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Chemometrics represents an extremely effective data analysis tool. Through its 

judicious application, information that would otherwise be obscured within a data set 

can be discovered. This dissertation investigates the development of novel 

chemometric algorithms for accommodating the presence of uncalibrated spectral 

components. It will also discuss building models for both the classification of edible 

oils as well as predicting the peroxide value of those edible oils. 

 

Adaptive Regression via Subspace Elimination, ARSE, is demonstrated to be 

able to effectively handle the presences of uncalibrated chemical components within 

the prediction set. This is demonstrated first with a model system consisting of 

Gaussian “model spectra”. It is then expand to two different artificial data sets based 

upon actual pure component spectra. Across all the data sets a maximum of 4.2x 

improvement in prediction compared to just PLS is observed. 

 

Also shown within this dissertation is the ability to build models to accurately 

predict the type of edible oil as well as the peroxide value.  The classification models 

demonstrate an overall 92.75% accuracy. The error for predicting peroxide value 

depends on both the type of spectroscopy used as well as the composition of the data 

set. The prediction error varies from 3.60 to 8.72 on the same data set for Near IR and 

Raman spectroscopy, respectively.

ABSTRACT 
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INTRODUCTION 

 Motivation 

The field of chemometrics has been extensively studied and utilized for data 

analysis. Chemometrics utilizes patterns and relations in chemical data that may or 

may not be visible upon a simple visible inspection of the data. Chemometrics is 

employed in pharmaceuticals(1-10), the agricultural industry(11-19) and the 

technology sector(20-24) to help analyze a wide varieties of samples. This dissertation 

focuses on the development of a novel algorithm for chemometric modeling in the 

presence of uncalibrated chemical interferents. 

 

Chemometric models are only as good as the data that is used to construct 

them. If a model is introduced to a sample that contains a chemical component not 

present in the calibration set that was used to construct that model the prediction will 

likely fail. There are three broad categories of approaches to account for an 

uncalibrated chemical intereferent. One can construct a model that contains all 

possible future chemical components. This is doable with very predictable systems but 

can quickly become if not impossible at least impractical with complicated systems. 

The next approach would be to construct a new model every time an additional 

chemical component is introduced into the system. This approach will work, however 

it requires extensive wet lab time for every new model, which is extremely costly and 

time consuming. Finally, the original model can be reduced, through some variable 

Chapter 1 
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elimination scheme, such that the variables contaminated by the uncalibrated chemical 

component are no longer present. This approach is purely data preprocessing, and 

therefore requires no additional spectra be collected. This final approach is the basis 

on which the novel algorithm Adaptive Regression via Subspace Elimination was 

developed, which will be a primary focus of this dissertation. 

 

This dissertation also investigates the collection and analysis of various edible 

oil samples. Edible oils, e.g. Olive oil, Vegetable oil, Canola Oil, etc. have been the 

subject of numerous research papers (25-35). Two of the primary points of interest 

within the literature are the ability to differentiate different types of edible oils and 

determining the peroxide value of the edible oils. The identity of the edible oils is of 

interest due to fraud, primarily the dilution of Extra Virgin Olive Oil with lesser 

quality oils. The peroxide value is an indication of the rancidity of the oil, therefore a 

rapid determination of peroxide value via spectroscopy is a hotly researched topic(36-

47).Within this dissertation techniques for building models to predict both type of oil 

as well as peroxide value will be discussed, with an addition study comparing the 

ability of various types of spectroscopy to accurately predict peroxide value. 

 Multivariate Calibration 

The term chemometrics was first used by Svante Wold in a grant application in 

1971(48).Since then several very detailed explanations of multivariate calibration have 

been developed (49-56), and a brief overview is presented here. Multivariate 

calibration involves relating an independent variable, such as concentration, to a set of 

dependent variables, such as a spectrum. This relationship is described by Equation 1-

1 below.  
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 𝐲𝐲 = 𝐗𝐗𝐗𝐗 + 𝐞𝐞 (1-1) 

where y represents a vector of independent variables, X represents a matrix of 

dependent variables, b represents the regression vector and e represents the error. 

 

The crucial portion of any multivariate calibration approach is the regression 

vector, this vector represents the mathematical relationship between your independent 

and dependent variables. Calculating the regression vector requires calculating an 

inverse for the X matrix such that Equation 1-2 below can be reached. 

 𝒃𝒃� = 𝐗𝐗+𝒚𝒚 (1-2) 

where X+ represents the pseudoinverse of the X matrix. Once the regression vector has 

been calculated it can then be applied to new unknown samples, as seen in equation 1-

3, to obtain an estimate of the property of interest. 

 𝒚𝒚𝒖𝒖𝒖𝒖𝒖𝒖 = 𝑿𝑿𝒖𝒖𝒖𝒖𝒖𝒖𝒃𝒃� (1-3) 

where Xunk represents the dependent variable of a new unknown sample and yunk 

represents the estimate of that samples independent variable. 

 

The major difference between all multivariate modelling approaches is the 

determination of the pseudoinverse of X. Multiple Linear Regression (MLR) requires 

eliminating enough variables such that there are more samples than variables, then a 

traditional inverse can be taken(57, 58). Partial least squares (PLS) and Principal 

component regression (PCR) require determining the number of latent variables or 

principal components to retain respectively (59-61). In Tikhonov Regularization, also 

known as Ridge Regression (RR), the appropriate weighting factor must be 

determined to stabilize the inverse (62). PLS is the approach that is used within this 

dissertation and therefore will be discussed in more detail 
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Partial least squares was first introduced by Herman Wold in 1979(63) and has 

been heavily used in the chemometrics community (64-73).  Table 1 below shows the 

basic breakdown of Wold’s PLS algorithm (59). 

Table 1: Wold’s PLS Algorithm  

1) Initialize: 𝑦𝑦0 = 𝑦𝑦;  𝒙𝒙𝑜𝑜 = 𝒙𝒙;𝑦𝑦�0 = 0  
2) For k = 1 to p do: 

2.1) 𝒘𝒘𝑘𝑘 = 𝑐𝑐𝑐𝑐𝑐𝑐(𝑦𝑦𝑘𝑘−1𝒙𝒙𝒌𝒌−𝟏𝟏) 
2.2) 𝑧𝑧𝑘𝑘 = 𝒘𝒘𝑘𝑘

𝑡𝑡 𝒙𝒙𝑘𝑘−1 

2.3) 𝑟𝑟𝑘𝑘 = �𝑐𝑐𝑐𝑐𝑐𝑐(𝑦𝑦𝑘𝑘−1𝑧𝑧𝑘𝑘)
𝑐𝑐𝑐𝑐𝑐𝑐�𝑧𝑧𝑘𝑘

2�
� 𝑧𝑧𝑘𝑘 

2.4) 𝑦𝑦�𝑘𝑘 = 𝑦𝑦�𝑘𝑘−1 + 𝑟𝑟𝑘𝑘 
2.5) 𝑦𝑦𝑘𝑘 = 𝑦𝑦𝑘𝑘−1 − 𝑟𝑟𝑘𝑘 
2.6) 𝒙𝒙𝑘𝑘 = 𝒙𝒙𝑘𝑘−1 − [𝑐𝑐𝑐𝑐𝑐𝑐(𝑧𝑧𝑘𝑘𝒙𝒙𝑘𝑘−1)

𝑐𝑐𝑐𝑐𝑐𝑐�𝑧𝑧𝑘𝑘
2�

]𝑧𝑧𝑘𝑘 

2.7) 𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎(𝒙𝒙𝑘𝑘𝒕𝒕 𝒙𝒙𝒌𝒌) = 0 𝑡𝑡ℎ𝑒𝑒𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 
3) End For 

Step 1 in the above Table serves to initialize the algorithm, where x0 is the dependent 

variable, y0 represents the independent variable, 𝑦𝑦�0represents the model. Step 2.1 

computes the covariance wk between yk-1 and xk-1 and then wk is then used to form a 

linear combination of the x residuals in step 2.2. Then the y residuals are regressed 

against this linear combination in step 2.3. The results of this regression are then 

added to the model in step 2.4. Steps 2.5 and 2.6 represent creating the next set of y 

and x residuals respectively to be used for the next pass through the loop. Step 2.7 is a 

check to see if the residual of the x matrix has reached zero, once this happens this 

step terminates the algorithm. The algorithm will stop after k steps, where k is equal to 

the rank of the covariance matrix of xxt (59). Once the algorithm has run its course it is 

up to the investigator to choose the best model. 



 5 

 Spectroscopy 

1.3.1 Raman Spectroscopy 

Raman spectroscopy is based around the principle of the inelastic scattering of 

light that was first purposed by Adolf Smekal in 1923(74). However it was first 

observed by Sir C.V. Raman in February 1928, and C.V. Raman was award the Nobel 

Prize in physics in 1930 for his experimental observation (75). Raman was further 

developed into a spectroscopy technique by George Placzek, a Czechoslovakian –

physicist, between 1930 and 1934(76). 

 

Raman spectroscopy allows for the probing of the vibrational modes of a 

sample. This is accomplished by illuminating a sample with a monochromatic light 

source, typically a laser, which temporarily elevates the molecule to a higher virtual 

energy state. If the molecule then relaxes to the same initial energy state this is called 

Rayleigh scatter. Rayleigh scattering must be filtered out due to its uninformative 

nature and the fact that it is several orders of magnitude more intense than the useful 

Raman scattering (77). If the molecule relaxes to a higher energy state than it was 

originally at this is referred to as Stokes Raman scattering, and if the molecule relaxes 

to a lower energy level than the original it is referred to as anti-Stokes Raman 

scattering. This can be seen visually in the Jablonski diagram below. 
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Figure 1: Raman Scattering Jablonski Diagram(78) 

Raman Spectroscopy relies on the ability of a molecule to have a change in 

polarizability. This change in polarizability is an effect of the absorbed light causing a 

vibrational change with the molecule that may or may not produce a Raman active 

band. For example in carbon disulphide, the symmetric stretch is Raman active 

because it results in a shift in the polarizability, however that same stretch is not 

Infrared active because there is no change in the dipole moment. Conversely the 

asymmetric and bend of carbon disulphide are Infrared active due to change in the 

dipole by Raman inactive due to no change in the polarizability. This rule of mutual 

exclusion, i.e. within symmetric molecules no normal modes can be both Raman and 
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IR active (77), is what leads to Raman and Infrared spectroscopies being considered 

complimentary approaches. 

1.3.2 Near and Mid Infrared Spectroscopy 

Infrared radiation (IR) was discovered by Sir William Herschel a British 

Astronomer in 1800, through its effect on a thermometer (79). Mid-infrared 

Spectroscopy, or Mid-IR, encompasses the portion of the electromagnetic spectrum 

from approximately 4000 to 400 cm-1. Near Infrared spectroscopy or NIR 

encompasses the region of the electromagnetic spectrum from 14000 to 4000 cm-1. 

Due to this wide difference in the energy ranges covered by the two techniques they 

excite significantly different processes with a molecule. 

 

Mid-IR spectroscopy is used to study the fundamental vibrations of a 

molecule, allowing for an understanding of the rotational-vibration structure of a 

molecule complementary of that of Raman spectroscopy. Mid-IR spectroscopy is 

accomplished by either sweeping the Mid-IR range of infrared wavelengths one at a 

time across the sample or passing the entire Mid-IR range at once over a sample and 

using a Fourier transform to obtain the spectrum. With either approach, when a 

molecule is hit with the appropriate wavelength to excite a change in the molecule’s 

dipole moment radiation with that wavelength will be absorbed; and a dip or peak will 

be observed in the transmission or absorption spectrum respectively. Mid-IR is most 

commonly used for the identification of organic compounds(80-84); however, in 

recent years it has also been applied to a wide range of samples including paintings 

and other art objects(85-87) semiconductors(20-24), and food products(88-94). 
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NIR absorption, unlike Mid-IR, is a result of overtones and combination bands 

of those fundamental vibrations observed in the Mid-IR region. The first overtone 

bands occurs when a molecule is excited from vibrational mode v = 0 to v = 2. 

Subsequent overtone bands can occur but the probability isn’t high for a first overtone 

excitation and is even lower for higher order overtones. Despite the slight difference in 

what is being measured NIR spectra are collected in a similar manner to that of Mid-

IR spectra, just within a different wavelength range and a change of detector.  

 

However, NIR bands resulting from overtones and combination bands are 

typically 10 to 100 times weaker than those in the Mid-IR region (95). NIR bands are 

also significantly more broad than those in the Mid-IR region (95) leading to the 

technique being much less popular than Mid-IR, until the widespread use of 

multivariate analysis lead to an increase in its usage. NIR also has some major 

advantages over MIR: Water is nearly transparent in the NIR, allowing for much 

easier sample prep in most cases and glass and quartz are transparent in the NIR, 

allowing for much easier sampling. Also the quantum yield of the NIR detectors is 

much better than those used in IR, resulting in much less noise than in MIR. 

 Overview of Dissertation 

This dissertation will have two primary focuses, chemometric method 

development and spectroscopy. Chapter 2 is focused on the development of a novel 

algorithm allowing for prediction in the presence of uncalibrated chemical 

constituents. Chapter 3 focuses on the collection of two separate data sets of edible oil 

spectra. Chapter 4 focuses on the analysis of these two data sets. The first data set 

collected at the University of Delaware that will be used for both classification 
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modeling, determining the type of edible oil, as well as building models to predict the 

peroxide value of the edible oils. Whereas the second data set, collected at Lawrence 

Livermore National Lab, will be used not only for building models predicting the 

peroxide value of edible oils, but also to compare the effectiveness of different 

spectroscopic techniques in building those models. Finally Chapter 5provides a 

conclusion as well as ideas for future directions. 
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ADAPTIVE REGRESSION VIA SUB SPACE ELIMINATION 

 Introduction 

Multivariate calibration models are a widely accepted means of quantitatively 

determining analyte properties, such as pH, oxidation state, and, most commonly, 

concentration (96, 97). In spectroscopy, calibration models are developed from of a set 

of observed spectra with known reference values. These observed spectra describe the 

calibration space, the set of all instrumental, environmental, and chemical effects 

captured by the spectra. These calibration spectra and associated reference values 

often require extensive laboratory time and expense to collect. Due to this time and 

expense, many methods for updating an existing model to predict future spectra with 

uncalibrated interferents have been developed (98-106).  

 

 Calibration maintenance studies have been the subject of review 

articles (107). These methods typically fall into two broad categories: robust model 

building and model updating (108-117). The goal of any robust modeling approach is 

to construct the calibration set such that it spans all possible future chemical, 

environment, and instrumental intereferents that may appear in future samples. This 

proves impractical in the majority of situations for two reasons. First it is extremely 

difficult to predict all the possible interferents that may appear in future samples. 

Second, even if one could predict all the possible future interferents one then must 

Chapter 2 
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build their calibration set containing all interferents in a sufficiently robust 

experimental design. The size of such a calibration set could quickly expand well past 

a practical size. 

