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ABSTRACT 

 

This study uses a choice experiment to measure the welfare impacts of 

electricity generated by natural gas from hydraulic fracturing. Our model estimates 

how proximity and location to drill sites and the Marcellus Shale impact willingness to 

pay. Our results from an Internet survey of New York State residents indicate that 

residents exhibit, on average, a negative willingness to pay for that electricity source. 

In addition, all subsamples of residents incur disutility on average, but those who live 

in counties within the Marcellus Shale have the greatest disutility. New York State 

residents’ mean WTP ranged from a decrease in their monthly electric bill of $22 to 

$48 depending on proximity and whether they resided in a county within the 

Marcellus Shale Play. For comparison, the average electric bill was $124, so the 

negative impacts of hydraulic fracturing are perceived to be substantial by New York 

State residents.
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Chapter 1 

INTRODUCTION 

Lauded as a domestic source of “cleaner” electricity but excoriated as 

environmentally dangerous, current policy debates about hydraulic fracturing reflect 

strong emotions. For the economist, however, little information exists about the 

benefits of hydraulic fracturing. Hydraulic fracturing has been used commercially as a 

means of extracting natural gas from shale formations since 1949 (Bateman 2010).  

However, new technological developments—specifically hydraulic fracturing coupled 

with horizontal drilling—have renewed commercial interest, and it is rapidly 

developing throughout various domestic and global shale plays.  The Marcellus Shale 

in the Northeast U.S. has attracted the most attention for its size and potential gas 

reserve (Arthur et al. 2008), but also for the population density.  

 

Hydraulic fracturing has been linked to a number of negative environmental 

externalities, including large water requirements during drilling, groundwater 

contamination from hydraulic fracturing chemicals, and a number of other concerns 

(NYS DEC 2011). Yet, natural gas has numerous positive environmental externalities 

and potential impacts on local economies as it is also the least harmful of the fossil 

fuels because: (1) it burns cleaner and emits a smaller fraction of carbon and 

particulates than coal and oil; (2) it provides a domestic source of energy (U.S. EPA 
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2007); and (3) may have large, positive impacts on local economies and employment 

(NYS DEC 2011).  Externalities from hydraulic fracturing, positive and negative, are 

market failures in which the private cost to energy companies are not equal to the cost 

that society bears. This inequality cannot be corrected without market interventions, 

such as subsidies or taxes.  Hydraulic fracturing is a case in which positive and 

negative externalities are both present; and therefore, achieving efficiency is extremely 

difficult, as it depends on the size of each externality. See appendix A for an extended 

background of the problem and summary of the positive and negative externalities 

associated with hydraulic fracturing.  

 

Without a large, systematic research undertaking, it is difficult to conceptualize 

how the external benefits and costs of increased hydraulic fracturing would substitute 

for those arising from the exploration and use of other energy sources.  Exploratory 

efforts are needed, simply, to enumerate the welfare impacts of increased hydraulic 

fracturing.  Direct benefits most likely accrue to owners and employees of energy 

exploration and distribution companies, as well as those who sell mineral rights.  

These use values are more easily quantified than the indirect impacts incurred by those 

who receive “energy independence” and air quality benefits and also those who value 

the ecosystem services that are impaired by hydraulic fracturing. In sum, hydraulic 

fracturing may have positive and negative net social benefits on households—even 

those households that are not directly affected by hydraulic fracturing itself.  This 

study is exploratory in that hypothesized net impacts are not known, a priori, and, 
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thus, a flexible examination is used to allow empirical testing for potential positive 

and negative economic effects.  To narrow the problem, this study focuses on the 

payment vehicle of household electricity, which can be supplied by natural gas from 

hydraulic fracturing, and restricts the sample to populations in and out of hydraulic 

fracturing counties in New York State.  

 

Economists use choice experiments to estimate the welfare effects of 

environmental quality changes with large nonuse components.  In recent years, a large 

number of green energy studies have used these methods, often with household 

electricity as the payment vehicle.  U.S. studies generally find that households are 

willing to pay a premium for electricity from green energy sources such as wind, solar, 

and biomass (e.g. Roe et al. 2001; Borchers et al. 2007; Scarpa and Willis 2010; 

Oliver et al. 2011; Susaeta, et al. 2011).  International studies find similar results in 

regards to consumers exhibiting positive WTP for green energy sources for electricity 

(Scarpa and Willis 2010; Oliver, et al. 2011; Gerpott and Ilaha 2010; Yoo and Kwak 

2009).  Menegaki (2008) provides a literature review of green energy valuation 

studies.  Choice experiments have also been used to measure energy sources that are 

more traditional but have green and alternative energy characteristics (Solomon and 

Johnson 2009; Giraldo, et al. 2010; Sanders, et al. 2010; Jensen, et al. 2010; Aguilar 

and Zhen 2010; Johnson, et al. 2011). In addition to estimating benefits, choice 

experiments also estimate other attributes of green energy sources such as 

respondents’ distance from the energy site.  Studies show that welfare from green 
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energy varies with location (Krueger, et al. 2011; Ladenburg and Dubgaard 2009; 

Meyerhoff, et al. 2010; Bergmann, et al. 2008; Navrud and Braten 2007).  Similar 

results were found for active users (boaters near offshore wind) versus less active 

users (Ladenburg and Dubgaard 2009).  

 

We were not able to locate any existing choice experiments about hydraulic 

fracturing.  Studies do exist on natural gas, in general, as a fuel source, finding both 

positive and negative preferences.  Choice experiments have found that consumers are 

willing to pay a premium for domestic natural gas supplies for its energy security and 

reliability (Damigos, et al. 2009).  However, a choice experiment (Groothius et al. 

2008) and hedonic literature exists for welfare associated with the story of wind power 

(Heintzelman and Tuttle 2012; Koundari et al., 2009) and a few studies were located 

on natural gas. Literature  estimates that property values decrease as proximity to sour 

gas wells, wells containing an increased level of Hydrogen Sulfide (Boxall, et al. 

2005), and gas refineries increases (Flower and Ragas 1994).   

  

Although there is little evidence about the nonuse economic benefits of 

hydraulic fracturing, several recent non-economic examinations of hydraulic 

fracturing exist.  Studies show that hydraulic fracturing in local communities will have 

both positive and negative implications for jobs, revenue, cost of living, and the 

natural environment (Alter, et al. 2010; Williamson and Kolb 2011; Christopherson 

and Righter 2011).  A 2009 survey of landowners within 1,000 feet of active wells 
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suggests that economic impacts are about 23,000 new jobs and $3.2 billion dollars for 

that year for the state, less than what past studies had expected (Kelsey, et al. 2009). 

 

Economists use choice experiments to estimate the impacts on household 

utility of the various attributes that compose an environmental quality change.  This 

study is framed as estimating the welfare impacts of household electricity 

consumption generated from conventional fuel mixes versus an intervention where the 

mix shifts to natural gas from hydraulic fracturing. The hypothesis to be tested is 

whether mean willingness to pay (WTP) for electricity from hydraulic fracturing 

differs from conventional sources and, if so, whether it has a net positive or negative 

impact on welfare.  A second hypothesis is whether there is statistical heterogeneity in 

mean WTP for electricity from hydraulic fracturing.  The third and fourth hypotheses 

involve the effect of household proximity to hydraulic fracturing wells on WTP.  

Proximity is conceptualized as: (1) a measure of distance to drill sites; and (2) whether 

the household is located in a county within the shale region versus the remainder of 

New York State.  Proximity effects are examined because households near hydraulic 

fracturing are more likely to enjoy the direct use impacts and endure the disamenities.  

