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ABSTRACT

In today’s world, analog-to-digital converters (ADC) play a major role. Our

modern society requires and depends on electronic devices that process the analog

input data in the digital domain, such as cellphones, audio and video systems, and

even domestic appliances. Therefore, the development of fast and accurate ADCs

have become a key issue for the industry. In general, a good ADC is the one

that achieves high resolution (low quantization noise) with low complexity. One

of the most popular techniques to decrease the quantization noise is to digitalize

the incoming signal with a sampling frequency many times higher than twice the

signal bandwith. This technique is called oversampling. Probably the most popular

oversampling converters are the Sigma-Delta (SD) modulators which use a very high

sampling frequency and a binary quantizer (for first order SD). In SD, the quantizer

is embedded into a feedback loop in such a way that the quantization noise is not

only spread over the spectrum (because of oversampling), but it is also shaped to

the upper frequencies (this is called noise shaping). The big problem with SD is that

the quantization noise spectrum presents undesired harmonics caused by the non-

linear nature of the quantizer. To avoid this, the solution is to add an independent

signal before the quantization stage called dither. It was proven by Lipshitz and

Vanderkooy in [1] that dithering a first order SD modulator is ineffective as it turns

the modulator in constant overload. In addition to this problem, because of the

feedback loop, higher order SD modulators can be unstable. That being said, the

aim of this work is to present a simple oversampling ADC without feedback capable

of generating the minimum uncorrelated quantization noise that yields the maximum

x



possible SNR at the output. For that purpose, this work develops the statistical

characteristics of the optimum dither that achieves the mentioned goal for different

types of input signals.
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Chapter 1

INTRODUCTION

In this chapter, we first introduce the two different categories for analog-

to-digital converters (ADCs): the Nyquist Rate converters and the Oversampling

converters. Then we focus on the Oversampling ADCs and briefly describe the two

main groups in this category: the Oversampled PCM converters and the Sigma-Delta

converters. Then, the binary dithered-oversampling A/D converter is presented.

The main idea of this converter is to add the optimum dithered signal before the

binary quantization stage to maximize the output SNR.

1.1 Nyquist Rate and Oversampling A/D Converters

In A/D conversion technology, there basically exist two different types of

converters: Nyquist Rate Converters and Oversampling Converters [2]. The Nyquist

Rate Converters use a fairly low sampling frequency (slightly above the Nyquist

frequency), but a quite high number of quantization levels in order to achieve a

certain SNR. On the other hand, Oversampling Converters can achieve the same

SNR but with a lower number of quantization levels and a sampling frequency

many times above the Nyquist rate. Therefore, there is a trade-off between sampling

frequency and number of quantization levels to achieve a certain SNR.

In Figure 1.2, we see how the in-band quantization noise power is reduced

when increasing the sampling frequency.

1



Figure 1.1: Oversampling and Nyquist Rate Converters. There is a trade off be-
tween sampling frequency and quantization levels to achieve a certain
SNR.

Figure 1.2: Oversampling and quantization noise. The in-band quantization noise
is reduced when using oversampling.

2



If we want to achieve a good performance with few quantization levels, we

need to focus on the design of oversampling converters. The two basic configurations

for oversampling converters are: the ’Oversampled PCM’ and ’Sigma-Delta’ [2].

1.1.1 Oversampled PCM

In PCM, the incoming signal is compared to a set of fixed thresholds, and

depending on the amplitude of the analog input sample with respect to the thresh-

olds, the output value is selected. These converters simply use a very high sampling

frequency (i.e. the sampling frequency is m times higher than the Nyquist limit) in

order to spread the quantization noise over the spectrum. In this way, after low-

pass filtering, the resulting digitalized signal has a much lower quantization noise

(in comparison to the one obtained sampling at the Nyquist frequency). In this

case, the conversion is done sample-by-sample, so there is no need to store previous

input samples to get the present output. We can say that this is a memoryless A/D

conversion. The in-band quantization noise power IQNP in this case is:

IQNP =
σ2

e

m
(1.1)

where m is the oversampling ratio and σ2
e is the quantization noise power for a linear

model of the quantizer [2].

1.1.2 Sigma-Delta Converters

This type of oversampling converter also takes advantage of the high sam-

pling frequency to spread out the quantization noise. After low-pass filtering, the

remaining noise is much less than if we were using the Nyquist frequency as the

sampling frequency. The interesting thing about Sigma-Delta is that they also per-

form noise shaping. That means, that the quantization noise is not only spread over

the spectrum, but it is also high-pass filtered. In this way, the amount of quanti-

zation noise power in the band of interest is significantly reduced. To achieve this,

3



the system needs feedback and makes use of previous input and output samples to

predict the present output. One important disadvantage about Sigma-Delta is that

the integrator in the feedback loop may turn the system unstable for certain input

signals. In addition to instability, for first-order Sigma-Delta configurations, the

output is highly correlated with the input signal, and the spectrum also presents

harmonics [3]. One way to solve this problem would be to use dither along with

Sigma-Delta [12], but this was proven to be uneffective as the quantizer would be in

constant overload [1]. Despite of these issues, Sigma-Delta achieves a much better

performance than Oversampled PCM because of the noise shaping property.

Figure 1.3: First-order single-stage Sigma-Delta. The quantization noise e[n] is
shaped by a first order high-pass filter [4].

The in-band quantization noise power in this case is,

IQNP =
σ2

eπ
2

3m3
. (1.2)

In Figure 1.4, the in-band quantization noise power is plotted for both cases:

Oversampled PCM and First-order Sigma-Delta. It is assumed that σ2
e = 1.

In Figure 1.5, the diagram illustrates how the noise shaping characteristic of

Sigma-Delta makes the in-band quantization noise much lower than in the case of

PCM. This is the reason why Sigma-Delta performs better in terms of SNR.
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Figure 1.4: In-band quantization noise when σ2
e = 1. Sigma-Delta performs better

than oversampling PCM.

1.2 Binary Dithered-Oversampling Analog-to-Digital Conversion

In this section, we are introducing a new approach for analog-to-digital con-

version. The main idea of a binary dithered-oversampling converter is to use a dither

signal M [n] called ’mask’ independent of the analog input x[n] in order to make the

quantization error uncorrelated to the input signal. We will focus our attention in

the binary quantization problem, as it covers the most general case. For the case

when we have more than two possible quantization levels, the problem can be split-

ted into several binary quantization problems where the output y[n] can take the

value a or b with probability p and (1 − p) if we know that x[n] lies in (a, b). How-

ever, we will not concentrate in this case and it will not be part of the analysis in

the following chapters. Moreover, the higher the number of quantization levels con-

sidered, the more uncorrelated the quantization error and the input signal will be,

so there will be no point in using dither before the quantization stage [2]. Just like

any other oversampling converter, the input signal x[n] will be sampled at a rate m

times higher than the Nyquist limit in order to spread the quantization noise over a

5



Figure 1.5: Quantization noise spectrum for PCM, Oversampling PCM and Sigma-
Delta. The noise shaping property of Sigma-Delta makes this tech-
nique to be the one with the lowest in-band quantization noise power.

broad spectrum. Then, decimation has to be performed. The addition of the dither

signal M [n] is equivalent to make the quantization thresholds variables (instead of

using the fixed ones like PCM). The idea is to control this pseudo-randomness of the

quantization levels in order to achieve the best performance possible at the output

(i.e. we want to make the in-band quantization noise power as small as possible).

In this way, we not only get rid of the harmonics in the quantization noise spectra,

but we also improve the output SNR by shaping the quantization noise.

To begin with, let us assume that we have an analog input sample x[n] ∈
(−1, 1). Its corresponding binary quantized output y[n] will take the value -1 with

probability p0, and the value +1 with probability p1. Furthermore, the expected

6



Figure 1.6: Binary Dithered-Oversampling Analog-to-Digital Converter.

value of y[n] must be x[n]. Therefore,

⎧⎨
⎩

−p0 + p1 = x[n]

p0 + p1 = 1.
(1.3)

Solving for p0 and p1 we have,
⎧⎨
⎩

p0 = 1−x[n]
2

p1 = 1+x[n]
2

.
(1.4)

The mask signal M [n] ∈ (−1, 1) is an external signal uncorrelated with the input

x[n] with certain statistical properties. In particular it will have a probability density

function fM(m) and an autocorrelation function rM(k). For every incoming sample

x[n], a decision about y[n] being -1 or +1 will be made based on the corresponding

value of M [n]. If M [n] lies below a certain threshold t[n], we will assign y[n] = −1.

On the other hand, if M [n] is greater than t[n], y[n] will be +1. Therefore, the

probability of M [n] being less than t[n] must be p0, whereas the probability of M [n]

greater than t[n] must be p1.

p(M [n] < t[n]) =

∫ t[n]

−1

fM(m)dm = p0

7



p(M [n] > t[n]) =

∫ 1

t[n]

fM(m)dm = p1. (1.5)

Figure 1.7: Probability density function of M [n]. The probability of M [n] being
less than t[n] is p0, whereas the probability of M [n] being greater than
t[n] is p1.

In paricular, if M [n] is uniformly distributed, we will have,

fM(m) =

⎧⎨
⎩

1
2

if −1 ≤ m ≤ 1

0 otherwise
(1.6)

and

FM (m) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if −∞ ≤ m ≤ −1

m+1
2

if −1 ≤ m ≤ 1

1 if 1 ≤ m ≤ ∞
(1.7)

with FM(m) being the corresponding cumulative distribution function. In this case,

recalling equation (1.5),

FM(t[n]) =
t[n] + 1

2
= p0. (1.8)

8



From equation (1.3) and equation (1.5), it is then very easy to prove that t[n] =

−x[n].

