
 

 

 

 

 

MATHEMATICAL MODELS  

FOR 

EVAPORATION OF 

THIN FILMS 

 

 

 

 

by 

 

Vikramjit Singh Rathee 

 

 

 

 

 

 

 

 

 

A thesis submitted to the Faculty of the University of Delaware in partial 

fulfillment of the requirements for the degree of Honors Bachelor of Sciences in 

Chemical Engineering with Distinction 

 

 

 

2013 

 

 

 

© 2013 Vikramjit Singh Rathee 

All Rights Reserved 

  



 

 

 

 

 

MATHEMATICAL MODELS  

FOR 

EVAPORATION OF 

THIN FILMS 

 

by 

 

Vikramjit Singh Rathee 

 

 

 

 

 

Approved:  __________________________________________________________  

 Dr. Richard J. Braun, Ph.D. in Applied Mathematics 

 Professor in charge of thesis on behalf of the Advisory Committee 

 

 

 

Approved:  __________________________________________________________  

 Dr. Prasad S. Dhurjati, Ph.D. in Chemical Engineering 

 Committee member from the Department of Chemical Engineering 

 

 

 

Approved:  __________________________________________________________  

 Dr. James L. Glancey, Ph.D. in Mechanical Engineering 

 Committee member from the Board of Senior Thesis Readers 

 

 

 

Approved:  __________________________________________________________  

 Michael Arnold, Ph.D. 

 Director, University Honors Program



 iii 

ACKNOWLEDGMENTS 

First and foremost I am grateful to God for being my strength and my guide in 

the completion of this thesis, providing me the energy and the ability to do so.  

I wish to express my sincere and profound gratitude to my adviser Professor 

Richard Braun for his illuminating guidance, constant encouragement and forbearance 

in devoting much time to read my work over and over again. His constructive advice 

and insightful discussions paved way for successful completion of this thesis.   

Thank you Michael Stapf for helping me in difficult situations and offering me 

timely help and friendly advice whenever required. I really appreciate your 

collaboration, support and efforts in working through chapter 4 of the thesis.  

I am wholeheartedly indebted to my parents for their love, care, motivation and 

support all through the years. My mother has been a pillar of strength for me in times 

of distress and always encouraged me to march ahead with courage and confidence.  

It gives me immense pleasure to record my gratitude to Babaji and Safi Mausi 

who very kindly and generously took out time to pray for me and inspired me to put in 

my best efforts with full determination. I thank them for their blessings all the time. 

My sincerely thanks to Meg Meiman and Emily Miller for patiently directing 

and guiding me through the various stages of this undergraduate research.  

I will also like to place on record my sincere thanks to the UD Honors program 

and the University of Delaware for providing me the opportunity to work on this 

thesis. 

 



 iv 

TABLE OF CONTENTS 

LIST OF FIGURES ....................................................................................................... vi 

ABSTRACT ................................................................................................................ viii 

1 INTRODUCTION .............................................................................................. 1 

1.1 Structure of the Tear Film ......................................................................... 1 

1.2 Thinning Rate of Tear Film ....................................................................... 2 
1.3 Thesis outline ............................................................................................. 4 

2 EVAPORATION OF ULTRA-THIN FILMS .................................................... 6 

2.2 Numerical approximation ........................................................................ 12 

2.3 Evolution of film thickness ..................................................................... 13 
2.5 Steady state solution ................................................................................ 18 

3 MOVING BOUNDARY PROBLEM .............................................................. 20 

3.1 Numerical approximation ........................................................................ 22 
3.2 Concentration profile across the domain as a function of time ............... 24 

3.3 Comparison with fixed boundary condition ............................................ 27 

4 EVAPORATION WITH FLUID MOTION INSIDE THE FILM ................... 31 

4.1 Lubrication model ................................................................................... 32 

4.1.1 Boundary conditions .................................................................... 34 

4.1.2 Derivation of Lubrication equation ............................................. 36 

4.2 Expression for evaporation rate ............................................................... 37 

5 CONCLUSIONS .............................................................................................. 46 

REFERENCES ............................................................................................................. 48 

6 APPENDIX ...................................................................................................... 50 

6.1 Code used for numerical simulation (Ch-2 and Ch-3) ............................ 50 



 v 

 



 vi 

LIST OF FIGURES 

Figure 1: Three layer viewpoint of the tear film (Braun 2012) ..................................... 1 

Figure 3: Sketch of the configuration on which mathematical models for evaporation 

are based.        is the vapor concentration profile across the z 

coordinate. ................................................................................................. 4 

Figure 4: Schematic showing the domain of vapor diffusion, far field humidity and 

concentration profile along the z-coordinate for diffusion. ....................... 7 

Figure 5: Non-dimensional film thickness as a function of non-dimensional time. The 

blue line is the van der Waals model solution and the green line is the 

analytical solution 
[3]

. ............................................................................... 13 

Figure 6: Non-dimensional film thickness as a function of non-dimensional time. The 

blue line is the Polar model solution and the green line is the analytical 

solution .................................................................................................... 14 

Figure 9: Plot of concentration of vapor at different z values at t = 5000. .................. 19 

Figure 10: Schematic showing the domain of vapor diffusion,         , far field 

humidity   , and concentration profile        along the z-coordinate. . 20 

Figure 11: 3-D representation of the evolution of concentration profile with time 

across the domain 0 ≤    ≤ 1. Domain length in terms of z-coordinate is 

L=20. End time for simulation was t = 150. ........................................... 24 

Figure 12: Evolution of concentration profile across the domain 0 ≤    ≤ 1 with time. 

L = 20. ..................................................................................................... 25 

Figure 13: Evolution of concentration profile across the domain 0 ≤    ≤ 1 with time. 

L = 5. ....................................................................................................... 26 

Figure 14: Evolution of film thickness with time. Blue line depicts solution for fixed 

boundary condition. Green represents solution for moving air-water 

interface condition. Red line represents the analytical solution. ............. 28 

Figure 15: Comparison between concentration profile for fixed boundary condition 

and moving boundary condition across the domain at different time 



 vii 

points.  L = 20. Red line represents the fixed domain and blue line 

indicates the moving domain. .................................................................. 29 

Figure 17:  Schematic showing the uneven air-film interface, film thickness        as      

function of x-coordinate and time and evaporation rate at the film 

surface       . ......................................................................................... 31 

Figure 18: The air is not saturated with vapor. Concentration of vapor is function of 

     and    ................................................................................................ 37 

 



 viii 

ABSTRACT 

Evaporation is a major cause of thinning of tear film which can eventually 

cause damage to ocular surface. The aim of the presented research was to analyze 

some of the many facets of evaporation of the aqueous layer of the tear film through 

development of mathematical models. In chapter 2, using the assumption of negligible 

film thickness, no fluid motion and a flat air/film interface, the diffusion equation for 

the water vapor concentration was solved numerically on a fixed domain and solutions 

were analyzed. Theoretical steady state predictions were also matched with solution 

profiles obtained from numerical simulation. Later, in chapter 3, film thickness was 

not overlooked and decrease in film thickness due to evaporation changed the domain 

for the vapor diffusion with time. The partial differential equations describing the 

diffusion of water vapors were then solved numerically on this moving domain by 

introducing a new independent variable which mapped the moving domain into fixed 

domain. Comparison between solution for the fixed boundary and moving boundary 

problems revealed that the use negligible thickness assumption did not represent the 

behavior of the system as accurately as expected. Lastly, in chapter 4, a lubrication 

model was derived using a thin film approximation which related film thickness, 

evaporation rate and fluid motion. Further, expression for evaporation rate was 

developed for the deformed thin film where vapor diffusion outside the film limited 

the evaporation of liquid molecules. We hope to adapt this model of thin film 

dynamics to more complex tear film models in future research.   
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Chapter 1 

INTRODUCTION 

1.1 Structure of the Tear Film
 
 

 

Figure  1: Three layer viewpoint of the tear film (Braun 2012) 

Figure 1 is the sketch of the eye with the overlying tear film. The aqueous 

layer is essentially what is commonly thought of as tears. Tears are produced by 

lacrimal glands.  The three layered tear film in humans plays an important role in 

maintaining the health and function of the eye
 [1]

.  The tear film provides not only a 

surface for strong refraction of light but also keeps the ocular surface moist and 

provides protection against dust and bacteria by transporting them away from the 

ocular surface 
[1]

. The mucus layer (formed of mucins tethered to the corneal 

epithelium) is not a separate layer, but is rather part of the aqueous layer. The lipid 
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layer decreases the surface tension at the air-tear film interface, reducing thinning of 

the film due to evaporation and thus preventing tear film breakup in the eye 
[1]

. 

