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ABSTRACT

Coded Aperture Snapshot Spectral Imaging Systems (CASSI) sense the 3D spatio-

spectral information of a scene using a single 2-dimensional focal plane array (FPA)

snapshot. The compressive CASSI measurements are often modeled as the summation of

coded and shifted versions of the spectral voxels of the underlying scene. This coarse ap-

proximation of the analog CASSI sensing phenomena is then compensated by calibration

preprocessing prior to signal reconstruction. This thesis develops a higher order precision

model for the optical sensing in CASSI that includes a more accurate discretization of

the underlying signals, leading to image reconstructions less dependent on calibration.

Further, the higher order model results in improved image quality reconstruction of the

underlying scene than that achieved by the traditional model. The proposed higher pre-

cision computational model is also more suitable for reconfigurable multi-frame CASSI

systems where multiple coded apertures are used sequentially to capture the hyperspec-

tral scene. Several simulations and experimental measurements demonstrate the benefits

of the new discretization model.

vii



Chapter 1

INTRODUCTION

Spectral imaging (SI) techniques sense the two-dimensional (x, y) spatial informa-

tion across a range of spectral wavelengths (λ) of a scene. Knowledge of the spectral

content at various spatial locations from a scene can be valuable in identifying the com-

position and structure of objects of interest in the scene. SI has therefore been widely used

in areas such as remote sensing [2], artwork conservation [3], and biomedical imaging [4].

Conventional SI sensors use temporal scanning either spectrally or spatially and merge

the results to construct a spatio-spectral datacube [5]. These techniques are suitable for

static scenes, however, it complicates and limits subsequent image processing and anal-

ysis of dynamic scenes due to the artifacts induced by the overlapping of the scanning

operation. Their principal disadvantage is that they require scanning a number of regions

that grows linearly in proportion to the desired spatial or spectral resolution. In contrast,

compressive spectral imaging (CSI) techniques [6], first capture 2D coded projections of

the underlying scene, and then, it recovers an estimate of the 3D datacube exploiting the

fact that spectral images are highly correlated and admit sparse representations.

Coded Aperture Snapshot Spectral Imaging (CASSI) depicted in Fig. 1.1 is an

imaging architecture that effectively senses the three dimensional (3D) spectral infor-

mation of a scene, using a single 2D coded random projection measurement [1]. For

spectrally rich or very detailed spatial scenes, a single shot CASSI measurement may not

provide a sufficient number of compressive measurements [7, 8]. Increasing the number

of measurement shots, each with a distinct coded aperture that remains fixed during the

integration time of the detector, will rapidly increase the quality of image reconstruction

[9, 10, 11]. Each CASSI measurement shot adds simultaneously (N + L− 1)N compres-

sive measurements. Thus, the total number of available measurements with K shots is
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m = K(N+L−1)N . The time-varying coded apertures can be realized by a piezo system

[12]. A more versatile system was developed in [13] which uses a digital micro-mirror de-

vice (DMD) to vary the random pattern in each snapshot. Given a set of focal plane array

(FPA) compressive measurements, compressive sensing (CS) theory is then exploited to

recover the underlying 3D spectral data cube by finding the sparsest approximation with

the minimum Euclidean distance to the 2D random projection measurements. Typically,

the discretized output at the CASSI detector gmn is modeled as the sum of the underlying

spectral voxel slices which have been previously modulated by a coded aperture and sub-

sequently spatially dispersed by a prism. More specifically, the two dimensional CASSI

output has been traditionally modeled as

gmn =
L−1∑
k=0

f(m−k)jkT(m−k)j, (1.1)

where fijk is the discretization of the underlying spatio-spectral power source density and

Tij is the discretized coded aperture. Notice that fijk in (1.1) is assumed to be a cubic

voxel which impinges on a single pixel detector element gmn. The analog sensing phe-

nomena, however, is such that when a single voxel of a scene is dispersed by the prism,

it impinges on several detector elements at a time. This, in turn, causes blurring which

deteriorates the quality of image reconstruction. To ameliorate this problem, instead of

Figure 1.1: Optical elements present in CASSI.
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using the coded aperture Tij, a set of calibrated coded apertures {T kij}L−1
k=0 are experimen-

tally measured and used in the reconstruction process to take into account the non-ideal

optical blur and non-linear dispersion [14]. Thus, the model in Eq. (1.1) suffers of a

coarse approximation which is then partially rectified by the coded aperture calibration

process.

There are two drawbacks in this approach. First the calibration process is often

inadequate such that the discretized voxels fijk are incorrectly weighted by the calibrated

codes T kij. The calibration errors originate principally from the assumption that a coded

cubic voxel impinges on the detector when actually it is a coded oblique voxel which

impinges on it. Secondly, calibration of the coded apertures is difficult for multiframe

CASSI systems where a sequence of coded apertures are used sequentially. This work

examines the sensing phenomena and determines a more precise computational model

than that in Eq. (1.1). The gains include less reliance of calibration procedures in

the reconstruction, as well as higher quality of image reconstruction. The higher-order

model is tested through extensive simulations and experimentally in a CASSI multi-frame

testbed.
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Chapter 2

CODED APERTURE SNAPSHOT SPECTRAL IMAGING (CASSI)

2.1 CASSI System Description

Compressive coded aperture spectral imagers, also known as coded aperture snap-

shot spectral imagers (CASSI) [1, 6, 13] comprise the new generation of spectral imagers.

