

a df of 1.6, which agrees well with the results determined in the previous section at

5◦C and 25◦C in Fig. 5.29. This result is also consistent with previous simulation
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Figure 5.30: Values extracted from simultaneous fits to effective diffusion coefficients
and viscosities of lysozyme are plotted as a function of φ for the density
of clusters (lines and open squares), ρc, and cluster size (filled circles),
N .

studies of SALR systems.[90] Further, while both the monomer and cluster diffusion

contribute to the resulting effective short-time diffusion coefficient, the fitted value is

nearly entirely weighted by the cluster diffusion over most of the solution conditions.

Extracted cluster properties are plotted in Fig. 5.30 as a function of protein

volume fraction and temperature. Rather than comparing the fraction of particles in

clusters with the average cluster size, the number density of clusters, ρc, is calculated

according to ρcσ
3 = 6Xclusφ/(πN), which is the relevant parameter representing the

density of interacting units within the microstructure. In contrast to the analysis in

the previous section, the diffusion–viscosity model indicates that the average cluster

size increases relatively significantly with volume fraction. Further, the average size is

essentially independent of temperature for all volume fractions until the largest con-

centration studied, at which point the size is inversely proportional to temperature.

At low volume fractions, cluster sizes are only roughly the size of a dimer and thus

cluster formation is negligible at all temperatures. However, at intermediate volume

fractions, the relative population of clusters is sensitive to the temperature. Lower

temperature states have a larger concentration of clusters in solution. These clusters
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and the remaining monomers then localize on intermediate lengthscales, as suggested

by Fig. 5.22, which further contributes to larger viscosities. At the highest volume

fractions, the cluster density becomes identical for all temperatures, but this is com-

pensated for by an increase in the average cluster size at lower temperatures. These

two parameters in conjunction produce the resulting reduced diffusion and enhanced

viscosity.

It is important to keep in mind that at elevated volume fractions (φ ≥ 0.15),

these state points are percolated. Therefore, the values of N in Fig. 5.30 can be asso-

ciated with an average size of clusters of which the transient networks are composed

under these conditions. If the shear thinning regime estimated in Table 5.3 could be

reached, it would be very interesting to compare the extracted structural lengthscale

with the cluster size determined from these fitting results. However, for the time being,

it is hypothesized that the fluid-like rheological response to shear by lysozyme solutions

with percolated structures is predominantly caused by this transient network structure

fragmenting into dynamic clusters of size N (as defined here) that subsequently inter-

act, both repulsively due to their stable size and attractively due to SALR interactions

that lead to re-association into the transient network.

Figure 5.31: Zero-shear viscosity is plotted as a function of the estimated cluster
size for three temperatures, indicating an apparent lack of universal
relationship between these two parameters.
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An additional useful result of this model is the evident lack of a universal correla-

tion between cluster formation and viscosity. Figure 5.31 demonstrates the relationship

between viscosity and the average cluster size for each solution condition studied. Al-

though the strength of repulsive interactions at lower temperatures is weaker, the fact

that clusters are larger and/or more abundant produces more significant contributions

to the viscosity form inter-cluster interactions. As a result, the low temperature states

have a larger viscosity at a given average cluster size. The main cause for the dif-

ferences in temperature likely arises from the implicit cluster density shown in Fig.

5.30. Although clusters are less abundant at higher temperatures, their relatively

strong inter-cluster repulsions are capable of more significantly reducing diffusivity at

an equivalent cluster size and producing drastically increased viscosities. Therefore,

the solution viscosity is very sensitive to the balance of competing interactions in SALR

systems.

5.9 Conclusions

In conclusion, the work presented here has made significant progress in pro-

viding accurate measurements of viscosity and short-time self diffusivity over a large

range of concentrations and temperatures, as well as its phase transitions to localized

glassy states. The significant set of results presented in this chapter provides a cohesive

representation of the impact of intermediate range order on the dynamics and viscosity

in systems with short-range attraction and long-range repulsion. The existence of IRO

introduces localized heterogeneous density distributions at the length scale comparable

to that extracted from the IRO peak position. While the system is relatively uniform

over longer length scales, the locally large packing fraction of proteins leads to glassy

localized motion on the scale of the protein. Despite the significantly slow local motion,

the void space associated with the IRO enables diffusive motion at long time scales that

keep the samples in a fluid state. This heterogeneity is a unique distinguishing feature

of kinetic arrest in SALR systems relative to purely attractive driven arrested states.

The experimental evidence shown here highlights the importance of both structure
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and dynamics in understanding the properties of these complex fluids with compet-

ing potential features. Specifically, models for the macroscopic transport properties

of such protein solutions will need to explicitly consider the dynamics and structure

corresponding to the intermediate range order evident in the scattering patterns.

This chapter also presented a colloidal model to capture the diffusion and vis-

cosity of systems with SALR interactions. While this model is applicable to any SALR

system, it is particularly useful for its adaptability to include the additional interactions

present in states with significant cluster formation. The results presented here are the

first to demonstrate a semi-quantitative relationship between clustering and viscosity in

systems with competing interactions, highlighting the importance of cluster dynamics

and cluster-cluster interactions. By decomposing the various contributions, the rela-

tive importance of each form of interaction on the resulting solution viscosity can be

quantified. This methodology provides a framework for using viscosity measurements

as a sensitive tool to determine the presence of clusters in solution. The remaining

chapters will be dedicated to applying the framework developed here to industrially

relevant monoclonal antibody solutions and making necessary alterations to capture

the additional complexities associated with their anisotropic shape and interactions.
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Chapter 6

EFFECT OF SMALL LONG-LIVED CLUSTERS ON THE VISCOSITY
OF CONCENTRATED MONOCLONAL ANTIBODY FORMULATIONS

6.1 Introduction

The fastest growing sector of the pharmaceutical market is comprised of prod-

ucts derived from biological sources, referred to as “biologics,” which consist of blood,

gene and cell therapy techniques, vaccines and recombinant therapeutic proteins. Of

this broad category, monoclonal antibodies (mAbs) have quickly become the largest

and most successful. The rapid growth over the past few decades in the biologics mar-

ket for mAb based therapeutics is due to their reproducibility, high binding specificity

and relatively minimal side effects.[12] This success has placed a significant emphasis

on gaining a fundamental understanding of their solution properties.[6, 12] In particu-

lar, the ability to manufacture on the commercial scale, then purify and deliver these

materials requires that formulations have sufficiently low viscosities.[12] Additionally,

a current goal of many biopharmaceutical companies is to transition antibody thera-

peutics from intravenous (IV) infusion to subcutaneous (SC) injection delivery. Such

a shift would provide a more enjoyable experience for patients by reducing their in-

convenience through minimizing the time commitment and providing more freedom in

the administering location. However, SC delivery requires mAb therapeutics to have a

very low solution viscosity, which places a significant restriction on their formulation

composition.

The SC delivery method requires small sample volumes, which require high pro-

tein concentrations on the order of 100−200 mg/mL for a dose with sufficient potency.

A possible repercussion of concentrated mAb formulations are larger viscosities that,

if in excess of ∼ 50 mPa-s, make it difficult to deliver drugs via SC injection.[6, 12] As
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demonstrated previously, lysozyme protein solutions can become highly viscous when

sufficiently concentrated.[3, 10] The large viscosity was directly shown as a response

to intermediate range order (IRO) caused by a combination of short-range attraction

and long-range repulsion (SALR), but could also be interpreted as a result of dynamic

cluster formation.[10] Both attractive and repulsive interactions, as well as anisotropic

particle shape, can increase the solution viscosity.[20] Therefore, clusters in mAb based

solutions are hypothesized to further increase the viscosity, which is expected to de-

pend on their number, size, shape, charge, and possibly their lifetime.[10] Similarly, the

large viscosity of some mAb formulations is hypothesized to result from their reversible

self-association into dynamic clusters.[4, 12]

Given the concentrated conditions at which clusters form, it has been difficult to

directly observe mAb clusters and quantify their characteristic structural and dynamic

properties. Although mAbs and other proteins have similar chemical composition, their

interactions can vary significantly due to the wide variety of secondary and tertiary

structures in solution. Thus, it is plausible that reversible antibody association at

high concentration could be driven by highly directional forces. However, clusters

can be identified by dynamic signatures when the interactions responsible for their

formation are unknown.[8, 17, 23] Using neutron scattering, the structure and mobility

of individual “moving units” can be distinguished over a range of lengthscales,[36] even

under concentrated conditions. Specifically, neutron spin echo can identify the larger

effective hydrodynamic radius of clusters (before they reversibly dissociate) relative to

monomers. This is a novel approach in which structural and dynamic techniques are

used to conclusively identify reversible cluster formation.

In this chapter, the solution properties of two immunoglobulin type-G1 (IgG1)

based antibodies are compared to demonstrate a direct correlation between dynamic

cluster formation and increased viscosity in concentrated mAb formulations. Both

proteins have nearly identical primary sequences and tertiary structure, but display

significantly different solution behavior.[30, 32, 33] One produces a prohibitively large

viscosity at concentrations relevant to SC injection formulations, while the viscosity
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of the other remains consistent with expected excluded volume effects. Neutron scat-

tering results will demonstrate that the mAb with larger viscosity readily forms small

dynamic clusters at low concentration that then become more populous at higher con-

centration. Thus, the larger excluded volume and effective interactions of clusters are

correlated with the increase in viscosity for this particular mAb, but this technique

can readily identify a similar relationship in other antibody formulations. The body of

work presented in this chapter is largely comprised of published research.[33]

6.2 Materials and Methods

Two humanized mAbs with markedly different solution viscosities, denoted as

mAb1 and mAb2, are used as model systems. Both mAbs are constructed with the

same human IgG1 framework, and thus, have nearly the same molecular mass (≈ 150

kDa) and primary structure, with small sequence differences confined in the comple-

mentarity determining region.[34, 35] The samples are purified so that the amount

of irreversible dimers is about 1% for each mAb.[35] Both mAbs are stored in their

lyophilized form and subsequently reconstituted into D2O based buffers, which re-

duces the incoherent background during neutron scattering experiments. The buffer

composition used for all samples is composed of 32 mM Histidine/Histidine-HCl, 360

mM sucrose and 0.6 mg/mL polysorbate-20 at pD ≈ 6.4. Despite the structural and

chemical similarity, the theoretical net charge is +17 for mAb1 and +27 for mAb2.[34]

Solutions of these mAbs are studied using a combination of rheology, small an-

gle X-ray and neutron scattering (SAXS and SANS, respectively), neutron spin echo

(NSE) and dynamic light scattering (DLS) techniques. All samples were stable and

the experiments were reversible on the timescale of each experiment at all conditions

tested. Rheological experiments were performed on a stress-rate controlled rheome-

ter (Anton Paar Physica MCR 501) using a 50 mm 0.490◦ anodized aluminum cone

geometry. A flow sweep, ascending and descending, from 1 s−1 to 2000 s−1 was per-

formed to check for hysteresis and sample degradation, which were never observed.
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SANS, NSE and DLS measurements were conducted at the NIST Center for Neu-

tron Research in Gaithersburg, MD and the Institut Laue-Langevin (ILL) in Grenoble,

France. SAXS experiments were performed on the F2 beamline of the Cornell High

Energy Synchrotron Source.

Antibody dynamics were determined using DLS under dilute conditions and

NSE at high concentrations. Collective diffusion coefficients, Dc, are determined by

fitting intermediate scattering functions with a single exponential functional form

as outlined in Chapter 2. Hydrodynamic radii, Rh, of mAb solutions at low con-

centration are calculated using the generalized Stokes-Einstein-Sutherland equation:

Rh = kBT/(6πηsDc), where ηs is the solvent viscosity. The short-time self diffusion

coefficient, Ds, is determined from the high-q asymptotic limit of Dc determined from

NSE.

Raw SANS and SAXS data were analyzed following standard methods outlined

in Chapter 2 using software provided by NCNR.[15] SAXS intensity as a function

of q-value follows the same functional form as SANS data, but the contrast depends

on the electron density rather than neutron scattering length density. A 5 mg/mL

sample of mAb2 without salt is used as the form factor, P (q), to normalize high

concentration SANS results to determine the effective structure factor, Seff (q). Both

SANS and SAXS data at low q-values are analyzed using the Guinier approximation

to estimate radii of gyration, Rg, and apparent molecular weight, Mw,app. The Guinier

approximation relates Rg and the slope of the natural log of the scattering intensity

by expanding the Fourier transform of intra-particle density correlations with the first

term in the McLaurin series in the limit of small q-values, resulting in

ln[I(q)] = ln[I(0)]− (qRg)
2/3, (6.1)

where I(0) is the extrapolated zero-q intensity. The Guinier analysis is applicable

within a q-range of q < 1.0/Rg and is limited to solutions of non-interacting scattering

entities (i.e., S(q) ∼ 1). Once I(0) is determined, the apparent molecular weight can
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be calculated by

Mw,app = I(0)

(
ρ2
mNA

CVp(∆ρ)2

)
, (6.2)

assuming Seff (0) ≈ 1, where C is the protein concentration, ρm and Vp are the mass

density and volume of a mAb protein, respectively, ∆ρ is the neutron scattering length

density contrast and NA is the Avogadro constant. The Mw,app of mAb2 is taken to be

150 kDa at low concentrations because both DLS and NSE measurements indicate it

remains dispersed as single mAbs in solution, even at high protein concentration.

6.3 Influence of mAb Association on Solution Viscosity

6.3.1 Solution Viscosity

The effects of protein concentration, salt concentration, and temperature on

the solution viscosity, η, are presented in Fig. 6.1 for both mAb1 and mAb2. Com-

paring both mAbs in the absence of salt at 25◦C in Fig. 6.1a indicates that mAb1

solutions become significantly more viscous at elevated concentrations, approaching an

anomalously large value of 310 mPa-s at 150 mg/mL as compared to a viscosity of

only 18 mPa-s at 150 mg/mL for mAb2. Even though the viscosity of mAb1 is not

overly viscous as compared to other soft materials such as colloidal gels,[7] these vis-

cosity levels are capable of limiting the protein concentration in formulations for bulk

manufacturing and SC delivery.

The addition of sodium chloride (NaCl) to concentrated (150 mg/mL) mAb

formulations, shown in Fig. 6.1b, has different effects on the viscosity for solutions

of mAb1 as compared to solutions of mAb2. While the addition of NaCl does not

significantly alter the viscosity of mAb2 solutions, the viscosity of mAb1 solutions

decreases significantly with increasing salt content. For example, the addition of 150

mM NaCl reduces the viscosity of mAb1 solutions by approximately a factor of five.

This trend holds for both temperatures examined. This difference in the effect of salt

on the viscosity of these two mAb solutions indicates that there is a difference in the

interactions that lead to the viscosity between these two systems. In particular, the

salt sensitivity observed for mAb1 suggests electrostatic interactions are significant
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Figure 6.1: The viscosity of mAb1 (circles) and mAb2 (triangles) is plotted (a) as
a function of protein concentration without added NaCl and (b) at 150
mg/mL antibody concentration as a function of added salt concentration.
Measurements conducted at 5 ◦C and 25 ◦C are represented by blue and
red symbols, respectively.

in determining the solution viscosity, while the insensitivity for mAb2 suggests other

forces dominate.

Normalizing the solution viscosities by that of the solvent under each corre-

sponding salt concentration and temperature results in a reduced zero shear viscosity,

ηr0. By comparing values of ηr0, the influence of protein concentration and buffer

formulation on the viscosity can be directly compared. In particular, Fig. 6.2 com-

pares reduced viscosities of mAb1 and mAb2 without salt at 25◦C with theoretical

predictions for a hard sphere (HS) colloidal suspension in which the particles have

an excluded volume, but no additional interactions. To conform to the HS viscosity

model dependence on volume fraction, the protein concentration is converted accord-

ing to φ = (C/Mw)(4/3)πR3
h, using the Mw and Rh of the fundamental mAb2 moving

unit determined from SANS and DLS, respectively. The distinctly larger relative vis-

cosity of mAb1 formulations indicates that interactions between mAb1 antibodies are

significantly stronger than mAb2. Values of reduced viscosity at lower temperature,

though not available or shown in Fig. 6.2, can be estimated from the available data

in Fig. 6.1b. Reducing temperature from 25◦C to 5◦C increases the viscosity of the
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Figure 6.2: The reduced zero-shear viscosity of mAb1 (circles) and mAb2 (triangles)
is plotted relative to hard sphere expectations (solid line) as a function
of protein concentration without added NaCl (at T = 25◦C).

solvent and mAb2 solutions by a factor of two, while that of mAb1 solutions increases

by roughly a factor of five. This more significant increase in mAb1 solution viscosity

suggests that mAb1 interactions become stronger with reducing temperature, which

has been previously noted for proteins.[19, 21, 24] The influence of salt and tempera-

ture on the interactions as suggested by the viscosity data can be more quantitatively

analyzed through SANS and SAXS measurements.

6.3.2 Small Angle Neutron Scattering

Comparing the SANS results for the most concentrated mAb solutions can pro-

vide insight into the interactions that, in part, cause the correspondingly large or small

viscosities. The 1-D SANS spectra for mAb1 and mAb2 solutions at 150 mg/mL at

25◦C are shown in Fig. 6.3a with a representative data set for an IgG1 antibody

form factor, P (q). Normalizing each set of I(q) curves by P (q) and other pre-factors

discussed in Chapter 2 produces an effective structure factor, Seff (q), shown in Fig.

6.3b. Importantly, previous work has demonstrated that the structure of a mAb1 and

mAb2 monomer are nearly identical and that each of the solution conditions studied

in this chapter do not cause the tertiary structure to change significantly.[34] Thus,
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normalizing all I(q) curves by the same P (q) function will provide accurate effective

structure factor functions. Once I(q) is normalized by P (q) to remove the influence of

protein shape and concentration, the q-dependence of Seff (q) is representative of the

interactions alone.

The scattering intensity for mAb2 in solution without added salt exhibits a

prominent correlation peak that is typical of systems with strong electrostatic repulsion.

However, with the addition of 150 mM NaCl the peak reduces to a weak shoulder

and a slight increase in intensity at low q-values also appears in the spectra. This

trend suggests that the added salt weakens the effective repulsive force acting between

antibodies in solution by screening the repulsion. The corresponding Seff (q) functions

shown in figure 6.3b confirm that the interaction peak at a q-value of about 0.05 Å−1

disappears with the addition of salt. Under the same conditions, the magnitude at

low-q becomes larger, but remains much less than one. Thus, while the addition of

NaCl weakens the repulsion by screening the surface charge, repulsive forces remain a

significant contribution to mAb2 interactions.

Figure 6.3: (a) Absolute scattering intensity and (b) effective structure factors from
SANS of mAb1 (circles) and mab2 (triangles) samples at 150 mg/mL
with 0 mM (open symbols) and 150 mM (filled symbols) added NaCl.
The form factor (open black triangles) in (a) is a 5 mg/mL sample. All
data sets were studied at 25 ◦C. Only a fraction of all points in each
data set are included for clarity.
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The SANS spectra for solutions of mAb1 exhibit a continual increase in inten-

sity with decreasing q-value and at neither salt condition do these samples show a

correlation peak indicative of structural order as observed for mAb2 solutions. With-

out added salt, solutions of mAb1 produce a SANS spectra with a shoulder in I(q) at

roughly the same q-value of the correlation peak produced by mAb2 solutions, which

transitions to a weak increase in intensity at lower q-values. Adding 150 mM NaCl to

mAb1 formulations increases the low-q intensity, which suggests that initially attractive

inter-protein interactions become more strongly attractive. The addition of 150 mM

NaCl also causes the magnitude of Seff (q) at low-q to increase as well as the slope to

become slightly negative. These features indicate the prominence of attractive forces.

However, Fig. 6.3b indicates that the magnitude of the effective structure factors un-

der both salt conditions remains below one. This suggests that effective interactions

between mAb1 antibodies also have a repulsive component.

While the qualitative analysis of the SANS spectra in Fig. 6.3 suggests that

repulsive interactions dominate for mAb2 in solution while attractive forces play an

important role in mAb1 solutions, mAb1 may interact both attractively and repulsively.

Studying the concentration and temperature dependence of the SANS scattering pro-

files indicates a more distinct difference in the effective interactions between mAb1 and

mAb2. The SANS intensities for mAb1 and mAb2 solutions without added salt are

shown in Fig. 6.4a and 6.4b, respectively, and the corresponding Seff (q) are shown

in Fig. 6.4c and 6.4d, respectively, for three protein concentrations at 5◦C and 25◦C.