 Dry eye syndrome (DES) is the problem associated when there is inadequate 

tear film on the ocular surface or from excessive evaporation of water from the tear 

film. Over 4.91 million Americans suffer from DES 
[1]

, hence understanding tear film 

dynamics would help in further advancement in treatment for this syndrome.  

1.2 Thinning Rate of Tear Film
 
 

DES can be caused 

(1) Due to deficient tear production by the lacrimal gland such that a complete 

tear film layer is not formed over the cornea 
[2]

, or 

(2) Due to rapid or prolonged evaporation of the tear film 
[2]

 i.e. adequate 

amount of tears are produced by the lacrimal glands but due to evaporation a complete 

layer of tear film is not formed over the ocular surface, also termed as evaporative dry 

eye syndrome. 

Figure 2 depicts the movement of water in the tear film. There is sideways 

motion of the tear film present along with the evaporation of the water molecules from 

the tear film. The sideways motion of the tear film is due to tear film being constantly 

being drained into the tear duct to remove dust and bacteria from the ocular surface 
[1]

. 

Chapter 2 and 3 deals with evaporative process of thin films under the assumption of 

insignificant fluid motion whereas evaporation with fluid motion is tackled in chapter 

4.  
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Figure 2: Thinning of tear film. 

 King-Smith et al. 2008 investigated the effect on evaporation rate of the tear 

film when using pre-ocular chambers/goggles
 [2]

. Normal air flow over the corneal 

surface was prevented when using these goggles.  It was concluded that evaporation is 

the major cause of thinning of tear film as thinning rate decreased substantially when 

using pre-ocular goggles as compared to rates in the presence of normal air flow 

(without goggles) because when using goggles a relatively thick humid layer 

developed over the corneal surface, hence the concentration gradient required for 

diffusion of water molecules from the tear film decreased and thus the evaporation rate 

decreased. This evidence also suggests that evaporation rate of the tear film is 

dependent upon the humidity of the atmosphere surrounding the eye.  

The process of evaporation can be viewed as diffusion limited process or a 

mass transport limited process. The former involves use of Fick’s law of diffusion and 

the standard diffusion equation with diffusion coefficient whereas the latter involves 

mass transfer correlations such as Sherwood number, Sh (ratio of convective transport 

to diffusive transport) and Schmidt number, Sc (ratio of viscous diffusion rate to 
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molecular diffusion rate). In the present research the evaporation was considered a 

diffusion limited process and hence mass transfer correlations were not used in 

development of evaporation models. 

Figure 3 depicts a simplified sketch of the evaporation of the tear film used for 

the development of mathematical models. Lipid layer and surfactants (mucins) were 

not considered in development of these models. 

 

 

Figure 3: Sketch of the configuration on which mathematical models for evaporation 

are based.        is the vapor concentration profile across the z 

coordinate. 

1.3 Thesis outline  

In chapter 2 work done by Ajaev et al. 2010 on fixed boundary problem 

(domain of diffusion fixed) was revisited 
[3]

. Additional plots (2D and waterfall plots) 

depicting vapor concentration profile across the domain (outside the film) at different 

times are also presented in chapter 2. 
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In chapter 3, research was extended to moving boundary problem (domain of 

diffusion changing with time). New variable was introduced to scale the domain and a 

new set of partial differential equations with corresponding boundary conditions and 

initial conditions was developed and solved to produce plots of evolution of film 

thickness and vapor concentration profile at different times. Comparison between the 

fixed boundary problem and moving boundary problem in terms of concentration 

profile across the domain and evolution of film thickness and was also carried out in 

chapter 3. 

In chapter 4, a lubrication model was derived using Navier-Stokes equation 

and boundary stresses which related the film thickness with fluid motion and 

evaporation rate. Navier-Stokes equation and boundary stresses were non-

dimensionalised and lubrication theory (length of film >> thickness of the film) was 

used to eliminate terms from these equations. Later, work done by Sultan et al 2004
 [4]

 

was revisited. The objective was to approximate diffusion outside the film with the 

vapor concentration terms at the film surface. Further, equation for evaporation rate 

was derived which revealed that the equation provided by Sultan et al.
[4]

 was missing 

terms and parameters, hence the newer version for the expression of evaporation rate 

has being provided in chapter 4. 

 

 



 6 

Chapter 2 

EVAPORATION OF ULTRA-THIN FILMS 

Under isothermal conditions, water molecules from a uniform film will 

evaporate if the vapor pressure of the water in the gas phase above the film is below 

saturation pressure at that particular temperature. Due to evaporative flux, the film 

thickness would start decreasing. The process of evaporation occurs in order to 

achieve thermodynamic equilibrium when temperature and pressure is uniform 

throughout the system (liquid + vapor) and the vapor pressure is equal to saturation 

pressure 
[14]

. 

When a uniform thin film evaporates, the film thickness decreases to a value 

where surface forces become important and the exchange of molecules between two 

phases (liquid and air + vapor) equilibrates, evaporation stops and film thickness 

reaches an equilibrium value. This phenomenon is accounted for in mathematical 

models for evaporation by including an extra term known as the conjoining pressure, 

denoted here by Π. The conjoining pressure arises due to the different intermolecular 

interaction energies of liquid molecules with solid surface molecules and gas phase 

molecules. The conjoining pressure can be expressed as P= P0+ Π, where P0 is the 

pressure of the bulk liquid and P is the pressure in thin film consisting of same liquid 

molecules as bulk liquid. For positive values of Π, evaporation is completely 

suppressed at a finite film thickness 
[14]

.  

The two main processes for vapor transport outside the film are diffusion and 

convective transport. To understand diffusion of vapor from the tear film into the air, 
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the tear film thickness was assumed to be independent of x-coordinate, have negligible 

fluid motion and negligible thickness compared to the domain outside the film. Hence, 

the domain of vapor diffusion was fixed, 0 ≤ z ≤ L as shown in the figure 5 where L is 

the outer boundary of domain of diffusion. This case is called the “fixed boundary 

condition”. As the liquid evaporates, the film thickness decreases and the vapors 

diffuse in the z-direction towards a constant far field humidity. The low far-field 

concentration provides the necessary concentration gradient for diffusion at all times.  

 

 

Figure 4: Schematic showing the domain of vapor diffusion, far field humidity and 

concentration profile along the z-coordinate for diffusion. 

The importance of convective transport over diffusion is determined by Peclet 

number     
   

 
, where    is the characteristic speed of the gas phase. D is the 

diffusion coefficient of water vapor in the air at 25
0
C, which is ~ 10

-6
 m

2
s

-1
 (ref.18) 

and L is the length of the domain of diffusion. For      convection of vapors can be 

neglected and using the values of D and L, the speed of the gas phase was estimated to 

be,     10
-2

 ms
-1

. A speed of ~ 10
-2

 ms
-1

 is a reasonable value for the speed of the gas 
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phase at standard room temperature (25
0
C) and pressure (1 atm) in controlled 

environment such as a lab with no fans blowing. The effects of convection cannot be 

ignored in situations such as when riding a bike because the speed of the gas phase 

would be much higher and hence Pe would be too large. But, for development of 

mathematical models in this chapter and later chapters, such situations are not taken 

into consideration and hence, convective transport of water vapors was ignored.  

Further, applying the condition of mass conservation at the film/air interface 

[14]
 i.e. mass lost due to evaporation is equal to diffusion flux, 

                                        
    

  
        

    

  
  

led to equation (2.2). Concentration profile across the domain is found by solving the 

diffusion equation (2.1). The constant far field concentration is   , (2.3). Thus, the 

equations governing the film evaporation are 
[3]

:- 

 

 

 

  

  
 
   

   
  

 

(2.1) 

 

 

  

  
      

  

  
 

 

(2.2) 

 

 

            (2.3) 
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To solve equation (2.1) – (2.3) and determine the unknowns C and h, two 

boundary conditions and two initial conditions are needed. One of the boundary 

condition is given as equation (2.3) 

 The scales are assumed as follows. For t it is          
    , the space 

variable z is         , variable c is      
[14]

.      is the saturation concentration,   is 

the density of the liquid and        is the water vapor concentration in the air as a 

function of space coordinate z and time t. 