As with all of our hypotheses on WTP for electricity from hydraulic fracturing, we as 

researchers held no a priori beliefs about whether average net welfare impacts were 

positive or negative.   
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To the authors’ knowledge this is the first economic valuation study for 

electricity generated by natural gas extracted via hydraulic fracturing.  This next 

section of this article describes the economic model, framing of the valuation scenario, 

choice experiment, experimental design, sample, and estimation procedure. The third 

section presents the results of the estimation and welfare calculations.  The final 

section discusses the results in terms of policy and offers conclusions. 
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Chapter 2 

METHODS: CHOICE EXPERIMENT PROCEDURES 

2.1  Choice Experiment Instrument and Choice Model  

A survey instrument, “Willingness to Pay for Hydraulic Fracturing in New 

York State,” was designed specifically for this study to elicit residents’ WTP for 

changes to electricity costs associated with natural gas from hydraulic fracturing in the 

Marcellus Shale.  As seen in figure 1, the Marcellus Shale extends from western New 

York State (NYS) through Pennsylvania, Ohio and West Virginia, and is 

approximately 95,000 square miles (Arthur et al. 2008, 2009).  It is estimated to have 

168 – 516 trillion cubic feet of natural gas trapped, the approximate energy equivalent 

of 28-88 billion barrels of oil (NYS DEC 2010).  Enumeration occurred in May 2011, 

coinciding with a NYS temporary moratorium on new wells (Perkins 2011).  Although 

some wells had been dug and were active, no new horizontal hydraulic fracturing 

wells could be drilled. 
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1 
Counties selected for the survey are highlighted. Source: NYS GIS Clearinghouse 2007 

2 
Only the Marcellus Shale boundary is shown. Source: U.S. Energy Information Administration 2011b 

 

 

 

Figure 1: Map of New York State Counties Surveyed
1
 and the Marcellus Shale

2 
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A major challenge of this research was to connect local and regional hydraulic 

fracturing to household welfare in a way that applies to a large majority of households.  

As in several other green and conventional energy studies (Roe et al. 2001; Borchers, 

et al. 2007; Yoo and Kwak 2009; Zografakis, et al. 2010; Susaeta, et al. 2011; 

Damigos, et al. 2009), the WTP scenario selected was to alter household electricity 

bills.  The scenario is designed to mimic decisions about real life tradeoffs.  

Econometric analysis of respondent choices reveals the sample’s underlying utility for 

the environmental amenity/disamenity and trade-offs among its various attributes.  

Arrow et al. (1993) proved that contingent valuation techniques are a systematic and 

appropriate approach to measuring non-use values, a method that was held up in court 

systems. Standard choice experiment procedures are used to guide this stated 

preference valuation exercise, including reminding respondents that money spent on 

environmental quality changes could not be used for other expenditures, that their 

answers should be on behalf of their household, and that the payments would 

occur/accrue as changes to their utility bills. The choice experiment is based on the 

well-known random utility model, which assumes that utility can be modeled in 

separate observable and random components (Adamowicz et al. 1998; Boxall et al. 

1996; Hanley et al. 1998).  Although the random component is unobservable to the 

investigator, the model assumes that there is no systematic tendency in the random 

component that biases the estimated results.  Stated preference methods, such as the 

choice experiment used here, are critical tools for valuing environmental changes with 

large welfare impacts attributable to nonuse values (Hanley et al. 1998).  Choice 
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modeling allows for estimating the marginal contribution to utility from changes in 

attributes such as electricity cost and proximity to hydraulic fracturing wells. See 

appendix B for the economic theory of the RUM.  

 

In our experiment, respondents choose among three options: two hypothetical 

options for electricity and a status quo option.  The options include varying distance of 

drill sites from their household, the source of their household electricity, and a change 

to their monthly electric bill.  The status quo option was presented in every choice set 

and represents electricity consumption as it is now for the household. Figure 2 

presents an example of one of the survey choice sets. 
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Figure 2: Sample Survey Question 
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2.2  Experimental Design 

Environmental quality changes are expressed as different levels of 

electricity/hydraulic fracturing attributes.  The change to the electric bill was presented 

as a percent change to the respondents’ self-reported current average monthly electric 

bill: -25%, -10%, -5%, +5%, +10%, +25%, or +50%.  The respondents first reported 

their bill, and, then, viewed these levels as both the percent change and their new 

electric bill in dollars after the change.  The status quo alternative was the only time 

respondents viewed the level of “no change” in their electric bill.  The negative and 

positive percentage changes provide the flexible format for testing the hypothesis that 

electricity from hydraulic fracturing provides either a net amenity or disamenity.  In 

addition, by adjusting the current bill up or down by a percentage less than 100, the 

experimental design enables researchers to maintain a WTP format—a best practice in 

choice experiments—rather than introducing possibilities for willingness to accept 

compensation. See appendix F for a sample of the survey those who reside outside of 

the Marcellus Shale counties. 

 

Utility also is hypothesized to depend on the source of a respondent’s 

electricity and the distance of a drill site from the respondent’s home. The 

experimental design is shown in figure 3.  The source of electricity was presented as 

either “Natural Gas from Hydraulic Fracturing” in the non-status quo options or 

“Largely Fossil Fuels” in the status quo only.  For the non-status-quo options, the drill 

site distance from a respondent’s household was presented as a “near” or a “far” 
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option.  The specific distances (in miles) were dependent on whether the respondent 

resided in a county within the Marcellus Shale region or a county outside of the shale 

play.  If the respondent resided within a hydraulic fracturing county, the distances 

were selected to be either 1 mile or 20 miles, thus capturing those who would be most 

likely to incur the negative local impacts of hydraulic fracturing such as small 

earthquakes and water contamination.  The “near” distance also potentially captured 

the possibility of selling mineral rights.  If respondents resided outside of hydraulic 

fracturing counties, then the options were presented as either 50 miles or 250 miles.  

At these distances, the positive and negative direct effects were assumed to be 

invariant.  However, the “near” level of 50 miles but outside of a hydraulic fracturing 

county, allowed the possibility to commute for employment and positive impacts on 

the local economy.  The “far” level of 250 miles was modeled to capture no direct 

impacts on the household, and, thus, it would capture pure nonuse impacts and test 

hypotheses about the perceive nonuse utility/disutility of hydraulic fracturing.  No 

drilling was always the status quo option.  
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Attributes Levels 

Cost 

-25% 

-10% 

-5% 

+5% 

+10% 

+25% 

+50% 

No Change* 

Source 

Natural gas from Hydraulic fracturing 

“Tradition Fossil Fuel” * 

Distance 

Near: (1mile – in / 50 miles – out) 

Far: (20 miles – in / 250 miles – out) 

No Drilling * 

 * = status quo option only 

 

Figure 3: Experimental Design 
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Experimental design was used to select the choice sets presented to 

respondents (Hensher et al. 2005).  Each respondent would select among hydraulic 

fracturing choices A or B and also the status quo of “neither.”  This study uses one of 

the simplest designs—the full factorial design—resulting in 49 possible choice sets of 

which each respondent saw four.  The 49 choice sets were derived from two levels of 

distance, one source, and seven levels in the household electric bill; (2x1x7)
2
 = 196 

combinations (see figure 3 for all attributes and levels).  After eliminating mirrored 

pairs (upper diagonal), duplicates (the diagonal itself), and cost-dominated pairs 

(within the lower diagonal), 49 A/B/Neither choice sets remained.  Among the 49 

choice sets, the researchers attempted to preempt potential ordering impacts by 

making each hydraulic fracturing option (A and B) the most expensive option exactly 

half the time—and an empirical test subsequently found that option A was no more 

likely to be chosen.  When the cost was equal for A and B, then the “near” and “far” 

attribute was randomized so that each was first one-half of the time.  The survey 

software then selected, at random, four choice sets for each respondent to see.  The 

choices were designed balanced ex-ante, but responses and respondent certainty could 

not be controlled; thus the design was not expected to be perfectly balanced ex post.  

Although the regression will control for unbalanced response patterns, we nevertheless 

examined ex post balance.  When accounting for response and certainty, 67% of 

choice sets used in the final data were selected from within 10% of expected rates.  

Another 24% were selected from at 11-18% greater or lower rates than expected ex 
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ante.  Three sets were selected from at 20% bias, and one set was 81% greater rate 

than anticipated.  

 

2.3  Sampling 

A surveying company with whom the researchers' University has an 

agreement, Qualtrics, provided web-based survey software and a sample.  Qualtrics 

uses pre-secured samples via email addresses, and these samples are progressively 

contacted until a desired sample is drawn (Strauss, et al. 2011).  Although 

representativeness is not assured ex ante—as with a competing service—access to the 

sample is much less expensive to purchase and representativeness can be assessed ex 

post by comparing the sample to known population demographics.  Qualtrics reports 

that 991 surveys were started and 754 were completed.  Among the 754 completed 

surveys, some were screened as not an adult decision maker, resulting in a final 

sample of 515 households from 27 different counties in New York State.  The 

response rates (completed divided by started) were 68% and 41% for the in-hydraulic 

fracturing and out of hydraulic fracturing counties, respectively. 