 

The other broad category of calibration maintenance is to update the 

calibration set. This can be accomplished by collecting or creating a large number of 

new samples containing the uncalibrated intereferent and augmenting the original 

calibration set or collecting a few samples and weighting those appropriately when 

augmenting the calibration set. These approaches have been well reviewed in literature 

but suffer the drawback of requiring references values for those new samples (107).  

 

Additionally, both strategies suffer from an expanding ‘interferent space.’ 

Including more interferents in the experimental design decreases the net analyte signal 

(NAS). From the standpoint of NAS, an optimal experimental design would include 

only the interferents present in a future sample. Decreasing the NAS degrades the 

noise handling properties of the multivariate model. When the NAS becomes 

sufficiently small, the ability to reliably estimate properties of future samples is lost.  

 

The goal of this new calibration maintenance process, Adaptive Regression via 

Subspace Elimination (ARSE), is not to update a calibration set but rather eliminate 

the contribution of the uncalibrated interferent. By determining the set of variables in 

the test spectrum that have a contribution from the uncalibrated interferent, those 

variables can be eliminated, and the original calibration set, minus the contaminated 

variables, can be reanalyzed to construct a new calibration model. Effectively, ARSE 
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is trading bias for an increase in variance. The variables most biased by the 

uncalibrated interferent are identified and eliminated. The remaining subset of 

variables, consequently, has diminished capacity to average the effects of random 

errors. 

 Mathematics and the Approach 

The ARSE algorithm is based on the assumption that any uncalibrated 

interferent will contaminate a subset of the variables in a future sample. For instance, 

if Sc represents the multivariate space described by the variables in the calibration set, 

then a future contaminated sample, xf, can be described as the set of variables that lie 

within Sc, xfa, and the set of variables that would lie with in Sc if not for the 

contribution of the uncalibrated interferent (UI), xfb, as seen in equation 2-1.  

 

 𝒙𝒙𝑓𝑓 = 𝒙𝒙𝒇𝒇𝒇𝒇 ⊆ 𝑺𝑺𝒄𝒄 + (𝒙𝒙𝒇𝒇𝒇𝒇 ⊆ 𝑺𝑺𝒄𝒄 + 𝑼𝑼𝑼𝑼)  (2-1) 

This then becomes a combinatorics problem. If for example, the calibration set 

is described by 40 variables and a new sample has an uncalibrated interferent 

contaminating 30 of those variables, there consists one 10-variable subspace that is not 

contaminated by the interferent out of 8*108 possible 10-variable subspaces. Not only 

is this computationally impractical for an exhaustive search but it is also dependent on 

knowing exactly how many contaminated variables are present.  

 

However, in many spectroscopic applications, observed interferent spectra 

have contributions at (most) all spectroscopically informative wavelengths in the 

calibration model. That is to say, the probability of finding a range of wavelengths that 
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are uncontaminated is low. For this reason, methods like secured-PCR (118) have not 

seen much practical utility.  

 

To overcome the problems of a large search space with too few 

uncontaminated variables, ARSE was performed following transformation of all 

spectra into the wavelet domain. As described in reference 118, this is a frequency and 

phase transformation that preserves all the information contained within the spectra 

(119). This transform significantly increases the number of variables unique to our 

analyte of interest with respect to the uncalibrated interferent. (Figure 2) ARSE was 

then performed on a finite number of random subsets of variables. This allowed the 

computational issues to be avoided while also evaluating the usefulness of each 

variable in combination with many different variables. 
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Figure 2: Ratio of analyte of interest pure component to uncalibrated 

interferent pure component in both wavelength and wavelet space 

 

The goal of ARSE is determine those variables that are described by the 

calibration set and have predictive ability while having minimal contribution from the 

uncalibrated interferent. The presences of an uncalibrated interferent can be identified 

through the projection error,  

 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝒙𝒙 ∗ (𝑰𝑰 − 𝑽𝑽 ∗ 𝑽𝑽′)𝟐𝟐  (2-2) 

In Equation 2-2, x represents a future, possibly contaminated, sample with m 

variables. , I represents an m x m identity matrix and V represent the eigenvectors of 

the calibration space.  The projection error for any k-variable subspace of the 

calibration space can be equivalently determined by selecting any k of the m variables 

of x.  The identity matrix becomes k x k, and the eigenvector matrix, V, must be 
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recalculated from just the k variables in the calibration set.  This distance outside of 

the calibration space is then a measure of the contamination within each set of k 

variables. 

 

The net predictive ability of a k-variable subspace is determined by calculating 

the prediction error for a set of k variables 

 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = �∑(𝑦𝑦−𝑦𝑦�)2

𝑛𝑛
 (2-3) 

where y represent the calibration reference values, y ̂ represent the PLS calculated 

estimate of the reference values and n represents the number of samples in the 

calibration set. A separate multivariate model is generated for each unique subspace 

analogous to moving window partial least squares regression (120) except the set of 

variables employed is not contiguous – and is in the wavelet domain. 

 

After many k-variable subspaces are analyzed, the average projection and 

prediction errors can be calculated for each variable based on the observed projection 

and prediction errors of subspaces when each variable is employed. This then gives a 

measure of how contaminated each variable is by an uncalibrated interferent and how 

informative each variable is with respect to determining the analyte of interest in the 

calibration space.  

 

After a large set of potential subspaces have been analyzed, the average 

projection and prediction errors are used to establish the best subset of variable to use 

to predict the sample containing the uncalibrated interferent. This is accomplished by 

rank ordering these two errors and then examining the union of those two ordered sets. 
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The union of the two sets can be expanded until the desired number of samples are 

present, i.e. both errors may need to be expanded until the best performing 30 

variables, by each metric, are present before the union of the two sets contains five 

variables. Once the desired number of variables are present in the union, those 

variables can be selected to build a model and predict the possibly contaminated test 

sample. The algorithm in its entirety can be seen below in Figure 3. 

 

Figure 3: Diagram of the ARSE algorithm  

 

This approach can then be repeated for each sample in the set of samples with 

uncalibrated interferent. By doing each uncalibrated sample independently the 

calibration model can be rebuilt to fit the needs of each specific sample. This allows 
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the algorithm to compensate for a set of samples that may have different interferents in 

different samples. 

 Experimental 

2.3.1 Software 

Programs for new methods were written in Matlab 8.4 (The Mathworks, 

Natick, MA). PLS programs were used from the PLS toolbox version 7.95 

(Eigenvector Research, Inc., Manson, WA). 

2.3.2 Data Sets 

2.3.2.1 Data Set 1 

Synthetic mixture spectra were made from pure component spectra obtained 

from the EPA Vapor-Phase IR Library. The pure component spectra were measured at 

4 cm-1 resolution from 450 to 4000 cm-1. The pure component spectra (Figure 4) were 

then used to create 40 calibration samples containing three species and 25 test samples 

containing the original three calibration species plus an uncalibrated interferent. 

Concentrations were randomly determined values between 0 and 1 and the 

concentration of the uncalibrated interferent in the test samples was entirely 

independent of the concentration of the analyte of interest. 
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Figure 4: Pure component spectra for Data Set 1 

 

2.3.2.2 Data Set 2 

Synthetic mixture spectra using pure component UV-VIS spectra were 

measured in-house on a HP 8452a UV-VIS with 2 nm resolution from 190 to 820 nm. 

The pure components (figure 5) consist of three dyes, Eosin Y, green food coloring 

(Blue 1 and Yellow 5) and Rhodamine B, for the calibration set, where Eosin Y was 

treated as the analyte of interest. The test set consisted of two dyes, Methyl Red and 

Quinaldine Red, to act as different uncalibrated interferents. These were then used to 

create a calibration set containing 60 samples and two different 40 sample test sets 

with each test set containing one of the uncalibrated interferents. As with the previous 

set, concentrations were randomly distributed values from 0 to 1, U(0,1), and the 
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concentration of the uncalibrated intereferents were independent of those of the 

analyte of interest and also followed a U(0,1) distribution. 

    

Figure 5: Pure component spectra for Data Set 2 

 Data preprocessing and algorithm parameters 

All spectra were wavelet transformed using a symlet 8 wavelet to potentially 

increase the number of variables that are unique to the calibration set. All spectra and 

corresponding reference values were mean centered before any PLS model was built. 

The algorithm was allowed to run for 1 million iterations while selecting k = 6 random 

variables for each iteration. The ProjE (Eq. 2-2) and PredE (Eq. 2-3) were calculated 

for the 6-variable subspace. Preliminary results show that these parameters work well, 
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but may not be optimized for general use nor optimal for any particular data set. 

Further optimization and validation of the algorithm parameters is an ongoing project.  

 

 Results and Discussion 

2.5.1 Data Set 1 

The synthetic IR data are perfectly estimated by a three factor PLS model 

when no noise or uncalibrated interferent are present for calibration model 

construction in either the wavelength or wavelet space. When estimating 

concentrations in the presence of uncalibrated interferents, analysis in the wavelet and 

wavelength spaces perform equivalently.  In the wavelength space, estimating the 

analyte concentration from the 25 spectra containing an uncalibrated interferent 

presents a root mean squared error of prediction (RMSEP) of 0.2738 for samples with 

a mean nominal concentration of 0.5 (Table 2). These 25 samples have a mean error of 

-0.2406 with a standard deviation of 0.1227 based solely on the distribution of added 

uncalibrated interferent. In the wavelet space, estimating the analyte concentration 

from the 25 spectra containing an uncalibrated interferent presents a RMSEP of 

0.2786 for samples with a mean nominal concentration of 0.5 (Table 3). These 25 

samples have a mean error of -0.2503 with a standard deviation of 0.1248 based solely 

on the distribution of added uncalibrated interferent. The distribution of prediction 

errors is shown in Figure 6. 

 

However, application of ARSE performs significantly better on the wavelet 

transformed data than on the wavelength-space data. This is due to lack of interferent-
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free variables in the wavelength space. Applying ARSE in the wavelength space does 

not improve the RMSEP with either a 6-variable or 12-variable model (Table 2). The 

RMSEP converges to the RMSEP without ARSE as more variables are included. 

 

Applying ARSE to the noiseless data reduces the RMSEP by a factor of 5.3 for 

both the best 6-variable and best 12-variable ARSE models (Compare rows 2 and 3 to 

row 1 in Table 3).  The absolute mean error and the standard deviation of observed 

errors are also reduced by a factor of 5.3. That is to say, the PLS model is 530% more 

biased without ARSE than following application of ARSE. The distribution of errors 

following ARSE are virtually identical for the 6-variable and 12-variable ARSE 

treatments (Table 3). That the bias shifts from negative to positive is a consequence of 

which subspace is kept. This should not be interpreted as an ‘overcorrection’ by 

ARSE. It happened that upon selection of variables with minimal uncalibrated 

interferent contribution, there was a net greater overlap with positive weighted 

variables in the regression vector than negatively weighted variables in the regression 

vector when the PLS model was rebuilt within the retained subspace.   
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Figure 6: Histogram of errors for noiseless data set 

Table 2: Results for Data Set 1 with no noise in wavelength space 

Method Mean Error STD RMSEP 
PLS -0.2460 0.1227 0.2738 
ARSE plus PLS 6 variables -1.3785 0.6875 1.5342 
ARSE plus PLS 12 variables -0.7455 0.3718 0.8298 

 

Table 3: Results for Data Set 1 with no noise in wavelet space 

Method Mean Error STD RMSEP 
PLS -0.2503 0.1248 0.2786 
ARSE plus PLS 6 variables 0.0470 0.0234 0.0523 
ARSE plus PLS 12 variables 0.0470 0.0234 0.0523 
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To further demonstrate the efficacy of this new algorithm, two levels of 

normally distributed noise, N (0, 1) were added to the calibration and test data sets. 

The noise levels were scaled to be 1 percent and 5 percent of the net spectral intensity 

of each variable in the wavelength space. The spectra were then converted from 

wavelength space to wavelet space prior to ARSE application.  

 

The addition of 1% and 5% noise does not significantly impact the 

performance of the PLS model prior to treatment by ARSE. The RMSEP, mean bias, 

and standard deviation of observed biases are all within 0.2% of the values obtained 

by PLS analysis of the noiseless data. (Compare Table 4, first row to Table 3, first 

row) The errors of analysis are dominated by the bias derived from the uncalibrated 

interferent, not the added random spectral noise.   
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Figure 7: Histogram of errors for 1% noise data set 
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Figure 8: Histogram of errors for 5% noise data set 

 

Table 4: Results for Data set 1 with noise added in wavelet space 

Method 1 Percent Noise 5 Percent Noise 
 Mean Error STD RMSEP Mean Error STD RMSEP 
PLS -0.2497 0.1247 0.2780 -0.2458 0.1268 0.2754 
ARSE 
plus 
PLS 6 
variable 

0.0448 0.0733 0.0846 0.0001 0.2028 0.1987 

ARSE 
plus 
PLS 12 
variable 

0.0332 0.0604 0.0679 0.0111 0.1518 0.1491 
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A Monte Carlo noise sensitivity analysis highlights the impact of random 

errors on the ability of ARSE to determine robust calibration models. With 1% 

normally distributed noise, both the 6 variable and 12 variable ARSE models show 

improvement of both accuracy (~3x-4x) and precision (~2x) (Table 3, Figure 6). With 

5% normally distributed noise the tradeoff between accuracy and precision using 

ARSE becomes evident (Figure 8). While a greater than 10x improvement in accuracy 

is realized, the precision is degraded substantially. In this example the 12 variable 

model yields a better precision without loss of accuracy then the 6 variable model due 

to signal averaging because there are at least 12 uncontaminated variables in the 

wavelet space.  In addition to signal averaging across more variables, where 

appropriate, loss in precision can be recovered by averaging replicate samples. 

 

Ultimately the accuracy and precision of ARSE is based on which variables are 

selected. Of interest is the effect on variable selection by the noise present. Each test 

set sample was replicated 20 times with different realizations of 1% and 5% noise. 

Due to similarities in results, only the 1% noise will be discussed. Interestingly, 

although each sample was analyzed independently of all other samples, the ARSE 

algorithm under corrected samples with low analyte concentration and over corrected 

samples with high analyte concentration (Figure 9). Observing the frequency usage of 

each variable (Figure 10) in the 12-variable model shows that 5 variables were 

employed at least 90 percent of the time and 11 variables where employed at least 50 

percent of the time. When the 12 most commonly employed variables for the 5 lowest 

concentrations are used to form a model that is applied to all samples, a similar under-
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correction is observed; when the 12 most commonly employed variables for the 5 

highest concentration are used to form a model that is applied to all samples, a similar 

over-correction is observed. Consequently it is concluded that the under-/over-

correction problem is a function of the variables chosen, and is not intrinsic to the PLS 

model or the constructed data. Disaggregating the data shows that the major difference 

among the variables selected for the high concentration and low concentration samples 

is a simple shift in the variables being chosen, i.e. for high concentration variable 937 

is chosen and for the low concentration variable 940 is chosen. 