 

2.1 Vapor concentration at the interface. 

2.1.1 London van der Waals model of conjoining pressure 

The condition for thermodynamic equilibrium requires not only that liquid and 

vapor phase be at same temperature and pressure but also that the chemical potential 

of both liquid and vapor phase is the same. The chemical potential or “escaping 

tendency” of the components of the two pure phases is same when there is no increase 

in the number of moles of the component in the liquid or vapor phase, i.e., there is no 

evaporation or condensation taking place at the vapor liquid interface. This can only 

happen at saturation conditions, therefore, 

  
             

           

But, in thin films due to presence of conjoining pressure, the chemical potential of the 

liquid is modified; therefore, the new equilibrium condition would be 

             

Where    and    are the chemical potential of the liquid in bulk and the vapor phase 

respectively.    is the molar volume of the liquid. 

Since there is no appreciable change in number of liquid molecules in the 

process of acquiring thermodynamic equilibrium, hence assuming,   
      and then 
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applying formula for variation in chemical potential of species in an ideal 

solution       
      (

    

    
) , 

           
    
   

(non-polar liquids) 
[14]

 

   
 

  
 

  

        ̆    
 ⁄   Where    = 

    

    
  is the new scaled equilibrium concentration of 

vapor at the interface and  ̆   
     

  
 . This also shows that concentration at the 

interface is a function of thickness in thin films hence         ̆   ⁄   and A is the 

Hamaker constant (in Joules) represents the van der Waals interaction between 

molecules.  Its value ranges from -10
-19

 to -10
-20

 Joules 
[15]

. Here non-dimensional 

version of   is used in obtaining scaled vapour concentration at the interface.  Film 

thickness h is scaled by   ,     is the equilibrium film thickness and   ̆        

(ref.3). Therefore, following is the set of equations to be tackled when this model is 

used. 

 

 
  

  
 
   

   
 (2.4) 

 

 
       

  
 
  

  
 (2.5) 

 

           

 

 

BC’s 

 

            (2.6) 

 

 

                    ̆   ⁄  (2.7) 

                IC’s 

                    ̆   
 ⁄  

 
(2.8) 
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                          (2.9) 

Where h is the film thickness at any time t,    is the initial thickness of the thin 

film (t = 0) and        is the vapor concentration at the interface at t=0. 

 

2.1.2 Polar model of conjoining pressure 

Since molecules of polar liquids like water possess dipole moments, therefore 

a different model is used to represent conjoining pressure and concentration of vapor 

at the interface is modified as, 

                (   
    ⁄ ) (2.10) 

Hence the new set of equations is, 

 
  

  
 
   

   
  (2.11) 

 

 
       

  
 
  

  
 (2.12) 

 

 

 

BC’s 

 
 

               (2.13) 

                      

        (   
    ⁄ )  (2.14) 

 

                IC’s 

                    (   
     ⁄ )  (2.15) 

 

                          (2.16) 
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2.2 Numerical approximation 

System of equations (2.1) – (2.2) was solved using method of lines, 

discretizing the z-space with finite differences. 

 

Where         ;   is the grid point index and j = 0, 1, 2 ...n and    is the 

spacing between grid points. n is the total number of grid points chosen.  

Derivatives at    were approximated using the finite difference formulas; 

second-order forward difference formula to estimate 
  

  
       and three-point centered 

difference formula for the second derivative 
   

   
. 

 
  

  
        

           
   

 

 

          

   
    

             

     
 

Hence equation (2.1) and (2.2) were approximate as equation (2.17) and (2.18) 

respectively, 

 
         

  
   

             

     
 (2.17) 
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j = 2,3,4…n-1 

 

 

  
     

  
  

           
   

 (2.18) 

 

 
j = 1   

Equations (2.170 – (2.18) along with appropriate BC’s and IC’s corresponding 

to either van der Waals model or Polar model were solved in MATLAB using ODE 45 

solver which employs Runga-Kutta method for approximation of solutions of ordinary 

differential equations. The error per step size is on the order of O (h
4
). To increase the 

accuracy of the solutions relative (10
-5

) and absolute tolerance (10
-6

) values were set 

such that if the error per step size exceeds the set tolerance values then the solver 

dynamically adjusts its step size (reduces step size)  so that the error estimate remains 

below the set tolerances. 

2.3 Evolution of film thickness 

 

Figure 5: Non-dimensional film thickness as a function of non-dimensional time. The 

blue line is the van der Waals model solution and the green line is the 

analytical solution 
[3]

. 
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In Figure 5, the blue line is the van der Waals model (      ̆  
 
  solution 

and   ̆       (ref.3). The green line is the analytical solution with negligible 

conjoining pressure i.e. Π = 0. Figure 5 indicates that mass of water leaves the film in 

the form of vapor and hence there is decrease in the thickness of the film. Initially, 

behavior of both van der Waals model solution and analytical solution is similar and 

there is rapid change in thickness but after t ~1, the analytical solution indicates that 

the liquid evaporates completely whereas film thickness reaches an equilibrium value 

when the van der Waals model of conjoining pressure is taken into account.  

The expression for equilibrium thickness, defined by  

                                     (     (        ⁄ )
   

)  

which can be obtained by substituting    in place of    in the equation (2.7). The non-

dimensional equilibrium thickness value is calculated to be     0.1184 by 

substituting value of     0.2498 for and  ̆        (ref.3). 

 

Figure 6: Non-dimensional film thickness as a function of non-dimensional time. The 

blue line is the Polar model solution and the green line is the analytical 

solution  
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In Figure 6, the blue line is the Polar model (       (   
    ⁄ )) solution 

where            [3]
 and the green line is the analytical solution with negligible 

disjoining pressure i.e. Π = 0. The solutions of Polar model of conjoining pressure and 

analytical solution (Π = 0) indicate that film thickness goes down to zero (thin film 

evaporates completely) as can be analyzed from the Figure 6. Therefore, polar liquids 

such as water would evaporate completely instead of approaching a non-zero 

equilibrium thickness value. 

Figure 7 suggests that if aqueous layer is primarily composed of water then the 

tear film should evaporate completely after sometime, but this is not the case due to 

presence of mucins in the tear film. Some mucins are untethered and floating around 

in the aqueous layer and some are tethered at the corneal epithelial cell surface.  

The highly-glycosylated mucins present in the aqueous layer of the tear film 

are hydrophilic and thus they help in wetting of the cornea by maintaining adequate 

water content in the tear film 
[1], [12], and [13]

, apart from that, with each blink tear film is 

reformed thus the tear film thickness essentially never goes down to zero. Hence, the 

London-van-der Waals model would be much more useful in modeling tear films 

because the thin film doesn’t completely evaporate and the film thickness never goes 

down to zero (figure 5), therefore usage of London-van-der Waals model would give 

better approximation for the evaporation of the tear film of the eye. Where as in case 

of Polar model, the film evaporates completely and film thickness goes down to zero 

(figure 6). 
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2.4 Time dependent concentration profile across the domain 

 

Figure 7: Plot of concentration of vapor at different z values at t = 100. 

Figure 7 shows that during early times of the evaporation process, 

concentration gradient is present for diffusion of water vapor into the air, with 

concentration of vapors higher near the interface and a fixed constant value of    

(~0.25) at the far field. The constant far field concentration acts as a desiccant and 

maintains concentration gradient for diffusion to occur. 
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Figure 8: Waterfall plot for concentration profile across the domain. End time for 

simulation was t = 100 

In figure 8, the peak at z = 0 and t = 0 indicates high concentration of vapors 

near the interface at z = h. Also, at t = 0, concentration profile is relatively flat at most 

z values but at higher times there is bump in the concentration profile (blue) at higher z 

values such z = 20 indicating that some water vapor have diffused to position z = 20. 