These naturally embody the principles of compressive sensing (CS) [15, 16, 17]. The re-

markable advantage of CASSI imagers is that the entire data cube is sensed with just a

few FPA measurements and in some cases with as little as a single FPA shot. The CASSI

instrument developed in [1] is shown in Fig. 2.1. The sensing physical phenomena in

CASSI is strikingly simple, yet it adheres to the incoherence principles required in CS.

CASSI measurements are realized optically by a coded aperture, a dispersive element such

as a prism, and a CCD detector. The coding is applied to the spatio-spectral image source

density by means of a coded aperture. The resulting coded field is subsequently modified

by a dispersive element before it impinges onto the FPA detector. The compressive mea-

surements across the FPA are realized by the integration of the coded and dispersed field.

The sensing mechanism is illustrated by the discretized model shown in Fig. 2.2,

where the spectral data cube having L spectral bands and M × N spatial pixels is first

amplitude modulated by a pixelated M × N coded aperture. In this case, the coded

aperture is a black-and-white coded aperture such that the energy along an entire row of

the data cube is “punched out” when a “black” coded aperture element is encountered.

As the coded field transverses the prism, it is then spatially sheared along one spatial

axis. In essence, each coded image plane is shifted along the x-axis where the amount of

shifting increases with the wavelength coordinate index. Finally, the coded and dispersed

field is “collapsed” in the spectral dimension by the integration of the energy impinging

on each detector element over its spectral range sensitivity. The integrated field is then

4
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Figure 2.1: CASSI optical architecture proposed in [1].

measured by the FPA detector elements. It can be shown that if the band-pass filter of

the instrument limits the spectral components between λ1 and λ2, then the number of

resolvable spectral band is limited by L = (α(λ2 − λ1))/∆, where αλ is the dispersion

induced by the prism and ∆ is the pixel pitch in both, the detector and the coded aperture.

2.2 CASSI System Model

Let f0(x, y, λ) be the spatio-spectral power source density, where x and y index

the spatial coordinates and λ indexes the wavelength. The spatio-spectral image source

density f0(x, y, λ) is firstly spatially coded by a coded aperture T (x, y), resulting in the

coded field,

f1(x, y, λ) = T (x, y)f0(x, y, λ). (2.1)
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Figure 2.2: Light propagation through the CASSI architecture

The coded aperture transmission function can be written as,

T (x, y) =
∑
i,j

ti,jrect

(
x

∆c

− i, y
∆c

− j
)
, (2.2)

for i = 1, . . . ,M , and j = 1, . . . , N , where M × N is the spatial resolution of the coded

aperture, ti,j ∈ {0, 1} represents a translucent (1) or a blocking (0) element, and ∆c is

the pixel size of the coded aperture.

The resulting coded field f1(x, y, λ) is subsequently dispersed by a dispersive ele-

ment before it impinges onto the FPA detector. The spectral density at the output of the

dispersive element, can be expressed as,

f2(x, y, λ) =

∫ ∫
T (x′, y′)f0(x′, y′, λ)δ(x′ − x− S(λ), y′ − y)dx′dy′, (2.3)

where δ(x′− x− S(λ), y′− y) represents the optical impulse response of the system, such

that S(λ) = α(λ)(λ− λc) is the dispersion induced by the prism along the x-axis, which

is centered at the wavelength λc and has a dispersion coefficient α(λ). The resulting

intensity image at the FPA is the integration of the field f2(x, y, λ) over the detector’s

6



spectral range sensitivity (Λ) that can be represented as,

g(x, y) =

∫
Λ

f2(x, y, λ)dλ, (2.4)

=

∫
Λ

∫ ∫
T (x′, y′)f0(x′, y′, λ)δ(x′ − x− S(λ), y′ − y)dx′dy′dλ, (2.5)

=

∫
Λ

T (x+ S(λ), y) f0 (x+ S(λ), y, λ) dλ (2.6)

where the last step follows from the assumption that ideal optical elements are used.