The SANS spectra for solutions of mAb2 are consistent across the range of protein con-

centrations studied. Scattering intensities in Fig. 6.4b are all nearly identical at low-q

for a given temperature and differ only slightly at intermediate q-values as a result of

their different concentrations. The corresponding effective structure factors decrease in

magnitude at low-q with increasing protein concentration, demonstrating that mAb2

becomes more repulsive under these conditions. Previous work has shown that this

trend quantitatively agrees with estimates of S(0) according to the surface charge of
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Figure 6.4: SANS 1-D scattering profiles of (a) mAb1 and (b) mAb2 at 5 ◦C and
25 ◦C for three concentrations. Corresponding effective structure factors
are plotted for (c) mAb1 and (d) mAb2. All samples studied have 0
mM sodium chloride. Only a fraction of all points in each data set are
included for clarity.

mAb2.[34] Furthermore, the interactions and associated Seff (q) are relatively insensi-

tive to temperature, which agrees with theories of screened Coulomb repulsion.[25]

The most distinct feature of Fig. 6.4 is the large and systematic variation in

Seff (q) for mAb1 solutions at small q-values with increasing protein concentration.

Interestingly, the effective structure factor of the 50 mg/mL mAb1 sample without

added salt (Fig. 6.4c) has a magnitude above one at low-q and a strong negative slope.

This profile bears a similar resemblance to the 150 mg/mL mAb1 sample with added

150 mM NaCl (Fig. 6.3b), despite the different electrolyte conditions. Presumably,

in both cases the resulting features are representative of strong attractive interactions.

Increasing the protein concentration leads to a dramatic decrease in low-q magnitude of
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Seff (q) for mAb1 solutions. The decrease of S(0) with increasing protein concentration

indicates that excluded volume effects become increasingly important such that the

values approach those expected for a HS fluid at equivalent concentrations.[34] Samples

at 5◦C show the same trend, but with consistently larger magnitudes of Seff (q) at low-q

indicating stronger attractive interactions.

Previous research shows that the SANS spectra for mAb1 solutions can be mod-

eled semi-quantitatively using an effective isotropic potential of interaction comprised

of a short range attraction and long range repulsion.[34] Most forces responsible for

protein association, such as hydrophobic interactions, van der Waals forces or hydro-

gen bonding, are well known to have a short range of interaction.[13] A possible source

of the apparent extended range of this attraction is an anisotropic electric-dipole.[34]

However, consideration of the surface charge on mAb1 suggests that the short-range

interactions may be highly orientation dependent such that a spherically averaged

potential may fail to accurately represent the interactions in solution. This is sup-

ported by the significant heterogeneity of its surface charge relative to mAb2[30] and

coarse-grained simulation studies of charge-anisotropy induced mAb1 association.[4]

Therefore, while the interactions between mAb2 in solution is anticipated to be weakly

repulsive for all protein concentrations, mAb1 interacts by both a weak long range

repulsion and an anisotropic, shorter range attraction.

6.3.3 Low Concentration Structure and Dynamics

The presence of a short range attraction combined with screened Coulomb repul-

sion leads to the possibility of forming dynamic clusters in solution.[27, 28] Although

equilibrium clusters typically form at slightly elevated densities,[11] the competing

forces found for mAb1 appear to induce small dynamic cluster formation even at very

low protein concentrations. Cluster formation at low mAb concentrations can be iden-

tified by analyzing SAXS patterns using a Guinier analysis to estimate a radius of

gyration, Rg, (Fig. 6.5a) and normalizing DLS results to estimate an effective hydro-

dynamic radius, Rh, (Fig. 6.5b).
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Comparing the influence of protein concentration on Rg and Rh for solutions of

mAb1 and mAb2 can distinguish the extent of association by each of these antibodies.

The apparent Rg at 1 mg/mL with both 0 mM and 150 mM added NaCl is identical for

both mAbs (∼ 5 nm) and corresponds to the size of an individual monomer in solution.

However, the apparent Rgs for these two protein solutions have different behavior

with increasing protein concentration, where (without added salt) the apparent size

of mAb2 decreases and mAb1 increases. The decrease in apparent Rg for mAb2 is

a result of repulsive forces and reflects the influence of Seff (q) on the low-q region

of the scattering profile. When this structural effect is properly accounted for, the

size of mAb2 in solution actually remains unchanged up to 10 mg/mL. The same is

true when 150 mM NaCl is added to mAb2 solutions, as shown in Fig. 6.5a. On the

other hand, the increase in apparent Rg for mAb1 reflects the influence of competing

interactions leading to association into larger aggregates. At 10 mg/mL, the size of

mAb1 increases to Rg ≈ 6.9 nm, which is reversible when diluted, indicating the

formation of equilibrium clusters. The addition of 150 mM sodium chloride reduces

the apparent size compared to samples without salt, which suggests that the association

into dynamic clusters is weaker. This finding supports the hypothesis that anisotropic

short-range attraction arises due to direct electrostatic interactions in this system that

Figure 6.5: (a) The radius of gyration determined from a Guinier analysis of SAXS
data and (b) the hydrodynamic radius estimated from DLS results at 25
◦C are plotted for low mAb concentrations.

217



additional salt would screen and therefore make weaker.

DLS measurements further confirm the transition of mAb1 in solution from

dispersed monomers to small clusters with increasing mAb1 concentration and in the

absence of added salt. Similar to the SAXS analysis, the effective Rh shown in Fig. 6.5b

at 1 mg/mL without salt is about 5.4 nm for both mAbs. This value remains constant

for mAb2 up to 10 mg/mL, but increases to about 8.5 nm at the same concentration

for mAb1. The larger size of Rh from DLS compared to Rg from SAXS suggests that

the clusters may be elongated. While Rg reflects the moment of inertia of the protein

itself, Rh reflects the hydrodynamic resistance, which reflects the largest lengthscale

of the anisotropic mAb in solution and is typically much larger than Rg for compact

objects.[20]

6.3.4 Structure at High Concentration

The apparent size of the clusters can be determined according to their ap-

parent molecular mass, Mw,app, estimated using I(0) from SAXS scattering profiles.

Although the results in Fig. 6.5 indicate that mAb1 reversibly associates into equilib-

rium clusters, without additional information about the internal cluster configuration,

knowledge of the radius alone is insufficient to conclusively determine the aggregation

number. Estimated values of mAb1 cluster mass, shown in Fig. 6.6, are calculated

using a pre-factor Eq. 6.2 based on the well dispersed solutions of mAb2 (Mw ≈ 150

kDa) at low protein concentration. Also shown in Fig. 6.6 is the apparent weight

of mAb2, which unlike mAb1 consistently decreases with increasing concentration in

both salt conditions of the buffer. Similar to the apparent decrease of Rg for mAb2 in

Fig. 6.5, the decrease in Mw,app does not suggest fragmentation of the mAb, but rather

reflects the effect of Seff (0) at higher mAb2 concentrations. Physically, this trend is

more intuitively understood as a reduction in the free volume available for each an-

tibody with increasing concentration, where stronger repulsive interactions (causing

the magnitude of Seff (0) to decrease) prevent adjacent mAbs from “sharing” space.

The addition of 150 mM NaCl partially screens the repulsion and increases the Mw,app
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Figure 6.6: Apparent molecular weights determined from SAXS results are plotted
as a function of protein concentration for mAb1 (circles) and mAb2 (tri-
angles) both with 0 mM NaCl (open symobls) and 150 mM added NaCl
(filled symbols) at 25 ◦C.

of mAb2 at higher concentrations by decreasing the compressibility. These results,

together with the viscosity dependence and coarse-grained computer simulations,[4]

suggest that mAb2 remains monomeric over these protein and salt concentrations.

Changes in Mw,app of mAb1 in solution as a function of protein and salt con-

centration are distinctly different from mAb2. The results in Fig. 6.6 show that the

apparent molecular mass of mAb1 is about 250 kDa with no salt and about 200 kDa

with 150 mM NaCl at a low protein concentration of 10 mg/mL. These values, which are

consistent with previous static light scattering measurements at low concentrations,[26]

continue to increase up to mAb1 concentrations of about 30 mg/mL, after which they

decrease rapidly. At a protein concentration of 150 mg/mL, values of Mw,app for mAb1

approach those of mAb2. The maximum values of Mw,app for mAb1 are similar to the

mass of a dimer (Mw,app ≈ 300 kDa). This suggests that solution microstructures of

mAb1 are monomeric at very low protein concentrations (C < 1 mg/mL) and become

dominated by clusters at about 10 mg/mL. The smaller value of Mw,app for samples

with 150 mM salt suggest that clusters form, but are less prevalent.

The decrease in apparent molecular mass at higher concentrations results from
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a similar influence of I(0) discussed for mAb2 solutions and does not necessarily reflect

that small clusters no longer form under these conditions. While SAXS and DLS have

clearly demonstrated that mAb1 associates into small clusters at low protein concentra-

tion, these techniques are unable to clarify their behavior at high protein concentration

where mAb1 solution viscosities, shown in Fig. 6.1, becomes significant. Thus, fur-

ther work identifying the presence of clusters and their size at higher concentrations is

necessary to quantify their influence on the viscosity.

6.3.5 Dynamics at High Concentration

Measurements of the short-time mobility by NSE can be used to determine an

effective cluster size in concentrated protein solutions. Specifically, an effective hy-

drodynamic radius (comparable to that obtained by DLS, but highly accurate at high

concentration) can be determined by normalization of the short-time self diffusion co-

efficient, Ds. However, quantifying Ds relies on first extracting q-dependent short-time

collective diffusion coefficients, Dc(q), by fitting the normalized intermediate scatter-

ing function, Fs(q, t)/Fs(q, 0), with an exponential function as discussed in Chapter 2.

Examples of such a fitting can be found for lysozyme samples in Chapter 5. Here, a

single exponential function is used for correlation times up to 50 ns due to the linearity

of the data on a semi-log plot.

A variety of data sets over a range of protein concentrations, salt content and

temperatures are plotted in Fig. 6.7 that explicitly demonstrate the q-dependence of

the short-time collective diffusivity. As discussed in earlier chapters and outlined in

previous research,[1, 8, 17, 22, 23] estimates of Ds are determined by the value of Dc(q)

in the limit of large q-values. Interestingly, the values of Dc(q) for mAb1 and mAb2 in

Fig. 6.7 are nearly q-independent (over the range of q-values studied) under all solution

conditions. Therefore, to enhance the statistics, the average value of all data points is

used to determine values of Ds.

Given the flexibility and dynamic nature of protein structure, it is important

to distinguish the contributions of translational motion from those of internal and
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rotational motion on the NSE results. Therefore, it is worth noting that over the

length (q-values) and time scales probed by NSE, the contribution of the latter two

dynamic modes on the extracted values of Dc(q) is negligible. If significant, internal

and rotational dynamics would enhance Dc(q) at q-values corresponding to the length

scale of their motion.[2] Given the size of mAb domains, these motions would appear on

length scales less than about 1 nm (i.e., Q > 0.1 Å−1). However, values of Dc(q) in Fig.

6.7 remain constant within this q-range. Further, the relaxation time for translation

is much longer than that for internal motion at large q-values. Previous work has

demonstrated that even proteins with significant internal motion have an effective

Dc(q) identified by NSE that is dominated by contributions from translational motion

at high-q.[29] Thus, differences in mAb1 and mAb2 diffusive motion can be confidently

determined by identifying differences in their Dc(q).

A complete summary of all short-time self diffusion coefficients extracted from

NSE data are provided in Fig. 6.8, including absolute values (a, b) and normalized

values of Ds/D0 (c,d), where the bare diffusion coefficient, D0, was calculated as the

infinitely dilute limit of the low concentration DLS results. Without salt, the Ds of

mAb2 is always larger than that of mAb1. Adding 150 mM NaCl actually increases

Ds for mAb1, while it slightly decreases that of mAb2, such that they become nearly

identical. The decrease of temperature from 25◦C to 5◦C causes the mobility of both

mAbs under both salt conditions to decrease. However, this reduction results from

the corresponding increase in solvent viscosity, reduced thermal energy, and changes

in inter-protein interactions. Normalization by D0 removes the influence of the former

two variables, thus leaving changes in interactions as the cause of changes in Ds/D0

values.

The values of Ds/D0 in Fig. 6.8 demonstrate changes with antibody type,

concentration and the salt content of the buffer. Regardless of the protein or salt

content, Ds is equal to the free diffusion coefficient of a monomer at the lowest protein

concentrations. However, with increasing mAb concentration, the behavior of mAb1

and mAb2 differ significantly. Interestingly, the value of Ds/D0 for mAb2 solutions
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Figure 6.7: The short-time collective diffusion coefficients determined from NSE data
are plotted as a function of q-value for solutions of mAb1 at (a) 5 ◦C and
(c) 25 ◦C and for mAb2 at (b) 5 ◦C and (d) 25 ◦C. Samples with 0 mM
NaCl are open symbols and those with 150 mM NaCl added are filled
symbols. The lines represent the average value used to determine the
short-time self diffusion coefficient.

222



Figure 6.8: Short-time self diffusion coefficients are plotted as a function of protein
concentration for formulations with salt concentrations of (a) 0 mM and
(b) 150 mM at 5 ◦C (blue symbols) and 25 ◦C (red symbols). For clar-
ity, filled circles and open triangles represent mAb1 and mAb2 samples,
respectively, at both salt conditions. The same symbols are used for the
normalized values Ds/D0 with (c) 0 mM and (d) 150 mM added NaCl.

remains about one up to concentrations of 50 mg/mL despite the increasing strength

of repulsive interactions reflected in Fig. 6.4d. Note that even in hard sphere systems,

Ds/D0 decreases at equivalent densities.[1, 16, 20] Therefore, the decrease of Ds/D0

when increasing mAb2 concentration above 50 mg/mL is a result of hydrodynamic

interaction effects at larger densities.[1, 23] This is consistent with previous simulations

and experiments that indicate mAb2 remains dispersed as monomers up to at least

150 mg/mL without added salts.[4, 26, 34] Further, reducing the temperature has

no significant impact on the normalized diffusivity, suggesting that mAb2 remains

dispersed as single mAbs in solution at low temperatures as well.
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The addition of 150 mM salt to mAb2 causes Ds/D0 to shift to lower val-

ues at protein concentrations ≥ 50 mg/mL at both 5◦C and 25◦C. The result is a

consistent decrease in diffusivity with increasing concentration from the very dilute

limit. Although mAb2 appears to become less mobile over short times with the ad-

dition of NaCl, mAb2 interactions become more HS-like with the addition of salt, as

demonstrated in Fig. 6.3b. The correlation between the weaker repulsive forces and

slower short-time self diffusion may be caused, in part, by more abundant association

of neighboring mAb2 antibodies that enhances hydrodynamic interactions.

Increasing mAb1 concentration without added salt also results in a decrease

in Ds/D0, as shown in Fig. 6.8. This behavior is similar to that for solutions of

mAb2 with 150 mM added salt, but with a more significant drop in magnitude over

the same range of protein concentrations. Values of Ds/D0 are comparatively small in

mAb1 solutions without added salt due to strong anisotropic attraction combined with

repulsion.[34] The significantly slower diffusion of mAb1 relative to mAb2 in solutions

of 0 mM NaCl confirms that mAb1 cluster formation persists to very high protein

concentrations. However, these clusters become unstable in the presence of 150 mM

salt, as reflected by the nearly identical values of Ds/D0 between mAb1 and mAb2 in

Fig. 6.8d.

Similar to mAb2, changing the temperature from 25◦C to 5◦C has no appar-

ent effect on the normalized diffusivity of mAb1, which shows the primary effect of

temperature is to change the solvent viscosity.

Given the “ideality” of mAb2 solutions, in that they remain dispersed as monomers

over the range of protein concentrations studied, mAb2 diffusivity can be used as a

standard to estimate an effective size of clusters in mAb1 solutions with more signifi-

cant inter-protein interactions. In particular, the proportionality Rh ∝ 1/Ds (the exact

relationship is provided by Eq. 2.20 in Chapter 2) allows the ratio of Ds/D0 values for

mAb2 relative to mAb1 at the same concentration under the same solution conditions

to quantitatively represent a mAb1 cluster size. The estimated size indicates the dom-

inant moving unit in the short time limit. This effective hydrodynamic cluster size,
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Rh/R0, is shown in Fig. 6.9 as a function of mAb concentration, temperature, and salt

content. Here, the bare size of a monomer, R0, is determined by the value of D0 in the

infinitely dilute protein limit determined by DLS under each solution condition.

The effective radii of mAb1 in solution, as shown in Fig. 6.9, clearly differentiate

the moving unit between solutions with 0 mM and 150 mM sodium chloride. Without

added salt, mAb1 appears to form clusters with an effective radius of about 1.6 times

larger than a monomer at a protein concentration of 50 mg/mL. This Rh/R0 remains at

about 1.6 up to about 100 mg/mL at 5◦C and up to about 150 mg/mL at 25◦C before

decreasing slightly at higher concentrations (this will be discussed in more detail later).

Interestingly, DLS (and SAXS) results for samples at low concentration and no added

salt, shown in Fig. 6.5, indicate that dynamic clusters with an effective hydrodynamic

size of about 1.6 also form at concentrations as low as 10 mg/mL. Interestingly, DLS

values of Rh even begin to increase above that of a monomer at a protein concentration

of 2 mg/mL. Thus, the data suggest that mAb1 forms small dynamic clusters at very

low concentration until about 10 mg/mL, when the system is nearly entirely composed

of small clusters (whose average molecular mass is that of a dimer). These small

dynamic clusters then remain constant in size up to about 150 mg/mL. Thereby, the

number density of these small clusters increases with increasing protein concentration.

This behavior is qualitatively different from cluster formation in globular protein

solutions, such as lysozyme, where clusters only form at relatively high concentrations

(> 100 mg/mL) due to isotropic short-range attraction and long-range repulsion[9, 11]

and the average size increases with the increase of the volume fraction.[8, 23] The con-

stant size of mAb1 clusters over the tested concentration ranges of protein and added

salt can be attributed to the anisotropic (possibly site specific) attraction between

mAb1 antibodies, as suggested/observed previously.[4, 34]

Computer simulations were used in previous work to identify representative mor-

phologies of mAb1 dimers formed in solutions without salt.[33] Dimers were constructed

by associating two mAbs together with various configurations using SASSIE.[5] The

most representative dimer structures were those with the closest corresponding Rg to
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Figure 6.9: Effective hydrodynamic radii of mAb1 clusters are shown relative to
protein concentration at 5 ◦C (blue symbols) and 25 ◦C (red symbols) for
salt concentrations of 0 mM (open symbols) and 150 mM (filled symbols).

the experimental Rg of mAb1 clusters (≈ 6.9 nm at 10 mg/mL), as shown in Fig. 6.5.

From about 23,000 configurations, the experimental Rg could only be reproduced by

those trial configurations with an extended structure.[33] Thus, mAb1 clusters likely

have a similar configuration at high protein concentrations. Such a structure is quali-

tatively consistent with site specific interactions.

In contrast to mAb1 samples without added salt, values of Rh/R0 in Fig. 6.9 for

samples with added 150 mM NaCl remain about one at all concentrations. However,

the increase in magnitude of Seff (q) at low-q for mAb2 with salt in Fig. 6.3 suggests

that the isotropically averaged repulsive (stabilizing) force is weaker. As a result, mAb2

with salt may not be a “model” monomeric system, which was used as an assumption

in estimating an effective hydrodynamic size of mAb1 clusters in samples without salt.

Removing this assumption reveals that Rh/R0 = Ds(mAb2)/Ds(mAb1) ≈ 1 simply

suggests an equivalent short time mobility of mAb1 and mAb2 in the presence of 150

mM NaCl. Studying the trends in viscosity will help clarify the forces leading to this

peculiar behavior of mAb1 and mAb2.
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6.3.6 Cluster-Viscosity Correlation

The formation of dynamic clusters in mAb1 samples without added salt as

demonstrated in Fig. 6.9 and the commensurate, dramatic increase of mAb1 solution

viscosity shown in Fig. 6.1 over the same range of protein concentrations suggests a

correlation between these two properties. This observation suggests that the solution

viscosity can be controlled by the extent of cluster formation. In the absence of salt,

the SANS and NSE evidence suggests that mAb2 is well dispersed and, as a result, its

viscosity in Fig. 6.2 is similar to that of a HS fluid of comparable volume fraction in

solution. Note that the determination of the effective hard sphere volume fraction is

solely based on the density of the mAb and does not account for shape and interactions.

The significantly larger viscosity of mAb1 in solution is consistent with the formation

of small dynamic clusters with elongated structures, which will have a larger effective

volume than two individual mAbs. Molecular dynamics simulations further suggest

that Fab-Fab interactions are much more prevalent in mAb1 than that in mAb2.[4]

Therefore, cluster shape and inter-cluster interactions are both expected to contribute

to the greatly enhanced viscosity of mAb1 solutions.

The decrease in mAb1 solution viscosity with increasing salt content shown in

Fig. 6.1 corresponds directly with the mitigation of dynamic cluster formation that

occurs by adding salt, demonstrated in Fig. 6.9. This provides further evidence that

the initial rise in viscosity with mAb1 concentration without added salt is caused by the

formation of small reversible clusters. However, after the addition of 150 mM NaCl,

the viscosity of mAb1 solutions remains larger than that of mAb2 solutions despite

that the moving units of both are nearly identical in size.

