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ABSTRACT

Photoinduced electron transfer is a ubiquitous process behind several physical,

chemical, and biological processes. Its potential applications, ranging from solar cell

technologies to photodynamic cancer therapy, require a thorough understanding of the

basics of the reaction. This dissertation addresses open questions for a particular case

of electron transfer processes: Heterogeneous Electron Transfer (HET). In this process,

an electron is transferred between a localized donor and a multitude of delocalized ac-

ceptor states. HET between photoexcited tetrapyrroles and colloidal TiO2 has been

investigated using femtosecond transient absorption spectroscopy. Specifically, this

work explores the not well-understood influence of the availability of states on the

HET reaction. This problem is addressed by measuring electron injection times as a

function of the energy difference between the LUMO and the conduction band of TiO2.

The change in the energy alignment was done using two experimental strategies. The

first one employs a recently synthesized phlorin with two different excited states above

the conduction band of TiO2. This molecule allows comparing HET rates from two

different excited states. The phlorin presents the rare case in which electron transfer

process can be measured from various excited states with the same experimental condi-

tion. The second strategy measures the electron injection rates after exciting the same

electronic state of a set of specially designed porphyrins. The novelty of the approach

is that the difference in energy alignment is attained by the introduction of dipole

groups within the bridge group of the molecule. This strategy generates a difference

in energy alignment of up to 200 meV. The reported measurements were carried in a

high vacuum environment with an apparatus capable of resolving sub 30 fs processes.

Disentanglement of the electron transfer processes was done, after careful study of the

xiv



relaxation dynamics of the molecules in solution, by monitoring the decay of the ex-

cited state absorption and the rise of the cation spectral signatures. Within our time

resolution, our results show that the increase in the availability of acceptor states does

not influence the electron injection dynamics. The results suggest that the injection

process takes place into a spectrum of states different from those obtained by steady

state calculations.
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Chapter 1

INTRODUCTION

Photoinduced electron transfer (ET) is a ubiquitous process that can be consid-

ered one of the simplest chemical reactions. In this process, a photoexcited electron is

transferred between a donor and acceptor state without modifying the chemical struc-

ture of the involved species. Despite its simple description, electron transfer reactions

are of utmost importance and are the subject of study of physicists, chemists, and bi-

ologists. To start with, these type of processes drive all the photosynthetic machinery

on Earth. They can also be found at the heart of a multitude of current and promising

photoactivated technologies like xerography, film photography, solar energy conversion,

photo catalyzers, and molecular electronic devices.

Given the overwhelming number of scenarios where the electron transfer pro-

cess takes place, it is important to introduce some classification at this point. Electron

transfer processes can be classified into two groups. On the one hand, the electron

transfer can be homogeneous, meaning that the electron moves from a single defined

molecular state into an acceptor state of the same nature. On the other hand, het-

erogeneous electron transfer (HET) takes place between a well-defined molecular state

and an acceptor composed of the multiple states within an electronic band. An exam-

ple of the latter case is the electron injection between a photoexcited molecule and a

semiconductor conduction band.

The study of homogeneous ET, being simpler, was tackled since the early 1950s.

At that time, the focus of the research was to understand the underlying parameters

that influenced the ET rate. A significant achievement in the field was the realization of

1



the importance that nuclear configurations play in the process. [1–3] These important

ideas built what is now known as Marcus Theory of electron transfer.1

The theory of HET reactions is less developed than the homogeneous case.

Studying HET has proved to be a challenging task, mainly due to the hybrid description

of the system. One one side, the molecular part of the system can be treated, from a

theoretical point of view, with a quantum description based on localized wave functions.

Conversely, the semiconductor side is usually well understood under the assumption of

a delocalized wave function. However, a description of the interface requires merging

these two radically different formalisms. The experimentalists, in a similar way, face

the challenge of dealing with a hybrid system, the inherent difficulties of studying

surfaces [4], and the femtosecond time-scale of the HET reactions.

Despite the challenges, and motivated by the promising dye-sensitized solar cell

(DSSC) technology, [5] the study of HET increased in the last decades. The first ex-

perimental studies aimed to resolve fundamental questions regarding the nature of the

reaction and to develop the necessary techniques to measure these ultrafast processes.

The theorists, on their part, tried to extend the ideas presented by Marcus and de-

veloped models to calculate the parameters of the reaction from quantum mechanical

principles. [6–11] More recently, the availability of femtosecond laser sources brought

a new tool to study HET, and several works have provided a good qualitative picture

of the process. [12] However, the extrapolation of these qualitative results has pro-

duced, in some cases, an apparent contradiction in the expected properties of different

molecule-semiconductor systems. [13] Thus, it is now clear that a careful, and bet-

ter designed systematic approach should be used to address open questions regarding

HET.

An example of the mentioned extrapolations is the usually assumed understand-

ing of the effect of the so-called energy level alignment on the HET process. This

important parameter in the design of molecule-semiconductor systems refers to the

1 Rudolph A. Marcus received the 1992 Nobel Prize in Chemistry “for his contributions to the theory
of electron transfer reactions in chemical systems”
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relative energy alignment between the ground and excited state of the molecules and

the semiconductor bands. In this dissertation, an experimental study of photoinduced

heterogeneous electron transfer is presented. The goal of this work was to address the

following fundamental question regarding the HET process: What is the relation

between the ET rate, the energy level alignment, and the density of states?

This thesis addresses the issue in the following order:

The remainder of Chapter 1 gives an introduction to the ET process and

sets the tone for the discussion on the topic. Then, a short discussion regarding the

parameters involved the energy level alignment is also presented. This discussion is

followed by a quick review of the previous work in the field of HET. Finally, at the end

of the chapter, two different experimental approaches addressing the question posed

in this dissertation, are described. The specific goals of each approach are stated and

discussed regarding their contribution to the development of the field.

Chapter 2 aims to specify and describe the basic physical and chemical prop-

erties of the experimental system used in this work, namely, the molecules and semi-

conductors. The chapter starts by giving a brief introduction to the basic of photo-

chemistry. Subsequently, the common properties and characteristics of the tetrapyrrole

family of molecular systems employed in this study are discussed. This discussion is

followed by a description of the two tetrapyrroles, a phlorin and a ZnTPP-porphyrin,

which were used to implement the experimental design. Then, in a similar fashion,

the characteristics of the semiconductor used in this work (TiO2) are presented and

discussed regarding its application in the proposed experiments. Finally, the chapter

ends with a description of the sample preparation methods and protocols followed for

the realization of this work.

Chapter 3 presents the experimental details of this work. First, a description of

the laser system and the experimental transient absorption setup are presented. These

descriptions are accompanied by a brief introduction to the relevant theory behind the

spectroscopic techniques. A thorough description of the data analysis procedure used

to extract the HET rates from the transient absorption signals is also given. The level
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of detail in the description of the experimental procedures aims for an easy replication

of the obtained results as well as to serve as a reference for future members in the

laboratory. With this in mind, the chapter ends with the description of additional

instrumentation developed for parallel projects outside the scope of this dissertation.

Chapter 4 is the first of two chapters presenting the results obtained in this

work. This chapter shows the results achieved by studying a novel phlorin system,

3H(PhlF ). This molecular system allows studying the HET process as a function

of energy level alignment. The change in level alignment was obtained by exciting

different electronic states. The chapter starts by presenting and discussing the spectral

properties and relaxation dynamics of the 3H(PhlF ) chromophore and its 3H(PhlCO2H)

derivative. Then, measurements of the HET rates from different electronic states are

presented and discussed in relation to their energy level alignment. The results showed

an independence of the HET rate on the energy level alignment for this system. Hence,

they point to the presence of intermediate states mediating the reaction. Finally, these

results are summarized, and their implications are discussed.

Chapter 5 presents the results of the second experimental strategy in this work.

Mainly, the energy level alignment was changed by the use of dipole groups attached to

a common Zn-porphyrin chromophore (ZnTPP). The chapter starts by presenting the

relaxation model of the molecules in solution, validating the usefulness of the proposed

strategy. Then, the results of the HET rates on TiO2 are presented, discussed, and

compared with a theoretical model. The results show that within the experimental

resolution, the energy level alignment does not affect the HET rates and support the

results presented in chapter four. The chapter ends by summarizing and discussing the

implications and potential applications suggested by these results.

Chapter 6 summarizes the results herein presented.

In the process of writing this dissertation, several published and unpublished

works on the topic were consulted and are referenced in the appropriate context. Nev-

ertheless, a special mention is required for the following dissertations [14–17]. These

works inspired some of the contents, figures, and style used in this document, and a

4



specific reference in the remainder text was not considered necessary.

1.1 Photoinduced Heterogeneous Electron Transfer

To start the discussion of photoinduced HET and to explicitly set the goals of

this study, an understanding of homogeneous ET is a pre-requisite. The homogeneous

electron transfer between a single donor and acceptor state can be thought as the

two-level system shown in Figure 1.1. The equation describing the reaction is

D + A −→ D+ + A− (1.1)

where D and A denote the donor and acceptor respectively, and D+, A− refers to the

oxidized and reduced product pair. From the mentioned figure, the multidimensional

energy surfaces of the system can be represented as parabolas depending on a suitable

choice of an appropriate abstract coordinate. Then, for a particular value of this

reaction coordinate (Q) the transition is energetically allowed. With this picture in

mind, the electron transfer rate kET can be described as being proportional to the

product of the following two probabilities denoted by P(x):

kET ∝ P(Electron tunneling)×

P(Reactant diffusion to crossing point). (1.2)

Considering this simple approach, the electron transfer rate can be written as

kET = κν exp

(
−Ea
kBT

)
. (1.3)

In the above expression, κ is the tunneling coefficient, ν is the frequency of reaching

the crossing area, Ea is the height of the energetic barrier, and kBT is the usual

Boltzmann factor. The tunneling transition coefficient is calculated from the Landau-

Zener equation as

κ =
2P

1 + P
, (1.4)
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Figure 1.1: Schematic of the energy parabolas of the two-level system composed of
reactant and product states. Ea and Er are respectively, the activation
and reorganization energy, ∆G0 is the Gibbs free energy, and VDA is the
donor-acceptor coupling.

where,

P = 1− exp

[
−4π2V 2

DA

hν(Sr − Sp)

]
(1.5)

is calculated from the frequency of nuclear motion ν, the coupling potential VDA, and

the slope of the reactant and product parabolas at the point of tunneling Sr, Sp. [18]

The ET process can be treated in two liming cases depending on the coupling strength:

Adiabatic Limit. On the one hand, for P −→ 1, meaning a strong VDA cou-

pling, the process can be addressed as being adiabatic. In the adiabatic picture, the

coupling is so strong that donor and acceptor can no longer be treated as two separate

states, but rather as two different nuclear configurations of the same electronic state.

The average time the system spends in the coordinate space Q is longer than the mean

time for tunneling. Thus, P(Electron tunneling) ≈ 1 and the electron transfer rate is
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limited by the thermodynamics of the system following an Arrhenius or Eyring equa-

tion.2

Nonadiabatic Limit. On the other hand, when P is small, meaning weak VDA

coupling, a nonadiabatic treatment is possible. Under this approximation, the system

reaches the point Q in coordinate space several times before the electron tunneling

can occur. Thus, P(Reactant diffusion to crossing point) ≈ 1 and the reaction is now

controlled by the internal quantum parameters of the reaction. In this scenario, the

weak coupling can be considered a small perturbation and the transfer rate can be

calculated with a Fermi golden rule equation

kET =
2π

~
|VDA|2F . (1.6)

In the above expression, the term F is the so-called Franck-Condon Weighted Density

of States (FCWD); this factor takes into account the probability of tunneling as a

consequence of nuclear motion. The FCWD is proportional to

F ∝
∑

n ρn| 〈ψn|ψn+m〉 |2∑
n ρn

, (1.7)

where ρn is the probability density of the population being in the n-th vibrational state

(ψn) subject to the energy restriction

|En − En+m| = ∆G0, (1.8)

with ∆G0 being the Gibbs free energy of the system.

Building on the previous homogeneous electron transfer formalism, HET can be

2 The Arrhenius equation is an empirical relation for the temperature dependence of a reaction rate.
It was proposed by Svante Arrhenius in 1889 and is trivially equivalently to the equation derived in
1935 by Henry Eyring from statistical thermodynamics.
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Figure 1.2: Representation of the simplest picture of an HET process between the
excited state of a molecular dye and the conduction band of TiO2.

now discussed. The general system where HET takes place is composed of a light ab-

sorber that is photoexcited and acts as the donor, and an electron accepting material.

The most commonly studied system consists of an organometallic molecule chemisorbed

onto a semiconductor as depicted in Figure 1.2. Different light absorbers, like nanopar-

ticles, have also been studied. [19] However, due to current technological applications,

the number of previous studies, and the feasibility of tuning the different parameters of

the reaction, this study focuses on the organometallic chromophore. Correspondingly,

for the electron acceptor, semiconductors are usually preferred to generate a long-lived

charge separated state. The primary requirement for the semiconductor material is

the availability of empty levels aligned with the excited state of the chromophore. A

detailed description of the organic molecules (also called dyes) and the semiconductor

used in this study can be found in chapter 2.

The HET reaction can also be treated in the adiabatic and nonadiabatic ap-

proximation. Similarly to the homogeneous case, adiabatic HET is assumed to show

an Arrhenius temperature dependence, while the nonadiabatic picture is again treated

by the Fermi golden rule presented in equation 1.6. Nonetheless, a distinction must be
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Figure 1.3: Schematic of a nonadiabatic HET process under the wide band limit
assumption (WBL).

made on the interpretation of the FCWD factor F . An specific case of nonadiabatic

HET that has received special attention is the so-called wideband limit (WBL). This

situation is the one shown in Figure 1.3 and consists on having the whole vibrational

spectrum of the donor energetically above the conduction band minimum. Under this

condition, the donor state is in resonance with an acceptor state for any relevant nu-

clear configuration of the molecule. The WBL also allows the reaction to be ultrafast

(< 100 fs) because is not limited by the frequency of nuclear motion to bring the system

to a crossing point.

This work focuses in the wide band limit case of nonadiabatic HET. Under this

assumption, the sum appearing in the FCWD equation 1.7 is simplified as

∑
n

| 〈ψn|ψn+m〉 |2 = 1, (1.9)

and the FCWD is now a pure density of states (DOS) which depends on the electronic

DOS in the semiconductor and the vibrational DOS in the molecule. The exact cal-

culation, from Liouville’s equation, was carried out by Lanzafame et al. in 1992 [11].

The result is that nonadibatic HET rates under the WBL can be expressed using the
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following relation

kET ∝ |VDA|2DOS, (1.10)

In the above equation, DOS denotes the electronic density of states of the continuum

of product states. The simplicity of equation 1.10 is misleading; calculating both terms,

VDA and DOS, on a microscopic level has been a hard task for theoreticians for several

decades. The first parameter is the coupling potential VDA which is proportional to

the overlap of the electronic wavefunctions of donor and acceptor state and can be

approximated by the following relation

|VDA|2 = V 2
0 exp (−β0R) . (1.11)

In the above expression, R is the distance between chromophore and electrode, while V0

and β0 are constant prefactors. This behavior has been observed for homogeneous ET

in the nonadiabatic limit. [20,21] For the case of HET a similar qualitative behavior has

also been reported. [22–25] However, these results must be taken with care, especially

for HET, due to the experimental limitations of the studies. Theoretical calculations

of the coupling matrix element VDA has been the subject of extensive work. [26–28]

The basis of most of these theoretical work can be derived from the use of Koopmans3

theorem. [29] Where the calculation of V is addressed from considerations of the energy

splitting at the crossing point of the transition.

The second parameter in equation 1.10 is the density of states (DOS) in the

semiconductor. The first approach estimating this parameter can be done from con-

sidering a 3-dimensional, defect free, bulk semiconductor. By doing this, the DOS will

have the known
√
E dependance. Specifically,

DOS(E) =
(2m∗)3/2

2π2~3

√
E, (1.12)

3 Tjalling Koopmans, a mathematician and economist, shared the Nobel Prize in economics in 1975
together with Leonid Kantorovich “for their contributions to the theory of optimum allocation of
resources”.
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Figure 1.4: Calculated electron transfer rates into SnO2 as a function of the driving
force (the difference between the energy of the LUMO and the conduction
band edge) for different reorganizational energies (Er = λ). Reprinted
from [30], Copyright (2004), with permission from Elsevier.

where m∗ is the effective mass of electrons in the conduction band, and E is the energy

position above the conduction band minimum. Using the above dependence of the

density of states, and assuming an energy-independent coupling term, equation 1.10

gives rise to an increase in the electron transfer rate as a function of the energy above

the conduction band minimum where the electron injection takes place. This is what

is called the enrgy level alignment of the HET reaction. This behavior can be seen

in the graph shown in Figure 1.4. It is important to emphasize that the real energy

dependence of the DOS is far more complicated than the one described in equation

1.12. The calculation of the surface density of states of a real semiconductor, including

defect and surface effects, is by itself a field of active research. Nonetheless, regardless

of the level of calculation, all DOS show an increase in the number of available states

that goes from zero in the band gap to a peak somewhere above the conduction band

(CB). For this reason, it is usually assumed that HET rates from excited states, higher

in the CB, will be faster. However, this may not be the case, and this work aims to

test this assumption.
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1.2 Energy Level Alignment

The last section discussed how HET, in the nonadiabatic limit, and under the

wideband assumption is directly proportional to the DOS of the semiconductor avail-

able for the transition. Hence, predictions on the transfer rate for a given system

require the knowledge of two parameters. The first one is, clearly, the DOS of the

electrode. The influence of this parameter was briefly discussed in the last section, and

for the system under study–anatase TiO2 (101)– it will be further addressed in section

2.3. The second parameter is the energy position of the molecular excited state within

the conduction band of the semiconductor. This is the so-called energy level alignment

of the molecule-semiconductor system. This alignment determines how much of the

available DOS can be sampled by the excited donor state. In this section, a general pic-

ture of the parameters governing the level alignment, and how they can be calculated

from experimental techniques is presented.

The different quantities defining the level alignment at the molecule-semiconductor

interface are shown in figure 1.5. This figure also illustrates how the parameters can

be extracted from experimental measurements, mainly, ultraviolet photoemission spec-

troscopy (UPS). We can group the various parameters in two categories, energy levels,

and energy gaps. On the semiconductor side, we have the following elements. The

Fermi level (EF ) is the total chemical potential for electrons. It can be thought as the

required thermodynamic work required to add one electron to the body in question.

Under the band structure model, it is the hypothetical level which will have a 50%

probability of being occupied by an electron at thermodynamic equilibrium. The work

function (φ) is the work required to remove an electron from a solid to a vacuum point

just on the solid surface; the work function is the energy gap between the Fermi level

and the vacuum level (Evac). Finally, the band gap (BG) is the energy region where

no electron states can exist.