 

A more accurate and precise model can be realized with a different selection of 

variables. From the histogram of employed variables (Figure 9)  models were 

constructed using the k most frequently selected variables and applied to all the 

samples, each with 20 different realizations of noise.(Figure 10) The RMSEP was 

determined for the 20 replicates of all 25 samples (from Figure 10) as a function of 

number of variables used (Figure 9). Clearly, more accurate and precise models can be 

obtained by choosing variables in a manner that is more robust to random noise. Based 

on the observed RMSEP for different calibration subspaces in Figure 9, judicious 

selection of variables through an improved ARSE algorithm could lead to a further 

50% improvement in robustness against uncalibrated interferents. 
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Figure 9: RMSEP as a function of number of variables used. Inset histogram of the 
percentage of times a variable is chosen 
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Figure 10: Predicted vs True Y values for repeated 1% noise samples 

 

2.5.2 Data Set 2 
 

The UV-Vis data set represents a more challenging scenario for ARSE. Not 

only are there no analytically useful uncontaminated variables in the wavelength 

space, there are few analytically useful, uncontaminated variables in the wavelet 

space. When building PLS models across all variables in the presence of Quinaldine 

Red, RMSEPs of 0.4872 and 0.4953 in the wavelet and wavelength space, 

respectively, were obtained; when in the presence of Methyl Red RMSEPs of 0.1841 

and 0.1887 in the wavelet and wavelength space, respectively, were obtained.  
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Employing ARSE on the data with Quinaldine Red as the uncalibrated 

interferent, a 4.2x improvement is realized for the 6-variable model and 3.8x 

improvement is realized for the 12-variable model (Table 5, Figure 11). The ARSE 

models also present a 1.9x improvement in model accuracy and 2.4x improvement in 

model precision for the 6-variable model and 3.8x improvement in model accuracy 

and 4.0x improvement in model precision for the 12-variable model. When examining 

the data with Methyl Red as the uncalibrated interferent a slight increase in RMSEP 

(1.14x) is observed for the 6-variable model however a 1.8x improvement is observed 

for the 12-variable model (Table 6, Figure 12). The accuracy improves for both the 6-

variable and 12-variable model, whereas the precision only improves for the 12-

variable model. This degradation of the precision for the 6-variable model results in 

the higher overall prediction error when compared to the PLS model. 

 

 As with the IR data, two levels of normally distributed noise, N (0, 1) were 

added to the calibration and both test data sets. The noise levels were scaled to be 1 

percent and 5 percent of the net spectral intensity of each variable in the wavelength 

space. The spectra were then converted from wavelength space to wavelet space prior 

to ARSE application.  

 

Again as in the IR data, the addition of noise had no significant effect on the 

PLS model. The RMSEP is within 0.1% of the noiseless value for the 1% noise data 

set and is exactly the same to 4 decimal places for the 5% noise data set (Compare row 

1 in Tables 5 and 6, and 7 and 8). The model precision and accuracy also vary by, at 

most, 0.1% when comparing the noiseless data to the data sets with additional noise. 
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This again demonstrates that the error in the model is inherent to the presence of the 

uncalibrated interferent rather than from any additional spectral noise. 

Table 5: Data Set 2 with Quinaldine Red as uncalibrated interferent in wavelet space 

Method Mean STD RMSEP 
PLS -0.3976 0.2852 0.4872 
ARSE plus 
PLS 6 
variable 

0.2139 0.1184 0.1184 

ARSE plus 
PLS 12 
variable 

0.1039 0.0712 0.1254 

 

Table 6: Data set 2 with Quinaldine Red as uncalibrated interferent in wavelet space 
with added noise 

Method 1 Percent Noise 5 Percent Noise 
 Mean Error STD RMSEP Mean Error STD RMSEP 
PLS -0.3969 0.2885 0.4869 -0.3988 0.2834 0.4872 
ARSE 
plus 
PLS 6 
variable 

0.1303 0.2481 0.2774 1.1586 1.0178 1.5337 

ARSE 
plus 
PLS 12 
variable 

0.9202 0.7289 1.1683 1.2792 1.1098 1.6844 

 

When Quinaldine Red is the uncalibrated interferent, ARSE is able to improve 

the RMSEP by a factor of 1.75x for a 6-variable model on the 1% noise data (Table 5). 

However, for both the 12-variable model on the 1% noise data and both models on the 

5% noise data there is a significant increase in all three factors of merit.  This increase 
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is due to the inherent difficulty of this data set. The difficulty of the small number of 

analytically useful uncontaminated variables in this data set is further complicated by 

the introduction of any noise. 

 

Figure 11: Histogram of prediction errors with Quinaldine Red as uncalibrated 
interferent and no noise 

Table 7: Data set 2 with Methyl Red as uncalibrated interferent in wavelet space 

Method Mean STD RMSEP 
PLS -0.1570 0.0973 0.1841 
ARSE plus 
PLS 6 
variable 

0.1460 0.1583 0.2139 

ARSE plus 
PLS 12 
variable 

0.0685 0.0761 0.1016 
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Table 8: Data set 2 with Methyl Red as uncalibrated interferent in wavelet space with 
added noise 

Method 1 Percent Noise 5 Percent Noise 
 Mean Error STD RMSEP Mean Error STD RMSEP 
PLS -0.1568 0.0971 0.1838 -0.1596 0.0992 0.1873 
ARSE 
plus 
PLS 6 
variable 

0.0848 0.1055 0.1344 0.2465 0.2648 0.3593 

ARSE 
plus 
PLS 12 
variable 

0.1917 0.1455 0.2396 0.2573 0.2703 0.3707 

 

Similar to Quinaldine Red, when Methyl Red is the uncalibrated interferent ARSE is 

able to improve the RMSEP by a factor of 1.4x for the 6-variable model in the 1% 

noise data set (Table 7, 8). Again however for the 12-variable model for the 1% noise 

data set and both models for the 5% noise data set there is a significant degradation in 

the prediction error, though less than is seen in the case of Quinaldine Red.   
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Figure 12: Histogram of prediction error with Methyl Red as uncalibrated interferent 
and no noise 

 Conclusions 
 

The results in this chapter show that a solution to the problem of uncalibrated 

interferents in future samples exists in the form of determining uncontaminated 

variables and then re-building a model with just those variables. This approach is not 

without obstacles that must be overcome; first is the creation of variables that are both 

analytically relevant to the analyte of interest and uncontaminated by interferents. 

Within this chapter that was accomplished via a symlet based wavelet transform. 

Future work will focus on analyzing other possible wavelet families as well as wavelet 

preprocessing to eliminate irrelevant variables prior to the application of ARSE. 
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Once appropriate variables are created, the obstacle becomes selecting those 

variables. This work has shown that with an ARSE like algorithm it is possible to 

select variables and build a model that improves model accuracy with minimal 

increase in model precision. However the selection process must be further modified 

to be more robust to the effect of sample to sample variation.   
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EDIBLE OIL DATA COLLECTION 

 Introduction 

The health benefits of edible oils have caused them to frequently be 

recommended for daily consumption. One of the largest health benefits is their ability 

to help prevent heart disease (121). This benefit has been linked to the presence of 

unsaturated fatty acids in the oils (121). This has led to an increased interest in 

determining both the purity and level of unsaturation, or the degree of saturation, of 

edible oils. 

 

Determining the purity of an edible oil first relies on being able to accurately 

identify an oil. This has been done in the past through various spectroscopic 

techniques, including MIR, Raman, and NIR(122-136); however, to our knowledge, 

no one has compared classification capabilities of all of these techniques on the same 

data set. Another gap in the classification literature is consideration of brand and co-

packer differences. The standard procedure when preforming an edible oils experiment 

for classification is to procure samples directly from one source, typically directly 

from the distributor, and use aliquots from those samples to make up the data set. One 

of the goals of this dissertation is to build classification models using samples 

procured from various grocery stores so as to include realistic variation from brand to 

brand and supplier to supplier. 

 

Chapter 3 
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Once the identity of an oil sample is established, the next step is to determine 

the degree of saturation, or peroxide value, of the oil. Traditionally the peroxide value 

of an oil is determined via the American Oil Chemists Society’s procedure Cd-8b 

(137). This method will be discussed in greater detail later in this chapter. Another 

goal of this dissertation is to demonstrate the first steps in replacing this involved 

chemical procedure with a spectroscopic technique paired with chemometrics to 

greatly simplify the determination of the peroxide value. 

 Data Set Descriptions and Motivations 

Literature has demonstrated that multiple different spectroscopic techniques 

are viable for both the classification of edible oils(138-144) as well as determining the 

peroxide value of a given edible oil(145-150). However, Raman spectroscopy proves 

to be the most popular for classification. This is likely due to the abundance of Raman 

active bonds in edible oils as well as easy of data collection with a typical dip probe 

Raman set up. 

 

This ease of useful data collection led to the creation of Data Set 1, or the 

University of Delaware Data Set. This data set was collected via an Ocean Optics dip 

probe instrument detailed in the section below. The goal of this data set was to show 

both the classification and quantification power of dip probe Raman combined with 

the appropriate chemometric data pretreatment and model building which will be 

discussed in Chapter 4. 

 

The goals of Data Set 2, or the Lawrence Livermore National Lab (LLNL) 

Data Set, was to compare both the classification and quantification power of various 
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spectroscopic techniques. To accomplish this, 100 samples of edible oils were titrated 

to determine their respective peroxide values and then were measure using Raman, 

NIR at 2 different path lengths, and MIR. The details of this data collection are 

described in the remaining sections of this chapter and the results of the comparison 

are laid out in Chapter 4. 

 

Both of these data sets consist of edible oils purchased at grocery stores in and 

around Newark, DE. The bottles of oils have been stored at room temperature since 

they were purchased. The samples vary in purchase date from the summer of 2014 up 

to the spring of 2016. All samples were prepared for measurement by first removing 

an aliquot and placing it in a 20 mL scintillation vial until the measurement was made. 

The samples for Data Set 2 were aliquots removed from bottles in Newark, DE and 

then shipped overnight to Lawrence Livermore National Lab( Livermore, CA), where 

they were then stored in a room temperature lab until measurements were made. 

Peroxide value determination was done as close as possible in time to the 

spectroscopic measurements. For Data Set 1, all peroxide value determinations were 

done within 24 hours of any Raman collection. For Data Set 2, due to the logistics of 

the additional spectroscopic techniques, all data collection was done within a 6-day 

window. 



 39 

 Spectroscopic Techniques 

3.3.1 Raman Spectroscopy 

3.3.1.1 Ocean Optics Raman 

This data set was collected on an Ocean Optics QE65000 Raman Spectrometer with a 

785nm laser. The spectra were collected via a sapphire ball lens immersion probe. The 

samples were collected with a 90 second integration time with 2 cm-1 spectral 

resolution. Shown in the figures below is both the raw Raman data as well as the data 

once it has been reduced to the area of interest, then baseline corrected, and finally 

normalized to unit area. The spectra were baseline corrected by taking the reduced set 

of wavelengths and fitting a second order polynomial to the baseline. This polynomial 

was then subtracted from each spectra resulting in a flat baseline for the spectra.

 

Figure 13: Raman spectra collected on Ocean Optics Spectrometer before any 
preprocessing 
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Figure  14: Ocean Optics Raman spectra after it has been baseline corrected, 
normalized to unit area and reduced to the area of interest.  

3.3.1.2 Lawrence Livermore National Lab Raman 

Raman spectra were measured with a Holospec f /1.8i spectrograph (Kaiser 

Optical Systems, Ann Arbor, MI) equipped with a liquid nitrogen-cooled charge-

coupled device photodetector (Princeton Instruments Model LN/CCD-1340 BUV, 

Trenton, NJ). The 785 nm radiation from a diode laser (Kaiser Optical, Envictus) was 

used for excitation, with a maximum output power of 175 mW. A commercially 

available filtered fiber-optic Raman probe (Kaiser Optical Systems, Mark II probe) 

and spectrograph (Kaiser Optical Systems, Holospec f /1.8i) were used for all 

measurements. Both the spectrograph and Raman probe use holographic gratings and 
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filters that result in very high throughput and high spatial resolution with excellent 

rejection of scattered laser light. The excitation radiation was delivered to the sample 

through a 50 μm optical fiber in the probe and focused onto the sample with an 

attached Olympus microscope objective lens that has a focal length of 6 mm. The 

scattered radiation was collected by the same microscope objective lens via the probe 

in at 180-degree geometry and delivered to the spectrograph through a 100 μm optical 

fiber. No silica background was observed. The Raman spectra were obtained with a 

spectral resolution of ~1cm-1 over a spectral range of 50-2000cm-1. 

Similarly to the previous set of Raman spectra, this spectra is presented in both 

raw and corrected form. The spectra were treated in the same fashion as the previous 

set of Raman spectra; they were reduced to an area of interest, baseline corrected and 

then normalized to unit area. Just as before, the spectra were baseline corrected by 

fitting a second order polynomial to each spectrum and a subtracting that polynomial 

resulting in a flat baseline.  

This set of Raman spectra only contains 99 of the 100 samples contained in 

this data set. That is a result of sample 8E, a sample of toasted sesame oil, being too 

fluorescent to be analyzed via Raman. This sample is still retained for the other 

spectroscopic techniques. 
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Figure 15: LLNL Raman spectra of 99 samples 
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Figure 16: LLNL Raman spectra after baseline correction, normalization and reduction 
to area of interest. 

3.3.2 Mid Infrared Spectroscopy 

Mid IR data was collected on a Bruker Vertex 70 FTIR, equipped with a liquid 

nitrogen cooled MCT detector. The instrument was set to a 1 mm aperture using a 

Pike Technologies flow cell with a 50 μm path length. The spectra were collected for 

256 scans with a 2 cm-1 spectral resolution from 697.15 – 4002.6 2 cm-1. Figure 17 

below displays the spectra as collected. 
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Figure 17: Mid IR spectra of 100 edible oil samples. 

3.3.3 Near Infrared Spectroscopy 

Both the 24 mm and 8 mm path length NIR data sets were collected at a 1mm 

aperture size using a room temperature indium gallium arsenide (InGaAs) detector. 

The data was collected for 64 scans per sample with a 2 cm-1 spectral resolution. The 

24mm path length samples were collected from 3797.2 – 15002.8 cm-1 and were 

collected in triplicate for each sample. The 8mm path length samples were measured 

from 3895.5 – 15002.8 cm-1 with only one measurement per sample. Below are figures 

of the 24 mm and 8 mm path length spectra. The 8mm pathlength spectra exhibited a 

small degree of baseline shift and where therefore baseline correct as was previously 

described (via a polynomial fit), the spectra displayed below is that baseline correct 

spectra. 
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Figure 18: 24 mm path length NIR spectra 
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Figure 19: 8 mm path length NIR spectra (with baseline correction) 

 Peroxide Value Determinations 

Peroxide values were determined based on the American Oil Chemists Society 

method Cd-8b (137). This method was accomplished via a Mettler Toledo Easy Pro 

automatic titrator for the data set collected at the University of Delaware and a Mettler 

Toledo T50 automatic titrator for the data collected at Lawrence Livermore National 

Lab. Regardless of the titrator used, the procedure is as follows: weigh out 

approximately 2g of samples, add 20mL of a 60/40 acetic acid and chloroform 

mixture, add 1ml saturated KI solution, stir and then let stand for 1 minute in the dark, 

after 1 minute add 50 mL of H20 and begin the titration using sodium thiosulfate. 
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 Peroxide Value and Classification Data Tables 

Below in Table 9 are the peroxide value and classification identifier for all the 

samples in Data Set 1. As shown in Table 9, the peroxide values for the samples range 

from 0.46 milliequivalent/kg to 80.46 milliequivalent/kg. Any value above 10 

milliequivalent/kg constitutes a rancid or spoiled oil and a value of 100 

milliequivalent/kg can cause food poisoning (151). The data set also consists of 15 

different types of oils with the largest percentage being oils which are split into classes 

1, 2, and 3 for Extra Virgin, Virgin, and Pure Olive oil, respectively, as laid out in 

Table 10. 

 

Similarly, Table 10 below contains the peroxide values and classification 

identifiers for the samples in Data Set 2.  Table 10 shows that Data Set 2 displays a 

much larger range of peroxide values, ranging from 1.52 milliequivalent/kg to 168.40 

milliequivalent/kg. This is due to the fact that the Data Set 1 consists primarily of oils 

purchased and measured within the same calendar year, whereas Data Set 2 has oils 

that are over 4 years old. Data Set 2 contains 19 different types of edible oils, again 

with a large percentage of the samples coming from 1 of the 3 Olive Oil categories. 

Finally Table 11 identifies each class of oil. 
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Table 9: Sample IDs ,Peroxide Values, and Class IDs for University of Delaware Data 
Set (Data Set 1) 

Samp. 
ID 

Peroxide 
Value 

Class Samp. 
ID 

Peroxide 
Value 

Class Samp. 
ID 

Peroxide 
Value 

Class 

1 11.2133 7 19 20.1733 2 37 12.6567 1 
2 11.4567 6 20 32.0067 1 38 14.8033 2 
3 4.0233 6 21 38.5433 3 39 12.5933 8 
4 12.1200 1 22 31.2167 1 40 57.2733 8 
5 1.0567 18 23 11.4900 8 41 26.5167 13 
6 4.0833 1 24 6.0633 10 42 80.4567 7 
7 2.4100 5 25 12.3367 9 43 21.3100 13 
8 1.6767 1 26 7.8067 6 44 25.7933 1 
9 5.2100 1 27 12.5933 8 45 5.0700 13 
10 0.8300 13 28 17.3667 10 46 32.1700 19 
11 39.2133 3 29 22.6833 10 47 13.4200 3 
12 10.6450 3 30 11.8833 1 48 10.6367 8 
13 8.3300 2 31 10.7367 15 49 2.3025 17 
14 10.2967 1 32 11.7967 13 50 6.1167 3 
15 2.7500 16 33 2.0367 7 51 12.8033 1 
16 2.4867 7 34 2.0233 13 52 0.5433 13 
17 20.8467 3 35 4.7475 2 53 0.4600 7 
18 10.4367 17 36 11.9333 1    
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Table 10: Sample IDs, Peroxide Value, and Class IDs for Lawrence Livermore 
National Lab Data Set (Data Set 2) 

Samp. 
ID 

Peroxide 
Value 

Class Samp. 
ID 

Peroxide 
Value 

Class Samp. 
ID 

Peroxide 
Value 

Class 

1A 4.2823 8 5D 8.5020 7 9G 30.0680 6 
2A 12.1284 1 6D 25.3629 7 10G 12.5910 1 
3A 27.0728 12 7D 14.8180 1 1H 16.5277 8 
4A 9.2389 1 8D 22.3575 3 2H 11.5350 6 
5A 4.5023 1 9D 13.0338 1 3H 1.5240 19 
6A 8.5960 3 10D 12.3427 13 4H 25.1979 12 
7A 88.0056 16 1E 14.8593 13 5H 1.9079 7 
8A 15.5798 2 2E 11.2809 18 6H 1.5326 8 
9A 168.3691 1 3E 5.9051 9 7H 5.1241 7 
10A 5.4091 1 4E 3.7311 1 8H 6.6563 15 
1B 13.7396 2 5E 13.1598 2 9H 11.4082 3 
2B 11.0739 1 6E 44.3814 1 10H 26.9384 6 
3B 13.7396 1 7E 20.6042 1 1I 18.3439 7 
4B 7.7146 1 8E 11.9963 15 2I 31.0285 17 
5B 1.5487 15 9E 47.0155 7 3I 15.8701 9 
6B 19.6149 3 10E 26.2818 17 4I 6.6844 13 
7B 19.5255 13 1F 10.8816 1 5I 2.9771 17 
8B 37.0341 3 2F 39.3852 2 6I 6.2129 13 
9B 103.9495 13 3F 11.9177 5 7I 45.9692 12 
10B 17.5244 3 4F 9.0931 1 8I 34.2026 20 
1C 14.1921 1 5F 5.8004 1 9I 55.0535 8 
2C 4.2071 1 6F 22.8678 2 10I 49.1640 1 
3C 7.0759 3 7F 32.8143 10 1J 19.3281 6 
4C 1.7687 1 8F 16.2763 13 2J 11.3021 8 
5C 9.6059 1 9F 22.3206 14 3J 11.4322 20 
6C 4.1524 1 10F 24.9607 2 4J 16.3954 10 
7C 10.0417 1 1G 3.8927 13 5J 3.9732 12 
8C 32.2463 13 2G 2.2956 6 6J 22.5182 12 
9C 17.9176 1 3G 5.8209 7 7J 46.9173 17 
10C 8.1630 1 4G 15.0724 3 8J 18.1342 3 
1D 36.5767 8 5G 4.5513 5 9J 20.9850 20 
2D 17.3062 7 6G 17.3479 8 10J 10.3424 8 
3D 18.2620 7 7G 6.5984 15    
4D 27.6878 1 8G 18.5038 11    

 
 



 50 

 

Table 11: Class Identifiers 

Class Number Oil Type Class Number Oil Type 
1 Extra Virgin Olive 

Oil 
11 Flaxseed Oil 

2 Extra Light Olive 
Oil 

12 Almond Oil 

3 Pure Olive Oil 13 Canola Oil 
4 Coconut Oil 14 Avocado, 

Flaxseed, and 
Olive Oil Blend 

5 Avocado Oil 15 Sesame Oil 
6 Peanut Oil 16 Canola and 

Vegetable Oil 
Blend 

7 Corn Oil 17 Vegetable Oil 
8 Grapeseed Oil 18 Canola, Sunflower, 

and Soybean Oil 
Blend 

9 Safflower Oil 19 Sunflower Oil 
10 Hazelnut Oil 20 Walnut Oil 

 

 Data Collection Conclusions 

Two edible oil spectroscopy data sets were collected along with their 

corresponding peroxide value and classification. The results of using both data sets for 

the prediction of both peroxide value and class will be discussed in the next chapter. 

Additionally the use of Data Set 2 to compare the prediction efficiency of 3 different 

spectroscopic approaches will be discussed in the next chapter. 
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EDIBLE OILS DATA ANALYSIS 

 Introduction 

As previously discussed the freshness and identity of edible oils is of 

significant concern in the oil industry. The main cause for loss of freshness is related 

to the oxidation of fats within the oil. This oxidation process starts with the creation of 

organic peroxides within the oil. These organic peroxides then break down into lower 

molecular weight compounds such as alcohols, aldehydes and ketones leading to a 

process known as auto-oxidative rancidity (152, 153). The level of these organic 

peroxides, or peroxide value (PV), in an oil is traditionally determined via the 

accepted American Oil Chemists Society method Cd-8b (137), a titration based 

method. 

 

This titration-based method is not only time consuming, but also involves 

several organic solvents with varying levels of toxicity. In the interest of moving away 

from this method several different analytical approaches for both determining PV as 

well as identity of the edible oil have been demonstrated in the literature (145-150). 

Analytical techniques, such as chromatography, have demonstrated the ability to 

accurately analyze edible oil samples(154-167). However, due to the complex nature 

of edible oil samples, chromatography techniques are exceedingly difficult and time 

consuming to interpret. This reduces the practicality of using any chromatographic 

technique for routine quality assurance or rapid determination of the freshness of an 

Chapter 4 
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edible oil sample. This has been the catalyst for the development of various 

spectroscopy methods. 

 

The majority of these spectroscopic approaches focus on the use of either NIR 

or MIR (168-174). Raman, though less investigated, has recently shown promise in 

both determining both PV and identity of edible oils samples (175-178). Though a 

search thorough literature will produce examples of using simply peak heights and 

ratio to determine both PV and identity of edible oils (179), the complex nature of the 

sample matrix typically necessitates that some kind of chemometric approach be 

applied. 

 

The objectives of this chapter are to demonstrate the viability of using Raman 

spectroscopy for both determining the peroxide value and identity of edible oil 

samples when paired with chemometrics. A second goal is to perform an in-depth 

comparison of the most popular types spectroscopy used in edible oil research, NIR, 

MIR, and Raman, and their ability to predict both identity and peroxide value on the 

same set of edible oil samples. 

 Materials and Methods 

4.2.1 Data Sets 

As detailed in the previous chapter, this study consists of two edible oil data 

sets. Data set 1 was a collection of edible oils purchased in the Newark, DE area at 

various grocery stores. This data set consists of 53 unique oil samples of varying types 

and brands. Each sample was measured in at least triplicate using a 785 nm Ocean 
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Optics Raman system. Each sample was then titrated in triplicate using a Mettler 

Toledo auto titrator to determine the peroxide value. 

 

Data Set 2 also consists of edible oils purchase in the Newark, DE area. These 

samples were then transported to Lawrence Livermore National Lab for data 

collection. Spectra of these samples were collected in the NIR and MIR using a Vertex 

70 spectrometer and Raman was collected using the setup described in the previous 

chapter based around a Holoscpe f / 1.8i spectrograph. The peroxide value of each was 

also determined using a Mettler Toledo M50 autotitrator. For more details about the 

specifics of either data set, refer to the previous chapter. 

4.2.2 Software 

All chemometric analysis was done in MatLab 2014b (The Mathworks, Natick, 

MA). The chemometric analysis was done using a combination of author written 

software and portions of the PLS toolbox version 8.2 (Eigenvector Research, Inc., 

Manson, WA).The specifics of the chemometric and preprocessing steps will be 

detailed within the results and discussion. 

 Results and Discussion 

4.3.1 Data Set 1 

4.3.1.1 Classification 

Partial Least Squares Discriminant Analysis (PLSDA) was used to create a 

model for the predication of edible oil class. For the purpose of this study, Data set 1 

was reduced to just those classes that contained 5 or more samples. This resulted in a 
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reduced data set that consisted of classes 1, 2, 3, 7, 8, and 13 or Extra Virgin Olive 

Oil, Virgin Olive Oil, Pure Olive Oil, Corn Oil, Grapeseed Oil and Canola Oil 

respectively. The data was pretreated as was described in the previous chapter. For the 

purpose of these models, all three of the olive oils were considered as the same class. 

This is due to the fact that despite technical definitions concerning the differences 

between different types of oils there is no guarantee that various manufactures and 

supplies adhered to the same interpretation of these definitions. Therefore this 

combing of classes was to eliminate any unnecessary complexity the modeling that 

was outside the research scope, i.e. our goal was not to determine which brands of 

Extra Virgin Olive Oil are actually extra virgin.  

 

Once the data set was reduced and preprocessed it was then further broken into 

both a calibration set consisting of 78 spectra and a prediction set consisting of 69 

spectra. This calibration set was then used to create a 6 factor PLSDA model that was 

then applied to the test set. As can be seen in Figure 20 below this resulted in a perfect 

prediction for the calibration set and 2 sets of samples, or 5 spectra, misclassified in 

the test set. This equates to a 92.75% accuracy for the model overall. If broken down 

by class, this model represents 100% correct identification of olive oils with the 

presence of two false positives, 100% correct identification of corn oil with the 

presence of three false positives, 57.14% correct identification of Grapeseed oil with 

three samples being false negatives, and finally 87.5% correct identification of Canola 

oil with 2 samples being false negatives. The lack of perfect classification of both 

Grapeseed and Canola oils could likely be mitigated by the presence of additional 

samples in both classes. 
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This lack of samples within a class was a consistent problem within this data 

set. The lack of samples was due to the desire to acquire unique samples, i.e. different 

brands of oils. There are simply many more unique brands and sub classes of some 

types of oils than others. This is most clearly illustrated by the fact that a full third of 

the data set is some variety of olive oil and there is little to no duplication of specific 

brand and type combinations. 

 

Figure  20: PLSDA results for Data Set 1, the black line represents the difference 
between the calibration set and the test set 
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4.3.1.2 Predicting Peroxide Values 

Table 12 below shows the results of models built to predict the peroxide values 

of samples within Data set 1. Independent models were built with just Extra Virgin 

Olive Oil, all types of Olive Oil and all types of oil present in the data set. For the 

model built exclusively for Extra Virgin Olive Oil the data set was split into 30 spectra 

in the calibration set and 11 spectra in the test set. For all the olive oils the data set was 

broken into a 60 spectra calibration set and a 20 spectra test set. Finally for the model 

built to encompass all the oils was constructed using 165 spectra for the calibration set 

and 56 spectra for the test set. 

 

As can be seen in Table 12 the test set prediction error is 5.57 for the data set 

comprised of extra virgin olive oil. This error can be compared to a mean peroxide 

value of 14.30 milliequivalent/kg for that portion of the data.  The prediction error of 

7.32 for all olive oil types can be compared to the mean value of 15.84 

milliequivalent/kg for that portion of the data set. Finally, the prediction error of 10.08 

for all errors can be compared to the mean value of 14.37 milliequivalent/kg for the 

entire data set. While these prediction error are comparable to what has been reported 

in literature (174) there is certainly room for improvement.  

 

There is a clear degradation of the model as additional oils are introduced, 

shown by the increasing prediction error. This degradation is a result of both the 

addition complexity of attempting to model multiple types of oil at once as well as the 

increased spread of peroxide values as addition oils are introduced. The Extra Virgin 

Olive Oil portion of the data set has a minimum peroxide value of 1.68 and a 

maximum of 32.00, the Olive oil portion a minimum of 1.68 and maximum of 39.21 
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and the whole data set a minimum of 0.46 and a maximum of 80.47. This increase in 

spread of peroxide values coupled with the addition of various other types of oils leads 

to increased complexity in the model, which is demonstrated in the increase of latent 

variable used in to model the entire data set. 

Table 12: PLS Peroxide Value Prediction 

Data Set LV RMSEC RMSECV RMSEP 
Extra 
Virgin 
Olive Oil 

4 3.67 6.13 5.57 

All Olive 
Oils 

4 4.65 7.94 7.32 

All Oils 5 11.39 12.74 10.08 

 

4.3.2 Data Set 2 

4.3.2.1 Classification  

Classification was attempted on this data set but proved to be unsuccessful. We 

were unable to construct models that had better than 50% classification accuracy on 

the calibration set. There are multiple possible causes for this, the most likely is a 

simple lack of spectra and samples to define a class. With the exception of the 24mm 

path length NIR, each sample had a single spectrum taken for any given technique. 

Pair this with the fact that other than Extra Virgin Olive Oil, with 27 samples, no oil 

type had more than 9 samples. So this lack of data paired with variability in the 

samples with in a class (i.e. different brands, supplies, ages, etc.) made an already 

difficult chemometrics problem impossible. Of course these problems could be 
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remedied with the collection of additional data but unfortunately that is outside the 

scope of work for this dissertation. 

4.3.2.2 Predicting Peroxide Values 

Similarly to Data Set 1, PLS was used to build models to predict peroxide 

values however for this data set there were four different spectra for each sample (with 

the exception of 1). This data set was collected with the goal of comparing the 

suitability of NIR, at two path lengths, MIR and Raman to accurately predict peroxide 

value. For all of the sets of spectra, the samples were split into a calibration set 

consisting of 60 spectra for Raman, MIR, and NIR with 8 mm path length and 180 

spectra for NIR with 24 mm path length, and a test set consisting of the other 40 

spectra for Raman, MIR, and NIR with 8mm path length and 120 spectra for NIR with 

24mm path length. For more detailed information about the data collection of each 

spectral set, please see the previous chapter. 

 

Unlike the previous data set various outliers and further variable selection had 

to be done to this data set before prediction models were created. For the all the 

spectroscopic techniques those samples with larger than 60 millequivelent/kg were 

eliminated for their high leverage within the model. Additional samples were removed 

based on a PCA done on each spectroscopic technique after each data set was properly 

preprocessed. This resulted in 32 spectra from the NIR 24 mm data set, 11 samples 

from the NIR 8mm set, 8 from the Raman set and 12 from the MIR set. Also for the 

NIR 24mm data set, the 5200-6000 cm-1 was eliminated due to the saturation of the 

detector. 
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The NIR spectra were collected at two different path lengths to examine the 

difference in the information captured by each path length. Though the NIR spectra 

were collected from 3895.5 – 15002.8 cm-1 and 3797.2 – 15002.8 cm-1 for the 8mm 

path length and 24 mm path length respectively as discussed in the previous chapter, 

the spectra were reduced to 4477 to 11300 cm-1 for the purposes of this analysis. As 

can be seen in the Figure below with the 8 mm path length the peaks at 5792 cm-1 and 

5679 cm-1 can be clearly resolved, whereas, in the 24 mm those two peaks combine 

and saturate the detector. However, the 8 mm path length spectra sacrifice the detail in 

the 4800 to 5200 cm-1 and 6200 to 6600 cm-1 regions that are clearly evident in the 24 

mm path length spectra. 

 

Figure 21: Comparison between 24mm and 8 mm path length NIR spectra 
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As can be seen in Table 13, this difference in NIR path lengths does not 

contribute to a significant difference in the prediction error. The 8 mm path length data 

set has an RMSEP of 3.93 millequivelent/kg whereas the 24 mm data set has an 

RMSEP of 3.60 both compared to an average of 19.61 millequivelent/kg. This lack of 

any significant difference in the prediction error indicates that the region from 5600 to 

6000 cm-1, which represent the first overtone of the C – H stretching (179) from 

various functional groups within the edible oils, does not play a crucial role in the 

prediction of peroxide value. This instead implies that the smaller peaks are more 

crucial for prediction.  

 

The MIR and Raman data sets show comparable RMSEPs to that of the NIR 

24mm path length data set. However both MIR and Raman data sets show RMSECV 

that are roughly double that of their RMSEC whereas the NIR 24mm path length data 

set’s RMSEC and RMSECV are equivalent. This indicates that there is some 

instability within those two models and that, given a different data split, the prediction 

could get significantly worse. 

Table 13 PLS Peroxide Value Prediction (milliequivelents/kq) 

Spectroscopy # Factors RMSEC RMSECV RMSEP 
NIR 8mm path 
length 

7 3.70 5.37 3.93 

NIR 24mm path 
length 

6 3.60 3.89 3.65 

MIR 7 5.87 10.26 6.61 
Raman 7 6.83 11.70 8.72 
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 Conclusions 

4.4.1 Data Set 1 

With this data set the ability to build models both to predict the type of edible 

oil as well its peroxide value was demonstrated. The classification models exhibited 

nearly perfect classification errors, with only 5 spectra within the 69 spectra test set 

being incorrectly classified via PLSDA. This did necessitate the reduction of the data 

set to just those classes with 5 or more spectra, however this is reasonable to ensure a 

class is adequately described within the calibration set. In the future with additional 

data the model could be expanded to include different types of oil.  

 

The models to predict peroxide value showed clear ability to accurately 

determine peroxide values with RMSEPs of 5.57, 7.32, and 10.08 milliequivelant/kg 

for Extra Virgin Olive Oil, All types of Olive Oil, and All Oils, respectively. The 

quality of the prediction dropped as expected when model was expanded to include 

additional types of oils. This is due to not only the additional complexity of attempting 

to model across numerous types of oils, but also because the  range of peroxide values 

the model must accurately cover increased as additional highly oxidized oils are 

introduced to the model. In the future additional oils, other than Olive oil, with higher 

peroxide values, could be introduced to the data set to allow for the creation of a 

model that would represent all oils more accurately 

4.4.2 Data Set 2 

Unfortunately, this data set proved ineffective for building models for 

classification however, it was extremely effective at building models for predicting 

peroxide values. This data set indicates that NIR may be the best spectroscopic 
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technique for the prediction of peroxide values, with an RMSEP of 3.93 

milliequivelant/kg for the NIR with an 8 mm path length and 3.60 milliequivelant/kg 

for the 24 mm path length NIR as compared to 6.61, and 8.72 milliequivelant/kg for  

MIR, and Raman respectively. This data set also highlights that there is little gained 

from different path lengths in NIR. However, in the future additional studies could be 

performed with varying path length for both the NIR and MIR to more thoroughly 

determine path length’s effect. 
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CONCLUSIONS 

 ARSE Conclusions 

This dissertation has demonstrated a novel chemometric algorithm, Adaptive 

Regression via Subspace Elimination, or ARSE. This algorithm has shown promise in 

its ability to mitigate the contribution of uncalibrated spectral interferents within an 

unknown sample. This mitigation is accomplished by determining those variables 

within the calibration set that are uncontaminated by contributions from the 

uncalibrated spectral interferent.in the new unknown sample and then eliminating 

those variables. By this approach, the original calibration data can still be used, saving 

time in the lab as well as money. 

 

ARSE is not without its drawbacks, namely variable selection. The crucial 

component of ARSE is determining which variables within the calibration set to 

retain. One must ensure that the variables are not only uncontaminated but that they 

also retain predictive power with regards to the analyte of interest. This first entails 

maximizing the number of variables to choose from which is the reason wavelets are 

being utilized. Once the number of variables is maximized, the proper subset of 

variables must be retained. ARSE has shown great promise in determining which 

variables to retain, however future work should be done to further optimize this 

process. 

Chapter 5 
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 Edible Oil Conclusions 

This dissertation has also demonstrated the successful development of both 

classification and calibration models for edible oils. This modeling of edible oils in 

novel in two respects, the sampling and the data collection. To the authors’ 

knowledge, this is the first time edible oil models have been built using such a wide 

range of oil types, procured in from such a wide range of sources. By obtaining the 

oils from various grocery stores across several different brands our models were able 

to incorporate much of the sample to sample variation that is missing in other studies. 

This also represent the first time, to the authors knowledge, that various types of 

spectroscopy have been applied to the same data set for the purpose of building 

models for the prediction of peroxide values. 

 Future Directions 

5.3.1 ARSE 

There is a multitude of ways to expand the applications of ARSE. As 

mentioned above, the first step would be additional work to further optimize the 

selection process for the retention of variables. Once accomplished, ARSE has the 

ability to expand into the realm of classification model, with minor alteration. Ideally, 

ARSE could be adapted to correctly classify a samples based on its major component 

within a mixture. For example, if a calibration set consists samples of pure Olive oil 

and Corn oil while a new sample is Olive Oil mixed with some amount of Sunflower 

oil. In this scenario the model would likely fail due to the uncontaminated interferent. 

With ARSE, the sample could still be correctly identified as Olive oil, as well as 

possible helping identify the interferent based on the variables removed. 
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5.3.2 Edible Oils 

There are many directions to pursue regarding the edible oil research discussed 

within this dissertation. The comparison of different spectroscopic techniques, 

discussed in Chapter 4, could be expanded to include any number of other spectral 

techniques. Additional an interesting study could be done comparing a wide range of 

path lengths both within the NIR and perhaps the MIR.  

 

Additional work could also be done with regards to building models to predict 

peroxide values. Though not included in this dissertation, small scale studies of 

artificially aging edible oils have been done. These studies could be expanded to 

include multiple different oils over a longer time scale. This would allow for the 

creation of extensive data sets with a wide range of both oil types as well as peroxide 

values. 

 

 

  



 66 

  

1. Avramov, I. M.; Antanasijevic, J.; Trisovic, N.; Antanasijevic, D.; Lovic, J.; Mijin, 
D.; Petrovic, S. A Chemometrical analysis of voltammetric data for simultaneous 
determination of phenobarbital sodium and paracetamol obtained at a gold 
electrode. Int. J. Electrochem. Sci. 2016, 11, 5935-5951.  

2. Cramer, C. J.; Johnson, J. L.; Kamel, A. M. Prediction of Mass Spectral Response 
Factors from Predicted Chemometric Data for Druglike Molecules. J. Am. Soc. 
Mass Spectrom. 2016, Ahead of Print.  

3. Gao, F.; Xu, Z.; Wang, W.; Lu, G.; Vander Heyden, Y.; Zhou, T.; Fan, G. A 
comprehensive strategy using chromatographic profiles combined with 
chemometric methods: Application to quality control of Polygonum cuspidatum 
Sieb. et Zucc. J. Chromatogr. A 2016, 1466, 67-75.  

4. Naguib, I. A.; Abdelaleem, E. A.; Zaazaa, H. E.; Hussein, E. A. Partial least-squares 
and linear support vector regression chemometric methods for simultaneous 
determination of amoxicillin trihydrate and dicloxacillin sodium in the presence 
of their common impurity. J. AOAC Int. 2016, 99, 972-979.  

5. Patel, M. N.; Kothari, C. S. Multivariate approaches for simultaneous determination 
of avanafil and dapoxetine by uv chemometrics and HPLC-QbD in binary 
mixtures and pharmaceutical product. J. AOAC Int. 2016, 99, 649-663.  

6. Tang, J.; Li, X.; Feng, Y.; Liang, B. Simultaneous Determination of Amiloride and 
Hydrochlorothiazide in a Compound Tablet by Diffuse Reflectance Spectroscopy 
and Chemometrics. J. Appl. Spectrosc. 2016, 83, 710-716.  

7. Tawakkol, S. M.; El-Zeiny, M. B.; Hemdan, A. Full spectrum and selected 
spectrum based chemometric methods for the simultaneous determination of 
Cinnarizine and Dimenhydrinate in laboratory prepared mixtures and 
pharmaceutical dosage form. Spectrochim. Acta, Part A 2017, 173, 892-896.  

BIBLIOGRAPHY 



 67 

8. Tewari, J.; Strong, R.; Boulas, P. At-line determination of pharmaceuticals small 
molecule's blending end point using chemometric modeling combined with 
Fourier transform near infrared spectroscopy. Spectrochim. Acta, Part A 2017, 
173, 886-891.  

9. Wang, L.; Tian, X.; Wei, W.; Chen, G.; Wu, Z. Fingerprint analysis and quality 
consistency evaluation of flavonoid compounds for fermented Guava leaf by 
combining HPLC-TOF-ESI-MS and chemometric methods. J. Sep. Sci. 2016, 39, 
3906-3916.  

10. Zhang, M.; Zhao, C.; Liang, X.; Ying, Y.; Han, B.; Yang, B.; Jiang, C. Fingerprint 
analysis of Desmodium triquetrum L. based on ultra performance liquid 
chromatography with photodiode array detector combined with chemometrics 
methods. J. Chromatogr. Sci. 2016, 54, 706-712.  

11. Barac, N.; Skrivanj, S.; Bukumiric, Z.; Zivojinovic, D.; Manojlovic, D.; Barac, M.; 
Petrovic, R.; Corac, A. Distribution and mobility of heavy elements in floodplain 
agricultural soils along the Ibar River (Southern Serbia and Northern Kosovo). 
Chemometric investigation of pollutant sources and ecological risk assessment. 
Environ. Sci. Pollut. Res. 2016, 23, 9000-9011.  

12. Capuano, E.; van der Veer, G.; Boerrigter-Eenling, R.; Elgersma, A.; Rademaker, 
J.; Sterian, A.; van Ruth, S. M. Verification of fresh grass feeding, pasture 
grazing and organic farming by cows farm milk fatty acid profile. Food Chem. 
2014, 164, 234-241.  

13. Erich, S.; Schill, S.; Annweiler, E.; Waiblinger, H.; Kuballa, T.; Lachenmeier, D. 
W.; Monakhova, Y. B. Combined chemometric analysis of 1H NMR, 13C NMR 
and stable isotope data to differentiate organic and conventional milk. Food 
Chem. 2015, 188, 1-7.  

14. Laursen, K. H.; Schjoerring, J. K.; Kelly, S. D.; Husted, S. Authentication of 
organically grown plants - advantages and limitations of atomic spectroscopy for 
multi-element and stable isotope analysis. TrAC, Trends Anal. Chem. 2014, 59, 
73-82.  

15. Low, K. H.; Idris, N. S. U.; Md. Zain, S.; Kamaruddin, A. F.; Md. Salleh, K. 
Evaluation of Elemental Distributions in Wild-Caught and Farmed Pangasius sp. 
Using Pattern Recognition Techniques. Int. J. Food Prop. 2016, 19, 1489-1503.  

16. Luan, L.; Wang, Y.; Li, X.; Hu, W.; Li, K.; Li, J.; Yang, K.; Shu, R.; Zhao, L.; 
Lao, C. Application of multiple classifier fusion in the discriminant analysis of 



 68 

near infrared spectroscopy for agricultural products. J. Near Infrared Spectrosc. 
2016, 24, 363-372.  

17. Peng, J.; Liu, F.; Zhou, F.; Song, K.; Zhang, C.; Ye, L.; He, Y. Challenging 
applications for multi-element analysis by laser-induced breakdown spectroscopy 
in agriculture: A review. TrAC, Trends Anal. Chem. 2016, 85, 260-272.  

18. Potorti, A. G.; Di Bella, G.; Lo Turco, V.; Rando, R.; Dugo, G. Non-toxic and 
potentially toxic elements in Italian donkey milk by ICP-MS and multivariate 
analysis. J. Food Compos. Anal. 2013, 31, 161-172.  

19. Ravikanth, L.; Jayas, D. S.; White, N. D. G.; Fields, P. G.; Sun, D. Extraction of 
Spectral Information from Hyperspectral Data and Application of Hyperspectral 
Imaging for Food and Agricultural Products. Food Bioprocess Technol. 2016, 
Ahead of Print.  

20. Jaworski, A.; Wikiel, H.; Holverson, P.; Nelson, A.; Wikiel, K. Detection and 
Diagnosis of Various Contaminants in an Electroplating Bath by a Voltammetric 
Sensor: a Case Study. Electroanalysis 2015, 27, 144-155.  

21. Jaworski, A.; Wikiel, H.; Wikiel, K.; Holverson, P.; Nelson, A. Case study of early 
detection of iron contamination in copper damascene plating process by in-situ 
electrochemical sensor. ECS Trans. 2015, 64, 91-108.  

22. Mukherjee, P.; Lim, S. J.; Wrobel, T. P.; Bhargava, R.; Smith, A. M. Measuring 
and Predicting the Internal Structure of Semiconductor Nanocrystals through 
Raman Spectroscopy. J. Am. Chem. Soc. 2016, 138, 10887-10896.  

23. Nallon, E. C.; Schnee, V. P.; Bright, C. J.; Polcha, M. P.; Li, Q. Discrimination 
Enhancement with Transient Feature Analysis of a Graphene Chemical Sensor. 
Anal. Chem. (Washington, DC, U. S. ) 2016, 88, 1401-1406.  

24. Wang, H.; Yao, M. Fault detection of batch processes based on multivariate 
functional kernel principal component analysis. Chemom. Intell. Lab. Syst. 2015, 
149, 78-89.  

25. da Costa, G. B.; Fernandes, D. D. S.; Gomes, A. A.; de Almeida, V. E.; Veras, G. 
Using near infrared spectroscopy to classify soybean oil according to expiration 
date. Food Chem. 2016, 196, 539-543.  

26. Jovic, O.; Smolic, T.; Primozic, I.; Hrenar, T. Spectroscopic and Chemometric 
Analysis of Binary and Ternary Edible Oil Mixtures: Qualitative and Quantitative 
Study. Anal. Chem. (Washington, DC, U. S. ) 2016, 88, 4516-4524.  



 69 

27. Jovic, O.; Smrecki, N.; Popovic, Z. Interval ridge regression (iRR) as a fast and 
robust method for quantitative prediction and variable selection applied to edible 
oil adulteration. Talanta 2016, 150, 37-45.  

28. Li, X.; Kong, W.; Shi, W.; Shen, Q. A combination of chemometrics methods and 
GC-MS for the classification of edible vegetable oils. Chemom. Intell. Lab. Syst. 
2016, 155, 145-150.  

29. Mahboubifar, M.; Yousefinejad, S.; Alizadeh, M.; Hemmateenejad, B. Prediction 
of the acid value, peroxide value and the percentage of some fatty acids in edible 
oils during long heating time by chemometrics analysis of FTIR-ATR spectra. J. 
Iran. Chem. Soc. 2016, 13, 2291-2299.  

30. Rohman, A. Infrared Spectroscopy for Quantitative Analysis and Oil Parameters 
of Olive Oil and Virgin Coconut Oil: A Review. Int. J. Food Prop. 2016, Ahead 
of Print.  

31. Rueda, A.; Samaniego-Sanchez, C.; Olalla, M.; Gimenez, R.; Cabrera-Vique, C.; 
Seiquer, I.; Lara, L. Combination of analytical and chemometric methods as a 
useful tool for the characterization of extra virgin argan oil and other edible virgin 
oils. Role of polyphenols and tocopherols. J. AOAC Int. 2016, 99, 489-494.  

32. Spatari, C.; De Luca, M.; Ioele, G.; Ragno, G. A critical evaluation of the 
analytical techniques in the photodegradation monitoring of edible oils. LWT--
Food Sci. Technol. 2016, Ahead of Print.  

33. Tu, A.; Du, Z.; Qu, S. Rapid profiling of triacylglycerols for identifying 
authenticity of edible oils using supercritical fluid chromatography-quadruple 
time-of-flight mass spectrometry combined with chemometric tools. Anal. 
Methods 2016, 8, 4226-4238.  

34. Upadhyay, R.; Sehwag, S.; Niwas Mishra, H. Chemometric approach to develop 
frying stable sunflower oil blends stabilized with oleoresin rosemary and ascorbyl 
palmitate. Food Chem. 2017, 218, 496-504.  

35. Zhang, W.; Li, N.; Feng, Y.; Su, S.; Li, T.; Liang, B. A unique quantitative method 
of acid value of edible oils and studying the impact of heating on edible oils by 
UV-Vis spectrometry. Food Chem. 2015, 185, 326-332.  

36. Ammari, F.; Jouan-Rimbaud-Bouveresse, D.; Boughanmi, N.; Rutledge, D. N. 
Study of the heat stability of sunflower oil enriched in natural antioxidants by 
different analytical techniques and front-face fluorescence spectroscopy 
combined with Independent Components Analysis. Talanta 2012, 99, 323-329.  



 70 

37. Armenta, S.; Garrigues, S.; De la Guardia, M. Determination of edible oil 
parameters by near infrared spectrometry. Anal. Chim. Acta 2007, 596, 330-337.  

38. Cordella, C. B. Y.; Tekye, T.; Rutledge, D. N.; Leardi, R. A multiway 
chemometric and kinetic study for evaluating the thermal stability of edible oils 
by 1H NMR analysis: Comparison of methods. Talanta 2012, 88, 358-368.  

39. Goncalves, R. P.; Marco, P. H.; Valderrama, P. Thermal edible oil evaluation by 
UV-Vis spectroscopy and chemometrics. Food Chem. 2014, 163, 83-86.  

40. Khan, M. N.; Sarwar, A.; Wahab, M. F. Chemometric assessment of thermal 
oxidation of some edible oils. J. Therm. Anal. Calorim. 2010, 102, 369-374.  

41. Le Dreau, Y.; Dupuy, N.; Artaud, J.; Ollivier, D.; Kister, J. Infrared study of aging 
of edible oils by oxidative spectroscopic index and MCR-ALS chemometric 
method. Talanta 2009, 77, 1748-1756.  

42. Meng, X.; Ye, Q.; Nie, X.; Pan, Q.; Jiang, L. Assessment of Interval PLS (iPLS) 
Calibration for the Determination of Peroxide Value in Edible Oils. J. Am. Oil 
Chem. Soc. 2015, 92, 1405-1412.  

43. Nunes, C. A. Vibrational spectroscopy and chemometrics to assess authenticity, 
adulteration and intrinsic quality parameters of edible oils and fats. Food Res. Int. 
2014, 60, 255-261.  

44. Petersen, K. D.; Kleeberg, K. K.; Jahreis, G.; Busch-Stockfisch, M.; Fritsche, J. 
Comparison of analytical and sensory lipid oxidation parameters in conventional 
and high-oleic rapeseed oil. Eur. J. Lipid Sci. Technol. 2012, 114, 1193-1203.  

45. Quinones-Islas, N.; Meza-Marquez, O. G.; Osorio-Revilla, G.; Gallardo-
Velazquez, T. Detection of adulterants in avocado oil by Mid-FTIR spectroscopy 
and multivariate analysis. Food Res. Int. 2013, 51, 148-154.  

46. Sikorska, E.; Romaniuk, A.; Khmelinskii, I.; Sikorski, M.; Koziol, J. 
Characterization of edible oils using synchronous scanning fluorescence 
spectroscopy. Pol. J. Food Nutr. Sci. 2003, 12, 108-112.  

47. Wojcicki, K.; Khmelinskii, I.; Sikorski, M.; Sikorska, E. Near and mid infrared 
spectroscopy and multivariate data analysis in studies of oxidation of edible oils. 
Food Chem. 2015, 187, 416-423.  

48. Wold, S. Chemometrics; what do we mean with it, and what do we want from it? 
Chemometrics Intellig. Lab. Syst. 1995, 30, 109-115.  



 71 

49. Andries, E.; Martin, S. Sparse methods in spectroscopy: an introduction, overview, 
and perspective. Appl. Spectrosc. 2013, 67, 579-593.  

50. Esteban, M.; Arino, C.; Diaz-Cruz, J. M. Chemometrics in electroanalytical 
chemistry. Crit. Rev. Anal. Chem. 2006, 36, 295-313.  

51. Geladi, P. Some recent trends in the calibration literature. Chemom. Intell. Lab. 
Syst. 2002, 60, 211-224.  

52. Geladi, P.; Dabakk, E. An overview of chemometrics applications in near infrared 
spectrometry. J. Near Infrared Spectrosc. 1995, 3, 119-132.  

53. Kalivas, J. Multivariate Calibration, an Overview. Anal. Lett. 2005, 38, 2259-2279.  

54. Kalivas, J. H. Overview of two-norm (L2) and one-norm (L1) Tikhonov 
regularization variants for full wavelength or sparse spectral multivariate 
calibration models or maintenance. J. Chemom. 2012, 26, 218-230.  

55. Leardi, R. In In Chemometrics in data analysis. Section Title: Biochemical 
Methods; 2003; , pp 299-320.  

56. Leardi, R. Chemometrics: from classical to genetic algorithms. Grasas Aceites 
(Sevilla, Spain) 2002, 53, 115-127.  

57. Pearson, K. The Law of Ancestral Heredity. Biometrika 1903, 2, 211-228.  

58. Yule, G. U. On the Theory of Correlation. Journal of the Royal Statistical Society 
1897, 60, 812-854.  

59. Frank, l. E.; Friedman, J. H. A Statistical View of Some Chemometrics Regression 
Tools. Technometrics 1993, 35, 109-135.  

60. Helland, I. S. Partial Least Squares Regression and Statistical Models. 
Scandinavian Journal of Statistics 1990, 17, 97-114.  

61. Jolliffe, I. T. A Note on the Use of Principal Components in Regression. Journal 
of the Royal Statistical Society. Series C (Applied Statistics) 1982, 31, 300-303.  

62. Ottaway, J.; Kalivas, J. H.; Andries, E. Spectral multivariate calibration with 
wavelength selection using variants of Tikhonov regularization. Appl. Spectrosc. 
2010, 64, 1388-1395.  



 72 

63. Gerlach, R. W.; Kowalski, B. R.; Wold, H. O. A. Partial least-squares path 
modelling with latent variables. Anal. Chim. Acta 1979, 112, 417-421.  

64. Baroni, M.; Costantino, G.; Cruciani, G.; Riganelli, D.; Valigi, R.; Clementi, S. 
Generating optimal linear PLS estimations (GOLPE): an advanced chemometric 
tool for handling 3D-QSAR problems. Quant. Struct. -Act. Relat. 1993, 12, 9-20.  

65. Dyrby, M.; Engelsen, S. B.; Norgaard, L.; Bruhn, M.; Lundsberg-Nielsen, L. 
Chemometric quantitation of the active substance (containing CN) in a 
pharmaceutical tablet using near-infrared (N-IR) transmittance and N-IR FT-
Raman spectra. Appl. Spectrosc. 2002, 56, 579-585.  

66. Janik, L. J.; Skjemstad, J. O. Characterization and analysis of soils using mid-
infrared partial least-squares. II. Correlations with some laboratory data. Aust. J. 
Soil Res. 1995, 33, 637-650.  

67. Maeda, H.; Ozaki, Y.; Tanaka, M.; Hayashi, N.; Kojima, T. Near infrared 
spectroscopy and chemometrics studies of temperature-dependent spectral 
variations of water: relationship between spectral changes and hydrogen bonds. J. 
Near Infrared Spectrosc. 1995, 3, 191-201.  

68. Ni, Y.; Wang, L.; Kokot, S. Simultaneous determination of nitrobenzene and nitro-
substituted phenols by differential pulse voltammetry and chemometrics. Anal. 
Chim. Acta 2001, 431, 101-113.  

69. Pistonesi, M. F.; Di Nezio, M. S.; Centurion, M. E.; Palomeque, M. E.; Lista, A. 
G.; Fernandez Band, B. S. Determination of phenol, resorcinol and hydroquinone 
in air samples by synchronous fluorescence using partial least-squares (PLS). 
Talanta 2006, 69, 1265-1268.  

70. Thissen, U.; Pepers, M.; Ustun, B.; Melssen, W. J.; Buydens, L. M. C. Comparing 
support vector machines to PLS for spectral regression applications. Chemom. 
Intell. Lab. Syst. 2004, 73, 169-179.  

71. Trygg, J.; Holmes, E.; Lundstedt, T. Chemometrics in Metabonomics. J. Proteome 
Res. 2007, 6, 469-479.  

72. Wise, B. M.; Gallagher, N. B. The process chemometrics approach to process 
monitoring and fault detection. J. Process Control 1996, 6, 329-348.  

73. Wold, S.; Trygg, J.; Berglund, A.; Antti, H. Some recent developments in PLS 
modeling. Chemom. Intell. Lab. Syst. 2001, 58, 131-150.  



 73 

74. Smekal, A. Zur Quantentheorie der Dispersion. Naturwissenschaften 1923, 11, 
873-875.  

75. Gardiner, D. J. Practical Raman Spectroscopy; Springer-Verlag: 1989; .  

76. Placzek, G. In Hdb. der Radiologie; Rayleigh Streuung und Raman Effekt; 1934; 
pp 209.  

77. Long, D. The Raman Effect: A unified Treatment of the theory of Raman 
Scattering by Molecules; Wiley and Sons: 2002; .  

78. Wikipedia. Raman Spectroscopy. 
https://en.wikipedia.org/wiki/Raman_spectroscopy (Accessed 10/15, 2016).  

79. Herschel, W. Experiments on the Refrangibility of the Invisible Rays of the Sun. 
By William Herschel, LL. Philosophical Transactions of the Royal Society of 
London 1800, 90, 284-292.  

80. Bornemann, L.; Welp, G.; Brodowski, S.; Rodionov, A.; Amelung, W. Rapid 
assessment of black carbon in soil organic matter using mid-infrared 
spectroscopy. Org. Geochem. 2008, 39, 1537-1544.  

81. Calderon, F. J.; Reeves, J. B.,III; Collins, H. P.; Paul, E. A. Chemical differences 
in soil organic matter fractions determined by diffuse-reflectance mid-infrared 
spectroscopy. Soil Sci. Soc. Am. J. 2011, 75, 568-579.  

82. Cozzolino, D.; Holdstock, M.; Dambergs, R. G.; Cynkar, W. U.; Smith, P. A. Mid 
infrared spectroscopy and multivariate analysis: A tool to discriminate between 
organic and non-organic wines grown in Australia. Food Chem. 2009, 116, 761-
765.  

83. Ludwig, B.; Nitschke, R.; Terhoeven-Urselmans, T.; Michel, K.; Flessa, H. Use of 
mid-infrared spectroscopy in the diffuse-reflectance mode for the prediction of 
the composition of organic matter in soil and litter. J. Plant Nutr. Soil Sci. 2008, 
171, 384-391.  

84. Mauer, L. J.; Chernyshova, A. A.; Hiatt, A.; Deering, A.; Davis, R. Melamine 
Detection in Infant Formula Powder Using Near- and Mid-Infrared Spectroscopy. 
J. Agric. Food Chem. 2009, 57, 3974-3980.  

85. Koperska, M. A.; Pawcenis, D.; Bagniuk, J.; Zaitz, M. M.; Missori, M.; Lojewski, 
T.; Lojewska, J. Degradation markers of fibroin in silk through infrared 
spectroscopy. Polym. Degrad. Stab. 2014, 105, 185-196.  

https://en.wikipedia.org/wiki/Raman_spectroscopy


 74 

86. Nagy, E. E.; Adamsons, K.; Moomaw, K. Disfiguring organic residues on 
industrially produced sheet metal coupons simulating copper and brass works of 
art by Donald Judd: Attenuated total reflectance Fourier transform infrared 
spectroscopy analysis and treatment recommendations. Stud. Conserv. 2013, 58, 
245-255.  

87. Newman, R. Some applications of infrared spectroscopy in the examination of 
painting materials. J. Am. Inst. Conserv. 1979, 19, 42-62.  

88. Ayvaz, H.; Plans, M.; Towers, B. N.; Auer, A.; Rodriguez-Saona, L. E. The use of 
infrared spectrometers to predict quality parameters of cornmeal (corn grits) and 
differentiate between organic and conventional practices. J. Cereal Sci. 2015, 62, 
22-30.  

89. Ayvaz, H.; Santos, A. M.; Moyseenko, J.; Kleinhenz, M.; Rodriguez-Saona, L. E. 
Application of a Portable Infrared Instrument for Simultaneous Analysis of 
Sugars, Asparagine and Glutamine Levels in Raw Potato Tubers. Plant Foods 
Hum. Nutr. (N. Y. , NY, U. S. ) 2015, 70, 215-220.  

90. Kamal, M.; Karoui, R. Analytical methods coupled with chemometric tools for 
determining the authenticity and detecting the adulteration of dairy products: A 
review. Trends Food Sci. Technol. 2015, 46, 27-48.  

91. McParland, S.; Lewis, E.; Kennedy, E.; Moore, S. G.; McCarthy, B.; O'Donovan, 
M.; Butler, S. T.; Pryce, J. E.; Berry, D. P. Mid-infrared spectrometry of milk as a 
predictor of energy intake and efficiency in lactating dairy cows. J. Dairy Sci. 
2014, 97, 5863-5871.  

92. Mellado-Mojica, E.; Seeram, N. P.; Lopez, M. G. Maple syrup vs. different natural 
sweeteners: Sensory evaluation, physicochemical properties, carbohydrate 
profiles, and botanical classification by mid infrared spectroscopy-chemometrics. 
Abstracts of Papers, 247th ACS National Meeting & Exposition, Dallas, TX, 
United States, March 16-20, 2014 2014, AGFD-21.  

93. Misra, N. N.; Sullivan, C.; Cullen, P. J. Process Analytical Technology (PAT) and 
Multivariate Methods for Downstream Processes. Curr. Biochem. Eng. 2015, 2, 
4-16.  

94. Wisniewska, P.; Boque, R.; Borras, E.; Busto, O.; Wardencki, W.; Namiesnik, J.; 
Dymerski, T. Authentication of whisky due to its botanical origin and way of 
production by instrumental analysis and multivariate classification methods. 
Spectrochim. Acta, Part A 2017, 173, 849-853.  



 75 

95. Reich, G. Near-infrared spectroscopy and imaging: Basic principles and 
pharmaceutical applications. Adv. Drug Delivery Rev. 2005, 57, 1109-1143.  

96. Beebe, K. R.; Kowalski, B. R. An introduction to multivariate calibration and 
analysis. Anal. Chem. 1987, 59, 1007A-1010A, 1012A, 1014A-1017A.  

97. Thomas, E. V.; Haaland, D. M. Comparison of multivariate calibration methods 
for quantitative spectral analysis. Anal. Chem. 1990, 62, 1091-1099.  

98. Blanco, M.; Coello, J.; Iturriaga, H.; Maspoch, S.; Rovira, E. Wavelength 
calibration transfer between diode array UV-visible spectrophotometers. Appl. 
Spectrosc. 1995, 49, 593-597.  

99. Bouveresse, E.; Massart, D. L.; Dardenne, P. Modified Algorithm for 
Standardization of Near-Infrared Spectrometric Instruments. Anal. Chem. 1995, 
67, 1381-1389.  

100. Candolfi, A.; Massart, D. L. Model Updating for the Identification of NIR 
Spectra from a Pharmaceutical Excipient. Applied Spectroscopy 2000, 54, 48-53.  

101. Capron, X.; Walczak, B.; de Noord, O. E.; Massart, D. L. Selection and 
weighting of samples in multivariate regression model updating. Chemom. Intell. 
Lab. Syst. 2005, 76, 205-214.  

102. Chen, Z.; Morris, J.; Martin, E. Extracting Chemical Information from Spectral 
Data with Multiplicative Light Scattering Effects by Optical Path-Length 
Estimation and Correction. Anal. Chem. 2006, 78, 7674-7681.  

103. Greensill, C. V.; Wolfs, P. J.; Spiegelman, C. H.; Walsh, K. B. Calibration 
transfer between PDA-based NIR spectrometers in the NIR assessment of melon 
soluble solids content. Appl. Spectrosc. 2001, 55, 647-653.  

104. Anderson, C. E.; Kalivas, J. H. Fundamentals of calibration transfer through 
procrustes analysis. Appl. Spectrosc. 1999, 53, 1268-1276.  

105. Igne, B.; Roger, J.; Roussel, S.; Bellon-Maurel, V.; Hurburgh, C. R. Improving 
the transfer of near infrared prediction models by orthogonal methods. Chemom. 
Intell. Lab. Syst. 2009, 99, 57-65.  

106. Isaksson, T.; Kowalski, B. Piece-wise multiplicative scatter correction applied to 
near-infrared diffuse transmittance data from meat products. Appl. Spectrosc. 
1993, 47, 702-709.  



 76 

107. Feudale, R. N.; Woody, N. A.; Tan, H.; Myles, A. J.; Brown, S. D.; Ferre, J. 
Transfer of multivariate calibration models: a review. Chemom. Intell. Lab. Syst. 
2002, 64, 181-192.  

108. Adhihetty, I. S.; McGuire, J. A.; Wangmaneerat, B.; Niemczyk, T. M.; Haaland, 
D. M. Achieving transferable multivariate spectral calibration models: 
demonstration with infrared spectra of thin-film dielectrics on silicon. Anal. 
Chem. 1991, 63, 2329-2338.  

109. Andrews, D. T.; Wentzell, P. D. Applications of maximum likelihood principal 
component analysis: incomplete data sets and calibration transfer. Anal. Chim. 
Acta 1997, 350, 341-352.  

110. Barring, H. K.; Boelens, H. F. M.; De Noord, O. E.; Smilde, A. K. Optimizing 
meta-parameters in continuous piecewise direct standardization. Appl. Spectrosc. 
2001, 55, 458-466.  

111. Bouveresse, E.; Massart, D. L.; Dardenne, P. Calibration transfer across near-
infrared spectrometric instruments using Shenk's algorithm: effects of different 
standardization samples. Anal. Chim. Acta 1994, 297, 405-416.  

112. Bouveresse, E.; Massart, D. L. Improvement of the piecewise direct 
standardization procedure for the transfer of NIR spectra for multivariate 
calibration. Chemom. Intell. Lab. Syst. 1996, 32, 201-213.  

113. Chu, X.; Yuan, H.; Lu, W. Model transfer in multivariate calibration. 
Guangpuxue Yu Guangpu Fenxi 2001, 21, 881-885.  

114. de Noord, O. E. Multivariate calibration standardization. Chemom. Intell. Lab. 
Syst. 1994, 25, 85-97.  

115. Duponchel, L.; Ruckebusch, C.; Huvenne, J. P.; Legrand, P. Standardisation of 
near infrared spectrometers using artificial neural networks. J. Near Infrared 
Spectrosc. 1999, 7, 155-166.  

116. Fearn, T. Standardisation and calibration transfer for near infrared instruments: a 
review. J. Near Infrared Spectrosc. 2001, 9, 229-244.  

117. Geladi, P.; Barring, H.; Dabakk, E.; Trygg, J.; Antti, H.; Wold, S.; Karlberg, B. 
Calibration transfer for predicting lake-water pH from near infrared spectra of 
lake sediments. J. Near Infrared Spectrosc. 1999, 7, 251-264.  



 77 

118. Vogt, F.; Mizaikoff, B. Secured PCR (sPCR) for detection and correction of PCR 
calibration model failures induced by uncalibrated spectral features. J. Chemom. 
2003, 17, 225-236.  

119. Goswami, J.; Chan, A. Fundamentals of Wavelets: Theory, Algorithms, and 
Applications; Wiley: New York, 1999; .  

120. Jiang, J.; Berry, R. J.; Siesler, H. W.; Ozaki, Y. Wavelength interval selection in 
multicomponent spectral analysis by moving window partial least-squares 
regression with applications to mid-infrared and near-infrared spectroscopic data. 
Anal. Chem. 2002, 74, 3555-3565.  

121. Simopoulos, A. P. Omega-3 fatty acids in health and disease and in growth and 
development. Am. J. Clin. Nutr. 1991, 54, 438-463.  

122. Baeten, V.; Aparicio, R. Edible oils and fats authentication by Fourier transform 
Raman spectrometry. Biotechnol. , Agron. , Soc. Environ. 2000, 4, 196-203.  

123. Elzey, B.; Pollard, D.; Fakayode, S. O. Determination of adulterated neem and 
flaxseed oil compositions by FTIR spectroscopy and multivariate regression 
analysis. Food Control 2016, 68, 303-309.  

124. Farhad, S. F. U.; Abedin, K. M.; Islam, M. R.; Talukder, A. I.; Haider, A. F. M. 
Y. Determination of ratio of unsaturated to total fatty acids in edible oils by laser 
Raman spectroscopy. J. Appl. Sci. 2009, 9, 1538-1543.  

125. Gurdeniz, G.; Ozen, B. Detection of adulteration of extra-virgin olive oil by 
chemometric analysis of mid-infrared spectral data. Food Chem. 2009, 116, 519-
525.  

126. Jovic, O. Durbin-Watson partial least-squares regression applied to MIR data on 
adulteration with edible oils of different origins. Food Chem. 2016, 213, 791-798.  

127. Karunathilaka, S. R.; Kia, A. F.; Srigley, C.; Chung, J. K.; Mossoba, M. M. 
Nontargeted, Rapid Screening of Extra Virgin Olive Oil Products for Authenticity 
Using Near-Infrared Spectroscopy in Combination with Conformity Index and 
Multivariate Statistical Analyses. J. Food Sci. 2016, 81, C2390-C2397.  

128. Kim, M.; Lee, S.; Chang, K.; Chung, H.; Jung, Y. M. Use of temperature 
dependent Raman spectra to improve accuracy for analysis of complex oil-based 
samples: Lube base oils and adulterated olive oils. Anal. Chim. Acta 2012, 748, 
58-66.  



 78 

129. Maggio, R. M.; Cerretani, L.; Chiavaro, E.; Kaufman, T. S.; Bendini, A. A novel 
chemometric strategy for the estimation of extra virgin olive oil adulteration with 
edible oils. Food Control 2010, 21, 890-895.  

130. Marigheto, N. A.; Kemsley, E. K.; Defernez, M.; Wilson, R. H. A comparison of 
mid-infrared and Raman spectroscopies for the authentication of edible oils. J. 
Am. Oil Chem. Soc. 1998, 75, 987-992.  

131. Oussama, A.; Elabadi, F.; Devos, O. Analysis of Argan Oil Adulteration Using 
Infrared Spectroscopy. Spectrosc. Lett. 2012, 45, 458-463.  

132. Rohman, A.; Man, Y. B. C. Application of Fourier Transform Infrared 
Spectroscopy for Authentication of Functional Food Oils. Appl. Spectrosc. Rev. 
2012, 47, 1-13.  

133. Zhang, L.; Li, P.; Sun, X.; Wang, X.; Xu, B.; Wang, X.; Ma, F.; Zhang, Q.; Ding, 
X. Classification and adulteration detection of vegetable oils based on fatty acid 
profiles. J. Agric. Food Chem. 2014, 62, 8745-8751.  

134. Zhang, Q.; Liu, C.; Sun, Z.; Hu, X.; Shen, Q.; Wu, J. Authentication of edible 
vegetable oils adulterated with used frying oil by Fourier Transform Infrared 
Spectroscopy. Food Chem. 2012, 132, 1607-1613.  

135. Zhang, X.; Zou, M.; Qi, X.; Liu, F.; Zhang, C.; Yin, F. Quantitative detection of 
adulterated olive oil by Raman spectroscopy and chemometrics. J. Raman 
Spectrosc. 2011, 42, 1784-1788.  

136. Zhao, H.; Wang, Y.; Xu, X.; Ren, H.; Li, L.; Xiang, L.; Zhong, W. Detection of 
adulterated vegetable oils containing waste cooking oils based on the contents and 
ratios of cholesterol, Î²-sitosterol, and campesterol by gas chromatography/mass 
spectrometry. J. AOAC Int. 2015, 98, 1645-1654.  

137. American Oil Chemists' Society (AOCS) In Official method Cd 8b-90-Peroxide 
value acetic acid-isooctane method ; 2003; .  

138. Javidnia, K.; Parish, M.; Karimi, S.; Hemmateenejad, B. Discrimination of edible 
oils and fats by combination of multivariate pattern recognition and FT-IR 
spectroscopy: A comparative study between different modeling methods. 
Spectrochim. Acta, Part A 2013, 104, 175-181.  

139. Ren, H.; Lin, W.; Shi, W.; Qi, S. Classification of Edible Oils by Infrared 
Spectroscopy with Optimized K-Means Clustering by a Hybrid Particle Swarm 
Algorithm. Anal. Lett. 2013, 46, 2727-2738.  



 79 

140. Ren, H.; Lin, W.; Shi, W.; Shen, Q.; Wang, S. Characterization of Peanut Oil by 
Infrared Spectroscopy with an Improved Gaussian Mixture Model. Anal. Lett. 
2014, 47, 2548-2559.  

141. Song, Z.; Zhang, H.; Zheng, X.; Ren, X.; He, D. Research progress on detection 
of edible vegetable oil based on the near infrared spectroscopy. Wuhan Gongye 
Xueyuan Xuebao 2013, 32, 1-5.  

142. Zheng, W.; Fu, X.; Ying, Y. Spectroscopy-based food classification with extreme 
learning machine. Chemom. Intell. Lab. Syst. 2014, 139, 42-47.  

143. Zhou, X.; Dai, L.; Li, S. Fast discrimination of edible vegetable oil based on 
Raman spectroscopy. Guangpuxue Yu Guangpu Fenxi 2012, 32, 1829-1833.  

144. Zhou, Y.; Liu, T.; Li, J. Rapid identification between edible oil and swill-cooked 
dirty oil by using a semi-supervised support vector machine based on graph and 
near-infrared spectroscopy. Chemom. Intell. Lab. Syst. 2015, 143, 1-6.  

145. Al Majidi, M. I. H.; Bader, A. T. Physicochemical characteristics of some 
imported edible vegetable oils in Iraq. Res. J. Pharm. , Biol. Chem. Sci. 2015, 6, 
488-494.  

146. Li, L.; Wei, M. Quality investigation and analysis of edible peanut oil made by 
traditional way. Zhongguo Weisheng Jianyan Zazhi 2015, 25, 3575-3576.  

147. Liang, P.; Chen, C.; Zhao, S.; Ge, F.; Liu, D.; Liu, B.; Fan, Q.; Han, B.; Xiong, 
X. Application of Fourier transform infrared spectroscopy for the oxidation and 
peroxide value evaluation in virgin walnut oil. J. Spectrosc. (N. Y. , NY, U. S. ) 
2013, 138728, 6.  

148. Vunguturi, S.; Sarwar, A. Evaluation of peroxide value in various fresh and 
reused edible oils by iodometric titrations. Eur. J. Biomed. Pharm. Sci. 2016, 3, 
636-638.  

149. Xu, L.; Fei, T.; Li, Q.; Yu, X.; Liu, L. Qualitative analysis of edible oil oxidation 
by FTIR spectroscopy using a mesh "cell". Anal. Methods 2015, 7, 4328-4333.  

150. Xu, L.; Yu, X.; Liu, L.; Li, M.; Zhang, R. A rapid method for evaluating the 
edible oil oxidative stability during ambient storage by FTIR spectroscopy using a 
mesh cell. Anal. Methods 2016, 8, 5117-5122.  

151. Gotoh, N.; Wada, S. The importance of peroxide value in assessing food quality 
and food safety. J. Am. Oil Chem. Soc. 2006, 83, 473-474.  



 80 

152. Jimenez-Sanchidrian, C.; Ruiz, J. R. Use of Raman spectroscopy for analyzing 
edible vegetable oils. Appl. Spectrosc. Rev. 2016, 51, 397-410.  

153. van de Voort, F. R.; Ismail, A. A.; Sedman, J.; Dubois, J.; Nicodemo, T. The 
determination of peroxide value by Fourier transform infrared spectroscopy. J. 
Am. Oil Chem. Soc. 1994, 71, 921-926.  

154. Alberdi-Cedeno, J.; Ibargoitia, M. L.; Cristillo, G.; Sopelana, P.; Guillen, M. D. 
A new methodology capable of characterizing most volatile and less volatile 
minor edible oils components in a single chromatographic run without solvents or 
reagents. Detection of new components. Food Chem. 2016, Ahead of Print.  

155. Andrikopoulos, N. K. Chromatographic and spectroscopic methods in the 
analysis of triacylglycerol species and regiospecific isomers of oils and fats. Crit. 
Rev. Food Sci. Nutr. 2002, 42, 473-505.  

156. Barranco, A.; Alonso-Salces, R. M.; Bakkali, A.; Berrueta, L. A.; Gallo, B.; 
Vicente, F.; Sarobe, M. Solid-phase clean-up in the liquid chromatographic 
determination of polycyclic aromatic hydrocarbons in edible oils. J. Chromatogr. 
, A 2003, 988, 33-40.  

157. Biedermann, M.; Grob, K.; Mariani, C. Transesterification and on-line liquid 
chromatography-gas chromatography (LC-GC) for determining the sum of free 
and esterified sterols in edible oils and fats. Fett Wiss. Technol. 1993, 95, 127-
133.  

158. De Koning, S.; Janssen, H.; Van Deursen, M.; Brinkman, U. A. T. Automated 
on-line comprehensive two-dimensional LC Ã— GC and LC Ã— GC-ToF MS: 
instrument design and application to edible oil and fat analysis. J. Sep. Sci. 2004, 
27, 397-409.  

159. Gliszczynska-Swiglo, A.; Sikorska, E. Simple reversed-phase liquid 
chromatography method for determination of tocopherols in edible plant oils. J. 
Chromatogr. A 2004, 1048, 195-198.  

160. Hajimahmoodi, M.; Vander Heyden, Y.; Sadeghi, N.; Jannat, B.; Oveisi, M. R.; 
Shahbazian, S. Gas-chromatographic fatty-acid fingerprints and partial least 
squares modeling as a basis for the simultaneous determination of edible oil 
mixtures. Talanta 2005, 66, 1108-1116.  

161. Jira, W.; Ziegenhals, K.; Speer, K. Gas chromatography-mass spectrometry (GC-
MS) method for the determination of 16 European priority polycyclic aromatic 



 81 

hydrocarbons in smoked meat products and edible oils. Food Addit. Contam. , 
Part A 2008, 25, 704-713.  

162. Lee, D.; Noh, B.; Bae, S.; Kim, K. Characterization of fatty acids composition in 
vegetable oils by gas chromatography and chemometrics. Anal. Chim. Acta 1998, 
358, 163-175.  

163. Masukawa, Y.; Shiro, H.; Nakamura, S.; Kondo, N.; Jin, N.; Suzuki, N.; Ooi, N.; 
Kudo, N. A new analytical method for the quantification of glycidol fatty acid 
esters in edible oils. J. Oleo Sci. 2010, 59, 81-88.  

164. Moreda, W.; Perez-Camino, M. C.; Cert, A. Gas and liquid chromatography of 
hydrocarbons in edible vegetable oils. J. Chromatogr. A 2001, 936, 159-171.  

165. Purcaro, G.; Morrison, P.; Moret, S.; Conte, L. S.; Marriott, P. J. Determination 
of polycyclic aromatic hydrocarbons in vegetable oils using solid-phase 
microextraction-comprehensive two-dimensional gas chromatography coupled 
with time-of-flight mass spectrometry. J. Chromatogr. A 2007, 1161, 284-291.  

166. Veyrand, B.; Brosseaud, A.; Sarcher, L.; Varlet, V.; Monteau, F.; Marchand, P.; 
Andre, F.; Le Bizec, B. Innovative method for determination of 19 polycyclic 
aromatic hydrocarbons in food and oil samples using gas chromatography 
coupled to tandem mass spectrometry based on an isotope dilution approach. J. 
Chromatogr. A 2007, 1149, 333-344.  

167. Yang, M.; Lin, H.; Choong, Y. A rapid gas chromatographic method for direct 
determination of BHA, BHT, and TBHQ in edible oils and fats. Food Res. Int. 
2002, 35, 627-633.  

168. Hong, J.; Yamaoka-Koseki, S.; Yasumoto, K. Determination of palmitic acid, 
oleic acid and linoleic acid by near-infrared transflectance spectroscopy in edible 
oils. Food Sci. Technol. , Int. (Tsukuba, Jpn. ) 1996, 2, 146-149.  

169. Li, H.; Van de Voort, F. R.; Sedman, J.; Ismail, A. A. Rapid determination of cis 
and trans content, iodine value, and saponification number of edible oils by 
Fourier transform near-infrared spectroscopy. J. Am. Oil Chem. Soc. 1999, 76, 
491-497.  

170. Li, H.; Van de Voort, F. R.; Ismail, A. A.; Sedman, J.; Cox, R. Trans 
determination of edible oils by fourier transform near-infrared spectroscopy. J. 
Am. Oil Chem. Soc. 2000, 77, 1061-1067.  



 82 

171. Mossoba, M. M.; Tyburczy, C.; Delmonte, P.; Fardin-Kia, A. R.; Rader, J. I.; 
Azizian, H.; Kramer, J. K. G. In In Application of gas chromatography and 
infrared spectroscopy for the determination of the total trans fatty acid, saturated 
fatty acid, monounsaturated fatty acid, and polyunsaturated fatty acid contents in 
edible fats and oils. Section Title: Food and Feed Chemistry; 2014; , pp 89-121.  

172. Scotter, C. N. G.; Wilson, R. In In Infrared spectroscopy. Section Title: Food and 
Feed Chemistry; 1998; , pp 76-96.  

173. Yang, H.; Irudayaraj, J.; Paradkar, M. M. Discriminant analysis of edible oils and 
fats by FTIR, FT-NIR and FT-Raman spectroscopy. Food Chem. 2005, 93, 25-32.  

174. Armenta, S.; Garrigues, S.; De la Guardia, M. Determination of edible oil 
parameters by near infrared spectrometry. Anal. Chim. Acta 2007, 596, 330-337.  

175. Ayora-Canada, M. J.; Dominguez-Vidal, A.; Lendl, B. In In Monitoring 
oxidation of lipids in edible oils and complex food systems by vibrational 
spectroscopy. Section Title: Food and Feed Chemistry; 2010; Vol. 1, pp 277-296.  

176. Carmona, M. A.; Lafont, F.; Jimenez-Sanchidrian, C.; Ruiz, J. R. Raman 
spectroscopy study of edible oils and determination of the oxidative stability at 
frying temperatures. Eur. J. Lipid Sci. Technol. 2014, 116, 1451-1456.  

177. Muik, B.; Lendl, B.; Molina-Diaz, A.; Ayora-Canada, M. J. Direct monitoring of 
lipid oxidation in edible oils by Fourier transform Raman spectroscopy. Chem. 
Phys. Lipids 2005, 134, 173-182.  

178. Muik, B.; Lendl, B.; Molina-Diaz, A.; Valcarcel, M.; Ayora-Canada, M. J. Two-
dimensional correlation spectroscopy and multivariate curve resolution for the 
study of lipid oxidation in edible oils monitored by FTIR and FT-Raman 
spectroscopy. Anal Chim Acta 2007, 593, 54-67.  

179. Wang, P.; Sun, J.; Zhang, T.; Liu, W. Vibrational spectroscopic approaches for 
the quality evaluation and authentication of virgin olive oil. Appl. Spectrosc. Rev. 
2016, 51, 763-790.  

 

 

 

 



 83 

PERMISSION FOR MATERIAL REPRINT 

Chapter 4 was reprinted with permission from Adaptive Regression via 

Subspace Elimination, Joshua Ottaway, Joseph P. Smith, and Karl S. Books; 40 Years 

of Chemometrics – From Bruce Kowalski to the Future. January 1, 2015, 241-256. 

Copyright 2015 American Chemical 

 

Appendix A 


	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	Chapter 1
	1.1 Motivation
	1.2 Multivariate Calibration
	Table  1: Wold’s PLS Algorithm

	1.3 Spectroscopy
	1.3.1 Raman Spectroscopy
	Figure  1: Raman Scattering Jablonski Diagram(78)

	1.3.2 Near and Mid Infrared Spectroscopy

	1.4 Overview of Dissertation

	Chapter 2
	2.1 Introduction
	2.2 Mathematics and the Approach
	Figure  3: Diagram of the ARSE algorithm

	2.3 Experimental
	2.3.1 Software
	2.3.2 Data Sets
	2.3.2.1 Data Set 1
	Figure  4: Pure component spectra for Data Set 1

	2.3.2.2 Data Set 2
	Figure  5: Pure component spectra for Data Set 2



	2.4 Data preprocessing and algorithm parameters
	2.5 Results and Discussion
	2.5.1 Data Set 1
	Figure  6: Histogram of errors for noiseless data set
	Table  2: Results for Data Set 1 with no noise in wavelength space
	Table  3: Results for Data Set 1 with no noise in wavelet space
	Figure  7: Histogram of errors for 1% noise data set
	Figure  8: Histogram of errors for 5% noise data set

	Table  4: Results for Data set 1 with noise added in wavelet space
	Figure  9: RMSEP as a function of number of variables used. Inset histogram of the percentage of times a variable is chosen
	Figure  10: Predicted vs True Y values for repeated 1% noise samples


	2.5.2 Data Set 2
	Table  5: Data Set 2 with Quinaldine Red as uncalibrated interferent in wavelet space
	Table  6: Data set 2 with Quinaldine Red as uncalibrated interferent in wavelet space with added noise
	Figure  11: Histogram of prediction errors with Quinaldine Red as uncalibrated interferent and no noise

	Table  7: Data set 2 with Methyl Red as uncalibrated interferent in wavelet space
	Table  8: Data set 2 with Methyl Red as uncalibrated interferent in wavelet space with added noise
	Figure  12: Histogram of prediction error with Methyl Red as uncalibrated interferent and no noise



	2.6 Conclusions

	Chapter 3
	3.1 Introduction
	3.2 Data Set Descriptions and Motivations
	3.3 Spectroscopic Techniques
	3.3.1 Raman Spectroscopy
	3.3.1.1 Ocean Optics Raman
	Figure  13: Raman spectra collected on Ocean Optics Spectrometer before any preprocessing
	Figure   14: Ocean Optics Raman spectra after it has been baseline corrected, normalized to unit area and reduced to the area of interest.

	3.3.1.2 Lawrence Livermore National Lab Raman
	Figure  15: LLNL Raman spectra of 99 samples
	Figure  16: LLNL Raman spectra after baseline correction, normalization and reduction to area of interest.


	3.3.2 Mid Infrared Spectroscopy
	Figure  17: Mid IR spectra of 100 edible oil samples.

	3.3.3 Near Infrared Spectroscopy
	Figure  18: 24 mm path length NIR spectra
	Figure  19: 8 mm path length NIR spectra (with baseline correction)


	3.4 Peroxide Value Determinations
	3.5 Peroxide Value and Classification Data Tables
	Table  9: Sample IDs ,Peroxide Values, and Class IDs for University of Delaware Data Set (Data Set 1)
	Table  10: Sample IDs, Peroxide Value, and Class IDs for Lawrence Livermore National Lab Data Set (Data Set 2)
	Table  11: Class Identifiers

	3.6 Data Collection Conclusions

	Chapter 4
	4.1 Introduction
	4.2 Materials and Methods
	4.2.1 Data Sets
	4.2.2 Software

	4.3 Results and Discussion
	4.3.1 Data Set 1
	4.3.1.1 Classification
	Figure   20: PLSDA results for Data Set 1, the black line represents the difference between the calibration set and the test set

	4.3.1.2 Predicting Peroxide Values
	Table  12: PLS Peroxide Value Prediction


	4.3.2 Data Set 2
	4.3.2.1 Classification
	4.3.2.2 Predicting Peroxide Values
	Figure  21: Comparison between 24mm and 8 mm path length NIR spectra
	Table  13 PLS Peroxide Value Prediction (milliequivelents/kq)



	4.4 Conclusions
	4.4.1 Data Set 1
	4.4.2 Data Set 2


	Chapter 5
	5.1 ARSE Conclusions
	5.2 Edible Oil Conclusions
	5.3 Future Directions
	5.3.1 ARSE
	5.3.2 Edible Oils