By revisiting the SANS data, the strong increase in magnitude of I(q) at low

q-values with the addition of salt can be associated with the onset of a large length

scale structure induced by transient mAb1 association. Scattering intensity, as well as

the viscosity, of mAb1 solutions are larger than those of mAb2 solutions due to the

slightly stronger interactions. Thus, while mAb1 attraction is weaker with added salt,

it remains strong compared to mAb2, which was also observed in a previous study.[26]
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Figure 6.10: (a) The average separation distance between nearest mAbs (solid line),
davg, is compared against the effective hydrodynamic diameter (dashed
lines) of a mAb monomer and dimer as a function of protein concentra-
tion. (b) Maximum theoretical effective Rh/R0 (solid line) as a function
of concentration compared to estimates from NSE for mAb1 at 5◦C and
25◦C.

This enhanced strength of attraction is expected to lead to a transient macromolecular

network formed by weakly associated mAb1 monomers resulting in an enhancement of

the viscosity relative to mAb2 solutions under similar conditions.

At very large concentrations, the large viscosities of mAb1 solutions without

added salt also have significant contributions from inter-protein interactions, similar

to the case of mAb1 solutions with added salt. The interactions in the former case are

between dimers while in the latter are between monomers. Up to a protein concentra-

tion of about 100 mg/mL, the larger effective volume and steric hindrance of elongated

dimers in mAb1 solution without added salt is correlated with the increase in viscosity.

However, the apparent decrease in Rh/R0 shown in Fig. 6.9 at higher concentrations is

inconsistent with a direct correlation between cluster formation and enhanced solution

viscosities. Therefore, while dimers are still present in mAb1 solutions without added

salt (Rh/R0 > 1), the continual increase in viscosity is proposed to result from dimer-

dimer interactions. Modeling the trend in the effective hydrodynamic cluster size with

protein concentration can provide insight into the onset of what appears to be stronger

cluster interactions.
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The decrease of the effective mAb1 cluster size in samples without salt above

a concentration of about 100 mg/mL is a manifestation of the breakdown in assump-

tions inherent to the calculations of Rh/R0. The high protein density in samples

with a concentration above 100 mg/mL prevent a direct comparison of monomer and

dimer (or larger cluster) mobility due to steric constraints. The short-time self diffu-

sivity reflects the influence of protein interactions, microstructure and hydrodynamics

on protein mobility. However, the soft, anisotropic and extended structure of mAb

dimers suggests that the ensemble of configurations they can sample will be strongly

influenced by the surrounding microstructure; much more so than monomers. This is

readily demonstrated by considering a calculation shown in Fig. 6.10a by comparing

the effective hydrodynamic diameter, 2Rh, of monomers (Rh ≈ 5.3 nm) and dimers

(1.6 times the size of a monomer) with the average distance separating neighboring

mAbs, davg = (1/ρ)1/3, where ρ is the protein number density. This comparison indi-

cates that at about 100 mg/mL, dimers in an isotropically dispersed structure would

have a smaller center-to-center separation than the hydrodynamic diameter of their

“preferred” extended structure. Dividing davg of a monodisperse solution of dimers by

the Rh of a monomer produces an estimate of the maximum possible apparent Rh/R0

for mAb1 dimers. The result shows remarkably good agreement with the estimates of

Rh/R0 using NSE data at 25◦C in Fig. 6.10b. Thus, rather than a reduction in the

fraction of dimers (assuming a constant effective dimer size), the decrease in Rh/R0

can be interpreted as a transition in cluster configuration to a more compact dimer

structure due to crowding effects at higher concentrations. In another context, the

same decrease in Rh/R0 can be interpreted as a reduction in mAb1 cluster mobility

due to enhanced hydrodynamic and/or inter-cluster interactions.

Changes in mAb2 solution viscosity with a change in temperature suggest that

interactions can become important at high protein concentrations, even for a well

dispersed protein. Although viscosity data for samples of both mAbs without added

salt at 5◦C is unavailable, the magnitude of a 150 mg/mL sample can be estimated by

extrapolating the trend in the viscosity with varying amounts of salt in Fig. 6.1b to the
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limit of 0 mM NaCl. Due to the negligible effect of NaCl on mAb2 solution viscosity, the

influence of temperature will be consistent at all salt conditions. After normalization

with the solvent viscosity at the corresponding temperature, mAb2 viscosities at 5◦C

are still roughly twice as large as those at 25◦C. This increase in reduced viscosity is

a reflection of stronger interactions between mAb2 monomers dispersed in solution at

lower temperature (regardless of salt content). While differences in Seff (q) at low-q for

mAb2 solutions in Fig. 6.4 appear negligible, even a marginal increase in interaction

strength can produce larger viscosities and slower short time monomer diffusion due

to the closer proximity of neighboring antibodies at high protein concentrations.

The temperature dependence of Rh/R0 for mAb1 in solution without added

salt, shown in Fig. 6.9 and Fig. 6.10b, suggests that the effective interactions influence

the cluster mobility. The smaller apparent dimer size in mAb1 samples without added

salt at 5◦C does not necessarily indicate that dimers no longer form. Rather, the

reduction in Rh/R0 is an artifact of normalizing mAb1 diffusivity by a mobility of

mAb2 monomers that have reduced mobility due to enhanced inter-protein interactions.

Consequently, while densely packed dimers are believed to reduce the viscosity,[14] the

close proximity of more compact dimers at higher protein concentrations leads to close-

range interactions. Though a crowded environment may hinder the rearrangement of

neighboring antibodies to become oriented in the lowest energy configuration, the small

spacing allows very short range interactions to become significant contributions to the

solution properties. Therefore, dimer interactions are expected to lead to a continual

increase in viscosity in this high concentration regime with crowded local structures.

6.4 Influence of Solvent

By utilizing neutron scattering techniques to study the structure and dynamics

of mAb formulations under concentrated conditions, the experimental signal-to-noise

ratio was maximized by dissolution in heavy water. However, formulations of com-

mercially available antibody-based therapeutics are dispersed in normal water. This

difference may have a strong influence on the resulting solution properties, especially
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Figure 6.11: The reduced zero-shear viscosities of mAb1 (circles) and mAb2 (trian-
gles) are compared between formulations of D2O (empty symbols) and
H2O (half-filled symbols) at 25◦C and 0 mM NaCl. These results are
plotted relative to HS predictions (solid line).

if inter-protein interactions have a significant contribution from hydrogen bonding or

hydrophobic forces. It is reported that the strength of hydrogen bonding of deuterium

is stronger than that of hydrogen, [18] which would directly impact the solution struc-

ture in the case of hydrogen bonding mediated mAb-mAb interactions. If the mAb of

interest has significant patches of hydrophobic surface residues, the stronger hydrogen

bonding of deuterium would indirectly strengthen the hydrophobic force in heavy water

due to a larger energetic “penalty” for deforming the surrounding water structure rela-

tive to normal water. Therefore, to test the influence of hydrogen-deuterium exchange

on the viscosity and dynamics of mAb1 and mAb2 solutions, samples in buffers com-

posed of both solvents are explicitly compared using DLS and SAXS, which is much

less sensitive to isotope differences as compared to SANS.

The viscosity of mAb1 and mAb2 solutions with identical buffer compositions

(with no added salt) suspended in H2O and D2O are compared in Fig. 6.11 relative to

predictions for a HS fluid. To compare experimental data with the HS colloidal model,

protein concentration is converted to an effective volume fraction as described earlier

and demonstrated in Fig. 6.2. The relative viscosity of mAb2 solutions is independent
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Figure 6.12: Values of Rg determined from SAXS data are shown for mAb1 (circles)
and mAb2 (triangles) samples with (a) 0 mM and (b) 150 mM added
sodium chloride salt. Formulations in H2O are half-filled samples and
in D2O are empty and filled symbols (0 mM and 150 mM NaCl, respec-
tively).

of the solvent at all protein concentrations. In contrast to mAb2, the solvent influences

the solution viscosity of mAb1 more significantly. At elevated protein concentrations,

solutions composed of H2O are considerably less viscous than those in D2O. Therefore,

identifying the underlying influence of the solvent on inter-protein interactions requires

further study of the resulting differences in the microstructure and dynamics.

Differences in mAb association when dissolved in H2O and D2O are compared

through analysis of SAXS scattering profiles. Following an identical protocol to that

described earlier in the chapter, an apparent radius of gyration and molecular mass

can be estimated by a Guinier analysis of low-q SAXS data. The effective Rg of mAb1

and mAb2 in both solvents are compared in samples without salt (Fig. 6.12a) and with

150 mM NaCl (Fig. 6.12b). Furthermore, the apparent molecular weight is provided

for an identical set of solution conditions in Fig. 6.13.

As was observed with the viscosity of mAb2 solutions, changing between H2O

and D2O has no effect on the effective hydrodynamic size of mAb2 antibodies in so-

lution. Additionally, the shift in apparent molecular mass with protein concentration

is nearly identical in both solvents and at both salt conditions. Hence, mAb2 remains
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Figure 6.13: The same symbols as in Fig. 6.12 are used to distinguish the apparent
molecular weight of formulations in H2O and D2O.

well dispersed, regardless of the solvent used.

In contrast to mAb2, the solution behavior of mAb1 is quite sensitive to the

solvent. For samples without salt, the effective cluster size in mAb1 solutions in H2O

are smaller than those in D2O. Interestingly, while the apparent molecular weight

of mAb1 in H2O does not reach as large of a maximum as found in D2O, they are

relatively similar. This indicates that mAb1 associates into dimers without added salt

in both solvents. Utilizing a lever rule, in which the effective Rg indicates the relative

amount of monomers and dimers, suggests that a smaller a fraction of dimers form in

H2O. The addition of NaCl has already been demonstrated to prevent association of

mAb1 into small clusters, which is true for both deuterated and hydrogenated water.

However, the maximum in mAb1 apparent molecular weight observed in D2O samples

with 150 mM salt disappears when transitioned to buffers composed of H2O.

Changes in viscosity with buffer composition can be interpreted physically by

the changes in solution structure presented in Fig. 6.12 and Fig. 6.13. The viscosity

of mAb2 solutions is independent of the solvent since mAb2 association is unchanged.

This lack of sensitivity to the solvent suggests that hydrogen bonding has a minimal

contribution to mAb2 interactions. By changing the solvent in mAb1 solutions from
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D2O to H2O, the extent of dimer formation is reduced, which corresponds with a de-

crease in solution viscosity by about a factor of two. This provides additional evidence

that the formation of small dynamic clusters directly enhances the viscosity in concen-

trated mAb formulations. Further, the smaller Mw,app values of mAb1 in H2O buffers

with added salt reflects the smaller magnitude of I(0) in the corresponding scattering

patterns. Thus, the transient network-like association thought to maintain the larger

viscosity of mAb1 relative to mAb2 in D2O with added salt is effectively destroyed

when in H2O. A weak peak in Mw,app of mAb1 solutions with added salt can still

be observed in Fig. 6.13, suggesting that a small amount of dimers may still form.

While the corresponding viscosity data is unavailable, the results of this chapter would

suggest that the viscosity of mAb1 and mAb2 in solutions of H2O with 150 mM NaCl

will be similar, but slightly larger for mAb1 solutions due to the coexistence of dimers

with monomers.

Two important conclusions can be made from examining the influence of sol-

vent on the solution properties of these two antibodies. First, studying antibodies in

heavy water is quantitatively representative of expected solution behavior in normal

water. Hence, the conclusions made in earlier sections of this chapter are applicable to

commercially relevant formulations. Further, explicitly comparing the structure and

dynamics in each solvent can (at least qualitatively) identify whether hydrogen bonding

or hydrophobic forces are a dominant contribution to the short range attractive interac-

tions between mAbs. This methodology can thus be utilized to explicitly characterize

their influence on solution properties, especially if the differences in hydrophobic and

polar surface residues between two antibodies is known.

6.5 Conclusions

The formation of small dynamic clusters in mAb1 solutions has been shown

to correlate directly with an increase in viscosity at elevated protein concentrations.

Increases in viscosity are explicitly attributed to the formation of clusters with an

extended conformation, which exclude a larger effective volume, and their resulting
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interactions. An interesting observation is that mAb1 forms a preferred cluster size

of a dimer at very low concentration (∼ 10 mg/mL) that is maintained up to very

high concentrations (∼ 150 mg/mL), above which crowding effects seem to force

cluster conformations to become more compact. These results agree with previous

experiments[31, 34] and simulations,[4] which all support the idea that the small dy-

namic clusters arise from specific interactions due to the local electric dipole effect.

Further, adding salt to these solutions decreases the average size of clusters, further sup-

porting the hypothesis of charge-dipole induced attraction. Consequently, the viscosity

is significantly reduced by reducing the cluster size. This suggests a unique method to

control solution viscosity by strict control of protein cluster formation. Through the

use of modern biomolecular engineering techniques (such as recombinant DNA), the

primary sequence can be engineered to produce a preferred tertiary structure to miti-

gate protein interactions such as those found in mAb1 solutions to cause prohibitively

large viscosities. The research presented in this chapter is a significant step towards the

fundamental understanding of protein clustering as well as the development of mAb

formulations with desired solution properties for commercial applications.
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Chapter 7

VISCOUS RESPONSE OF LARGE TRANSIENT CLUSTERS IN
CONCENTRATED MONOCLONAL ANTIBODY FORMULATIONS

7.1 Introduction

The successful commercialization of biopharmaceutical therapeutic products

is facilitated by understanding the relationship between protein structure and solu-

tion properties, such as stability or viscosity, in addition to the connection between

structure and biological functionality. A significant challenge in product development

is maintaining bioefficacy from production through storage and delivery, which can

be described by an energy landscape formed from effective intra- and inter-protein

interactions.[5, 11, 14, 30] Depending on the solution conditions (pH, temperature,

ionic strength, salt valency, etc.) and protein composition/structure, proteins may par-

tially unfold and irreversibly aggregate, or reversibly associate with each other while

maintaining their native structure.[32] While the former renders therapeutics ineffec-

tive or even deadly,[35, 36] the latter can have strong effects on manufacturability and

product delivery.[17, 42]

Both specific and nonspecific interactions contribute to protein association,

while the nonspecific interactions are more common and sometimes the determining

factor for certain complex protein structures.[33] It has been demonstrated in the previ-

ous chapter and other studies that some mAbs in solution under specific physiochemical

conditions can form small reversible clusters and exhibit a dramatic increase in solu-

tion viscosity with increasing concentration and/or decreasing temperature.[22, 44, 46,

47, 48, 49] Relatively small deviations to the primary sequence can cause an order of

magnitude difference in solution viscosity at elevated concentrations.[45, 46, 47, 50] As
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a result, biologically unimportant deviations in protein primary sequence can signifi-

cantly affect the ability to produce and deliver these mAbs as a therapeutic product.[42]

This chapter explores the solution behavior of a mAb similar to, but more hydrophobic

than, those explored in the previous chapter and is found to have equivalently large

viscosities depending on the solution conditions.

Due to the highly non-spherical shape and heterogeneous charge distribution on

its surface, mAbs are challenging to study, especially at high concentrations.[7, 44, 48,

49] The previous chapter and other recent work has extended the use of effective poten-

tials to model mAb formulations and show that a type of reversible cluster formation is

the underlying source of the anomalous transport properties observed at high protein

concentrations.[48, 49] In these solutions, in the presence of very low salt concentra-

tion, the formation of long lived, small, elongated clusters is driven by an anisotropic

electrostatic-driven attraction acting between mAbs. These clusters are the driving

force of a significantly high solution viscosity.[48] Adding salt in large amounts weak-

ens the anisotropic attraction, which reduces the number of clusters and results in a

significant decrease of the viscosity.

This chapter presents an IgG1 monoclonal antibody that has been the subject of

previous research showing a complex solution behavior as a function of protein concen-

tration, ionic strength and temperature.[22] Of particular relevance here, Lilyestrom

et al. showed that this mAb has both compact and elongated monomer structures at

very low concentration.[21] Importantly, this previous research demonstrates that the

tertiary conformation of mAb3 does not change with variations in temperature and

added sodium sulfate concentration. In further work, this group demonstrated that a

very slight increase in mAb concentration in the presence of Na2SO4 produces extended

dimers as shown by small angle X-ray scattering.[22] Furthermore, reversible cluster

formation is observed with increasing mAb concentration as derived from modeling of

static light scattering results.[22, 38] The authors conclude that the dilute and semi-

dilute mAb solution viscosity correlates linearly with the equilibrium cluster size.[22]
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However, important questions remain about the structure of the clusters in concen-

trated solutions, the dynamic exchange of proteins in and out of these clusters, and

the quantitative relationship between these dynamic clusters and the rheology.

Methods to address these questions on the nanoscale have been demonstrated so

far in this dissertation and in prior work by combining neutron spin echo, small angle

neutron scattering, dynamic light scattering and rheology. These methods have shown

both similarities as well as differences in the behavior for concentrated solutions of

several monoclonal antibodies. In particular, the behavior of this mAb with added salt

is contrary to prior reports for a related mAb discussed in the previous chapter.[48, 49]

The work by Lilyestrom et al. is complimented in this chapter by investigating

the motion of the same mAb on the nanosecond and nanometer time scales to identify

the fundamental diffusing units over similar solution conditions. The combination of

neutron techniques with DLS and viscosity measurements shows that the underlying

physical mechanism driving the high viscosity in concentrated mAb solutions is similar

for both mAb solutions. Namely, the increase of viscosity is due to the formation of re-

versible protein clusters. However, the inter-protein microstructure is found to be even

more complex in the current study. Using neutron scattering techniques, the addition

of salt is shown to promote the formation of small clusters that persist to high concen-

tration. Importantly, the strongly bounded, small clusters interact with each other to

form loosely bounded transient networks, probed by rheology. This hierarchical struc-

turing of clusters is different from the observations reported in the previous chapter,

and significantly increases the viscosity of the concentrated protein solutions. There-

fore, this study builds upon previous work[22] by explicitly measuring the structure

and dynamics over a range of conditions to identify the physical mechanism underlying

the significant increase in solution viscosity with increasing mAb concentration. The

body of work presented in this chapter is composed of published results.[16]
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7.2 Materials and Experimental Techniques

7.2.1 Materials

The monoclonal antibody examined in this chapter is a humanized IgG1 protein

produced by Genentech, Inc. referred to as mAb3 as the two mAbs in the previous

chapter were labeled mAb1 and mAb2. However, mAb3 as it is labeled here is the same

antibody referred to as mAb1 in two previous publications.[21, 22] The protein was

expressed in Chinese hamster ovarian (CHO) cells and subsequently purified by multi-

ple chromatographic methods including ion exchange chromatography. The antibody

was then dialyzed into a buffer composed of 20 mM L-histidine hydrochloride (His-Cl)

in deuterium oxide (D2O or heavy water) at pH 6.0 with 0.02 wt% polysorbate-20

surfactant and two concentrations of sodium sulfate salt (0 mM and 50 mM). A stock

solution with a mAb3 concentration of 150 mg/mL was obtained using tangential flow

filtration and diluted for all concentrations studied. All samples were stored at 4 ◦C be-

tween production and experimentation. Samples with 50 mM Na2SO4 were fabricated

by spiking the salt free stock solution with a 1 M Na2SO4 buffer solution.

7.2.2 Small Angle Neutron Scattering

Small angle neutron scattering (SANS) experiments were analyzed as discussed

in Chapter 2 using previously reported protocols and methods.[31, 48, 49] The scat-

tering intensity was obtained over scattering vectors or q-values ranging from 0.003

Å−1 to 0.53 Å−1. All samples were held in standard quartz Hellma cells at ILL and

custom titanium cells with quartz windows at NCNR. Low concentration samples were

studied using cells with a 2 mm path length to enhance intensity with minimal multiple

scattering effects, while concentrated samples were studied in cells with a 1 mm path

length. A range of mAb concentrations were studied at two temperatures, (5◦C and

25◦C).

The scattering intensity from a solution of isotropic, monodisperse scatterers is

a function of the particle volume fraction, φ, the volume of one individual particle, V ,

and the scattering length density (SLD) difference between the particle and solvent, ∆ρ,
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as outlined in Chapter 2. Particle shape is represented by the normalized particle form

factor, P (q), that is the Fourier transformation of the intra-particle density correlations.

Lastly, inter-particle correlations are represented by the solution structure factor, S(q),

which is related to the Fourier transformation of the pair distribution function, g(r).[51]

The scattering intensity from a solution of (slightly) non-spherically symmetric

particles such as mAbs, for which the intra- and inter- particle correlations cannot be

decoupled, is represented by[8, 24]

I(q) = φV (∆ρ)2P (q)[1 + β(q)(S(q)− 1)] +B. (7.1)

Here, all parameters have been defined previously in Chapter 2 except β(q), the de-

coupling function, which is a q-dependent function of the protein shape. Practically,

β(q) is used to relate the experimentally accessible function Seff (q), defined previously

as the term in square brackets in Eq. 7.1, to the theoretically predictable function

S(q), the structure factor of a spherically symmetric system. Thus, a coarse-grained

12 bead model of mAb structure, discussed in detail in the following section, is fit to

the mAb form factor to calculate β(q). Here, a 2 mg/mL sample under each solution

condition studied is used to represent P (q). By minimizing the residual between the

data and model, the most representative protein conformation can be observed in real

space coordinates. For the purposes of this study, the model is sufficiently sensitive

enough to distinguish between compact and elongated structures.