Using a first order discretization model [1, 14, 19], a CASSI measurement at the

(m,n)th pixel is given by,

gmn =

∫ ∫
p(m,n;x, y)g(x, y)dxdy + wmn, (2.7)

where wmn represents additive noise and,

p(m,n;x, y) = rect

(
x

∆d

−m, y
∆d

− n
)
, (2.8)

accounts for the detector pixelation, with ∆d being the detector pixel pitch, for m =

1, . . . ,M , n = 1, . . . , N+L−1, where M×N+L−1 is the FPA spatial resolution. Using

Eq. (2.2) and Eq. (2.6), the discrete measurement of the CASSI system can be written

as,

gmn =

∫∫
p(m,n;x, y)g(x, y)dxdy + wmn (2.9)

=

∫∫∫
Λ

T (x+ S(λ), y) f0 (x+ S(λ), y, λ) rect

(
x

∆d

−m, y
∆d

− n
)
dλdxdy(2.10)

=

∫∫∫
Λ

∑
i,j

ti,jrect

(
x

∆c

− i, y
∆c

− j
)
f0 (x+ S(λ), y, λ)

×rect

(
x

∆d

−m, y
∆d

− n
)
dλdxdy (2.11)

=
∑
k

ti−k,jfi−k,j,k, (2.12)

7



where the last step follows from the fact that fi,j,k =
∫∫∫

Ωijk
f0(x, y, λ)dxdydλ is the en-

ergy of the (i, j, k)th data cube voxel bounded by Ωijk, and k = 1, . . . , L indexes the data

cube spectral bands.

In matrix form, Eq. (2.12) can be expressed as,

g = Hf , (2.13)

where the H matrix represents the CASSI sensing process accounting for the CASSI opti-

cal elements operation on the discretized datacube. Assuming a M×N×L data cube as in

Fig. 2.2, a prism exhibiting linear dispersion, shift horizontally each spectral band along

x-axis by one pixel each, causing the power spectral density impinges into M(N +L− 1)

FPA pixels. Then, CASSI sensing matrix H is of size M(N + L − 1) ×MNL. Hence,

a data cube reconstruction f̂ in CASSI relies on the solution of an under-determined ill-

posed equations system.

The CASSI system can accept multiple-shot methodologies, where each snapshot

exhibits a new coded aperture. Multiple-snapshot sensing entails the knowledge of new

information missed in the first snapshots, then attaining higher reconstruction estima-

tions. In particular, letting the ith coded aperture be denoted as T i(x, y), the ith snapshot

can be written as,

gi = Hif , (2.14)

where Hi is the system transfer function of the CASSI system when the ith coded aperture

is used. Arranging K independent snapshots entail the full system transfer function of

the CASSI system, which is given by,

g = Hf =


H1

H2

...

HK

 f . (2.15)

8



Figure 2.3 presents the system transfer function matrix H for an input scene of

spatial resolution N = M = 6, and L = 5 spectral bands. There, it can be noticed that

as the spectral band increases, it is shifted down by N rows each, and that every new

snapshot entails the vertical concatenation of the corresponding transfer function.
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Figure 2.3: Structure of the matrix H for a N = M = 6, L = 5 datacube, when K = 3
for the CASSI traditional model (H ∈ R180×180). Notice that entries are
either 0 or 1.

2.3 Reconstruction Process in CASSI

CASSI datacube reconstructions uses the measurement g and an estimation of H

matrix. Due to the number of pixels on the detector used for the measurement is smaller

than the number of voxels in the discrete data cube, the equations system depicted in

Eq. (2.13) is under-determined. CS dictates that one can recover spectral scenes from

far fewer measurements than that required by conventional linear scanning spectral sen-

sors. To make this possible, CS relies on two principles: sparsity, which characterizes the

9



spectral scenes of interest, and incoherence, which shapes the sensing structure [15, 16].

Sparsity indicates that spectral images found in nature can be concisely represented in

some basis, with just a small number of coefficients. This is indeed the case in spectral

imaging where natural scenes exhibit correlation among adjacent pixels and also across

spectral bands [18]. Incoherence refers to the structure of the sampling waveforms used in

CS, which, unlike the signals of interest, have a dense representation in the basis [17]. The

remarkable discovery behind CS is that it is possible to design sensing protocols capable

of capturing the essential information content in sparse signals with just a small number

of compressive measurements. The sensing modality simply correlates incoming signals

with a small number of fixed waveforms that satisfy the incoherence principle. The sig-

nals of interest are then accurately reconstructed from the small number of compressive

measurements by numerical optimization [15, 17, 19].

Let represent the spectral data cube f in an orthonormal basis as,

f = ΨθΨθΨθ, (2.16)

where θθθ is the sparse coefficients representation of the data cube on the basis ΨΨΨ. Then,

the compressive FPA measurements are given by,

g = HΨθΨθΨθ. (2.17)

In this way, a hyperspectral image data cube reconstruction f̂ for CASSI can be attained

by solving the CS-based optimization problem,

f̂ = ΨΨΨT{argminθθθ′‖g −HΨθΨθΨθ′‖2
2 + τ‖θθθ′‖1} (2.18)

where τ > 0 is a regularization parameter that balances the conflicting tasks of minimizing

the least square of the residuals, while at the same time, yielding a sparse solution. Figure

2.4 shows an sketch of the reconstruction procedure performed to recover an estimation

of the input spectral data cube f , from K snapshots of the CASSI.

10



.	
  .	
  .	
  