On the molecular side, the highest occupied molecular orbital (HOMO) is anal-

ogous to the valence band maximum in a semiconductor. Similarly, the lowest unoccu-

pied molecular orbital (LUMO) is comparable to the semiconductor conduction band
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Energy level 
alignment

Figure 1.5: (a) Schematic of the different parameters involved in the energy level
alignment at the molecule semiconductor interface. (b) Valence photoe-
mission spectrum of an organic molecule (top) and an organic/metal-
oxide (bottom). (c) Secondary electron spectrum of an organic molecule
(top) and an organic/metal-oxide (bottom). Modified by permission from
Macmillan Publishers Ltd: Nature Materials [31], copyright 2011.

minimum (CBM). The ionization energy (IEorg) is the work required to remove one

electron from the HOMO into the vacuum level of the organic molecule. It is important

to notice that, although initially assumed to be the same, the vacuum levels on the

electrode and molecular side rarely align at the surface interface. [32] The last param-

eter in the figure is the HOMO offset (∆EH) which represents the energy difference

between the Fermi and HOMO levels.

Due to its importance in the operation of a multitude of technological applica-

tions, the ability to predict the energy level alignment from fundamental parameters

of the system has been extensively investigated. [32–39] Recently, Greiner et. al. [31]

found a universal relationship that relates the offset between the HOMO and the Fermi

level ∆EH to the difference of the work function φ and the organic molecule’s ionization
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oxides and metals prepared in ultrahigh vacuum, we find that this
alignment principle is general and governs energy alignment of a
wide range of materials.

Interestingly, as this trend is observed for a diverse set of
materials it implies that the HOMO offset is independent of
substrate electronic structure. To recognize the implications of this
point it is important to review transition-metal oxide electronic
structures. The main factor controlling their electronic structures
is d-band occupancy16. In Fig. 3 we have divided the oxides into
classes accordingly.

The left column in Fig. 3 presents each oxide class’s schematic
energy-level diagram, and the right column presents their valence-
band photoemission spectra. For simplicity we describe the band
structures using crystal field theory, using as a first approximation,
the ionic model of bonding. In general, oxides have an energy
gap in their d-bands from the non-spherical ionic coordination
environments; however, for simplicity, we do not address the
different cation coordination geometries and suffice to say that in
general the d-bands have an energy gap.

The oxides with totally empty d-bands (d0 oxides) constitute
class 1. They are insulators in their stoichiometric forms, but tend to
be n-typematerials (that is, the Fermi level is close to the conduction
band) owing to the presence of oxygen vacancy defects16,31. Their
conduction-band minima are composed mainly of empty metal
d-states, and valence-band maxima are composed primarily of O
2p states, as shown in Fig. 3ai.

A subset of class 1 oxides is the oxygen-deficient d0 oxides.
Oxygen deficiency generates a high density of occupied defect
states close to the Fermi level, as illustrated in Fig. 3aii, making
these oxides n-type semiconductors. The defect states arise
from filling of empty metal d-states and can be seen in the
valence spectra of Fig. 3bii.

The oxides whose d-bands are partially occupied with a low
number of electrons (for example, d1, d2 and d3) constitute class 2.
These oxides tend to form when d0 oxides are chemically reduced.
They are often metallic, as illustrated by the band diagram in
Fig. 3aiii and seen by the finite density of states at the Fermi level
in the valence spectra level in Fig. 3biii.

The oxides whose d-bands are partially occupied with a high
number of electrons (for example, d7, d8 and d9) constitute class
3. These oxides tend to be Mott–Hubbard or charge-transfer insu-
lators owing to strong electron correlation32. Their valence spectra
show states that die off close to the Fermi level, as seen in Fig. 3biv.

Oxides with completely filled d-bands (d10 oxides) constitute
class 4. They tend to be semiconductors owing to the gap between
the d-band and the next-highest energy band (usually derived
from metal s-orbitals).

It is generally thought that, for an electron to jump from an
organic molecule to an oxide, the electron must move from the
organic’s HOMO level into the oxide’s conduction band, and thus
an oxide’s conduction-band positions should be very important
for energy alignment. However, the pinning trend shown in Fig. 2
implies that energy alignment can be established regardless of oxide
conduction/valence-band positions.

A compilation of oxide energy-level diagrams is shown in Fig. 4,
along with energy-level diagrams of CBP, α-NPD and 2T-NATA.
The band edges for the figure were determined from UPS spectra,
and bandgapswere taken from literature values, which are tabulated
and referenced in the Supplementary Information. The oxides
are placed in order of decreasing work function (left to right)
and the organics are placed in order of decreasing ionization
energy (left to right).

A molecule’s HOMO level can become pinned to the Fermi level
even if the HOMO level is far away from the oxide’s conduction
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Figure 1.6: Level alignemnt of about 40 organic/metal-oxide interfaces. The dashed
line is the best fit line. Adapted by permission from Macmillan Publishers
Ltd: Nature Materials [31], copyright 2011.

energy IEorg. The proposed relation, plotted in Figure 1.6, can reproduce the align-

ment of 40 different organic/metal-oxide interfaces. A physical interpretation of the

parameters involved in the proposed relation was partially done by the same Greiner

et al., and was further developed by Ley et al. [40]

Given that the work function for anatase and the ionization potentials of the

molecules used in this study are well-known values, the graph shown in Figure 1.6

was used in this work to calculate the energy level alignment of the systems under

investigation.

1.3 Current State of the Field

The first experimental studies on HET aimed to reveal if the reaction was an

electron transfer process or an energy transfer. Soon it was proved that the process was

indeed electronic transfer. [6] Most of the seminal studies involved the measurement

of photocurrent densities generated in redox reactions. [7] These early experiments
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were characterized by a lack of time-resolution, and only allowed getting upper limit

estimations of the electron injection rates. However, these studies raised important

questions regarding the fundamental parameters of the injection mechanisms. The

first time-resolved measurements, using flash photolysis on the µs time scale, were

performed between the 70s and 80s. These measurements studied homogeneous ET

between quinones. [8] Later, HET was reported between an organic molecule and semi-

conducting TiO2 nanoparticles on the nanosecond time scale. [9] Further improvement

in the time resolution using pulsed dye lasers produced picosecond time-resolved elec-

tron transfer measurements between organic molecules and inorganic crystals. [10, 11]

Being that the HET process typically occurs on the femtosecond time scale, an increas-

ing number of experiments were reported after the rapid development of ultrafast optics

in the late 80s. Similarly, the field received a boost after the publication of solar energy

conversion using ruthenium sensitized TiO2 nanoparticles and again after the report

of a 12% efficient solar cell using a similar technology. [5, 41] After this publications,

the research on HET took two main paths. One of them took an applied approach and

focused on the understanding and improvement of the technology behind DSSC. The

second one focused on addressing the fundamental mechanisms of the reaction and is

the direction this dissertation follows. Studies regarding the basic elements of HET

advocate for the use of smaller molecules with simple electronic structures that are

accessible to ab initio calculations.

For example, measurements on the enediol/TiO2 system were useful to under-

stand details of the HET process, and they reported a strong donor-acceptor cou-

pling to the point where the excited state is predominantly localized on the TiO2

orbitals. This gave rise to mostly adiabatic HET with time scales that were hard to

resolve. [42] In particular, the catechol/TiO2 system allowed to study the short-lived

intermediate states at the surface of the semiconductor without the influence of molec-

ular states. [43] Other systems worth mentioning with a strong coupling interaction are

the alizarin/TiO2 and the bi-isonicotinic acid on TiO2. The first interface was studied

by Wachtveitl, Grätzel, and coworkers using transient absorption spectroscopy. [44,45]
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The second interface was addressed by Schnadt et al. [46] and a record 3 fs injection

time, using resonant photoemission spectroscopy, was deduced.

Likewise, extensive experiments on the hundreds of femtosecond time-scale were

carried out by the Lian group on ruthenium dyes attached to TiO2. Their measure-

ments monitored the infrared absorption of injected electrons in the semiconductor.

They concluded that the injection dynamics was biphasic, with an ultrafast compo-

nent <100 fs arising from nonthermalized excited states, and a slower component cor-

responding to injection from a relaxed states. [12,47]

A system that proved to be very productive for fundamental HET studies is

the perylene/TiO2 system studied by Willig’s group mostly using femtosecond time-

resolved spectroscopy. [48] The following research was carried on, using perylene deriva-

tive as sensitizers: the HET temperature dependence was measured, [49] the vibrational

wave packet motion was studied, [50] the influence of different bridge groups on HET

was investigated, [51] and the influence of the anchor group was also studied. [52] These

studies indicated that the coherent wave packet created in the donor molecule by the

pump pulse survived the ET process and could be detected in the cation by the probe

pulse. This observation challenged the usual model of HET, which assumed that the

reaction starts from a thermally equilibrated state in the donor, and motivated theo-

retical studies of the injection dynamics. Also, Willig et al. [53] probed the absorption

of the injected electrons and found that the rise in the injected electron signal was iden-

tical to the rise in the donor cation signal. Thus, demonstrating that after injection,

the electron was not trapped on the surface but indeed entered the bulk of TiO2. More

recently, using two-photon photoemission spectroscopy, the spectrum of the injected

electrons showing the effect of the Franck-Condon factors on nonadiabatic HET was

resolved for the first time. [54]

To date, from a fundamental perspective, the crucial points that are still not

well understood in the HET process are:

1. The distinction and transition between the adiabatic and nonadiabatic case of
HET, including possible electronic coherence between the excited donor and the
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acceptor state.

2. The influence of vibrational degrees of freedom on HET, including the effect of
coherent vibrational phenomena.

3. The influence of the available density of states for reactant and product that
includes short-lived intermediates near the surface.

Currently, experimental work addressing the first point is rare. However, several

theoretical studies deal with the transition between the nonadiabatic and the adiabatic

regime on HET. [55] Moreover, work tackling the second point has been carried out by

collaborators [56] and it is a current research topic in our research group. This disser-

tation presents studies concerning the third point and addresses these open questions.

Specifically, nonadiabatic HET, as was discussed in section 1.1 depends mainly

on two parameters: electronic coupling between a donor molecule and acceptor states

and the density of acceptor states. The effects of changing the first parameter have been

studied by introducing different bridge and anchor groups between the donor molecule

and the semiconductor. [57–60] The second parameter, the Franck-Condon weighted

density of states (F) accounts for the accessible acceptor states weighted by Franck-

Condon factors. The latter parameter has been investigated by comparing different

substrates and different dye molecules that vary the density of states (DOS) and the

level alignment. For example, several studies examined injection times of various dyes

into the same semiconductor. [30, 47, 61, 62] These studies gave some support to the

idea of having slower HET rates when the excited state was closer to the conduction

band edge. On the other hand, measurements on the Alizarin-TiO2 system were found

to be ultrafast even though the donor level is located close to the conduction band

minimum. [45, 63] However, these experimental approaches have several shortenings

and are not conclusive. Mainly, the use of different molecules introduces the possibility

of significant differences in the electronic coupling. An alternative method to test the

HET rate dependence on the density of states is by modifying the position of the

conduction band edge. These modifications have been done by varying the pH or

ion concentration [64, 65] or by applying a voltage to an electrochemical cell. [66, 67]
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However, the latter approaches are not free of shortcomings because of the complex

solvent environment and the effect it introduce in the adsorbate energetics and its

binding with the nanoparticle. [68,69].

More recent experimental results have been discussed in terms of the steady-

state density of surface and surface defect states, level alignment, and Coulomb inter-

action. Nevertheless, these interpretations have led to controversial conclusions. Some

studies compared different metal-oxide electrodes and concluded that surface states are

critical for HET. [70] Instead, the importance of electron-hole Coulomb interaction at

the interface was pointed out by Nêmec et al. and Stockwell et al. [71,72] On its part,

Strothkaemper et al. concluded from a multi-technique study that HET proceeds into

surface states formed by the anchor group before charge separation occurs. However,

the influence of Coulomb interactions could not be observed in this study. [73] Time-

resolved THz studies by Tiwana et al. pointed in the same direction and concluded

that local binding, and orbital overlap of the sensitizer on the metal-oxide surface were

the prevailing parameters. [74]

This work addresses the issue of the effect of the density of available acceptor

states by measuring the HET rates of several systems with different energy level align-

ments. This was done by implementing two distinct experimental strategies that aim

to resolve most of the issues previously discussed. A description of the strategies and

the specific goals of this study are presented in the following section (1.4).

1.4 Objectives of this Study

After discussing the basics of the HET process and a brief review of the previous

work in the field, the goals of this study can be specified.

The primary objective of this research is to measure and compare

the HET rates for systems with different energy level alignments. This

work presents a systematic approach to answer this question by following two different

strategies.
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Figure 1.7: Scheme depicting the general idea behind the first proposed approach to
change the level alignment. HET occurs from the first (S1) or the second
(S2) excited state.

In The first approach the energy level alignment of the reaction is changed

by selectively initiating HET from the first or second excited state of the same chro-

mophore. The general idea behind this approach is depicted in the scheme shown in

Figure 1.7. This approach involves the use of a phlorin macrocycle attached to TiO2 via

an anchor-bridge group. The details and properties about the phlorin system will be

discussed in section 2.2.2. By using this chromophore, the change in the level alignment

is achieved without additional changes in the experimental conditions. It is important

to stress this point because previous studies in this direction changed the energy level

alignment as a result of more than one variation in the experimental conditions. The

advantages of the proposed approach are: first, the phlorin used in this study can be

excited into two different states that lie above the conduction band minimum of TiO2.

This excitation can be achieved for both states using pulses in the same energy range.

Second, the phlorin macrocycle, being a tetrapyrrole (see section 2.2.1), has a well

understood intramolecular relaxation dynamics.

The second approach is based on a set of molecules with the same chro-

mophor. In this case, the change in energy level alignment is achieved by the intro-

duction of dipole-groups in the molecular architecture. The modification of the energy
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Figure 1.8: Parallel capacitor model to explain the change in energy level alignment
introduced by the use of dipole groups.

level alignment produced by the presence of a dipole in the chromophore can be under-

stood using a parallel plate capacitor model. Considering the molecular arrangement

shown in Figure 1.8, the potential difference between the capacitor plates is

V =
Dproj

εA
. (1.13)

In the above expression, Dproj is the projection of the dipole moment normal to the

surface, ε is the permittivity, and A is the surface area of the molecule. This approach

allows modifying the energy level alignment by reorientation of the dipole moment

as shown in Figure 1.9. Details about the chromophore employed in this experiment

(ZnTPP) are given in section 2.2.3.

The advantages of this experimental design are: it only requires small changes

to the bridge element and no changes to the semiconductor or the anchor group of the

chromophore. In other words, the electron injection occurs from the same electronic

state of the same chromophore into the same semiconductor. This assures that the

coupling parameter remains the same for the different molecules. Second, the relaxation

dynamics of ZnTPP and the electron transfer into different semiconductors have been

previously reported.

Both systems were investigated in an UHV environment to remove solvent effects

and minimize photodamage of the samples.
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Figure 1.9: Scheme showing the basic idea followed in the second experimental ap-
proach. The same chromophore is used, and the energy alignment is
modified by dipole groups.

Specific goals set for the second experimental scheme are: first, establish if the

addition of the dipole groups affects the intramolecular relaxation dynamics of the

fairly well understood ZnTPP chromophore. Second, HET rates after the excitation

of the S2 excited state will be measured and compared.
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Chapter 2

EXPERIMENTAL SYSTEM

Pursuing the objectives underlined in the last section (Section 1.4), demands a

set of appropriate molecule-semiconductor systems. The ideal experimental system for

the experimental study of HET must satisfy a set of requirements. First, the HOMO-

LUMO gap of the chromophore must be smaller than the semiconductor bandgap to

allow selective excitation of the molecular excited state. Second, the relaxation dy-

namics of the molecular species must be relatively simple or fairly well understood to

allow the disentanglement of contributions arising from HET process. Additionally,

the absorption and emission bands of the molecule should be separated to allow distin-

guishing different processes. Finally, the relaxation timescales of the molecule should

not compete with the expected ultrafast HET reactions.

The remainder of this chapter gives additional details on the employed experi-

mental system. First, an elementary description of the photophysical process that can

be observed after photoexcitation of molecules is presented. Then, the tetrapyrrole

molecules employed in this study are introduced and clearly specified. Subsequently,

the specific characteristics of the substrate acting as the electrode are also discussed.

2.1 Basic Photophysics

Photophysics is the usual name given to the study of the processes that include

the photoexcitation of a molecular species, as well as all the subsequent process taking

place after the generation of the excited state. The most basic process can be explained

by using elementary quantum mechanics concepts and the corpuscular nature of light.

Given a light-molecule interaction, there are two processes that can occur (only first

order processes are considered in this section). Absorption takes place when a photon
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with an energy equal to the energy difference between two molecular levels interacts

with an electron on the lower level. Photoemission is the reverse process that brings an

electron to a lower state with the emission of a photon. The strength of the transition

will be determined by the transition dipole moment between the levels involved in

the reaction. Another type of energy levels that play a crucial role in the relaxation of

molecules are vibrational levels originated by periodic motion of the nuclei of the atoms

within a molecule. A common schematic representation of the possible absorption

process and the fate of the excited states is the so-called Jablonski diagram.1 An

example of this type of diagrams showing the possible relaxation pathways is shown

in Figure 2.1. Referencing to this figure the different process displayed in the diagram

are:
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IC Internal Conversion, Si −→ Sj non radiative transition.
ISC InterSystem Crossing, Si −→ Tj non radiative transition.
RV

Vibrationnal Relaxation.

Figure 2.1: Jablonski diagram showing different relaxation process after photoexcit-
ing a molecule.

1 Aleksander Jablonski was a Polish academic who introduced this diagrammatic representation in
1933 [75]

23



Vibrational relaxation (VR) is a non-radiative process where the energy ob-

tained after the absorption process is given away as kinetic energy. Two cases can be

identified. The first one leaves the kinetic energy within the same molecule by acti-

vating vibrational modes in the same electronic level and is called Internal Vibrational

Relaxation (IVR), Another possibility is that the energy may be transfer to the solvent

molecules around the excited species; this is called Vibrational Cooling (VC).

Internal conversion (IC) is a nonradiative process between two different elec-

tronic states of the same multiplicity. The process takes place when vibrational energy

levels from a high energy electronic state overlap with the vibrational levels of a lower

lying electronic level.

Fluorescence is the radiative process that relaxes one electron from an energy

level with singlet multiplicity into the ground state. This process is usually only seen

with appreciable yield from the lowest excited state of a particular molecule (this is

known as Kasha’s rule) because higher energy levels are more likely to relax via the

faster VR and IC processes. The energy of the photons emitted through this pathway is

usually less than that of the initially exciting photons. This difference in the absorption

and emission wavelength is known as the Stokes’ shift of the transition and is caused

by the energy lost in internal conversion and vibrational relaxation processes.

Intersystem crossing (ISC) is the process analogous to internal conversion

between states from different multiplicity, i.e., singlet to triplet electronic transitions.

The process is usually slower than IC due to the transition being forbidden based on

electronic selection rules. However the coupling of the electron spin with the orbital

angular momentum usually seen in heavy-atom molecules softens the selection rule.

Phosphorescence is a radiative transition between the lowest triplet state

and the ground state. This process is analogous to ISC and is also very slow due to

the forbidden nature of the transition. Most molecules usually relax into the ground

state via a radiationless transition and phosphorescence will be typically observed for

relatively high energy triplet states.
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Table 2.1: Typical timescales of different molecular photophysical process.