At t = 100 concentration profile starts to flatten out. Figure 8 also indicates that 

concentration at the interface decreases with time. Figure 7 corresponds to 

concentration of vapors at different z values at t = 100 which would similar to taking 

cross section of the above plot at t = 100.  
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2.5 Steady state solution 

According to Fick’s second law (Non-steady state Diffusion) 

 

 
  

  
  

   

   
  (2.19) 

where D is the diffusion coefficient 

Under steady state conditions, concentration of vapor is same at all z values 

and equal to    i.e. there is no concentration gradient present for diffusion. Hence, 

 

 
   

   
        

  

  
     (2.20) 

 

Integrating 
   

   
   leads to following relationship:  

 

      
           

 
            (2.21) 

Diffusion is suppressed when concentration at the interface is equal to far field 

concentration i.e.             . Therefore, 

         

Since          , thus theoretically, at steady state, concentration of the 

vapor across the domain should be same and equal to relative humidity of the air, 
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Figure 9: Plot of concentration of vapor at different z values at t = 5000. 

The simulation results (figure 9) confirms the theoretical predication that at 

steady state                 i.e. the concentration at each grid point is equal to 

far field concentration. Gradient for diffusion is no longer present. Again, referring to 

figure 5, the film thickness has reached an equilibrium value much earlier. Therefore, 

the mass of water that had evaporated from the film is diffusing to larger z values at 

later times. Due to presence of constant far field concentration condition (desiccant) 

equilibrium concentration is reached at all z values eventually. A desiccant sustains a 

particular state of dryness and in the present case, constant field condition is 

maintaining relative humidity of     = 0.2498 at z = L, hence the analogy of    to 

desiccant. This agreement between theoretical results and simulation results indicate 

that the equations (2.11) – (2.12) along with boundary conditions (2.13) – (2.14) and 

initial conditions (2.15) – (2.16) model the diffusion of vapor well.  
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Chapter 3 

MOVING BOUNDARY PROBLEM 

In chapter 2, evaporation of film was simplified by assuming that thickness of 

the film was very small and hence was neglected, therefore, the domain of diffusion 

was fixed to be      .  

Now, the assumption of negligible thickness is relaxed and hence the domain 

of diffusion is not fixed.  The downward movement of air-water interface (decrease in 

film thickness) due to evaporation of water molecules changes the domain of diffusion 

with time therefore the domain of diffusion becomes         , where      is the 

film thickness as a function of time. heq is the equilibrium thickness of the film. 

 

 

Figure 10: Schematic showing the domain of vapor diffusion,         , far field 

humidity   , and concentration profile        along the z-coordinate.  
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To simplify the problem of moving domain of diffusion, a new variable,   was defined 

such that the domain becomes fixed again i.e.        . Therefore, concentration of 

vapor becomes a function of   and t (3.2), instead of   and t. 

 

 

      
      

      
 

 

(3. 1) 

 

 
        ̃      

 

(3. 2) 

 

Incorporation of equality presented in (3.2), equation (2.1) – (2.2) were 

modified to (3.3) – (3.4) and using London van der Waals model of conjoining 

pressure BC’s (2.13) – (2.14) and IC’s (2.15) – (2.16) were modified to (3.5) – (3.6) 

and (3.7) – (3.8) respectively. Equation (3.4) is valid at   = 0 i.e. the interface of the 

film. Thus, the equations governing the evolution of film thickness becomes,  

PDE’s 

 

 

 

  ̃

  
  

 

      
  
   ̃

   
  

     

     
   
  ̃

  
 
  

  
 

 

(3. 3) 

 

 

  ̃

  
           

  

  
 

 

(3. 4) 

Highlighted terms in (3.3) – (3.4) are the additional terms, got after modifying 

equation (2.1) – (2.2) through chain rule (since     ). 
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BC’s 

 

 
 ̃          

 

(3. 5) 

 

 
 ̃        ̃       ̌   ⁄  

 

(3. 6) 

 

IC’s 

 

 
 ̃        ̃         ̌   

 ⁄  

 

(3. 7) 

 

 

 ̃           

              

 

(3. 8) 

 

3.1 Numerical approximation 

Again, the system of equation (3.3) – (3.4) was solved using method of lines, 

discretizing the z-space with finite differences. In this case,       ,    is the grid 

point index and j = 0, 1, 2 ...n and    is the spacing between grid points. n is the total 

number of grid points chosen. 

Derivatives at    were approximated using the second-order forward difference 

formula to estimate 
  ̃     

  
, centered difference formula to approximate 

  ̃

  
 and  three-
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point centered difference formula for the second derivative 
   ̃

   
. Hence equation (3.3) 

and (3.4) were approximate as equation (3.9) and (3.10) respectively, 
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 j = 1, 2, 3 ...n-2 

 

(3. 9) 

 

 

 

  

  
   

 

     
 0 
  ̃    ̃    ̃ 

   
 1 

  j = 0 

 

       (3. 10) 

 

Also, the 
  

  
 term in equation (3.3) was replaced with equation (3.10) so that 

the equation (3.9) becomes an explicit ODE instead of implicit ODE. 

At t = 0, the derivative at the air/film interface      gives bad results 

because of the sudden jump in the IC from  ̃        ̃     to  ̃          , hence, 

in order to smooth out the transition from  ̃  to     at t = 0, the IC at all the grid 

points in the domain except     i.e. equation (3.8) was modified as, 

 

  ̃          ̃          
    
         (3. 11) 
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Equation (3.9) – (3.10) along with equation (3.5) – (3.8) and (3.11) were solved in 

MATLAB using ODE 45. 

3.2 Concentration profile across the domain as a function of time 

The concentration gradient drives the diffusion of water vapor from lower   

values to higher   values. Thus, at t = 150, concentration of the vapor at the interface 

has reached a value of ~ 0.35 as compared to value of 1 at t= 0. This is represented by 

the peak, i.e. steep concentration gradient is not present at t = 150 as it was present 

during earlier times. The constant concentration value of     0.2498 at   = 1 acts as 

desiccant, therefore maintaining the concentration gradient for diffusion to occur. 

Cross-sections of the figure 11 at different time points would yield curves similar to 

presented in figure 12 for L = 20. 

 

 

Figure 11: 3-D representation of the evolution of concentration profile with time 

across the domain 0 ≤    ≤ 1. Domain length in terms of z-coordinate is 

L=20. End time for simulation was t = 150. 
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Both figures 12 and 13 depict the concentration of vapor as a function of   that 

decrease with increase in time. This indicates the diffusion of vapor to larger   ’s and 

eventually concentration profile starts to even out. Also, analyzing figure 12 and 13, it 

can inferred that equilibrium concentration across all   is achieved faster when L = 5. 

This is because when domain is small, the constant far field humidity    condition 

(acting like a desiccant) is much closer to the film, and thus a larger high 

concentration gradient is maintained at early times. Since rate of diffusion is 

proportional to concentration gradient, the rate of diffusion is faster when L = 5, hence 

equilibrium concentration at all   values is approached faster.  

 

 

Figure 12: Evolution of concentration profile across the domain 0 ≤    ≤ 1 with time. 

L = 20. 
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Figure 13: Evolution of concentration profile across the domain 0 ≤    ≤ 1 with time. 

L = 5. 
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3.3 Comparison with fixed boundary condition 

In figure 14, the blue line is the solution for fixed boundary condition 

(diffusion domain 0 ≤ z ≤ L). The green line depicts solution for moving air-water 

interface condition (h (t) ≤ z ≤ L). Red line is the analytical solution. For both fixed 

boundary condition and moving boundary condition van der Waals model of 

conjoining pressure was used ( ̃     ̌  
 
 . Figure 14 indicates that with the 

assumption of negligible thickness, the air-water interface goes down faster and the 

film thickness approaches equilibrium value earlier as compared moving boundary 

condition. Solutions are very close at later times since in both conditions same 

equilibrium thickness value is achieved. The solutions are different initially hence the 

incorporation of moving interface and corresponding development of modified PDE’s 

would give accurate depiction of the evolution of film thickness since one of the 

assumptions of negligible thickness is no longer valid. The analytical solution does not 

take into account conjoining pressure hence an equilibrium thickness value is not 

observed and the film completely evaporates.  
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Figure 14: Evolution of film thickness with time. Blue line depicts solution for fixed 

boundary condition. Green represents solution for moving air-water 

interface condition. Red line represents the analytical solution. 