Data cube 
estimation 

 

Reconstruction 
Algorithm 

1s
t  sh

ot 

2n
d  sh

ot 

K
th  sh

ot 

N

M

L
M

N

Figure 2.4: Sketch of the reconstruction process of compressive spectral images. The
set of K snapshots and the H matrix are used to obtain an estimation of
the data cube.

11



Chapter 3

HIGHER-ORDER MODEL FOR COMPRESSIVE SPECTRAL IMAGING

3.1 Proposed Discretization Process

Using a first order discretization model [1, 14, 19], a CASSI measurement is given

as stated in Eq. 2.7. This approximation however is coarse, leading to inter-pixel blurring

in the detection. The goal of this thesis is thus to develop a more precise, higher order

computational model that mitigates the inter-voxel interference, which in turn leads to

higher quality spectral imaging. At the same time, the higher-order precision model allows

less reliance on calibration corrections. To this end, the pixelation function p(m,n;x, y)

is replaced by defining the integration limits at the detector as,

gmn =

∫ (n+1)∆

n∆

∫ (m+1)∆

m∆

∫
Λ

T (x− S(λ), y)f0(x− S(λ), y, λ)dλdxdy, (3.1)

and the new discretization model is then derived as follows. The source f0(x, y, λ) is

discretized as the signal fijk where i, j, and k are the discrete indices accounting for

x, y, and λ respectively. A voxel fijk represents the intensity concentrated in a specific

spatio-spectral region Ωijk where x ∈ [i∆, (i+1)∆], y ∈ [j∆, (j+1)∆], and λ ∈ [λk, λk+1].

Specifically, the (ijk)th voxel is given by

fijk =

λk+1∫
λk

(j+1)∆∫
j∆

(i+1)∆∫
i∆

f0(x, y, λ)dxdydλ (3.2)

=

∫∫∫
Ωijk

f0(x, y, λ)dxdydλ = cijk · f0(xi, yj, λk),

where cijk represents the quadrature weight, and xi, yj, and λk are average values in Ωijk.

Notice in (3.2) that the spectral axis λ has been discretized in L spectral bands. The

12



range of the kth spectral band is [λk λk+1] where λk is the solution to the equation given

by

S(λk)− S(λ0) = k∆, k = 0, . . . , L− 1, (3.3)

where again S(λ) = α(λ)(λ−λc) is the dispersion of the prism. Equation (3.3) establishes

that the spectral axis resolution is determined by the prism response S(λ) and by the

pitch of the detector ∆. Equation (3.2) also establishes the spatial resolution which is

determined by the pitch of the detector ∆ that is assumed to be equal to the coded

aperture pitch. Using the ranges of the L spectral bands defined in (3.3), Eq. (3.1) can

be expressed as

gmn=

(n+1)∆∫
n∆

(m+1)∆∫
m∆

L−1∑
k=0

λk+1∫
λk

T (x− S(λ), y)f0(x− S(λ), y, λ)dλ

dxdy. (3.4)

To better illustrate the discretization of the source, Fig. 3.1 depicts the physical

phenomena described in Eq. (3.4). Notice that each cubic voxel when sheared by the

prism effects, turns into an oblique voxel. The oblique voxel is stretched along the x axis,

such that when it is projected onto the detector grid, it impinges onto several detector

pixel elements at once. Hence, several voxels at the source will impact each of the FPA

pixels.

Figure 3.1: CASSI integration model. A voxel of the data cube is coded by the aperture
code, sheared by the dispersive element with dispersion S(λk) and projected
onto several pixels of the detector.
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(a)	First	order	precision	model (b)	Higher	order	precision	model	

Figure 3.2: (a) First order discretization model. A voxel impinges onto a single FPA
pixel detector; (b) higher order discretization model. A voxel impinges onto
three FPA pixels. Notice that the light dispersion path is on the (λ, x) axis
(top view).

The inter-voxel interference is next examined by two discretization models as il-

lustrated in Fig. 3.2, when viewed from the top of the datacube. A linear dispersive

function with slope equal to one (dS = 1) is assumed in the figure. Figure 3.2(a) depicts

the traditional discretization approach proposed in [1]. Figure 3.2(b) shows the higher

precision discretization model where the FPA pixel detector captures energy from sever-

al voxels simultaneously. The dotted lines indicate the spatio-spectral region of the data

cube integrated in the (m,n)th detector pixel. It can be observed that the higher precision

discretization of the dispersive curve leads to more voxels superimposing in the formation

of gmn.