 

The researchers made several important design decisions in formulating the 

scenario of electricity from hydraulic fracturing natural gas.  There was no affordable 

way to identify a sample in the regions that used natural gas for heating (the figure is 

52% in New York) (U.S. Census Bureau 2011) nor could researchers determine what 

mix of fuels delivered electricity to any given household or even county.  So, the 
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researchers decided to focus on electricity because almost all households would be 

electrified and mixes of fuels including natural gas generate electricity.  In 2010, 

natural gas constituted the largest share at 35.7% of the electric fuel mix in New York 

(US Energy Information Administration 2012); see table 1 for the residential 

electricity mix in New York State. This evidence collectively suggests that 

respondents would find believable and salient the intervention of using hydraulic 

fracturing natural gas to supply their electricity.  To ensure this salience, a final 

decision was made to focus on only counties where natural gas was common.  

Specifically, 27 counties were selected based on a map of New York State created by 

the Northeast Gas Association (2012), which indicated that at least 50% of the towns 

in the county were serviced by natural gas. To differentiate counties in and out of the 

hydraulic fracturing region, the researchers excluded counties that encompass the 

border of the Marcellus Shale play.  All five counties of New York City were 

excluded from this study because policy idiosyncrasies, population density, and urban 

living patterns suggested differences too great to warrant later pooling of the data with 

the up-state counties.  Two different surveys were distributed, one to those who live in 

counties within the Marcellus Shale region (9 counties) and one to those who live in 

the remainder of the state (18 counties).  Figure 1 highlights the counties that were 

chosen for the survey and their location to the Marcellus Shale Play. 
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Table 1: New York State 2010 Total Electricity Mix 

 

Source
1
 Percent 

Coal 9.9% 

Petroleum 1.5% 

Natural Gas 35.7% 

Nuclear 30.6% 

Hydroelectric 18.6% 

Other Renewables 3.5% 

Other 0.6 

1
 U.S. Energy Information Administration, 2012 
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The household was the unit of analysis because respondents answered on 

behalf of their household and the informant was screened to be an adult decision 

maker of their electricity bill. Among the unweighted sample, 53% were female, 51 

was the mean age, 53 was the median age, and 38% had an associate’s or bachelor’s 

degree.  Researchers decided not to ask for the respondent’s income because: (1) it 

was not central to the empirical choice experiment estimation; (2) it is correlated with 

education, which was surveyed; and (3) it would potentially lead to 

incomplete/abandoned surveys.  There were minimal differences (less than 3%) 

between the unweighted and weighted
1
 demographic statistics of the survey.  Table 2 

compares the sample versus Census statistics for the state.  The sample largely, but not 

perfectly, reflects the population, suggesting potential but not necessarily substantive 

nonresponse bias.  The Census indicates that all of New York State is 51.6% female, 

26.5% have an associate’s or bachelor’s degree, and the median age is 46 (U.S. 

Census Bureau 2010).  It is not unusual in choice experiment surveys to find that 

older, more educated people tend to respond.   

 

                                                 

 
1 

Both population weights were considered 
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Table 2: Sample and Census Statistics 

 

 Sample* State
1
 

Female 53.0% 51.6% 

Age (Median) ** 53 46*** 

Associate  or  

Bachelor’s Degree 

38.2% 26.5% 

Graduate Degree 28.2% 13.8% 

Mean Electric Bill $120.44 $114.39
2
 

1
U.S. Census Bureau 2010  

2
 U.S. Energy and Information Administration 2011b 

*Unweighted 

**Of adults,18 years and older, and electric-bill decision makers 

***Calculation by authors from Census data. 
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2.4  Estimation 

The most recent choice experiment research estimates the random utility model 

using mixed logit (ML) because it provides a number of advantages over the 

multinomial or conditional logit estimation.  ML: (1) alleviates the need for the 

independence of irrelevant alternatives assumption; (2) allows for estimation where 

individual respondents deliver multiple observations (in this case, four); and (3) allows 

for testing for and measuring heterogeneity (Hensher and Greene 2003, p.135-136, 

p.159, p.136).  From the estimated ML coefficients, researchers may calculate 

estimated WTP using simulation techniques, including the underlying distribution of 

parameter estimates (Poe et al. 2005).  Unlike the technique of calculating WTP as a 

part-worth--or implicit marginal rate of substitution between the utility of an increased 

attribute level and money—this research compares the monetized utility of a world 

with the policy that improves an attribute level and the monetized utility of a world 

without that change (the status quo).  This approach is more appropriate for comparing 

welfare associated with two states of the world (with and without electricity from 

hydraulic fracturing), in contrast to studies examining small welfare changes 

associated with marginal adjustments in an environmental attribute where part-worth 

calculations would be more appropriate.  The with/without calculations are made 

through the simulation of the convolution of parameter space, finding  the mean of the 

simulations and taking the mean (Poe et al. 2005).  
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Several other augmentations were made in light of recent evidence about best 

practices in choice experiments.  Only a brief treatment is offered in this paper 

because these augmentations are of greater interest to economists concerned with 

choice experiment design.  First, some researchers worry that respondents may 

overestimate their WTP in stated preference surveys, a phenomenon known as 

hypothetical bias.  Following each of the four choices that respondents made there was 

a follow up question regarding respondent certainty (Ready et al. 2001; Blumenschein 

et al. 2008; Li and Mattsson 1995; Morrison and Brown 2009; Whitehead and Cherry 

2007).  For this survey, the authors followed recent work by Ready, et al. (2010), 

asking  on scale of 1 - 10 how certain they are that they would make this decision in 

real life if they had to use real money, with 1 being not certain at all and 10 being 

completely certain. See appendix D for further discussion of hypothetical bias. 

 

Second, recent literature suggests that respondents may not consider all 

attributes when making decisions in choice experiment, known as Attribute Non-

Attendance (AN-A) (Hensher 2006; See Mariel, et al. 2011 for a summary of studies 

on AN-A). Systematic consideration of AN-A has been shown in some cases to lead to 

a better fit model. For this study, after making four choices, each respondent was 

asked to select the attribute of least importance to them. The results show little 

variation among respondents’ attributes of least importance: 33.95%, 34.73%, and 

31.31% indicated source, change to monthly household electric bill, and distance to be 
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the attribute, respectively. From this we conclude there is not one single attribute that 

was systematically ignored so we make no further assumptions on it.   
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Chapter 3 

RESULTS 

This section assesses model fit.  Opinion data about hydraulic fracturing helps 

inform researchers of the predispositions of respondents, apart from the choice 

experiment, and the salience of the choices.  Then, model fit and quality is assessed 

statistically.  The results of the choice experiment are presented—first in terms of the 

ML estimation and, then, with respect to welfare. Appendix C elaborates on the mixed 

logit model and model specifications for this research.   

 

3.1  Opinion Results 

The choice experiment scenario is meaningful only when the respondents have 

an understanding of the environmental amenity and its quality attributes.  In this 

survey, 84% of respondents who lived in hydraulic fracturing counties indicated that 

they had heard of hydraulic fracturing prior to the survey.  This contrasts with only 

44% of outside of the Marcellus shale county respondents.  Each respondent was then 

presented with basic information regarding hydraulic fracturing in New York so as to 

provide a minimum level of information for the choice experiment. 
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There is evidence that the respondents understood the attributes.  For instance, 

on a scale of 1 (“extremely important”) to 6 (“not at all important”), 63% of 

respondents ranked “may lead to contamination of local groundwater” as extremely 

important.  Respondents felt strongly about both the pros and cons of hydraulic 

fracturing, almost always ranking each option as “somewhat important” or greater.  

The results of the qualitative questions are presented in table 3. The Likert scale 

provides evidence that the impacts of hydraulic fracturing (both positive and negative) 

resonated with respondents because they ranked the qualities as important to them.  

The opinion results also show that the negatives presented to the respondents were 

almost always ranked as more important than the positives.  That said, the Likert scale 

is not a controlled preference and only the mixed logit can tell use the relative 

importance of those attributes.  
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Table 3: Opinion Results 

 

 

 

Likert Scale Questions
1
 

 

Inside Shale County 
Outside Shale 

County 

Test of 

Differences of 

Means 

 Mean Response 

(Std. Dev.) 