In figure 15, initially (t = 0 and t = 1) the concentration profile doesn’t seem to 

be different for either fixed boundary or moving boundary case as concentration 

profile for the moving boundary case just seem to be shifted to the right by the amount 

equal to the thickness of the film. The difference in profiles are observed after the film 

reaches equilibrium thickness of heq = 0.1184 i.e. after t = 7.50. For t = 7.50 and t = 

37.50, the vapor hasn’t quite reached towards the end of the domain (e.g. z = 19) in 

both cases, but the z values to which vapor has diffused the concentration is higher in 

the case of moving boundary as compared to fixed boundary. The vapor has diffused 

to the end of the domain for t = 75 and t = 150 and again concentration of the vapor is 
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higher at each z coordinate for the moving boundary condition though the difference 

between concentration at each z value seems to be decreasing with time.  

 

Figure 15: Comparison between concentration profile for fixed boundary condition 

and moving boundary condition across the domain at different time 

points.  L = 20. Red line represents the fixed domain and blue line 

indicates the moving domain. 
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Figure 16: Fixed boundary, t = 150, L = 20              Moving boundary, t = 150, L = 20 

 

Analyzing figure 14, for the fixed boundary problem, the rate of decrease in 

film thickness is faster for the fixed boundary problem as compared to the moving 

boundary problem. Also, from figure 16, the slope 
  

  
      is steeper in case of fixed 

boundary problem as compared to the moving boundary problem. These results are in 

good agreement with the mass conservation condition at the interface, 
  

  
      = 

  

  
 

indicating that solution for both fixed boundary problem and moving boundary 

problem are indeed correct. Also, these results suggest that diffusion field has 

extended further into the domain in case of moving boundary problem as compared to 

fixed boundary problem, hence higher vapor concentration at all z values within the 

diffusion field for the moving boundary problem.  This is in agreement with the results 

presented in figure 15. 
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Chapter 4 

EVAPORATION WITH FLUID MOTION INSIDE THE FILM 

 

Figure 17:  Schematic showing the uneven air-film interface, film thickness        as      

function of x-coordinate and time and evaporation rate at the film 

surface       . 

In previous chapters, mathematical models were developed based on the 

assumption that the thin film was flat and there was negligible fluid motion present. 

This chapter deals in development of models for the evaporation of Newtonian fluid 

thin film; when fluid motion is present as well as when deflection from the flat plane 

(air-water interface) is weak, i.e. small wrinkles are present in the thin film. The tear 

film interface is not flat, therefore incorporation of wrinkled air-water interface in the 

model provides better resemblance to real thin films. Research work done by Sultan et 

al. 2004 
[4]

 was consulted for this section (4.2). 

In section (4.1) we set out to derive lubrication model which related film 

thickness with fluid motion and evaporation rate. Due to presence of fluid motion the 

derivation was carried out using the principles of fluid dynamics.  Lubrication theory 
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was used to eliminate terms from the non-dimensionalised  Navier-Stokes equations, 

boundary stresses and kinematic equation and eventually lubrication model was 

derived. 

 Since lubrication model includes a term for evaporation rate, hence exercise of 

deriving the analytical expression of evaporation rate was carried out in section (4.2). 

For this purpose research work done by Sultan et al. 2004 was revisited.  They wanted 

to study the stability of an evaporating thin film i.e. when evaporation induced flow in 

the film causing the wrinkles on the air-water interface 
[4]

. With a series of 

approximation, external diffusion field was reduced to vapor concentration terms at 

the air-water interface. Eventually a single equation relating evaporation rate to film 

thickness was obtained which could then be substituted in the lubrication model for 

evaporation rate.  In the present research we are revisiting Sultan et al. 2004 work and 

are correcting it and explaining it.  

4.1 Lubrication model 

The motivation for deriving this model was to have an equation that related 

evaporation rate with film thickness and fluid motion.  

For a Newtonian fluid, the x-momentum and y-momentum Navier-Stokes 

equations are given by (4.1) and (4.2) respectively.  
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 33 

Non-dimensionalization of Equations (4.1) and (4.2) along with non-

dimensionalization of other equations later in this section is carried out by using the 

following scales: 

                                       

    
  
 
                

  

  
  

Where variables without superscript  ) are the non-dimensionalised variables. For thin 

films, thickness of the film is much smaller as compared to the length of the film, 

therefore, 
  

  
   , and     . Hence, after non-dimensionalization of (4.1) and (4.2), 

all the terms with coefficients on the order of   were eliminated resulting in equation 

(4.3) and (4.4) respectively.  

Additionally, using the incompressibility assumption (density is constant), the 

continuity equation (conservation of mass), 
  

  
        ⃑     

is reduced to, 

    ⃑     

non-dimensionalization of which, gave equation (4.5).  

 
         

 

(4. 3) 

                                      (4. 4) 

 

 
                                   

 

(4. 5) 

Here, u is the x-component and v is the y-component of the velocity of the fluid.                                  



 34 

4.1.1 Boundary conditions 

There are two types of stresses acting at the air-water interface,             ; 

Normal boundary stress (     and tangential stress (4.7). Since it is assumed there is 

no air flow outside the film hence, tangential stress is equal to 0. 

  ̂      ̂         
(4. 6) 

 

                           ̂      ̂      (4. 7) 

Where, 

 

 ̂  
 

√     
 
 (
   
 

) and    ̂   
 

√     
 
 (
 
  
*  

 

(4. 8) 

 

is obtained from the mathematical definition of unit normal vector and unit tangential 

vector respectively.  

 

T is the stress tensor and K is the curvature of the interface  

 

      (
   

     
     

     
   

*   (
 
 
    
 
 
*   (4. 9) 

   

 
   

   

         
 
 ⁄
  (4. 10) 

 

The curvature of the interface K represents how fast the curve changes direction at a 

given point, therefore, curvature of the interface can be found at a particular x-value 

and time by evaluating K at that particular value of x and t.   represents surface 
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tension of the air/film interface and the product     is the pressure due to surface 

tension or “capillarity”.  

Both equations (4.6) and (4.7) were non-dimensionalised to give (4.11) and (4.12) 

respectively. 

 
            

   

     
 (4. 11) 

                                           (4. 12) 

 

Moreover, Kinematic equation (4.13) represents the mass balance at the air-

water interface. 

                           (  ⃑     ⃑  )  ̂   (4. 13) 

Where,  

                   ⃑   = (
 
 
) and  ⃑   (

 
  
* (4. 14) 

 

    is the evaporative flux,   is the density of the water,  ⃑   is the velocity of the fluid 

and  ⃑   is the velocity of the interface. 

 

Non-dimensionalization of (4.13) with scale for    being         , gives, 

                (4. 15) 

  is the scale for the y component of the velocity ( ) 

 

Hence at    , 

 

         

     

               

(4. 16) 
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At    , from no slip assumption, 

 
      

 

(4. 17) 

                                       

4.1.2 Derivation of Lubrication equation 

From equation (4.4),    is a function only of   and    in the liquid, hence  

          holds throughout the liquid. Therefore, equation (4.11) was differentiated 

wr.t to   and equation (4.3) was integrated twice which led to (4.18). 

            (
 

 
       * (4. 18) 

 

 

Further solving equation (4.5) and substituting for         terms in the 

Kinematic equation (4.15), Lubrication equation (4.19) was found which relates film 

thickness with fluid motion with evaporation rate. 

Substituting for   from (4.18) into (4.19) and integrating with respect to y gives, 

 

       
 

 
         

      
 (4.20) 

 

Equations (4.19) – (4.20) relate evaporative flux    with film thickness       . 

 

         
 

  
∫  

 

 

       
 (4.19) 
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4.2 Expression for evaporation rate  

 

Figure 17: The air is not saturated with vapor. Concentration of vapor is function of 

     and    

 In chapter 2 and 3, it was assumed that film thickness was independent of the 

x – coordinate, but now a two dimensional system is considered and film thickness is 

no longer independent of x-coordinate i.e.       . Concentration of vapor is function 

of space (x-coordinate and z-coordinate) and time i.e.         . The gas phase is not 

saturated with vapor. Evaporation is limited by diffusion of vapor in the gas phase. 

Again, convective transport of water is ignored as in chapter 3 based on the 

assumption that gas phase speed is very small in controlled environments such as lab 

under at standard temperature (25
0
C) and pressure (1 atm). Also, in section (4.1) 

lubrication model (4.19) was developed which involves evaporation rate  , therefore 

an analytical expression for the evaporation rate   is needed. This section deals with 

obtaining this expression. 

The evaporation velocity of water vapor, 10
-9

 ms
-1

, is very small as compared 

to diffusion velocity, 10
-5

 ms
-1

 under standard temperature and pressure (ref.4), hence 

quasi-static diffusion is considered i.e.
  