∫ 1

t[n]

fM(m)dm −
∫ t[n]

−1

fM(m)dm = x[n]

∫ 1

t[n]

1

2
dm −

∫ t[n]

−1

1

2
dm = x[n]

1 − t[n]

2
−

(t[n] + 1

2

)
= x[n]

−t[n] = x[n]. (1.9)

With all these things considered, for uniform masks M [n], the quantization rule is

the following: If M [n] ≤ −x[n], then y[n] = −1. On the other hand, if M [n] ≥
−x[n], then y[n] will be +1. Therefore, for uniform M [n],

y[n] = sgn(x[n] + M [n]). (1.10)

Figure 1.8: Binary Dithered-Oversampling ADC when M [n] is uniformly dis-
tributed.

For the case of non-uniform M [n], it is possible to get a similar expression as

long as the distribution function is known. In general,

y[n] = sgn(M [n] − t[n]). (1.11)

9



Chapter 2

OPTIMUM DITHER FOR A CONSTANT INPUT

In this chapter we consider the case when we want to quantize an analog

DC signal (i.e. x[n] = λ ∀n). This case appears to be of interest for oversampling

converters as an array of analog samples could be approximated by a constant signal

as long as the oversampling ratio is sufficiently large [3]. Our goal will be to find

the optimum statistical properties of M [n] to maximize the output SNR.

2.1 Setting up the problem

Let us consider the case where we have an analog DC input x[n] = λ sampled

at a rate well above the Nyquist frequency and we want to quantize this signal using

a binary quantizer and dither. For simplicity, we can assume that M [n] has a uni-

form distribution. Then, our objective will be to give the optimum joint statistical

properties of M [n] such that the output SNR after decimation is maximized (i.e.

we want to minimize the in-band quantization noise power (IQNP) ). The binary

oversampled signal will be in this case y[n] = sgn(M [n] + λ).

Our optimization criteria is minimizing the IQNP, therefore, we first need

to get an expression for the power spectral density (PSD) of the quantization er-

ror e[n] = y[n] − λ. To do so, we need to start by getting an expression for the

autocorrelation of e[n] called re(k).

re(k) = E
{

e[n]e[n − k]
}
. (2.1)

10



Figure 2.1: Dithered-oversampling binary ADC. The input x[n] is constant (i.e.
x[n] = λ).

Expanding (2.1) we have,

re(k) = E
{[

sgn(M [n] + λ) − λ
][

sgn(M [n − k] + λ) − λ
]}

= E
{

sgn(M [n] + λ)sgn(M [n − k] + λ)
}
− λE

{
sgn(M [n] + λ)

}

−λE
{

sgn(M [n − k] + λ)
}

+ λ2

= E
{

sgn(M [n] + λ)sgn(M [n − k] + λ)
}

−2λE
{

sgn(M [n] + λ)
}

+ λ2. (2.2)

As mentioned above, M [n] is uniform, therefore, its PDF is defined as in (1.6). Let’s

now work on the term E
{

sgn(M [n] + λ)
}

.

E
{

sgn(M [n] + λ)
}

=

∫ +∞

−∞
sgn(m + λ)fM(m)dm

=

∫ +1

−1

sgn(m + λ)
1

2
dm

=

∫ +1

−λ

1

2
dm −

∫ −λ

−1

1

2
dm

=
1 + λ

2
− 1 − λ

2

= λ. (2.3)
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Now,

re(k) = E
{
sgn(M [n] + λ)sgn(M [n − k] + λ)

}
− 2λ2 + λ2

= E
{
sgn(M [n] + λ)sgn(M [n − k] + λ)

}
− λ2. (2.4)

For k = 0 we get,

re(0) = 1 − λ2. (2.5)

To get the values of re(k) for k > 0, we need to consider the joint statistics of M [n].

Let’s define the joint cumulative distribution funcion (CDF) of M [n] and M [n − k]

as follows,

Fm0,mk
(m0, mk) = p(M [n] ≤ m0, M [n − k] ≤ mk)

=

∫ mk

−1

∫ m0

−1

fm0,mk
(x, y)dxdy (2.6)

with fm0,mk
(m0, mk) being the corresponding joint probability density function (PDF).

fm0,mk
(m0, mk) =

∂2Fm0,mk
(m0, mk)

∂m0∂mk
. (2.7)

We know that M [n] is uniform in (−1, 1). This implies the following conditions for

Fm0,mk
(m0, mk),

Fm0,mk
(1, mk) = FM(mk) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if −∞ ≤ mk ≤ −1

mk+1
2

if −1 ≤ mk ≤ 1

1 if 1 ≤ mk ≤ ∞
(2.8)

Fm0,mk
(m0, 1) = FM(m0) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if −∞ ≤ m0 ≤ −1

m0+1
2

if −1 ≤ m0 ≤ 1

1 if 1 ≤ m0 ≤ ∞
(2.9)

and

Fm0,mk
(m0,−1) = Fm0,mk

(−1, mk) = 0. (2.10)

Let’s now recall a simple relation between a two dimensional PDF and its cor-

responding CDF that will be useful for the mathematical derivation of re(k). If
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Fx,y(x, y) is a two dimensional CDF with a corresponding PDF fx,y(x, y), the fol-

lowing relation holds,

∫ y2

y1

∫ x2

x1

fx,y(x, y)dxdy = Fx,y(x2, y2) − Fx,y(x1, y2) − Fx,y(x2, y1) + Fx,y(x1, y1).

(2.11)

With all these things considered, we can go back to equation (2.4) and work with

the term E
{

sgn(M [n] + λ)sgn(M [n − k] + λ)
}

= g(M [n], M [n − k], λ). Therefore,

g(M [n], M [n − k], λ) =

∫ 1

−1

∫ 1

−1

sgn(x + λ)sgn(y + λ)fm0,mk
(x, y)dxdy

=

∫ −λ

−1

∫ −λ

−1

fm0,mk
(x, y)dxdy −

∫ 1

−λ

∫ −λ

−1

fm0,mk
(x, y)dxdy

−
∫ −λ

−1

∫ 1

−λ

fm0,mk
(x, y)dxdy +

∫ 1

−λ

∫ 1

−λ

fm0,mk
(x, y)dxdy.

Then, it is possible to write the four double integrals in terms of Fm0,mk
(m0, mk) by

making use of the property described in equation (2.11).

g(M [n], M [n − k], λ) = Fm0,mk
(−λ,−λ) − Fm0,mk

(−1,−λ) − Fm0,mk
(−λ,−1)

+Fm0,mk
(−1,−1) − [Fm0,mk

(−λ, 1) − Fm0,mk
(−1, 1)

−Fm0,mk
(−λ,−λ) + Fm0,mk

(−1,−λ)] − [Fm0,mk
(1,−λ)

−Fm0,mk
(−λ,−λ) − Fm0,mk

(1,−1) + Fm0,mk
(−λ,−1)]

+Fm0,mk
(1, 1) − Fm0,mk

(−λ, 1) − Fm0,mk
(1,−λ)

+Fm0,mk
(−λ,−λ). (2.12)

From equations (2.8), (2.9), (2.10) and the fact that Fm0,mk
(1, 1) = 1, we know that

Fm0,mk
(x,−1) = Fm0,mk

(−1, y) = 0 (2.13)

and

Fm0,mk
(−λ, 1) = Fm0,mk

(1,−λ) =
1 − λ

2
. (2.14)
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Therefore,

g(M [n], M [n − k], λ) = 4Fm0,mk
(−λ,−λ) + 1 − 4

[1 − λ

2

]

= 4Fm0,mk
(−λ,−λ) + 2λ − 1. (2.15)

Now we are ready to substitute in equation (2.4),

re(k) = E
{

sgn(M [n] + λ)sgn(M [n − k] + λ)
}
− λ2

= 4Fm0,mk
(−λ,−λ) + 2λ − 1 − λ2. (2.16)

Equation (2.16) gives us an expression for the autocorrelation of the error re(k) in

terms of the statistics of M [n] when the input to the system is a constant λ ∈ (−1, 1).

It is a well known result that the power spectral density (PSD) of the error e[n] (that

we will call Se(w)) is the Discrete Time Fourier Transform (DTFT) of re(k) and can

be expressed as follows,

Se(w) = re(0) + 2
+∞∑
k=1

re(k)cos(wk). (2.17)

The optimization criteria that we need to consider is the in-band quantization noise

power (IQNP), which is in fact the integral of Se(w) in the band of interest.

IQNP =
1

2π

∫ π
m

− π
m

Se(w)dw

=
1 − λ2

m
+

1

π

∫ π
m

− π
m

+∞∑
k=1

re(k)cos(wk)dw (2.18)

where m is the oversampling ratio. It is reasonable to assume that for a certain

integer N , re(k) = 0 ∀k ≥ N . Therefore, the infinite sum in (2.18) becomes finite

and the IQNP can be expressed as follows,

IQNP =
1 − λ2

m
+

1

π

∫ π
m

− π
m

N∑
k=1

re(k)cos(wk)dw

=
1 − λ2

m
+

N∑
k=1

2

kπ
sin

(kπ

m

)
re(k). (2.19)
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We observe that the IQNP is linear with respect to the coefficients re(k). Therefore,

given N, we could find an optimal set of re(k) with k = 1, .., N that make the IQNP

minimum. The set can be found by using linear programming optimization.

When k ≥ N , we are actually assuming that the samples M [n] and M [n−k]

are independent. Therefore, for k ≥ N ,the joint PDF will be the multiplication of

two uniform densities in the range (−1, 1).

fm0,mk
(m0, mk) =

⎧⎨
⎩

1/4 if −1 ≤ m0 ≤ −1 and − 1 ≤ mk ≤ −1

0 otherwise.
(2.20)

If this happens, the respective CDF for −1 ≤ m0 ≤ −1 and − 1 ≤ mk ≤ −1 will

be

Fm0,mk
(m0, mk) =

(1 + m0)(1 + mk)

4
. (2.21)

In this case, substituting in equation (2.16), we get

re(k) = 4
[(1 − λ)2

4

]
+ 2λ − 1 − λ2

= (1 − λ)2 + 2λ − 1 − λ2

= 0 (2.22)

as expected.