Transition Time Scale Radiative?

Absorption 10−15 s yes

Internal Conversion 10−15–10−11 s no

Vibrational Relaxation 10−15–10−11 s no

Fluorescence 10−9–10−7 s yes

Intersystem Crossing 10−8–10−3 s no

Phosphorescence 10−4–10−1 s yes

2.2 Molecular systems

To conduct the experiments specified in section 1.4 we used a class of molecules

know as tetrapyrroles. Tetrapyrroles are a family of compounds containing four pyrrole

rings (Figure 2.2) held together by covalent bonds. These molecules can be found in

either a linear or a cyclic arrangement, and they show a high degree of conjugation.2

Some members of this family of molecules play crucial roles in biochemistry and living

systems, for example, hemoglobin and chlorophyll. Since early times, natural and syn-

thetic tetrapyrroles have been used as model systems for understanding fundamental

photophysical and photochemistry process. Currently, they can be found in techno-

logical applications such as photovoltaic and photocatalytic devices. Specifically, this

work uses two different tetrapyrroles. One is a phlorin, employed to test the effect of

injecting from two different electronic states on the HET rate. The second molecule is

a porphyrin, where energy alignment was tuned by the introduction of dipole bridge

2 In chemistry, a conjugated system is composed of connected p-orbitals with delocalized electrons in
molecules with alternating single and multiple bonds. This structure, in general, lowers the overall
energy of the molecule and increases stability.
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Pyrrole group

Porphyrin Heme

Cyclic tetrapyrroles

Figure 2.2: Pyrrole groups are the building blocks of tetrapyrroles (left). Examples
of cyclic tetrapyrroles (right).

groups. Both molecules, belonging to the same family, display similarities in their pho-

tophysical behavior. In the following, some basic properties of the family of molecules

are presented. Then, details of each molecule and how they fit into the proposed

experiments, are also discussed.

2.2.1 Basic tetrapyrrole properties

An exemplary cyclic tetrapyrrole is the porphin (also called free base porphyrin)

shown in Figure 2.3. The macrocycle possesses different binding positions categorized

in three groups. There are α-positions where the carbon atom is next to a nitrogen

atom, β-positions with two carbon atoms apart from a nitrogen atom, and meso-

positions located in between two α positions. It posses 18 π-electrons, and obeys

Hückels aromaticity rule. As a consequence of the aromaticity, the macrocycles pos-

sess multiple absorption bands in the ultraviolet and visible range. The addition of

substituents can spectrally shift and alter the relative intensity of these bands. In gen-

eral, cyclic tetrapyrroles show a so-called Q band, which is a broad but weak absorption
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Figure 2.3: Porphin, a prototypical tetrapyrrole. The basic structure and nomen-
clature used in the substitution of functional groups are shown in the
figure.

in the visible range. This absorption band corresponds to the first electronically ex-

cited singlet state S1. The degrees of symmetry present in a particular tetrapyrrole will

introduce or remove degeneracies that modify the number of bands showing up in the

visible region. The more intense absorption band, 5 to 100 times stronger than the Q

band in common tetrapyrroles, is called the Soret or B band. This band is caused by

transitions into the second excited singlet state S2, and is located at around 400 nm.

The aforementioned bands cannot be explained by a simple molecular orbital

theory using a single HOMO and LUMO orbital. As a result, Gouterman developed a

model explaining the essential features of most standard cyclic tetrapyrroles. Despite

more accurate modern models based on density functional theory [76], Gouterman’s

model is still in use since the 1960’s for its intuitive explanations of the observed

photophysics.

Gouterman’s model starts by considering a pair of HOMOs and LUMOs orbitals

calculated via Hückel theory. The requirement of two HOMOs and LUMOs originates

from the fact that cyclic tetrapyrroles show degenerate orbitals. Applying the config-

uration interaction method to the proposed orbitals generates the new effective states

involved in the optical transitions observed in the molecules. Thus, the transitions
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are not directly related to a single molecular orbital but rather to a superposition of

them. This explains the observed difference in absorption strength that depends on

the degree of shared symmetry as well as the energy gap between the effective states.

Using Figure 2.4 as a reference, the pair of HOMOs are labeled as Ψ1, Ψ2. Similarly

the LUMOs are identified as Ψ3, Ψ4. If we denote by ΨiΨf the singlet state originated

after the transition Ψi −→ Ψf , the new effective states can be written as a mixture of

these elementary transitions in the following manner,

Qx =
1√
2

(Ψ1Ψ4 + Ψ2Ψ3) (2.1)

Qy =
1√
2

(Ψ1Ψ3 −Ψ2Ψ4) (2.2)

Bx =
1√
2

(Ψ1Ψ4 −Ψ2Ψ3) (2.3)

By =
1√
2

(Ψ1Ψ3 + Ψ2Ψ4), (2.4)

with x and y being the directions of the resultant dipole moment of the transition.

Depending on the symmetries introduced or removed by the different substitutions

in the macrocycle, some of the above transitions will have a larger dipole magnitude

or can even be forbidden. In this way, the four orbital model is able to explain the

observed absorption spectra of a large group of cyclic tetrapyrroles.

2.2.2 Phlorin (3H(PhlF)) molecular system

The first experimental approach in this work uses a phlorin to investigate HET

occurring from two different excited states. Phlorins share a lot of the common char-

acteristics previously discussed for tetrapyrroles. However, the phlorin macrocycle

contains a sp3 hybridized carbon at one of the meso positions. This structure gives rise

to multielectron redox properties and photophysical characteristics, which distinguish

it from more common tetrapyrrole architectures. The synthesis of the phlorin macrocy-

cle has proved to be a challenging task causing to be seldom reported in the literature.

Nevertheless, the synthesis of a novel and stable fluorinated phlorin (3H(PhlF)) has
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Figure 2.4: The four orbitals that build Gouterman’s model of porphyrins (a). The
model gives rise to the two different absorption bands shown in panel
(b).

been achieved by Pistner et al. [77] The addition of the fluoride anions significantly

perturbs the absorption bands of the chromophore. For the purpose of this research,

the phlorin derivative is useful because it shows strong absorption in the Q band. The

phlorin derivatives shown in Figure 2.5 allow to compare electron injection rates after

excitation in the Q and Soret bands without the need of for major changes in excitation

fluence or concentration of molecules. This situation permits the study of the effect of

the density of acceptor states on the HET process.

The ground state absorption and emission spectra of 3H(PhlF) and 3H(PhlCO2H)

are shown in Figure 2.6 and agree in general with the reported measurements on cyclic

tetrapyrroles. [78, 79] The phlorin has a Soret band at ∼440 nm and a Q band at

∼650 nm. These absorption bands correspond to the S0 → S2 and S0 → S1 transitions,

respectively. The emission spectra show a maximum at ∼730 nm. Correspondingly,

the phlorin with the acid anchor group (used for the experiments on the electrode)

shows a slight red shift of the Q band and consequently a shift in the emission spectra.
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Figure 2.5: (a) Freebase phlorin derivatives utilized in this study. (b) Solid state
structure of 3H(PhlF) shown from above the plane of the macrocycle
(left) and side one (right). A molecule of cocrystallized CHCl3 and all
non-nitrogen bound hydrogen atoms have been omitted for clarity.

2.2.3 Porphyrin (ZnTPP) molecular systems

It was mentioned in section 1.4 that the second approach in this research con-

sisted in modifying the level alignment by means of a dipole-bridge molecular ar-

chitecture. Three different molecules, based on a Zn porphyrin, were used for this

purpose. The selection of this chromophore, a zinc tetraphenylporphyrin (ZnTPP),

followed two reasons. First, it has been shown that the photophysical properties of

ZnTPP are mostly unaffected by the functionalization at the meso positions (see Fig-

ure 2.3). [80–84] Second, the use of ZnTPP allows a direct comparison with previous

studies of similar porphyrins bound to TiO2 and ZnO. [80,82–84]

The compounds used in this study and their steady state absorption spectra are

shown in Figure 2.7. Details on the chemical synthesis of the three compounds have
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Figure 2.6: The ground state absorption and static fluorescence spectra of 3H(PhlF)
and 3H(PhlCO2H) in toluene.

been previously reported in two publications. [80, 85] All three compounds, labeled as

1, 2, and 3 are composed of a ZnTPP chromophore, a bridge group, and an anchor

group. The bridge group in 2 is a phenyl ring, whereas in 1 and 3 it is a N,N-

dimethyl-4-nitroaniline group. The three dyes are terminated by an isophthalic acid

group (Ipa) as the anchor unit. The anchor group binds efficiently to metal oxides

through the carboxylate groups, and its successful use has been reported in previous

studies. [81, 86,87]

The introduction of the nitroaniline group in 1 and 3 is the key aspect of the

molecular design. This group has an electric dipole moment with a component that

is oriented along the molecule. The direction of the dipole can be changed to point

towards or away from the anchoring group, without influencing the photophysical prop-

erties of the ZnTPP chromophore. [88]

It has been shown by our collaborators that the introduction of the dipole

group alters the energy level alignment. UPS measurements by the Bartynski group

demonstrated that the nitroaniline group introduces a dipole moment that shifts the

energy level alignment by 200 meV. This shift depends on the orientation of the dipole,

where 1 is 100 meV higher in energy than 2 and 200 meV higher than 3 on a ZnO

(11-20) surface. [88] The shift in the energy alignment follows the order 1 > 2 >3.
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Figure 2.7: UV-Vis spectrum and structure of the three Zn-porphyrin derivatives
used in this study.

Going back to Figure 2.7 the steady-state absorption and fluorescence spectra

of the compounds is shown for solutions prepared in tetrahydrofuran (THF). The

absorption and emission of the compounds include a two-fold degenerate Soret band

(423 nm in THF), and a weaker Q1 (555 nm) and Q0 (595 nm) bands. Except for a

small shift that has been attributed to the phenyl linkers, [80,89] the spectra resemble

the one of regular ZnTPP porphyrin. [90–92]

2.3 Electron acceptor substrate

One side of the HET reaction is the molecular light absorber just described in

the previous section. The other side is the electron acceptor substrate. In this work,

the electron acceptor material is a semiconductor cast on a transparent glass window.

In this section, we will go in detail over the electron acceptor substrate used for the

HET measurements.
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Figure 2.8: Crystal structure of TiO2 (anatase). Titanium atoms are in grey, while
the red ones represent oxygen atoms.

In this study, the semiconductor providing the multitude of acceptor states re-

quired for HET was titanium dioxide. Specifically, colloidal nanoparticles of anatase

TiO2. Anatase is one of the three naturally occurring mineral forms of TiO2, with

brookite and rutile being the other two. The anatase phase is always found as small,

isolated and sharply developed crystals belonging to a tetragonal system. The basic

structure of anatase is an octahedron with a titanium center surrounded by six oxygens

as seen in Figure 2.8. Bonds in metal oxide crystals as TiO2 usually are placed be-

tween the covalent bonded III-V semiconductors and the ionic I-VII salts. [93] Hence,

stoichiometric TiO2 has a large band gap and imperfections result in n-doped TiO2. [94]

The dependence of HET on the density of acceptor states in the semiconductor

(DOS) was discussed in section 1.1. Thus, an estimation of this parameter, either by

experimental or theoretical means is important. The DOS of the anatase TiO2 is taken

as the (101) surface DOS calculated using density functional theory. Figure 2.9 shows

this calculated DOS and the details of the calculations can be found in reference [95].

A requirement for spectroscopy on molecule-semiconductor systems is a suffi-

ciently large number of adsorbate molecules that provides an adequate signal to noise

ratio. Nanoporous anatase TiO2 films provides an effective surface area of around

140 m2/g [96] satisfying this requirement.

The nanoporous anatase TiO2 films utilized in this study were prepared in

33



Figure 2.9: Band structure (a) and density of states (b) of a (101) TiO2 anatase
perfect surface. Image reprinted from reference [95], licensed under CC
BY 3.0.

two steps. First, the colloidal TiO2 solution was synthesized by hydrolysis of Ti(IV)-

isopropylate and autoclaving of the acidified solution. The description of this sol-gel

technique can be found in the literature e.g. [84] Next, the colloidal solution was cast

onto 50 µm thin AF45 glass (Schott Displayglas, AF stands for “alkali-free”) via doctor

blading. The choice of the glass substrate obeys two considerations. One of them is

that the glass substrate is likely to generate coherent signals artifacts in transient

absorption measurements. Thus, these contributions are reduced by the use of thin

glass substrates. Second, it has been observed that the alkali content of the glass

substrate affects the molecule-TiO2 interface by the diffusion of alkali atoms into the

anatase lattice. [97] Hence, to avoid this effect, alkali-free glass was used (alkali content

<0.25%).

The above-described method resulted in mesoporous films of ∼10 µm thickness

consisting of nanoparticles with an average diameter of ∼20 nm as seen in Figure 2.10.

The glass-TiO2 substrates were kept in a dry low vacuum environment before they

were sensitized with the molecular chromophore.
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Figure 2.10: SEM image (left) of the cross-section of nanoporous anatase on a glass
substrate similar to the one used in this work. Right: TEM image of
fragments of a film. The TEM image is reprinted from reference [97].

2.4 Sample preparation

In order to effectively disentangle the HET rates it is fundamental to under-

stand the relaxation dynamics of the molecules in solution phase. This because the

relaxation dynamics in solution compete with the electron injection process. Hence,

measurements in solution were performed as a prerequisite to explain the observed

HET processes. The experiments in solution were performed in spectroscopy grade

solvents. The solvents used for the phlorin molecule were: methanol, toluene, dimethyl-

formamide (DMF), and cyclohexane from Fisher Scientific. Correspondingly, for the

ZnTPP molecules the solvents used were: diethyl ether (ether), and tetrahydrofuran

(THF) also from Fisher Scientific. The employed solvents were chosen for the following

reasons. First, the sample must be highly soluble in the solvent to avoid the formation

of aggregates. Second, when comparing solution measurements with the ones done

on the sensitized film, the use of a nonpolar solvent is advantageous because it better

reproduces the vacuum conditions. Third, the grade of coordination between solvent

and the molecules must also be considered.

For binding the dyes onto the nanoporous TiO2 substrates, the following process

was observed. Firstly, a thin glass film covered with TiO2 was annealed in a furnace at
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450◦C. Next, the film was immersed in a 100 µM solution of the chromophore with an

anchor group for about 20 to 45 minutes. Afterward, the dye-covered film was rinsed

six times by squirting clear solvent with a pipette and blown dry with argon. The

rinsing process was validated by measuring the decrease of fluorescence from the film

and the disappearance of fluorescence from the supernatant.

An important consideration when performing transient absorption experiments

is how to deal and minimize the effects of photobleaching. Photobleaching of dyes

when absorbed into TiO2 has been reported when measuring HET rates. [97]. Simi-

larly, bleaching of porphyrin samples in solutions has been reported after excitation at

397 nm. [90] Solution phase measurements were performed without using a flow cell

since convection was sufficient for replenishing the sample. For the film measurements,

a reduction around 30% in the transient absorption signal during the first 20 min of

irradiation was observed. This was usually accompanied by a decoloration of the sam-

ple. Similar photobleaching processes have been described previously [97]. Bleaching

has been ascribed to photo-oxidation of unbound molecules in the film residing in a

photoexcited, highly reactive state for a prolonged time. Properly bound molecules,

on the other hand, undergo rapid HET transfer resulting in the molecular cation.

The high vacuum environment employed in this study slows down the photobleaching

process and allows for comparing measurements at the beginning and the end of this

process. After the mentioned bleaching process, no changes in the absorption, emission

spectra, or dynamics was observed. Thus, all measurements were performed after an

initial 20 min bleach period that can be thought as an additional step in the sample

preparation procedure.
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Chapter 3

EXPERIMENTAL METHODS

The primary goal of this study was to measure the electron transfer rate from

different tetrapyrrole systems into TiO2 colloidal nanoparticles. These measurements

require a spectroscopic technique with femtosecond resolution and capable of identify-

ing electronic transitions in the molecular systems. Femtosecond transient absorption

spectroscopy satisfies the above requirements. Compared with time-resolved fluores-

cence, it allows tracking the evolution of non-emissive states. Hence, transient absorp-

tion spectroscopy, combined with additional steady-state and conventional transient

spectroscopies, is capable of elucidating the fast relaxation pathways of the studied

molecules in solution and when attached to the semiconductor film. This chapter

presents the details of the experimental setup and data analysis.

3.1 Laser System

The laser system used in this work was composed of a commercial Ti:Sapphire

oscillator (Coherent Mantis) and a regenerative amplifier (Coherent Legend-Elite). The

regenerative amplifier takes the pulses from the oscillator and stretches them for am-

plification on a Ti:Sapphire crystal pumped by a Nd:YLF (Coherent Evolution) laser.

After leaving the amplification stage, the pulses are compressed to deliver 35 fs pulses

centered at 800 nm with a repetition rate of 10 kHz and 620 µJ of energy. A fraction

of this power was used to perform the spectroscopic experiments.

3.1.1 Overview of Non-Linear Optics

All classical electromagnetic phenomena, including optics, and the interaction of

light with matter can be explained with Maxwell equations, the Lorentz force, and the
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constitutive equations. A relatively new phenomenon is the field of nonlinear optics.

This area remained largely unexplored until the development of the first lasers in 1960.

In fact, the first reported experimental observation of nonlinear optical phenomena

was the observation of second harmonic generation in 1961.1 [98] This observation and

all nonlinear optical phenomena arise from the properties of certain materials to react

in a nonlinear way to intense electromagnetic fields. This nonlinear reaction can be

understood in terms of the induced polarization. In general, the polarization field

P (x, t), generated by an external electric field E(x, t) in an isotropic linear dielectric

material with susceptibility χ can be written as

P (x, t) = ε0χE(x, t). (3.1)

For the case of a losless2 nonlinear medium the previous expression can be approximated

by the Taylor expansion

P (x, t) = ε0
[
χ(1)E(x, t) + χ(2)E2(x, t) + χ(3)E3(x, t) + . . .

]
(3.2)

= ε0χ
(1)E(x, t) + PNL, (3.3)

where the coefficients χ(n) are the n-th order electric susceptibility (in general a n +

1 order tensor). By taking the curl of the Maxwell-Faraday equation, using vector

identities, and substituting Ampere’s law, the following wave equation can be derived

1 Franken et al. focused a 694 nm ruby laser into a quartz sample. Afterward, the light was dispersed
and recorded on photographic paper. Famously, the editor thought the spot at 347 nm (the reported
second harmonic) was a speck of dirt and removed it from the publication.