Using integral equation theory, S(q) can be directly related to the parameters

of an effective interaction potential for a system with an isotropic interaction.[27] Even

though mAb proteins have anisotropic interactions, the experimental data can be effec-

tively fit using an isotropic interaction potential to approximately evaluate the potential

parameters at different conditions. However, one must be cautious when interpreting

these fitting results. Previous studies have successfully represented globular protein in-

teractions by a combination of attractive and repulsive forces.[6, 9, 25] Therefore, the

data are fit with the hard sphere double Yukawa (HSDY) potential, discussed in detail
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in previous chapters. Estimates of the structure factor are generated by combining the

HSDY potential with a thermodynamically self-consistent closure relation.[19]

The ensemble average radius of gyration, Rg, and molecular weight, Mw, can

be calculated in the limit of very small q-values, and are used to quantify the effect of

solution conditions on the extent of mAb clustering. Specifically, the Guinier analysis

method described in the previous chapter can be used to calculate Rg from the slope

of Eq. 6.1 and Mw by Eq. 6.2 using the extracted value of I(0). However, as the

concentration is increased, interactions will become a significant contribution to scat-

tering at low q-values. Therefore, the molecular weight extracted from such an analysis

will be an apparent molecular weight, Mw,app, similar to that obtained by static light

scattering.[21, 22]

7.2.3 Form Factor Modeling

To quantify the effect of solution conditions on inter-protein interactions, SANS

data are normalized according to Eq. 7.1 and fit using the Ornstein-Zernike equation

and a closure relation (Eq. 2.7 and Eq. 2.9, respectively) with the HSDY potential (Eq.

2.1 in Chapter 2) to quantitatively extract interaction parameters. The conformation

of a protein in solution is coupled to the structure factor such that using a spherically

averaged protein conformation for the form factor, P (q), leads to an effective structure

factor, Seff (q), in Eq. 7.1. The Seff (q) function can be related to the actual structure

factor, S(q), through the decoupling function. A method is presented here to quantify

the scattering contributions of the non-spherically symmetric mAb structure and their

center of mass correlations in solution.

Equation 2.11 is a physically intuitive representation of the q-dependence of

the scattering intensity that is derived from a more fundamental relationship for the

particular scenario of a monodisperse suspension of isotropic scatterers. More generally,

the scattering intensity, I(q), is related to the correlation of the scattering length
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Figure 7.1: Scattering intensities are plotted as a function of q-value for six different
mAb form factor structures represented by the 12 bead model, shown
below (inset highlights the middle q-range).
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densities in solution by

I(q) =
1

V

〈[∫
V

ρ(r)eiqrdr
][ ∫

V

ρ(r′)e−iqr
′
dr′
]〉

, (7.2)

where ρ is the neutron SLD at a given position, r, and the angled brackets indicate an

average over all orientations. Introducing the center of mass location of a centralized

particle, ri, and a position relative to this particle as x = r− ri, Eq. 7.2 can be further

decomposed into the product of correlations within a particle and between particles as

I(q) =
1

V

〈
N∑
i=1

N∑
j=1

Fi(q)F
∗
j (q)e−iq(ri−rj)

〉
, (7.3)

where F (q) is the Fourier transformation of the spacial distribution of neutron scatter-

ing length densities defined as

F (q) =

〈∫
Vp

ρ(x)eiqxdx

〉
(7.4)

and Vp indicates the integral is performed over the volume of a particle. In a system

of spherically symmetric particles, the intra-particle and inter-particle correlations can

be decoupled (i.e., 〈AB〉 = 〈A〉〈B〉), leading to a simplification of Eq. 7.3 to

I(q) =
N

V

〈
Fi(q)F

∗
j (q)

〉〈
1

N

N∑
i=1

N∑
j=1

e−iq(ri−rj)

〉
, (7.5)

which is identical to Eq. 2.11, where the right bracket in Eq. 7.5 is the definition of S(q).

Since the system is composed of identical particles then 〈Fi(q)F ∗j (q)〉 = 〈|F (q)|2〉 =

P (q), which is referred to as the particle form factor.

In the case of asymmetric particles, the orientational average of intra-particle

density correlations can be decomposed, as demonstrated previously,[8] according to

〈Fi(q)F ∗j (q)〉 =
(
〈|F (q)|2〉 − |〈F (q)〉|2

)
δij + |〈F (q)〉|2, (7.6)

where δij is the Kronecker delta function. The decoupling function, β(q), is then defined

as

β(q) =
|〈F (q)〉|2

〈|F (q)|2〉
, (7.7)
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Figure 7.2: (a) Scattering intensities and (b) decoupling functions are plotted over
a range of q-values for four dimer form factors constructed from the 12
bead model shown below.

which normalizes the orientation dependence of the scattering amplitude by the average

scattering magnitude. Substitution of Eq. 7.7 and Eq. 7.6 into Eq. 7.5 results in

I(q) =
N

V
〈|F (q)|2〉

(
1 + β(q)[S(q)− 1]

)
. (7.8)

Once a suitable geometric form is chosen, the same functional form of β(q) can be used

to normalize the scattering intensity under all solution conditions as it is a function of

shape only.

A representative shape is constructed to numerically calculate the decoupling

function while imposing geometric and chemical constraints. For the former, the com-

plex multi-domain structure of mAbs has been represented previously in coarse-grained

dynamic simulation studies using spherical beads with particular orientations.[7] This

shape is mimicked using 12 spheres arranged in three groups of four beads to approxi-

mate each of the three arms in a mAb, depleted for several configurations in Fig. 7.1.

The size and orientation of all 12 spheres are allowed to vary to best fit the experi-

mental data, requiring 13 parameters. The latter constraint of chemical similarity is

imposed via the SLD difference. An estimate of mAb3 SLD is calculated using its
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Figure 7.3: (a) The mAb3 crystal structure is shown, with each domain given a
different color. The best fit structures from the 12-bead model of a 2
mg/mL mAb3 sample with (b) 0 mM and (c) 50 mM sodium sulfate salt.
The monomeric structure is compared with the crystal structure in (b).

primary sequence and theoretical values for the intrinsic volume and neutron SLD of

each amino acid.[18] Each sphere in the model has the same SLD, which is adjusted

by a few percent of the calculated value to fit the data. Uncertainty in the density

and hydration layer is allowed for by this slight adjustment in the SLD. The error be-

tween fitted and theoretical values was accounted for when the model sphere SLD was

normalized by its volume relative to the protein such that the values of the pre-factor

φV (∆ρ)2 were nearly identical.

To demonstrate the sensitivity of the given model to different mAb conforma-

tions, a variety of orientations of the 12 spheres is constructed and their theoretical 1-D

SANS profiles subsequently calculated. The results are provided in Fig. 7.1 with their

corresponding structures. The most notable difference between scattering patterns of

the six conformations is in the intensity at the slight peak and shoulder observed at

q-values of roughly 0.2 Å−1 and 0.1 Å−1, respectively. The inset focuses on the slight

differences in this q-range. A similar trend is observed in Fig. 7.2 for models of a mAb

dimer composed of four different orientations of two identical monomer structures. The

inset indicates that SANS intensities are less sensitive to changes in the configuration

of dimers as compared to monomers. However, the second panel in Fig. 7.2 demon-

strates a significant shift in the decoupling function intensity to higher q-values for

250



Figure 7.4: The decoupling functions corresponding to the best fit structures pictured
in Fig. 7.3 are plotted as a function of q-value. The range of q-values over
which smearing of protein interactions becomes significant, β(q) < 0.1,
is shifted between the monomer and dimer structures.

more compact dimer structures. When normalizing the effective structure factor, such

a shift could produce large deviations in the q-dependence of S(q).

The most representative 12 bead model structures are shown in Fig. 7.3 by fit-

ting a 2 mg/mL sample under each condition of sodium sulfate. In the case of no added

electrolyte, the crystal structure of mAb3 is compared to the best fit coarse grained

monomer structure. Both structures are remarkably similar, showing that configura-

tions do not differ between the solid and fluid states. Fitting the form factor with

50 mM sodium sulfate required using a dimer structure composed of two monomers,

each with a structure nearly identical to the configuration extracted from the sample

without salt as the basic scattering unit. As seen from the image, the dimer appears

elongated (that will be demonstrated later to agree with low concentration SANS and

DLS data). The corresponding decoupling functions are plotted in Fig. 7.4 for these

two model structures. Clearly, the larger and more elongated dimer leads to a decay in

β(q) intensity at smaller q-values. Normalized structure factors will therefore have a

more significant smearing of mAb-mAb correlations in solutions with sodium sulfate.
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7.2.4 Neutron Spin Echo

Samples were prepared for neutron spin echo (NSE) experiments on site, pipet-

ted into 1 mm square quartz cells, and stored in a custom temperature controlled

sample chamber. All samples were allowed 30 - 60 minutes to reach thermal equi-

librium at each of the temperatures studied. Intermediate scattering functions (ISF),

represented as Fs(q, t), were obtained with the correlation time up to 50 ns at 30 - 35

q-value points ranging from 0.03 Å−1 to 0.20 Å−1 at each sample condition studied.

As a reminder, NSE is used to probe the short time dynamics over a range of

lengthscales, defined as correlation times within the Brownian dynamics regime. This

timescale is defined as τB � t � τI , where τB is the momentum relaxation time and

τI = (R2
g)/D0 is the structural relaxation or interaction time.[1] Based on the protein’s

size (Rg ≈ 5 nm) and bare diffusion (D0 ≈ 37µm2/s at 25 ◦C), the NSE correlation

times explored here probe the short-time diffusion of mAb3.

In the short-time limit, the ISF is fit with a single exponential function to extract

a q-dependent collective diffusion coefficient, Dc(q), where Dc(q) = D0(H(q)/S(q)) and

D0 is the free diffusion coefficient representing particle mobility in the infinitely dilute

limit.[1, 29] The hydrodynamic function, H(q), represents the effect of hydrodynamic

interactions due to the flow of solvent molecules generated by particle motion. H(q)

can be decomposed into a q-independent term, Ds/D0, the short-time self diffusion

coefficient, and a distinct hydrodynamic function, Hd(q;S(q)), which is a function of

the solution structure factor and therefore particle interactions. In the limit of large

q-values, S(q) approaches a value of 1 and lim
q→∞

H(q) = Ds/D0, leading to lim
q→∞

Dc(q) =

Ds.[12, 31] Therefore, the short-time self diffusion of mAb3 can be extracted from the

high q-value limit of NSE data.

7.2.5 Dynamic Light Scattering

A DynaPro NanoStar instrument was used for dynamic light scattering (DLS)

measurements of mAb formulations over a range of concentration and temperature

conditions. All samples were allowed to thermally equilibrate at each temperature for
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30 minutes before taking five independent measurements of the scattered intensity.

The instrument was operated with a 663 nm wavelength laser at 90◦ scattering angle.

The scattering wave vector was calculated according to q = [4π/λ] sin[θ/2], where n is

the refractive index of the sample determined by n = ns + cmAb(dn/dc). The solvent

refractive index, ns, was assumed equal to pure D2O (1.328) and the concentration

dependence was captured by a value of dn/dc = 0.185 mL/g.

The output from the DLS experiments is a digital autocorrelation function that

is analyzed as discussed in Chapter 2 in order to quantify the collective diffusion coef-

ficient. In the limit of high protein concentration, multiple relaxation modes may exist

in solution, which is revealed by a non-linear slope when plotting the ISF as a function

of time on a semi-log plot. The dynamics in mAb solutions appears to transition from

a single relaxation mode to two modes with increasing concentration. Therefore, the

ISF is modeled using a double exponential decay, which extracts a primary, DC,1(q),

and secondary, DC,2(q), relaxation mode according to:

Fs(q, t)

Fs(q, 0)
= A1 exp[−q2Dc,1(q)t] + A2 exp[−q2Dc,2(q)t]. (7.9)

At low concentration, the effective hydrodynamic radius, Rh, can then be estimated

according to the Stokes-Einstein-Sutherland relation

Rh =
kT

6πηsDc,1

, (7.10)

where ηs is the solvent viscosity and k is the Boltzmann constant.

7.2.6 Rheology

The viscosity of each mAb sample was obtained using an Anton Paar MCR-

301 rheometer with a titanium cone (50 mm, 0.3 degrees), which required a sample

volume of 175 µL. Each sample was allowed to equilibrate at each temperature for

20 minutes, during which a solvent trap was used to minimize solvent evaporation.

Steady shear measurements were made by ramping the shear rate, γ̇, up from 10s−1 to

10, 000s−1 and back down to check for reversibility. The viscosity at each shear rate was
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determined from the average stress measured over a given time window, which followed

the logarithmic shift in shear rate from 30s−1 to 5s−1. The zero shear viscosity was

calculated as the average value of the data points within the plateau region at low shear

rate. The upper limit of this region varied from 200s−1 at the highest concentrations

to 1000s−1 at low concentrations.

Samples with 50 mM Na2SO4 at 5◦C showed hysteresis during the ramp up

and back down over the full range of shear rates. According to previous work,[41]

this phenomenon is likely the result of association of protein at the air-water interface

despite the presence of surfactant in the buffer. To resolve the issue, these samples

required a short (3 minute) pre-shear step at 1000s−1 before performing the ramp

from low to high shear rate. The shear rate dependence measured by this method was

reproducible in both ramp directions.

7.3 Results

Measurements of the zero shear viscosity of mAb3 are summarized in Fig. 7.5a

as a function of protein concentration for the four solution conditions studied. Not sur-

prisingly, a distinctive, strong increase in viscosity is observed with increasing protein

concentration for all formulation conditions. However, samples at higher ionic strength

have consistently higher viscosities. The enhanced viscosities observed at 5◦C for both

salt conditions are due in part to the temperature dependence of the buffer viscosity,

which is removed when normalizing the data by the buffer viscosity to yield the relative

viscosities shown in Fig. 7.5b. This comparison shows that lowering the temperature

results in an increase in the viscosity above that of the temperature dependence of the

suspending medium.

It is of great interest to identify the underlying microscopic forces leading to the

different macroscopic viscosities shown in Fig. 7.5. For example, the choice of buffer

dictates which formulations meet the “syringeability” criteria at elevated protein con-

centrations, typically requiring viscosities much below 50 mPa-s.[17] The influence of

temperature and salt on viscosity is apparent for protein concentrations as low as 35
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Figure 7.5: The (a) absolute magnitude and (b) reduced zero-shear viscosity is plot-
ted for all conditions of mAb3 concentration, temperature, and salt con-
tent studied. The viscosity under all conditions increases significantly
with protein concentration while reducing temperature and increasing
salt content have similar effects on the magnitude of the relative viscos-
ity.

mg/mL. By 120 mg/mL, the formulation with the lowest (0 mM Na2SO4 at 25◦C) and

highest (50 mM Na2SO4 at 5◦C) viscosities differ by nearly an order of magnitude. The

change in viscosity is influenced by both increasing ionic strength and reducing tem-

perature, which are known to affect the net attractive strength between proteins.[26]

Adding 50 mM sodium sulfate screens electrostatic repulsion between individual anti-

bodies, potentially allowing attraction induced association to become more prevalent.

Further, decreasing the temperature may enhance short-range attractive interactions

as observed in lysozyme solutions.[34]

SANS experiments are performed on these solutions to gain some physical in-

sight into the protein-protein interactions that mediate the solution microstructure and

bulk properties such as viscosity. SANS scattering intensities of mAb3 formulations at

several protein concentrations under the four solution conditions of interest are shown

in Fig. 7.6.

For solutions without added electrolyte, increasing protein concentration leads

to the development of a structure peak in the scattering evident as a maximum in the

overall scattering intensity. The “correlation hole” at low-q evident by the reduction in
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Figure 7.6: Reduced 1-D scattering profiles are plotted on the same scale for several
mAb concentrations with (a) 0 mM and (b) 50 mM added sodium sulfate
salt. The addition of salt leads to significantly higher intensities at low
q-values, indicating the presence of larger scale structures.

forward scattering corresponds to a decrease in osmotic compressibility typical for con-

centrated systems with strong repulsive interactions.[37] Furthermore, the scattering

patterns of samples without salt are nearly independent of temperature. These trends

are consistent with screened electrostatic repulsion that is less temperature sensitive.

Comparing samples at 0 mM and 50 mM Na2SO4 at equivalent mAb concen-

tration shows a strong increase in low-q scattering upon salt addition, which signifies a

change in mAb-mAb interactions. The addition of 50 mM sodium sulfate significantly

enhances the low-q scattering by roughly an order of magnitude at concentrations

above 50 mg/mL. This large increase in intensity indicates the dominance of strong

inter-protein attractions. The substantial magnitude in intensity observed in formula-

tions with 50 mM sodium sulfate at small q-values suggests the presence of large scale

structural features, which are expected to contribute to the higher viscosities seen in

Fig. 7.5.

Unlike mAb3 solutions with no salt, changing temperature results in noticeable

changes in the scattering pattern of mAb3 solutions with 50 mM sodium sulfate. At

5◦C, the scattering intensity for mAb3 samples with salt is nearly double that measured

at 25◦C, indicating the attractions are stronger at lower temperature. The attractive
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Figure 7.7: A comparison of (a) the Rg extracted from Guinier analysis of low con-
centration SANS data and (b) the Rh estimated from DLS data. While
both methods agree quite well, mAb3 shows signatures of cluster for-
mation in the presence of 50 mM sodium sulfate, even at low protein
concentrations.

force acting between mAbs likely becomes stronger at lower temperatures with 0 mM

Na2SO4 as well, but the long-range repulsive barrier is sufficient to prevent significant

sampling of configurations within the attractive energy well. In the following, the

underlying building blocks of such structures at low concentration are identified first

to clarify the mechanism behind their assembly.

7.3.1 Low Concentration Behavior

Scattering patterns of mAb3 solutions at low protein concentrations (10 mg/mL)

are noticeably different between those with 0 mM and 50 mM added sodium sulfate.

In particular, the intensity at low q-values for samples with 50 mM salt in Fig. 7.6 are

roughly twice that of mAb3 samples without salt. Surprisingly, this difference in low-q

intensity, and other parameters, between samples with 0 mM and 50 mM salt persists

to even lower protein concentrations.

The radii of gyration, Rg, are determined from a Guinier analysis of SANS data

that is model independent[51] and the hydrodynamic radii, Rh, are determined from

independent DLS experiments according to Eq. 7.10 at small concentrations. These

results are compared in Fig. 7.7. For samples with 0 mM sodium sulfate, both radii
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values are almost independent of concentration and temperature. Without adding

additional salt, Rg and Rh are roughly 5.0 nm and 5.3 nm, respectively, indicating that

mAb3 exists as monomers with little change up to 10 mg/mL. However, adding 50 mM

sodium sulfate to mAb3 solutions (at 2 mg/mL) causes the effective radius of mAb3

to increase by a factor of 1.4 relative to its size in solutions without salt, as indicated

by measurements of both Rg and Rh. This increase is nearly identical to that reported

in a previous study of a dimerizing mAb.[48]

Apparent molecular weights, shown in Table 7.1, extracted from SANS data also

indicate that the molecular mass is almost the same as that of a dimer in solution, even

for samples as dilute as 2 mg/mL. This indicates that adding salt causes mAb3 to form

dimers at very small concentrations, which are even smaller than observed previously

for mAb systems.[22, 38, 48] These results are also consistent with previous studies of

mAb3 in H2O based buffers in the presence of sodium sulfate.[21, 22]

A more detailed modeling of SANS data can reveal the structure of the mAb3

dimers in solutions with 50 mM Na2SO4. To estimate the real space conformation of

mAb3, the coarse-grained mAb structure model described earlier is used to quantita-

tively determine the monomer and dimer structure and can replicate the theoretical

estimate of the antibody’s neutron SLD. Figure 7.8 displays the SANS data for a 2

mg/mL sample with 0 mM and 50 mM sodium sulfate along with the best fits using

Table 7.1: A compilation of apparent molecular weights and standard deviations (σ),
determined from SANS data, at low mAb3 concentrations under each set
of temperature and salt conditions studied.

Temperature 25◦C 5◦C
[mAb3] [Na2SO4] Mw,app (kDa) σ (kDa) Mw,app (kDa) σ (kDa)

2 mg/mL 0 mM 150.0 1.39 162.1 2.84
4 mg/mL 0 mM 134.1 0.71 161.1 1.40
2 mg/mL 50 mM 299.1 3.75 324.4 4.65
4 mg/mL 50 mM 355.0 2.74 393.6 4.23
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the model. The 12-bead model fits the data remarkably well despite the fact that the

scattering is a result of an ensemble average of antibody configurations.[10] The exact

structures are displayed in Fig. 7.3 compared to the IgG1 crystal structure.