  
  ,  Thus, diffusion equation for two 

dimensional system is given by equation (4.22).  In order to maintain condition of 
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non-saturation of vapor phase, a constant diffusion rate is assumed at       (4.23). 

Since the film thickness is small, computed to its horizontal extent the position of the 

interface            is scaled by         where        ⁄  and        ~ 1. The 

vapor concentration                 at the air-water interface now has dependency on 

the small parameter   where     (    ). Since concentration of the water vapors in 

this mathematical problem exhibits dependence on the small parameter  , thus, 

according to perturbation theory, solution Taylor expanded in   is assumed for        

(4.21). Further, Non-dimensionalised concentration at the interface is given by 

equation (4.24) 

 

                               (4. 21) 

Hence the PDE and the corresponding BC’s are, 

            PDE 

 

   

   
  

   

   
   

 

(4. 22) 

BC’s 

 

  

  
               

 

(4. 23) 

  (       )    (4.24) 

 

Space variable z is scaled by   , vapor concentration is scaled through 

following equation. 

       (
    
 

*   
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 Where     is the vapor concentration at the air-film interface.    is the 

characteristic evaporation rate specific to a liquid under reference conditions. 

Characteristic evaporation rate can be calculated from evaporation velocity 

(    specific to a particular liquid and density of that liquid (   ), (    
  

  
 .  

 

Now, Taylor expanding  (      ) about z = 0, substituting z =   (    ) and 

applying BC (4.24) led to, 

 
    ∑∑    

  

 
       

  
 
    
   

         (4.25) 

For convenience, from here onwards dependency on t will not be explicitly 

shown. Substituting perturbation expansion (4.21) for   in (4.25), 
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 (    )- 
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(4.26) 

 

Substituting equation (4.21) into BC (4.23) and matching powers of     , 

                                                 ,     

Then, Equating each    terms in (4.26) to 0,  

 

   (    )   -     
   

  
 (    )      (4.27) 
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       1       

 

    

   
  and  

    

   
  are eliminated since       . 

 

Taking Fourier transform of   (    ) in equation (4.27) with respect to x-space 

and using BC’s (4.23-4.24) gives, 

                 [  ]  
     (4.28) 

Where, i = 1, 2 and 3.  

 

 x-Fourier transform is used here to transform mathematical function of x-space 

       into a new function       . Any        can be represented by summation of 

sinusoidal waves of different frequencies therefore Fourier transform generates a 

function        in the k space which is the plot of amplitude of the real part of 

sinusoids and the imaginary part of the sinusoids as a function of   . The x-Fourier 

transform can be defined as  

 

 [      ]             
 

  
∫               

 

   [      ]           
 

  
∫               
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Taking x-Fourier transform of equation (4.22) gives                    . 

Where           [       ]    and taking x-Fourier transform of         in 

equation (4.27) gives     . Hence, now taking inverse transform of         

gives        . Here n = 1, 2, 3 and     is the inverse Fourier transform. 

 

Hilbert transform helps in converting  (    ) at the free boundary to 

  

  
 (    ) at the free boundary. This helps in determination of evaporation rate. In the 

present research thorough study on the properties of Hilbert transform was not done 

but, there was substantial use of the property, 

         [ ]    
 

  
 [ ]  

in order to obtain equation (4.25). 

 

 

             (         [ ])   

 

              4      . [  
 

  
 [ ]]/5   

               

(

 
 
      ( [ 6 

 

  
 [  

 

  
  [ ]]7],

)

 
 

 

    (      . 0
  

 
    1/+ 

(4.29) 

 

Thus, equation (4.29) gives the coefficients   (    ) in the equation (4.21). 

Hence solution for  (    ) has been deduced which has dependence on film thickness 

       up to       . 
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Now, the evaporation rate J is given by 

 

       ̂             
         

√        
              

 (4.30) 

 

 

√          is Taylor expanded to *  
 

 
     

        +.    represents 
  

  
.        

in the representation of  ̂ is replaced by            is the gradient of c and its dot 

product with unit normal vector,  ̂  evaluated at point z =  , gives the directional 

derivative i.e. rate of change of  (    ) in the direction of unit normal vector  ̂. Then, 

equation (4.21) is substituted in place of c in the expression of J. 

 

 

   0   
    

 

 
      1 { 

    
  

       

    [
    
  

            
   
  

       ]

     [
    
  

            
   
  

       ]

    [
    
  

           
   
  

        ]

       } 

 

(4.31) 

 

In (4.31),    
   

  
         , since       , Further each 

   

  
  term in (4.31) is 

Taylor expanded about z = 0 corresponding to the order in  . n = 0,1,2,3.  

 



 43 

 

   0  
    

 

 
      1 2 

   
  

      

   0 
   
  

        
    
   

       1

    0 
   
  

         
    
   

        
  

 
  
    
   

     
   
  

       1  

     0 
   
  

         
    
   

      

   
  

 
  
    
   

       
  

 
 
    
   

      

     
 

  
( 
   
  

*           
   
  

      1        3 

(4.32) 

 

Again,       , therefore the terms  
    

   
 , 
  

 
  
    

   
, and 

  

 
 
    

   
 in (4.32) are equal 

to 0. 

 Substituting   (    ) from equation (4.29) into equation (4.32) and 

simplifying equation (4.32), gives 
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(4.33) 

 

Equation (4.33) is the complete expression for the evaporation rate   . Sultan et 

al.
 [4]

 chose to set the    = 1 in the expression for evaporation rate provided in their 

research paper, which is not correct because using the assumption of    being small in 

order to scale              and then setting   = 1 later on is not a valid mathematical 

approach.  

Also, the equation for J provided by Sultan et al. has incorrect addition and 

subtraction signs for some terms, incorrect terms and is also missing    
  

 

  

   
 [ ] 

and     
 

  
[ 

 

  
 [ ]] terms which has been added in the expression for evaporation 

rate above. Terms highlighted in red color in (4.33) indicate incorrect signs and/or 

incorrect terms. Terms highlighted in blue in (4.33) indicate missing terms. 
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 Hence equation (4.33) is the complete and newer version of the expression of 

evaporation rate   for the wrinkled air-water interface. 

The expression for evaporation rate   can now be substituted in to the 

lubrication model (4.19) thus, we have complete model that relates film thickness with 

evaporation rate and fluid motion. Using robust computational software, analytical 

solution for the evolution of film thickness using the lubrication model can now be 

obtained. 
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Chapter 5 

CONCLUSIONS 

The aim of the research was to model the evaporation of the tear film of the 

eye, which is the major cause of Evaporative DES of the eye, using mathematical 

models. Evaporation is regarded as diffusion limited process in development of these 

models. 

In chapter 2, research work done by Ajaev et al. 2010 on the evaporation of the 

thin film was referred to. The partial differential equations were developed under the 

assumption of negligible film thickness compared to the domain size of vapor 

diffusion, negligible fluid motion and flat interface. Concept of equal vapor and liquid 

chemical potential and London van-der Waals model for conjoining pressure was used 

to provide an equation for the concentration of the vapor at the air-water interface. 

These equations provided a good starting point for numerical simulation of evolution 

of film thickness and concentration profile across the domain as a function of time. 

The results in chapter 2 indicate that film thickness did approach an equilibrium value 

fast i.e. evaporation is suppressed early and the mass lost from the liquid diffuses 

along the z-coordinate. Nevertheless, steady state concentration at different values in 

the z-coordinate was reached after a long time and was equal to relative humidity 

chosen. This matched the theoretical prediction that steady state concentration should 

be equal to relative humidity of the atmosphere.  

In chapter 3, assumption of negligible thickness was relaxed, thus a new 

variable had to be introduced to scale the moving domain into fixed domain which 
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resulted in modified PDE’s, BC’s and IC’s. Numerical simulation demonstrated the 

effect of the length of the domain of diffusion on the concentration profile across the 

domain and it was concluded that having a desiccant (constant far field concentration) 

near the film decreased the time to reach steady state concentration across the domain. 

Also, the concentration profile and film thickness evolution for the moving domain 

problem were indeed different than the ones presented in chapter 2 where negligible 

thickness assumption was used in the simulation. The film thickness in the moving 

boundary problem approached equilibrium value slower than the film thickness in the 

fixed boundary problem (chapter 2). Concentration profile for fixed and moving 

domain also followed different trends compared to each other. Hence, solution to 

moving boundary problem provided a more accurate description for the evaporation of 

the thin film.  