2 Nonlinear lossless processes represent a family of phenomena also called parametric. These processes
are characterized by leaving the quantum state of the material unchanged. Contrary, non-parametric
processes, are lossless processes where the quantum state of the material is altered, and their study
requires the quantum mechanical approach described in section 3.2
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for a source free region of space:3

∇2E − n2

c2

∂2

∂t2
E = − 1

ε0c2

∂2

∂t2
PNL, (3.4)

where PNL makes reference to the non-linear part of the polarization. The solution to

the above equation is composed of the solution of the homgeneous equation plus the

solution due to the driving term. For example, considering a second order non linearity

PNL = ε0χ
(2)E2(t), (3.5)

with an assumed electric field of the form

E(t) =
1

2
E1 exp (−iω1t) +

1

2
E2 exp (−iω2t) + C.C. (3.6)

(C.C. stands for complex conjugate) gives the following non-linear driving term

PNL =
ε0
4
χ(2)
{
|E1|2 exp (−i2ω1t) + (3.7)

|E2|2 exp (−i2ω2t) +

2E1 ·E2 exp [−i(ω1 + ω2)t] +

2E1 ·E∗2 exp [−i(ω1 − ω2)t] +

(|E1|2 + |E2|2) + C.C.
}
.

If the above expression is introduced back in equation 3.4 we will have a wave equation

with several driving terms. Each of these driving terms, originated from a second order

non-linearity, will generate electric fields oscillating with different frequencies. These

fields correspond to the following wave-mixing process: second harmonic generation,

sum frequency generation, difference frequency generation, and optical rectification.

3 The identitiy used is ∇×∇×E = ∇(∇ · V )−∇2V . When applied to ∇×E = −∂B/∂t it leads
to the appearance of the term ∇ · E which in a non-linear media its not neccesarily equal to zero.
However its contribution is often negligible and has been ignored in equation 3.4. [99]
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These second order effects represent the most common non-linear phenomena and are

exploited in the experimental setup of this work. For higher order effects, the discussion

follows in a similar way and gives rise to two important non-linear phenomena. The

Kerr effect (χ(3) process) exploited in the femtosecond oscillator used in this study

(section 3.1.2), and supercontinuum generation (combination of higher order process)

used in this work to generate the seed for optical parametric amplification (section

3.1.4) and as the probe for the transient absorption setup (section 3.3.1).

3.1.2 Femtosecond Oscillator

The backbone of the experimental setup is a Ti:Sapphire femtosecond laser.

This type of lasers was first built in 1982 [100] and is commercially available since 1990.

Nowadays, most of these systems rely on the self-mode-locking technique to produce a

train of pulses with femtosecond duration. When compared to conventional continuous

wave (CW) lasers, femtosecond lasers require two particular elements in their design.

First, a gain medium that allows amplification of light over a broad spectrum. Second,

an element that selectively permits the travel of high-intensity short pulses within the

laser cavity, while suppressing the low-intensity continuous wave radiation. These two

required elements are responsible for the generation of short pulses in a way that can

be understood from the time-energy uncertainty relation4

σEσt ≥
~
2
. (3.8)

For the case of a light pulse, photons can be considered to be distributed around a

central energy value E0. Furthermore, recalling the expression that relates the energy

4 The uncertainty relation was originally presented for the momentum and position of a particle
by Heisenberg in 1927 as ∆x∆p & h. [101, 102] Also in 1927, Kennard first proved the inequality
in terms of the standard deviation σxσp ≥ ~

2 . [103] Nowadays, in the Hilbert space formulation of

quantum mechanics, it is usually written as ∆x∆p ≥ ~
2 where ∆ refers to the uncertainty of the

expectation value of an Hermitian operator. Since there is no time operator in standard quantum
mechanical theories, a formal derivation of the energy-time relation gave rise to several discussions on
the topic. [104] It was finally formally proved, in the way shown in equation 3.8 by Mandelshtam and
Tamm in 1945. [105]

40



of a photon Ep with the wavelength λ, the speed of light c, and the Planck constant h,

i.e.,

Ep =
hc

λ
, (3.9)

the standard deviation of the energy in equation 3.8 can be recast to get a more useful

relation from an experimental point of view

∆λ∆t ≥ K
λ2

0

c
. (3.10)

In the above expression, ∆ now represents the full width at half maximum (FWHM)

of the corresponding quantity, and K is a constant that relates the FWHM with the

standard deviation σ of the photon distribution. From the last equation, it can be

concluded that the only way of having a femtosecond laser pulse is by forcing the laser

to amplify a considerably broad spectrum in a manner that allows all the frequencies to

interfere constructively. This process is what is called mode-locking. To achieve this,

state of the art lasers implement a design in which they use a broad emission crystal

that also plays the role of a modulator. The most common example of this crystal is

sapphire (Al2O3) doped with titanium ions (Ti:Sapphire); its characteristic emission

spectrum is shown in Figure 3.1. Because the crystal acting as the shutter needs to

react in the femtosecond scale, the modulation of this element can only be done by the

same short pulse itself. Achieving this fast modulation is done by exploiting the Kerr

effect. [107] This effect is a non-linear process in which a material changes its index of

refraction n as the direct response to the presence of a high-intensity electromagnetic

field, i.e.,

n(x, t) = n0 + n2I(x, t). (3.11)

In plain words, the light will be slower in areas where the intensity of the beam is

higher than the average. If the propagating beam has a transversal Gaussian spatial

intensity profile, the Kerr effect will generate a Kerr-lens leading to self-focusing of the

propagating beam. This intensity dependent change in focus is exploited by designing
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Figure 3.1: Absorption and emission spectra of a typical Ti:Sapphire crystal. Image
reprinted from Reference [106].

a cavity that blocks or attenuates the unfocused low-intensity light. On the other hand,

a Gaussian temporal intensity profile will produce a red shift at the front part of the

pulse and a blue shift at the tail of it; this effectively broadens the pulse. Under these

circumstances, once the light in the cavity achieves the required power to cause a Kerr-

lens, the two processes mentioned earlier will reinforce themselves producing broader

and more intense pulses after each roundtrip. The initial fluctuation that triggers the

described process can arise from random fluctuations, or more conveniently, from a

controlled perturbation of the system.

3.1.3 Chirped Pulse Regenerative Amplifier

The pulses generated by the oscillator, despite being short, still have a relatively

low intensity to be useful in a modern spectroscopy laboratory. Thus, an additional

amplification process is required. The current state of the art in laser amplification is

the so-called chirped pulse amplifier developed in the mid-1980s. [108] Before the devel-

opment of this technique, conventional amplifiers were limited by the damage threshold

of the gain medium. Chirped amplification overcomes this limitation by stretching the
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laser pulses in time creating a low-peak intensity long pulse. To achieve this, the first

stage of the amplifier separates the pulse into its spectral components. This separation

is usually done employing a diffracting grating, and effectively introduces different path

lengths for the various spectral components. Thus, the grating produces a temporally

stretched, low-peak power, pulse. Once the intensity of a pulse is lowered enough, it

bounces within a cavity containing a gain medium like a Ti:Sapphire crystal. After

each roundtrip, the pulse increases its energy in the pumped amplification crystal.

The number of roundtrips in the cavity is controlled by the Pockels cell.5 This gat-

ing process produces the desired repetition rate of the laser system. Finally, after the

amplification stage, the pulse is compressed again in a grating compressor to deliver a

short high-peak intensity beam.

3.1.4 Parametric Amplifiers

Ti:Saphire lasers are limited by the emission wavelength of the fundamental

(800 nm). To overcome this limitation parametric amplifiers are used. Specifically,

the experimental setup in this work employs a Non-collinear Parametric Amplifier

(NOPA). The purpose of this tool is to take the 800 nm pulses from the laser system

and generate energy tunable pulses. In particular, the NOPA used in this work can

generate pulses in the visible (450-750 nm), and with minor modifications, in the near

infrared region (840-1600 nm). A sketch of the device is shown in Figure 3.2 This

NOPA delivers sub 30 fs pulses after a compression stage with a pair of fused silica

prisms. The output pulses, depending on the system under study, can either be used

right after the compression stage or after second harmonic generation in a 0.1 mm BBO

crystal. In the later case, the pulses are pre-compressed to achieve the same 30 fs pulses

after generation of the second harmonic. An excellent introduction to the operation

and design of these type of optical instruments can be found in the review by Cerullo.

[109] In detail, the setup in the laboratory was built using a β-barium borate (BBO)

5 The effect is named after Friedrich Carl Alwin Pockels who studied the phenomenon in 1893. The
effect consists in a change of the index of refraction in an optical medium induced by an electric field.
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Figure 3.2: Schematic of the NOPA used in this study. This tool generates sub 30 fs
tunable pulses in the visible and near infrared.

crystal similar to NOPAs by the Riedle group. [110–112] These instruments perform

an energy conversion process by exploiting non-linear optical phenomena driven by

the spatiotemporal overlap of two high-intensity light pulses. The nonlinear process

in question is known as difference frequency generation (DFG). This is a χ(2) process

described in section 3.1.1 and it is characterized by the generation of a third radiation

field with a wavelength corresponding to the difference in energy between the two

original ones. By a suitable selection of the intensity, polarization and overlap geometry

of the two incoming pulses; it is possible to use this process to amplify one of the

incoming pulses using the energy of the second one. The most common configuration

is to overlap in the BBO crystal a weak but broad supercontinuum pulse (generated

by focusing an 800 nm beam on a sapphire window), referred as the seed, with a high-

intensity 400 nm pump pulse (generated by frequency doubling of an 800 nm beam).

With careful alignment, it is possible to amplify the desired portion of the broad seed

spectra generating in the process an idler pulse with the mentioned energy difference.

The characterization of the NOPA pulses used in this work was done using both a
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home built autocorrelator and a commercial FROG6 (Mesa Photonics).

3.2 Introduction to Non-Linear Spectroscopy

Conventional linear spectroscopies like absorption, emission, and Raman, treat

light matter interactions with one weak electric field. Thus, this interaction can be

treated as a linear response to the interaction field. On the other hand, nonlinear

spectroscopies deal with light matter interaction where more than one electric field

is involved, or when linear response theory is inadequate to describe the material’s

behavior. This section gives a brief introduction to the framework, mainly developed

by Shaul Mukamel, [114] used to describe this nonlinear interactions.

Transient absorption spectroscopy–the technique employed in this work–is by

itself a nonlinear spectroscopy technique. However, due to its simple interpretation

in terms of basic photophysical and phenomenological ideas, this technique is seldom

treated under the formalism herein described. Nevertheless, it is important to under-

stand the microscopic origin of the spectroscopic signals.

Spectroscopic signals arise from the interaction of light and matter. First, an

incident electromagnetic wave7 described by the wave equation

∇2E − 1

c2

∂2E

∂t2
= 0 (3.12)

encounters a non linear material. Second, the microscopic dipoles in the material inter-

act with the electric field and the latter generates a macroscopic oscillating polarization

given by

P (x, t) = ε0
[
χ(1)E(x, t) + χ(2)E2(x, t) + χ(3)E3(x, t) + . . .

]
(3.13)

6 FROG stands for frequency-resolved optical gating; it is a method for characterizing short optical
pulses developed by Trebino and Kane in 1991 [113]

7 Interactions with the magnetic field are usually ignored due to their relatively small strenght.

45



Third, this macroscopic polarization acts as the source of a new signal field Esig de-

scribed by the equation

∇2Esig −
n2

c2

∂2

∂t2
Esig = − 1

ε0c2

∂2

∂t2
P , (3.14)

To solve for the signal field Esig it is useful to assume the following forms for

the polarization and the signal fields as an ansatz

P (r, t) = P̃ (t)e(ik′
sig ·r−iωsigt), (3.15)

Esig(r, t) = E0(r, t)e(iksig ·r−iωsigt). (3.16)

Introducing the previous assumptions in equation 3.14 and considering the signal field

originates from a thin sample of length l, for which the radiated amplitude grows and

becomes directional as it propagates through it, the signal field can be written as,

Esig(t) = i
2πωsig
nc

lP̃ (t) sinc

(
∆kl

2

)
ei∆kl/2, (3.17)

where ∆k = |ksig − k′sig|. Now, to get an expression that relates the signal field to the

microscopic parameters it is required to turn to quantum mechanics. The problem can

be described with the semi-classical time dependent Hamiltonian,

Ĥ = Ĥ0 − µ̂ ·E(t), (3.18)

where the time dependence arises from the interaction of electric field E(t) with the

electric dipole operator µ̂. The desired induced polarization is calculated as the ex-

pectation value of the electric dipole operator, and the problem is better treated by

describing the state of the system with the density matrix operator in the interaction

picture

ρI(t) = U †(t, t0)ρ(t)U(t, t0). (3.19)
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The last equation introduces the unitary evolution operator U and the time evolution of

the density matrix in the interaction picture is described by the Luoiville-Von Newmann

euqation,

i~
d

dt
ρI(t) = [V̂I(t), ρI(t)]. (3.20)

The problem can be solved perturbatively using an expansion of the form

ρI(t) = ρ
(0)
I +

∞∑
n=1

ρ
(n)
I (t). (3.21)

The zero order term corresponds to the solution of the system without the perturbation,

ρ
(0)
I = ρeq, so it is more interesting to write an expression for the n-th order expansion

of the density matrix as

ρ
(n)
I (t) =

(
− i
~

)n ∫ t

−∞
dtn

∫ tn

−∞
dtn−1 · · · (3.22)∫ t2

−∞
dt1

{[
V̂I(tn),

[
V̂I(tn−1),

[
· · · ,

[
V̂I(t1), ρeq

]
· · ·
]]]}

.

Once we have an expression for the density matrix, the polarization can be

calculated as the expectation value of the dipole operator

P̃ (t) = 〈µ̂(t)〉 = Tr(µI(t)ρI(t)) = Tr(µIρ
(0)
I ) + Tr(µIρ

(1)
I ) + Tr(µIρ

(2)
I ) + · · · (3.23)

As can be seen from the above expression, the level of complexity of the de-

scription, even for lower order terms is discouraging. Given this, Feynman diagrams

are usually employed to track the different interaction terms contributing to the po-

larization. Transient absorption spectroscopy corresponds to a third order nonlinear

spectroscopy originated from two interactions with the pump field and one interac-

tion with the probe field. However, this spectroscopic technique can be explained and

understood with a phenomenological approach. This phenomenological description

will be the topic of the following section and the reader interested in a full nonlin-

ear description of the technique is referred to the following books and notes in the
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subject [114–116].

3.3 Transient Absorption Spectroscopy

As mentioned before, the main results of this work involve the measurement of

the transient absorption response of different molecular and molecule/semiconductor

systems with femtosecond resolution. In this work, optical femtosecond transient ab-

sorption spectroscopy (TA) was used. This spectroscopy technique is classified as a

pump-probe experiment. For a phenomenological description, the process can be sep-

arated into two parts. First, a transient state is produced by a relatively intense pump

pulse. This intense pulse should be capable of exciting a noticeable fraction of the sam-

ple species (typically above 0.1%). Second, a weak probe pulse, that does not change

the state of the population, is delayed a time τ relative to the pump. Then, the change

in the probe intensity caused by the pump beam is measured at different wavelengths

λ. In this way, a difference absorption spectrum at the given delay τ is generated. By

repeating this process for different delay times, the transient absorption spectra can

be reconstructed in a similar way to a stroboscopic measurement.

The measured absorption difference signal, ∆A(λ, τ), is calculated as:

∆A(λ, τ) = log

[
I0(λ)

I(λ, τ)

]
on

− log

[
I0(λ)

I(λ, τ)

]
off

. (3.24)

In the above equation I refers to the transmitted intensity of the probe beam, and

the subindexes 0, on, and off respectively refer to the blank, pump on, and pump off

cases. Due to the high correlation between two subsequent pulses from current laser

systems, it was shown that the error introduced by assuming [I0]on = [I0]off [117,118]

is smaller than other noise sources. Thus, it is common to simplify expression 3.24 as

∆A(λ, τ) = log

[
Ioff (λ, τ)

Ion(λ, τ)

]
. (3.25)

The above expression can take either positive or negative values. The origin of

the contributions are depicted in Figure 3.3 and can be grouped in the following five
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Figure 3.3: Schematic of a transient absorption experiment (a). Origin of the different
contributions to the ∆A(λ, τ) signal (b).

processes:

1. Excited state absorption (ESA). This process is a positive contribution to ∆A
arising from an increased absorption from the excited species, Ion < Ioff . It
takes place when optically allowed transitions exist for the transient population
generated by the pump at the probed wavelength.

2. Stimulated emission (SE). A negative contribution to ∆A can be observed when
the number of photons in the probe beam increases by photons being emitted
from the sample producing Ion > Ioff . This process takes place when a photon
stimulates an excited species and triggers the emission of an additional photon
with the same energy and momentum. This process occurs for radiative allowed
transitions and follows the general pattern of the fluorescence spectrum.8

3. Ground state bleach (GSB). This process is the second negative contribution. It
arises again for Ion > Ioff but this time the cause is not the emission of photons
but rather a decrease in the number of them being absorbed by the sample. This
contribution is observable when the number of species in the ground state is
reduced by the pump. It is usually detected where steady state absorption bands
are present.

4. Product absorption (PA). This contribution arises from absorption originated
from new species formed after the excitation pulse. These new products can
be produced by photoinitiated chemical reactions, electron transfer or energy

8 Under a second quantization formalism, fluorescence is nothing else than stimulated emission by
virtual photons originated from fluctuations of the quantized electromagnetic field.
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transfer processes. The contribution is observed as a positive signal and by a
not-recovering ground state bleach.

5. Contributions external to the model. Under certain conditions, transient absorp-
tion signals will have contributions arising from non-linear interactions between
the light pulses and the probed medium. Thus, they are usually seen on fast
timescales and depend on the spectral and temporal characteristics of the pump-
probe pair of pulses. Under the theoretical description presented in section 3.2
these contributions are fairly well understood and can in principle be considered
in the analysis. However, from an experimental point of view, it is a challenging
task to deal with them because its description requires a high level of charac-
terization of both pulses and the medium being probed. Given this, under the
phenomenological approach here presented, all contributions outside the four pre-
viously mentioned that do not represent population dynamics, are treated under
the term “coherent artifacts”. From an experimental perspective is always im-
portant to minimize the contribution of this type of signals.

3.3.1 Femtosecond Absorption Spectrometer

Transient absorption spectrometers are relatively well-stablished tools, and sev-

eral commercial systems are available. However, our study demands to have a setup

that allows measuring systems in solution, solid-state samples, and samples under high

vacuum conditions. Additionally, the flexibility of fine adjustment of the time resolu-

tion of the instrument as well as the wavelength range of operation made a home built

system a better choice for this study. Briefly, our setup employs the tunable output

of the NOPA as the pump beam and a supercontinuum (450-720 nm) generated in a

sapphire plate as the probe beam. The cross-correlation of pump and probe beam was

taken as the instrument response function (IRF) and was kept below 30 fs by using a

prism pulse compressor. A single wavelength detection scheme was implemented using

a monochromator (Oriel Cornerstone-260 74125), a biased Si photodiode (Thorlabs

DET10A), and a lock-in amplifier (Signal Recovery 7230 DSP). A detailed description

of the system is given next.

As can be seen in Figure 3.4, transient absorption spectrometers can be divided

into four parts: supercontinuum stage, pump delay line, sample chamber, and signal

detector. In the following, each component will be described in detail.
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Figure 3.4: Schematic of the transient absorption spectrometer.PB: Parabolic mirror,
SP: Sapphire plate, BS: Beam splitter, DL: Delay line, MCM: Monochro-
mator, PD: Photo diode.