Once we get the optimum re(k), by using equation (2.16), we can find the cor-

responding values of Fm0,mk
(−λ,−λ) for all k. The set of functions Fm0,mk

(m0, mk)

satisfying these conditions will be the solution for our optimal mask M [n]. That

means that the mask given by the joint CDFs Fm0,mk
(m0, mk) for all k will be the

one that minimizes the in-band quantization noise power (i.e. the one that maxi-

mizes the SNR at the output). However, before finding the optimum coefficients,

there are some constraints that must be addressed.
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Firstly, Fm0,mk
(m0, mk) is monotonically non-decreasing and right-continuous

in both variables m0 and mk. Now, recalling the border conditions given by equa-

tions (2.8), (2.9) and (2.10), we end up with an upper and a lower bound for

Fm0,mk
(m0, mk).

0 ≤ Fm0,mk
(m0, mk) ≤ min

{1 + m0

2
,
1 + mk

2

}
. (2.23)

Secondly, the PSD of the error Se(w) has to be positive. Se(w) is a function of re(k),

and re(k) is a function of Fm0,mk
(m0, mk). Therefore, this condition also has impact

on Fm0,mk
(m0, mk) for all k.

Se(w) ≥ 0 ⇒ re(0) + 2
N∑

k=1

re(k)cos(wk) ≥ 0

⇒ 1 − λ2 + 2

N∑
k=1

[
4Fm0,mk

(−λ,−λ) + 2λ − 1 − λ2
]
cos(wk) ≥ 0.

(2.24)

The third point to consider is that the PSD of M [n] (that we will call SM(w)) also

needs to be positive. This has impact on the values of the corresponding autocor-

relation rM(k) which is also function of the joint PSD of the mask fm0,mk
(m0, mk)

for all k.

SM(w) ≥ 0 ⇒ rM(0) + 2
+∞∑
k=1

rM(k)cos(wk) ≥ 0

⇒ 1/3 + 2

+∞∑
k=1

[ ∫ +1

−1

∫ +1

−1

vwfm0,mk
(v, w)dvdw

]
cos(wk) ≥ 0.

(2.25)

Lastly, we need to consider that the joint PDFs fm0,mk
(m0, mk) should be such that

limk→∞ rM(k) = 0.

The problem of finding an optimum mask by finding the optimum set of func-

tions Fm0,mk
(m0, mk) under these constraints is not trivial and can easily lead to mis-

takes. Therefore, we will turn the problem of finding the optimum Fm0,mk
(m0, mk)
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into the problem of finding the optimum mask spectrum (i.e. finding the optimum

SM(w)). This means that instead of looking for the set of CDFs, we will define a

general fm0,mk
(m0, mk) that will allow us to get any desired spectrum for M [n].

2.2 Model for a general joint PDF for M[n]

In this section we introduce a general joint PDF for M [n]. For every k we

will have a PDF fm0,mk
(m0, mk) depending on a tunable parameter Ck. By varying

Ck for all k it will be possible to get any desired spectrum for M [n].

To begin with, let us recall that |rM(k)| ≤ rM(0) = 1/3. Therefore, −1/3 ≤
rM(k) ≤ 1/3. Now let’s look at the definition of rM(k).

rM(k) =

∫ 1

−1

∫ 1

−1

m0mkfm0,mk
(m0, mk)dmkdm0

=

∫ 1

−1

∫ 1

−1

m0mk

2
fm0/mk

(m0/mk)dmkdm0

=

∫ 1

−1

mk

2

[ ∫ 1

−1

m0fm0/mk
(m0/mk)dm0

]
dmk

=

∫ 1

−1

mk

2
E(m0/mk)dmk. (2.26)

We want the integral in equation (2.26) to be Ck

3
with −1 ≤ Ck ≤ 1.

Therefore, we will need to find a fm0/mk
(m0/mk) such that E(m0/mk) = Ckmk

for −1 ≤ Ck ≤ 1. In this way,

rM(k) =

∫ 1

−1

mk

2
E(m0/mk)dmk

=

∫ 1

−1

mk

2
Ckmkdmk

=
Ck

3
. (2.27)

It is easy to note that if we define the PDF of m0 given mk to be uniform (i.e.

fm0/mk
(m0/mk) is uniform with respect to m0), we get E(m0/mk) = Ck

3
for −1 ≤
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Ck ≤ 1. Therefore,

fm0/mk
(m0/mk) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
2(1 − Ckmk)

]−1

if

⎧⎨
⎩

2Ckmk − 1 ≤ m0 ≤ 1

0 ≤ Ckmk ≤ 1

[
2(1 + Ckmk)

]−1

if

⎧⎨
⎩

−1 ≤ m0 ≤ 1 + 2Ckmk

−1 ≤ Ckmk ≤ 0

0 otherwise.

(2.28)

Figure 2.2: Conditional probability density function fm0/mk
(m0/mk). Given mk,

fm0/mk
(m0/mk) is a uniform random variable centered in Ckmk

The joint PDF fm0,mk
(m0, mk) will be the multiplication of fm0/mk

(m0/mk)

by the marginal (which is uniform in (−1, 1)).

fm0,mk
(m0, mk) =

⎧⎨
⎩

fm0/mk
(m0/mk)

2
if −1 ≤ m0, mk ≤ 1

0 otherwise.
(2.29)

Figures 2.3 and 2.4 show the domain for fm0,mk
(m0, mk). Figures 2.5, 2.6

and 2.7 depict the joint PDF when the parameter Ck is varied. We observe that as

Ck approaches zero, fm0,mk
(m0, mk) tends to be uniform.

In this way, we have found a joint PDF for M [n] and M [n − k] that makes

the autocorrelation rM(k) vary between −1/3 and 1/3, so we can pick any desired
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Figure 2.3: Domain for fm0,mk
(m0, mk) when 0 ≤ Ck ≤ 1.

Figure 2.4: Domain for fm0,mk
(m0, mk) when −1 ≤ Ck ≤ 0.
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Figure 2.5: Joint PDF fm0,mk
(m0, mk) for Ck = 0.8.
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Figure 2.6: Joint PDF fm0,mk
(m0, mk) for Ck = −0.8.
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Figure 2.7: Joint PDF fm0,mk
(m0, mk) for Ck = 0.2.

spectrum for M [n] by choosing the appropriate value of Ck for all k. The corre-

sponding joint CDF will be described by a large and complex expression defined as

follows,

Fm0,mk
(m0, mk) =

∫ m0

−1

∫ mk

−1

fm0,mk
(x, y)dydx

= g1(m0, mk) if

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1/2 ≤ Ck ≤ 1

−1 ≤ mk ≤ 0

−1 ≤ m0 ≤ −2Ck + 1

g3(m0, mk) if

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1/2 ≤ Ck ≤ 1

−1 ≤ mk ≤ 0

−2Ck + 1 ≤ m0 ≤ 2Ckmk + 1

g2(m0, mk) if

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1/2 ≤ Ck ≤ 1

−1 ≤ mk ≤ 0

2Ckmk + 1 ≤ m0 ≤ 1
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g8(m0, mk) if

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1/2 ≤ Ck ≤ 1

0 ≤ mk ≤ 1−Ck

Ck

−1 ≤ m0 ≤ 2Ckmk − 1

g6(m0, mk) if

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1/2 ≤ Ck ≤ 1

0 ≤ mk ≤ 1−Ck

Ck

2Ckmk − 1 ≤ m0 ≤ −2Ck + 1

g4(m0, mk) if

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1/2 ≤ Ck ≤ 1

0 ≤ mk ≤ 1−Ck

Ck

−2Ck + 1 ≤ m0 ≤ 1

g8(m0, mk) if

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1/2 ≤ Ck ≤ 1

1−Ck

Ck
≤ mk ≤ 1

−1 ≤ m0 ≤ −2Ck + 1

g7(m0, mk) if

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1/2 ≤ Ck ≤ 1

1−Ck

Ck
≤ mk ≤ 1

−2Ck + 1 ≤ m0 ≤ 2Ckmk − 1

g5(m0, mk) if

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1/2 ≤ Ck ≤ 1

1−Ck

Ck
≤ mk ≤ 1

2Ckmk − 1 ≤ m0 ≤ 1

g1(m0, mk) if

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 ≤ Ck ≤ 1/2

−1 ≤ mk ≤ 0

−1 ≤ m0 ≤ −2Ck + 1

g3(m0, mk) if

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 ≤ Ck ≤ 1/2

−1 ≤ mk ≤ 0

−2Ck + 1 ≤ m0 ≤ 2Ckmk + 1

22



g2(m0, mk) if

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 ≤ Ck ≤ 1/2

−1 ≤ mk ≤ 0

2Ckmk + 1 ≤ m0 ≤ 1

g8(m0, mk) if

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 ≤ Ck ≤ 1/2

0 ≤ mk ≤ 1

−1 ≤ m0 ≤ 2Ckmk − 1

g6(m0, mk) if

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 ≤ Ck ≤ 1/2

0 ≤ mk ≤ 1

2Ckmk − 1 ≤ m0 ≤ −2Ck + 1

g4(m0, mk) if

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 ≤ Ck ≤ 1/2

0 ≤ mk ≤ 1

−2Ck + 1 ≤ m0 ≤ 1

g11(m0, mk) if

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−1 ≤ Ck ≤ −1/2

−1 ≤ mk ≤ 0

−1 ≤ m0 ≤ 2Ckmk − 1

g9(m0, mk) if

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−1 ≤ Ck ≤ −1/2

−1 ≤ mk ≤ 0

2Ckmk − 1 ≤ m0 ≤ −2Ck − 1

g10(m0, mk) if

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−1 ≤ Ck ≤ −1/2

−1 ≤ mk ≤ 0

−2Ck − 1 ≤ m0 ≤ 1

g12(m0, mk) if

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−1 ≤ Ck ≤ −1/2

0 ≤ mk ≤ −1−Ck

Ck

−1 ≤ m0 ≤ −2Ck − 1
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g13(m0, mk) if

