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CYCLIC RELATIVE DIFFERENCE SETS AND THEIR p-RANKS

DAVID B. CHANDLER, QING XIANG

Abstract. By modifying the constructions in [10] and [15], we construct a family of
cyclic ((q3k − 1)/(q− 1), q− 1, q3k−1, q3k−2) relative difference sets, where q = 3e. These
relative difference sets are “liftings” of the difference sets constructed in [10] and [15]. In
order to demonstrate that these relative difference sets are in general new, we compute p-
ranks of the classical relative difference sets and 3-ranks of the newly constructed relative
difference sets when q = 3. By rank comparison, we show that the newly constructed
relative difference sets are never equivalent to the classical relative difference sets, and
are in general inequivalent to the affine GMW difference sets.

1. Introduction

Let G be a finite (multiplicative) group of order mn, and let N be a normal subgroup
of order n . A k-element subset D of G is called an (m,n, k, λ) relative difference set in G
relative to N if the list of “differences” d1d

−1
2 , d1, d2 ∈ D, d1 6= d2, represents each element

in G \ N exactly λ times, and represents no elements in N . Thus, D is an (m,n, k, λ)
relative difference set in G relative to N if and only if it satisfies the following equation
in the group ring Z[G]:( ∑

d∈D

d

)( ∑
d∈D

d−1

)
= k · 1G + λ

( ∑
g∈G

g −
∑
h∈N

h

)
, (1.1)

where 1G is the identity element of G. If the group G is cyclic, then D is called a cyclic
relative difference set. When n = 1, D is an (m, k, λ) difference set in the usual sense.

We say that two (m,n, k, λ) relative difference sets D1 and D2 in an abelian group G
relative to a subgroup N are equivalent if there exists an automorphism α of G and an
element g ∈ G such that α(D1) = D2g. In particular, if G is cyclic, then D1 and D2

are equivalent if there exists an integer t, gcd(t,mn) = 1, such that D
(t)
1 = D2g for some

g ∈ G, where D
(t)
1 stands for {dt | d ∈ D1}.

In the case where G is abelian, using the Fourier inversion formula, we obtain the
following standard result in the theory of relative difference sets (see [3, p. 374]).

Lemma 1.1. Let G be an abelian group of order mn with a subgroup N of order n. Let
k and λ be positive integers satisfying k(k − 1) = λn(m− 1). Then a k-subset D of G is
an (m,n, k, λ) relative difference set in G relative to N if and only if for every nontrivial
character χ of G,

χ(D)χ(D) =

{
k, if χ|N 6= 1 ,
k − λn, if χ|N = 1 .

(1.2)

Key words and phrases. Affine GMW difference set, Gauss sum, Relative difference set, Singer differ-
ence set, Stickelberger’s theorem, Teichmüller character.
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Here, χ(D) stands for
∑

d∈D χ(d), and χ|N is the restriction of χ to N .

The following well-known proposition ([3, p. 370], [6]) shows that relative difference
sets can be thought of as “liftings” or “extensions” of difference sets.

Proposition 1.2. Let D be an (m,n, k, λ) relative difference set in G relative to N . Let U
be a normal subgroup of G of order u contained in N , and let ρ : G→ G/U be the natural
epimorphism. Then ρ(D) is an (m,n/u, k, λu) relative difference set in G/U relative to
N/U . In particular, if U = N , then ρ(D) is an (m, k, λn) difference set in G/N .

The first examples of relative difference sets are due to Bose [4]. His construction admits
the following well-known generalization (see [17, p. 47]). Let Fqm be the finite field with
qm elements, q being a power of a prime p, and let Trqm/q be the trace from Fqm to Fq.
Define

R = {x ∈ Fqm | Trqm/q(x) = 1}.
Then R is a ((qm − 1)/(q − 1), q − 1, qm−1, qm−2) relative difference set in F∗

qm relative
to F∗

q. We will include a proof of this fact by using Lemma 1.1 and Gauss sums in
Section 4 since we will need the character values of R in the p-rank computations. Let
ρ : F∗

qm → F∗
qm/F∗

q denote the natural epimorphism. By Proposition 1.2, ρ(R) is a

cyclic ((qm − 1)/(q − 1), qm−1, qm−2(q − 1)) difference set in F∗
qm/F∗

q. Indeed, ρ(R) is
the complement of the Singer difference set in F∗

qm/F∗
q. So the relative difference set R is

a lifting of the complement of the Singer set, and for this reason, R is called a classical
relative difference set. (Some authors call it a classical affine difference set.) A relative
difference set with the same parameters as those of R will be called a relative difference
set with classical parameters.