Supercontinuum probe. The instrument in question used a supercontinuum

probe generated by focusing 0.1 µJ in a 3 mm thick sapphire window with a 50 mm

focal length fused silica lens. To achieve a single-filament, stable supercontinuum with

the desired spectral components, a careful control of the focusing parameters is nec-

essary. In this setup, the numerical aperture, position of the focus within the crystal,

and power of the incoming beam was finely tuned by an iris, a reflective neutral den-

sity filter, and a translation stage. Optimizing these three parameters is a challenging

task due to the high order nonlinear mechanisms involved in the continuum genera-

tion process. Thus, fine adjustment requires some hands-on experience on the setup.

Several studies on the relation between the different parameters and the supercontin-

uum output have been done by the Riedle group and are summarized in Bradler’s

dissertation. [119] Their results were a useful starting point to generate an optimal

supercontinuum in the transient spectrometer as well as in the NOPA. After gener-

ation, the continuum was collimated with a 90◦ off-axis parabolic silver mirror with

an effective focal length of 50 mm. The use of this mirror minimizes spherical, and

chromatic aberrations in the broadband pulse. Afterward, the broadband pulses were

sent into a compressor composed of a pair of BK7 prisms. This design allows a high

resolution of the experiment at a single wavelength compared to transient absorption
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spectrometers that use an uncompressed probe beam to allow multichannel detection

over the whole continuum spectrum. [117,120,121] The compressor design was chosen

for two reasons: first, a time resolution below 50 fs was necessary, second, a multi-

channel detector capable of operating at 10 kHz was not available in the laboratory

at the time. Nonetheless, the prism compressor in the setup proved to be the most

challenging part to maintain and operate. Along the course of this work, the design

saw various improvements. Finally, the compressor was set to function in three distinct

configuration modes depending on the system under study. The first of these setting

gave the best possible time resolution attainable with our setup (IRF < 20 fs); it was

used when a high-resolution kinetic trace at a single wavelength was required. When

operating in this mode, the distance between prisms and the amount of glass in the

beam path was adjusted following standard procedures to minimize the IRF at the

desired wavelength. [122] The second mode of operation was used when several kinetic

traces, or a spectrum scan (generated by a stepwise scan of the monochromator), was

required without the need of high temporal resolution. For this configuration, the dis-

tance between prisms was adjusted to minimize the cross-correlation between the pump

and the central wavelength of the desired spectra. Finally, the third configuration gave

the best compromise between time resolution and automatized multiple wavelength

scans. To do this we start from the second configuration, then the amount of glass in

the beam path is changed by translating the prism transversely to the incoming beam

with a stepper motor. For this configuration to work, a calibration curve is required.

This curve relates to each wavelength a position of the stepper motor that produces the

smallest possible IRF. It is worth mentioning that in all the above procedures, adjust-

ing the prism distances to minimize the IRF is a long and iterative process. Given this,

it is important to perform a rough adjustment of the distance first. This adjustment

is achieved, by maximizing the second harmonic signal of the spectral component in

question.

Pump delay line. The pump beam coming from the NOPA is first focused
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through the blades of a chopper wheel. The chopper modulates the signal for the Lock-

In amplifier. Then, the beam is brought close to recollimation with a lens mounted on a

translation stage. This adjustment allows making slight changes in the beam diameter

of the pump beam when it hits the sample. Next, it crosses a half wave plate that

allows changing the relative polarization between probe and pump beams. Finally, the

beam is delayed from the probe beam by hitting a corner-cube aluminum retroreflector

(PLX Inc) mounted on a DC-servo motorized stage (PI M410.DG).

Sample chamber. Pump and probe beams were focused onto the sample using

the same off-axis parabolic silver mirror with a 200 mm effective focal length. This

geometry results in an intersecting angle around 3.5◦ and a spot diameter of 350 µm for

the pump. The probe beam diameter was always below 100 µm. The beam diameters

were regularly checked because they can introduce artifacts in the measurement by

a partial overlap of the beams. To do this, the knife-edge method was used for the

intense pump beam. However, this technique proved to be inappropriate for the low

intensity of probe beam. To measure the spot diameter of the probe a set of pinholes

with different aperture sizes were used. As mentioned before, an advantage of our setup

is the capability to measure different sample types. For samples in solution, a quartz

(Spectrosil) 1 mm path cuvette (Starna Cells) was mounted on a fixture capable of

x-y-z positioning plus two orthogonal rotations around the axes perpendicular to the

incoming beam. The degrees of freedom allow an accurate adjustment of the position

of the overlap and the angle between the cuvette window and the incoming beams.

Measurements on the sensitized semiconductor electrodes were done in a high vacuum

chamber. The setup can accommodate a home-modified microscopy cryostat (CRYO

RC102-CFM) used as a vacuum chamber. The chamber has a pair of 0.5 mm fused

silica windows, and was kept at 10−7 mbar by a turbomolecular pump (Pfeiffer Vacuum

HiPace80). The same degrees of freedom can be adjusted in the vacuum chamber.

Signal detection. After the sample, the probe beam was spatially filtered,

collimated, and focused onto the slit of a monochromator. The grating (Newport

74072) used inside the monochromator for the experiments was blazed at 475 nm
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and had 300 l/mm. At the monochromator’s output, a biased Si photodiode (Thorlabs

DET10A) collects the signal. The photodiode’s signal was sent to the Lock-In amplifier

together with the reference signal of the chopper, which frequency was set to 337 Hz.

Finally, the phase of the lock-in was adjusted by setting the signal to be positive using

a known sample with a strong positive signature like ZnTPP.

3.3.2 Measurement Procedure and Acquisition Software

After the description of the transient absorption spectrometer used in this study,

it is important to clarify the process followed to get the TA data. The steps followed

are:

1. The first step in a measurement consists in the tuning and alignment of the
NOPA. This assures that the pump beam has the right power and wavelength.

2. Similarly, the aperture and focus geometry that generates the probe beam should
be adjusted. The aim is to obtain a stable white light filament. This optimization
was carried by minimizing the noise of the white light measured by displaying
the output of a photodiode in an oscilloscope.

3. Once the pump and probe beam satisfy the requirements, the beams are spatially
overlapped on a 100 µm pinhole. At this point, it is also useful to measure the
spot size of each beam at the focal point. The spot size of the pump beam can
be adjusted by the translation of a collimating lens after the SHG stage.

4. After having a good spatial overlap, the temporal overlap can be found in two
ways. One is by finding the sharp TA signal of a strongly absorbing molecule like
ZnTPP. The second one is by looking for the frequency mixing signal obtained
by placing a non-linear BBO crystal at the sample’s position.

5. At this point, it is important to measure the cross-correlation (CC) signal of
pump and probe beams. This signal will determine the IRF of the experiment.
To minimize the IRF it is important to fine tune the prism compressor at the
output of the NOPA. To account for the glass in the cuvette, the CC should be
measured and minimized after 1 mm of quartz.

6. Once the spatial and temporal overlap have been checked, a strong absorbing
sample with a known transient spectra is placed in the holder. To find the TA
signal, the delay between pump and probe is set to several ps. After this, the
sample should be translated to the point where it maximizes the TA signal. This
is done for the following reasons: First, the position of the overlap changes as a
consequence of diffraction from the cuvette. In addition, the time zero point also
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changes as a result of the previous adjustments. And most important, aligning
on artifacts at early times should be avoided.

7. Once the TA signal is maximized, the waveplate in the pump beam is adjusted
to get the desired polarization. Most of the measurements were carried at the
so-called magic angle polarization, which is the angle that averages out the con-
tribution of selective excitation. Then the phase in the lock-in should be adjusted
based on a known spectra.

8. At this point, minor adjustments should be done to maximize the signal. De-
pending on the strength of the TA signal, the scale and integration time of the
lock-in amplifier should be adjusted (usually 20 to 200 ms).

9. Finally, the parameters for the scan can be set in the home-developed LabVIEW
aquisition software and the measurement can be started.

The acquisition software requires the following parameters: an array of wave-

lengths to measure, and an array of time delays to scan. For a quick scan, the delays

can be set to be uniformly distributed between an initial and final range. However, for

systems with relaxation dynamics spanning different time scales, a non-uniform step

scan is faster and advantageous. In this case, the time steps were distributed in a

quasi-exponential way. This gives a constant time step size between -1 and 1 ps and

the rest of steps increase according to

∆t(i) =

−1 + 2i
N

for i = 0 . . . N − 1,

1−1+i/N for i = N . . .M.

(3.26)

In the above equation, N stands for the number of points between -1 and 1 ps and M

is the maximum delay time calculated as

M = N(1 + log ∆tmax) (3.27)

The initially linear scan is helpful for the correction of the continuum chirp, while

the exponential sampling minimizes the measurement time. This time scale has been

proved useful because it generates the same number of delay points from -1 to 1 ps
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as between 1 and 10 ps, 10 and 100 ps and so on. [117] Hence, if a fitting routine is

applied to such a data set, the dynamics on every time scale will have equal weight. For

a proper data representation and a clear analysis of the baseline of the measurement,

additional, uniform distribution points are added before time zero.

Once the array of delay steps are feed into the acquisition software, the ac-

quisition software moves the spectrometer to the desired wavelength. Then a scan is

initiated by moving the delay stage to the desire time delay position and the lock-in

amplifier collects data for a time given by four times the integration constant of the

instrument. Finally several scans will be taken and averaged to get the final transient

absorption kinetic trace.

3.3.3 Data Analysis

Spectroscopic data provides an indirect measurement of the intrinsic properties

of the system in question. Thus, every spectroscopic experiment needs to be analyzed

based on a suitable model. Nevertheless, every model carries assumptions and ap-

proximations that should be clearly stated and understood. From first principles, it is

possible to describe a pump-probe experiment as a light-matter interaction using Liou-

ville’s formalism introduced in section 3.2. This formalism describes the time evolution

of the density matrix operator in quantum mechanics. Namely,

ρ̇ = − i
~

[H0 + V (t),ρ]− Γρ. (3.28)

If the potential term V (t) originates from the interaction between the electric field E

and the samples dipole moment µ as

V (t) = µ ·E(t), (3.29)

the Liouvillevon Neumann equation leads, under the dipole and rotating-wave approx-

imation, to the so-called optical-Block equations (OBE). [123]

56



In theory, one could solve the OBE equations to find the corresponding elements

of the density matrix. However, a simpler model, based on linear rate equations can

be applied. From a mathematical perspective, the rate equation approach has been

proved to be asymptotically equivalent to the OBE if the dynamics of the system are

slower than the decoherece time. [124] In the following, the rate equation model will

be discussed in detail. The physical basis of the model is: from a theoretical point of

view, the Einstein rate model for photoexcited transitions, and from an experimental

one the Beer-Lambert law. For the two-level system depicted in Figure 3.5 the Einstein

coefficients will give rise to the following linear rate equations.

Ṅ1(t) = I0Ipump(t)−
1

τinj
N1(t)

Ṅ2(t) =
1

τinj
N1(t)− 1

τrec
N2(t)

(3.30)

where Ipump(t) denotes the intensity of the pump pulse and I0 is a constant prefactor.

The source term, Ipump(t), is proportional to the square of the envelope of the pump

electric field. Referring to the previous model, the measured transient absorption signal

at a delay time τ , SN2(τ), is calculated as the convolution of the probe pulse and the

population of the N2 state,

SN2(τ) =

∫ ∞
−∞

Iprobe(t− τ)N2(t)dt. (3.31)

If the envelope of the pump pulse Ipump(t) is considered to be Gaussian, the solution

for N2(t) will be expressed in terms of the error function an can be cumbersome. To

avoid this, it is convenient to exploit the fact that there is only one source term in

equations 3.30. Hence, the solution can be written again as the following convolution:

N2(t) =

∫ ∞
−∞

Ipump(t
′)Ñ2(t− t′)dt′, (3.32)

where the tilded quantity refers to the solution of the homogeneous case of the set of
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equations 3.30. Mainly,

Ñ1(t) = N0 exp

(
− t

τinj

)
(3.33)

Ñ2(t) = N0
τrec

τrec − τinj

[
exp

(
− t

τrec

)
− exp

(
− t

τinj

)]
(3.34)

Inserting equation 3.32 into equation 3.31 and interchanging the order of con-

volutions using the commutation of integrals gives the following result:

SN2(τ) =

∫ ∞
−∞

Ñ2(t′)

∫ ∞
−∞

Ipump(t− t′)Iprobe(t− τ)dtdt′. (3.35)

The second integral term in the last equation corresponds to the experimentally

measure cross-correlation of the pump and probe pulses, i.e., the instrument response

function (IRF). Thus, lifetimes from the different states can be extracted through a

deconvolution procedure with the measured IRF. The previous description represents

the simplest data fitting method for pump-probe signals. However, this description

only works under the assumption that there are not coherent terms in the OBE. The

question regarding the point at which the rate equation model is not accurate anymore

has been addressed by several authors. [97, 125, 126]. In particular, Ernstorfer [97]

compared simulations of HET processes up to injection times of 15 fs. He concluded

that the main difference between the two approaches was a temporal shift of the signals

maximum. If the temporal position of the maximum of the signal, also called time-

zero, is left as a free parameter in the fitting procedure, the rate equation model

reproduces the OBE signal quite reasonable. In this study, this was the approach

followed regarding the fitting procedure.

Now, to generalize the rate model for more than two levels, and allow the inclu-

sion of non-radiative transitions, additional independent pathways, must be included.

These additional relaxation channels are not known a priori and their integration pose

the following inverse problem: recover the appropriate relaxation scheme, in addition

to the spectroscopic and kinetic parameters from the observed signal ∆A(λ, t).
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Figure 3.5: Sequential relaxation pathway in a two-level system.

The earlier studies using transient absorption experiments did not face this chal-

lenge because they were characterized by the relatively small amount of data. These

studies mostly focused on fitting few kinetic traces with a minimum number of expo-

nential decays. Nowadays, the availability of multichannel detectors, high repetition

lasers and an overall improvement in laser stability, have contributed to the produc-

tion of large amounts of data that requires a more careful analysis. Because of this,

the approach based on multivariate data analysis techniques, and the nomenclature

introduced by van Stokkum et al. is now commonly found in the literature. [127]

This multivariate analysis scheme builds on the following assumptions:

• Homogeneity. The system is assumed to be homogeneous because the observed
dynamics of the ensemble can be ascribed to individual members. Thus the
system can be described with a discrete set of parameters.

• Separability. The transient absorption signals can be thought to be originated
from a set of emitting and absorbing states. Hence, the signal can be modeled
as a superposition of the spectroscopic properties of each state weighted by their
concentration. This assumption is nothing else than the Beer-Lambert law.9 The

9 The law is named after August Beer and Johann Heinrich Lambert, and consist of two experimental
observations. The first one states that absorbance of a material sample is directly proportional to
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transient absorption signal is separated as

Sλ =
n∑
i=0

AλiNi(t), (3.36)

where Aλi is the independent amplitude at each wavelength, and Ni(t) is the
population of each state.

• Stochastics. The measurements are assumed to contain additive Gaussian dis-
tributed noise.

The n terms involved in equation (3.36) represent the states participating in

the relaxation process. The idea of the fitting procedure is to keep the number n

at the minimum that allows fitting the signals at all wavelengths, using the same

number of states, without a systematic deviation of the residuals. Thus, the signal

at a given wavelength has a weighted contribution from the population of each state.

The time-dependent population of each can now be obtained by solving a set of linear

rate equations that allow parallel and sequential decays. In the absence of a priori

knowledge on the relaxation model, it is useful to consider an entirely parallel and

sequential model. For the case of an entirely parallel model, the population dynamics

of each state is independent of each other. And the set of coefficients Aλi constitute

what is called the decay associated difference spectra (DADS). If the model is assumed

to be unbranched, and all states are connected in series, the dynamics of each state

is given by a linear combination of decays. In this sequential case, the Aλi coefficients

are known as the evolution associated difference spectra (EADS). On the other hand,

a model inspired by scientific hypotheses and assumptions that can potentially include

parallel and sequential decays is called a target model. With a target model, the

associated spectral coefficients are called species associated difference spectra (SADS).

In this work, thanks to the fairly well-understood photophysics of the tetrapyr-

role systems, a target analysis was implemented. Thus, the set of equations representing

its thickness. The second one states that absorbance is proportional to the concentrations of the
attenuating species.
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the imposed relaxation model were:

Ṅ0(t) = −Bg(t) +
∑
j

1

τj
Nj(t),

Ṅ1(t) = Bg(t)−
∑
k

1

τk
N1(t),

Ṅi(t) =
∑
j

1

τj
Nj(t)−

∑
k

1

τk
Ni(t).

(3.37)

In the last set of equations τj are the time constants associated to the Nj → Ni

population transitions, whereas τk represent the Ni → Nk depopulation constants.

The term Bg(t) in equations 3.37 acts as a source term that represents the pump pulse

and is composed of the amplitude B and the Gaussian envelope

g(t) = exp

[
−4 ln(2)

(
t− t0
WIRF

)2
]
. (3.38)

This function takes into account WIRF as the width at half maximum of the IRF.

Therefore, the fitting procedure aims to find a set of parameters {Aλi , τi} that produce

the best global fit and represent the lifetime and signal amplitude of each species.

3.4 Additional Instrumentation

3.4.1 Prism Based Spectrograph

In the late stage of the project, an improvement in the transient absorption

spectrometer was the design and construction of multiple wave detection capability

using a CCD camera. The data discussed in this dissertation was not acquired with this

setup. Similar multiple wave detection setups have been successfully used in transient

absorption spectrometers. [117] The advantages of a prism spectrometer over a grating

spectrometer are: the high transmission throughout a large spectral range when used

at Brewster angle configuration, and the absence of higher order diffraction.

A schematic of the setup is displayed in Figure 3.6. It consists of an adjustable

mechanical slit (Thorlabs VA100), a collimating silver spherical mirror (R=-400 mm),
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Figure 3.6: Schematic of the home-built prism spectrometer.

a silver turning mirror, a BK7 Pellin-Broca prism (Thorlabs ADB-10), a focusing

silver mirror (R=-500 mm), a silver turning mirror, and a high-speed line scan camera

(e2V EV71YEM1GE1014-BA9). The camera is the core of the design and allows a

single shot spectra aquisition at 10kHz. The choice of all reflective optics reduces

chromatic aberrations. The small angle of reflection of the spherical mirrors and the

double reflection geometry from two spherical mirrors reduces spherical aberrations.

The selection of the collimating mirror gives the instrument a 200 mm focal length.

The focal length and the height of the dispersing prism (10 mm) gives the device an

optical acceptance cone of f/20. The Pellin-Broca prism was chosen because of its 90◦

deflection that simplifies the optical design. The focusing spherical mirror was selected

from commercially available mirrors to produce a spectral range in the 420-760 nm

range on the CCD array. A consequence of the non-linear dispersion introduced by

the prism is that the focal plane is tilted and slightly curved. These aberrations were

characterized during the design process by adding bandpass filters and finding the

position of the focus for different wavelengths. The focal tilt can be compensated by
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tilting the detector at angle θ ∼ 59◦ as shown in Figure 3.6. Contrary, correction of

the curvature of the focal plane is not an easy task, and the aberration was accepted.