The 12-bead model provides insight into the antibody structure at low concen-

tration. For samples with 0mM sodium sulfate, a model based on a single mAb as

the fundamental scattering unit quantitatively fits the SANS spectra. The scattering

profile for mAb3 solutions with 50 mM added Na2SO4 cannot be fit by any single

monomer model. Rather, it is well described by scattering from a dimer comprised

of two mAb3 proteins with a conformation similar to that observed for solutions with

0mM added salt. Comparison of the scattering intensities from experiment (Fig. 7.8)

and several model monomer and dimer configurations demonstrates the inability of a

monomer structure to reproduce the SANS data of samples with salt. The insets of

Fig. 7.1 and Fig. 7.2 clearly distinguish Rg between salt conditions (from the slope)

and highlights the sensitivity of the 12-bead model to these differences. This sensi-

tivity provides confidence in the elongated conformation of the dimer extracted from

the model fit. Further, the relative sizes of the elongated dimer and monomer from

the model quantitatively agree with the static SANS and DLS measurements and are

consistent with a previously studied mAb known to form elongated dimers.[48]

Determination of mAb3 conformation also will be very important for under-

standing the effective interactions and dynamics at higher concentrations. From the

known configuration of the monomer and dimer, the model can reproduce the form fac-

tor scattering intensity and calculate the corresponding decoupling function, β(q), that

is used to normalize the data at higher concentrations to extract interaction parame-

ters. Because the dimer takes on an elongated configuration at low concentration, the

development of large structures and high viscosities are observed at elevated protein

concentrations. Already, the effective radii of samples with 50 mM Na2SO4 increase

approximately linearly with mAb concentration up to 10 mg/mL, as shown in Fig. 7.7.

These trends could be indicative of an increase in cluster size or conformation with

concentration. However, in the low-q range, the sensitivity of the 12-bead model to
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Figure 7.8: SANS profiles are plotted for two 2 mg/mL mAb3 samples representative
of the form factor with best fits using the 12 bead model. Both sodium
sulfate concentrations are plotted, with the sample at 50 mM sodium
sulfate shifted by a factor of 3 for clarity.

dimer configuration is convoluted with changes to S(q) due to mAb-mAb interactions

at elevated concentrations. Therefore, in the following the short-time diffusivity is

studied by NSE to better understand the moving units at higher concentrations.

7.3.2 High Concentration Behavior

Reversible cluster formation at high protein concentrations can be studied by fo-

cusing on the dynamics, as previously shown with other mAbs and globular proteins.[15,

48] Changes in either salt concentration or temperature directly influence mAb3 inter-

actions and the equilibrium microstructure, both of which will have effects on protein

mobility. Antibody diffusion is probed by both NSE and DLS, which cover signifi-

cantly different lengthscales and timescales. Figure 7.9 shows the correlation functions

obtained by both NSE and DLS with their corresponding best fits using a single and

double exponential function, respectively, from which collective diffusion coefficients

are extracted. Note the (orders of magnitude) difference in the scale of the x-axis to

understand the difference in timescales of these two techniques.

NSE data are obtained for correlation times up to 50 ns, which is then fit
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with a single exponential to measure the short-time collective diffusion coefficient. A

range of q-values are studied using NSE, but Fig. 7.9 displays results only at 0.114 Å−1

corresponding to sizes equivalent to that of a protein monomer. The q-dependent short-

time collective diffusion coefficients obtained from fits to the NSE data are compiled

in Fig. 7.10. The average value of Dc in the limit of large q-values is calculated, as

outlined already in previous work,[31] and used to estimate the short-time self diffusion

coefficient, Ds. The decrease of short-time Dc(q) at smaller q-values indicates an

influence of structure and hydrodynamics.

DLS measures the long time collective diffusion coefficient in protein solutions.

Here, the single q-value (0.0018 Å−1) used in the DLS corresponds to a lengthscale

of roughly 350 nm. A double exponential function is used to fit the DLS data to

accommodate a possible slow mode in the data. At small concentrations the data only

display a single relaxation mode, while a slow mode develops at higher concentrations

and requires the double exponential for an accurate fit.

Fitting the correlation function obtained by DLS experiments with a double

exponential function results in a weighting of the two contributions to the total in-

tensity. Figure 7.11 plots the magnitude of the contribution of the fast mode (X1)

Figure 7.9: Characteristic correlation decay curves (symbols) from (a) neutron spin
echo and (b) dynamic light scattering experiments are plotted with their
corresponding exponential function fits (lines) for a 100 mg/mL mAb3
sample at 5◦C and 25◦C and with 0 mM and 50 mM sodium sulfate salt.
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Figure 7.10: Collective diffusion coefficients (symbols) extracted from fits to the NSE
data with (a) 0 mM and (b) 50 mM sodium sulfate salt are plotted as
a function of q-value. The average value in the limit of high q-values
(lines) indicates the short-time self diffusion coefficient under each set
of conditions.

as a function of mAb3 concentration for each of the four solution conditions studied.

Without added salt, the contribution of the fast mode is always at least 80% while with

50 mM sodium sulfate the relative magnitude of X1 decreases with increasing protein

concentration. As larger structures are expected to form at high concentrations with

added salt, it is not unreasonable for the fast mode to become a less significant but it

always remains the dominant contribution to the correlation function. The subsequent

analysis focuses only on the fast mode of long-time collective diffusion, Dc,1, which is

the dominant contribution at all solution conditions.

Figure 7.12 shows the values of Ds from NSE and Dc,1 from DLS normalized by

the bare diffusion of a mAb3 monomer, D0, determined by extrapolating the DLS val-

ues of Dc,1 at low protein concentrations to the limit of zero concentration. Comparison

of these results highlights the considerable discrepancy between short-time mobility of

mAb3 and the long-time collective motion. In general, the collective diffusivity is a

strong function of protein concentration and temperature. As shown in Fig. 7.12a, the

mobility in samples without salt is observed to increase initially with increasing con-

centration. Although this appears counter-intuitive, this trend is consistent with the

theoretical relationship between Dc,1 and S(q). Eventually Dc,1 reaches a maximum
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Figure 7.11: The magnitude of the contribution of the fast mode (X1) is plotted as a
function of mAb3 concentration for each of the four solution conditions
studied.

and then decreases at sufficiently large concentrations. This is due to self-crowding

and hydrodynamic effects that retard long-time dynamics more significantly than in-

teractions reduce the magnitude of S(q) at small q-values,[1] which originally caused

the increase in Dc,1. In contrast, samples with added salt show a rapid decline in Dc,1

with increasing concentration. Under these conditions, Dc,1 decreases due to both an

increase in low-q scattering (see Fig. 7.6b), and therefore S(q), and the subsequent

reduction of long-time mAb mobility resulting from strong attractive interactions.

Under both salt conditions, decreasing temperature reduces protein diffusivity,

which is likely a result of enhanced attractive interactions. This appears in SANS

data as the relative increase in low-q scattering intensity with decreasing temperature

(Fig. 7.6b). The large absolute value of I(q) in samples with 50 mM salt suggests that

these stronger attractive forces drive the formation of large scale clusters. Despite the

prevalence of repulsive interactions in samples without salt, the reduction in Dc,1 at

high concentrations may indicate that mAb3 also associates into larger clusters under

these conditions. These results are consistent with the rheological results that will be

discussed in the Discussion section.
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Figure 7.12: (a) Collective diffusion coefficients and (b) short-time self diffusion co-
efficients normalized by the bare diffusion of a mAb3 monomer, D0, are
plotted separately on the same scale. Deviations due to the presence of
sodium sulfate are significant for long time collective motion (a), but
relatively insignificant for the short-time mobility of individual moving
units.

The short-time mobility as probed by NSE determines the fundamental “mov-

ing units” in solution by probing motion on the nanoscale on the timescale of up to

≈ 100 nanoseconds. Interestingly, Ds is nearly identical at all concentrations below

50 mg/mL for samples at low ionic strength. This trend was recently observed for an-

other antibody[48] and may be a generic feature of these macromolecules when there

is strong repulsion between antibodies in solution. Previous work, discussed in the last

chapter, demonstrated through the use of NSE that the short-time self diffusion of a

charge stabilized mAb was significantly reduced at high concentrations by hydrody-

namic interactions, despite remaining dispersed as monomers.[48] Hence, these prior

results can be considered representative of the “standard” dynamic behavior of a mAb

monomer.

The absolute values of Ds for mAb3 are plotted along side these prior results

in Fig. 7.13. The mobility of mAb3 with 0 mM Na2SO4 appears slightly faster on the

short time scale as compared to the well-dispersed mAb2 at 25◦C. When normalized

by the ratio of buffer viscosity, which is larger for mAb2 due to the presence of sugars

not included in the mAb3 buffer, the bare diffusion coefficients become nearly identical.
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Figure 7.13: Absolute short-time self diffusion coefficients of mAb1 (circles), mAb2
(squares) and mAb3 (diamonds) in D2O buffers are compared as a func-
tion of protein concentration.

Therefore, from this comparison, mAb3 samples without salt can be considered mostly

monomeric in the short-time limit at all mAb concentrations studied. Hydrodynamic

effects will be discussed in more detail in the Discussion section.

The temperature dependence of Ds and Dc,1 is consistent with a hierarchical

association into structures with correlation lengths much larger than a single antibody.

Lowering temperature reduces short-time self diffusivities at all concentrations, con-

sistent with the associated increase in solvent viscosity, indicating the fundamental

moving unit is itself unchanged with temperature for each salt concentration. How-

ever, temperature decreases lead to significant decreases in Dc,1 (as well increases in

viscosity), which indicates a growing correlation length at the longer length and time

scales probed by light scattering.

The most substantial impact on Ds comes from the addition of 50 mM sodium

sulfate. An effective hydrodynamic radius of mAb3 with salt can be estimated by

taking the ratio of self diffusivities as Rh/R0 = Ds(0mM)/Ds(50mM). This ratio

is indicative of the size of strongly bounded clusters in samples with salt relative to

a mAb3 monomer. The resulting values of this ratio are presented in Fig. 7.14 for

NSE results. The results indicate that the relative size of the “fundamental” moving
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Figure 7.14: The effective hydrodynamic radius of the moving unit with 50 mM
sodium sulfate is plotted as a function of temperature and protein con-
centration.

unit for solutions with 50 mM Na2SO4 remains almost unchanged at all concentrations

studied. In other words, at this salt concentration the mAb always associates into

elongated dimers that persist at higher mAb concentrations. The formation of dimers

in formulations with 50 mM sodium sulfate also appears in Fig. 7.12a as Dc,1/D0

values well below one at low concentrations.

Interestingly, the corresponding ratio of bare diffusion coefficients of monomers

and dimers, D0(0mM)/D0(50mM), is nearly identical to the values of Rh/R0 in Fig.

7.14. The product of these ratios results in a measure of the short-time mobility of

dimers relative to monomers after accounting for the influence of excluded volume. The

resulting values of about one suggest that mAb3 monomers and dimers are capable of

translating equally as easily in the short-time limit at higher concentrations.

7.4 Discussion

The combined results of NSE (Ds), DLS (Dc,1, Rh), and SANS (P (q), Rg,

Mw,app) show that, for short time and length scales, the diffusing species for samples

without salt is a mAb monomer, while for samples with salt the diffusing species is

an elongated mAb dimer at all mAb concentrations studied. Viscosity measurements
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indicate a substantial increase in viscosity with increasing mAb3 concentration, added

salt, and decreasing temperature. Importantly, the structure and long-time dynamics

are markedly different depending on the amount of added sodium sulfate. The mea-

surements presented indicate that mAb3 associates into elongated dimers that further

associate into large, transient structures at high concentration in formulations with 50

mM Na2SO4. These structures retard mAb3 mobility over long times and strongly

resist shear flow, leading to an increase in viscosity. Without added electrolyte, mAb3

appears dispersed as mostly monomers at all concentrations and moves as such on

short timescales. These solutions also show a significant increase in viscosity at ele-

vated concentrations, although less than the increase observed for solutions with added

salt. This viscosity increase is consistent with increasing inter-protein repulsion due to

crowding. In the following, a more quantitative assessment of the contributions to the

viscosity is made based on colloidal micromechanics.

7.4.1 Hydrodynamic Effects

The hydrodynamic function, H(q), provides more detailed information than is

accessible from measurements of high shear viscosity, η∞ typically used to represent

the hydrodynamic contribution to the viscosity. While η∞ is representative of large

lengthscales, H(q) presents a means by which multiple lengthscales of hydrodynamic

effects can be explored in the short-time regime. Here, two experimentally accessible

and physically meaningful characteristic lengthscales are of interest. Specifically, the

distance separating monomers, represented at the q-value of qm, and very long length-

scales, represented by the limit of zero q-value. Trends in H(qm) and H(0) calculated

using experimental results for mAb3 will be compared with predictions for hard sphere

(HS) and charged sphere (CS) or electrostatically stabilized systems.

Values of H(qm) are determined from NSE data while H(0) is derived from

DLS data. While DLS captures the long-time behavior, previous work suggests that

short-time and long-time limits of H(0) should differ by less than 6% for concentrated

HS suspensions.[1] This should be treated as a lower estimate of relative error between
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short and long time dynamics because attraction will have a stronger influence on H(q)

than HS interactions.

Hydrodynamics of mAb3 over large lengthscales, represented by H(0) in Fig.

7.15a, demonstrate behavior consistent with the physical picture developed thus far.

Physically, the hydrodynamic function H(0) can be associated with the resistance to

particle sedimentation. Samples without sodium sulfate lie between predictions for

HS and CS fluids, which is consistent with the long-range repulsion found in their

corresponding effective potentials to be discussed later. However, samples with 50 mM

sodium sulfate display unique behavior as a function of volume fraction.

The initial increase in H(0) with increasing φ for mAb3 samples with added

salt, shown in Fig. 7.15a, is interesting because it indicates that hydrodynamics pro-

mote faster collective mobility over short times and long lengthscales according to the

relationship Dc(q) = D′0(H(q)/S(q)). Here, D′0 is the bare diffusion of a mAb3 dimer

for samples with salt (and a mAb3 monomer for samples with no salt). To help ratio-

nalize this behavior, H(q) can be decomposed into two contributions represented by

the q-independent parameter Ds/D
′
0 and a “distinct” hydrodynamic component, which

is a weighted convolution of Ds/D
′
0 and S(q).[1] Interestingly, Ds is constant over the

range of concentrations where the peak in H(0) is observed ([mAb3] ≤ 50 mg/mL

or φ ≤ 0.1). Therefore, changes in H(0) are a result of the convolution of structural

and dynamic correlations. One possible interpretation is that fluctuations in the equi-

librium solution configuration occur in sync with dynamically correlated bodies (e.g.,

clusters) in such a way that long-time collective motion is enhanced. While this hy-

drodynamic feature helps enhance mAb3 dimer mobility, Fig. 7.12 shows that Dc,1/D
′
0

still decreases with increasing φ for mAb3 samples with 50 mM salt. At larger volume

fractions, dimers aggregate into large structures, which leads to a reduction in the hy-

drodynamic function by hindering long-range motion and contributes to the drop in

Dc,1/D
′
0.

Short lengthscale hydrodynamics of mAb3 formulations, captured by H(qm) in

Fig. 7.15b, appear nearly insensitive to solution conditions. However, values of H(qm)
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Figure 7.15: The effective hydrodynamic functions are plotted at (a) zero q-value,
H(0), and (b) the q-value of the monomer peak, H(qm) relative to HS
(solid line) and CS (dashed line) fluids.

for solutions of mAb3 without salt are consistently larger than those for mAb3 with 50

mM Na2SO4. Under all solution conditions of mAb3 samples, the data qualitatively

follow the trend predicted for HS fluids. At a protein concentration of 50 mg/mL,

H(qm) for mAb3 samples without salt lie between predictions for HS and CS fluids,

while H(qm) for mAb3 samples with salt are in nearly perfect agreement with HS

predictions. The values of H(qm) for all mAb3 samples then decrease with increasing

protein concentration at a rate slightly faster than predicted for a HS fluid.

The underlying forces producing the observed trends for HS and CS fluids can

be used to understand the hydrodynamic features of mAb3. For CS systems, H(qm)

increases with φ due to backflow of the suspending medium that causes enhanced

frictional forces on a suspended particle.[2] Further, larger values ofH(qm) for a CS fluid

relative to a HS fluid are consistent with the well-known reduction in η∞/η0 of CS fluids

relative to HS systems.[28] Therefore, at low to intermediate protein concentrations

(c ∼ 50 mg/mL) mAb3 hydrodynamics in the presence of 50 mM salt are influenced

by repulsive forces, but with no added salt they are more HS-like.

In the case of HS fluids, hydrodynamics are the dominant contribution to the

viscosity in the zero shear and low volume fraction limit, represented by the hydrody-

namic term, ηH .[13] Typically, this is captured by measuring the high shear limiting
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Figure 7.16: The hydrodynamic functions at qm determined from experimental re-
sults for samples with 0 mM (open symbols) and 50 mM (filled symbols)
salt are fit with the inverse of the high frequency viscosity represented
by Eq. 7.11 (dashed and solid lines, respectively).

viscosity, η∞.[28] However, this limit could not be reached for the mAb3 formulations

studied here. Therefore, the influence of solution conditions on the hydrodynamic

function, H(q),[1] can be used to estimate η∞ for these mAb3 samples.

The similarity of mAb3 hydrodynamics to HS fluids at these volume fractions

suggests that hydrodynamic interactions are not a dominant factor and the hydrody-

namic contribution to the viscosity is relatively small compared to other contributions.

Further, the behavior of HS and CS systems confirms that η∞ and H(q) are approxi-

mately equal.[1, 2] Thus, by assuming ηH ∼ 1/H(qm) the hydrodynamic contribution

to the viscosity can be estimated. The inverse of an accurate model of hydrodynamic

viscosity proposed by Lionberger and Russel[23]

η∞ =
1 + 1.5φ(1 + φ− 0.189φ2)

1− φ(1 + φ− 0.189φ2)
(7.11)

is used to fit H(qm) values of mAb3 solutions, shown in Fig. 7.16, to estimate the

hydrodynamic radius. The volume fraction is replaced by φ = Cv0, where v0 is the

intrinsic volume of the protein. The volume is subsequently used to estimate the hy-

drodynamic radius using the molecular weight extracted from I(0) of SANS data. The
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resulting radii of 4.8 nm and 6.4 nm for samples with 0 mM and 50 mM salt, respec-

tively, compare quite well with the other measures of protein size discussed earlier.

7.4.2 Shear Thinning and Effective Structure Size

Rheological measurements are a sensitive probe of the formation of large scale

structure in solution.[28] Thus, the presence of large lengthscale structures suggested

by SANS measurements can be confirmed by studying the shear rate dependence of

the viscosity at high concentration. The measurements of the shear rate dependent

viscosities for all solution conditions studied here are presented in Fig. 7.17. The

zero-shear viscosity plateau is observed for all conditions, but a shear thinning regime

is found to arise at high concentrations. The shear rate at which shear thinning occurs

appears to decrease with increasing concentration and decreasing temperature.

Deviations from Newtonian behavior indicate a timescale representative of struc-

tural deformation due to the shearing force. In particular, the onset of a shear thinning

regime approximately corresponds with the point at which shear forces become com-

parable to Brownian forces. The balance of these forces is captured at high concentra-

tion by the rescaled Péclet number Pe = (γ̇L2)/(2Ds), where L is the characteristic

lengthscale.[4] For these calculations, the shear rate can be replaced by the stress depen-

dence of the viscosity, γ̇ = σ/η(σ). In these mAb formulations, L can approximately

be considered a representative size of large scale, transient clusters. Shear thinning

generally occurs at Pe ≥ 1. Therefore, the transition point at Pe ≈ 1 is indicative of

an effective association structure lengthscale in solution.

Studies of colloidal particles with HS or CS interactions have demonstrated

that shear thinning can be accurately modeled with respect to shear stress.[28] When

the stress is normalized by a critical value (as a function of volume fraction), the

behavior is universal across all systems.[28] The viscosity of all concentrated mAb3

formulations displaying shear thinning behavior are plotted in Fig. 7.18a, normalized

according to the Cross model. Here, the solvent viscosity is used as an upper limiting

representative value of the high frequency viscosity. Interestingly, normalized mAb3
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Figure 7.17: The shear rate dependence of the viscosity is plotted for a range of
mAb3 concentrations (in mg/mL) for samples without added sodium
sulfate at (a) 5◦C and (b) 25◦C and samples with 50 mM Na2SO4 at
(c) 5◦C and (d) 25◦C.
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viscosities are nearly universal as a function of reduced shear stress. The similarity

between all data sets indicates that shear effects on mAb3 solution microstructure are

stress-dependent (σ) as opposed to rate-dependent (γ̇). In Fig. 7.17, the onset of shear

thinning is shown to differ significantly as a function of shear rate between conditions.

A distinctive outlier is the most viscous solution at highest mAb concentration in salt

solution at the lowest temperature.