In chapter 4, fluid motion and wrinkled air-water interface were taken into 

account and expression for evaporation rate provided by Sultan et al. 2004 was 

derived again. First, Lubrication model was developed by non-dimensionalizing 

Navier-Stokes equations and using the equations for boundary stresses. The derived 

Lubrication model gave relation between fluid motion, film thickness and evaporation 

rate. Later, expression for the evaporation rate was deduced by solving the two- 

dimensional quasi steady state diffusion problem with constant diffusion rate at 

infinity in the z-coordinate. This expression of evaporation rate was then compared 

with the one provided by Sultan et al. and it was found that the expression provided by 

Sultan et al. was missing epsilon,   as well as was missing certain terms.  Thus, a 

newer accurate version of evaporation rate has been provided in the chapter 4. 
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Chapter 6 

APPENDIX 

6.1 Code used for numerical simulation (Ch-2 and Ch-3) 

 
function [t, f] = test4UpDate(nx,t_f,Lf,W) 

  
% By Vikramjit Singh Rathee and Dr. Richard Braun. 

  
% -------------------------------------------------------------------

----------------------- 

  
% THIS IS UPDATED AND NEW TEST CODE. SO test.m  AND test2.m WON'T BE 

NEEDED NOW 

  
% test3.m IS JUST A TEST CODE FOR TESTING FIXED CONDITION UNDER TWO 
% DIFFERENT CIRCUMSTANCES ( ZETA = Z/L AND JUST Z) 

  
% THIS CODE PRODUCES ALL THE PLOTS OF evap.m AND evap2.m, HENCE THESE 

CODES 
% WON'T BE NEEDED ANYMORE. 

  
% H is changed to C_H for convienience 

  
% THK is abbreviation for thickness 

  
close all 

  

  

  

  
% This is for moving boundary problem 
% nx is the spacing 

  

  

  
% Initialization 

  
    h0 = 1;  % refer to figure in Ajaev 
    ep = 0.001; % given in ajaev figure 
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    C_H = 1/4 * exp( - ep / h0^3 ); % constant far field 

concentration (1/4 the initial conc. at interface), a constant number 

= 0.2498 
    h_inf = (-ep/log(C_H))^(1/3); % equilibrium thickness 
    % total nx+1 grid points for nx spacing 
    dx = 1 / (nx+1); 
    tspan = [0 t_f]; % giving time span with time steps. 

     
   % Concentration is non-dimensionalised. 

    

    
%Initial Conditions 
    f0 = ones(nx + 1, 1); 
    f0(1) = h0;   % Initial height of the film. 
    c0 = exp( -ep / h0^3 ); 
    for i = [2:(nx+1)]   
        f0(i) = (c0-C_H)*exp((-i*dx)/0.05)+C_H;  
        % conc. at all grid points (except z=0) at t=0. 
        % exp function so as to make smooth curve of intial points 

with 
        % i*dx, so that intial condition does not drop from c0 to C_H 
        % directly making it not smooth. 
    end 

     

     
% System of ODES FOR MOVING CONDITION 
    function dt_f = fdot(t,f) 

         
        h = f(1); 
        c = f(2:end); 
        dt_c = zeros(nx,1); 
        dt_f = zeros(nx+1,1); %Output of this function; 1 column. 

         
        c0 = exp( -ep / h^3 ); % conc. at the interface., model for 

conjoining pressure 
                               % due to which equilibrium thickness 

is 
                               % reached 
        cf = C_H; % which is a constant value. 

         

         
        % ODE for h & c using central difference formula 

         
        dt_h = 1/(Lf-h)*(-c(2)+4*c(1)-3*c0)/(2*dx); 

  

         
        % Finite Differences discritized space, c 
        % Boundary, c 
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        dt_c(1) =  1/(Lf-h)^2 * ( c(2) - 2* c(1) + c0 ) / dx^2 - 

((c(2)-c0)/(2*dx)) * ((-c(2)+4*c(1)-3*c0)/(2*dx)) * (((1*dx)-1)/(Lf-

h)^2); 
        dt_c(nx) = 1/(Lf-h)^2 * ( cf - 2*c(nx) + c(nx-1) ) / dx^2 - 

((cf-c(nx-1))/(2*dx)) *((-c(2)+4*c(1)-3*c0)/(2*dx))* (((nx*dx)-

1)/(Lf-h)^2); 

         

         
        % Middle, c 
        for i = [2:(nx-1)] 
            dt_c(i) = 1/(Lf-h)^2 * ( c(i+1) - 2*c(i) + c(i-1) ) / 

dx^2 - ((c(i+1)-c(i-1))/(2*dx)) *((-c(2)+4*c(1)-

3*c0)/(2*dx))*(((i*dx)-1)/(Lf-h)^2); 
        end 

         
        dt_f = [dt_h;dt_c]; % 1st row (1st grid) is the ODE for h and 

rest rows (grids) are ODE's for conc. 
    end 

  

  

     

     

     
% SOLVING ODE for MOVING condition   
    myTol = odeset('RelTol',1e-5,'AbsTol',1e-6); 
    [t2,f] = ode45(@fdot, tspan, f0,myTol); 
    [t_moving,f_moving] = ode45(@fdot, [0 1 t_f/20 t_f/4 t_f/2 t_f], 

f0,myTol); 
    h_moving = f(:,1); 

  

     
if W == 0 || W == 3 

     
% PLOT OF CONC. MOVING 
% "discrete" takes into account only the conc. values at specified 

time points 
    c0 = exp( -ep ./ f(:,1).^3 ); 
    c0_discrete_moving = exp( -ep ./ f_moving(:,1).^3 );  
    cf = C_H*ones(size(c0)); % a column vector of 0.2498 of size c0. 
    cf_discrete_moving = C_H*ones(size(c0_discrete_moving)); 
    f_a_moving = [c0,f(:,2:end),cf]; % Matrix of concentrations, each 

column for different grid point and each row for different time 
    f_a_moving_discrete = 

[c0_discrete_moving,f_moving(:,2:end),cf_discrete_moving]; 

    

     
% CREATING a distance positioning vector from 0 to 1, i.e. zeta 
% new coordinate system 0<zeta<1, see linspace command.  
X = linspace(0,1,length(f0)+1); 
    % +1 cause need coordinate for cf too 
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    % condensing all the grid points between 0 and 1. 

  
z_new = linspace(0,Lf,length(f0)+1); 

  
% Z coordinates at different t dependent upon zeta and h(t) 
Z_moving_0 = (X*(Lf-f_moving(1,1)))+ f_moving(1,1); 
Z_moving_one = (X*(Lf-f_moving(2,1)))+ f_moving(2,1); 
Z_moving_twenty = (X*(Lf-f_moving(3,1)))+ f_moving(3,1); 
Z_moving_fourth = (X*(Lf-f_moving(4,1)))+ f_moving(4,1); 
Z_moving_half = (X*(Lf-f_moving(5,1)))+ f_moving(5,1); 
Z_moving_end = (X*(Lf-f_moving(6,1)))+ f_moving(6,1); 

  
% Plot of CONC. VS ZETA for different TIMES 
  figure 
 plot(X,f_a_moving_discrete(2,:),'g-','Linewidth',2); 
 hold on 
 plot(X,f_a_moving_discrete(3,:),'b-','Linewidth',2); 
 hold on 
 plot(X,f_a_moving_discrete(4,:),'k-','Linewidth',2); 
 hold on 
 plot(X,f_a_moving_discrete(5,:),'c-','Linewidth',2); 
 hold on 
 plot(X,f_a_moving_discrete(6,:),'m-','Linewidth',2); 
 hold off 
 legend( sprintf('time = %4.2f', t_f/20), 'time = 10', sprintf('time 

= %4.2f', t_f/4), sprintf('time = %4.2f', t_f/2), sprintf('time = 

%4.2f', t_f)) 
 xlim([0 1]) 
 xlabel('$\zeta$','Interpreter','latex','FontSize',12) 
 ylabel('c($\zeta$,t)','Interpreter','latex','FontSize',12) 
end 

  
if W == 0 
% Plot of h(t)-h(infty)  
 figure 
 semilogy(t2,abs(f(:,1)-h_inf)) 
 xlabel('time t','Interpreter','latex','FontSize',12) 
 ylabel('h-h$\infty$','Interpreter','latex','FontSize',12) 
end 

  
if W == 0 
% 3D plot MOVING 
 figure 

  

  
    waterfall(z_new',t2,f_a_moving) 

     
%       xlabel('$\zeta$','Interpreter','latex','FontSize',12) 
%   ylabel('t') 
%       zlabel('c($\zeta$,t)','Interpreter','latex','FontSize',12) 
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        xlabel('z','Interpreter','latex','FontSize',12) 
    ylabel('t') 
        zlabel('c(z,t)','Interpreter','latex','FontSize',12) 
 end 

     

     

   

         

         

         

         

         

         

         

         

         

         

         

        

         
%FIXED CONDITION     

  

     
% System of ODES for FIXED 

  
    function dt_f2 = fdot2(t,f) 
        % Initialization 
        dt_f2 = zeros(nx+1,1); 
        c0 = exp( -ep / f(1)^3 ); % conc. at the interface. 
        cf = C_H; % which is a constant value. 