Mean Response 

(Std. Dev.) 
T- Value 

It is a domestic 

source of energy  
2.29 (1.20) 2.10 (1.13) 1.849 * 

Natural gas is better 

for the environment 

than other fossil fuels 

2.28(1.09) 2.11 (1.04) 1.810 * 

It may bring jobs to 

the county 
2.44 (1.20) 2.05 (1.15) 3.764*** 

It may lead to 

contamination of 

local ground water 

1.57 (0.94) 1.61 (0.97) -0.478 

The process uses a 

lot of water 
2.31(1.13) 2.34 (1.22) -.290 

It may increase truck 

traffic 
2.71 (1.26) 2.92 (1.34) 

-1.833* 

 

Yes, No, I don’t 

know 

Yes, No, I don’t 

know 

 

Taking all this into 

consideration, do you 

support hydraulic 

fracturing? 

31%, 40%, 29% 35%, 33%, 32% 

 

1
1= Extremely Important, 2 = Very Important, 3= Somewhat Important, 4=Somewhat Unimportant, 5 = 

Very Unimportant, 6 = Not at all Important 

***= 2.852, ** = 1.965, * =1.648 Critical T- Values at the 1%, 5% and 10% levels at which you reject 

the null hypothesis 
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3.2  Model Fit 
 

This study will focus on ML3
2
, which discarded any response that was made 

under less than “fairly certain” conditions, i.e., less than 7.  For ML3, 30% of the 

observations were discarded in the estimation, the equivalent decrease of about 150 

respondents. The model explains choice using designed attributes (cost, distance, 

source, whether the respondent lived in a hydraulic fracturing county), a status quo 

alternative (known as the alternative specific constant or ASC), and observed 

heterogeneity measures interacted with the ASC (age, education, and gender), 

described in table 4. It was a pooled model, with a dummy variable, Incounty, for the 

county region of the respondent, in or out of the shale region.  The interaction effects 

of Incounty with each of the demographics were examined, but they lacked evidence 

of statistical significance and, thus, are not included in the final estimation.  

 

 

 

  

                                                 

 
2

 Three models were estimated to examine respondent-choice certainty and examine potential 

hypothetical biases associated with stated preference surveys.  ML1 was estimated without regard for 

respondent certainty.  ML2 followed Ready et al. (2010) and automatically calibrated any response 

indicating a certainty level of less than 7 as opting for the status quo.   
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Table 4: Model Variable Descriptions and Summary Statistics 

 

Variable Name Description Mean 

Value*  

Min Max 

Cost Change to monthly electric bill 4.84 -125 250 

Incounty Indicator for residence within the 

Marcellus Shale region 

0.50 0 1 

Distance_Near Indicator for proximity to a well site 

(effects coded) 

0.00 -1 1 

Neither (ASC) Indicator for the status quo 0.33 0 1 

Demographic Variables 

Age Continuous variable for age  51.09 19 82 

AgeSquared Continuous variable for age*age 2802 361 6724 

Edu_College Indicator for education attainment 0.38 0 1 

Edu_Grad Indicator for education attainment 0.28 0 1 

Female Indicator for gender 0.53 0 1 
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The model was estimated in LIMDEP and had indicators of good fit.  The null 

hypothesis on the joint significance of the model in explaining choice was rejected in a 

chi-square test (p<0.0001), and the pseudo r-square was 0.412.  The model was 

weighted to account for the over sampling of those who live in hydraulic fracturing 

counties and the under sampling of those who live outside of the shale region
3
. This 

model was chosen as the best for further evaluation in this study; most coefficients 

were statistically significant despite the discarded data and respondent certainty 

suggests higher-quality choice data.  Table 5 presents the model parameter estimates. 

See appendix E for the estimates of all three ML models.  

 

  

                                                 

 
3
For ML1 and ML2 data corresponding to those who live in and out of the shale counties were assigned 

a weight of 0.23 and 1.76, respectively. For ML3 data corresponding to those who live in and out of the 

shale counties were assigned a weight of 0.21 and 1.84, respectively. The weights are calculated such 

that they average to one and do not create new data. For ML1 and ML2: 260wi + 255wo = 515; 

Residents inside the shale counties (only considering the population of the in shale counties surveyed) 

constitute just 11.23% of the population (of the total counties surveyed)  but 50.49% of the sample. 

Hence, 50.49 wi = 11.23. Solving these two equations gives you the weights. For ML3: 186wi + 173wo 

= 359; 51.81 wi = 11.23. Solving these two equations gives you the weights. 
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Table 5: Parameter Estimates 

 

 ML3 

Variable Parameter 

Estimates 

Std. 

Error 

Random Parameters 

Neither -7.733*** 2.983 

Distance_Near -0.200** 0.090 

Non – Random Parameters 

Cost -0.067*** 0.012 

Parameters on Heterogeneity in Status Quo 

Utility 

NXIncounty 1.298* 0.752 

NXFemale 1.316*** 0.459 

NXAge 0.285** 0.131 

NXAgeSquared -0.002 0.001 

NXCollege 0.425 0.557 

NXGrad 1.601*** 0.580 

Standard Deviation of Random Parameters 

Neither 3.516*** 0.350 

Distance_Near 0.645*** 0.147 

N = 1425 

Psuedo R- Squared = 0.412 

Chi – Squared  (11 d.f.) = 1282.617 

***, **, * = Significance at the 1%, 5%, and 10% levels 
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3.3  Mixed Logit Estimation 

ML3 coefficient estimates are used to interpret the relative importance of each 

attribute in impacting the average respondent’s utility for the environmental 

intervention of using hydraulic fracturing gas for electricity.  As expected, there was 

statistical evidence to reject the null hypothesis that the coefficient on cost was zero, 

and this impact was negative.  Cost was presented to the respondent as both a percent 

change to their monthly electric bill and the new electric bill total for each month after 

that change, in dollars.  Of the respondents included in ML3 50% chose the status quo 

when making their choices, 8% chose the cost increasing option, and 42% chose the 

cost decreasing option.  The average monthly electric bill (weighted for ML3) for in 

shale counties and out of shale counties was $107.76 and $126.97, respectively.  The 

Cost variable in the regression was the change to the monthly electric bill, in dollars.  

The results mean that more expensive electricity produces lower utility, on average.  

 

The evidence on Distance_Near suggests that the closer a respondent is to a 

hydraulic fracturing drill site, the lower the average respondent’s utility.  The 

Distance_Near variable was “effects coded” with the more-distant option (either 20 

miles if you lived in a hydraulic fracturing county or 250 miles if you live outside of 

the shale region) as the reference level (Bech and Gyrd-Hansen 2005).  Bech and 

Gyrd-Hansen (2005) recommend effects coding instead of standard dummy variables 

in choice experiments to avoid frequent misrepresentations of the impact of the 

reference level of a dummy variable.  See appendix E for the model estimates when 
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the distance variable is modeled as a dummy variable, Near_HydFracturing.   In turn, 

effects coding enables the proper estimation of welfare below.  The parameter estimate 

of Distance_Near, which is effects coded, is equal to the difference of that parameter 

from the grand mean of all observations, which in this case is zero.  In addition to the 

disutility found with proximity, the model also estimated the standard deviation on 

Distance_Near.  This result shows that there is statistical heterogeneity in this 

Distance_Near result, suggesting that some have greater utility impacts than the mean 

shows while others have less utility.  The results also show that 65% of respondents 

with the average demographics will have decreased utility from having a well near 

their households, and 35% of the respondents of the same average demographics will 

gain utility from having a well closer.  

 

Evidence suggests the status quo indicator/ASC, Neither, has a negative effect 

on utility; however, it is difficult to interpret the ASC impact by itself and all else 

equal, and so many choice experiment papers do not discuss it.  See Adamowicz, et al. 

(1998) for discussion of the ASC.  Though Neither is estimated as negative it has been 

interacted with the socio-economic demographics. And when one accounts for the 

Neither parameter capturing the effects of all the other variables it is interacted with, 

the summation is positive, indicating preference for the status quo.  The estimation 

also included a measure of heterogeneity in the ASC, which was the estimated 

standard deviation of Neither.  The results show that there is statistical evidence for 

heterogeneity in utility associated with the status quo, all else equal. Of respondents of 
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the average demographics, 69% will find the status quo utility increasing and 31% will 

find the status quo utility decreasing when controlling for cost.  