Figure 3.3 shows a zoomed version of just one voxel of the source after it is sheared

by the prism. Notice that its energy will impinge on up to three different FPA pixels

when dS = 1. Each voxel at the source can then be partitioned into three different

regions denoted as R0, R1, and R2. Depending on the nature of S(λ), a voxel may affect

from 2 as depicted in Fig. 3.4 up to more than 3 detector elements. Therefore, for a

14



Figure 3.3: A voxel dispersed into the regions R0, R1, and R2 in each interval [λk λk+1].
These regions determine the voxel fractions involved in the formation of the
gm−1,n, gm,n and gm+1,n detector pixels.

general dispersion curve, each of the integrals in Eq. (3.4) can be rewritten as

(n+1)∆,(m+1)∆,λk+1∫∫∫
n∆,m∆,λk

T (x−S(λ), y)f0(x−S(λ), y, λ)dλdxdy=
d∑

u=0

λk+1∫
λk

∫∫
{x−S(λ),y}∈Ru

T (x−S(λ), y)f0(x−S(λ), y, λ)dxdydλ,

(3.5)

where d = dS + 1 for linear dispersion, and d = maxd(m + 1)∆ − S(λk)e when a prism

exhibits a non-linear response. Further, let the discrete version of the aperture code

T (x, y) be ti,j and using the representation in Eq. (3.2) for f0(x, y, λ), then

λk+1∫
λk

∫∫
{x−S(λ),y}∈Ru

T (x−S(λ), y)f0(x− S(λ), y, λ)dxdydλ = wmnkut(m−k−u)nf(m−k−u)nk (3.6)

where the proportion of the voxel f(m−k−u)nk contained in Ru is taken into account by

the constant wmnku. Notice that the subindex k in wmnku refers to the spectral interval

[λk λk+1]. While the weights wmnku can be estimated using a calibration process, they can

also be numerically approximated assuming that the the spectral information is uniformly

15
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Figure 3.4: Discretization of the dispersion of a single voxel of the data cube as we go
from a coarse to a finner discretization.

distributed in the region delimited by Ωijk. More specifically, they are calculated as

wmnku =

∫∫∫
Ru

dxdydλ


 ∫∫∫

Ω(m−k−u)nk

dxdydλ


−1

(3.7)

where Ru is taken in the respective interval [λk λk+1]. In practice, the sections Ru can

be calculated by estimating the prism response S(λ) and the misalignment between the

coded aperture and the FPA detector. Using Eq. (3.5) and (3.6), Eq. (3.4) can be

expressed as

gmn =
L−1∑
k=0

d∑
u=0

wmnkut(m−k−u)nf(m−k−u)nk. (3.8)

3.2 Higher Order Discrete Matrix Model

Equation (3.8) can be written in matrix form as g = Hf , where the N(N+L+d−1)

long vector g and the N2L long vector f represent the compressive measurements and the

spectral data cube respectively, ordered lexicographically. When several FPA measure-

ments are captured each one using a different aperture code, the ith FPA measurement

can be written as

gi = Hif . (3.9)
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In Eq. (3.9) each N(N + L+ d− 1)×N2L matrix Hi is composed by,

Hi = PTi, (3.10)

where P accounts for the weights wmnku and the dispersion of the prism, and Ti represents

the ith coded aperture. Here Ti is a block-diagonal matrix of the form,

Ti =


diag(ti) 0N2 · · · 0N2

0N2 diag(ti) · · · 0N2

...
...

. . .
...

0N2 0N2 · · · diag(ti)

 , (3.11)

where ti is the ith aperture code in lexicographical notation and 0N2 is a N2 ×N2 zero-

matrix. Notice that Eq. (3.7) can be written in matrix form as, (Wu
k)mn = ωmnku,

for m,n = 0, 1, . . . , N − 1, and k, u as in Eq. (3.8). Then, the matrix P is given by

P =
∑d

u=0 Pu, such that

Pu=



0Nu×N2L

diag(Wu
0) 0N×N2 · · · 0N×N2

0N×N2 diag(Wu
1)· · · 0N×N2

...
...

. . .
...

0N×N2 0N×N2 · · · diag(Wu
L−1)

0N(d−u)×N2L


. (3.12)

The ensemble of measurements {gi}Ki=1, can be succinctly written as ggg = H̃f = PTPTPT f ,

where ggg =
[
gT1 , . . . ,g

T
K

]T
,PPP is aK-times block-diagonal matrix of P, and TTT =

[
TT

1 , . . . ,T
T
K

]T
,

with K representing the number of FPA shots. Figure 3.5 depicts the structure of the

matrix H̃ for the first order and the higher order discretization models, when three FPA

shots are used to capture a 6× 6× 5 datacube.
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Figure 3.5: Structure of the matrix H̃ for a N = M = 6, L = 5 datacube, when K = 3
for the higher order CASSI model (H̃ ∈ R180×180). Extra diagonal terms
account for the inter-voxel interference. Notice that entries of the H matrix
in Fig. 2.3 are either 0 or 1, while they vary in the interval [0, 1] for the
higher-order model.
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Chapter 4

SIMULATION RESULTS

In order to compare the higher-order precision model with the traditionally used

model, a hyper-spectral data cube was experimentally acquired using a wide-band Xenon

lamp as the light source, and a visible monochromator. Monochromatic images were cap-

tured every 1nm in the spectral range {450−620}; thus 170 spectral planes were acquired.