It was previously determined that the error introduced by this effect was below the

Raleigh resolution criteria for the device.

The spectrometer, being a home-built instrument, allows for a relatively easy

change of the spectral range, alignment, calibration, and future improvements. All

optical elements are mounted on adjustable optical holders, and the focusing spherical

mirror is mounted on a translation stage for fine tuning of the focal length. The

alignment procedure was done by placing a bright commercial fluorescent lamp as close

as possible to the adjustable slit. The slit was closed as much as possible while still

having an acceptable signal on the detector. The distance between the focusing mirror

and the fixed sensor is critical to allow the resolution of the spectral peaks from the

fluorescent lamp. So, if the instrument is completely misaligned this must be the first

step to do. Next, an iterative process must be implemented to optimize the resolution.

The iteration process consists of performing a two-dimensional optimization (walking

the beam) to put the desired part of the spectrum on the 1024 pixels CCD array while

trying to keep the tilt angle (θ = 59◦) unchanged, followed by adjustment of the focal

distance using the micrometer translation stage. Figure 3.7 shows a comparison of

the performance of the home-built instrument against a commercial fiber spectrometer

when recording the spectra of a common fluorescence lamp.

The CCD camera is capable of acquiring 12 bit spectral lines at the native 10 kHz

repetition rate of our laser system. Because of this, particular attention is required in

the implementation of the acquisition software to be able to handle the data at the same

rate. This was done by implementing a producer-consumer software architecture in

LabVIEW R©. This software architecture relies on separating and balance the hardware

resources in charge of the acquisition and processing of the data. A subroutine of the

software is interfacing with the camera and reads the array of pixels, calculates the

logarithm of the array and assigns a tag depending on the state of the pump beam. The

state of the pump can be on or off depending on the position of a synchronized chopper
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Figure 3.7: Comparison of the fluorescent lamp spectra recorded with a commercial
fiber spectrometer and the home-built setup herein described.

wheel. The producer subroutine then stores the data in a queue that is available to the

consumer subroutine. The consumer subroutine calculates the difference in absorption

by subtracting signals with different pump state tags.
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Chapter 4

ENERGY LEVEL ALIGNMENT WITH DIFFERENT ELECTRONIC
STATES

This chapter presents addresses the first objective, measures the electron trans-

fer rate for two different energy level alignments. These different alignments were

obtained by exciting electrons into two different electronic states. The measurements

were done by using the phlorin, 3H(PhlF) molecular system described in section 2.2.

The results of the relaxation dynamics of the phlorin system in solution are presented

and discussed first. Afterward, the results of the HET rates from the S1 and S2 states

of 3H(PhlCO2H) into TiO2 are explained and discussed using the previous knowledge of

the dynamics in solution. Finally, at the end of the chapter the results and conclusions

obtained by this experimental design are summarized.1

4.1 Phlorin System in Solution

4.1.1 Spectral properties

As mentioned before, to disentangle the HET rates it is important to have a

thorough understanding of the intra-molecular relaxation process. With this intention,

the transient absorption spectra of 3H(PhlF) was measured in toluene. The transient

1 The results discussed in this chapter were published in 2015 and can be found in reference [128].
The author of this dissertation is the first author of the cited publication. This chapter is mainly a
slightly modified reprint of the mentioned article. The images and text herein shown are reprinted
with permission from RSC Publishing as stated in their policy: “You do not need to request permission
to reuse your own figures, diagrams, etc, that were originally published in a Royal Society of Chemistry
publication. However, permission should be requested for use of the whole article or chapter except if
reusing it in a thesis. If you are including an article or book chapter published by us in your thesis
please ensure that your co-authors are aware of this. Reuse of material that was published originally
by the Royal Society of Chemistry must be accompanied by the appropriate acknowledgement of the
publication”. [129]
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Figure 4.1: Normalized absorbance difference spectra at different delay times follow-
ing Soret band excitation. Dashed lines show the wavelengths at which
kinetic traces were measured.

spectra after excitation of the Soret band are shown in Figure 4.1. There are several

features in these spectra that can be noted. First, there is a positive peak with a max-

imum around 510 nm assigned to a mixture of two contributions. The first of these

contributors is the early singlet excited state absorption (ESA) S1 → Sn, similarly ob-

served in previous porphyrin studies. [130–133] Second, the previously mentioned peak

evolves into a weak absorption plateau after ∼50 ps which is assigned to the absorp-

tion of the triplet state T1 → Tn. This triplet ESA feature was assigned given the

similar absorption signatures from triplet states reported in theoretical and experi-

mental studies. [133–135] Third, there exists an isosbestic point at 590 nm separating

the absorption signal from a peak with negative signal centered at 650 nm. Finally,

66



��� � �� �� �� �� �� �� 	� 
� ��

����

���


����

����

����

���

���

���

�����
�
������������������������

� !�

�"��#���

�$%���������
�
�
��

��
��
	


�
�
�
��
�
��
�
�
��
��

"�&��'()*

	����&�(��+�

Figure 4.2: Comparison of the relaxation dynamics of 3H(PhlF) for different solvents.
Solid lines represent the fit.

the negative signal at 650 nm is a mixed contribution of ground state bleach (GSB)

and stimulated emission (SE). Consequently, the short wavelength part of the negative

peak is mainly attributed to the bleach of the S0 → S1 transition, in agreement with

by the steady state spectrum. At wavelengths longer than 650 nm the negative signal

is expected to show the predominantly contribution from SE, which generally follows

the steady-state emission spectra.

An additional spectral feature was observed for the case of Soret excitation of

3H(PhlF) in a polar solvent; a long-lived contribution at 720 nm (Figure 4.2). An

unambiguous assignment of this solvent-dependent signal is a challenging task and

requires further investigation. However, its absence in non-polar solvents, after Q

band excitation, and in measurements on 3H(PhlCO2H) suggests that it is connected

to an excited state that is localized primarily on the fluorinated phenyl groups and

stabilized by polar solvents. The rest of the spectral components were solvent polarity

independent. For this reason, measurements in toluene are taken as the standard

throughout this work except for Figure 4.3c where cyclohexane was used for 720 nm

detection wavelength. Since HET measurements are the primary goal of our study,

and these experiments were performed in vacuum conditions, measurements with a
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Figure 4.3: Normalized kinetic traces of 3H(PhlF) in toluene (panel a and b) and cy-
clohexane (panel c) after Soret excitation. The insets show the long term
behavior of the signal. Solid lines represent the fit and the contribution
of each state to it.

non-polar solvent were conducted for comparison. Kinetic traces were measured at the

probe wavelengths indicated as dashed lines in Figure 4.1. Namely, 540 nm to monitor

the S1 and T1 ESA, 650 nm to track the GSB and SE, and 720 nm to follow the SE.

These traces are shown in Figure 4.3 following Soret excitation. Likewise, Figure 4.4

shows the traces after Q band excitation. For the latter case, traces at 650 nm were

not taken due to the strong signal arising from scattered pump light.
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Figure 4.4: Normalized kinetic traces of 3H(PhlF) in toluene following Q band exci-
tation. The insets show the long term behavior of the signal. Solid lines
represent the fit and the contribution of each state to it.

Besides the previously mentioned long-lived contribution no significant differ-

ence between 3H(PhlF) and 3H(PhlCO2H) was found. Particularly, during the first 9 ps,

the traces are indistinguishable from each other (Figure 4.5). Thus, the same relax-

ation model, shown in the Jablonski diagram in Figure 4.6, was used for both phlorin

derivatives.

4.1.2 Relaxation dynamics.

To reproduce the relaxation dynamics after excitation of the Soret band; a

target analysis was used. A model with five consecutive decay process between six

states was required to fit all the measured traces globally. In contrast, following Q

band excitation, only the last four process, connecting five of the previously identified
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Figure 4.5: Comparison of the relaxation dynamics between 3H(PhlF) and
3H(PhlCO2H) in toluene. Both systems were successfully fit with the
same model.

states contribute to our signal. The assignment of the signals to individual states

will be discussed next. The global fit parameters for Figure 4.3 and Figure 4.4 are

summarized in Table 4.1.

The first population has a lifetime of ∼150 fs. Following Soret excitation, the

lifetime of this state is observed as a rise at 540, 650, and 720 nm. This time constant

is not observed at any wavelength following excitation of the Q band, where the S1

state is populated directly. The early dynamics following excitation in the individual

states are shown in Figure 4.7. This state is thus identified as S2, which is populated

instantaneously during Soret band excitation. Its lifetime is observed as a rise time

after Soret excitation in the Shot
1 population (see below). The measured lifetime agrees

with previously reported results for free base porphyrins in solution, [131, 136] as well

as gas phase measurements. [137,138] The ultrafast relaxation from S2 to S1 indicates

relaxation through a conical intersection. [137]

The second state is identified as a vibrational hot S1 species, denoted Shot
1 ,

with a lifetime of τ2 ∼ 180 fs after Soret excitation. This time-constant is only observed

in the SE signal S1 → S0 as a decay. In contrast, the S1 → Sn transition can in principle

always access a corresponding vibrational level in the upper excited state Sn. Thus, the
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Figure 4.6: Relaxation model for the phlorins after Soret and Q band excitation.

dynamics of the Shot
1 relaxation process is not observed at 540 nm. This is indicated

in Figure 4.6 by the green and maroon arrows. The dynamics associated with the

Shot
1 state appear as a decay with a small amplitude at 650 nm on top of the bleach

signal, along with a decay at 720 nm (green line in Figure 4.3 and Figure 4.4). The

lifetime of this state after Q band excitation is τ ′2 ∼ 90 nm, shown in Figure 4.7. The

reduced lifetime after Q band excitation can be attributed to the reduced amount of

excess vibrational energy. This time constant is similar to those assigned to vibrational

cooling processes within the Q bands of other porphyrins. [131,136]
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Figure 4.7: Early dynamics after excitation of the Q and Soret bands of 3H(PhlF) in
toluene.
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Figure 4.8: Calculated molecular orbitals for the HOMO, LUMO, and LUMO+1
of 3H(PhlF) and proposed change in the conformation around the meso
carbon. Notice the missing bridging orbital across the sp3 hybridized
meso-carbon in the LUMO.

The third state, with a lifetime around 6 ps, is assigned to an intermediate

step in the relaxation of the Q band. This state dominates the dynamics of the SE sig-

nal at 720 nm (orange line in Figure 4.3 and Figure 4.4). The lifetime of this state was

not affected by changing the excitation wavelength, and hence conventional vibrational

cooling can be excluded. Processes with similar dynamics have been observed in other

porphyrins [131, 136, 139, 140] and have been assigned to either solvent-induced vibra-

tional energy redistribution, [136] or conformational changes in the relaxation pathway

of non-planar porphyrins. [139, 140] It is known that conformational relaxations can

be sensitive to solvent polarity [141] due to the difference in polarity between the two

states. A change of ∼40% in the lifetime of the state was measured when using protic

(methanol) as well as aprotic (DMF) polar solvents when compared to non-polar sol-

vents (cyclohexane). In addition, molecular orbital calculations of 3H(PhlF), depicted

in Figure 4.8, show that the S1 state has a node at the sp3 hybridized meso-carbon

in contrast to the S0 and S2 states. This together with the measured buckling at the

meso-carbon in the phlorin ground state, suggests that the geometry of the S1 state
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differs from that of the S0 and S2 states. Therefore, a conformational relaxation process

consisting of the flattening of the macrocycle in the S1 state is proposed. This process

is thus assigned to a conformational change in the macrocycle of the phlorin, and the

corresponding state is labeled Sbuckled
1 .

The fourth state corresponds to the vibrationally cold S1 band and has a

lifetime of 32 to 44 ps depending on the solvent. This lifetime is assigned to S1 → T1

intersystem crossing (ISC), and agrees with the fluorescence lifetime of the molecule.

Similar lifetimes for ISC have been previously observed in free base porphyrins as

a consequence of the heavy-atom effect. [142, 143] Besides, the time constant is in

agreement with previously reported fluorescence lifetime measurements of 3H(PhlF)

by picosecond transient fluorescence measurements. [78] The population of this state

appears as an absorption at 550 nm, as well as a negative signal at 650 and 720 nm.

The contribution of this state to the fits is indicated by the red line in Figure 4.3 and

Figure 4.4.

Finally, the fifth state is assigned to the triplet state T1 with a lifetime

longer than 120 ps. Thus, this process exceeds the temporal detection window of

our experiment. This state is assumed to decay to the ground state with a time

constant corresponding to the phosphorescence lifetime, which in the case of free base

Table 4.1: Summary of time constants (τi) and amplitudes (Aλi ) corresponding to the
transient absorption kinetics of 3H(PhlF) in non-polar solvent.

Probe Aλ1 Aλ2 Aλ3 Aλ4 Aλ5 Aλ0Excited Band
[nm] S2 Shot

1 Sbuckled
1 S1 T1 S0

Soret
540 0 0.26 0.33 0.32 0.09 0
650 0 -0.44 -0.23 -0.25 0 0.08
720 0 -0.56 -0.32 -0.12 0 0

Q
540 0 0.33 0.30 0.30 0.07 0
720 0 -0.62 -0.30 -0.08 0 0

Time [ps] τ1 τa2 τ3 τ4 τ5
b

constants 0.15 0.18 5 44 >120
aThis time constant is reduced to 0.09 ps for Q band excitation.
bThe ground state is repopulated with the triplet lifetime.
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Figure 4.9: Band alignment of anatase TiO2 and 3H(PhlCO2H). All energies are given
in eV. The dark gray area represents the calculated DOS for anatase (101)
reproduced from Ref. [95].

porphyrins is characterized by a very low quantum yield. [142–144] Population of this

state is observed as an absorption at 540 nm, and its lifetime governs the GSB recovery

at 650 nm. This is in agreement with reported triplet state absorption in porphyrins.

[134, 135] Its contribution to the fits is indicated as the blue line in Figure 4.3 and

Figure 4.4.

4.2 Phlorin System on TiO2 Films

4.2.1 Level alignment.

Before the discussion of the electron injection process, it is important to know

the energy band alignment between 3H(PhlCO2H) and the TiO2 film. The position of

the HOMO was calculated from the work function of anatase of 5.1 eV [145, 146] and

the ionization potential of free-base porphyrin of 6.4 eV [147]. Following a proposed

universal level alignment [31] a HOMO to Fermi level offset of 1.65 eV can be ex-

pected. It has been shown that the Fermi level is very close to the conduction band
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Figure 4.10: Kinetic traces of TiO2 sensitized with 3H(PhlCO2H) after Q and Soret
excitation.

edge in colloidal anatase. [148] Assuming an offset of 50 meV results in a HOMO to

valence band edge offset of 1.5 eV when using the well-established anatase band gap

of 3.2 eV. This value agrees well with experimental results for Zn-porphyrin bound to

rutile TiO2. [83] It should be noted that the level alignment for porphyrins does not

change significantly upon substitution of side groups, [83] or removal of the central

metal atom. [149] Therefore, we assume a HOMO offset of 1.65 eV for our system and

deduce the position of the S1 and S2 state from the respective optical gaps. This results

in the level alignment shown in Figure 4.9 that includes a difference of 0.9 eV between

the first and second excited states of the phlorin. The proposed alignment has to be

taken with care since changes in the surface composition can lead to significant shifts.

The calculated density of states (DOS) for the defect-free anatase (101) surface is
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shown in dark gray (reproduced from Ref. [95]). It is important to note that due to the

very narrow maximum of the DOS, the DOS that is resonant with the S1 and S2 state

differs strongly regardless of a systematic energy shift between the molecular states and

the TiO2 DOS. Assuming that the full width of the electron transfer spectrum can be

accommodated inside the conduction band and that the electronic coupling between

excited molecular state and TiO2 acceptor states is constant over the whole energy

range, it can be expected that the ET rate is proportional to the density of acceptor

states. Thus, a significant difference for HET times from both states is expected from

elementary considerations. It is the aim of this work to test this assumption for the

0.9 eV difference in the energy level alignment.

4.2.2 Spectroscopic properties.

Steady state absorption of the sensitized TiO2 film resembles the absorption

spectrum of 3H(PhlCO2H) depicted in Figure 2.6. The only observed difference was a

reduction in the Q band absorption. The absorption spectrum was measured before

and after the transient absorption experiment and no noticeable changes were observed.

Kinetic traces at 550, 650, and 710 nm were measured after excitation of the Soret

band, and at 550, and 750 nm after Q band excitation. All kinetic traces show a

50±10 fs contribution. This contribution appears as the rise time of all measurements

after Soret excitation, as can be seen in Figure 4.10b, Figure 4.13 and Figure 4.14b,

and is significantly faster than the S2 → S1 transition observed in solution. After Q

band excitation, the signals measured at 550 nm (S1 absorption band) show a rise with

the IRF followed by a fast 50 fs decay (Figure 4.10a and Figure 4.12). The same time

constant is observed as a rise at 750 nm, identical to the dynamics measured after Soret

excitation. This behavior can be explained by the knowledge of the lack of ESA from

the second excited state. In this way, the 50 fs decay observed after Q band excitation

corresponds to electrons being injected, and the 50 fs rise time after Soret excitation

corresponds to the rise of the cationic absorption. The 50 fs process is on the same time

scale as previously reported injection times for other porphyrins, [132,133,150,151] and
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Figure 4.11: Injection model of TiO2 sensitized with 3H(PhlCO2H). The injection
rate was found to be the same for Soret and Q band excitation.

is assigned to HET.

At later times, excited traces after Soret or Q band excitation can be fit with

the same time constants throughout the whole probe spectrum using the target model

shown in Figure 4.11. These processes have lifetimes of 0.5, 3.8 and >300 ps, and

were attributed to cation relaxation based on the similar process measured for the

intra-molecular relaxation and electron recombination for the expected long cation

lifetime. [133] The diagram showing the corresponding injection model is depicted in

Figure 4.11, and a summary of the parameters used for the fits is shown in Table

4.2. The assignment of the different contributions to the signals is supported by the

Table 4.2: Summary of time constants (τi) and amplitudes (Aλi ) corresponding to the
transient absorption kinetics of 3H(PhlCO2H) attached to TiO2 displayed
in Figure 4.10, Figure 4.13, and Figure 4.14

Probe Aλ1 Aλ2 Aλ3 Aλ4Excitation Band
[nm] S1 PI1 PI2 PI3

Soret
550 0 0.74 0.24 0.02
650 0 0.49 0.34 0.17
710 0 0.42 0.37 0.21

Q band
550 0.79 0.11 0.07 0.03
750 0 0.50 0.33 0.17

Time τ1 τ2 τ3 τ4

constants [ps] 0.05 0.5 3.8 >300
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Figure 4.12: Early dynamics of electron injection process for Q and Soret excitation.
The intensity is scaled at long delay times. The Soret signal can be fitted
with only the contribution of post-injection species generated after Q
excitation. The decay after Q band excitation (red) resembles the rise
after Soret excitation (blue).

following. First, the clear correlation between the 50 fs decay and rise time of the

signals after Q and Soret excitation, as well as the similarity of the dynamics after

the injection process for both excitations. This can be seen in Figure 4.12. Second,

no negative signal associated with S1 → S0 SE was detected after Soret excitation,

indicating that the S1 state is not significantly populated. This is shown in Figure 4.13

and Figure 4.14b. Also, traces obtained at 750 and 710 nm show the same 50 fs rise
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Figure 4.13: Kinetics of the sensitized film probed at 650 nm after Soret excitation.
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Figure 4.14: Kinetics of the sensitized film probed outside the S1 absorption band.
Notice the similarity of the signals after both excitations.

time and very similar decay dynamics after Q and Soret excitation, as can be seen in

Figure 4.14. The latter suggests that the two signals arise from the same post-injection

processes as expected from the cation being formed independently of the excited band.

Finally, the slow relaxation dynamics of the post-injection processes PI1, PI2, and PI3

detected throughout the probe spectrum agree well with absorption characteristic of the

cation. Cation absorption spectra have been reported for free base [152] and metal [132]

porphyrins, and show a broad flat absorption between 500 nm and 750 nm. Also,

long cation lifetimes up to several nanoseconds have been reported [133] in agreement

with the long-lived PI3 contribution in our signal that can not be resolved within our

temporal detection window. These measurements show that HET proceeds with a 50 fs

time constant from both states regardless of the large difference in DOS. It should

be noted, that this time scale can be easily resolved with our instrument and that
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it is clearly different from the time constants measured for intramolecular dynamics

in solution. Figure 4.15 shows a comparison of the measured electron transfer rates

against the predicted rates assuming the steady state surface density of states shown

in Figure 2.9. The expected rates were calculated using two assumptions. First, the

WBL condition is satisfied; hence, HET rates are given by equation 1.10. Second, the

electronic coupling factor (VDA) is assumed constant and was fixed to generate a 50 fs

injection time for a driving force of |E − Efermi|=0.25 eV.

0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 . 0 1 . 1 1 . 2
0 . 0
0 . 1
0 . 2
0 . 3
0 . 4
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ET
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| E - E f e r m i |  ( e V )

 P r e d i c t e d  H E T  r a t e
 P h l o r i n - T i O 2  s y t e m

W i d e  B a n d  
   L i m i t

Figure 4.15: Comparison of the measured HET rates from phlorin into TiO2 against
the predicted rates considering a steady state density of states

4.3 Conclusions

The ultrafast excited state dynamics in a phlorin molecule was investigated af-

ter S1 and S2 excitation. The overall dynamics is comparable to those reported earlier

for other porphyrin derivatives. In addition to the S2 → S1 internal conversion and

initial vibrational relaxation, both occurring in the sub-200 fs time scale, a reorgani-

zation of the phlorin macrocycle was observed. The reorganizational relaxation of the

macrocycle involves the phlorin sp3 hybridized meso-carbon, and can be ascribed to

bending motions. This leads to a buckling of the porphyrin ring in the 5 ps time scale.

The observed intersystem crossing S1→T1 in this strongly fluorinated phlorin is very
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efficient when compared to unsubstituted porphyrins due to the heavy atom effect of

the fluorine atoms.

The intra-molecular dynamics measured in the solvent environment changed

dramatically when the phlorin molecule was attached to colloidal TiO2 via a car-

boxylic acid anchor group. HET with a time constant around 50 fs competes with

intramolecular relaxation pathways and results in the formation of the phlorin cation.

In contrast to the expected significant change in HET dynamics between the S1

and S2 state due to the difference in DOS, identical dynamics for electron transfer from

both states were observed. This observation can be explained either by assuming that

the DOS does not have a major influence on HET, or that the assumption that the

coupling between donor and acceptor state is energy independent is wrong. In the latter

case, the difference in DOS could in principle be compensated by stronger coupling for

the S2 state. However, since this explanation would require a fine balance between

two uncorrelated quantities, it is less likely. HET dynamics that is independent of

DOS, on the other hand, would suggest that the first step of ET, i.e. the formation of

the cation, involves states that are different from the surface DOS for bare TiO2. The

involvement of such intermediate states has been proposed recently, mostly with regard

to defect states. However, the very high efficiency of initial injection quantum yield

in molecule/TiO2 systems used for DSSC [153] suggests that these intermediate states

are inherently present in the system and may better be characterized as transition

states that are not observed in the DOS obtained from calculations or steady state

measurements. Transient spectra of the molecular moiety of an HET system do not give

the full picture for charge separation in HET. Two-photon photoelectron spectroscopy

would be one way to perform complementary measurements that allow for the dynamics

of electrons after HET in the conduction band to be elucidated. [154]
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Chapter 5

ENERGY LEVEL ALIGNMENT WITH DIPOLE-BRIDGE GROUPS

This chapter presents the results corresponding to the second approach to change

the level alignment. Namely, the level alignment was modified by the introduction of

dipole groups in a ZnTPP porphyrin. Specific details on the molecule can be found

in section 2.2. HET rates were measured from three different molecules looking for a

correlation between the injection rates and the energy position of the excited state.

Similarly to the previous chapter, the results corresponding to the relaxation of the

molecules in solution are presented first. The measurements of the HET rates into

colloidal TiO2 are discussed afterward. The chapter ends by summarizing the results

and conclusions of the experiments.1

5.1 ZnTPP systems in Solution

Photophysics of ZnTPP chromophores has been extensively investigated in the

past. [90–92, 131, 157–160] For comparison, femtosecond transient absorption spec-

troscopy (TA) was measured in solution to reproduce the reported dynamics for com-

mercial ZnTPP.

Figure 5.1 shows TA traces for compounds 1-3 at the indicated probe wavelength

after excitation of the Soret band at 420 nm. Transients have been measured at three

different wavelengths to monitor the dynamics of the S2 and S1 excited state absorption

1 The results discussed in this chapter were published in 2016 and can be found in reference [155].
The author of this dissertation is the first author of the cited publication. This chapter is mainly a
slightly modified reprint of the mentioned article. The images and text herein shown are reprinted
with permission from ACS Publications as stated in their policy: “Authors may re use all or part
of the submitted, accepted or published work in a thesis or dissertation that the author writes and is
required to submit to satisfy the criteria of degree-granting institutions. Such reuse is permitted subject
to the ACS Ethical Guidelines to Publication of Chemical Research”. [156]
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Figure 5.1: Transient absorption at the indicated wavelength of the three compounds
in ether after Soret excitation. The global fit and its decomposition
into contributions from individual states is indicated. The difference in
dynamics between the compounds 1 and 3 and compound 2 is indicated
for 520 nm probe wavelength by the blue shaded area.

(ESA), the stimulated emission (SE) and the ground state bleach (GSB). Global fitting

to a rate model at these wavelength allows extracting lifetimes for the individual states.

Two different relaxation models were used. The first one is the sequential model applied

to the relaxation processes for commercial ZnTPP and 2 shown in Figure 5.2. The

extracted time constants for this model are given in Table 5.1 and the corresponding

amplitudes are shown in Table 5.2. Briefly, after Soret excitation the negative signal

at 550 nm appears within our IRF; it is attributed to GSB in accordance with the

steady-state spectrum of the Q band. The positive signals at 520 nm and 655 nm
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Figure 5.2: Jablonski diagram showing the well-known intramolecular photodynamics
of ZnTPP. The relaxation times for ZnTPP and 2 are given in Table 5.1.

show rise times between 100 fs and 120 fs. These time constants are considered to

originate from vibrational relaxation within the S2 state. This assignment was still

debated [91,161] at the time the data was taken for this dissertation. However, recent

studies from our research group, using four wave-mixing spectroscopy, have resolved the

doubts and assigned it to a vibrational process. [162] The blue dashed line in Figure 5.1

includes relaxation processes in the S2 state. The femtosecond relaxation is followed

by internal conversion (IC) from S2 to S1 in about τ2 = 1.5 ± 0.1 ps. This process

appears as a positive contribution at all wavelengths assigned to ESA (red dashed line

in Figure 5.1). At 655 nm a 10 ps relaxation component followed by a slow relaxation

(>500 ps) is observed. Measurements at 550 nm show a 100 ps component followed

Table 5.1: Summary of time constants (τi) of the absorption kinetics of the studied
compounds. Amplitudes can be found in Table 5.2.

System τ1(fs) τD(ps)a τ2(ps) τ3(ps) τ4(ps) τ5(ns)
ZnTPP 120 — 1.8 10 100 1.8
2 120 — 1.5 10 100 1.8
1/3 110 3.5 1.5 10 100 1.8

a The energy transfer process (τD) is present only in 1 and 3, cf. Figure 5.4.

84



by a >500 ps process. At 520 nm only the slow process (>500 ps) is observed. The

10 ps and 100 ps processes have been assigned to vibrational relaxation (VR) within

the S1 state and are the subject of ongoing research. [91, 163] The slowest component

in our model was set to 1.8 ns, corresponding to the fluorescence lifetime. For clarity,

the relaxation processes within the S1 band were combined in the red dotted line of

Figure 5.1.

As discussed above, ZnTPP and 2 shows overall the same dynamics. This

is in agreement with studies showing that the photo-physics of Zn-porphyrins was

not affected by functionalization of one of the meso-phenyl groups. [80, 83] On the

other hand, compounds 1 and 3 showed different dynamics at 520 nm and 550 nm

(Figure 5.1 blue shaded area at 520 nm) while the dynamics at 655 nm was almost

identical to 2. The wavelength dependence indicates that the respective process is

coupled to the S2 excited state since at 655 nm predominantly S2 population is probed.

This is also supported by TA measurements in solution after Q band excitation that

Table 5.2: Summary of amplitudes (Aλi ) of the global fits applied on the studied
compounds.

System Probe Amplitudes

(ether) λ (nm)
Aλ0 Aλ1 Aλ2 Aλ3 Aλ4 Aλ5
S0 Shot

2 S2 Shot−1
1 Shot−2

1 S1

Zn-TPP
520 0 0 0.17 0.24 0.29 0.30
550 -0.26 0.02 0.09 0.22 0.23 0.18
655 0 0.50 0.35 0.07 0.03 0.05

1
520 0 0 0.22 0.29 0.25 0.24
550 -0.23 0.01 0.22 0.21 0.16 0.17
655 0 0.47 0.23 0.14 0.08 0.08

2
520 0 0 0.20 0.26 0.27 0.27
550 -0.23 0.03 0.11 0.22 0.22 0.19
655 0 0.50 0.27 0.08 0.07 0.08

3
520 0 0 0.20 10.28 0.27 0.25
550 -0.22 <0.01 0.23 0.19 0.21 0.15
655 0 0.56 0.17 0.11 0.08 0.08
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Figure 5.3: Transient absorption of the studied compounds after Q band excitation.
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Figure 5.4: Molar absorptivity of the nitroaniline linker and S2 fluorescence of
ZnTPP.

show identical dynamics for all three compounds at 520 nm (Figure 5.3). The UV-vis

spectrum indicates that direct excitation of the nitroaniline group is very weak and

not likely to be the reason for the change in dynamics. To confirm this, we performed

TA measurements under identical conditions on the bridge group alone (diphenyl-N,N-

dimethyl-4-nitroaniline). The weak absorption around 420 nm (Figure 5.4) required

15 times higher concentration for achieving a comparable TA signal at 550 nm probe

wavelength.

Therefore, direct excitation cannot account for the additional signal from 1 and

3 in Figure 5.1. As a side note, the dynamics of the weak TA signal from the nitroani-

line group is similar to dynamics reported earlier for p-nitroaniline. [164] The next

86



0
5

1 0
1 5

0 . 0 0 0 . 0 2 0 . 0 4 0 . 0 6 0 . 0 8 0 . 1 0
0 . 0
0 . 2
0 . 4
0 . 6
0 . 8

0 5.08 2.0

0 5.08 0.0

2
1

2
3

±=
Φ
Φ

±=
Φ
Φ 1

 2
 3

Int
egr

ate
d F

luo
res

cen
ce 

(ar
b. u

nit
s)

S 1  f l u o r e s c e n c e  a f t e r  
4 2 2  n m  e x c i t a t i o na )

b ) S 1  f l u o r e s c e n c e  a f t e r  
5 5 0  n m  e x c i t a t i o n

0 5.00 4.1

0 5.00 3.1

2
1

2
3

±=
Φ
Φ

±=
Φ
Φ 1

 2
 3

A b s o r b a n c e  ( A U )

Figure 5.5: Comparison of the S1 fluorescence QY of the studied compounds after
Soret band excitation (a), and after Q band excitation (b). The fluores-
cence quenching only takes place after Soret band excitation. This is in
agreement with an energy transfer process from the S2 state.

possible explanation is energy transfer from the Zn-porphryin chromophore S2 state to

the excited state of the nitroaniline group. The spectral overlap shown in Figure 5.4

is favorable for energy transfer. Energy transfer from Zn-porphyrin should result in

quenching of the fluorescence from the S1 state. Steady-state fluorescence quantum

yield (QY) measurements comparing QY from the three compounds showed that flu-

orescence is indeed quenched by 20% in 1 and 3 when compared to 2 (Figure 5.5).

Fluorescence lifetime measurements confirmed that the lifetime of the S1 state was not

affected by the nitroaniline group (Figure 5.7). At the same time, no difference in QY

was detected after Q band excitation. The 20% loss in QY corresponds to an energy

transfer time of around 6 ps from the S2 state to the bridge group. Energy transfer

adds another pathway for de-exciting the S2 state that is indicated as τD in Figure 5.6.

By applying the branched relaxation model shown in Figure 5.6, the photody-

namics of 1 and 3 can be fit globally by assuming an energy transfer time constant
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Figure 5.6: Jablonski diagram including energy transfer from the S2 state of ZnTPP
to the nitroaniline group.

τD=3.5 ps, a value that is in overall agreement with the fluorescence QY measurements.

For the fit, all time constants were kept constant while small adjustments to the am-

plitudes were necessary to account for changes in spectral weight. Fit parameters are

summarized in Table 5.1 and Table 5.2. This confirms that energy transfer accounts

for the difference in intramolecular photodynamics. To distinguish between Förster

and Dexter energy transfer, the expected Förster energy transfer was calculated from

the distance between chromophore and semiconductor surface and the overlap inte-

gral. [165] The resulting 200 ps are much longer than the observed 3-6 ps and indicate

that Dexter energy transfer is the prevailing mechanism.

5.2 ZnTPP Systems on TiO2 Nanoparticles

HET in the film can in principle occur from the S1 and S2 state. Energy trans-

fer to the nitroaniline group is not expected to influence HET from the S1 state. UPS

measurements of the ground state level alignment combined with UV-Vis spectra in-

dicated that the S1 excited state is located around the Fermi level about 100 meV

below the conduction band edge when absorbed on ZnO. Intrinsically n-doped ZnO

single crystals and TiO2 nanoparticles have similar band gap energies and Fermi level

alignment. Hence, a similar molecular level alignment can be expected. Accordingly,

no signature of fast HET can be observed in TA measurements after excitation of the
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Figure 5.7: S1 fluorescence lifetimes of the studied compounds after Soret band exci-
tation (a), and after Q band excitation (b). The deconvoluted lifetimes
(1.8 ns) were identical for both cases. This is in agreement with an energy
transfer process taking place from the S2 state.

Q band. The fastest time constant for the decay of the S1 state is around 9 ps (Fig-

ure 5.8a). This decay is at least one order of magnitude slower than expected when

compared to systems with similar bridge groups [22, 133,166]. Therefore, we conclude

that the S1 excited state is located below the conduction band edge at the TiO2 in-

terface and the slow decay is likely governed by injection into defect trap states [56].

Several TA measurements on similar systems found fast HET by evaluating the rise

time of the probe signal around 600 nm. [22,133] This assumption appears to be unrea-

sonable in our case because the rise time resembles our instrument response function

of 28 fs (Figure 5.8b). Sub-20 fs ET would be very fast considering the length of the

linker group. [57] It should be noted that the previously published measurements were

performed in a solvent environment while our measurements were performed in vac-

uum. Energy level alignment deduced from electrochemical measurements in solvent

environment was different for these measurements when compared to level alignment

measured by the Bartynski group via UPS in UHV. [88]
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the film for compound 2 (b) after Q band excitation. The 9 ps fit to the
decay is included in (a). Rising edge of the signal together with the
instrument response function (IRF) and a fit with 20 fs rise time.

Comparison between the three compounds on the TiO2 film after Soret exci-

tation is complicated by the interaction between the ZnTPP chromophore and the

nitroaniline group because it cannot be excluded that the excited state of the nitroani-

line group is involved in the HET process for 1 and 3. Indeed, TA traces for the three

compounds at 520 nm and 620 nm when attached to colloidal anatase TiO2 show that

the dynamics of 2 differs slightly from that of 1 and 3 (Figure 5.11, and 5.12) while 1

and 3 show almost identical dynamics. A fit with a model that includes the HET pro-

cess shown in Figure 5.9 results in an initial decay of 80± 7 fs for all three compounds

(Figure 5.10, 5.11, and 5.12). Fit parameters for 1 and 3 are given in Table 5.3. The

fast decay of the excited state absorption is assigned to electron injection into TiO2.

This is also supported by photocurrent measurements that clearly show electron injec-

tion from 1, 2, and 3 into TiO2, [167] and by efficient fluorescence quenching. [80] This

injection time agrees well with measurements on similar systems. [22,166] It is clearly
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Figure 5.9: Relaxation diagram for 1 and 3 on the TiO2 film including HET. The
energy axis is not to scale.

faster than the 1.5 ps S2-S1 IC measured in solution (cf. Figure 5.1). The decaying

signal on the ps time scale has previously been attributed to transient absorption from

the cation for compounds similar to 2 and can be fitted with similar time constants

that have been reported previously. [22,133] The difference in the ps dynamics between

1/3 and 2 is not easy to explain. The energy transfer on the 3.5 ps time scale should

be negligible when competing with 80 fs HET. On the other hand, the LUMO of the

Table 5.3: Summary of amplitudes (Aλi ) and time constants (τi) of the global fits
applied on 1 and 3 attached to TiO2. The time constants were fixed for
both systems at all wavelengths.

System Probe Amplitudes

λ (nm)
Aλ0 Aλ1 Aλ2 Aλ3 Aλ4
S0 S2 P1 P2 P3

1
520 0 0.65 0.21 0.09 0.05
620 0 0.74 0.16 0.07 0.03

3
520 0 0.65 0.21 0.11 0.03
620 0 0.75 0.15 0.07 0.03

System Probe
Time constants (ps)
τ1 τ2 τ3 τ4

1 and 3 520, 620 0.08 2.7 25 >100
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Figure 5.10: Transient absorption signal from the film after Soret-band excitation
for two different time intervals.

nitroaniline group is near resonance with the excited state and can influence coupling

to the electrode. The cation spectrum and dynamics of the di-phenyl nitroaniline group

are not known and are hard to measure because of the weak transition dipole moment

and since the concentration of the chromophore in the film can not easily be increased.

Therefore, the discussion is focused on the comparison between the compounds 1 and

3 that show the largest difference in level alignment (200 meV) and at the same time

identical HET dynamics. It should be noted that the dipole induced level shift of

200 meV was measured on a ZnO single crystal surface while our time-resolved mea-

surements were performed on colloidal TiO2. The binding geometry of the molecule on

the surface is another important aspect that can influence the injection pathway and

the projection of the dipole moment. IR-spectroscopy suggests a chelating or bidentate

bond of the anchor group to TiO2 that would support an upright binding geometry. [80]
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Figure 5.11: TA signal at 520 nm of 1, 2, and 3 on TiO2 after Soret band excitation.
The curves are normalized at longer times.

In addition, previous measurements showed that through-space electron injection, in

general, is slow and does not compete with through-bond injection in systems with

injection times below 100 fs. [133,166,168] Therefore, is assumed that electron transfer

occurs predominantly through the bond. Under this assumption, the relevant parame-

ter is the dipole moment projected onto the molecular axis which is independent of the

binding angle of the molecule. The independence of HET dynamics on level alignment

is the main result of this experiment. The simple approximation for non-adiabatic HET

rates kET is given by a Fermi-Golden rule expression:

kET =
2π

~
|VDA|2F (5.1)

The Frank-Condon weighted density of states F is a sum over all possible donor-

acceptor combinations weighted by the respective Franck-Condon factor. In the so-

called wide-band-limit the band of acceptor states in the semiconductor is wide enough,

and the donor level is sufficiently above the lower band edge such that the whole ET

spectrum can be accommodated. In this case, the FCWD is reduced to a pure DOS.

Ramakrishna, Willig, and May developed a parametrized fully quantum mechanical

model for HET that includes an electronic-vibrational quasi-continuum and allows to
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Figure 5.12: TA signal at 620 nm of 1, 2, and 3 on TiO2 after Soret band excitation.

compare HET dynamics as a function of crucial parameters like level alignment, re-

organization energy, and electronic coupling VDA. [169] Two of the cases that were

compared in their work used parameters that are very close to systems 1 and 3 in-

vestigated here. The excited states were located 0.5 eV and 0.7 eV above the edge

of a 1.4 eV wide band of acceptor states with constant DOS. A reorganization energy

of 200 meV and a constant electronic coupling that gave rise to an electron transfer

time of 84 fs in the wide band limit were assumed. Their calculations showed that

even in the case of constant DOS and constant coupling strength HET times differ by

about 18 fs, between 90 fs for 0.7 eV and 108 fs for 0.5 eV (fits to Figure 3 in Ref.

169). Comparison of fits with fixed injection times (62 fs and 98 fs) show that even

in this case an energy dependent injection time can be resolved by our measurement

(Figure 5.13). This difference would increase if one of the parameters showed energy

dependence. It is known that the DOS of the TiO2 anatase (101) surface shows a steep

rise close to the CB edge. [58] On the other hand, calculations suggest that the cou-

pling strength does not depend strongly on the energy. [60] The particular case where

the energy dependence of the coupling is assumed to compensate the change in DOS

exactly can not be excluded. However, considering our previous results this situation

is not very likely. [128]

94



5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 3 5 0

0 . 6

0 . 8

1 . 0

 τ =  6 2  f s
 τ =  8 0  f s
 τ =  9 8  f s
 1
 3No

rm
aliz

ed 
∆A

 (ar
b. u

nits
)

T i m e  ( f s )

Figure 5.13: Close in of the TA signal at 620 nm of 1 and 3 on TiO2 after Soret
band excitation (symbols). The black line shows the best fit, it includes
an electron injection (ET) component of 80 fs. The blue line includes a
65 fs ET time, and the red line includes a 95 fs component.

The fact that the measurements show identical HET times for both molecules

can be explained by assuming a strong modulation of electronic coupling that favors ac-

ceptor states in resonance with the donor state or a strongly modulated transient DOS

that is much narrower than the steady-state surface density of states. Both cases result

in the same situation where the donor state only couples to a narrow band of accep-

tor states that makes HET virtually independent of level alignment. The distribution

or density of these active acceptor states has not been observed in any steady-state

measurements or calculations. It can be assumed to be governed by the formation

of the excited state that leads to a transient electronic configuration. This electronic

configuration determines the density of active acceptor states. However, restricting the

donor-acceptor coupling to only a few states contradicts the non-adiabatic picture of

HET because narrowing the band of acceptor states would require increasing the elec-

tronic coupling to keep the HET time constant. The electronic coupling in the example

mentioned above was already around 8 meV. A considerably narrower band would re-

quire a much stronger electronic coupling, leading to a higher Landau-Zenner transition

probability and, consequently, render the application of a non-adiabatic model ques-

tionable. It is interesting to note that the results coincide with recent measurements

95



of inter- and intra-molecular photoinduced charge transfer reactions in molecular sys-

tems that show ET rates that are independent of the driving force in the inverted

region. [170,171]

From the measurements, it is concluded that the distribution of acceptor states

cannot be deduced from parameters like the surface density of states and the electronic

coupling alone. The discrepancy can be explained by the formation of a transient tran-

sition state during the first tens of femtosecond of the reaction that is different from

the permanent surface or defect states found from equilibrium calculations. This short

lived configuration is generated by the strong perturbation due to the excitation of the

electron, and governs the density of acceptor states and consequently HET dynamics.

These conclusions are supported by previous measurements from our group [128], and

by other recent experiments. For example, Racke et al. found a new hybridized in-

terfacial density of states that fundamentally alters carrier dynamics and changes the

electronic structure [172]. While Siefermann et al. used femtosecond XPS to study

HET and found strong indications for the formation of a transient electronic configu-

ration. [173]

5.3 Conclusions

The photodynamics and electron transfer dynamics of a set of Zn-TPP deriva-

tives with a variable dipole moment in the bridge group have been investigated. As

expected, the intramolecular photodynamics resembled the well-known dynamics of

the Zn-TPP chromophore. However, the dipole carrying nitroaniline group gave rise

to Dexter energy transfer from the excited state of the Zn-porphryin chromophore.

Surprisingly, after comparing the measurements on the film, the two deriva-

tives with oppositely oriented dipole moments that resulted in a shift of 200 meV in

level alignment showed identical HET dynamics. The HET dynamics were compared

with a previously published quantum mechanical model for non-adiabatic HET. This

comparison gave a strong indication that the dye’s excited state couples to a much

smaller subset of acceptor states than expected from the electrode’s surface density
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of states. Future work involving different chromophores, various dipole groups with

possibly stronger dipole moments, and different semiconductor substrates will show

if this is a general property of HET systems or specific to the combination that was

herein investigated.
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Chapter 6

SUMMARY

The heterogeneous electron transfer rates from various tetrapyrroles into col-

loidal anatase TiO2 films were measured. These measurements were done using fem-

tosecond transient absorption spectroscopy in a high vacuum environment. The objec-

tive of our measurements was to compare the electron transfer rates as a function of

the energy level alignment. Two different experimental strategies were implemented

to change the energy level alignment. Both strategies made use of novel synthesized

molecules from collaborators.

The experimental setup required for this investigation was built as part of this

research work. This work included the construction of a non-collinear parametric ampli-

fier and a homebuilt transient spectrometer. The femtosecond spectrometer generated

single wavelength kinetic traces and was able to resolve sub 30 fs components.

The first experimental strategy was the change of the energy level alignment by

the excitation of two different electronic states of a phlorin. This approach exploits

the fact that the two different excited states of the phlorin have a similar absorption

strength and are both located above the conduction band minimum of TiO2. Similar

previous experiments that attempted to compare the injection rates were forced to

make the comparison on either different molecules or different electrodes. Thus, our

experiments provide a better comparison.

The relaxation dynamics of the phlorin and its acid form were studied in solution

as a prerequisite to elucidate the electron transfer rates. This relaxation dynamics was

found to be similar to standard porphyrins, and an all sequential model was success-

fully applied. The identified sequential relaxation time constants were: a fast internal
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conversion of 150 fs between the second and first excited states, two internal vibrational

relaxation processes of 180 fs and ∼5.5 ps were identified in the singlet state, this is

followed by a 33-44 ps intersystem crossing and a long >120 ps ground state recovery.

Two of the identified processes separate the phlorin from standard porphyrins. The

unusual fast and efficient intersystem crossing, and the picosecond internal relaxation

process assigned to a reconfiguration of the nonplanar macrocycle.

Measurements of the phlorin when attached to TiO2 produced two very different

signals for the case of exciting the first or second excited state. Nevertheless, using the

knowledge of the relaxation and spectroscopic properties of the phlorin, an electron

transfer time of 80 fs was extracted from the signals. This contribution appeared as

the decay time of the excited state absorption after excitation of the singlet state, and

as the rise time of the cation absorption after excitation of the second excited state.

The nature of these observed results arises from the fact that the phlorin does not show

excited state absorption from the second excited state. The fact that the ∼900 meV

difference between the excited states of the phlorin shows the same electron transfer

rate within our time resolution was unexpected from the common assumption that

predicted a faster electron injection for the higher energy state.

The previously described strategy compared the HET rates from two different

excited states, which in principle can have different coupling parameters (VDA). Hence,

it was important to perform a comparison of electron injection rates originated from

the same electronic state. This additional comparison was made by exploiting the re-

cently proposed idea of varying the energy level alignment by the introduction of dipole

groups within the dye molecules. The idea was successfully proved by collaborators,

and three molecules were synthesized that allow tuning of the energy level alignment

by up to 200 meV. The molecules in question were composed of a Zn-porphyrin as

the chromophore with a nitroaniline group as the dipole in the bridge between the

chromophore and the anchor group attached to the TiO2 surface. The introduction of

the dipole group did not produce major changes in the static spectroscopic properties
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of the compounds. However, transient absorption experiments in solution showed dif-

ferent relaxation dynamics when compared to the unsubstituted Zn-porphyrin. The

measurements in solution of the two compounds including the mentioned dipole groups

showed an ∼3.5 ps relaxation component non identified in the unsubstituted molecules.

This contribution was assigned to a Dexter energy transfer process in parallel to the

intersystem crossing from the second excited state. This attribution was supported

by fluorescence quantum yield and fluorescence lifetime measurements. Despite the

presence of this unexpected process, the HET rates were extracted from measurements

of the dyes attached to colloidal TiO2. This extraction was possible mainly because

the injection transfer rates were found to occur on a femtosecond time scale, making

the Dexter transfer process very inefficient. Thus, in a similar fashion to the experi-

ments with the phlorin molecule, the same HET rates of 80 fs were measured for the

case of a 200 meV difference in the energy level alignment. These measurements were

compared with a theoretical model that predicted an 18 fs difference for a case with

similar parameters. This small predicted difference lies at the limit of the quantitative

resolution of our instrument, however, a qualitative comparison between the two ex-

treme cases supports the conclusion of having injection rates independent of the energy

level alignment.

The results obtained in this research are in agreement with each other. This

work provides strong evidence against the commonly used assumption of the effect of

the availability of acceptor states in the HET rates. The question initially posed by

this dissertation, regarding the relation between the HET rate and the energy level

alignment, can be answered in the following way:

• The HET reaction, in general, is not mediated by the bulk or surface steady
states of the semiconductive electrode. The process is more likely to take place
between the molecular excited state and a different subset of acceptor states than
the steady state usually measured or calculated.

• This subset of transition states must be generated after the strong electronic
redistribution at the interface produced by the light absorption process and their
lifetime must be below the few femtosecond timescale.
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• The nature and signature of this intermediate transient states still need to be
elucidated and unequivocally detected.

The implications of the results herein presented have the following consequences

for applications: the design of chromophores with desired spectroscopic properties can

be done independently of the energy level alignment, and the presence of this transition

states may generate bottleneck situations for apparently well-designed HET systems.

Extension of the present research work can be done in different directions. First,

measurements on a different semiconductor substrates, ZnO for example, could help

to understand the poor performance of energy conversion devices using this electrode

despite some of its advantageous electronic properties. Second, once the dipole group

strategy has been prooved successful to study HET, the introduction of different groups

leading to a larger difference in the energy alignment could bring a stronger support

to our experiments. Finally, various spectroscopic techniques, like two-photon photo-

electron spectroscopy to monitor HET from the conduction band side, and four-wave

mixing spectroscopies that allow tracking vibrational wave packet motions, could bring

light into the research field.
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sevitch, S. Zlio, and P. Gonçalves. Excited states absorption spectra of porphyrins
- solvent effects. Chemical Physics Letters, 587(0):118 – 123, 2013.

[131] M. Enescu, K. Steenkeste, F. Tfibel, and M.-P. Fontaine-Aupart. Femtosec-
ond relaxation processes from upper excited states of tetrakis(n-methyl-4-
pyridyl)porphyrins studied by transient absorption spectroscopy. Physical Chem-
istry Chemical Physics, 4:6092–6099, 2002.

[132] C.-W. Chang, L. Luo, C.-K. Chou, C.-F. Lo, C.-Y. Lin, C.-S. Hung, Y.-P. Lee,
and E. W.-G. Diau. Femtosecond transient absorption of zinc porphyrins with
oligo(phenylethylnyl) linkers in solution and on TiO2 films. J. Phys. Chem. C,
113(27):11524–11531, 2009.

[133] H. Imahori, S. Kang, H. Hayashi, M. Haruta, H. Kurata, S. Isoda, S. E. Can-
ton, Y. Infahsaeng, A. Kathiravan, T. Pascher, P. Chabera, A. P. Yartsev, and
V. Sundstrom. Photoinduced charge carrier dynamics of Zn-Porphyrin-TiO2 elec-
trodes: The key role of charge recombination for solar cell performance. Te
Journal of Physical Chemistry A, 115(16):3679–3690, 2011.

[134] M. Gouterman. A theory for the triplet-triplet absorption spectra of porphyrins.
The Journal of Chemical Physics, 33(5):1523–1529, 1960.

113

http://www.rsc.org/journals-books-databases/journal-authors-reviewers/licences-copyright-permissions/#reuse-permission-requests
http://www.rsc.org/journals-books-databases/journal-authors-reviewers/licences-copyright-permissions/#reuse-permission-requests
http://www.rsc.org/journals-books-databases/journal-authors-reviewers/licences-copyright-permissions/#reuse-permission-requests


[135] A. Harriman. Luminescence of porphyrins and metalloporphyrins. part 3.-heavy-
atom effects. Journal of the Chemical Society, Faraday Transactions 2, 77:1281–
1291, 1981.

[136] J. S. Baskin, H.-Z. Yu, and A. H. Zewail. Ultrafast dynamics of porphyrins in
the condensed phase: I. free base tetraphenylporphyrin. The Journal of Physical
Chemistry A, 106(42):9837–9844, 2002.

[137] M.-H. Ha-Thi, N. Shafizadeh, L. Poisson, and B. Soep. First observation in the
gas phase of the ultrafast electronic relaxation pathways of the S2 states of heme
and hemin. Physical Chemistry Chemical Physics, 12:14985–14993, 2010.

[138] M.-H. Ha-Thi, N. Shafizadeh, L. Poisson, and B. Soep. An efficient indirect mech-
anism for the ultrafast intersystem crossing in copper porphyrins. The Journal
of Physical Chemistry A, 117(34):8111–8118, 2013.

[139] S. Gentemann, C. J. Medforth, T. Ema, N. Y. Nelson, K. M. Smith, J. Fajer,
and D. Holten. Unusual picosecond 1(π, π∗) deactivation of ruffled nonplanar
porphyrins. Chemical Physics Letters, 245(4-5):441 – 447, 1995.

[140] J. L. Retsek, S. Gentemann, C. J. Medforth, K. M. Smith, V. S. Chirvony,
J. Fajer, and D. Holten. Photoinduced evolution on the conformational land-
scape of nonplanar dodecaphenylporphyrin: picosecond relaxation dynamics in
the 1(π, π∗) excited state. The Journal of Physical Chemistry B, 104(29):6690–
6693, 2000.

[141] F. J. Vergeldt, R. B. M. Koehorst, A. van Hoek, and T. J. Schaafsma.
Intramolecular interactions in the ground and excited states of tetrakis(n-
methylpyridyl)porphyrins. The Journal of Physical Chemistry, 99(13):4397–4405,
1995.

[142] S. Perun, J. Tatchen, and C. M. Marian. Singlet and triplet excited states and
intersystem crossing in free-base porphyrin: TDDFT and DFT/MRCI study.
ChemPhysChem, 9(2):282–292, 2008.

[143] A. T. Gradyushko and M. P. Tsvirko. Probabilities of Intercombination Tran-
sitions in Porphyrin and Metalloporphyrin Molecules. Optika i Spektroskopiya,
31(4):291, 1971.

[144] M. P. Tsvirko, K. N. Solovjev, A. T. Gradyushko, and S. S. Dvornikov. Phospho-
rescence of porphyrin free bases and their complexes with light metals. Optika i
Spektroskopiya, 38:400, 1975.

[145] D. O. Scanlon, C. W. Dunnill, J. Buckeridge, S. A. Shevlin, A. J. Logsdail, S. M.
Woodley, C. R. A. Catlow, M. J. Powell, R. G. Palgrave, I. P. Parkin, G. W.
Watson, T. W. Keal, P. Sherwood, A. Walsh, and A. A. Sokol. Band Alignment
of Rutile and Anatase TiO2. Nature Materials, 12(9):798–801, sep 2013.

114



[146] G. Xiong, R. Shao, T. Droubay, A. Joly, K. Beck, S. Chambers, and W. Hess.
Photoemission electron microscopy of TiO2 anatase films embedded with rutile
nanocrystals. Advanced Functional Materials, 17(13):2133–2138, 2007.

[147] D. P. Piet, D. Danovich, H. Zuilhof, and E. J. R. Sudholter. Ionization poten-
tials of porphyrins and phthalocyanines. A comparative benchmark study of fast
improvements of Koopman’s theorem. Journal of the Chemical Society, Perkin
Transactions 2, pages 1653–1662, 1999.

[148] R. Ernstorfer, L. Gundlach, S. Felber, W. Storck, R. Eichberger, and F. Willig.
The role of molecular anchor groups in molecule-to-semiconductor electron trans-
fer. The Journal of Physical Chemistry, 110:25383–25391, 2006.

[149] K. B. Ornso, C. S. Pedersen, J. M. Garcia-Lastra, and K. S. Thygesen. Optimiz-
ing porphyrins for dye sensitized solar cells using large-scale ab initio calculations.
Physical Chemistry Chemical Physics, 16:16246–16254, 2014.

[150] L. Luo, C.-F. Lo, C.-Y. Lin, I.-J. Chang, and E. W.-G. Diau. Femtosecond
fluorescence dynamics of porphyrin in solution and solid films: The effects of
aggregation and interfacial electron transfer between porphyrin and TiO2. The
Journal of Phyisical Chemistry B, 110(1):410–419, 2006.

[151] G. Ramakrishna, S. Verma, D. A. Jose, D. K. Kumar, A. Das, D. K. Palit, and
H. N. Ghosh. Interfacial electron transfer between the photoexcited porphyrin
molecule and TiO2 nanoparticles: Effect of catecholate binding. The Journal of
Physical Chemistry B, 110(18):9012–9021, 2006.
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