 

The utility (or disutility) derived from hydraulic fracturing is also a function of 

the observed heterogeneity in the sample, as expressed as demographics interacted 

with the ASC.  Evidence is available about the heterogeneity in received utility for the 

status quo between residents of hydraulic fracturing counties and residents of counties 

outside the shale region, using the indicator variable Incounty.  The interaction of this 

variable with the ASC, NxIncounty, allows one to conclude that all else equal those 

respondents from hydraulic fracturing counties have higher utility for the status quo—

which does not involve using hydraulic fracturing gas for electricity.   

 

Among the demographic interactions with the ASC, several conclusions can be 

drawn.  Respondents with potential use values were retained in the sample
4
.  When 

household informants are female, a greater utility was found for the status quo.  The 

age measures indicate that older respondents gain higher utility from the status quo, 

                                                 

 
4

 The results should capture some direct use value of respondents. The survey asks respondents if they 

have ever, or expect to, gain employment or enter into a contract with a gas company. To examine this 

effect, we estimated the model with an indicator variable for a respondent who has, knows someone 

who has, or plans to benefit from hydraulic fracturing now or in the future. This estimate was 

significant, decreased the absolute value of all other parameters by less than a tenth and did not change 

any levels of significance. Respondents with potential use values are included in the final sample 

because they are a part of society and their non-use values should not be excluded. Further, it was 

decided that it would be difficult to interpret these results for use in policy if all respondents with use 

values were excluded.  
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but we cannot make conclusions on the impact of age on utility as age increases.  The 

education variables (less than college, College, and Grad) indicate that respondents 

with a graduate degree had a stronger preference for the status quo than those with less 

schooling.  Both of the lower two education categories were statistically 

indistinguishable in terms of their utility, with no net utility or disutility from 

hydraulic fracturing or status quo. 

 

3.4 Welfare Analysis 

The results of the parameter estimates can be used to calculate the mean WTP 

for electricity from natural gas extracted via hydraulic fracturing.  The results in table 

6 consistently show that hydraulic fracturing for electricity would make the average 

electricity consumer in New York State worse off.  The smallest (absolute value) point 

estimate is -$21.84 for out-of-county residents who are farthest from the site (250 

miles).  This means that on average, their electricity bill would have to be lowered by 

$21.84 per month to make them indifferent (equalized monetized utility) between the 

status quo and a world where hydraulic fracturing was used to supply natural gas for 

electricity.  The largest point estimate was -$47.63 for the average in-county residents 

who were near drill sites (1 mile).  The intermediate distance groups had point 

estimates between these two extremes.  Thus, in terms of point estimates on welfare, 

hydraulic fracturing electricity lowers all average household welfare but lowers it 

more the closer the household is to the site. 
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Table 6: WTP Estimates 
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Although these average results show a consistent pattern, there is heterogeneity 

between the groups.  One way to test for this is using the 10
th

 and 90
th 

confidence 

intervals of the mean WTP within a group (following Poe et al 2005).  When this form 

of heterogeneity is considered, all groups (for combinations of proximity and location) 

still have substantively negative welfare for hydraulic fracturing electricity.  The 90
th

 

percentiles of the confidence intervals are all below $0, with the smallest (absolute 

value) being -$17.10 for the average out-of-county residents far from drill sites. 

 

One can also look for statistically significant differences among the groups by 

determining if the 10
th

 and 90
th

 confidence intervals of any one group’s welfare 

overlap another’s.  For the group within shale counties, there is a (small) overlap 

between the intervals on near and far, which suggests that welfare does not differ 

econometrically within this group.  The same result is found for residents outside of 

shale counties.  However, when one looks at the near results alone, there is an 

econometric difference between the welfare in and out of shale counties.  The same 

result is found for the far results.  This means, on average, more monetized disutility 

accrues from being near drill sites when the average respondents are in a hydraulic 

fracturing county relative to when they are outside a hydraulic fracturing county.  The 

same result is found for being far from drill sites. 
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Chapter 4 

DISCUSSION AND CONCLUSION 

A choice experiment survey of over 500 households in 27 New York counties 

allowed estimation of household willing to pay (welfare) for electricity generated by 

natural gas extracted via hydraulic fracturing in the state.  The analysis also allowed 

separate estimation of the effect on welfare of: (1) distance from households to drill 

sites; (2) whether households were in the Marcellus Shale region; and (3) demographic 

characteristics.  The choice experiment has a high-degree of power in explaining 

nonuse values associated with hydraulic fracturing and also explains some use 

values.  The welfare analysis indicated that on average households in New York incur 

a welfare loss from hydraulic fracturing as the source of their electricity.  The welfare 

loss is substantive, approximating one-fifth to one-half of their monthly electric 

bill.  In addition, the results were robust to various controls on proximity of the 

surveyed households to the potential hydraulic fracturing drill sites. 

 

The results of the benefits calculation indicate that hydraulic fracturing for an 

electricity source is negative and will make electricity consumers worse off on 

average.  For those who live closest to a well and within a shale county, the average 

electricity consumer would need to be compensated by about half of their electricity 
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bill in order to be indifferent. Those who live furthest away from a well and out of 

shale counties would need to be compensated by 17% of their electric bill.  The WTP 

estimates are not statistically different within regions however, the estimates of each 

proximity across regions indicated that those who live closer to a well site require 

additional compensation. That being said, parameter estimates indicate heterogeneity 

exists across populations depending on if they reside within a hydraulic fracturing 

county; those within the Shale region have a stronger preference for the status quo. 

Heterogeneity similarly exists across all demographic sub samples, females and the 

well-educated have a stronger preference for the status quo than their counterparts. 

 

As with any choice experiment, several qualifications are in order.  First, 

choice experiments may be viewed as inaccurate because they use hypothetical 

data.  This study addressed potential hypothetical bias by implementing recently 

developed certainty protocols and discarding data where respondents did not indicate a 

high level of certainty.  Second, although the point-estimate welfare estimates vary 

slightly with model specification, they are consistently different than zero and 

negative.  Setting aside challenges to the choice experiment approach and econometric 

debates, it would be difficult to interpret the data as suggesting that on average New 

York residents favor (see utility in) hydraulic fracturing.  Third, the results address 

nonuse values most fully, but use values (direct impacts) on households are captured 

only in part.  It could be that omitted direct values are substantively positive.  Future 

research should consider this in conducting a benefit-cost analysis.  Fourth, the 
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magnitude of the negative results was somewhat surprising to the researchers, who 

designed the instrument to allow for either positive or negative values.  Replication 

and extensions are needed from other researchers to examine this exploratory work. 

 

A comprehensive answer about the economic efficiency of hydraulic fracturing 

in New York would require a fully specified benefit-cost analysis. This work offers 

relatively comprehensive evidence on nonuse values. However, the evidence on use 

values could potentially omit large use benefits that accrue to the people who find 

employment, people who sell their mineral rights, and people who have invested in the 

company. There are two reasons for this potential omissions (1) the limited sample 

was unlikely to capture many if any the small number of large beneficiaries nor was 

the choice experiment designed to elicit the benefits the magnitudes that these 

beneficiaries were likely to receive; (2) the large scale benefits calculation would be 

extremely sensitive to the number and location of drill sites. These sites will largely be 

determined in the future after the temporary moratorium is lifted and the number and 

distribution of drill sites becomes known. Because the number and distribution are 

unknown, and the survey was not designed to capture large scale beneficiaries, any 

attempt to conduct the comprehensive BCA using the CE survey data in this paper 

would be systematically biased against hydraulic fracturing. 
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Appendix A 

EXTENDED BACKGROUND AND PURPOSE 

Domestically, the U.S. produces the majority of the natural gas it consumes. 

Texas produces about a third of domestic natural gas (31%), followed by deep water 

offshore wells in the Gulf of Mexico (11%). Other natural gas producing states include 

Wyoming (11%), Oklahoma (8%), and Louisiana (7%) (U.S. Energy Information 

Administration 2010). Natural gas is being harvested from shale formations across the 

country: the Barnett Shale formation in Texas (the standard for shale gas production, 

in which all else are modeled after), the Haynesville Shale in Arkansas, and the 

Marcellus Shale of the Appalachian Mountains (Arthur et al. 2008; Brown and 

Krupnick 2010). These shale gases are some of the cleanest forms of natural gas and 

are greatly abundant throughout the country, but until recently had been the most 

difficult to extract (Arthur et al. 2008).   