While the critical shear stress is relatively insensitive to the buffer, the charac-

teristic lengthscale varies significantly due to very different viscosities and short-time

Figure 7.18: (a) A Cross model scaling of the viscosity is plotted as a function of stress
for samples that display shear thinning behavior. All curves appear
nearly identical, indicating that structural deformation is controlled by
stress. Also plotted are (b) the characteristic structural lengthscale
at the point of shear thinning and (c) values of L normalized by the
corresponding radius of gyration for each salt condition listed in the
legend. (d) The zero shear viscosity scales well with the cube of the
lengthscale.
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self diffusivities (compare scales of Fig. 7.5b and Fig. 7.12b, respectively). The char-

acteristic lengthscale L is estimated by setting Pe = 1 and assuming the critical shear

thinning point occurs at a 50% reduction in the low shear rate limiting value. These

values of L are plotted in Fig. 7.18b as a function of sample composition.

For all samples, the characteristic lengthscale is significantly larger than the

protein size, which is also shown for reference in Fig. 7.18b. Samples with added

electrolyte are found to have larger sizes than those without electrolyte at a given

temperature and composition. This may be anticipated due to the presence of strongly

bounded dimers as a larger fundamental moving unit in samples with added salt.

When these lengthscales are normalized by the effective diameter (twice the radius

of gyration) of the smallest moving unit under each set of conditions, plotted in Fig.

7.18c, the resulting value is an effective association size in solution at the conditions

of interest. These sizes appear relatively insensitive to the solution conditions and

increase slightly with increasing mAb concentration.

Note that this estimation depends on the choice of the critical shear thinning

point. If the same calculation of L is performed by using the point where η is only

20% of η0, then the lengthscales become roughly a factor of three larger. Nonetheless,

these structural units of size L, which form from the interaction between fundamental

moving units, associate hierarchically into larger dynamically correlated structures.

In the short-time limit, monomers in samples without salt and dimers in samples

with added salt move freely on nanometer lengthscales. However, associations between

proteins at higher concentrations lead to shear thinning behavior in the bulk solution.

A strong correlation is observed between the solution zero shear viscosity and mAb3

association represented by L3, as shown in Fig. 7.18d. This analysis indicates that

the viscosity increases proportionally with the cube of the lengthscale, as expected

for particulate suspensions,[28] as well as for semi-dilute polymer suspensions.[50] The

lengthscales extracted from rheology can be understood with structural measurements

using SANS as follows.
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Figure 7.19: Proposed long time and length scale (L) solution microstructures and
corresponding fundamental moving units over short time and length
scales (2Reff ) are compared under both salt conditions. Without salt,
structures contain a dispersion of monomers and dynamic clusters (com-
posed of monomers). With 50 mM sodium sulfate, transient networks
form due to weak association of long-lived dimers.

7.4.3 Effective mAb-mAb Interactions and Concentrated Solution

Microstructure

Using the 12-bead model form factor fits derived from dilute solution, the SANS

data reported in Fig. 7.6 are reduced to Seff (q) according to Eq. 7.1 and are shown

in Fig. 7.20. Structure factors are calculated using integral equation theory with the

model HSDY potential. The best fits shown in Fig. 7.20 as lines through the data. All

resulting fit parameters, which include the four that define the interaction potential, an

effective protein concentration and hydrodynamic radius, are tabulated in Table 7.1.

From these last two parameters, the effective volume fraction is calculated to provide

a comparison between salt conditions (since the concentrations vary slightly). The

corresponding potentials derived from fitting the SANS data are shown in Fig. 7.21

and interpreted as follows.

For samples without added sodium sulfate, the data are fit very well using

the monomer form factor with a combination of competing interactions of reasonable

magnitude. Indeed, the potentials resulting from best fits to the SANS profiles contain

a short-range attraction between mAb3 proteins in addition to long-range electrostatic
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Figure 7.20: The structure factor (symbols) is plotted for samples with (a) 0 mM
and (b) 50 mM sodium sulfate salt for several mAb3 concentrations
at 5◦C and 25◦C with S(q) fits (lines) using the HSDY potential and
corresponding β(q). Only a fraction of all points in each data set are
included for clarity.

repulsion. The consistency of these potentials and parameters shown in Table 7.2

across the broad range of mAb3 concentrations studied is consistent with NSE results

that indicate the fundamental moving unit is unchanging. The structure factors show

the “correlation hole” typical of dispersions interacting with long range repulsions,[43]

but without the characteristic structure peak.

The lack of a prominent nearest-neighbor structure peak is typical of mAbs[49]

and is predicted for samples also having a short range attractive interactions.[19] One

must be cautious of this interpretation, as it is based on a spherically symmetric po-

tential acting between anisotropic mAb proteins that probably have anisotropic inter-

actions. The small strength of attraction determined from these fits could result from

an abundance of weakly interacting orientations, while a few specific configurations of

two closely separated monomers could produce very strong attractive forces. This is

supported by recent work on this antibody, which demonstrates an acute sensitivity of

association to the inclusion of specific surface residues in the IgG1 structure.[45] An

atomistic or coarse grained simulation[7] would be required to more accurately model

these anisotropic interactions and is beyond the scope of this work, but the spherically
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averaged potentially already yields valuable insight into the microscopic structure of

these concentrated mAb solutions.

Structure factor fitting with a spherically symmetric potential is less satisfactory

for samples with 50 mM Na2SO4. Figure 7.20 shows that the important long-range

structure at low q-values can be accurately captured, while the intermediate q-range is

poorly fit, especially at higher concentrations. Note that since dimers are the dominant

moving unit at short times, the mAb structure model is implemented by taking a dimer

as the form factor in the SANS fitting. Despite this inability to quantitatively model

the intermediate q-range, the fitting results are still qualitatively useful as the well fit

Table 7.2: All fitting parameters extracted from fits to the SANS patterns in Fig.
7.20 are compiled together for each protein concentration (mg/mL) and
temperature at both salt conditions. The table includes the strength and
range of interactions, protein concentration, effective radius and extracted
volume fraction.

[Na2SO4] = 0 mM
[mAb3] 10 50 100 150

Temp (◦C) 5 25 5 25 5 25 5 25
K1 3.21 2.73 2.87 2.67 2.87 2.78 3.48 3.43
Z1 14.86 15.34 16.11 16.21 15.33 15.44 14.83 14.80
K2 1.19 1.42 1.42 1.53 1.36 1.33 1.43 1.33
Z2 4.45 4.31 4.31 4.21 4.34 4.41 3.24 3.21

[mAb3]fit 6.35 6.60 44.6 45.0 84.1 84.6 118.1 119.0
Rfit (nm) 5.57 5.57 5.57 5.57 5.57 5.57 5.57 5.57

φfit 0.0185 0.0192 0.1297 0.1308 0.2445 0.2460 0.3434 0.3460
[Na2SO4] = 50 mM

[mAb3] 10 50 100 150
Temp (◦C) 5 25 5 25 5 25 5 25

K1 2.05 2.05 2.38 2.01 2.17 1.92 2.27 1.86
Z1 5.02 5.02 6.02 6.02 7.22 7.22 7.53 7.73
K2 -0.65 0.25
Z2 -2.19 2.19

[mAb3]fit 4.4 4.4 39.4 41 73.4 73.4 118.4 118.4
Rfit (nm) 6.491 6.491 6.491 6.491 6.491 6.491 6.491 6.491

φfit 0.0101 0.0101 0.0906 0.0943 0.1688 0.1688 0.2723 0.2723
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Figure 7.21: Potentials extracted from fits to the SANS data using the 12 bead model
for samples with (a) 0 mM and (b) 50 mM sodium sulfate. Antibodies
interact purely attractively in the presence of salt, which screens the
weak, long-range repulsion found in samples without salt.

low-q regime is the most sensitive to effective inter-protein interactions.

The fits yield a spherically symmetric potential of interaction with a significant

primary attractive well and no stabilizing long-range repulsion, as shown in Fig. 7.21.

This is consistent with the significant increase in scattering intensity observed in the

SANS profiles for samples with salt shown in Fig. 7.6, as opposed to the correlation hole

observed at low-q for samples without added salt. The nearly identical potentials for

all mAb3 concentrations again highlights the fact that dimers remain the fundamental

moving and interacting unit.

The decoupling approximation is used in the fitting and so its limits must be

carefully considered. As previously reported, the decoupling approximation assumes

that the inter-particle distance is independent of the orientation/conformations of in-

dividual particles.[8, 24] When modeling particles with an extended structure, such as

these mAb3 dimers in samples with added 50 mM Na2SO4, this assumption may not

be valid when mAbs are in close proximity. Thus, it is possible, and even likely, that

this average dimer association structure may depend on the solution concentration.

More compact structures would cause a shift in the decay of the decoupling function

to higher q-values (see Fig.7.2) and could potentially lead to more satisfactory fits.
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Figure 7.22: A pictorial representation of mAb3 (a) monomers without salt and
(b) dimers with salt used to capture trends in protein interactions. The
effective distances are those of the green spheres relative to the structure
center of mass, which relate well with potential features in Fig. 7.21.

To better interpret the relationship between these spherically symmetric, aver-

age potentials and the mAb structure, Fig. 7.22 highlights particular lengthscales of

the mAb3 monomer and dimer used to fit solution structure factors. The gold spheres

represent the effective hard sphere excluded volume used to represent the antibodies as

isotropically interacting particles. The green spheres are the components furthest from

the center of mass for which the relative distance is labeled below each corresponding

structure. For solutions without electrolyte, the spacing of these extremities could

account in part for the long-range repulsion between mAbs due to steric hindrance.

Similarly, the highlighted spheres of the dimer also agree with the location of the com-

plimentarity determining region (CDR) in a full atomistic model of an antibody. Thus,

due to the hydrophobic nature of mAb3,[21, 22] the relatively long range of attraction

extracted for solutions with 50 mM salt could result from strong interactions caused by

one (or several) specific orientation(s) between the CDR in the extremities of two mAb3
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dimers averaged with all other orientations with weaker, shorter range attraction.

This detailed analysis of the SANS data provides additional evidence for the for-

mation of larger association structures that increase the zero shear viscosity. The pres-

ence of competing forces in samples without salt demonstrates that mAb3 monomers

can reversibly associate into dynamic clusters that are stabilized and interact strongly

by long-range electrostatic repulsion. NSE shows that the proteins move as individual

molecules on nanosecond and nanometer scales, whereas the bulk rheology and diffu-

sion measurements suggest associations on longer length and timescales. Similarly, the

interactions between dimers in the presence of 50 mM sodium sulfate indicate a strong

driving force for the dimers to associate into large scale, loosely bounded clusters. If

dimers do associate by their Fc domains leaving hydrophobic CDR regions exposed in

extended structures, the presence of multiple physical interaction points on a single

dimer would have the potential to form large network like structures in concentrated

solutions.[7, 22] Again, the NSE data suggests that the fundamental unit for sam-

ples with added salt is a dimer. In the following section, several models are used to

more quantitatively identify the relative importance of microscopic forces leading to

the differences in zero shear viscosity as a function of solution conditions.

7.4.4 Microscopic Contributions to the Viscosity

Theoretical descriptions of the relative zero shear viscosity of colloidal suspen-

sions include contributions from hydrodynamic (ηH), Brownian (ηB), and interaction

(ηI) components.[3, 23] The hydrodynamic contribution is obtained experimentally and

compared with the established relationship[23] discussed earlier in the Hydrodynamic

Contributions section, where it was shown to be a relatively small component of the

solution viscosity. The Brownian term is proportional to the extent of structure forma-

tion and the interaction contribution has a similar functional form that also accounts

for the two-body potential. Both terms are inversely proportional to the short-time self

diffusivity. Therefore, the focus of this analysis is to use the extensive data measured in

280



this work to isolate the contribution from the interparticle interactions to the viscosity

and compare this with the structural analysis presented above.

By quantifying the individual viscosity contributions, the relative contribution

of mAb associations to the solution viscosity can be estimated. The experimental

viscosity can be compared with estimates according to ηr0 = ηH + ηB + ηP . The

hydrodynamic contribution is combined with the Brownian and Interaction terms,

which are determined from theory for spherically symmetric interactions in the limit

of hydrodynamic pre-averaging as:

ηr0 =
(
ηH +

12

5

φ2g(2)

Ds/D0

)(
1 + 1.9

φ2

τB

)
− 2

∫ ∞
rmax

g(r′)
dU(r′)

dr
dr, (7.12)

where the volume fraction φ = (C/Mw)(4/3)πR3
h is calculated using the Mw and Rh

determined from SANS and DLS, respectively, of the fundamental mAb3 moving unit.

Note that the values of Rg determined from SANS and Rh determined from DLS and

hydrodynamic modeling are all consistent and interchangeable with little difference in

Figure 7.23: The experimental mAb3 viscosity (symbols) are compared with esti-
mates of HS fluids (gray region) and interacting proteins calculated
using parameters from NSE and SANS data (blue-red region). The
ranges reflect differences in effective hydrodynamic radii and interac-
tion parameters as a function of solution conditions. The upper (blue)
portion of the HSDY range reflects low temperature samples while the
lower (red) HSDY estimates represent higher temperatures.
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the final value. All of the parameters in this equation are known from the analysis of

the NSE data (yielding Ds/D0 from Fig. 7.12b) and the effective spherically symmetric

interaction potential, U(r), shown in Fig. 7.21, and the corresponding pair distribution

function, g(r). The contribution of attractive interactions is captured by a previously

developed relationship[20] with the Baxter parameter, τB = 0.25/(1 − B∗2), where B∗2

is the second virial coefficient normalized by a HS fluid at the same volume fraction.

Here, τB is determined from only the attractive portion of each potential shown in Fig.

7.21.

Figure 7.23 shows the experimental solution viscosity relative to the range of

estimated viscosities for a HS fluid (gray region) and the estimates using Eq. 7.12

from mAb structural and dynamic data (blue-red region). The wide range of values

reflects the uncertainty in these calculations as well as the range of solution condi-

tions represented. Within the HSDY region, the upper blue portion reflects estimates

from samples at 5◦C while the lower region is representative of samples at 25◦C. Re-

gardless of solution conditions, the estimated magnitudes of ηr0 fall well below the

experimental mAb3 viscosities. Again, the coarse-grained modeling used to extract

the interaction parameters assumes spherical particles and isotropic interactions and

are semi-quantitative in nature. Regardless, the two-body contribution underestimates

the experimental value by roughly an order of magnitude at the highest concentrations.

The substantial difference, especially for samples with 50 mM sodium sulfate, suggests

that the large lengthscale structures formed at high concentration are the dominant

mechanism of stress dissipation.

For comparison, a recent model is considered for the zero shear viscosity of as-

sociating mAb solutions based on polymer network theory.[39] The zero shear viscosity

of mAb3 is plotted in Fig. 7.24a along with lines of best fit using the antibody network

model,[39] which has the following functional form:

η0 = Ac3/(3ν−1)
[ 2kc√

1 + 4kc− 1

]3

, (7.13)

where A is a constant, ν ≈ 0.6, C is the protein concentration in mg/mL and k is the
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Figure 7.24: (a) The absolute zero-shear viscosity is plotted with fits (solid lines) us-
ing a polymer based entanglement model and their extrapolation over
the full concentration range (dotted lines). (b) The estimates of effec-
tive aggregate size (solid lines) from the entanglement model fits are
plotted relative to structural lengthscales (symbols) determined from
shear thinning behavior.

partition function between all possible association states. The term in the square

brackets in Eq. 7.13 is the aggregation number, 〈N〉. A linear chain length can

be estimated by 3b〈N〉, where 3b is the size of an individual antibody that can be

represented by its longest dimension, shown previously for mAb3 to be about 15 nm.[21]

However, these derived parameters are very sensitive to the extent of data included in

the fitting and correspondingly the pre-factor, A. Here, fits are inclusive of the highest

three mAb3 concentrations and it can be seen that the model is unable to describe the

data across the entire concentration series.

The effective aggregate lengths extracted from the fits are plotted in Fig. 7.24b

at each solution condition studied. The values range from 20 nm to 50 nm in size, which

increase with higher concentration and added salt and lower temperature. Note that

the model does not fit the data well over the entire range of concentrations and fitting

different ranges of the data can lead to variations in 〈N〉 by a factor of two. Nonetheless,

these values are larger than the fundamental moving units of strongly bound dimers

in samples with salt and monomers in samples without added salt. Fig. 7.24b also
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compares these aggregate lengths with the effective lengthscales obtained from the

shear thinning behavior of the viscosity. Here, the association numbers from the model

fits correspond with those extracted from the shear thinning viscosity. However, the

small size of the aggregates as extracted from the modeling is a point of concern, as

pointed out in the original manuscript by the authors, because the model is based on

long, entangled polymer-like aggregates.[39] Further, the fact that these intermediate

sized aggregates are composed of dimers in mAb3 samples with 50 mM sodium sulfate

cannot be deduced from this model fitting.

It is important to recognize the significance of the short-time dynamics in sys-

tems such as mAb3, where proteins are one component/species of a highly polydisperse

dynamic microstructure. NSE data indicates that the fundamental mAb3 moving units

remain mobile in the short-time limit, suggesting that small clusters are dynamic. How-

ever, the similarity of association sizes determined by the network model and shear

thinning behavior suggests that the fundamental units do associate into larger tran-

sient clusters. Note that the morphology of the strongly bounded small clusters will

have an effect on the formation of these large network-like clusters. How this hierarchi-

cal cluster formation affects the zero shear viscosity still requires further investigation.

Trends in the viscosity of concentrated mAb solutions have also been modeled

by the modified Ross-Minton equation,[22] which represents the reduced zero shear

viscosity with an exponential dependence on the protein concentration

ηr0 = exp
[ [η]c

1− (k/ν)[η]c

]
, (7.14)

where [η] is the intrinsic viscosity, c is the protein concentration in g/mL, and k/ν is

an association term composed of the Simha shape parameter, ν, and a self-crowding

factor, k.[22] The self-crowding factor is proportional to an interaction strength and

inversely proportional to a maximum packing fraction. Similarly, the Simha shape

factor can be regarded as an effective association structure size. The viscosity can

be interpreted in the context of these terms to help elucidate effective cluster-cluster

interactions.
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Figure 7.25: The viscosity is plotted according to the linearized Ross-Minton
equation, where non-linearity indicates concentration dependent self-
association, for (a) 0 mM and (b) 50 mM added sodium sulfate using
viscosities at two different shear rates. The solid lines are used to esti-
mate the intrinsic viscosity (provided in the corresponding pane).

An inherent assumption of the model is that k/ν is constant. However, the plot

of ln(ηr0))/c with respect to ln(ηr0) in Fig. 7.24 clearly demonstrates non-linearity,

which suggests that the association factor is a function of concentration. The lines

represent the linear region at low concentrations from which an intrinsic viscosity can

be extracted. These values, shown in the legend of Fig. 7.25, agree with previous work,

which estimates mAb monomers have intrinsic viscosities of about 7 mL/g and values

approaching 12.6 mL/g are not uncommon for associating antibodies.[22, 46]

Differences in the association factor can be observed in Fig. 7.24 between all

solution conditions and as a function of shear rate. The larger magnitude of ln(ηr0)/c

for samples with added salt simply reflects the difference in [η] between salt conditions,

while the slope indicates differences in the association factor. Comparing Fig. 7.24a

and Fig. 7.24b, the slope of the data is much flatter (i.e., smaller values of k/ν) at high

concentration for samples with added salt compared to samples without salt. Also, at

each salt condition and shear rate [η] is assumed to be constant, which indicates that

reducing the temperature causes k/ν to increase. Therefore, the samples with 50 mM

sodium sulfate appear to have a smaller association factor, indicative of either larger

285



aggregates, weaker association, or both.

Trends in the slope of ln(ηr0)/c with increasing shear rate suggest that asso-

ciation strength between dimers in samples with 50 mM salt is weak enough to be

disrupted by shear forces, while samples with 0 mM salt are largely unaltered by shear.

While the aggregate size in samples with salt is larger (per the correlation between ηr0

and L3 in Fig. 7.18d), they appear to be formed by weaker associations than found

in samples without salt. Using Fig. 7.18c as an indication of the association size, the

larger magnitude of k/ν for samples without salt suggests mAb3 has stronger interac-

tions under these conditions despite having smaller viscosity. Note that this modified

Ross-Minton model is unable to distinguish between attractive or repulsive interactions.

From modeling of the SANS data and previous studies of cluster interactions,[40] the

dynamic clusters in samples without salt interact via strong inter-protein repulsions

leading to an increase in the viscosity with increasing concentration. Therefore, samples

without salt form smaller aggregates that interact strongly repulsively while samples

with added salt form large clusters that are transient due to weak association.

The same viscosity data can be fit using Eq. 7.14, shown in Fig. 7.26a for the

lowest shear rate, to more quantitatively estimate the association factor as a function of

protein concentration, which are plotted in Fig. 7.26b. The intrinsic viscosity values are

held fixed at 7.0 and 12.6 for samples with 0 mM and 50 mM salt, respectively. These

values were varied to optimize the fits and are in good agreement with values obtained in

linear fits in Fig. 7.25. When treated as a fitting parameter, the values of [η] are similar

but the uncertainty in k/ν becomes significant. Changes in [η] directly influence the

low concentration regime and indirectly alter values of k/ν that predominantly dictate

the magnitude in the high concentration regime. Distinct differences in the association

factor can be observed in Fig. 7.26b between all solution conditions. The model is able

to easily distinguish between salt conditions by the magnitude of k/ν values.