The image intensity was captured by a CCD camera AVT Marlin F033B, with 656× 492

pixels, exhibiting a pixel pitch of 9.9µm and using 8 bits for pixel depth. In addition, a

double Amici prism was used as the dispersive element. Its non-linear dispersion curve

shown in Fig. 5.1(b) was determined experimentally by using the monochromator as the

input of the setup. Other elements such as the lens, the spectral response of the camera,

and the coded apertures are considered ideal. Deviations from the ideal characteristics

of these elements are mitigated partially by a calibration step. In this architecture, a

voxel spanning any of the following wavelength intervals will create a displacement of a

pixel on the detector: {450− 463}, {464− 477}, {478− 493}, {494− 510}, {511− 530},

{531−556}, {557−586} and {587−620} where all the intervals are given in nanometres.

Thus, the 170 spectral planes of the datacube will be clustered into 8 bands. Notice that

the intervals width are not constant, as a non-linear dispersive element was used. Figure

4.1 shows the eight spectral bands of the datacube, which the CASSI system aims at

recovering.

Experiments use the multi frame CASSI setup described in [13], and simulation

algorithms utilizes 64 bits as arithmetic precision. Aperture codes entries are random re-

alizations of a Bernoulli random variable with parameter p = 0.5. Note that the proposed

model uses the same pitch for coded aperture features and FPA pixels. In summary, the

hyper-spectral test data cube F has 256 × 256 pixels of spatial resolution and L = 8
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Figure 4.1: Spectral bands used in the simulations and their central wavelength.

spectral bands in the range 450 nm to 620 nm. In order to simulate the analogous sens-

ing process, the compressive measurements are obtained using the 170 spectral planes of

the datacube, as shown in Fig. 3.2(b). Notice also that the reconstruction process aims

to recover the average of the spectral information in the 8 mentioned spectral intervals.

The calibration weights for the proposed model are approximated using Eq. 3.7 and the

prism’s response curve.

Given the set of compressive measurements, the voxels’ weight distribution and the

set of coded apertures, the hyper-spectral datacube is recovered using the GPSR algorithm

[20]. GPSR exploits the sparse nature of the hyperspectral datacube. In particular, the

hyperspectral signal F ∈ RN×M×L, or its vector representation f ∈ RN.M.L, are assumed

to be K−sparse on some basis ΨΨΨ3D, such that f = ΨΨΨ3Dθθθ, where θθθ are the coefficients

of the sparse representation. Hence, f can be approximated by a linear combination

of K vectors from ΨΨΨ3D with K � (N.M.L). Specifically, this algorithm estimates a

hyperspectral datacube f̂ by solving the optimization problem,

f̂ = ΨΨΨT
3D{argminθθθ′‖ggg −PTPTPTΨΨΨ3Dθθθ

′‖2
2 + τ‖θθθ′‖1}, (4.1)
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where τ > 0 is a regularization parameter that balances the conflicting tasks of minimizing

the least square of the residuals, while at the same time, it seeks for a sparse solution The

basis representation ΨΨΨ3D is set as the Kronecker product of three basis ΨΨΨ3D = ΨΨΨ1⊗ΨΨΨ2⊗ΨΨΨ3,

where the combination ΨΨΨ1⊗ΨΨΨ2 is the 2D-Wavelet Symmlet 8 basis and ΨΨΨ3 is the Discrete

Cosine basis. The reconstructions are performed using the new model in Eq. (3.8), and

the traditional model in Eq. (1.1) with its respective calibration process described in

[14]. The regularization parameters needed in the compressive sensing reconstruction al-

gorithm are carefully selected such that each simulation uses the best selectable parameter.

Figure 4.2 shows the PSNR of the reconstructions for the two models as function of

the measurement shots. The gain achieved by the new model is quantitatively noticeable

by averaging the PSNR of the recovered datacubes. This improvement approaches to 4

dB when more than two FPA shots are used.
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Figure 4.2: Averaged PSNR of the reconstructed datacubes as function of the number
of FPA shots. The traditional and the higher order precision models are
compared.

Figure 4.3 depicts the reconstructed spectral bands (zoomed area) when 6 shots

are captured for the model in (1.1). Figure 4.4 illustrates the reconstruction of the same

spectral bands (zoomed area) when the same number of shots are used in the new model.

It can be observed that the new model recovers the spectral information with higher

accuracy.
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Figure 4.3: Reconstruction using the traditional CASSI model and the corresponding
attained PSNR. The average PSNR across the 8 bands is 22.3 dB.
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Figure 4.4: Reconstruction using the higher order CASSI model and the corresponding
attained PSNR. The average PSNR across the 8 bands is 26.85 dB
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Chapter 5

EXPERIMENTAL SETUP AND ANALYSIS

The testbed shown in Fig. 5.1(a) is used to implement the CASSI system and to

verify the simulation results [13]. It is formed by two subsystems: the first composed

by the illuminated target, the objective lens and the DMD; the second by the imaging

lenses, the band pass filter, the dispersive element, and the CCD camera. The target is

illuminated by a white light source and its reflected light is captured by the objective lens

which focuses the light onto the DMD plane, which plays the role of the coded aperture.

Afterwards, the reflected light from the DMD is focused by the imaging lenses into the

prism imaging plane that disperses the filtered light onto the CCD camera which inte-

grates the underlying 3D hyperspectral image in the 2D FPA.

The testbed setup is characterized in order to reduce the impact of non-linearities,

non-uniformities, and external noise artifacts. This process is realized as follows: (a) The

light source intensity distribution and the FPA spectral sensitivity are characterized by

experimentally analyzing their spectral responses using a USB2000+VIS-NIR Ocean Op-

tics spectrometer with a known spectral response. These non-uniform spectral response

curves are taken into account to reduce their impact in the measurement shots; (b) for

each one of the 170 captured spectral planes, 10 FPA measurements are captured and

averaged to reduce the impact of shot and readout noise; (c) the CCD exposure time is

setted to 100 microseconds, in order to improve the signal-to-noise-ratio of the aperture

code at each wavelength; (d) the dispersive element is characterized in order to take into

account its non-linear response curve and the resultant bandwidth of each spectral band.

After characterization of the testbed and in order to observe the oblique voxel effect

impinging into the FPA as explained in Fig. 3.2, a measurement shot is captured using
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Figure 5.1: (a) The CASSI testbed setup and its six optical elements: objective lens,
DMD, imaging lenses, band-pass filter, prism and CCD; (b) non-linear dis-
persion response of the Amici prism between {450− 620}nm.

25



Coded aperture FPA measurement 

Measured 
Intensity 

First order 
CASSI 

Blur + Noise 

Higher order  
CASSI 

Zoomed 
version 

Measured 
Intensity 

Blur + Noise 

(m,n)th (m,n)th

(m!1,n)th (m+1,n)th

Figure 5.2: FPA measurement at 502 nm. The coded aperture (upper-left) is used in
order to isolate the effect of a single voxel impinging onto the FPA (upper
right). A zoomed version of a single FPA pixel shows the measured inten-
sity taken into account for each of the discretization models. The energy
classified as noise and blur by the first order and the higher order models,
is shown.

monochromatic light at 502 nm as the input of the system. The resultant measurement is

depicted in Fig. 5.2. This measurement is taken using a test coded aperture with enough

space (3 ‘off’ features) between each ‘on’ feature, thus, allowing the isolation of the effect

of a single voxel impinging onto the FPA. Then, a zoomed version of a single FPA pixel

is analyzed. Firstly, it can be confirmed that energy belonging to a single datacube voxel

impinges principally in a single FPA pixel (m,n)th, and a smaller portion is projected into

its neighbors (m−1, n)th and (m+1, n)th. Second, the first order model accounts only for

the energy impinging on the principal pixel, discarding the energy around it, or classifying

it as noise or blur. The energy discarded by the first order model, is taken into account in

the higher order model by the weights wmnku. Notice that the energy considered as noise

and blur by the traditional CASSI is leveraged by the use of a calibration cube at the
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reconstruction stage, while the proposed model finds the weights distribution in an off-line

process. Then, the proposed higher-precision computational model becomes more suitable

for reconfigurable multi-shot CASSI where multiple coded apertures are used sequentially.

For experimental purposes, two objective scenes are used and depicted in Fig. 5.3.

The coded apertures are realizations of a Bernoulli random variable with p = 0.5, realized

by a DMD as explained in [13] exhibiting 128× 128 pixels. The dispersive element is an

Amici prism exhibiting the non-linear response shown in Fig. 5.1(b). To match with the

pitch of the coded aperture features and accounting for the dispersion process, 128× 136

pixels of the CCD are required. The weight distribution extraction is performed using Eq.

(3.7). As a result, three 128×128×8 weight datacubes were obtained, each one accounting

for the regions R0, R1 and R2 as described in Fig. 5.4. By averaging each weight datacube

per band, a succinctly version can be shown in Table 5.1. Notice that when misalignments

between the coded aperture and the FPA occur, the weights distributions may vary along

the regions.

Figure 5.3: Objects in scene used in the experimental comparison

The GPSR algorithm is employed in the reconstruction of the underlying hyper-

spectral scene, with parameters as described in the simulations section [20]. Figures 5.5

and5.7 depict the 8 reconstructed spectral bands for K = 6 snapshots when the models

in Eq. (1.1) and Eq. (3.8) are used for the 2 test targets, respectively. Here, the high-

er quality reconstruction obtained when the proposed model is used in the simulations

section is confirmed. Notice that the test objects intensity spans principally along the
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Figure 5.4: Weights estimation for a single voxel. The voxel Fijk is sheared by the
dispersive element, such that the voxel is devided into 3 regions R0, R1, R3

which are differentiated in the FPA. The resulting weights are shown in
Table 5.1.