 

Hydraulic fracturing was first used in New York in the early 19
th

 century when 

natural gas was able to be extracted from just a few feet below the surface (Frantz and 

Jochen 2005), but the technology – a more primitive form than what it is today – did 

not become common to the region until the 1980s (Arthur et al. 2008). This technique 

is not unique to just the Appalachia region or shale plays, and some may consider it 

the method of choice for most petroleum wells – utilized in more than 90% of gas 
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wells and 70% of oil wells (Economides et al. 2007). The new hydraulic fracturing 

technique of interest is a process in which wells are drilled vertically down into the 

earth and then horizontally out beneath the surface. The well is then stimulated by 

pumping fluids down the well at extremely high pressures inducing seismic activity. 

This creates tiny fractures beneath the earth. The fluid that is sent down the well is a 

mixture of mostly water and proppant, a combination of sand and chemicals that is 

unique to each gas company (Frantz and Jochen 2005). The natural gas is then 

captured from the fractures and extracted. This technology increases the permeability 

of the shale yielding high rates of natural gas production and lowering costs (Brown 

and Krupnick 2010).  

 

The energy industry is exploring and drilling wells across the entire Marcellus 

Shale formation, New York, Pennsylvania, Ohio, and West Virginia, with the majority 

of well development, at the present time, occurring in Pennsylvania (Arthur et al. 

2008, 2009). New York State is progressing at a much slower pace, and as of recently 

all new well development has been halted. NYS Gov. David Patterson in late 2010 

signed a bill that has put a temporary moratorium on the exploration of new natural 

gas wells that would use hydraulic fracturing drilling techniques (Perkins 2011). The 

temporary moratorium in New York State required additional environmental 

investigation before further development of the technology could proceed in the 

State’s shale resources. In June 2011 the bill was extended by the New York 

Assembly for an additional year and future decisions regarding hydraulic fracturing 
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will depend on the results of the final environmental impact statement, additional 

studies, and public commentary (Wiessner 2011).  This is in contrast to Pennsylvania 

which is considered a “High Volume Hydraulic Fracturing” state, companies use high 

volumes of water for hydraulic fracturing coupled with horizontal drilling, and it is 

reported that there are more than 4,000 gas wells in the Marcellus Shale wells in 

Pennsylvania (Griswold 2011).  No new permits were to be issued until the 

completion of the state’s most recent final environmental impact statement in mid-

2011 (Perkins 2011). As of March 2012 further decisions regarding the moratorium 

are dependent on further comment and draft reviews of the state’s environmental 

impact statements in which it received over 13,000 public comments (NYS DEC 

2012) 

 

There are a number of negative externalities which hydraulic fracturing 

imposes on environment. The fracturing process of a single well requires between 2.4 

to 7.8 million gallons of water for each extraction process (NYS DEC 2011). In 

addition, there is a risk of potentially contaminating ground and drinking water due to 

leaked chemicals from during the fracturing process (NYS DEC 2011). The drilling 

process in question may also cause increased levels of methane to leak into local 

ground water sources (Pennsylvania DEP 2009). This would make water unsafe to 

drink, and high levels of methane trapped in unventilated spaces and water wells could 

lead to an explosion (Pennsylvania DEP 2009). In addition to water requirements and 

contamination concerns, the high-pressure injection of water into the wells will cause 



 50 

earthquakes underground (NYS DEC 2011). This seismic activity may range from 

undetectable to small earthquakes that can be felt at the surface (NYS DEC 2011). 

Despite worrisome reports from a number of state governments, and ongoing 

investigation into the chemicals used and other potential hazards of hydraulic 

fracturing by the U.S. Environmental Protection Agency, the hydraulic fracturing 

process was deemed exempt from the Safe Drinking Water Act, the Clean Water Act, 

and the Clean Air Act (Bateman 2010). 

 

Though possibly imposing social costs on the environment, there are potential 

positive economic and environmental externalities from increased natural gas 

production and consumption, and more specifically doing so via hydraulic fracturing. 

Not only is natural gas considered a clean energy it is also a domestic source of 

energy. On a more local scale, hydraulic fracturing could potentially create positive 

community development and economic growth. Hydraulic fracturing development and 

expansion creates jobs and increases state revenue through development to the region 

and taxes and fees from energy companies (NYS DEC 2011; Kelsey, et al. 2009). 

Residents have the potential to directly benefit from hydraulic fracturing in the state. 

Financial gain is possible for citizens of the area by leasing their mineral rights to gas 

development companies. Landowners whose property lies above a shale gas deposit 

may be approached by an energy company to lease, receive royalties for, or receive 

other forms of payments for the mineral rights to drill beneath their property 

(Pennsylvania DEP 2010). Kelsey et al. (2009) surveyed landowners, local business 
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owners, and government officials in Pennsylvania and used spatial data to determine 

the overall economic impact in the state. The study examined all aspects of economic 

development in regards to hydraulic fracturing employment, contracts for leasing land, 

and how that money is spent in the state. Results suggest that though less than what 

was previously estimated, the Marcellus Shale industry as a whole, will have a 

significant impact on employment and the economy but those impacts will spread over 

multiple years. 

 

It is difficult to determine society’s overall opinion of this controversial 

technology and its impacts. Many times the efficient outcome is not the privately 

optimal outcome. Traditional energy sources, fossil fuels that are primarily coal, create 

negative externalities and therefore their marginal private cost is less than their cost to 

society. Cleaner energies (like renewables and natural gas) tend to have a higher 

market price but lower external costs. Natural gas extracted from the Marcellus Shale 

using hydraulic fracturing exhibits both positive and negative social and 

environmental externalities and therefore one must elicit households’ willingness to 

pay for shale gas to determine if an individual’s willingness to pay is positive or 

negative. Considering externalities allows one to account for the unpaid costs and 

benefits that this technology may have on the environment and society. 
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Appendix B 

ECONOMIC THEORY 

This study will use a choice experiment to measure respondents’ utility for 

household electricity generated by natural gas extracted via hydraulic fracturing. 

Using the Random Utility Model (RUM) it is assumed that an individual’s utility for 

natural gas from hydraulic fracturing is the result observable components, attributes 

and parameters of natural gas from hydraulic fracturing, and an unobservable 

component, a stochastic component not captured from the survey The economic model 

used to measure utility of household electricity generated by hydraulic fracturing of 

natural gas, based upon the RUM is as follows: 

Uij = Vij + Ɛij 

 

Where U is the utility and is a measure of an observable component V of each 

alternative i (containing both options A and B, and the status quo option) by individual 

j and an unobservable component Ɛ. Assuming individuals are utility maximizing, the 

probability of choosing j is  

Prob j = Prob (Uij > Uim,  j, j ≠m) 
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Following Hensher and Greene (2003), the IID assumption of the mixed logit 

(ML) allows for correlation across observations but not within the error term. To 

account for this the error term is divided into two parts (1) accounts for correlation and 

(2) assumes IID for all observations: 

Uij = Vij + [ ɳij+ Ɛij] 

Ɛij is considered IID for all alternatives and is not dependent on the data or parameters 

(Hensher and Greene 2003, p. 135). 

  

Again, following the notation of Hensher and Greene (2003) the logit 

probability estimated at parameter B is 

Lij(V|  ,  ij) = 
          )    )

∑       )    )
 
   

 

The observed utility is conditional on the parameter (B) and  ij. However, to account 

for the non-linear relationship, the probability model is estimated for all values of  ij 

and weighted by its density, “f( ij|Ω) where Ω is the fixed parameters of the 

distribution” (Hensher and Greene 2003, p. 135). 

Pij  V, Ω) = ∫     V   ,    )      j Ω)     
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Appendix C 

THE MIXED LOGIT MODEL 

The Mixed Logit (ML) model is the most appropriate estimation method for 

this study as it overcomes many of the limitations of the more tradition multinomial 

logit model. The main difference between the two is that mixed logit models relax the 

independence of irrelevant alternatives assumption, a problematic assumption for 

economists. ML recognizes that each individual leads to multiple observations (i.e. 

socioeconomic descriptors) and therefore observations are correlated. The error term 

in ML models assumes individual and identically distributed (iid) and accounts for 

correlation between parameters (Hensher et al. 2005).  

 

The flexibility in assumptions of the ML allows for the measurement of 

preference heterogeneity as defined by the random parameters (Hensher et al. 2005). 

Heterogeneity demonstrates the differences between individuals and the choices they 

make. It can either be captured in the attributes presented in the choice experiment or 

in the stochastic error component, as the latter is unobservable (see Greene and 

Hensher 2006 for further explanation). Random parameters, through attributes of the 

environmental intervention in question, accommodate for correlation across 

alternatives, aiding in revealing heterogeneity within the sample population (see 

Hensher and Greene 2003).  
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Each attribute were assumed to have a normal distribution as there are 

customers who have preference for it and some who do not (Goett, et al., 2000). The 

distribution of the random parameters is important in the estimation of the model and 

cause of great concern but as stated in Hensher et al. (2005) “Distributions are 

essentially arbitrary approximations of real behavior” (p. 612).  

 

Nonrandom parameters are the portion of the model that reveal the individual 

characteristics of the respondent, socio-economic demographics and the monetary 

change they would see from the random attributes. Cost was entered linearly as the 

change (in dollars to the monthly electric bill. The range of changes spanned both 

negative and positives and therefore a log linear model was inappropriate. Interacting 

the socio-demographic variables: age, gender, and education with ASC is evidence 

that with statistical significance, preference heterogeneity around the mean is present 

(Hensher and Greene 2003).  
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Appendix D 

HYPOTHETICAL BIAS 

In agreement with literature regarding the presence of hypothetical bias in 

choice experiments (see Ready et al. 2010 for a summary of past literature), our results 

show that WTP estimates are overstated when certainty is not accounted for. Three 

models were estimated to examine respondent-choice certainty and prevent some 

hypothetical biases associated with stated preference surveys.  ML1 was estimated 

without regard for respondent certainty.  ML2 followed Ready et al. (2010) and 

automatically calibrated any response indicating a certainty level of less than 7 as 

opting for the status quo.  The results of all three estimations are in appendix E. The 

benefits that were calculated from ML3 were compared to ML1, in which certainty 

was disregarded completely. Estimating the full data set and ignoring respondent 

uncertainty shows that respondents are worse off when hydraulic fracturing is the 

source of their electricity, but less worse off than when only considering those who are 

at least somewhat certain of their decision. The WTP estimates for ML1 are 

significantly different within and across county regions. On average WTP estimates 

for ML1 were greater; people were between $7-$1 less worse off than when just 

considering those with the greatest certainty in their choice.  
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The difference in certainty across respondents can be seen among certain 

sample population groups and may help to explain the heterogeneity that exists. 

Females were more uncertain than men in making their decisions. This is especially 

noticeable in regards certainty in choosing the non-status quo option.  In making any 

choice, the average women’s certainty was a 6.93 relative to the average men’s 7.418. 

For ML3 this shows that many of the women’s choices were not included in the 

estimation. When making a decision in which one opted for hydraulic fracturing, 

women were even less sure of their responses, averaging a certainty level of 6.127 

compared to men who averaged a certainty of 6.995. This disparity in confidence 

between males and females is evident in the parameter estimates which indicate 

women have a stronger preference for the status quo than men.  

  

Education levels within the sample also reveal differences in certainty in their 

decisions. Against what one would expect, those with a graduate degree were less 

certain of choosing the hydraulic fracturing (non-status quo) option than their 

counterparts with an Associate’s or Bachelor’s degree (6.22 versus 6.887, 

respectively). However, those with graduate degrees were more certain overall of their 

responses relative to those with an Associate’s or Bachelor’s degree (7.316 vs. 7.250). 

Those with less than a college education were the least certain of their decisions, 

indicating an average certainty level of 6.94 for their choices. Again, the parameter 

estimates capture the inconsistency in certainty levels among the education level of 
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respondents. The estimates reveal that a higher education will lead to preference for 

the status quo than their less educated counterparts.  
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Appendix E 

MODEL CHOICE: EFFECTS VS DUMMY CODING TABLES 

Particular attention was paid to properly defining the Distance_Near variable. 

Special consideration was made to how it should be coded, effects versus dummy. 

Both are legitimate methods for coding the Distance_Near variable however due to 

how the estimates are interpreted we have chosen to code Distance_Near using effects 

coding. We ran all 3 models using both effects coding, Distance_Near, and dummy 

coding, Near_HydFracturing for the “distance” variable. Hydraulic fracturing near 

was the reference category for both.  

 

The following set of tables presents different comparisons of the parameter 

estimates of ML1, ML2 and ML3 with the distance parameter coded as both a dummy 

variable and with effects coding. Comparisons of the respective WTP estimates are 

presented as well.  

 

Table E1 reports the parameter estimates of ML1 which includes all data with 

no regard for certainty.  The parameter estimates indicate that there is little difference 

in the signs and magnitudes for each variable in each model. The slight variation that 

does exists, most evident in the “Distance” variable, is the result of the recoding; 

where effects coded Distance_Near has a mean equal to zero and the dummy coded 
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variable, Near_HydFracturing, has a mean somewhere between 0 and 1. The 

difference in the “Distance” estimates will them impact the ASC, and its respective 

interactions. 

 

Table E2 reports the results of ML2, and compares the difference between 

parameter estimates when “distance” is effects and dummy coded. This model follows 

Ready et al. (2010) and automatically changes the responses of any person who 

indicated a certainty of less than 7 to the status quo response. This type of model 

attempts to recode low quality as if it were high quality. A key result of both these 

models is that cost is nearly identical in both, indicating that people paid attention to 

price when making their decisions. 

 

Table E3 reports the parameter estimates of ML3 when “distance” is effects 

and dummy coded. This is the model chosen for this research. Decisions were made 

under at least fairly certain conditions; and therefore consider only high quality data, 

allowing for a more accurate representation of market decisions, and consider possible 

symbolic responses. Differences between “distance” coded with effects coding versus 

dummy coding mirror the differences seen in ML1 and ML2. 

 

Table E4 reports the parameter estimates for all three models, with “distance” 

effects coded, Distance_Near. One can see that as we took certainty into 

consideration, moving from ML1 to ML3, the number of variables that are statistically 
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significant increased. The absolute value of the ASC increased, as did cost and all 

other variables. 

 

Table E5 compares the parameter estimates for all 3 models with “distance” 

coded as a dummy variable, Near_HydFracturing. While the results differ from Table 

E4, the relative magnitude of the parameter estimates, signs, and levels of significance 

are similar to their effects coded counterparts. 

 

For this paper, LIMDEP was used to estimate the model and WTP. However, 

we concurrently ran the same model in STATA. It is expected that there be some 

slight differences between the two programs. Table E6 is a comparison of the 

parameter estimates of ML3 using LIMDEP and STATA as reported in the paper. 

 

Tables E7 and E8 report the WTP simulation estimates for both ML1 and ML3 

when distance is effects coded and dummy coded, respectively. The estimates all 

change for each group (by location and proximity) in the same direction with the same 

magnitude. 
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Table E1: Parameter Estimates of ML1 with “Distance” Effects and Dummy 

Coded 

 

 Effects Code Dummy Code 

Variable Parameter 

Estimates 

Std. Error Parameter 

Estimates 

Std. Error 

Random Parameters 

Neither -4.080** 1.587   

Neither’   -4.168** 1.924 

Distance_Near -0.237*** 0.062   

Near_HydFracturing   -0.624*** 0.143 

Non – Random Parameters 

Cost -0.056*** 0.007 -0.056*** 0.007 

Parameters on Heterogeneity in Status Quo Utility 

NXIncounty 0.692 0.476   

N’XIncounty   0.650 0.504 

NXFemale 0.726** 0.315   

N’XFemale   0.717** 0.324 

NXAge 0.153** 0.068   

N’XAge   0.146* 0.078 

NXAgeSquared -0.001 0.001   

N’XAgeSquared   -0.001 0.001 

NXCollege 0.424 0.361   

N’College   0.368 0.356 

NXGrad 0.694 0.428   

N’XGrad   0.403 0.498 

Standard Deviation of Random Parameters 

Neither 2.869*** 0.242   

Neither’   2.803*** 0.245 

Distance_Near 0.630*** 0.131   

Near_HydFracturing   1.236*** 0.267 

 N = 2039 

Psuedo R- Squared = 

0.352 

Chi – Squared (11.d.f) = 

1556.48 

N = 2039 

Psuedo R- Squared = 0.352 

Chi – Squared (11 d.f.) 

=1555.74 

***, **, * = Significance at the 1%, 5%, and 10% levels  
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Table E2: Parameter Estimates of ML2 with “Distance” Effects and Dummy 

Coded 

 

 Effects Code Dummy Code 

Variable Parameter 

Estimates 

Std. 

Error 

Parameter 

Estimates 

Std. 