         
        % Forward Difference, h 

         
        dt_f2(1) = 1/(Lf)*(-f(3)+4*f(2)-3*c0)/(2*dx); 

         
        % Finite Differences discritized space, c 
        % Boundary, c 
        dt_f2(2) =  (1/(Lf^2))*( f(3) - 2* f(2) + c0 ) / dx^2; 
        dt_f2(nx+1) = (1/(Lf^2))*( cf - 2*f(nx+1) + f(nx) ) / dx^2; 

         

         
        % Middle, c 
        for i = [3:(nx)] 
            dt_f2(i) = (1/(Lf^2))*( f(i+1) - 2*f(i) + f(i-1) ) / 

dx^2; 
        end 
    end 
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% Solve ODE for FIXED 
    [t1,f] = ode45(@fdot2, tspan, f0,myTol); 
    [t_fixed,f_fixed] = ode45(@fdot2, [0 1 t_f/20 t_f/4 t_f/2 t_f], 

f0,myTol); 
    analytical = 1 + 2 / sqrt(pi) *( C_H-1)*sqrt(t1); 
    h_fixed = f(:,1); 

     

     
if W == 0 || W == 1 
% Creating CONC. Matrix 

  
    c0 = exp( -ep ./ f(:,1).^3 ); 
    c0_discrete_fixed = exp( -ep ./ (f_fixed(:,1)).^3 ); % contains 

c0 at fixed time points 

     
    cf = C_H*ones(size(c0)); % a column vector of 0.2498 of size c0. 
    cf_discrete_fixed = C_H*ones(size(c0_discrete_fixed)); 

     
    f_a_fixed = [c0,f(:,2:end),cf]; % Matrix of concentrations, each 

column for different grid point and each row for different time 
    f_a_fixed_discrete = [c0_discrete_fixed, f_fixed(:,2:end), 

cf_discrete_fixed]; % this makes sure that at end point conc. at all 

times 
                                                                                   

% regardless of the Lf is H 

    

  

  
% Creating Z-Coordinate 
X_fixed = linspace(0,1,length(f0)+1); % +1 cause need coordinate for 

cf too 
X_new = Lf.*X_fixed; 

  
% CONC. plot at end time 
  figure 
  plot(X_new,f_a_fixed(end,:),'b-','Linewidth',2) 
  xlabel('z','Interpreter','latex','FontSize',12) 
  ylabel('c(z,t)','Interpreter','latex','FontSize',12) 
  title(sprintf('time = %d', t_f)) 

  
end   

  

  

  
if W == 1   
% 3D Plot 
 figure 
    waterfall(X_new',t1,f_a_fixed) 
        xlabel('z','Interpreter','latex','FontSize',12) 
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    ylabel('t') 
        zlabel('c(z,t)','Interpreter','latex','FontSize',12) 
end 

         

  

         

         

         

         

         

         

         

         

         

         

         

         
if W == 0 || W == 1 
% For plotting c(z,t) vs. z comparison for Moving and Fixed boundary  
 figure    
 

subplot(3,2,1),plot(X_new,f_a_fixed_discrete(1,:),'r',Z_moving_0,f_a_

moving_discrete(1,:),'b-',[f_moving(1,1) f_moving(1,1)],[0 1],'k--

',[0 Lf],[C_H C_H],'--g','Linewidth',2) 
 xlabel('z','Interpreter','latex','FontSize',12) 
 ylabel('c(z,t)','Interpreter','latex','FontSize',12) 
 title(sprintf('time = 0 and L = %g', Lf)) 
 legend('Domain 0 to L','Domain h to L','Tear film THK','Relative 

humidity','location','best') 

  
 

subplot(3,2,2),plot(X_new,f_a_fixed_discrete(2,:),'r',Z_moving_one,f_

a_moving_discrete(2,:),'b-',[f_moving(2,1) f_moving(2,1)],[0 1],'k--

',[0 Lf],[C_H C_H],'--g','Linewidth',2) 
 xlabel('z','Interpreter','latex','FontSize',12) 
 ylabel('c(z,t)','Interpreter','latex','FontSize',12) 
 title(sprintf('time = %d',1)) 

  
 

subplot(3,2,3),plot(X_new,f_a_fixed_discrete(3,:),'r',Z_moving_twenty

,f_a_moving_discrete(3,:),'b-',[f_moving(3,1) f_moving(3,1)],[0 

1],'k--',[0 Lf],[C_H C_H],'--g','Linewidth',2) 
 xlabel('z','Interpreter','latex','FontSize',12) 
 ylabel('c(z,t)','Interpreter','latex','FontSize',12) 
 title(sprintf('time = %4.2f', t_f/20)) 

  
 

subplot(3,2,4),plot(X_new,f_a_fixed_discrete(4,:),'r',Z_moving_fourth
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,f_a_moving_discrete(4,:),'b-',[f_moving(4,1) f_moving(4,1)],[0 

0.8],'k--',[0 Lf],[C_H C_H],'--g','Linewidth',2) 
 xlabel('z','Interpreter','latex','FontSize',12) 
 ylabel('c(z,t)','Interpreter','latex','FontSize',12) 
 title(sprintf('time = %4.2f', t_f/4)) 

  
 

subplot(3,2,5),plot(X_new,f_a_fixed_discrete(5,:),'r',Z_moving_half,f

_a_moving_discrete(5,:),'b-',[f_moving(5,1) f_moving(5,1)],[0 

0.4],'k--',[0 Lf],[C_H C_H],'--g','Linewidth',2) 
 xlabel('z','Interpreter','latex','FontSize',12) 
 ylabel('c(z,t)','Interpreter','latex','FontSize',12) 
 title(sprintf('time = %d', t_f/2)) 

  
 

subplot(3,2,6),plot(X_new,f_a_fixed_discrete(6,:),'r',Z_moving_end,f_

a_moving_discrete(6,:),'b-',[f_moving(6,1) f_moving(6,1)],[0 0.4],'k-

-',[0 Lf],[C_H C_H],'--g','Linewidth',2) 
 xlabel('z','Interpreter','latex','FontSize',12) 
 ylabel('c(z,t)','Interpreter','latex','FontSize',12) 
 title(sprintf('time = %d', t_f)) 

  

  

  
% For plotting thickness of the film  
 figure  
 plot(t1, h_fixed,t2, h_moving,t1, analytical,'Linewidth',2) 
    ylim([0 1]) 
    xlim([0 10]) 
    legend('numerical solution (fixed boundary)','numerical solution 

(moving boundary)','analytical solution w/o conjoinning pressure,\Pi 

= 0','location','best') 
    xlabel('time t','Interpreter','latex','FontSize',12) 
    ylabel('Thickness of the film 

h','Interpreter','latex','FontSize',12') 
    title(sprintf('L = %d', Lf)) 

     
 figure 
 plot(t1, h_fixed,t1, analytical,'Linewidth',2) 
    ylim([0 1]) 
    xlim([0 10]) 
    legend('numerical solution (fixed boundary)','analytical solution 

w/o conjoinning pressure,\Pi = 0','location','best') 
    xlabel('time t','Interpreter','latex','FontSize',12) 
    ylabel('Thickness of the film 

h','Interpreter','latex','FontSize',12') 
    title(sprintf('L = %d', Lf)) 

  
end 
  end 
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