Region
Band

1 2 3 4 5 6 7 8
R0 0.30 0.27 0.27 0.26 0.26 0.25 0.24 0.24
R1 0.42 0.46 0.46 0.49 0.52 0.55 0.56 0.56
R2 0.28 0.27 0.27 0.25 0.22 0.20 0.20 0.20

Table 5.1: Weights Ri and their distribution across spectral bands. Notice that the
weights are non-constant due to the non-linearity of the prism.

last four bands, and the reconstruction quality of the proposed model overcomes the one

from the traditional CASSI model. In particular, the improvement can be clearly noticed

in the fifth bands (524 nm), where the higher-order CASSI estimates a better shape of

the Lego chest, and similarly, the butterfly, compared with the same band resulting from

the traditional CASSI model. Furthermore, the improved results can also be noticed in

the spectral signatures of two particular points (P1 and P2) depicted in Fig. 5.6 and

Fig. 5.8, for the 2 different target toys, respectively. The resulting reconstructed data

cube curves are compared against their respective ground truth curves measured by the

use of the commercially spectrometer. It can be seen that the signatures obtained with

the higher-order model, proposed in this thesis, fit better to the ground truth references,

independently of the image target scene analyzed, and also independently of the points

chosen to be analyzed.
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Figure 5.5: Reconstruction of the 8 spectral bands using (a) the traditional CASSI
model, and (b) the proposed higher-order CASSI model.

450 466 484 503 524 549 580 621
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Nanometers

N
or

m
. I

nt
en

si
ty

Lego Red Point

 

 
CASSI
Higher Order
Spectrometer

P1 

450 466 484 503 524 549 580 621
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Nanometers

N
or

m
. I

nt
en

si
ty

Lego Yellow Point

 

 
CASSI
Higher Order
Spectrometer

P2 

Figure 5.6: Spectral signatures comparison from given points in Fig. 5.5.

It is important to point out here, that the simulations setup differs from the exper-

imental setup in the following aspects: The former performs the CASSI and higher-order

CASSI FPA measurements starting with a hyperspectral datacube captured off-line and
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Figure 5.7: Reconstruction of the 8 spectral bands using (a) the traditional CASSI
model, and (b) the proposed higher-order CASSI model.
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Figure 5.8: Spectral signatures comparison from given points in Fig. 5.7.

taken as the ground truth. The coded apertures as well as the non-linear prism disper-

sion curve are simulated, and the weights distribution (wmnku) given by Eq. (10) are
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then synthetically obtained. Noise, as well as blur and misalignment between the coded

aperture and the CCD were not added to the model. It can be assumed that this is the

ideal case scenario. The latter uses the experimental testbed depicted in Fig. 10(a) to

capture the FPA measurement shots. The same fluorescent white illumination source was

employed for both cases. However, in the experimental results, the FPA measurements

are contaminated by optical aberrations, as well as noise and misalignment between the

CCD and the coded aperture. Consequently, the weights distribution (wmnku) presented

in Table. 1, is experimentally obtained from the non-linear prism dispersion curve depict-

ed in Fig. 10(b), which is characterized by the use of a monochromatic light source as the

input of the testbed ranging between 450nm and 650nm. The reconstruction algorithm

utilized (GPSR) is equal for both simulations and experimental results, but differs for

each compared model (CASSI vs Higher-Order CASSI). The objects used as targets in

the simulation section differs from the ones used in the experimental setup. Due to field

of view restrictions in the optical instruments, a set of smaller but spatially richer scenes

were selected for the latter.

31



Chapter 6

CONCLUSIONS

A higher order precision discretization model for coded aperture-based spectral

imaging systems has been developed. This model accounts for the inter-voxel projection-

s onto each pixel detector which is disregarded by the first order discretization model.

This, in turn, allows for the reconstruction of hyperspectral signals with higher PSNR.

Simulations achieve a 4 dB improvement, while testbed experiments visually confirm the

simulations results. The proposed model is less-dependent on time-demanding calibra-

tion processes, thus leading to multiple-frame CASSI systems to be more suitable for real

applications. The results of this work have been recently published in [21].

Future research in this area will focus on hyper-spectral block-processing recon-

struction. Firstly, the higher order approach presented in this thesis provides clues on

how each voxel is partitioned in subregions and how these are subsequently integrated

in the CCD. The knowledge of these small regions can be exploited further to attain a

number of advantages. Secondly, block processing allows speed improvements but more

important, it can also be exploited for better spatially detailed reconstructions. Higher-

order modelling is also expected to improve results in compressive spectral imaging tasks

such as classification [22, 23].
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Appendix

DISCLAIMER

The figures presented here, were not endorsed by the trademark owners and are

used here as fair use to illustrate the quality of reconstruction of compressive spectral

image measurements. LEGO is a trademark of the LEGO Group, which does not sponsor,

authorize or endorse the images in this thesis. c©2013 The LEGO Group. All Rights

Reserved. http://aboutus.lego.com/en-us/legal-notice/fair-play/
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