Error 

Random Parameters 

Neither -3.209 2.676   

Neither’   -3.997 2.589 

Distance_Near -0.179** 0.080   

Near_HydFracturing   -0.546*** 0.163 

Non – Random Parameters 

Cost -0.059*** 0.009 -0.058*** 0.009 

Parameters on Heterogeneity in Status Quo Utility 

NXIncounty 0.893 0.615   

N’Incounty   0.692 0.597 

NXFemale 1.688*** 0.396   

N’XFemale   1.729*** 0.436 

NXAge 0.192* 0.113   

N’Age   0.197* 0.113 

NXAgeSquared -0.002 0.001   

N’XAgeSquared   -0.002 0.001 

NXCollege 0.005 0.430   

N’XCollege   0.284 0.512 

NXGrad 1.346** 0.528   

N’XGrad   1.478*** 0.563 

Standard Deviation of Random Parameters 

Neither 3.466*** 0.323   

Neither’   3.380*** 0.294 

Distance_Near 0.713*** 0.176   

Near_HydFracturing   1.197*** 0.358 

 N = 2039 

Psuedo R- Squared = 0.499 

Chi – Squared (11 d.f.) = 

2206.51 

N = 2039 

Psuedo R- Squared = 0.497 

Chi – Squared (11 d.f.) = 

2195.66 

***, **, * = Significance at the 1%, 5%, and 10% levels  
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Table E3: Parameter Estimates of ML3 with “Distance” Effects and Dummy 

Coded 

 

 

 

 Effects Code Dummy Code 

Variable Parameter 

Estimates 

Std. 

Error 

Parameter 

Estimates 

Std. 

Error 

Random Parameters 

Neither -7.733*** 2.984   

Neither’   -7.242*** 2.776 

Distance_Near -0.200** 0.090   

Near_HydFracuturing   -0.600*** 0.175 

Non – Random Parameters 

Cost -0.067*** 0.012 -0.068*** 0.012 

Parameters on Heterogeneity in Status Quo Utility 

NXIncounty 1.298* 0.752   

N’Incounty   1.098 0.781 

NXFemale 1.316*** 0.459   

N’XFemale   1.300*** 0.445 

NXAge 0.284** 0.131   

N’XAge   0.281** 0.117 

NXAgeSquared -0.002 0.001   

N’XAgeSquared   -0.002** 0.001 

NXCollege 0.425 0.557   

N’XCollege   0.131 0.495 

NXGrad 1.601*** 0.580   

N’XGrad   1.367** 0.594 

Standard Deviation of Random Parameters 

Neither 3.516*** 0.350   

Neither’   3.472*** 0.349 

Distance_Near 0.645*** 0.147   

Near_HydFracturing   1.380*** 0.280 

 N = 1425 

Psuedo R – Squared = 0.412 

Chi – Squared (11 d.f.) = 

1282.62 

N = 1425 

Psuedo R – Squared = 0.414 

Chi – Squared (11 d.f.) = 

1288.58 

***, **, * = Significance at the 1%, 5%, and 10% levels 
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Table E4:  Parameter Estimates of All Models with “Distance” Effects Coded  

 

 ML1 ML2 ML3 

Variable Parameter 

Estimates 

Std. 

Error 

Parameter 

Estimates 

Std. 

Error 

Parameter 

Estimates 

Std. 

Error 

Random Parameters 

Neither -4.080** 1.587 -3.210 2.676 -7.733*** 2.984 

Distance_Near -0.237*** 0.062 -0.179** 0.080 -0.200** 0.090 

Non – Random Parameters 

Cost -0.056*** 0.007 -0.059*** 0.009 -0.067*** 0.012 

Parameters on Heterogeneity in Status Quo Utility 

NXIncounty 0.692 0.476 0.893 0.615 1.298* 0.752 

NXFemale 0.726** 0.315 1.688*** 0.396 1.316*** 0.459 

NXAge 0.153** 0.068 0.192* 0.113 0.285** 0.131 

NXAgeSquared -0.001 0.001 -0.002 0.001 -0.002 0.001 

NXCollege 0.424 0.361 0.005 0.430 0.425 0.557 

NXGrad 0.694 0.428 1.345** 0.528 1.601*** 0.579 

Standard Deviation of Random Parameters 

Neither 2.869*** 0.242 3.466*** 0.322 3.516*** 0.350 

Distance_Near 0.630*** 0.131 0.713*** 0.177 0.645*** 0.147 

 N = 2039 

Psuedo R- Squared 

= 0.352 

Chi – Squared 

(11.d.f) = 1556.48 

N = 2039 

Psuedo R- 

Squared = 0.499 

Chi – Squared (11 

d.f.) = 2206.51 

N = 1425 

Psuedo R – Squared 

= 0.412 

Chi – Squared (11 

d.f.) = 1282.62 

***, **, * = Significance at the 1%, 5%, and 10% levels 
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Table E5:  Parameter Estimates of All Models with “Distance” Dummy Coded 

 

 ML1 ML2 ML3 

Variable Parameter 

Estimates 

Std. 

Error 

Parameter 

Estimates 

Std. 

Error 

Parameter 

Estimates 

Std. 

Error 

Random Parameters 

Neither’ -4.168** 1.923 -3.997 2.589 -7.242*** 2.776 

Near_ 

HydFracturing 

-0.624*** 0.143 -0.546*** 0.163 -0.600*** 0.175 

Non – Random Parameters 

Cost -0.056*** 0.007 -0.058*** 0.009 -0.068*** 0.012 

Parameters on Heterogeneity in Status Quo Utility 

N’XIncounty 0.650 0.504 0.692 0.597 1.098 0.781 

N’XFemale 0.717** 0.324 1.729*** 0.436 1.300*** 0.445 

N’XAge 0.146* 0.078 0.197* 0.113 0.281*** 0.117 

N’XAgeSquared -0.001 0.001 -0.002 0.001 -0.002** 0.001 

N’XCollege 0.368 0.356 0.284 0.512 0.132 0.495 

N’XGrad 0.403 0.498 1.478*** 0.563 1.367** 0.594 

Standard Deviation of Random Parameters 

Neither’ 2.803*** 0.246 3.380*** 0.294 3.472*** 0.349 

Near_HydFracturing 1.236*** 0.267 1.197*** 0.357 1.380*** 0.280 

 N = 2039 

Psuedo R- Squared 

= 0.352 

Chi – Squared (11 

d.f.) =1555.74 

N = 2039 

Psuedo R- 

Squared = 0.497 

Chi – Squared (11 

d.f.) = 2195.66 

N = 1425 

Psuedo R – 

Squared = 0.414 

Chi – Squared (11 

d.f.) = 1288.58 

***, **, * = Significance at the 1%, 5%, and 10% levels 
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Table E6: ML3 Estimates in LIMDEP vs. STATA 

 

 

 LIMDEP STATA 

Variable Parameter 

Estimates 

Std. 

Error 

Parameter 

Estimates 

Std. 

Error 

Random Parameters 

Neither -7.733*** 2.94 -7.843** 3.781 

Distance_Near -0.200** 0.090 -0.205* 0.117 

Non – Random Parameters 

Cost -0.066*** 0.012 -0.069*** 0.015 

Parameters on Heterogeneity in Status Quo Utility 

NXIncounty 1.298* 0.752 1.246*** 0.464 

NXFemale 1.316*** 0.459 1.313** 0.601 

NXAge 0.285** 0.131 0.290** 0.160 

NXAgeSquared -0.002 0.001 -0.002 0.002 

NXCollege 0.425 0.557 0.469 0.756 

NXGrad 1.601*** 0.580 1.737** 0.804 

Standard Deviation of Random Parameters 

Neither 3.516*** 0.350 3.591*** 0.463 

Distance_Near 0.645*** 0.147 0.765*** 0.255 

        ***, **, * = Significance at the 1%, 5%, and 10% levels 
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Table E7: WTP Estimates of ML1 and ML3 with “Distance” Effects Coded 
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Table E8:  WTP Estimates of ML1 and ML3 with “Distance” Dummy Coded 
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Appendix F 

SAMPLE SURVEY 

The following is a sample of the survey as seen by a respondent who lived in a 

county outside the Marcellus Shale region.  The only answer that forced a response 

was when asked their monthly electric bill, as it was necessary to produce the % 

change to their bill in the choice sets.  
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Appendix G 

HUMAN SUBJECTS PERMISSION LETTER: EXEMPT 

 