Relative difference sets with classical parameters are important in many ways. First,
their projections are difference sets with classical parameters by Proposition 1.2. Second,
they are useful in recursive constructions of difference sets with classical parameters such
as the (general) GMW construction (see [17, p. 75] and [11]). We emphasize that in
the general GMW construction, the relative difference set used need not come from the
classical relative difference set. The only requirement is that it come from the projection
of a relative difference set with classical parameters (see the discussion on [17, p. 88]).
Third, relative difference sets with classical parameters are useful for constructions of
difference families, which, in turn, are useful for constructions of Hadamard matrices (see
[20], [21]). For more details on these relative difference sets, we refer the reader to [17].

In this paper, by modifying the constructions in [10] and [15], we construct a family of
((q3k − 1)/(q − 1), q − 1, q3k−1, q3k−2) cyclic relative difference sets, where q = 3e. These
relative difference sets are “liftings” of the difference sets constructed in [10] and [15].
In order to demonstrate that these relative difference sets are in general new, we derive
a general formula for the p-ranks of the classical relative difference sets (Theorem 4.1)
and compute the 3-ranks of the newly constructed relative difference sets when q =
3 (Theorem 5.5). By rank comparison, we show that the newly constructed relative
difference sets are never equivalent to the classical relative difference sets, and are in
general inequivalent to the affine GMW difference sets. Along the way, we also show that
when k = 1, the projection of the new relative difference set is equivalent to the Singer
difference sets. The actual relation of these two difference sets was conjectured in [15].
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2. Preliminaries

We first introduce the definition of Gauss sums. Let Fq be the finite field with q
elements, q being a power of a prime p. Let ξp be a fixed complex primitive pth root of
unity and let Trq/p be the trace from Fq to Z/pZ. Define

ψ : Fq → C∗, ψ(x) = ξ
Trq/p(x)
p ,

which is easily seen to be a nontrivial character of the additive group of Fq. Let

χ : F∗
q → C∗

be a multiplicative character of F∗
q.

Define the Gauss sum by

g(χ) =
∑
a∈F∗q

χ(a)ψ(a).

Gauss sums can be viewed as the Fourier coefficients in the Fourier expansion of ψ|F∗q in
terms of the multiplicative characters of Fq. That is, for every c ∈ F∗

q,

ψ(c) =
1

q − 1

∑
χ∈X

g(χ)χ−1(c), (2.1)

where X denotes the character group of F∗
q.

One of the elementary properties of Gauss sums is [2, Theorem 1.1.4]

g(χ)g(χ) = q, if χ 6= 1. (2.2)

A deeper result on Gauss sums is Stickelberger’s theorem (Theorem 2.1 below) on the
prime ideal factorization of Gauss sums. We first introduce some notation.

Let p be a prime, q = pe, and let ξq−1 be a complex primitive (q−1)th root of unity. Fix
any prime ideal p in Z[ξq−1] lying over p. Then Z[ξq−1]/p is a finite field of order q, which
we identify with Fq. Let ωp be the Teichmüller character on Fq, i.e., an isomorphism

ωp : F∗
q → {1, ξq−1, ξ

2
q−1, . . . , ξ

q−2
q−1}

satisfying

ωp(α) (mod p) = α, (2.3)

for all α in F∗
q. The Teichmüller character ωp has order q − 1; hence it generates all

multiplicative characters of Fq.
Let P be the prime ideal of Z[ξq−1, ξp] lying above p. For an integer a, let

s(a) = νP(g(ω−a
p )),

where νP is the P-adic valuation. Thus Ps(a) || g(ω−a
p ). The following evaluation of s(a)

is due to Stickelberger (see [13, p. 7], [2, p. 344]).

Theorem 2.1. Let p be a prime, and q = pe. For an integer a not divisible by q − 1, let
a0 + a1p+ a2p

2 + · · ·+ ae−1p
e−1, 0 ≤ ai ≤ p− 1, be the p-adic expansion of the reduction

of a modulo q − 1. Then

s(a) = a0 + a1 + · · ·+ ae−1,
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that is, s(a) is the sum of the p-adic digits of the reduction of a modulo q−1. Furthermore,
define

γ(a) = a0!a1! · · · am−1!

Then with s(a) and ω as above we have the congruence

g(ω−a)

(ξp − 1)s(a)
≡ −1

γ(a)
(mod P̃).

We now define the p-rank of a relative difference set, analogously to the p-rank of a
difference set. Let G be a (multiplicative) abelian group of order mn with a subgroup N
of order n, and let D be an (m,n, k, λ) relative difference set in G relative to N . Then we
can construct a square (m,n, k, λ) divisible design D = (P ,B) as follows. The points in
P are the group elements of G, which are naturally partitioned into m classes Ng, where
g runs through a complete set of coset representatives of N in G. The blocks of D are
the translates Dg, g ∈ G, of D. Two points in distinct point classes are contained in
exactly λ blocks, and two points in the same point class are not contained in any block.
Moreover the group G is a sharply transitive automorphism group of D. We may define
the usual point-block incidence matrix of D in the standard manner. The vector space
over Fp spanned by the column vectors (characteristic vectors of blocks) of a point-block
incidence matrix of D is called the p-ary code of D, denoted by Cp(D). The Fp-dimension
of Cp(D) is called the p-rank of the relative difference set D. It is known that Cp(D) is
of interest only if p | (k − λn) or p|k (see [17]). So from now on, we always assume that
p | (k − λn) or p|k. As in the case of difference sets, the p-ranks of relative difference
sets can help us distinguish nonisomorphic divisible designs, in particular, inequivalent
relative difference sets.

In our computation of p-ranks of relative difference sets, we will take the well known
approach described by the following lemma.

Lemma 2.2. Let G be an Abelian group of order v = mn and exponent v∗, let p be a
prime not dividing v∗, and let p be a prime ideal above p in Z[ξv∗ ]. Let D be an (m,n, k, λ)
relative difference set in G relative to a subgroup N of G. Then the p-rank of D is equal
to the number of complex characters χ of G with χ(D) 6≡ 0 (mod p).

For the proof of this lemma, we refer the reader to [17, p. 25], and [3, p. 465].

3. Some new cyclic relative difference sets

In this section, we modify the constructions in [10] and [15] to get some cyclic ((q3k −
1)/(q − 1), q − 1, q3k−1, q3k−2) relative difference sets in F∗

q3k relative to F∗
q, where q = 3e,

e ≥ 1. We need the following lemma on certain binomial additive character sums.

Lemma 3.1. Let q = 3e, e ≥ 1, d = q2k − qk + 1, and let ξ3 = e2πi/3. Then∑
x∈F

q3k

ξ
Tr

q3k/3
(x+uxd)

3 = 0

for all u ∈ {(z + 1)d − zd | z ∈ Fq3k}.
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The proof of this lemma uses the theory of quadratic forms over finite fields, and is
completely analogous to that of Theorem 1 in [10] (simply change 3 in the proof of that
theorem to 3e = q). So we omit it.

Theorem 3.2. Let q = 3e, e ≥ 1, let d = q2k − qk + 1, and set

D = {x ∈ Fq3k | Trq3k/q(x+ xd) = 1}. (3.1)

Then D is a cyclic ((q3k − 1)/(q − 1), q − 1, q3k−1, q3k−2) relative difference set in F∗
q3k

relative to F∗
q.

Proof: Let L be a system of coset representatives of F∗
q in F∗

q3k , and let L0 = {x ∈ L |
Trq3k/q(x + xd) = 0}. If x ∈ L and Trq3k/q(x + xd) = a 6= 0, then we may replace x by
x/a, and

Trq3k/q

(x
a

+ (
x

a
)d

)
= Trq3k/q(x+ xd)/a = 1.

Therefore we may choose L such that L = L0∪L1, where L1 = {x ∈ L | Trq3k/q(x+xd) =
1}. It is then easy to see that L1 = D.

For any multiplicative character χ of Fq3k , we define the sum

Sd(χ) =
∑

x∈F∗
q3k

χ(x)ξ
Tr

q3k/3
(x+xd)

3 . (3.2)

Writing x = ay, with a ∈ F∗
q and y ∈ L, we have

Sd(χ) =
∑
a∈F∗q

χ(a)
∑
y∈L

χ(y)ξ
Trq/3(aTr

q3k/q
(y+yd))

3

=
∑
y∈L0

χ(y)
∑
a∈F∗q

χ(a) +
∑
y∈L1

χ(y)
∑
a∈F∗q

χ(a) ξ
Trq/3(a)

3

If χ = 1, then Sd(1) = (q − 1)|L0| − |L1| = q3k − 1− q|L1|.
If χ 6= 1, but χ|F∗q = 1, then Sd(χ) = −qχ(L1).
If χ 6= 1, and χ|F∗q 6= 1, then Sd(χ) = χ(L1) · g1(χ1), where χ1 is the restriction of χ to

F∗
q, and g1(χ1) is the Gauss sum over the finite field Fq with respect to χ1.
In summary, if χ is a nontrivial multiplicative character of Fq3k , then

χ(L1) =

{
−1

q
Sd(χ) , if χ

∣∣
F∗q

= 1 ,
Sd(χ)
g1(χ1)

, if χ
∣∣
F∗q
6= 1 .

(3.3)

By Lemma 3.1, we see that Sd(1) = −1, hence |L1| = q3k−1. Next we compute

Sd(χ)Sd(χ) for every nontrivial χ.
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Sd(χ)Sd(χ) =
∑

x,y∈F∗
q3k

χ(x/y)ξ
Tr

q3k/3
(x−y+xd−yd)

3

=
∑

z∈F∗
q3k

χ(z)
∑

y∈F∗
q3k

ξ
Tr

q3k/3
(y(z−1)+yd(zd−1))

3

= (q3k − 1) +
∑

z∈F∗
q3k\{−1}

χ((z + 1)/z)
∑

y∈F∗
q3k

ξ
Tr

q3k/3
(y+yd((z+1)d−zd))

3

By Lemma 3.1, we have Sd(χ)Sd(χ) = q3k for every χ 6= 1. Using this together with
(2.2), we have that, for every χ 6= 1,

χ(L1)χ(L1) =

{
q3k−2, if χ

∣∣
F∗q

= 1 ,

q3k−1, if χ
∣∣
F∗q
6= 1 .

(3.4)

By Lemma 1.1, L1 is a cyclic ((q3k − 1)/(q − 1), q − 1, q3k−1, q3k−2) relative difference
set in F∗

q3k relative to F∗
q. This completes the proof. �

Corollary 3.3. Let D be defined as in (3.1), and let ρ : F∗
q3k → F∗

q3k/F∗
q be the natural

epimorphism. Then ρ(D) is a ((q3k − 1)/(q − 1), q3k−1, q3k−2(q − 1)) difference set in
F∗

q3k/F∗
q.

Proof: This follows from Theorem 3.2 and Proposition 1.2. �

The difference set in Corollary 3.3 was constructed in [15]. When k = 1, ρ(D) is a
(q2 + q + 1, q2, q(q − 1)) difference set in F∗

q3/F∗
q. The complement of ρ(D) in F∗

q3/F∗
q has

parameters (q2 + q+1, q+1, 1), which are the parameters of a projective plane of order q.
Since it is generally believed that there is only one equivalent class of planar difference sets
of prime power order, there is a question of verifying that when k = 1, ρ(D) is equivalent
to the complement of the planar Singer difference set. We answer this question in the
following proposition.

Proposition 3.4. Let q = 3e, e ≥ 1, d = q2 − q + 1, ρ : F∗
q3 → F∗

q3/F∗
q be the natural

epimorphism, and let D be defined as in (3.1) with k = 1. Then the complement of ρ(D)
is equivalent to the planar Singer difference set by the following relation:

{ρ(x) | x ∈ F∗
q3 ,Trq3/q(x+ xd) = 0} = {ρ(x) | x ∈ F∗

q3 ,Trq3/q(x
q+1
2 ) = 0}. (3.5)

Proof: Let x ∈ F∗
q3 satisfy

Trq3/q(x
q+1
2 ) = x

q+1
2 + x

q2+q
2 + x

q3+q2

2 = 0.

Solving for each term and squaring we get

xq+1 = xq+q2 − xq2

x
q+q3

2 + x1+q2

xq2+q = xq+1 − x
q3+q2+q+1

2 + x1+q2
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xq2+1 = xq+1 − xqx
q2+1

2 + xq+q2

Substituting these expressions into

Trq3/q(x+ xd) = x+ xq + xq2

+ xq2−q+1 + x1−q2+q + xq−1+q2

we get

Trq3/q(x+ xd) = x+ xq + xq2

+ (x− x
q2+1

2 + xq2
) + (xq − x

q+q3

2 + x) + (xq − x
q3+q2+q−1

2 + xq2
)

= −x q3−1
2 Trq3/q(x

q+1
2 ) = 0.

Since the two sets in (3.5) have the same cardinality q + 1, and now we have shown that
the set on the right hand side of (3.5) is contained in the one on the left hand side, these
two sets must be identical. The proof is complete. �

Remark: The above proposition was conjectured by No [15].

In order to show that the relative difference sets constructed in this section are new, we
compute the p-ranks of the classical relative difference sets in Section 4 and the 3-rank of
D when q = 3 in Section 5.

4. The p-ranks of the classical relative difference sets

Even though the p-ranks of the Singer difference sets were computed by many people
(see [14], [19], [8], and [7]), a general p-rank formula for the classical relative difference
sets seems have not appeared anywhere in the literature. In this section, we compute the
p-ranks of the classical relative difference sets.

Let m ≥ 2 be an integer. We define

R = {x ∈ Fqm | Trqm/q(x) = 1}, (4.1)

where Trqm/q is the trace from Fqm to Fq.
Let χ be a nontrivial multiplicative character of Fqm . The character value χ(R) =∑
x∈R χ(x) has been calculated in [2, p. 389, 400], [22], [21] (see also [1]). So we simply

record the result here.

χ(R) =

{
−1

q
g(χ) , if χ

∣∣
F∗q

= 1 ,
g(χ)

g1(χ1)
, if χ

∣∣
F∗q
6= 1 ,

(4.2)

where χ1 = χ
∣∣
F∗q

(the restriction of χ to Fq), and g1(χ1) is the Gauss sum over Fq with

respect to the character χ1. By (2.2), we see that for every nontrivial χ,

χ(R)χ(R) =

{
qm−2, if χ

∣∣
F∗q

= 1 ,

qm−1, if χ
∣∣
F∗q
6= 1 .

(4.3)

By Lemma 1.1, R is a ((qm − 1)/(q − 1), q − 1, qm−1, qm−2) relative difference set in F∗
qm

relative to F∗
q. This proof appeared in [21].

Now we are ready to compute the p-rank of R.
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Theorem 4.1. Let R be the relative difference set in F∗
qm relative to F∗

q defined in (4.1).
Let q = pe, where p is a prime. Then the p-rank of R is equal to(

p+m− 2

m− 1

)e

+
∑

0<x<(q−1)

e−1∏
j=0

(
xj +m− 1

m− 1

)
,

where x =
∑e−1

j=0 xjp
j, 0 ≤ xj ≤ (p− 1).

Proof: For P a prime ideal in Z[ξqm−1] lying over p, let ωP be the Teichmüller character
on F∗

qm . Then any nontrivial character of F∗
qm takes the form ω−a

P , 0 < a < (qm − 1).
By (4.2), for each a, 0 < a < qm − 1, we have

ω−a
P (R) =

{ −1
q
g(ω−a

P ) , if (q − 1)|a ,
g(ω−a

P )

g1(ω−a
p )

, if (q − 1) 6 | a ,
(4.4)

where g1(φ) is the Gauss sum over Fq with respect to the multiplicative character φ of
F∗

q. Note that here we have used the fact that ωP

∣∣
F∗q

= ωp, where p is the prime ideal in

Z[ξq−1] lying above p, and lying below P. To simplify notation, we will supress the index
P in the character ωP if there is no confusion.

By Lemma 2.2, the p-rank of R is equal to the number of χ, where χ = ω−a, 0 < a <
(qm − 1), such that χ(R) (mod P)6= 0. Let P̃ be the prime ideal of Z[ξqm−1, ξp] lying

above P. Since P̃ | χ(R) if and only if P | χ(R), the p-rank of R is equal to the number

of χ such that P̃ 6 | χ(R).
Corresponding to the two cases in (4.4), we have the following two cases.

Case 1. ω−a
∣∣
F∗q

= 1 (i.e., (q − 1)|a). By (4.4), we have ω−a(R) = − 1
pe g(ω

−a). By

Theorem 2.1, we have
νP̃(g(ω−a)) = s(a),

where s(a) is the p-ary weight of a (mod qm − 1). Also it is clear that νP̃(pe) = (p− 1)e.

Therefore in this case, the number of a, 0 < a < (qm−1), such that ω−a(R) 6≡ 0 (mod P̃),
is equal to

# {a | 0 < a < (qm − 1), (q − 1)|a, s(a) = (p− 1)e}.
Let us denote this cardinality by A. It was shown in [7, p. 85] that

A =

(
p+m− 2

m− 1

)e

.

Case 2. ω−a
∣∣
F∗q
6= 1 (i.e., (q − 1) 6 | a). By (4.4), we have

ω−a(R) =
g(ω−a

P )

g1(ω
−a
p )

.

So in this case the number of a, 0 < a < (qm−1), such that ω−a(R) 6≡ 0 (mod P̃), is equal
to

#{a | 0 < a < (qm − 1), (q − 1) 6 | a, s(a) = s1(a)},
where s1(a) is the p-ary weight of a (mod q − 1). Let us denote this cardinality by B.
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We can compute B as follows. For an integer X, 0 < X < qm − 1, we write X =∑m−1
i=0 Xiq

i, Xi =
∑e−1

j=0Xijp
j, with 0 ≤ Xij ≤ p− 1. Given an x =

∑e−1
j=0 xjp

j, 0 ≤ xj ≤
p − 1, 0 < x < (q − 1), since we want to count those X, 0 < X < (qm − 1) such that
X ≡ x mod q − 1, and s(X) = s1(x), we require that

m−1∑
i=0

Xij = xj.

That is, the addition X0 +X1 + · · ·+Xm−1 (mod q− 1) has no carry. Given an xj, there
are precisely (

xj +m− 1

m− 1

)
ways to distribute the quantity xj over the Xij’s. So for each x, 0 < x < q − 1, the

number of “liftings” X, 0 < X < (qm − 1), of x is
∏e−1

j=0

(
xj+m−1

m−1

)
. Summing over x,

0 < x < (q − 1), we get

B =
∑

0<x<(q−1)

e−1∏
j=0

(
xj +m− 1

m− 1

)
,

where x =
∑e−1

j=0 xjp
j, 0 ≤ xj ≤ (p− 1).

Adding up the expressions for A and B, we obtain the p-rank formula of R stated in
the theorem. �

In some special cases, we can make the p-rank formula in Theorem 4.1 more explicit.

Corollary 4.2. Let R be the relative difference set in F∗
qm relative to F∗

q defined in (4.1),
and let q = 2e. Then the 2-rank of R is (m+ 1)e − 1.

Proof: By Theorem 4.1, the 2-rank of R is equal to

me +
∑

0<x<(q−1)

e−1∏
j=0

(
xj +m− 1

m− 1

)
,

where x =
∑e−1

j=0 xj2
j, xj = 0 or 1. Since xj = 0 or 1, we see that the product∏e−1

j=0

(
xj+m−1

m−1

)
in the above formula is simply ms(x), where s(x) is the binary weight

of x (mod q − 1). