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ABSTRACT
Populations of numerous migratory landbird species in the eastern United States are
declining and these populations may be limited during their migratory journey.
Weather surveillance radar is a useful tool for monitoring large scale movements of
birds during migration and particularly for mapping stopover distributions of
migratory landbirds because it detects birds low to the ground as they initiate
nocturnal migratory flight. This approach is sensitive to the time when flight exodus is
sampled because the number of birds in the air at this time changes rapidly. Thus, in
order to use radar to map densities of migrant birds on the ground, an empirical
determination is needed to identify an unbiased method to sample migrant density in
the air. I assessed the relationship between seasonal mean migrant bird ground
densities and seasonal mean radar reflectivity, an estimate of emigrant bird density
aloft, sampled at a series of sun elevation angles ranging from 1.5° to 10° below the
horizon at 26 sites in Delaware, Maryland, and Virginia within 80 km of the Dover,
Delaware (KDOX) and Wakefield, Virginia (KAKQ) WSR-88D stations during fall
2013 and 2014. Additionally, because the timing of flight exodus varied among nights
within and among radars, I fit a logistic growth curve to the change in mean
reflectivity through time during the onset of nocturnal flight to determine the sun angle
at the inflection point of the curve (i.e., at the maximum growth rate) for each
sampling night by radar. I computed correlations between ground bird densities and
mean reflectivity among the series of radar sampling times and among a series of
times relative to the inflection point of daily exodus curves. Sampling radar at the

inflection point of daily exodus curves provided a consistent moderate to strong

X



correlation and this approach is likely robust to broad spatio-temporal changes in the
timing of exodus that would not be accounted for by using an absolute sun angle.
Placing stopover sites for migratory landbirds into a functional framework based on
intrinsic and extrinsic factors may be a key to conserving declining populations.
Landbirds typically use numerous stopover sites during migration, which vary in
usefulness regarding replenishment of energetic resources. To classify stopover sites
across a broad spatial scale, I determined relative stopover duration at study sites
mentioned above combined with data collected using similar protocols during a
previous study in Alabama and Louisiana by integrating ground transect data with
weather surveillance radar data. Functional types within the function framework

29 ¢

initially included “fire escape,” “convenience store,” and “service hotel”, but

clustering resulted in four distinct groups, which I redefined as “coastal fire escape,”

99 ¢¢

“inland rest stop,” “convenience store,” and “full service hotel.”, a novel designation
for landbirds.

I incorporated hardwood forest within 5 km, distance to the coast, and insect density
into the analysis as potential drivers of stopover duration. One third of our study sites
were deemed as full service hotels, making the majority of our study sites coastal fire
escapes, inland rest stops, or convenience stores, which typically receive less attention
in conservation planning. There were regional differences, where the mid-Atlantic
lacked full service hotels and the Gulf Coast lacked coastal fire escapes. Using a
system of functional types facilitates the prioritization of stopover sites because I can
evaluate sites within each functional type rather than across functional types. Each

functional type serves a purpose and all are necessary in conservation, but all sites

cannot be protected, so using a functional type system allows us to prioritize sites



more easily and efficiently. Using weather surveillance radar and ground surveys
allowed me to assess stopover use at a broad spatial scale, which is difficult to do with

more traditional methods.
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Chapter 1

WHEN IS THE BEST TIME TO SAMPLE MIGRATING BIRDS WITH
WEATHER SURVEILLANCE RADAR TO DETERMINE STOPOVER
DENSITY?

Introduction

In the eastern United States, some migratory landbird populations are
decreasing (Ballard et al. 2003), (Robbins et al. 1989), (Terborgh 1989), (Finch 1991),
(Hagan and Johnston 1992). Investigating population dynamics during the annual
cycle of migratory landbirds may be the key to conserving species and determining
population limitations (Webster et al. 2002). The annual cycle of migratory landbirds
consists of four parts: a breeding season in which birds are stationary, a migration
period to the non-breeding grounds, a stationary non-breeding season, and a return
migration to the breeding grounds (Newton 2010). Migration is one of the most taxing
(McWilliams et al. 2004) and least understood parts of a migrant’s annual cycle
(Ewert and Hamas 1996). The majority of birds that breed in northern latitudes
migrate to less harsh areas with greater available resources annually during the non-
breeding season (Faaborg et al. 2010). Migration is generally broken up into two
phases, flight and stopover (Newton 2010) and occurs over two to four months during

spring and fall combined (Keast and Morton 1980), (Webster et al. 2005). These long-



distance movements pose relatively high risk of mortality for adult birds (Sillett and
Holmes 2002) and may limit some migrant populations (Newton 2010).

Migrating landbirds spend more time at stopover locations than in migratory
flight (Hedenstrom and Alerstam 1997). Selected stopover sites provide the necessary
fuel and/or a place to rest before continuing migratory flight (McWilliams et al. 2004).
Length of stopover can range from hours (Moore and Aborn 1996) to many days
(Seewagen et al. 2010) and depends in part on how quickly an individual can replenish
fuel for the next period of flight (Moore and Kerlinger 1987), (Lindstrom and
Alerstam 1992). Ideal stopover locations are free of predators and competitors, and
contain abundant energy resources, but these areas are scarce and distributed unevenly
across the landscape (Newton 2010). This usually isn’t the case and migratory species
frequently encounter interspecific and intraspecific species competition (Moore et al.
2005).

Migratory stopover use has been studied using various methods and metrics
(Bruderer 1997), including mist-netting and transect and point counts (Reynolds et al.
1980). Stopover use by landbirds during migration can also be assessed using the
national network of weather surveillance radars (WSR-88D) in the United States
(Diehl et al. 2003). Researchers first noted that birds were detectable on surveillance
radars in the 1940s (Lack and Varley 1945) and since then, migratory movements of
landbirds have been monitored and quantified using radar technology (Eastwood
1967). There are two useful data products from the WSR-88D for quantifying bird

migration and assessing stopover use of migrating landbirds: radar reflectivity and



radial velocity. From these data products, bird densities, flight speed, and overall flight
direction can be quantified (Gauthreaux Jr. et al. 2003) out to 80 km from the radar
(Buler and Diehl 2009).

Methods for using weather surveillance radar to map stopover distribution of
landbirds have improved since it was first done by Gauthreaux Jr. et al. (2003) where
they visually selected two to five volume scans near the onset of nocturnal flight for
each day to quantify densities of birds emerging from ground sources. Bonter et al.
(2008), Buler and Diehl (2009), Buler and Moore (2011), and Ruth et al. (2012)
modified this approach by visually selecting a single volume scan near the onset of
nocturnal flight for each day to serve as an instantaneous sample of birds exiting
ground sources. Later, Buler et al. (2012), and Buler and Dawson (2014) introduced an
approach to spatially and temporally interpolate reflectivity data between scans to a
fixed sun angle near the onset of nocturnal landbird migration (around civil twilight,
30 to 40 min after sunset) for each day in order to instantaneously sample birds low to
the ground as they depart for flight. Each of these sampling methods may lead to
sampling time bias, because not all landbirds initiate nocturnal migration at the same
time every night in all locations (Akesson et al. 1996) and it is difficult to train radar
data screeners to consistently select volume scans that accurately represent bird
distributions on the ground.

Although the timing of the initiation of nocturnal migration can vary, the
majority of birds generally being leaving within one hour after sunset (Akesson et al.

1996). For example, Song Thrushes (Turdus philomelos) in autumn in southern



Sweden departed between 30 and 34 min after sunset (Alerstam 1976). Timing of
departure is also influenced by other factors such as latitude and time of year and may
vary among and within species (Akesson et al. 1996). Akesson et al. (1996) found
that, on average, birds departed when the sun was -6° below the horizon in autumn,
but ranged from 8° to 30° below the horizon. The majority of Swainson’s Thrushes
(Catharus ustulatus) departed from Fort Morgan, Alabama, on the Gulf of Mexico,
within one hour after sunset (Smolinsky et al. 2013). Furthermore, there are birds that
leave well after the end astronomical twilight (sun elevation angle of 18 degrees below
the horizon), such as the European Robin (Erithacus rubecula) that, depending on fuel
stores, leaves between 83 and 482 min after sunset (Bolshakov et al. 2007).

Birds may begin migratory flight around civil twilight for several reasons. The
direction of sunset, skylight polarization pattern, and stars visible at twilight provide
navigational cues to migrants (Able 1993). In addition, atmospheric conditions, such
as cooler temperatures and calmer winds, are most favorable for migration near civil
twilight (Kerlinger and Moore 1989). Because the number of birds in the airspace
increases quickly and can double every few minutes after civil twilight (Hebrard
1971), choosing the time to sample the flight exodus is critical. The WSR-88D can
only be used to sample the first landbirds initiating in nocturnal migration because
once birds are aloft and begin their migratory flight, they obscure the departure of
landbirds migrating at a later time (Buler and Diehl 2009).

Deciding on a dynamic (across days and radars), yet consistent relative

sampling time, is critical for making accurate stopover maps and reducing sampling



time bias. Precise stopover maps can be used for conservation planning. By using a
dynamic sampling time, sampling error from the coarse sampling (one volume scan
every 10 min) of the WSR-88D combined with the bias of any geographic differences
in the initiation of nocturnal migration as birds get displaced from their stopover sites
(Buler and Diehl 2009), should be reduced.

My objectives were to 1) assess at which fixed sun angle across all nights and
radars to sample radar data at the onset of bird flight produced the most accurate
estimates of stopover densities of birds at the ground and 2) assess whether using a
dynamic relative sampling time to sample radar data, which was related to the nature
of how the number of birds aloft changes during exodus performed better than
sampling radar data at a fixed sampling sun angle to map bird densities at the ground.
To accomplish objective 1, I followed the work of Buler et al. (2012) to identify the
optimal time to sample migrant density in the air for mapping ground densities. |
compared densities of birds on the ground during stopover to emigrant densities on the
radar at sun elevation angles between 1.5° and 10° below the horizon. The point of
strongest correlation should be the optimal sampling time. Based on previous work
done by Buler et al. (2012) and Buler and Dawson (2014), I expected that the optimal
time to sample migrants would be when the sun is at an elevation of 5.5° below the
horizon. In contrast, the dynamic approach used in objective 2 does not determine an
absolute sun elevation angle to sample migrant density in the air, but rather uses a
variable sampling time that is dependent on the magnitude and timing of the initiation

of nocturnal landbird migration.



Methods

During the autumns of 2013 and 2014, I conducted bird surveys at 26 forested sites in
Delaware, Maryland, and Virginia between August 15 and November 7 (Figure 1).
Transect locations were chosen based on seasonal mean observed reflectivity values
during fall 2008 & 2009 as determined by Buler and Dawson (2014) and were
stratified in each of three distance bands (10-20 km, 20-50 km, 50-80 km) from the
WSR-88D radars near Dover, Delaware (KDOX) and Wakefield, Virginia (KAKQ), in
areas with observed high and low reflectivity values determined by (Buler and
Dawson 2014). This stratification among distances from the radar was important to
accurately assess the effective radar range (80 km). I used hardwood forest sites
because they are the most abundant and consistent habitat type in the region and most
migrants are forest-dwelling species. Birds were sampled along a transect during a 30-
min period (a pace of 1 km per hour) from sunrise to four hours post-sunrise
approximately every four days (four days = one sampling period). Species, number of
individuals, perpendicular distance from transect, distance from observer, and height
above ground were recorded for each detection. Height and distances were recorded in
distance classes because there is much measurement error in estimating distances
(Alldredge et al. 2007); 0-5 m, 5-10 m, 10-15 m, 15-20 m, 20-25 m, 25-50 m, and >50
m within habitat. Flyovers and flythroughs were also recorded, but were not used in

further analyses.
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Figure 1 Locations of transect sites (dots) where I surveyed migratory landbirds

and the names and locations of two WSR-88D radar stations and their
associated 80 km radius coverage areas used in this study.



I estimated detection probabilities to derive daily migrant densities from the
ground surveys within R (R Core Team 2012) using the “gdistsamp” function in the
extension package “unmarked” (Fiske et al. 2011). Temperature, wind (Beaufort
scale), sky measurements, and observer were incorporated as covariates. All covariates
except for observer were scaled within R (R Core Team 2012) before analysis. I
incorporated multiple covariates, individual covariates, and no covariates into both
half-normal and hazard rate detection functions. To determine detection probabilities
of nocturnal migrants (Classification of species in Table 1 and Table 2), I pooled
species (Neotropical migrants, temperate migrants, and non-resident breeding species)
to ensure adequate sample size. | used Akaike’s Information Criterion adjusted for
small sample sizes (Hurvich and Tsai 1989) to rank models base on their ability to
explain the data (Akaike 1992). I ran the top-ranked model through goodness of fit
testing to ensure the chosen model predicted the data well. Then, I computed a mean
visit density of nocturnally migrating birds (birds/ha/visit) for each transect, which I
used for all analyses.

I quantified stopover densities from radar data similarly to Buler and Diehl
(2009) and Buler and Dawson (2014). From the National Climatic Data Center
archive, I downloaded Level-II radar data, collected at KDOX and KAKQ during
autumn 2013 and 2014 (August 15 — November 7). WSR-88D radars transmit
horizontally polarized electromagnetic radiation at a wavelength of ~10 cm (s-band)
and a nominal peak power of 750 kW with a half-power beamwidth (3 dB) of 0.95°

(Crum and Alberty 1993). I used two data products produced by the radar: reflectivity,



which is a measure of radar echo strength in units of Z (mm® m™) that is determined
by the density and size of the targets in the sampled volume, and mean radial velocity,
which is a measure of the mean target velocity (in knots) relative to the radar. Radar
data from the 0.5° elevation angle were screened to identify nights contaminated with
precipitation, sea breeze fronts, smoke, and anomalous beam propagation (Buler and
Diehl 2009). Nights that were not contaminated were processed for biological target
identification.

Biological targets (i.e., birds and insects) were distinguished by quantifying
target airspeeds by vector-subtracting the wind velocity from the target ground
velocity. Radar radial velocity data from the 2.5° elevation angle during the peak of
nocturnal activity (~3 h after sunset) were used to determine target flight directions
and airspeeds in conjunction with high- resolution data on winds aloft archived by the
North American Regional Reanalysis (NARR) following Farnsworth et al. (2014).
These high-resolution modeled wind data are available in three-hour composites
across the United States at ~0.3 degrees (or as fine as 32 km) resolution. I used these
data to determine air speeds (u and v wind components) at nine geopotential heights
ranging from 650-1000 mb within the 100-km range of each radar. Mean air speeds
were then computed by weighting speeds by the relative density of biological targets
at each height interval based on vertical profiles of reflectivity calculated using
methods outlined by Buler and Diehl (2009). Radar scans with mean target air speeds
greater than or equal to 5 m per s were considered bird dominated (Larkin 1991),

(Gauthreaux and Belser 1998). Only bird-dominated nights were used in the analysis.



For all bird-dominated nights, I used reflectivity measures interpolated to sun
elevation angles between 1.5° and 10° below the horizon following sunset at 0.5°
intervals to determine the optimal sampling time for migrant land birds during the
onset of nocturnal migration. Each 1° change in sun elevation is approximately a time

span of four to five minutes.

Additionally, for each sampling night, I fit a logistic growth curve through a
time series of mean radar reflectivity during the onset of nocturnal flight to determine
the sun angle at the inflection point, the point of the curve of maximum growth rate
(Figure 2). For all sampling nights, I interpolated reflectivity measures to sun
elevation angles at the inflection point and +1° at 0.5° intervals surrounding the

inflection point.
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Figure 2 Time series of bird density aloft during nocturnal migratory flight exodus
for an example night. A modeled logistic growth curve is drawn.

I processed the WSR-88D radar data using w2birddensity, which is part of the
Warning Decision Support System — Integrated Information software package
(WDSS-II), to correct reflectivity measures for several sources of measurement bias
(see Buler and Dawson 2014) for each sun angle. I plotted the ground survey transects
in a geographic information system (GIS) and built a 50 m buffer perpendicular to
each transect, which corresponds to the effective detection distance for ground
surveys. I georeferenced radar data to a static polar coordinate grid created for each
radar (hereafter referred to as a basegrid) and identified areas where the radar beam

was blocked (by topography, buildings, or other human infrastructure), limiting

11



coverage, using clutter maps developed by Buler and Dawson (2014). I then
intersected the radar sample volumes (mean reflectivity is extracted from each sample
volume) from the KDOX and KAKQ basegrids with the transect buffer. The
intersection created polygons of various sizes (area in hectares), in which corrected
reflectivity measures were extracted from each transect location. I then compared the
corrected reflectivity measures at each sun elevation angle to the observed bird density

on the ground.

Analysis

I used Pearson correlation tests to assess the relationship between mean daily
observed bird densities and mean reflectivity measures at each static sun angle (2.5° -
10° below the horizon at 0.5° degree intervals) for each transect. I also assessed the
relationship between ground densities and sun angles relative to the inflection point
(inflection point +1° below the horizon at 0.5° intervals) using the same correlation
tests. To obtain 95% confidence intervals for correlation coefficients, I bootstrapped
the correlations using the “boot” package (Canty and Ripley 2014) within R (R Core
Team 2012). I then identified the sun angle that produced the strongest correlation
with mean visit density for each transect (Buler et al. 2012).

Furthermore, I used data from 11 radars from Buler and Dawson (2014) and 7
radars analyzed in La Puma and Buler (2013) to assess and compare the distribution of

the nightly sun angles at the inflection point of flight exodus curves to the static sun

12



elevation angle of 5.5° degrees below the horizon that Buler and Dawson (2014) used

to map densities of landbirds on the ground.

Results

I detected 983 migrants (n=167 surveys) in 2013 and 684 migrants (n=137 surveys) in
2014 during daily transect counts within the KDOX radar range (Table 1), and 603
migrants (n=121 surveys) in 2013 and 437 migrants (n=105 surveys) in 2014 during

daily transect counts within the KAKQ radar range (Table 2).
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Detection-corrected estimates of ground densities ranged from 2.02 to 7.11
(mean = 3.14+0.41) birds per hectare per visit in 2013 and 1.17 to 5.37 (mean =
3.08+0.28) birds per hectare per visit in 2014 within the KDOX radar range, and from
1.23 to 3.83 (mean = 2.40+0.26) birds per hectare per visit in 2013 and 1.26 to 2.92

(mean = 2.04+0.17) birds per hectare per visit in 2014 within the KAKQ radar range.

I analyzed the onset of evening flights from the KDOX radar for 12 days
during fall 2013 and 10 days during fall 2014, and from the KAKQ radar for 15 days

during fall 2013 and 7 days during fall 2014.

The sun elevation angle at which bird density aloft was most closely-correlated
to bird density at the ground was -1.5 at KAKQ in 2013 and -6.0 in 2014 (Table 3).
The optimal sun elevation angle was different at KDOX, which we calculated to be -
3.01n 2013 and -6.5 in 2014. When pooled across radars, the strongest correlated sun

elevation angle was -2.0 (=0.45) in 2013 and -6.5 (=0.69) in 2014.
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Table 3

Radar
KAKQ

KDOX

Pooled

Sun elevation angle when the strongest correlation between ground data
and mean radar reflectivity occurred by radar and among angles ranging
from -1.5° to -10° at KAKQ and KDOX in fall 2013 and 2014. Upper
and lower CI represent 95% confidence intervals for each correlation

coefficient presented.
Year Sun Angle
2013 -1.5
2014 -6.0
2013 -3.0
2014 -6.5
2013 -2.0
2014 -6.5

r
0.36
0.57
0.44
0.63
0.45
0.69

Lower CI
-0.22
-0.13
0.00

0.11

0.01

0.36

Upper CI
0.83
0.88
0.89
0.89
0.76
0.89

Inflection points derived from daily exodus curves (hereafter “peak exodus™)

varied within years and among radars, ranging from sun angles of 3.06° to 8.12°

(mean = 5.38+0.47) below the horizon in 2013 and from 3.28° to 10.16° (mean =

6.4140.65) in 2014 for KDOX. For KAKQ, the sun angle at peak exodus of the curve

ranged from 3.01° to 10.03° (mean = 5.45+0.5) in 2013 and from 3.05° to 8.6° (mean

=5.24+0.7) in 2014.

The sun elevation angle relative to peak exodus that had the strongest

correlation between air and ground densities of birds was 0.5° at KAKQ in 2013 and -

1.0° in 2014 (Table 4). The optimal sun elevation angle in relation to peak exodus was

different at KDOX, which I calculated to be -1.0° in 2013 and 0.5° in 2014 (Table 4).

When pooled across radars, the optimal sun elevation angle in relation to peak exodus
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determined by the Pearson correlation test was -0.5° (#=31) in 2013 and 0.5° (+=0.67)

in 2014 (Table 4). Furthermore, peak exodus at a given radar and year increased as the

autumn season progressed (Figure 3).

Table 4

Radar
KAKQ

KDOX

Pooled

Sun elevation angle relative to inflection point (0°) of exodus growth
curve for each night when the strongest correlation between ground data
and mean radar reflectivity occurred at KAKQ and KDOX in fall 2013
and 2014. Relative sun angles range within 1° of the inflection point

angle.

Year
2013
2014
2013
2014
2013
2014

Sun Angle
0.5
-1.0
-1.0
0.5
-0.5
0.5

26

r
-0.33
0.37
0.38
0.60
0.31
0.67

Lower CI
-0.81
-0.46
-0.31
0.01
-0.25
0.37

Upper CI
0.28
0.85
0.98
0.87
0.83
0.84
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Figure 3 Sun elevation angle at the inflection point of flight exodus for individual

sampling nights during autumn 2013 and 2014 at KDOX and KAKQ.
Note some dates have two measures; one from each radar.

When pooled across radars, the bootstrapped mean Pearson correlation of
seasonal mean radar at the target sun elevation angle in relation to peak exodus to
ground bird densities was similar to that of radar data sampled at the nearest static sun
elevation angle across days and radar (5.5°) (Figure 4). The mean correlation also
varied little among sun angles. Sampling radar data at the time of peak exodus for a
given night and radar produced more consistent stopover maps of migrant distributions
for individual nights when compared to maps of radar data sampled at the static 5.5°

below horizon (Figure 5).
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Figure 4 Pearson correlations between seasonal average migrant density at the
ground and aloft at KAKQ and KDOX sampled at a series of sun angles
and at the mean daily inflection point sun angle of exodus among days.
Error bars are bootstrapped 95% CI.
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8-29-2014 9-23-2014

Inflection Point
Sun Angle

Mean reflectivity (cm?ha)
[ R |

Low High

-5.5°
“Just right”

Fixed sun angle

5

10-25-2014

-5.5°
“Too early”

Figure 5 Mapped bird stopover density (mean reflectivity) on three nights in fall
2013 sampled at either the daily inflection point of exodus (top) or a
fixed sun angle of -5.5° (bottom) at the KDOX WSR-88D radar station.

This was also apparent at the radar scale when I compared the range of peak

exodus determined for individual sampling nights for 18 radars in the eastern United

States (Figure 6). Latitudinal differences in timing of flight indicated that some radars

were always sampled too early in the flight exodus when using the 5.5° sun angle as in

Buler and Dawson (2014).
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Figure 6

CBW

TYX

ENX

BOX

OKX

PBZ

DIX

LWX

DOX

lepey

FCX

AKQ

MHX

CLX

JAX

TLH

HGX

MLB

Sun elevation angle (degrees below horizon)
5 10

15

Boxplots of the distribution of the nightly sun angles at the inflection
point of flight exodus curves for autumn sampling nights at 18 radar
stations in the eastern United States (Table 5). Radars decrease in latitude
from top to bottom. Vertical line denotes the sun angle of 5.5° below

horizon.
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Table 5 Unique identifier and locations for 18 WSR-88D radars.

Radar Identifier Location
CBW Caribou, Maine
TYX Montague, New York
ENX Albany, New York
BOX Boston, Massachusetts
OKX Upton, New York
PBZ Pittsburgh, Pennsylvania
DIX Mt. Holly, New Jersey
LWX Sterling, Virginia
DOX Dover, Delaware
FCX Blacksburg, Virginia
AKQ Wakefield, VA
MHX Newport/Morehead, North Carolina
CLX Charleston, South Carolina
JAX Jacksonville, Florida
TLH Tallahassee, Florida
HGX Houston/Galveston, Texas
MLB Melbourne, Florida
AMX Miami, Florida
Discussion

I found that timing of peak flight exodus of migrating birds varies night-to-
night within and among radars and migrating landbirds appear to leave at different
times each night, ranging from roughly 24 to 80 min after sunset. This range of
sampling times may be due to time of year, the species composition of migrating
landbirds, and individual departure decisions (Akesson et al. 1996). Age and condition
of individuals may also provide insight as to why I saw this range of exodus timings.
For example, (Smolinsky et al. 2013) found that the majority of radio-tagged

Swainson’s Thrushes leaving after astronomical twilight were lean, hatch-year birds.
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On average, | found that birds left slightly earlier in 2013 than in 2014 when pooled
across radars. This is problematic when choosing an optimal static sampling time
because birds in the airspace can double every couple of minutes (Hebrard 1971).

There are several biases that may influence the relationship between mean
radar reflectivity and the density of landbirds on the ground, which may result in
confounding relationships, including the difference in sampling days between radar
and ground data, the influence of sun angle and weather conditions on departure
timings of migratory landbirds, and variable stopover length.

Buler and Diehl (2009) found differences in slopes of the relationship between
ground bird densities and radar reflectivity among migration seasons and radars. These
differences may be due to the way weather surveillance radars quantify echoes caused
by migrating birds and the spatial variation in sun elevation. Sampling error from the
WSR-88D can occur because of the coarse sampling rate (one volume scan every 10
min) and because the data collection is not synchronized with the onset of nocturnal
migration, which can result in drastic differences in the magnitude of reflectivities
between radars (Buler and Diehl 2009).

Stopover length of migratory landbirds is extremely variable and depends on
how quickly birds can refuel (Moore and Kerlinger 1987), (Lindstrom and Alerstam
1992). Because I sampled sites approximately every four days, [ may not have
captured complete turnover since stopover can range from hours (Moore and Aborn
1996) to many days (Seewagen et al. 2010). Ground surveys reflect daily bird use

rather than the number of passage migrants at a site. Furthermore, birds that were
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counted on the ground during surveys may not have left the following night and may
have stayed longer than four days or moved on to a different food source within the
same patch of habitat, but not within the effective detection distance of the observer.
Thus, the relationship between mean radar reflectivity and mean daily bird density on
the ground can be confounded if stopover length varies among sites.

When considering the potential biases when comparing radar data to ground
data, fitting daily exodus curves to the radar data and using the mean reflectivity at
peak exodus should eliminate most, if not all of the biases. Fitting daily exodus curves
at each radar allows us to control for sampling differences among radars and for the
differences in exodus timings between nights and throughout the season. Although
fitting daily exodus curves may not directly aid in fixing the sample days bias, I think
it gives us the most accurate day-to-day snapshot of birds leaving their stopover sites.

Sampling radar at the sun angle of peak exodus for each day provided a
consistent moderate to strong correlation between ground data and mean radar
reflectivity and this approach is likely robust to broad spatio-temporal changes in the
timing of exodus that would not be accounted for by using the same sun angle among
sampling days. When using WSR-88D for mapping stopover use of migratory
landbirds and conservation planning, researchers need to take the variability in exodus
timing throughout the season and between radars into consideration. By using a
dynamic sampling time at the point of peak exodus, I captured the variability within
and among radars and this should provide the most accurate and precise stopover maps

for conservation use.
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Chapter 2

DETERMING RELATIVE STOPOVER DURATION MEASURES OF
NOCTURNAL MIGRANT LANDBIDS BY INTEGRATING GROUND
SURVEYS AND WEATHER SURVEILLANCE RADAR

Introduction

Migrating landbirds spend more time at stopover locations than in migratory
flight (Hedenstrom and Alerstam 1997). Stopover sites provide the necessary fuel
and/or a place to rest before continuing migratory flight (McWilliams et al. 2004).
Duration of stopover can range from hours (Moore and Aborn 1996) to many days
(Seewagen et al. 2010) and depends in part on how quickly an individual can replenish
fuel for the next period of flight (Moore and Kerlinger 1987). Ideal stopover locations
are free of predators and competitors, and contain abundant energy resources, but these
areas are scarce and distributed unevenly across the landscape (Newton 2010). Most
locations are not ideal, however, and migratory species frequently encounter
competition with and among species for resources (Moore et al. 2005).

Quantifying the duration of time that migratory landbirds spend at stopover
sites can provide insight into migratory behavior, including the role of stopover in
serving the metabolic needs of migrant landbirds, and determining which sites
contribute most towards a successful migration. Moreover, if one can pinpoint which
stopover sites increase survivorship best by classifying them based on their ecological
function (Mehlman et al. 2005), conservation decisions will become easier. The

ecological function of stopover spans a spectrum from 1) “fire escape” sites that offer
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a temporary place for migrants to rest without access to food resources during dire
situations, 2) “convenience store” sites that offer a moderately safe place to rest with
moderate food resources to allow some or prolonged refueling, and 3) “full-service
hotel” sites that offer a safe place with plentiful food resources for quick refueling.
Fire escapes are generally small, isolated patches of habitat surrounded by unsuitable
habitat, are coastal, have very little food, and function as a rest stop. Examples of fire
escapes include barrier islands and, in certain situations, oil rigs and ships in large
bodies of water, all of which serve the sole purpose of survival. On the contrary, full
service hotels (i.e., extensive tracts of forest) have abundant food and high forest
cover, allowing birds to refuel safely and efficiently. In between fire escapes and full
service hotels, convenience stores have moderate amounts of food and forest cover,
giving birds the opportunity to refuel slowly. Due to a high amount of fragmentation
and development in the eastern US, convenience stores, which may include city parks,
small forest patches, or woodlots, may be the most common of the functional types.

In addition to collecting data on food availability, measuring the mean stopover
duration of individual migrants over the course of a season can help determine a site’s
general functional type.

There are different methods to determine stopover duration, but the traditional
and most-used approach is mark-recapture (Cherry 1982). Determining stopover
duration through traditional mark-recapture methods via mist-netting requires intense
sampling effort and thus is usually only done at a few sites at a time (Cherry 1982),

(Lyons and Haig 1995), (Morris et al. 1996). O’Neal et al. (2012) proposed an
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approach to estimate stopover duration for waterfowl (i.e., days per duck) by dividing
the total number of ducks counted from frequent aerial surveys (i.e., how many total
days of stopover use by ducks) with radar measures of the nightly density of duck
emigrants leaving a site over the course of a migration season (i.e., total number of
ducks that used the site). A similar approach combining radar data and ground surveys
of migrants could be used for more-feasibly determining relative stopover duration of
landbirds across multiple sites over a broad geographic extent. This would aid in
recognizing stopover functional types and their composition on the landscape, which is
important for identifying regions with minimal stopover habitat, where fire escapes
may be absent, or where consistently used stopover sites may be lost (Mehlman et al.
2005).

My first objective was to implement an analogous approach of O’Neal et al.
(2012) to determine the relative stopover duration of migratory landbirds at 27
stopover sites in the mid-Atlantic (Delaware, Maryland, and Virginia) and 18 stopover
sites along the Gulf Coast (Alabama and Louisiana). Subsequently, I used stopover
duration estimates with three other factors influencing how migrants either rested or
refueled to assign each site to the functional stopover framework developed by
Mehlman et al. (2005). This analysis could help empirically validate the existence of
different functional types within the framework. I hypothesized that stopover duration
would be different between sites and would follow a bell-shaped curve with regard to
the coast, where stopover duration is short at coastal sites, increases at sites farther

from the coast, and then becomes shorter again at sites that are farthest inland (Figure
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7). Additionally, I hypothesized that locations with minimal food and low forest cover
would have low stopover duration; locations with moderate amounts of food and low
to modest amounts of forest cover would have high stopover duration; and that
locations with high amounts of food and forest cover would have moderate stopover

duration.

Theoretical frequency distribution

>

“Fire Escape” “Convenience Store” “Full Service Hotel”

Predicted frequency

LOwW HIGH Low
(near ecological barriers)

Figure 7 Theoretical frequency distribution of stopover duration with respect to
fire escapes, convenience stores, and full service hotels in the functional
framework described by Mehlman et al. (2005).
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Methods

The study area was composed of 45 sites located in the mid-Atlantic and Gulf
of Mexico coasts (Figure 8). Within the mid-Atlantic, I chose transect locations based
on seasonal mean observed reflectivity values during fall 2008 & 2009 as determined
by Buler and Dawson (2014). Twenty-seven of the sites were located throughout
Delaware, Maryland, and Virginia in hardwood, pine, and mixed forests and within 80
km of the weather surveillance radars at Dover, Delaware (KDOX) and Wakefield,
Virginia (KAKQ). Fifteen survey sites were located within the range of KDOX and
twelve surveys sites were located within the range of KAKQ. Additionally, 18 sites
were located in Alabama and Louisiana within 80 km of the Mobile, Alabama
(KMOB) and Slidell, Louisiana (KLIX) weather surveillance radars. Gulf coast sites
were from a previously published study that followed identical protocols for ground

survey data collection (Buler et al. 2007).
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Figure 8 Locations of 45 hardwood forest transect survey sites where bird surveys
were conducted for determination of stopover duration and the coverage
areas (shaded in grey) and names of 4 associated NEXRAD sites.

I surveyed birds along a 500 m long transect during a 30-min period (at a pace
of 1 km per hour) from sunrise to four hours post-sunrise approximately every four
days (four days = one sampling period) from August 15™ to November 7™ in 2013 and
2014 in the mid-Atlantic and recorded species, number of individuals, perpendicular
distance from transect, distance from observer, and height above ground for each
detection. Bird surveys were conducted from August 15" to November 7™ in 2002 and
2003 along the Gulf of Mexico Coast. Additionally, I recorded height and distances in
distance classes because there is much measurement error in estimating distances
(Alldredge et al. 2007); 0-5 m, 5-10 m, 10-15 m, 15-20 m, 20-25 m, 25-50 m, and >50
m within habitat. I also recorded temperature, wind (Beaufort scale), and sky

measurements.
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I estimated detection probabilities to derive daily migrant densities from the
ground surveys within R (R Core Team 2012) using the extension package
“unmarked” (Fiske et al. 2011). Temperature, wind (Beaufort Scale) and sky
measurements, and observer were incorporated as covariates. All covariates except for
observer were scaled within R (R Core Team 2012) before analysis. To determine
detection probabilities of nocturnal migrants, I pooled species (Neotropical migrants,
temperate migrants, and non-resident breeding species) to ensure adequate sample
size. Using the detection probabilities, I computed a mean visit density of nocturnally
migrating birds (birds/ha/visit) for each transect, which I used for all analyses.

I quantified stopover densities from radar data using methods similar to Buler
and Diehl (2009) and Buler and Dawson (2014). From the National Climatic Data
Center archive, I downloaded Level-II WSR-88D radar data, collected at KDOX and
KAKQ during autumn 2013 and 2014 (August 15 — November 7) and KLIX and
KMOB during autumn 2002 and 2003 (August 15 — November 7). WSR-88D radars
transmit horizontally polarized electromagnetic radiation at a wavelength of ~10 cm
(s-band) and a nominal peak power of 750 kW with a half-power beamwidth (3 dB) of
0.95° (Crum and Alberty 1993). I used two data products recorded by the radar:
reflectivity, which is a measure of radar echo strength in units of Z (mm® m™) that is
determined by the density and size of the targets in the sampled volume, and mean
radial velocity, which is a measure of the mean target velocity (in knots) relative to the
radar. Radar data from the 0.5° elevation angle were screened to identify nights

contaminated with precipitation, sea breeze fronts, smoke, and anomalous beam
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propagation (Buler and Diehl 2009). Nights that were not contaminated were
processed for biological target identification.

Biological targets (i.e., birds and insects) were distinguished by quantifying
target airspeeds by vector-subtracting the wind velocity from the target ground
velocity. Radar radial velocity data from the 3.5° elevation angle during the peak of
nocturnal activity (~3 h after sunset) were used to determine target flight directions
and airspeeds in conjunction with high- resolution data on winds aloft archived by the
North American Regional Reanalysis (NARR) following Farnsworth et al. (2014).
These high-resolution modeled wind data are available in three-hour composites
across the United States at ~0.3 degrees (or as fine as 32 km) resolution. I used these
data to determine air speeds (u and v wind components) at nine geopotential heights
ranging from 650-1000 mb within the 100-km range of each radar. Mean air speeds
were then computed by weighting speeds by the relative density of biological targets at
each height interval based on vertical profiles of reflectivity calculated using methods
outlined by Buler and Diehl (2009). Radar scans with mean target air speeds greater
than or equal to 5 m per s were considered bird dominated (Larkin 1991), (Gauthreaux
Jr. and Belser 1998). Only bird-dominated nights were used in the analysis.

For all bird-dominated nights, I fit a spline function to the time series of mean
radar reflectivity during the onset of nocturnal flight to determine the sun angle at the
point of the maximum rate of increase in reflectivity (i.e. peak exodus). For all
sampling nights, I interpolated reflectivity measures among observed samples to the

sun angle at the point of peak exodus for each night. I processed the WSR-88D radar
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data using w2birddensity, which is part of the Warning Decision Support System —
Integrated Information software package (WDSS-II), to correct reflectivity measures
for several sources of measurement bias (see Buler and Dawson 2014) for each year.

I plotted the ground survey transects in a geographic information system (GIS)
and built a 50 m buffer perpendicular to each transect, which corresponded to the
effective detection distance for ground surveys. I georeferenced radar data to a static
polar coordinate grid of the two-dimensional extent of individual sample volumes at
the ground created for each radar (hereafter referred to as a basegrid) and identified
areas where the radar beam was blocked (by topography, buildings, or other human
infrastructure), limiting coverage, by developing clutter maps following Buler and
Dawson (2014). I then intersected the radar sample volumes (mean reflectivity is
extracted from each sample volume) from the KDOX, KAKQ, KLIX, and KMOB
basegrids with the transect buffer. I calculated weighted average reflectivity over each
transect using the area of the intersected polygons to weight the averages.

I used National Land Cover Data (Homer et al. 2015), specifically hardwood,
mixed, and pine forests and forested wetland. I constructed a 5-km buffer around each
transect and computed the proportion of total forest cover within each buffer using
Geospatial Modeling Environment (GME), (Beyer 2012). I used the Euclidean
Distance tool within a GIS to determine the distance to the coast for each transect
location. Before computing distance, I converted a United States boundary shapefile

(Downloaded from https://www.census.gov/geo/maps-data/data/cbf/cbf nation.html)
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from polygon to polyline and then determined the Euclidean distance from each
transect location to the “coast.”

Arthropod abundance was estimated by sampling in the field along the transect
during each visit. Six 20-m x 20-m plots were placed alongside each transect at every
75 m. During each visit, insects were sampled at three of six plots using a branch
clipping method, in which I counted all insects on a branch and then weighed the
branch to get a density of insects (insects/g) available for birds to eat (Johnson 2000).

Stopover Duration (days/bird) is simply the quotient of seasonal average bird
use days/ seasonal average stopover bird density (sensu O’Neal et al. 2012). I
computed a relative stopover length in days using seasonal mean ground bird density
from surveys [birds/ha/day] divided by the seasonal mean number of estimated
emigrants leaving at the onset of migration [birds/ha]. Emigrant numbers were
estimated by dividing seasonal mean radar reflectivity of emigrants [cm2/ha] by the
estimated mean radar cross section of migrant birds for NEXRAD (11 cm2/bird) as
determined by Diehl et al. (2003). Although the units for stopover duration are in days,
the estimate should be treated as a relative index rather than a precise measure of
stopover duration. This is because the radars only sample an unknown, but small,
proportion of emigrants leaving habitats at the initial onset of migration and, thus, bias

estimates low.
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Analysis

This approach to measure relative stopover duration assumes that the mean
daily averages of birds on the ground and birds emigrating measured by each
technique are unbiased. However, given that not all sample volumes of radar data
(pulse volumes) over survey sites were composed purely of forested habitat, they may
reflect aggregate emigrants from a mixture of habitats (i.e., agriculture, wetlands,
urban) that likely do not harbor the same migrant densities as forests and introduce
measurement bias. Typically, when a pulse volume is not completely filled with
hardwood forest, stopover duration is biased high. I attempted to statistically control
for this potential measurement bias of emigrants emanating from non-forested habitats
by fitting a linear regression between the amount of forest cover within radar sample
volumes over sites and stopover duration. I then used the residuals of the regression as
measure of relative stopover duration.

I clustered transect sites into three a priori stopover functional groups (fire
escape, convenience store, full service hotel) based on 4 variables: relative stopover
duration, amount of forest cover within 5 km, distance of site to the nearest coastline,
and seasonal mean insect density at the site using the Partitioning Around Medoids
(PAM) algorithm of Reynolds et al. (2006) and package “cluster” in R (Maechler et al.
2015), which calls function “princomp” to conduct a Principle Component Analysis

(PCA). This approach minimizes dissimilarity among members within clusters.
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Because cluster group sizes differed and may have had unequal variances, |
used a Games-Howell Post Hoc test (Games and Howell 1976) to determine if there
were significant differences in clustering variables between functional types. Because
initial clustering produced groupings of only 2 classes within each geographic region, |
increased the number of clusters to 4 post hoc (coastal fire escape, inland rest stop,
convenience store, full service hotel) so that each region had at least 3 clusters
represented. Functional types were identified based on the values of clustering
variables within each cluster post hoc, where full service hotels had the highest forest
cover and arthropod density and coastal fire escapes had the lowest forest cover and
the least arthropod density. Convenience stores had the longest stopover duration and
inland rest stops had stopover duration in between convenience stores and coastal fire

€scapes.

Results

Detection-corrected estimates of daily bird use ranged from 2.02 to 7.11 (mean
= 3.1440.41) birds per ha per day in 2013 and 1.17 to 5.37 (mean = 3.08+0.28) birds
per ha per day in 2014 within the KDOX radar range, and from 1.23 to 3.83 (mean =
2.40+0.26) birds per ha per day in 2013 and 1.26 to 2.92 (mean = 2.04+0.17) birds per
ha per day in 2014 within the KAKQ radar range. Detection-corrected estimates of

daily bird use ranged from 0.67 to 3.21 (mean = 1.42+0.19) birds per ha per day in
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2002 and 0.42 to 3.98 (mean = 1.38+0.24) birds per ha per day in 2003 within the
KLIX radar range, and from 0.73 to 2.24 (mean = 1.29+0.22) birds per ha per day in
2002 and 0.48 to 1.64 (mean = 0.88+0.17) birds per ha per day in 2003 within the
KMORB radar range.

I analyzed the onset of evening flights from the KDOX radar for 12 days
during fall 2013 and 10 days during fall 2014, and from the KAKQ radar for 15 days
during fall 2013 and 7 days during fall 2014. Reflectivity as a measure of bird density
ranged from 0.47 to 2.54 (cm*/ha, mean = 1.54+0.21).

I analyzed the onset of evening flights from the KLIX radar for 5 days during
fall 2002 and 6 days during fall 2003, and from the KMOB radar for 5 during fall 2002
and 7 days during fall 2003. Reflectivity as a measure of bird density ranged from 1.55
t0 9.27 (cm’/ha, mean = 5.52+1.33).

Relative stopover duration ranged from 0.01 to 57.7 (Table 3, mean =
4.25+1.59) and residual stopover duration ranged from -2.80 to 4.03 (mean =
2.22+1.97). Proportion of forest cover within radar sample volumes ranged from 0.23
to 0.99 (mean = 0.86+0.02). Proportion of hardwood within 5 km of each transect
ranged from 0.01 to 0.89 (mean = 0.40+0.03). Distance to the coast (km) ranged from
0.7 to 71.4 (mean = 27.1+2.67). Insect density (insects/gram of branch) ranged from
0.02 to 3.87 (mean = 0.84+0.14).

I identified four well-defined groups from the cluster analysis (Figure 9),
which is based on PCA components one and two, which explained the highest

proportions of variance (Table 6).
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Figure 9 Cluster plots of 45 transect sites along two component axes and
designated as members of four labeled stopover functional types by
colored ellipses. The number of sites within each cluster group is
presented in parentheses under cluster label name. Component 1 is nearly
equal weighted by all of the variables with increasing forest cover,
distance from the coast, insect density, and decreasing stopover duration
as you move left to right. Component 2 is heavily weighted by stopover
duration and should primarily be greater with longer stopover duration.
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Table 6 Summary of Principle Component loadings from clustering analysis.
Loadings for each variable within each component presented as well as

the proportion of variance explained for each component.

Component 1

Component 2

Component 3

Component 4

Proportion or
hardwood
forest within 5
km
Distance to
coast (km)
Insect Density
(# insects / g
of branch)
Residual
Stopover
Duration
Proportion of
Variance
Explained

0.59

0.46

0.55

-0.37

0.54

0.31

0.34

0.89

0.21

-0.37

0.83

-0.39

-0.14

0.17

0.72

-0.65

0.23

0.08

Based on the values of the four predictor variables, I assigned functional types

to each cluster (Figure 10). I ended up with 8 coastal fire escapes, 14 inland rest stops,

10 full service hotels, and 13 convenience stores. On average, coastal fire escapes were

distinguished by having short stopover duration, were located closest to the coast, had

the lowest amount of forest cover in the landscape, and the least amount of insect

density (Table 7). Inland rest stops had moderate stopover duration, low insect density

(intermediate but not statistically different from fire escapes and convenience stores),

were located away from the coast, and had a moderate amount of forest cover in the

landscape. Convenience store sites had the longest stopover duration, were located

away from the coast, had moderate forest cover in the landscape, and moderate

amounts of insects. Hotel sites had short stopover duration (not different from fire
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escapes), and the greatest amounts of forest cover and insect density and were located
farthest from the coast. All hotel sites were located within extensive forested wetlands
and inland areas along the Gulf Coast (Figure 11). All fires escapes were located in
coastal and highly urbanized areas of the mid-Atlantic. Inland rest stops occurred
primarily along the Delmarva Peninsula. Convenience stores were generally located

along inland riparian forests within both Gulf Coast and mid-Atlantic regions.
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Table 8 Acronym, name, and general location (State) for 45 transect
sites where bird surveys were conducted.

Transect Transect Name State
Acronym
BFLP Bullseye Ferry Landing Preserve Delaware
BHNW Bombay Hook NWR Delaware
BLWA Blackiston Wildlife Area Delaware
CHSP Cape Henlopen State Park Delaware
FBNP Fork Branch Nature Preserve Delaware
KPSP Killens Pond State Park Delaware
MCWS Mill Creek Wildlife Sanctuary Delaware
MNWA Milford Neck Wildlife Area Delaware
NWWA Norman G. Wilder Wildlife Area Delaware
PHWA Prime Hook Wildlife Area Delaware
NW6 NW6 Louisiana
SE4 SE4 Louisiana
SW4 SW4 Louisiana
SWé6 SW6 Louisiana
IDYL Idylwild Maryland
MAHO Marshy Hope Maryland
MASP Mardella Springs Maryland
THWO Third Haven Woods Maryland
TUSP Tuckahoe State Park Maryland
NE3 NE3 Mississippi
NE4 NE4 Mississippi
NES NES Mississippi
NWI1 NWI1 Mississippi
NW2 NW2 Mississippi
NW3 NW3 Mississippi
NW4 NW4 Mississippi
NW5 NW5 Mississippi
SE1 SE1 Mississippi
SE2 SE2 Mississippi
SE3 SE3 Mississippi
SW1 SW1 Mississippi
SW2 SW2 Mississippi
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SW3
CBSN
CPSP
CSNA

GDNW
GDSE
GDSW

HCWP
MSBT
PACP
RACP
SOQU
ZUNI

SW3
Cypress Bridge Swamp NAP
Chippokes Plantation State Park
Chub Sandhill NAP
Great Dismal Swamp NWR
Northwest Jericho Ditch
Great Dismal Swamp NWR East
Great Dismal Swamp NWR
Southwest
Hoffler Creek Wildlife Preserve
Mill Swamp Blackwater Tract
Paradise Creek Park
Raccoon Creek Pinelands
South Quay
Zuni

Mississippi
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
Virginia
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Figure 10  Boxplots of values of residual migrant stopover duration, insect
density, distance to coast, and forest cover within Skm among 4
stopover site functional type clusters (coastal fire escape, inland
rest stop, convenience store, and hotel) composed of 4.
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Figure 11  Maps of classified fall migration stopover functional types for 45
transect sites across the mid-Atlantic (top panel) and Gulf of
Mexico (bottom panel) coasts.

Discussion

Determining relative stopover duration by integrating radar and ground
surveys similar to O’Neal et al. (2012), in conjunction with measuring food
resources, proximity to the coast, and the fraction of hardwood forest cover in
the landscape, allowed me to assess how migrants use specific stopover sites
and classify them into four categories similar to the framework outlined by

Mehlman et al. (2005). Stopover duration varied in accordance with empirical
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data on the relationship between the propensity to leave a site and fuel
deposition rate (Schaub et al. 2008). Namely, birds exhibited the lowest
stopover duration in sites with the least amount of food (coastal fire escapes)
and the most amount of food (full service hotels), while sites with moderate
amounts of food were associated with the longest stopover duration
(convenience stores). The explanation for this observation is that birds that
refuel quickly can spend less time at a stopover site. If there are only moderate
amounts of food, it will take longer for migrants to refuel to levels suitable for
a long-distance migratory flight. This also begs the question as to whether
convenience stores may be ecological traps and confer negative fitness
consequences to migrants.

I could have lumped coastal fire escapes with inland rest stops because
they both serve as temporary rest areas where birds likely cannot refuel due to
low food resources. Collectively, they represented half of all stopover sites.
However, the significant difference in their proximity to the coast may reflect
an important difference. Coastal fire escapes offer a safe landing place for
landbirds that may have just completed an open water crossing and tend to be
used in greater and more consistent densities of emigrants than inland rest
stops. This runs counter to the description by Mehlman et al. (2005) for fire
escapes, which is that they are only used infrequently by migrants. Thus,
researchers may need to realize that fire escape sites in close proximity to

coasts are used rather consistently over the course of a season.
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I found that the mid-Atlantic lacked full service hotels, while the
majority of study sites in the Gulf Coast were classified as full service hotels.
The lack of full service hotels in the mid-Atlantic emphasizes the importance
of conserving areas classified as convenience stores and fire escapes. Buler and
Dawson (2014) found that, on a local scale, hardwood forests in agricultural-
dominated landscapes (convenience stores) had consistent high bird stopover
density as well as shoreline habitats (fire escapes), (Archibald et al. 2017).
Bonter et al. (2008) also found that shoreline habitats and forest patches in
developed landscapes were characterized by high bird density. On a regional
scale, much of the Delmarva Peninsula, which contains many of my study
sites, was characterized by high, consistent bird stopover density (Buler and
Dawson 2014).

In contrast, the Gulf Coast lacked true fire escapes, but the sites located
closest to the coast were characterized as convenience stores and inland rest
stops. As mentioned earlier, the majority of sites on the Gulf Coast were full
service hotels. Migrating landbirds that encounter these convenience stores and
inland rest stops may not find them suitable for fueling up before crossing an
ecological barrier (i.e., Gulf of Mexico) and therefore may undertake a
“reverse migration” or “relocation flight” to find a more resourceful stopover
location (Alerstam 1978).

Convenience stores seemed to be concentrated in narrow riparian

forests in both the mid-Atlantic and Gulf Coast. Narrow floodplain or riparian
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forests are consistently used throughout the migration period in the mid-
Atlantic (Buler and Dawson 2014). Also of interest were the two coastal fire
escapes located in urban forests in Virginia, where birds are likely to stopover
in city parks and small forest patches (Matthews and Rodewald 2010) in urban-
dominated landscapes because natural vegetation is not present (Bonter et al.
2008).

Classifying stopover sites into the functional framework following
Mehlman et al. (2005) should be useful in conservation planning as each
functional type is important for stopover and allowing comparisons within each
functional type rather than across types, which may bias the conservation of
full service hotels and leave fire escapes and convenience stores unprotected.
Each functional type serves certain needs for migrating landbirds, therefore
prioritizing stopover locations classified under each functional type may be the
most appropriate method to increasing survival during migration.

The needs of migrants and quality of stopover sites undoubtedly change
annually. Using radar data, we can determine which stopover sites are
consistently meeting metabolic demands of migrants. Time spent at stopover
sites is often longer than time spent in flight (Hedenstrom and Alerstam 1997),
therefore increasing survivorship during periods of stopover is of value for
conservationists. High quality stopover habitat should contain high forest

cover, abundant food resources, and minimal predation and competition.
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Most areas under protection or that are included in conservation plans
are likely considered full service hotels. Therefore, future conservation plans
and studies should also focus on fire escapes and convenience stores because
those are the sites that are likely not under protection already and therefore are
in danger of disappearing (Mehlman et al. 2005).

A stopover site plays a significant role during migration, giving a
migrant a place of shelter and an opportunity to refuel, thus contributing to the
overall survival of a species. The time it takes a migrant to refuel is very
important (Jenni and Schaub 2003) and depends highly on the quality of
stopover site they choose. Categorizing stopover sites is a difficult, but
necessary task, especially when funding for conservation is inadequate. Using
a system of functional types facilitates the prioritization of stopover sites
because one can evaluate sites within each functional type rather than across
functional types. Each functional type serves a purpose and all are necessary in
conservation, but all sites cannot be protected, so using a functional type
system allows us to prioritize sites more easily and efficiently (Mehlman et al.

2005).
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