Quantitatively distinguishing the influence of formulation composition (specif-

ically salt) on effective interactions provides additional insight into the mechanism

causing the resulting solution viscosity behavior. Previously, large viscosities in mAb3

286



Figure 7.26: (a) The reduced zero-shear viscosity is plotted for each solution condi-
tion as a function of protein concentration with fits (solid lines) using
the modified Ross-Minton equation while allowing k/ν to vary. (b)
Corresponding values of k/ν extracted from the fits in (a) with each
solution condition having identical symbols.

and other antibody solutions at high concentration have been qualitatively related with

an effective cluster size.[22, 48, 50] However, cluster interactions have been discussed as

an additional important contribution to the viscosity. The persistence of inter-protein

interactions under shear, shown in Fig. 7.25 by non-linearity at multiple shear rates, is

consistent with prior work on mAb3 by Lilyestrom, et al.[22] Therefore, this work com-

pliments prior research by identifying the fundamental diffusing unit as being dimers

in the presence of added salt, and by showing that the association of clusters forming

at higher concentration arises from different inter-protein interactions depending on

the salt concentration. Furthermore, this new knowledge helps to semi-quantitatively

explain the significant rise in viscosity with increasing mAb concentration and salt and

reduced temperature.

7.4.5 Comparison of mAb1, mAb2, and mAb3

Over the last two chapters, the structural and dynamic features of three mon-

oclonal antibodies have been discussed in detail in order to rationalize the resulting

solution viscosities. Here, they are explicitly compared to demonstrate the relative
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influence of their distinct micromechanical properties on their corresponding solution

properties. Figure 7.27 compares the reduced zero-shear viscosity of all three mAbs (to

remove any influence of differences in buffer composition) under each of the solution

conditions they were studied, as well as some literature results,[22] as a function of

protein concentration.

In general, the results in Fig. 7.27 can be decomposed into small, medium and

large viscosity groups. The smallest viscosities are found for solutions of mAb2 in D2O

and mAb3 in H2O at 25◦C, which were shown previously to remain as a dispersed

fluid phase of monomers with slightly repulsive interactions.[22, 48] Next, a larger

intermediate viscosity is observed to result from formulations of mAb3 in D2O without

salt and in H2O with 50 mM Na2SO4 at 25◦C. These two conditions are known to

produce an equilibrium distribution of dynamic clusters with monomers.[16, 22] The

presence of these clusters, and their subsequent effective interactions, thereby lead to

the larger viscosities by analogy with more model globular proteins with similar cluster

formation.[15]

Figure 7.27: The concentration dependence of the zero-shear viscosity is compared
for multiple antibodies and formulation conditions. Results are provided
for mAb3 in D2O (diamonds) from this chapter[16] and literature results
of mAb3 in H2O (triangles)[22] and mAb1 (circles) and mAb2 (squares)
in D2O.[48]
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Figure 7.28: The viscosity of each of the mAbs and solution conditions presented in
Fig. 7.27 at mAb concentrations of 50 mg/mL (diagonal bars) and 100
mg/mL (cris-cross bars).

The largest viscosities are found for samples of mAb1 in D2O without salt and

mAb3 in D2O with 50 mM Na2SO4 at 25◦C, which is enhanced to even larger viscosities

at lower temperature. Interestingly, the viscosity is nearly identical for mAb3 that

forms large transient clusters in the presence of salt and mAb1 that was reported

to form small long-lived clusters.[48] A common feature of the clusters formed by

mAb1 without salt and by mAb3 with salt is that they both have elongated structures.

Particles with larger aspect ratios are known to produce larger viscosities.[28] In the

case of mAb1, these large effective radii, combined with electrostatic repulsion, was

highlighted as the cause for the observed viscosity.[48] Here, the viscosity of mAb3

with added sodium sulfate appears to be driven primarily by attractive interactions.

These forces cause protein dimers to associate into a distribution of cluster sizes that

collectively resist shear flow. However, mAb3 dimers remain mobile and exchange

between local environments to maintain fluidity.

The structure of the underlying fundamental moving unit and their effective

interactions are explicitly shown to have a strong influence on the solution viscosity in

Fig. 7.27. A summary of the differences between each mAb and solution condition are

provided in Fig. 7.28 at two protein concentrations. Clearly, the differences become
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more pronounced with increasing mAb concentration. However, the general connec-

tion between the antibodies and their propensity to associate with the viscosity is quite

apparent. The existence of a universal correlation between average cluster size and vis-

cosity is still questionable. Rather, the extent of cluster formation, cluster size/shape,

and effective cluster-cluster interactions will dictate the viscosity. Consequently, these

characteristics can lead to drastically different macromolecular structures, yet still

produce similar macroscopic solution properties. In order to accurately engineer ther-

apeutic formulations, a more quantitative relationship between the viscosity and each

of these conditions will require additional development in the future.

7.5 Conclusions

The experimental evidence presented throughout this work in combination with

previous studies[21, 22] indicates that mAb3, a relatively hydrophobic IgG1 antibody,

can reversibly associate into small dynamic clusters. In the absence of salt these clus-

ters are composed of monomers while in the presence of 50 mM sodium sulfate clusters

consist of long-lived, elongated dimers that associate hierarchically into large, loosely

bounded transient clusters at higher mAb concentrations. Both monomers and dimers

remain mobile on short timescales at all mAb concentrations. Their effective interac-

tions play a significant role in the resulting macromolecular microstructure in solution

and viscosity. In formulations with salt, these small clusters associate into hierarchi-

cal, large scale structures that significantly increase the viscosity. Therefore, accurately

modeling the viscosity of concentrated protein solutions requires more thorough char-

acterization of cluster properties. Several existing viscosity models were shown to

provide useful, semi-quantitative information concerning the underlying microstruc-

ture in viscous mAb solutions, especially when combined with structural and dynamic

experiments. Although the existence of a universal relation between cluster formation

and viscosity remains elusive, characterizing the appropriate properties can sufficiently

guide the optimization of biopharmaceutical therapeutic formulation.
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Chapter 8

CONCLUSIONS AND FUTURE WORK

8.1 Conclusions

This dissertation advances the current understanding of cluster fluid fundamen-

tals and associated material properties. In the context of the tiered representation of

structure-property relationships introduced in Fig. 1.1, this work has solidified the

link between the interaction potential (and parameters) and phase behavior of systems

with SALR interactions by creating a generalized phase diagram of these materials.

Due to the generality of SALR forces, this connection between the interactions and

phase space bridges the gap between a wide range of chemistries and properties in

materials susceptible to clustering. Within this broad set of properties, this disserta-

tion successfully demonstrated that cluster formation directly contributes to significant

increases in solution viscosity. The fundamental concepts garnered through studying

model systems were applied to describe the solution viscosity behavior of commercially

relevant biopharmaceutical therapeutics. Although still early in its development, the

new relationship between cluster formation and solution viscosity has substantial po-

tential to direct more optimized formulation of monoclonal antibody products. More

generally, this dissertation has outlined a powerful framework to study the behavior of

colloidal dispersions with competing interactions and their properties. While this work

focused on the possible formation of cluster fluids, several structural states were iden-

tified and distinguished through simulations and a novel combination of experimental

techniques. For example, the association of clusters into large percolated networks

may lead to unique mechanical or electrical properties, such as the elastic modulus or

conductivity, that may be particularly pertinent to various industries.
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Each chapter of this dissertation addresses a fundamental issue of equilibrium

cluster formation, the sum of which provides a hierarchy of knowledge ranging from the

fundamental thermodynamics to some specific material properties of biopharmaceutical

products. Specifically, this was accomplished by testing the two hypotheses proposed

in Chapter 1. To start, a generalized phase diagram of clustered states due to SALR

interactions was successfully created. This achievement helps resolve a current topical

debate over the identification of cluster fluids. It also serves as an efficient method to

determine cluster formation and the associated phase of a given material. Subsequently

quantifying the extent of cluster formation (e.g., population and average size) and the

resulting solution viscosity in protein dispersions confirmed that these two features

are correlated. An accurate quantitative relationship remains to be developed, but a

semi-quantitative model (incorporating cluster parameters) was developed.

Understanding the unique characteristics of cluster fluids first required a clear

definition of the various states that may contain clusters. This includes structural

and dynamic features. Therefore, a consistent and testable definition of states was

constructed to unambiguously distinguish the variety of microstructures formed by

particles with SALR interactions in solution (Chapter 3). Monte Carlo simulations

were used to generate solution structures for a variety of state points to quantify cluster

formation. Further, by testing a wide range of parameter sets, structural features of

well-defined cluster fluids were identified that allow for accurate recognition of their

formation experimentally without the need for additional simulations. In the course

of this work it was discovered that small angle scattering experiments can distinguish

cluster fluids as when the magnitude of the IRO peak rises above 2.7 or increases with

increasing volume fraction (at a constant temperature). Further, using microscopy,

clustered fluids can also be identified by an empirical logarithmic dependence of the

average coordination number on the average cluster size or a local cluster volume

fraction. Summarizing these state points on an appropriately normalized state diagram

produced the generalized phase space of clustered fluids (Chapter 4).

Experimentally, a novel combination of techniques was necessary to accurately
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account for both the structural and dynamic features of clusters. Interaction param-

eters obtained from fitting experimental results can be utilized in simulations to ex-

tract detailed microstructure information unavailable by the original technique itself.

However, the equilibrium exchange of monomers between clusters and bulk solution

sufficiently delineates dynamic correlations from structural properties, as measured by

small angle scattering or calculated in simulations. Therefore, the explicit measure-

ment of short time self diffusion was shown to be necessary to probe cluster formation.

Estimates of the location of the protein samples on the idealized cluster phase diagram

suggested they were not “true” clustered fluids as defined in the simulations, yet dy-

namic measurements indicated extensive cluster formation. In the case of lysozyme,

semi-quantitative estimates of an average cluster size by both simulations and dynamics

were shown to directly correlate with a significant increase in viscosity (Chapter 5). In

fact, the clusters associated together at higher volume fractions leading to dynamic per-

colation (i.e., “random percolated” states in the general phase diagram), which likely

contributed at least in part to the large viscosities. Similarly, mAb3 formed small clus-

ters that subsequently associated into transient networks, also leading to very large

viscosity at high concentration (Chapter 7). In contrast, mAb1 formed small, long-

lived clusters with an extended structure that become more abundant but did not lead

to a network-like structure. For this system the interactions between these clusters

still produced an equivalently large viscosity increase as observed by mAb3 (Chap-

ter 6). Thus, despite the differences in the interactions between mAb1 and mAb3,

both have similar microstructures and yield significant viscosity increases in solution

at higher protein concentration. Further, this relationship between interactions and

viscosity can be understood semi-quantitatively using the framework developed by this

dissertation.

8.2 Future Work

The work presented in this dissertation has enhanced the current understanding

of the physical mechanisms of cluster formation in SALR systems, the characteristic
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features of clusters that allow them to be observed experimentally, and the intricate

relationship between the solution viscosity of clustering materials and the underlying

competing interactions. These advancements provide a framework within which mate-

rial properties of protein solutions and other systems with competing interactions can

be understood. They also reveal new uncertainty in the applicability of the original

simplifications made in earlier studies to gain this insight. The open ended questions

that remain are a basis for further investigation. In what follows I present a few of the

most promising research leads arising from the main content of this dissertation.

8.2.1 A Model One-Component Cluster Forming System

Several key conclusions regarding cluster formation were able to be made using

lysozyme as a representative system with SALR interactions. Similar to other colloidal

systems, the repulsion strength and range can be tuned by altering the pH (surface

charge) and salt concentration, though these were not tuned in this study. However,

the attraction strength is set by the composition (as discussed in Chapter 1 and demon-

strated in Chapter 5) and thus, varies with concentration and temperature in a manner

that is not completely controlled by the experimentalist.[6] While earlier work has also

utilized a depletant to control the effective attraction strength,[2, 14, 15, 16] the addi-

tion of a second component may influence the resulting structural correlations of the

colloidal particles due to its finite size (unlike counter-ions).

Further efforts to study a well defined and controlled connection between SALR

interactions and associated properties would greatly benefit from developing a more

“ideal” experimental system. The model SALR system proposed here is based on

previous work studying the influence of purely attractive interactions. By grafting

polar molecules (octadecyl chains) to the surface of spherical silica nanoparticles, the

strength of attraction could be easily tuned by changing temperature.[4, 5] Physically,

the attractive force is proposed to arise from inter-digitation of molecules in the grafted

layers of two neighboring particles. These particles, which are suspended in a polar
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medium (tetradecane), have no effective repulsive force due to the solvent’s low relative

permittivity combined with the nearly complete coverage of surface silanol groups.

In order to introduce additional long-range repulsion to the well-characterized

short-range attraction in these systems, several possible alterations could be made to

the surface chemistry. First, the surface graft density could be controlled to allow

for an increase in the residual silanol groups capable of becoming exposed and subse-

quently charged. However, care must be taken to characterize the influence of reducing

the chain graft density on the effective attraction strength as previous studies all uti-

lized fully grafted particles. Another uncertainty is whether protons in surface silanol

groups will dissociate in an organic solvent. To help induce dissociation, lipophilic

salts could be added such as tetraphenylborate or hexafluorophosphate, which should

be sufficiently soluble in tetradecane or similar organic solvents.

If an organic salt does not cause enough dissociation to induce an effective

repulsive force between particles, a surfactant could be used that forms reverse micelles,

such as sodium bis(2-ethylhexyl) sulfosuccinate or AOT. With a subtle amount of added

water, reverse micelles could provide an environment for protons to sit and behave as

large counter-ions in a manner similar to a Debye double layer. However, introducing

micelles into the system could defeat the purposed of removing a second component

to the system as is the concern with a depletion inducing polymer. Interestingly,

depending on the size of the reverse AOT micelles, they could serve as a depletant

themselves and, if they are able to extract a proton from the particle surface, could

also serve as a large effective counter-ion that screens long-range repulsion.

Another approach is to change the graft chain chemistry. While this would

require extensive characterization of the attractive force as was already accomplished

for octadecyl chains, it would also allow for customization. In particular, silica par-

ticles could be covered in varying mixtures of polar and non-polar amino acids or

polypeptides composed of several of the same amino acids. This would easily allow for

these particles to be suspended in polar solvents rather than organic solvents. The po-

lar groups (e.g., arginine, histidine, lysine, aspartic acid, glutamic acid) could provide
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sufficient charge to induce repulsive forces while the non-polar groups (e.g., alanine, va-

line, leucine, phenylalanine, tyrosine, tryptophan) could induce short-range attractive

hydrophobic forces.[7] By varying the relative content of hydrophilic and hydropho-

bic surface residues, the relative strength of attraction and repulsion could be tuned.

Such surface chemistry is attractive as it may be comparable to “natural” protein sur-

faces (yet well controlled), especially if the surface becomes patchy due to preferential

association of similar residues/chains.

8.2.2 Developing More Accurate Models of Cluster Interactions, Growth,

and Viscosity

Although the development of a generalized phase diagram of SALR systems has

progressed the understanding of cluster formation, the properties of clusters (including

fractal dimension, local volume fraction, and lifetime) are still expected to vary as a

function of solution conditions within the region of cluster fluids. In addition to the

initial formation of clusters, their dynamics and growth will be dictated by their effec-

tive interactions. Therefore, quantifying intra- and inter-cluster forces is an important

aspect of understanding cluster stability. In particular, the internal forces between

particles in a given cluster and those between clusters may play an important role in

quantifying cluster lifetime and dictate the fractal dimension.[2, 13]

Effective cluster forces can be quantified by building upon the fundamental

interactions between individual monomers. The original identification of a sufficient

stabilizing repulsion to halt aggregation to a preferred cluster size by competing in-

teractions was founded on the inherent assumption that the cluster repulsive strength

was an additive accumulation of the individual components.[11, 12] This assumption

was also utilized in developing the viscosity model discussed in the Appendix.

As discussed in Chapter 1, early studies of SALR interactions demonstrated

the interplay of the attraction and repulsion resulting in a preferred cluster size in the

ground state (low concentration and temperature) limit.[12] Under these conditions,

the influence of surrounding particles and clusters on the stability of an individual
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Figure 8.1: A hypothetical two dimensional microstructure is shown with three clus-
ters. One particle in each cluster is shown with a dotted line connecting
it to the cluster center of mass and an arrow depicting the directional-
ity of the net force acting on it. Each particle is labeled as it would be
distinguished, with a cluster size, s, and coordination number, N .
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cluster is not accounted for. While simulations can indirectly account for the influence

of the microstructure in determining the equilibrium distribution of cluster sizes, few

studies have focused on the actual energy landscape within which a cluster exists.

By doing so, the susceptibility of a single particle to leaving or joining a cluster may

be deduced from stochastic simulations in addition to the ensemble average structural

correlations. Otherwise, more time consuming dynamic simulations would be necessary

to track the momentum of particles and quantify the dynamic correlations. Therefore,

understanding cluster growth and dynamics will greatly benefit from developing a

protocol to calculate the directionality of the forcefield acting on a particle as a function

of (1) the cluster size within which it exists, (2) its location relative to the cluster center

of mass, and (3) its coordination number. An example of such a calculation is depicted

in Fig. 8.1. For comparison, recent work has actually demonstrated that particles of

low coordination numbers (3–4) play a significant role in the formation of gels in purely

attractive systems.[17]

Accordingly, the relative population of particles in various environments can be

quantified from simulation trajectories and ensemble averages calculated according to

any of the three parameters of interest. If an equilibrium process, the energy “holding”

particles in a cluster should be an energy barrier, possibly described as an Arhenius or

activated process, which can be tested by determined the average value as a function

of cluster size and location within a cluster. Whether a particle is in the process of

being expelled or withheld is determined by the directionality of the total force relative

to its location from the cluster center of mass, shown by the arrows in Fig. 8.1. If

indeed Arhenius, then a rate of exchange and thus, a cluster lifetime can be estimated.

Similarly, if the percolation threshold is surpassed, the formation of the percolated

network can be decomposed into the association of smaller clusters in a manner similar

to the work performed previously for systems with purely attractive interactions.[17]

Additionally, altering the cut-off distance defining connectivity as discussed in Chapter

3 could help in identifying “dominant” cluster sizes in network formation.

Finally, the viscosity model developed in the Appendix was qualitatively based
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on previously developed models of multi-component HS fluids and one-component in-

teracting systems.[1, 8, 9, 10] However, combining these contributions to quantitatively

capture the viscosity in a pseudo-multi-component interacting system, which clustering

systems can be approximated as, requires derivation of complex fluid mechanics and

hydrodynamics. Even this complicated description of a cluster fluid is a simplification

of these materials considering their dynamic nature. Therefore, a derivation of the

expected dependence of the diffusivity of clusters as a function of size, volume fraction,

and interaction parameters should be pursued in future work. Although the proposed

viscosity model is an empirical function of attractive and repulsive forces, if combined

with a better representation of cluster size determined from the diffusivity and more

appropriate function of inter-cluster interaction strength, then it may provide accurate

estimates of the viscosity in cluster forming solutions.

8.2.3 Representing Colloidal Shape and Interaction Anisotropy by the Ref-

erence Interaction Site Model

Proteins have been observed to interact by an effective combination of short

range attraction and long range repulsion. However, the physical origin of the attrac-

tive forces is not entirely understood. The study of clustering in several monoclonal

antibody formulations has lead to distinctly different hypothesizes. Within this dis-

sertation, mAb1 and mAb3 (discussed in Chapter 6 and Chapter 7, respectively) were

differentiated as having short range attractive interactions driven by electrostatic and

hydrophobic forces, respectively. As such, understanding the connection between the

biochemistry and effective interactions would make a colloidal representation of protein

solutions significantly more powerful. Therefore, this field of research would benefit

from further progress in representing the complex structure of proteins and the subse-

quent influence it has on the protein-protein interactions.

An obvious means of distinguishing proteins is by their underlying chemistry,

from which the effective interactions originate. Although these proteins are all com-

posed of the same 20 α-amino acids acting as fundamental units, the shear size of the
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Figure 8.2: Two 12 sphere representations of monoclonal antibodies are shown side
by side with each position labeled as it would in the RISM formalism.

primary sequence, which contains roughly 1300 building blocks for antibodies, allows

for a nearly infinite number of permutations. As a result, the intra-protein struc-

ture and inter-protein interactions will vary widely, though all should be considered

potentially capable of interacting by SALR interactions. The complex structure of

monoclonal antibodies can be captured using a coarse-grained representation using a

geometric combination spheres, as demonstrated by the model developed in Chapter 7.

However, this leaves a gap in representing the effective interactions, which are currently

still represented by mean field isotropic potentials.

The next progression in more accurate calculations of inter-protein interactions

is to incorporate the anisotropic structure using the reference interaction site model

(RISM) formalism.[3] Similar to the antibody form factor model, RISM represents a

fluid of identical structures, each with a combination of n points with a specific, rigid

orientation. An example of such a representation following the 12 bead monoclonal

antibody structural model is shown in Fig. 8.2. Every combination of points then has

a unique interaction potential, totaling n(n+ 1)/2 site-site interactions. In the context
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of integral equation theory as described in Chapter 2, the radial distribution function

of two particles (α and β) is gαβ(r) and the correlation function is hαβ(r) = gαβ(r)− 1,

while the direct correlation function is represented as cαβ(r) and the intra-structure

correlation function as wαβ(r). Taking the Fourier transform of the Ornstein-Zernike

equation, the resulting function of n x n matrices is

Ĥ(k) = Ŵ (k)Ĉ(k)Ŵ (k) + ρŴ (k)Ĉ(k)Ĥ(k) (8.1)

which is the multi-component equivalent of Eq. 2.8 in Chapter 2. Correspondingly, Eq.

8.1 is solved in exactly the same manner as the one-component OZ equation using an

appropriate closure relation. However, depending on the choice of interaction poten-

tial, the number of parameters to be varied/defined becomes significant. For example,

using the HSDY potential that includes 4 parameters with the 12 sphere representation

of a mAb would require 4x12(12 + 1)/2 = 312 variables. An immediate simplification

would be to constrain intra-molecular site-site interactions to be represented by a HS

potential. Additionally, while effective mAb-mAb interactions appear to have both a

short-range attractive and long-range repulsive component, each individual site inter-

action may be purely attractive or repulsive, which could provide a means to further

reduce the number of variables.

308



REFERENCES

[1] Brady, J. F. The rheological behavior of concentrated colloidal dispersions. J.

Chem. Phys. 99, 1 (1993), 567.

[2] Campbell, A., Anderson, V., van Duijneveldt, J. S., and Bartlett,

P. Dynamical Arrest in Attractive Colloids: The Effect of Long-Range Repulsion.

Phys. Rev. Lett. 94, 20 (May 2005), 1.

[3] Chandler, D., and Andersen, H. C. Optimized Cluster Expansions for

Classical Fluids. II. Theory of Molecular Liquids. J. Chem. Phys. 57, 5 (1972),

1930–1937.
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Appendix

A MICROMECHANICAL MODEL OF CLUSTER FLUID DYNAMICS
AND VISCOSITY

A.1 Introduction

Throughout this dissertation, various thermodynamic relationships developed

previously for colloidal systems with purely attractive and purely repulsive interactions

have been used to rationalize and understand the behavior of materials that interact

by a combination of these two forces. For example, Chapter 4 normalized states of

systems with SALR interactions by the purely attractive phase diagram to show a

unique localization of cluster fluid states. Now, the influence of competing interactions

on the dynamics and viscosity are of interest. However, as is repeatedly discussed in

Chapters 5 – 7, no models currently exist to represent the properties of these novel

systems. Therefore, previous research on “simpler” systems is again used as a basis

to help develop an empirical equation to accurately represent the observed effective

short-time diffusion and zero-shear viscosity in systems with SALR interactions.

The inter-dependence of the interactions, structure, and dynamics introduces

both a benefit and a complication to quantifying SALR interactions from experimental

observations. First, the benefit arises from the unique combination of structural and

dynamic features of competing interactions such as the formation of an IRO peak in

S(q) and large hydrodynamic radii observed in NSE measurements that will help iden-

tify the presence of this particular combination of forces. However, representing these

types of interactions is complicated by the finite lifetime of association into clusters and

the inherent polydispersity and heterogeneity in the structure.[9, 20] As an equilibrium

state, particles in cluster fluids freely exchange between cluster and bulk (or monomer)
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environments. Therefore, to maintain a consistent representation of structural contri-

butions to both dynamics and viscosity, these two properties are developed in tandem

to simultaneously extract representative parameters of cluster formation.

Previous work has highlighted the importance of particle interactions, struc-

ture, and dynamics on the viscosity,[5, 19] which can be decomposed into individual

microstructural contributions.[5, 17] Several models have incorporated these contri-

butions into a single effective parameter, the Huggins coefficient, for semi-dilute HS

suspensions,[3, 24] charged colloids,[5] and weakly attractive particles.[4, 7] Unfortu-

nately, these models assume small, homogeneous perturbations to the equilibrium mi-

crostructure. This is important for systems with attractive interactions where a large

fraction of particles are in contact that can significantly disrupted by shear forces

pulling two these particles apart. This limits the applicability of these micromechan-

ical models to weak attractive forces, where the microstructure is still relatively well

dispersed.

SALR systems are unique in their ability to form IRO, which is essentially

local heterogeneity, in a variety of microstructural states.[8, 10, 18] The heterogeneity

occurs over lengthscales of roughly 2π/qIRO and smaller, but remain homogeneous fluids

over macroscopic lengthscales. Thus, a mean field model to describe the viscosity is

still appropriate. Interestingly, cluster formation helps fulfill the assumption of weak

perturbations to the equilibrium solution structure. Specifically, if clusters are long-

lived, they remain dynamically correlated and can be considered as a single entity. In

other words, it is assumed that the internal cluster configuration is unaffected by shear

and is also not a significant contribution to the viscosity. The common link between

the influence of cluster formation on the dynamics and viscosity is the short-time self

diffusivity, DS, which from previous research is known to have significant contributions

to the viscosity[5] and represent the effective hydrodynamic cluster size.[20]
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A.2 Modeling the Effect of Competing Interactions on the Dynamics

Theoretical descriptions of self diffusion as a function of volume fraction have

been developed for a variety of colloidal systems, on which the current model will

be based. A model of hard sphere diffusion[16] has been validated by comparison

with simulation[14] and experimental[22] results. Functions also exist for repulsive

systems[1] and those with weakly attractive interactions.[7] Here, a model is devel-

oped to estimate an effective diffusion coefficient, Deff (q) for systems with SALR

interactions, specifically those that lead to the formation of a preferred cluster size in

equilibrium with monomers. The fundamental assumption is that these populations

can be treated independently with a monomer diffusion coefficient, Dm, and a cluster

diffusion coefficient, Dc. Therefore, the Deff (q) extracted from fitting the intermediate

scattering function (ISF), FS(q, t), obtained by NSE experiments with a single expo-

nential function can be related with a weighted average of both monomer and cluster

diffusion

FS(q, t)/FS(q, 0) = C exp[−q2tDeff (q)]

= Cm exp[−q2tDm(q)] + Cc exp[−q2tDc(q)].
(A.1)

The weighting function is

Ci = φiVi(∆ρi)
2Pi(q), (A.2)

where φi is the volume fraction, Vi is the volume, ∆ρi is the neutron SLD contrast and

Pi(q) is the particle form factor of component i (i = m for monomers and i = c for

clusters). Previous simulation studies of SALR systems have shown the cross correla-

tion structure factor between monomers and clusters to be negligible and therefore the

term is excluded here for the sake of simplicity.[8] After some simple arithmetic, the

derivative is taken with respect to time. In the short-time limit, the exponential func-

tions approach a value of one and the q-dependence disappears resulting in a simplified

expression under these conditions. The resulting function represents the effective short-

time self diffusion in terms of the individual diffusivities of the two components within

314



Figure A.1: The effective ISF (red squares) for a hypothetical two-component system
of HS particles with radii of 1.54 nm (blue circles) and 4 nm (purple
circles) is plotted relative to the model of short-time diffusivity (line) of
an SALR system of monomers and clusters.

the system

Deff = Dm +
A

1 + A
[Dc −Dm], (A.3)

where A = Cc/Cm. A hypothetical calculation is shown in Fig. A.1 for the given q-

value, fraction of monomers and two radii of a bimodal system of HS particles shown in

the figure along with the corresponding small and large particle correlation functions,

the actual effective correlation function and the estimate using Eq. A.3, which is shown

to accurately capture the short-time limit.

The expression for Eq. A.3 fits the limits of a monodisperse system of monomers

or clusters, as the parameter A approaches zero when no clusters are present and the

ratio of A/(1 + A) approaches one in the limit of zero monomers. The value of A can

be reduced to

A =
φcVcPc(q)

φmVmPm(q)
=
φcR

3
cSC(q,N)

φmR3
m

, (A.4)

where the internal structure of a cluster of N particles is now contained within the ef-

fective hydrodynamic radius of a cluster, Rc, and the cluster structure factor, SC(q,N).
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Figure A.2: The radii of gyration are plotted as a function of cluster size, N , or
spherical clusters with FCC (circles) and BCC (squares) crystal struc-
tures along with a line representative of the expected power-law for a
fractal dimension, df , of 2.77.

Calculations of Rc are determined as the product of the estimated radius of gyration,

Rg, and the ratio of hydrodynamic radius, Rh, and Rg according to

Rc

R0

=

(
Rh

Rg

)(
Rg

R0

)
=

N1/df

Γ(2 + 1/df )
, (A.5)

where both contributions are functions of fractal dimension, df . The fractal dimension

can be used as a fitting parameter or, if held constant, a representative value of actual

cluster structures formed in SALR systems can be used.[23] An example of the power-

law relationship between Rg and N used to extract values of df is shown in Fig. A.2 for

the face-centered and body-centered crystal (FCC and BCC, respectively) structures.

The same structures are used to calculate the structure factor contribution, SC(q,N),

to the weighting parameter A as a function of N and df .

In order to estimate the relative magnitude of monomer and cluster contribu-

tions to the signal obtained in NSE experiments, the intensity of the structure factor

in the range of q-values used to calculate self-diffusion coefficients must be modeled as

a function of cluster size (since this is not known a priori). The function SC(q,N) can

be averaged within the q-range used to extract the short-time self diffusion from NSE

316



Figure A.3: The magnitude of S(q) for an FCC (left) and BCC (right) cluster struc-
ture as a function of N and several values of df .

data (0.1 Å−1 < q < 0.16 Å−1) over a range of cluster sizes and fractal dimensions for

two crystal matrices. Different values of df are obtained by removing particles from

inside an initial “perfect” spherical cluster and placing them on corresponding lattice

sites on the surface. The trend in the average value of S(q) over this q-range is plotted

in Fig. A.3 for the FCC and BCC structures as a function of fractal dimension and

cluster size.

Each of the lines in Fig. A.3 capture the rate of change in the structure factor

intensity as a function of cluster size at each of the fractal dimensions listed. The

slopes, dS/dN , are then plotted as a function of df in Fig. A.4 to allow for tuning the

impact of diffusivity on the viscosity by playing with df . In terms of these parameters,

numerical calculations of spherical close packed cluster structures suggest that SC(q,N)

can be approximated by

SC(q,N) = 1 +N(2.88− 0.98df ). (A.6)

Finally, a representative function of the individual diffusivities must be devel-

oped for each of the two components. In the case of a two-component system, as

cluster fluids are approximated here, the effective mobility of each species is influenced

by the population of both components.[12, 15] Therefore, combinations of previously
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Figure A.4: The change in S(q) magnitude with cluster size, N , is plotted as a
function of fractal dimension for an FCC (circles) and BCC (squares)
internal cluster structure and a line of best fit represented by Eq. A.6.

developed Huggins coefficients will be utilized to relate the diffusivity with the volume

fraction of each species. Monomer diffusion is estimated according to

Dm

D0

= 1− φm(1.8315 + 0.295/τB)− 0.42φc/(Rc/R0), (A.7)

where the monomer-monomer contribution is a previously developed model for purely

attractive particles[7] and the monomer-cluster term is the known first-order φ-dependence

of hard sphere excluded volume.[16] While accurately capturing the coupling between

these two species would require predicting hydrodynamic mobility functions for the

specific ratio of cluster and monomer radii,[11] this rough estimation qualitatively cap-

tures the Dm–φc dependence. Similarly, cluster diffusion is represented by

Dc

D0

= 1− 2.5φ4/3
c /(Rc/R0)− 0.42φm, (A.8)

where the contribution from inter-cluster interactions is represented by a function de-

rived for purely repulsive forces,[1] as clusters are expected to interact repulsively.[21]

In addition to the excluded volume of the individual particles clusters are composed of,

the diffusivity is inversely proportional to the cluster radius according to the Stokes-

Einstein relation. With these functions, both the self diffusion and viscosity data can
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be fit simultaneously to extract an effective cluster size and population at each solution

condition.

A.3 Modeling the Effect of Competing Interactions on the Viscosity

Theoretical understanding of colloidal suspension viscosity has been well stud-

ied, leading to numerous models that accurately account for the effects of concentra-

tion, interactions, polydispersity, aspect ratio, etc. An important achievement of these

developments is the realization that the viscosity of spherical particles can be decom-

posed into contributions from hydrodynamic (ηH), Brownian (ηB), and inter-particle

interactions (ηP ) due to the linearity of stress contributions in the limit of Stokes flow

(i.e., low Péclet number).[5] The zero shear viscosity is then a summation of these three

contributions:

ηr0 = 1 + ηH + ηB + ηP . (A.9)

More importantly, by representing the microstructure in terms of statistical mechanical

functions, integral equation theory can be used to numerically determine an ensem-

ble average density distribution that can be integrated into the viscosity calculation.

Here, the new model builds upon these previous efforts to construct a function for the

viscosity of systems with competing interactions, particularly focusing on the impact

of cluster formation, developing a functional form for each of the three contributions

listed above.

The hydrodynamic contribution is not significantly affected by Brownian motion

and is therefore well represented by the high frequency dynamic viscosity. Here, the

functional form developed by Lionberger[16] is used:

1 + ηH =
η′∞
µ

=
1 + 1.5φ(1 + φ− 0.189φ2)

1− φ(1 + φ− 0.189φ2)
. (A.10)

Repulsive interactions are known to reduce the high frequency dynamic viscosity due

to the smaller probability of finding particles in contact.[19] Although the combined

effect of attraction and repulsion is uncertain, the possibility of forming clusters ensures
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a significant population of particles in contact. Therefore, we utilize the hard sphere

model.

The Brownian component represents the relative resistance to shear flow from

the steady state structure, which arises from both the external and thermodynamic

driving forces and the structural relaxation due to thermal motion. Using a statistical

mechanical representation of the equilibrium microstructure, the Brownian term is

represented by

ηB = (12/5)(D0/DS)φ2g(2), (A.11)

where g(2) and f(2) = 4/3 are the pair distribution function and equilibrium pertur-

bation function, respectively, at contact and DS/D0 is the normalized self-diffusion

coefficient. Hard sphere models for the self-diffusion coefficient have been explored

extensively in the literature, but here we utilize the functional form proposed by

Lionberger[16] that accurately approximates simulations by Shikata and Pearson[22]

DHS
S /D0 = (1− 1.56φ)(1− 0.27φ). (A.12)

The hard sphere pair distribution function at contact is well represented by the Carnahan-

Starling equation of state[6]

gHS(2) =
1− 0.5φ

(1− φ)3
. (A.13)

Assuming a homogeneous hard sphere fluid under shear, Brady obtained a value for

f(2) of 4/3, used here, which corresponds well with the value of 1.43 obtained by

solving exact two-body hydrodynamics.[2] Considering the difficulty in estimating the

hard sphere value of f(2), doing so for systems with complex interactions is infeasible.

Therefore, throughout the remainder of the paper we rely on the hard sphere value of

f(2) and replace it with other models when possible.

The contribution from particle interactions is similarly a function of f(r), g(r)

and the interaction potential, U(r):

ηP = −(24/5)(D0/DS)φ2(

∫ ∞
1

dU(r)/drg(r)dr. (A.14)
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Clearly, this contribution is zero for HS data, which we will see is the cause of the

severe discrepancy between the model and the lysozyme data. However, the Brady

model compares well with the RWM-MCT model at the volume fractions of interest.

In order to more accurately represent the effect of competing interactions on

the zero shear viscosity, the interaction contribution needs to be further decomposed.

Specifically, the attractive and repulsive regions of the interaction potential are split

in the integration of ηP

ηP = −(24/5)(D0/DS)φ2(

∫ rm

1

dU(r)/drg(r)dr +

∫ ∞
rm

dU(r)/drg(r)dr), (A.15)

where rm is the point of maximum energy in the HSDY potential. The first integrand,

which accounts for the attractive portion of the full potential, is accounted for by the

KW model.[13] Since attractive interactions produce a microstructure with significant

aggregation, the value of g(2) is large compared to a HS fluid. Further, this structure

will likely be distorted under flow resulting in a significant perturbation and conse-

quently very different values of f(2) from the HS fluid. Therefore, representing this

contribution with a mean field model avoids relying on the severely inaccurate HS

value of f(2) for attractive interactions. The resulting form of the model using this

representation is

ηr0 = (η′∞/µ+ ηHSB )(1 + (1.9φ2)/τB) + ηrepP , (A.16)

where ηrepP incorporates only the second integrand of ηP . The second purely repulsive

integrand is calculated using the parameters extracted from the SANS data. As pointed

out by Brady,[5] repulsive systems can be approximated with the HS value of f(2) and

an effective particle size accounting for the range of repulsion.

A.4 Cluster-Cluster Interactions

Due to competing interactions, there is an additional contribution to the vis-

cosity other than the pure two-particle interactions. In particular, the formation of a

distribution of cluster sizes will produce a pseudo-multi-component system with effec-

tive interactions between these various cluster “species”. Further, clusters in SALR
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systems are unique in that their stability relies on sufficient repulsion to stabilize their

size. Thus, as pointed out previously, clusters will interact with each other by purely

repulsive effective interactions.[21] Therefore, these additional interactions can be in-

corporated into the total viscosity by including additional terms in the ηrepP equation.

However, previously developed models of polydisperse HS systems require the pair

distribution functions for all combinations of species to be known,[15] which for the

purposes of this model is impractical. Therefore, the contribution of effective cluster

interactions is simplified to a two-component system of monomers and clusters charac-

terized by an average size, N , and population xc/N , where xc is the fraction of particles

contained in clusters.

Here we make a quick note on including cluster contributions to the solution

viscosity. The distribution of cluster sizes present in clustered fluids is an interpretation

of the microstructure. Clusters are a manifestation of the distance defining connectivity.

Therefore, a particle will never be in “contact” with a cluster since its proximity will

cause it to become a member of that cluster. As the Brownian term represents the

contribution of particle mobility and interactions bringing particles in contact, it is

appropriate for the Brownian term to keep the functional form of a disperse monomer

system in order to accurately account for the equilibrium content of particles in contact.

When including effective cluster interactions, the total repulsive interaction con-

tribution is capture by

ηrepP = −(24/5)(D0/DS)

(
φ2
m

∫ ∞
rm

(dUmm(r))/drg(r)dr+

φmφc

∫ ∞
rm

(dUmc(r))/drg(r)dr + φ2
c

∫ ∞
rc

(dUcc(r))/drg(r)dr

)
,

(A.17)

where φm and φc are the volume fraction of monomers and clusters, respectively, defined

as

φm = (1− xc)φ

φc = (xcφ)/φn

φn = N [R0/R(N, df )]
3.

(A.18)
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Here, φn is the volume fraction of particles within a cluster represented as a sphere

with an effective radius, R, determined according to a representative fractal dimension,

df .

Each interaction is represented by either monomer-monomer interactions, Umm,

monomer-cluster interactions, Umc, or cluster-cluster interactions, Ucc. Effective monomer-

cluster and cluster-cluster interactions can be calculated integrating the two-body

HSDY interaction over the effective volume of the cluster(s). The resulting expres-

sion for the monomer-cluster interactions is

Umc(r, R)

kT
=

1

r
(−(A(z1, R)K1e

−z1(r−1) + A(z2, R)K2e
−z2(r−1)), (A.19)

where the hard sphere definition is left out, and the expression for cluster-cluster in-

teractions is

Ucc(r, R)

kT
=

1

2πr
(−[A(z1, R)]2K1e

−z1(r−1) + [A(z2, R)]2K2e
−z2(r−1)), (A.20)

with the function A(zi, R) defined as

A(zi, R) =
12φn
z3
i

[
(Rzi + 1)e−Rzi + (Rzi − 1)eRzi

]
. (A.21)

The integration to arrive at the expressions Umc and Ucc assumes a monodisperse sphere

that is most closely represented by a spherical close packed structure. Therefore, φn is

calculated according to R/R0 = N1/df using a fractal dimension of roughly 2.77.

Figure A.5 demonstrates the characteristic difference between R/R0 and Rc/R0

for a few different cluster structures, indicating that cluster interactions are represented

by a smaller, more compact effective sphere (red) compared to cluster diffusivities that

are represented by a larger hydrodynamic radius (gold).
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Figure A.5: The hydrodynamic (gold) and effective compact cluster (red) radii are
represented relative to clusters of 16, 12, 10, and 14 particle (clockwise
from bottom). The bottom cluster (green) is a spherical FCC cluster
on which the calculations of the effective (red) sphere sizes are partially
based. The remaining clusters are characteristic of those expected to
form in lysozyme systems, for which the hydrodynamic radii capture
the more diffuse structure.
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