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−1 ≤ Ck ≤ −1/2

0 ≤ mk ≤ −1−Ck

Ck

−2Ck − 1 ≤ m0 ≤ 2Ckmk + 1

g16(m0, mk) if

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−1 ≤ Ck ≤ −1/2

0 ≤ mk ≤ −1−Ck

Ck

2Ckmk + 1 ≤ m0 ≤ 1

g14(m0, mk) if

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−1 ≤ Ck ≤ −1/2

−1−Ck

Ck
≤ mk ≤ 1

−1 ≤ m0 ≤ 2Ckmk + 1

g15(m0, mk) if

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−1 ≤ Ck ≤ −1/2

−1−Ck

Ck
≤ mk ≤ 1

2Ckmk + 1 ≤ m0 ≤ −2Ck − 1

g16(m0, mk) if

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−1 ≤ Ck ≤ −1/2

−1−Ck

Ck
≤ mk ≤ 1

−2Ck − 1 ≤ m0 ≤ 1

g11(m0, mk) if

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−1/2 ≤ Ck ≤ 0

−1 ≤ mk ≤ 0

−1 ≤ m0 ≤ 2Ckmk − 1

g9(m0, mk) if

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−1/2 ≤ Ck ≤ 0

−1 ≤ mk ≤ 0

2Ckmk − 1 ≤ m0 ≤ −2Ck − 1

g10(m0, mk) if

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−1/2 ≤ Ck ≤ 0

−1 ≤ mk ≤ 0

−2Ck − 1 ≤ m0 ≤ 1
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g12(m0, mk) if

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−1/2 ≤ Ck ≤ 0

0 ≤ mk ≤ 1

−1 ≤ m0 ≤ −2Ck − 1

g13(m0, mk) if

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−1/2 ≤ Ck ≤ 0

0 ≤ mk ≤ 1

−2Ck − 1 ≤ m0 ≤ 2Ckmk + 1

g16(m0, mk) if

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−1/2 ≤ Ck ≤ 0

0 ≤ mk ≤ 1

2Ckmk + 1 ≤ m0 ≤ 1.

(2.30)

The corresponding gi(m0, mk) in equation (2.30) with i = 1...16 are defined as

follows,

g1(m0, mk) =
[ 1

4Ck

][
(m0 + 1)log

(1 + Ckmk

1 − Ck

)]

g2(m0, mk) =
mk + 1

2

g3(m0, mk) =
[ 1

4Ck

][
m0 − 1 + 2Ck + (m0 + 1)log

(2 + 2Ckmk

m0 + 1

)]

g4(m0, mk) =
[ 1

4Ck

][
− 1 + m0 + 2Ck(1 + mk) +

(1 + m0)log
( 2

m0 + 1

)
+ (1 − m0)log(1 − Ckmk)

]

g5(m0, mk) =
[ 1

4Ck

][
(1 − m0)log(1 − Ckmk) − (1 − m0) +

(1 + m0)log
( 2

1 + m0

)
+ 2Ck(1 + mk)

]

g6(m0, mk) =
[ 1

4Ck

][
2Ckmk + (1 − m0)log(1 − Ckmk) − (1 + m0)log(1 − Ck)

]

g7(m0, mk) =
[ 1

4Ck

][
2Ck + m0

(
2 + log(4)

)
+ (1 − m0)log(1 − m0)

−(1 + m0)log(1 + m0)
]

g8(m0, mk) =
[ 1

4Ck

][
(1 − m0)log

(1 − m0

2

)
+ (1 + m0)

(
1 − log(1 − Ck)

)]
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g9(m0, mk) =
[ 1

4Ck

][
2Ckmk − 1 − m0 + (1 − m0)log

(2 − 2Ckmk

1 − m0

)]

g10(m0, mk) =
[ 1

4Ck

][
2Ck + 2Ckmk + (1 + 2Ck + m0)log

( 1 + Ck

1 − Ckmk

)

+(2 + 2Ck)log
(1 − Ckmk

1 + Ck

)]

g11(m0, mk) = 0

g12(m0, mk) =
[ 1

4Ck

][
(1 + m0)

(
log(1 + Ckmk) − 1

)
+ (1 − m0)log

( 2

1 − m0

)]

g13(m0, mk) =
[ 1

4Ck

][
2Ck + (1 + 2Ck + m0)log(1 + Ck) + (2 + 2Ck)log

( 1

1 + Ck

)

+(1 + m0)log(1 + Ckmk)
]

g14(m0, mk) =
[ 1

4Ck

][
(1 + m0)

(
log(1 + Ckmk) − 1

)
+ (1 − m0)log

( 2

1 − m0

)]

g15(m0, mk) =
[ 1

4Ck

][
(1 − m0)log

( 2

1 − m0

)
+ (1 + m0)log

[
(1 + m0)(1 + Ckmk)

2 + 2Ckmk

]

+2Ckmk − 2m0

]

g16(m0, mk) =
[ 1

4Ck

][
1 − m0 + 2Ckmk + 2Ck + (1 + m0)log

[
(1 + m0)(1 + Ckmk)

2 + 2Ckmk

]

+(1 + 2Ck + m0)log(1 + Ck) + (2 + 2Ck)log
( 1

1 + Ck

)]
.

(2.31)

For simplicity, denote f ∗
m0,mk

(m0, mk) and F ∗
m0,mk

(m0, mk) as the joint PDF

and the joint CDF defined in this section (equations (2.29) and (2.30) respectively).

2.3 Optimum coefficients

In the last section we have introduced a fixed mathematical form for the CDF

Fm0,mk
(m0, mk) that allows us to select any power spectral density SM(w) for M [n].

Therefore, we can now substitute in equation (2.16) to get an expression for the

autocorrelation of the error re(k).

re(k) = 4F ∗
m0,mk

(−λ,−λ) + 2λ − 1 − λ2. (2.32)
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In this way, any spectrum for M [n] will have a corresponding set of F ∗
m0,mk

(−λ,−λ)

for all k (i.e.the autocorrelation rM(k) will be completely determined by the set

Ck for all k). Another important remark, is that for every fixed λ, the value of

F ∗
m0,mk

(−λ,−λ) will vary in a certain range, and therefore, the value of re(k) will

also vary in a certain range. We can call αλ and βλ to the lower and upper bound

of re(k) respectively.

αλ ≤ re(k) ≤ βλ (2.33)

In Figure 2.8 we observe the surface F ∗
m0,mk

(−λ,−λ) when varying Ck between

(−1, 1) and when we vary λ between (−1, 1).
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Figure 2.8: Joint CDF F ∗
m0,mk

(−λ,−λ) as a function of λ and Ck.

We can also plot the maximum and minimum possible value of re(k) for a

given λ between (−1, 1). This is shown in Figure 2.9. Unhopefully, there is no

analytical expression for the upper and lower bounds for re(k) given λ. Figure 2.10
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Figure 2.9: Bounds of re(k) as a function of λ.

shows how re(k) vary with respect to Ck for different values of λ. We observe that

when Ck = 0, re(k) = 0 which makes sense with equation (2.22).

Up to this point, given a positive integer N , we want to find the optimum

set of coefficients re(k) for all k = 1...N that minimizes the in-band quantization

noise power (we assume that re(k) = 0 for k > N). We also know that for a fixed

λ, the autocorrelation coefficients must lie in a certain range. With these facts

considered, we can now perform the optimization. By means of linear programming

optimization [5], we can find the set of coefficients re(k) that minimize the in-band

quantization noise power IQNP from equation (2.19) subject to the constraints in

equation (2.33) given λ, N and m (the oversampling ratio).

After the optimization is done, we obtain the following figures. They show the

performance of the A/D converter with the optimum mask when varying λ. Figure

2.11 is a plot of the in-band quantization noise (IQNP) as a function of λ for different
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Figure 2.10: Autocorrelation of the error re(k) as a function of Ck for different
values of λ.

values of N . In the same figure, there are also plots of the IQNP for Sigma-Delta

(first, second and third order modulators), so we can compare results. In this case,

the oversampling is fixed to m = 20. Then, Figure 2.12 is a plot of the optimum

coefficient as a function of λ for N = 1 (i.e. it is a plot of re(1) as a function of λ).

In Figures 2.13, 2.14 and 2.15, we can observe the plots of the optimum coefficients

as a function of lambda for N = 2, N = 3 and N = 4 respectively. For all these

plots, the oversampling ratio is also assumed to be m = 20. In Figures 2.16 and

2.17, we plot the effective number of bits (ENOB) versus the oversampling ratio for

λ = 0.5 and λ = 0 respectively.

2.4 Conclusion

In this chapter we have introduced the oversampling A/D converter with

dither when dealing with a constant input signal. We have also developed the
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Figure 2.13: Optimum coefficients as a function of λ for N = 2. The oversampling
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Figure 2.14: Optimum coefficients as a function of λ for N = 3. The oversampling
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Figure 2.15: Optimum coefficients as a function of λ for N = 4. The oversampling
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mathematical expression for the autocorrelation of the quantization error re(k) as

a function of the joint statistics of M [n] (i.e. as a function of the joint CDF of

M [n] and M [n − k]). Then we have assumed a certain general form for the joint

CDF Fm0,mk
(m0, mk) such that we can pick any desired power spectral density for

M [n] and the problem becomes tractable. After this, we found the optimum N

non-zero coefficients re(k) that minimizes the IQNP by using linear programming

optimization. These coefficients correspond to N values of Ck for 1 ≤ k ≤ N . The

autocorrelation of the mask rM(k) is defined as rM(k) = Ck/3, then, once the set

of Ck is determined, the power spectral density of the optimum mask SM(w) is also

determined. Therefore, the optimum autocorrelation function and spectrum of M [n]

was found.

It is important to remark that in this analysis, the input signal was always

known as a constant of value λ. This is why we were able to find a mask M [n] that
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perfectly fits the input and we obtained really good results comparable to Sigma-

Delta modulation. In Sigma-Delta nothing is assumed about the characteristics of

the input signal. However, this technique achieves a very high performance because

it uses feedback.
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Chapter 3

OPTIMUM DITHER FOR A

UNIFORM WHITE NOISE INPUT

In Chapter 2 we have analyzed the case when the input to our dithered-

oversampling A/D converter was a constant input. Now, we will study the case

when the input is completely random. Just like in the previous chapter, this is an

extreme case that has to be addressed in order to complete the analysis of the A/D

converter in the limit cases.

3.1 Setting up the problem

In this chapter, the input x[n] to our system will be uniformly distributed

white noise. We chose to deal with a uniform distribution as this represents the

most general case. As usual, x[n] will be sampled at a rate m times higher than

the Nyquist rate. Then, the uniformly distributed dither signal M [n] will be added

before the binary quantizer generates the output y[n]. The objective will be again

to find the optimum statistical characteristics of M [n] that minimize the IQNP at

the output (i.e. to maximize the output SNR).

The probability density function of x[n] will be defined as follows,

fX(x) =

⎧⎨
⎩

1
2

if −1 ≤ x ≤ 1

0 otherwise.
(3.1)
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Figure 3.1: Dithered-oversampling binary ADC. The input x[n] is uniformly dis-
tributed white noise.

The signal x[n] is also white noise, therefore, the joint PDF of x[n] and x[n−k] will

be the multiplication of the marginals.

fx0,xk
(x0, xk) =

⎧⎨
⎩

1/4 if −1 ≤ x0 ≤ −1 and − 1 ≤ xk ≤ −1

0 otherwise.
(3.2)

Moreover, as x[n] is uniform in (−1, 1), its power rX(0) = 1/3. The corresponding

autocorrelation function of the input rX(k) will be,

rX(k) =

⎧⎨
⎩

1/3 if k = 0

0 if k 	= 0.
(3.3)

The error e[n] will be defined as,

e[n] = sgn(M [n] + x[n]) − x[n]. (3.4)

Then, the corresponding autocorrelation function re(k) will be as follows,

re(k) = E
{
e[n]e[n − k]

}

= E
{[

sgn(M [n] + x[n]) − x[n]
][

sgn(M [n − k] + x[n − k]) − x[n − k]
]}

= E
{
sgn(M [n] + x[n])sgn(M [n − k] + x[n − k])

}

−E
{

sgn(M [n] + x[n])x[n − k]
}
− E

{
sgn(M [n − k] + x[n − k])x[n]

}
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+E
{
x[n]x[n − k]

}

= E
{
sgn(M [n] + x[n])sgn(M [n − k] + x[n − k])

}

−2E
{

sgn(M [n] + x[n])x[n − k]
}

+ rX(k). (3.5)

The mask M [n] is uniform, so its PDF is defined in equation (1.6). Also, the joint

PDF of x[n] and x[n − k] is defined in (3.2). Therefore, for k > 0,

E
{
sgn(M [n] + x[n])x[n − k]

}
=

∫ 1

−1

∫ 1

−1

∫ 1

−1

(1

2

)(1

4

)
sgn(x + y)zdxdydz

= 0. (3.6)

For k > 0, considering equation (3.3), the expression in equation (3.5) becomes,

re(k) = E
{
sgn(M [n] + x[n])sgn(M [n − k] + x[n − k])

}
. (3.7)

When k = 0,

E
{

sgn(M [n] + x[n])x[n]
}

=

∫ 1

−1

∫ 1

−1

(1

2

)(1

2

)
sgn(x + y)xdxdydz

=
1

3
. (3.8)

Therefore,

re(0) = E
{
e[n]e[n]

}

= E
{[

sgn(M [n] + x[n]) − x[n]
][

sgn(M [n] + x[n]) − x[n]
]}

= E
{
sgn(M [n] + x[n])sgn(M [n] + x[n])

}

−2E
{

sgn(M [n] + x[n])x[n]
}

+ rX(0)

= 1 − 2
(1

3

)
+

1

3

=
2

3
. (3.9)

To get an expression for re(k) when k > 0, we need to consider the joint PDF of

M [n],M [n − k],x[n] and x[n − k]. We know that M [n] and x[n] are independent,
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therefore, the joint PDF will be the multiplication of the joint PDF of M [n] and

M [n − k] by the joint PDF of x[n] and x[n − k].

fm0,mk,x0,xk
(m0, mk, x0, xk) = fm0,mk

(m0, mk)fx0,xk
(x0, xk)

=

⎧⎨
⎩

fm0,mk
(m0,mk)

4
if −1 ≤ m0, mk, x0, xk ≤ 1

0 otherwise.

(3.10)

Then, for k > 0,

re(k) = E
{
sgn(M [n] + x[n])sgn(M [n − k] + x[n − k])

}

=

∫ 1

−1

∫ 1

−1

∫ 1

−1

∫ 1

−1

sgn(x + v)sgn(y + w)

(
1

4

)
fm0,mk

(x, y)dxdydvdw

=

∫ 1

−1

∫ 1

−1

(
1

4

)
fm0,mk

(x, y)

[ ∫ 1

−1

∫ 1

−1

sgn(x + v)sgn(y + w)dvdw

]
dxdy

=

∫ 1

−1

∫ 1

−1

(
1

4

)
fm0,mk

(x, y)

[
4xy

]
dxdy

=

∫ 1

−1

∫ 1

−1

xyfm0,mk
(x, y)dxdy

=

∫ 1

−1

∫ 1

−1

m0mkfm0,mk
(m0, mk)dm0dmk

= E
{
M [n]M [n − k]

}

= rM(k). (3.11)

Therefore, when the analog input x[n] is uniform white noise, the autocorrelation

of the error re(k) is the same as the autocorrelation of the mask rM(k) for k > 0.

In general, for all k,

re(k) = rM(k) +

(
1

3

)
δ(k). (3.12)

3.2 Optimum Dither

The expression in equation (3.12) tells us that the PSD of e[n] is the sum of

the PSD of M [n] called SM(w) plus a noise floor. This result is obtained by applying
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the DTFT to re(k).

Se(w) = SM(w) +
1

3
. (3.13)

Our goal is to design a mask M [n] to minimize the in-band quantization noise power.

Therefore, the optimum M [n] will be the one such that SM(w) = 0 ∀ w ∈ (−π
m

, π
m

)

with m being the oversampling ratio. If we were dealing with that optimum M [n],

the IQNP would be,

IQNP =
1

2π

∫ π/m

−π/m

Se(w)dw

=
1

2π

∫ π/m

−π/m

SM(w) +
1

3
dw


 1

2π

∫ π/m

−π/m

1

3
dw

=
1

2π

2π

m

1

3

=
1

3m
. (3.14)

Figure 3.2 shows how the IQNP varies when using the optimum M [n]. It also shows

the performance for first-order and second-order Sigma Delta. We observe that

when we are dealing with uniform white noise as input, the optimum performance

is never better than Sigma Delta.

3.3 Conclusion

In this Chapter we have analyzed the performance of the dithered-oversampling

A/D converter when the input is uniform white noise and when we use the optimum

mask M [n] to maximize the output SNR (i.e. to minimize the IQNP). We have de-

veloped the equations for the autocorrelaton of the error re(k) and we have seen

that it is the same as the autocorrelation of the mask rM(k) plus a noise floor. If

we were using the optimum mask, the performance of the A/D converter will never

outperform Sigma-Delta.
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Chapter 4

OPTIMUM DITHER FOR A GENERAL INPUT

WITH KNOWN AUTOCORRELATION FUNCTION

To complete the analysis of the dithered-oversampling A/D converter, this

chapter describes the case when the analog input is any unformly distributed signal

in (−1, 1) with known autocorrelation function.

4.1 Setting up the problem

In this chapter we will consider the case when we have an analog input x[n]

and we know its autocorrelation function (i.e. we know its power spectral density).

As usual, it is assumed that the input signal is sampled at a rate m times greater

than the Nyquist frequency and that a binary quantizer is used to obtain the output

y[n]. Again, our objective will be to find the optimum M [n] that minimizes the in-

band quantization noise power (i.e. maximizes the output SNR). We will assume

that the input x[n] is equally likely to take any value between (−1, 1) (i.e. x[n] is

uniform in (−1, 1)). The PDF of x[n] is then defined in equation (3.1). The error

e[n] between the output and the input is defined as

e[n] = y[n] − x[n]

= sgn(M [n] + x[n]) − x[n]. (4.1)

Now, we need to consider the autocorrelation function of e[n].

re(k) = E
{
e[n]e[n − k]

}
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= E
{[

sgn(M [n] + x[n]) − x[n]
][

sgn(M [n − k] + x[n − k]) − x[n − k]
]}

= E
{
sgn(M [n] + x[n])sgn(M [n − k] + x[n − k])

}

−E
{

sgn(M [n] + x[n])x[n − k]
}
− E

{
sgn(M [n − k] + x[n − k])x[n]

}

+E
{
x[n]x[n − k]

}

= E
{
sgn(M [n] + x[n])sgn(M [n − k] + x[n − k])

}

−2E
{

sgn(M [n] + x[n])x[n − k]
}

+ rX(k). (4.2)

Figure 4.1: Dithered-oversampling binary ADC. The input x[n] is uniformly dis-
tributed with known autocorrelation function.

To figure out the term E
{

sgn(M [n] + x[n])x[n − k]
}

, we have to consider

the joint PDF of M [n], x[n] and x[n − k]. The input signal and the mask are

independent, so the joint PDF will be the multiplication of the joint PDF of x[n]

and x[n − k] by the PDF of M [n] defined in equation (1.6).

fm0,x0,xk
(m0, x0, xk) = fM(m0)fx0,xk

(x0, xk)

=

⎧⎨
⎩

fx0,xk
(x0,xk)

2
if −1 ≤ m0, x0, xk ≤ 1

0 otherwise

(4.3)
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with fx0,xk
(x0, xk) being the joint PDF of x[n] and x[n − k].

E
{
sgn(M [n] + x[n])x[n − k]

}
=

∫ 1

−1

∫ 1

−1

∫ 1

−1

sgn(x + v)w
(1

2

)
fx0,xk

(v, w)dxdvdw

=

∫ 1

−1

w

2

∫ 1

−1

[ ∫ 1

−1

sgn(x + v)fx0,xk
(v, w)dx

]
dvdw.

The integral into straight brackets can be splitted as follows,

∫ 1

−1

sgn(x + v)fx0,xk
(v, w)dx =

∫ 1

−v

fx0,xk
(v, w)dx −

∫ −v

−1

fx0,xk
(v, w)dx

= 2vfx0,xk
(v, w). (4.4)

Then,

E
{
sgn(M [n] + x[n])x[n − k]

}
=

∫ 1

−1

w

2

∫ 1

−1

[
2vfx0,xk

(v, w)

]
dvdw

=

∫ 1

−1

∫ 1

−1

vwfm0,mk
(v, w)dvdw

= E
{
x[n]x[n − k]

}

= rX(k). (4.5)

Therefore, going back to equation (4.2),

re(k) = E
{
sgn(M [n] + x[n])sgn(M [n − k] + x[n − k])

}
− 2rX(k) + rX(k)

= E
{
sgn(M [n] + x[n])sgn(M [n − k] + x[n − k])

}
− rX(k). (4.6)

To complete the expression for re(k), we now need to work with the expectation term

in equation (4.6). To do so, we need to consider the joint PDF of M [n], M [n − k],

x[n] and x[n − k]. As the signals x[n] and M [n] are independent, this joint PDF

will be the multiplication of the joint PDF of M [n] and M [n− k] by the joint PDF

of x[n] and x[n − k].

fm0,mk,x0,xk
(m0, mk, x0, xk) = fm0,mk

(m0, mk)fx0,xk
(x0, xk) (4.7)
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where fx0,xk
(x0, xk) is the joint PDF of x[n] and x[n − k] and fm0,mk

(m0, mk) is the

joint PDF of M [n] and M [n − k]. Now, developing the expectation term,

E
{

sgn(M [n] + x[n])sgn(M [n − k] + x[n − k])
}

=∫ 1

−1

∫ 1

−1

∫ 1

−1

∫ 1

−1

sgn(x + v)sgn(y + w)fx0,xk
(v, w)fm0,mk

(x, y)dxdydvdw =

∫ 1

−1

∫ 1

−1

fx0,xk
(v, w)

[∫ 1

−1

∫ 1

−1

sgn(x + v)sgn(y + w)fm0,mk
(x, y)dxdy

]
dvdw.

(4.8)

Considering the property from equation (2.11), we can express the double integral

in straight brackets as a function of the cumulative distribution function of M [n]

(i.e. as a function of Fm0,mk
(m0, mk)). This integral will be a function of v and w,

so we can call it h(v, w).

h(v, w) =

∫ 1

−1

∫ 1

−1

sgn(x + v)sgn(y + w)fm0,mk
(x, y)dxdy. (4.9)

Therefore,

h(v, w) =

∫ 1

−w

∫ 1

−v

fm0,mk
(x, y)dxdy +

∫ −w

−1

∫ −v

−1

fm0,mk
(x, y)dxdy −

∫ −w

−1

∫ 1

−v

fm0,mk
(x, y)dxdy −

∫ 1

−w

∫ −v

−1

fm0,mk
(x, y)dxdy

= Fm0,mk
(1, 1) − Fm0,mk

(−v, 1) − Fm0,mk
(1,−w) + Fm0,mk

(−v,−w) +

Fm0,mk
(−v,−w) − Fm0,mk

(−1,−w) − Fm0,mk
(−v,−1) +

Fm0,mk
(−1,−1) −

[
Fm0,mk

(1,−w) − Fm0,mk
(1,−1) −

Fm0,mk
(−v,−w) + Fm0,mk

(−v,−1)
]
−

[
Fm0,mk

(−v, 1) −

Fm0,mk
(−v,−w) − Fm0,mk

(−1, 1) + Fm0,mk
(−1,−w)

]
. (4.10)

From equations (1.7), (2.8), (2.9), (2.10) and the fact that Fm0,mk
(1, 1) = 1, we know

that ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Fm0,mk
(−1, w) = Fm0,mk

(v,−1) = 0

Fm0,mk
(1, w) = FM(w) = (1 + w)/2

Fm0,mk
(v, 1) = FM(v) = (1 + v)/2.

(4.11)
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Then, h(v, w) can be simplified,

h(v, w) = Fm0,mk
(1, 1) − Fm0,mk

(−v, 1) − Fm0,mk
(1,−w) + Fm0,mk

(−v,−w)

+Fm0,mk
(−v,−w) − Fm0,mk

(1,−w) + Fm0,mk
(−v,−w)

−Fm0,mk
(−v, 1) + Fm0,mk

(−v,−w)

= 1 + 4Fm0,mk
(−v,−w) − 2Fm0,mk

(−v, 1) − 2Fm0,mk
(1,−w)

= 1 + 4Fm0,mk
(−v,−w) − (1 − v) − (1 − w)

= v + w − 1 + 4Fm0,mk
(−v,−w). (4.12)

Now we are ready to substitute in equation (4.8),

E
{
sgn(M [n] + x[n])sgn(M [n − k] + x[n − k])

}
=∫ 1

−1

∫ 1

−1

fx0,xk
(v, w)

[
h(v, w)

]
dvdw =

∫ 1

−1

∫ 1

−1

fx0,xk
(v, w)

[
v + w − 1 + 4Fm0,mk

(−v,−w)
]
dvdw =

∫ 1

−1

∫ 1

−1

vfx0,xk
(v, w)dvdw +

∫ 1

−1

∫ 1

−1

wfx0,xk
(v, w)dvdw−

∫ 1

−1

∫ 1

−1

fx0,xk
(v, w)dvdw + 4

∫ 1

−1

∫ 1

−1

fx0,xk
(v, w)Fm0,mk

(−v,−w)dvdw =

E(x0) + E(xk) − 1 + 4Ex0,xk

[
Fm0,mk

(−x0,−xk)
]
. (4.13)

We know that x[n] is uniform in (−1, 1), so E(x0) = E(xk) = 0. Then,

E
{

sgn(M [n] + x[n])sgn(M [n − k] + x[n − k])
}

= 4Ex0,xk

[
Fm0,mk

(−x0,−xk)
]
− 1.

(4.14)

Therefore, we can now substitute in equation (4.6) to get an expression for re(k) in

terms of the joint CDF of the mask M [n] and the joint statistics of the input.

re(k) = 4Ex0,xk

[
Fm0,mk

(−x0,−xk)
]
− 1 − rX(k). (4.15)
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The expression in equation (4.15) is valid for k > 0. For the case when k = 0,

recalling equation (4.2), we have,

re(0) = E
{
sgn(M [n] + x[n])sgn(M [n] + x[n])

}

−2E
{
sgn(M [n] + x[n])x[n]

}
+ rX(0)

= 1 − 2E
{
sgn(M [n] + x[n])x[n]

}
+

2

3
. (4.16)

The signals M [n] and x[n] are both uniformly distributed and independent, there-

fore, the term E
{
sgn(M [n] + x[n])x[n]

}
was already calculated in equation (3.8).

Then,

re(0) = 1 − 2
(1

3

)
+

1

3

=
2

3
. (4.17)

Now that we have an expression for re(k), we can take its DTFT and find the

power spectral density Se(w). Then, we could find the optimum function re(k) that

makes Se(w) minimum in the band of interest (i.e. we would be minimizing the

quantization noise power for w ∈ (−π/m, π/m) where m is the oversampling ratio).

Se(w) = re(0) + 2
+∞∑
k=1

re(k)cos(wk). (4.18)

The in-band quantization noise power will be the integral of Se(w) in the band of

interest.

IQNP =
1

2π

∫ π
m

− π
m

Se(w)dw

=
re(0)

m
+

1

π

∫ π
m

− π
m

+∞∑
k=1

re(k)cos(wk)dw

=
re(0)

m
+

+∞∑
k=1

2

kπ
sin

(kπ

m

)
re(k). (4.19)
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4.2 Optimum Dither

To calculate the expectation term in equation (4.15), we would need the

joint PDF of x[n], namely fx0,xk
(x0, xk). To simplify the analysis, as x[n] is uniform

in (−1, 1), we can use the general joint PDF defined in section 2.2 to describe

fx0,xk
(x0, xk). This will allow us to select any desired autocorrelation function (i.e.

any desired power spectral density) for x[n]. Therefore, let’s define fx0/xk
(x0/xk).

fx0/xk
(x0/xk) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
2(1 − Bkxk)

]−1

if

⎧⎨
⎩

2Bkxk − 1 ≤ x0 ≤ 1

0 ≤ Bkxk ≤ 1

[
2(1 + Bkxk)

]−1

if

⎧⎨
⎩

−1 ≤ x0 ≤ 1 + 2Bkxk

−1 ≤ Bkxk ≤ 0

0 otherwise.

(4.20)

Now, the joint PDF of x[n] and x[n − k] will be the multiplication of fx0/xk
(x0/xk)

by the uniform density function in (−1, 1).

fx0,xk
(x0, xk) =

⎧⎨
⎩

fx0/xk
(x0/xk)

2
if −1 ≤ x0, xk ≤ 1

0 otherwise.
(4.21)

To sum up, the joint PDF fx0,xk
(x0, xk) and the cumulative PDF Fx0,xk

(x0, xk)

of x[n] will be: ⎧⎨
⎩

fx0,xk
(x0, xk) = f ∗

x0,xk
(x0, xk)

Fx0,xk
(x0, xk) = F ∗

x0,xk
(x0, xk)

(4.22)

where we substitute Ck by Bk in equation (2.30) for the definition of Fx0,xk
(x0, xk).

In this way, the autocorrelation of x[n] will be,

rX(k) =
Bk

3
∀ k > 0 (4.23)

with Bk varying between (−1, 1). Therefore, by selecting the proper coefficients Bk,

it is possible to get any desired spectrum for x[n]. For example, if Bk = 0 for all

k > 0, x[n] would be uniformly distributed white noise.
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Now that we know the joint PDF of x[n], to finally obtain the expression

for re(k) defined in equation (4.15), we need to assume a joint PDF for M [n] and

M [n − k]. As we have done before, we will select the joint PDF fm0,mk
(m0, mk) to

be the one defined in section 2.2. Then,⎧⎨
⎩

fm0,mk
(m0, mk) = f ∗

m0,mk
(m0, mk)

Fm0,mk
(m0, mk) = F ∗

m0,mk
(m0, mk).

(4.24)

The corresponding autocorrelation function for M [n] will be,

rM(k) =
Ck

3
∀ k > 0 (4.25)

with Ck varying between (−1, 1). In this way, equation (4.15) becomes,

re(k) = 4Ex0,xk

[
Fm0,mk

(−x0,−xk)
]
− 1 − rX(k)

= 4Ex0,xk

[
Fm0,mk

(−x0,−xk)
]
− 1 − Bk

3
. (4.26)

For every input x[n] with any autocorrelation function rX(k) and for every possible

M [n] with any autocorrelation function rM(k) we will have a value of re(k) given by

the equation (4.26). Then, if we vary Bk between (−1, 1) and Ck between (−1, 1),

we can get all possible values for re(k). To get a closed form analytical expression

for equation (4.26), we would need to consider the analytical form of F ∗
m0,mk

(m0, mk)

given by equation (2.30). It is indeed very hard to handle such long expression, so

we decided to run a numerical simulation to get the value of re(k) given Bk and

Ck. Figure 4.2 shows the function re(k) as a function of Ck and Bk both varying

between (−1, 1). It is interesting to note that for any fixed Bk, the function re(k) is

a line with slope 1/3 through the origin as seen in Figure 4.3.

This means, that no matter the value of Bk (i.e. no matter the value of the

autocorrelation rX(k)), the autocorrelation of the error re(k) is equal to Ck

3
. Then,

for k > 0,

re(k) =
Ck

3

= rM(k). (4.27)
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Figure 4.2: Autocorrelation function of the error e[n] as a function of Ck and Bk.

Figure 4.3: Autocorrelation function of the error e[n] as a function of Ck for all
Bk.
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From equation (4.17), we also know that re(0) = 2/3. Therefore,

re(k) = rM(k) +
(1

3

)
δ(k) (4.28)

for all k. Just like in the case from Chapter 3 when the input was uniformly dis-

tributed white noise, when taking the DTFT in equation (4.28), the power spectral

density of the error Se(w) will be the sum of the power spectral density of the mask

SM(w) plus a noise floor.

Se(w) = SM(w) +
1

3
. (4.29)

Then, the optimum dither or optimum mask M [n] will be the one that yields zero

power in the band of interest (i.e. SM(w) = 0 ∀w ∈ (−π/m, π/m)). In this case,

like in the case of equation (3.14), the minimum IQNP achievable will be,

IQNP =
1

3m
(4.30)

where m is the oversampling ratio.

This result means that when dealing with a uniformly distributed input x[n],

no matter what is its power spectral density (i.e. regardless its autocorrelation

function rX(k)), the minimum in-band quantization noise power achievable is 1
3m

.

This lower bound is achievable when our dither M [n] has zero power in the band of

interest. This result is the same as the one obtained in Chapter 3, and tells us that

we cannot find any dither M [n] to get a better performance than any Sigma-Delta

modulator even when the PSD of the input is known.

4.3 Conclusion

In this chapter we have studied the case when the input to our dithered-

oversampling A/D converter is a uniformly distributed signal x[n] with known au-

tocorrelation function. This means that x[n] is uniform, but it has a certain known

power spectral density. We have assummed a general joint PDF for x[n] and x[n−k]

and a general joint PDF for M [n] and M [n−k] that allow us to describe any possible
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power spectral density for x[n] and M [n] and to make the problem tractable. We

have also developed a mathematical expression for the autocorrelation function of

the error re(k) that depends on the joint PDF of the input and on the joint CDF

of M [n]. Then, we have plotted the value of re(k) for all possible input joint PDFs

and all possible mask joint CDFs. Finally, we have observed that re(k) is equal to

rM(k) regardless of the value of rX(k). This result is the same as the one obtained

when dealing with uniformly distributed white noise in Chapter 3 and tells us that

the lowest IQNP possible is 1
3m

regardless of the input spectrum SX(w).

Another important remark is that the extreme cases analyzed in previous

chapters fit in this general framework. For example, let’s see what happens with

re(k) when we are dealing with a constant input (i.e. x[n] = λ ∀ n). In this case,

rX(k) = λ2 and fx0,xk
(x0, xk) = δ(x0 − λ, xk − λ). Therefore, recalling equation

(4.15), and considering the fact that E(x0) = λ and E(xk) = λ we have,

re(k) = 4Ex0,xk

[
Fm0,mk

(−x0,−xk)
]
− 1 − rX(k) + E(x0) + E(xk)

= 4

∫ 1

−1

∫ 1

−1

fx0,xk
(x0, xk)Fm0,mk

(−x0,−xk)dx0dxk − 1 − λ2 + 2λ

= 4

∫ 1

−1

∫ 1

−1

δ(x0 − λ, xk − λ)Fm0,mk
(−x0,−xk)dx0dxk − 1 − λ2 + 2λ

= 4

∫ 1

−1

∫ 1

−1

δ(x0 − λ, xk − λ)Fm0,mk
(−λ,−λ)dx0dxk − 1 − λ2 + 2λ

= 4Fm0,mk
(−λ,−λ)

∫ 1

−1

∫ 1

−1

δ(x0 − λ, xk − λ)dx0dxk − 1 − λ2 + 2λ

= 4Fm0,mk
(−λ,−λ) − 1 − λ2 + 2λ. (4.31)

As expected, equation (4.31) is exactly the same as the equation (2.16) when we

treated the x[n] = λ case.

For the case when x[n] is uniformly distributed white noise, we have already

seen that the autocorrelation function of the error re(k) is exactly the one described

in equation (4.28).
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Finally, after analyzing this last general case for our dithered-oversampling

A/D converter, we can say that adding a dither signal M [n] before the binary

quantizer, helps us to make the quantization noise uncorrelated with the input and

this is why we end up with a noise floor term
(

1
3

)
in the equation for Se(w) [6].

This is a desired effect, as if we were not adding dither, we would end up with

undesired harmonics in the spectrum of the output y[n] [6]. However, the negative

aspect is that the fact of adding the dither signal M [n] will not help us to decrease

the in-band quantization noise power if we don’t know the precise characteristics of

the input signal that we are dealing with. For instance, when we are dealing with

a known DC input (i.e. x[n] = λ), we can find an optimum dither to decrease the

IQNP and get a performance even better than Sigma Delta modulation as observed

in Figures 2.11, 2.16 and 2.17. On the other hand, however, if we know that in

general the input is unformly distributed, and even if we kwow its power spectral

density SX(w), the optimum mask M [n] will not help us to decrease the IQNP.
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Chapter 5

SIMULATIONS AND POSSIBLE APPLICATIONS

5.1 Simulations

5.1.1 Blue Mask M[n]

In Chapter 4 we have concluded that for any input signal x[n] with any

autocorrelation function rX(k) (i.e. with any power spectral densiy), the optimum

dither M [n] is the one with zero power in the band of interest. This means that

SM(w) = 0 for |w| ≤ −π/m. Therefore, all the signal power lies in the upper

portion of the spectrum (i.e. M [n] is a high-pass signal). Any type of noise with

this caracteristic is called ’blue noise’ [7]. Then, the optimum mask M [n] will be

called ’blue mask’.

There are some algorithms already developed for generating ’blue masks’ like

Direct Binary Search (DBS) or Void-and-Cluster (VAC) [8] [9]. These algorithms

generate two dimensional blue-noise patterns that are used for digital halftoning in

image processing. Just like in the two dimensional case, we can use these algorithms

to create one-dimensional blue noise masks M [n]. In the following simulations we

will use a 256-levels mask generated with Void-and-Cluster. In Figure 5.1 we observe

the power spectral density of this mask.

5.1.2 Sinusoidal Input

In this section we observe and compare the performance of the Dithered-

oversampling ADC versus Sigma-Delta modulation when the analog input is a full
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Figure 5.1: Power Spectral Density of M[n] generated with Void-and-Cluster al-
gorithm.

scale sinusoid. In Figure 5.2, the power spectral density of the binary output is

plotted for both cases where the normalized frequency of the sine is π
200

. Then, Figure

5.3 shows the output SNR as a function of the oversampling ratio for Dithered-

oversampling ADC and Sigma-Delta. The SNR is calculated as the quotient between

the signal power and the quantization noise power in the band of interest. In this

case, the band of interest is assumed to be twice the frequency of the input signal.

From Figure 5.2 we can see that the quantization noise spectrum in Sigma-

Delta presents several harmonics, whereas in the Dithered-oversampling ADC case

it is more uniformly randomized. It is also noted in Figure 5.3 that Sigma-Delta

performs better than Dithered-oversampling ADC. This is because it is not possible

to shape the fixed quantization noise floor that is present when we do not use

feedback.
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Figure 5.2: Power Spectral Density of the binary output. The top figure shows the
Sigma-Delta case, whereas the Dithered-oversampling case is shown in
the bottom. The input to the system is a full scale sine with normalized
frequency equal to π
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Figure 5.3: SNR versus Oversampling ratio for Sigma-Delta and Dithered-
oversampling ADC when using full scale sinusoidal inputs.
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5.1.3 DC Input

When we deal with constant analog inputs, the conclusions are similar to the

ones drawn in the sinusoidal input case. Sigma-Delta performs better than Dithered-

oversampling ADC because of the feedback loop but its spectrum presents several

undesired harmonics. For all the simulations in this section, we have used a DC

input of amplitude 0.6. In Figure 5.4 we observe the quantization noise spectrum

for both cases, whereas in Figure 5.5, the SNR versus oversampling ratio is plotted.
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Figure 5.4: Power Spectral Density of the binary output. The top figure shows the
Sigma-Delta case, whereas the Dithered-oversampling case is shown in
the bottom. The input to the system is a DC input of amplitude 0.6.

5.2 Possible VLSI implementation

For a VLSI implementation of the dithered-oversampling A/D converter, we

will need to deal with the optimum blue mask. Up to this point we have developed

the theoretical analysis for uniformly distributed masks, but the implementation of

a uniform M [n] with certain power spectral density it is a quite challenging task.
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Figure 5.5: SNR versus Oversampling ratio for Sigma-Delta and Dithered-
oversampling ADC when using DC inputs.

5.2.1 Non-uniform Mask

In practice, the easiest way to generate any blue noise signal is by high pass

filtering white noise. If we do so, we would get the desired spectrum, but the

probability density function will definitely not be uniform. One solution for dealing

with uniformly distributed blue masks is to generate the mask values in advance

and store them in memory. However, this is not a very good solution as it requires a

lot of resources and high power consumption which is not desirable [10]. Therefore,

one way of solving this problem, is to decide not to use uniform masks. In Chapter

1 we have studied that we can actually use any M [n] with any distribution as long

as equation (1.3) holds. For uniform M [n] the comparison threshold is t[n] = −x[n]

and therefore y[n] = sgn(x[n] + M [n]). On the other hand, if M [n] is not uniform,

y[n] = sgn(M [n] − t[n]) as stated in equation (1.11).

Now, we will assumme that we have a white noise generator source v[n] which

is normal distributed with zero-mean and a certain variance σ2
v . Then, we will high-

pass filter v[n] to obtain our mask M [n]. Because of the Central Limit Theorem,
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the output M [n] will also be Gaussian distributed with zero-mean and variance σ2
M .

Figure 5.6: M[n] obtained by filtering white noise. The distribution of M[n] will
not be uniform, but its spectrum will be blue.

Just like in equation (1.9), we can now find the threshold t[n].

∫ +∞

t[n]

fM(m)dm −
∫ t[n]

−∞
fM(m)dm = x[n]

∫ +∞

t[n]

1√
2πσ2

M

exp

(−m2

2σ2
M

)
dm −

∫ t[n]

−∞

1√
2πσ2

M

exp

(−m2

2σ2
M

)
dm = x[n]

Q
(t[n]

σM

)
+

[
Q

(t[n]

σM

)
− 1

]
= x[n]

2Q
(t[n]

σM

)
− 1 = x[n]. (5.1)

To solve for t[n], we need to consider the inverse Q-function Q−1(x).

t[n] = σMQ−1
(x[n] + 1

2

)
(5.2)

We don’t want to implement such complex function like the inverse Q-function in

VLSI, so we will make a first order approximation of equation (5.2). Therefore,

given the value of σ2
M , we can find the coefficients aσ2

M
and bσ2

M
.

t[n] 
 aσ2
M

x[n] + bσ2
M

. (5.3)

The inverse Q-function is an odd function through the origin, so in general, bσ2
M

= 0.

Then,

t[n] 
 aσ2
M

x[n]. (5.4)
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Consequently, the binary output y[n] will be,

y[n] = sgn(M [n] − aσ2
M

x[n]). (5.5)

Figure 5.7: Block diagram of the Dithered-oversampling ADC when dealing with
a non-uniform M[n].

In this way, we have shown that it would be possible to implement the

dithered-oversampling A/D converter with an optimum blue mask. To simplify

the implementation, we need to deal with a normal distributed M [n] instead of the

uniform one. Therefore, the M [n] will be easily generated by filtering a white noise

signal coming out from a white noise generator. In this case, instead of simply

add the mask M [n] to x[n] before quantizing (uniform mask case), we first need to

multiply x[n] by a constant aσ2
M

and then perform quantization.

Figure 5.8 shows the plot of the real value of t[n] from equation (5.2) and its

corresponding linear approximation from equation (5.4) for σ2
M = 1. The approxi-

mation is done under the least-squares sense.

The table in Figure 5.9 shows the approximation coefficients aσ2
M

for different

values of σ2
M .

Once the dither issue is resolved, the oversampling, binary quantization and

decimation stages are performed just like in oversampling PCM or Sigma-Delta.
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Figure 5.8: t[n] as a function of x[n] for the case of a normal distributed M[n] and
its corresponding linear approximation.

Figure 5.9: Coefficient value aσ2
M

for different values of σ2
M .
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5.3 Optical Applications

The rapid development of optical devices in areas such as telecommunications,

sensors and imaging, has encouraged the development of optical A/D converters.

Optical A/D converters offer better performance than conventional electronic A/D

converters because optical signals do not interact with electronic noise and radiation,

and are thus immune to electromagnetic interference. All optical A/D converters

promise to eliminate the complexity and speed limitations of electrical-to-optical

and optical-to-electrical conversions in photonic networks. Recent approaches for

optical ADCs basically split the incoming signal energy into several channels, and

then compare the energy of each channel to a certain threshold. In this way, with

N splitters, we have N+1 possible outputs. For example, if we have three splitters,

four possible states are possible, and therefore, a 2-bits ADC has been built [11].

This configuration for A/D conversion is equivalent to PCM.

Figure 5.10: Two-bit optical A/D converter consisting of three beam splitting
structures in a self-guiding photonic crystal.
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Figure 5.11: Concept of two-bit optical A/D converter.

5.3.1 PCM and Dithered Optical A/D conversion

For optical A/D conversion, Sigma-Delta seems to be impossible or at least

very difficult to implement. As mentioned before, to perform a Sigma-Delta conver-

sion we need to store previous samples (not a memoryless conversion). Is it possible

to ’store’ light or ’integrate’ light samples? Until today, the answer seems to be

negative. Therefore, memoryless converters seem to be the only valid option when

dealing with the design of an optical converter. Oversampled PCM will work in

this case, but when dealing with a binary quantizer (or few levels quantizer), the

addition of optimum dither M [n] will definitely help to linearize the quantization

noise without adding undesired power in the band of interest.

The benefits of using blue noise dither M [n] before quantizing are clearly

shown in the simulation presented in Figure 5.12. In this plot, a full scale sinusoid

with oversampling ratio m = 400 is quantized with a two bits quantizer. The dashed

line corresponds to pure PCM and the solid line to the dithered converter (using

the optimum blue M [n]). In the former, the quantization error power is basically
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composed by undesired spikes in the spectrum. On the other hand, when using

dither (blue M [n]), the quantization noise is ’blue’ (meaning that most of the power

is pushed to the upper portion of the spectrum) with a very low noise floor in the

band of interest.

Figure 5.12: Quantization noise spectra for PCM and Dithered ADC. For PCM,
the spectrum presents strong spurious tones. On the other hand,
when using dither M[n], most of the power is pushed up to the high
frequencies resulting in a very low in-band noise floor. Besides, it
presents no harmonics.

5.3.2 Band-pass dihtered ADC

One important observation is that up to this point, we are always dealing with

low pass signals, so when we decimate, we just care about the quantization noise

in the lower portion of the spectrum. Therefore, the optimum mask will be ’blue’

(i.e. the optimum is the one with zero power in the lower frequencies). However, in

certain applications, we might be dealing with band pass signals where the band of
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interest is not necessarily in the low frequencies. In this case, the optimum mask will

not be ’blue’, but it will be the one with zero power in that particular frequency band

of interest. This might be the case of some very high frequency optical applications.

If the optimization criteria is changed from low pass to band pass signals, it is also

possible to develop a similar analysis as the one through the previous chapters.

5.4 Conclusion

Throughout this work we have analyzed the problem of the binary quantiza-

tion of an oversampling analog-amplitude signal when using dither M [n]. We have

studied the cases when the input signal is constant, when it is white noise and when

its autocorrelation (or equivalently its spectrum) is known. At the end, we have

concluded that the optimum dither M [n] is the one with zero power in the band of

interest (i.e. in the low frequencies). As we are dealing with low pass signals, the

optimum M [n] is the so called ’blue’ mask. That being said, we can now conclude

that the use of M [n] makes sense when we are dealing with a binary quantizer or

with a quantizer with very few quantization levels, as it is in this case when the

quantization error will be correlated with the input. Otherwise, the more quantiza-

tion levels we have, the more uncorrelated the quantization error to the input will

be, and therefore, the linear model of the quantizer becomes acceptable [2]. If we

are using a binary quantizer, or if we have few quantization levels, dither is required

to ’linearize’ the quantizer. However, the addition of any type of noise before the

quantization stage will add an extra noise floor level that will decrease the output

SNR performance. To avoid this effect, optimum dither will be required. In the

case of an oversampling converter where the band of interest is the lower portion of

the spectrum, the optimum dither M [n] will be ’blue’, meaning that all its power is

concentrated in the high frequencies, and no power remains in the lower portion of

the spectrum.
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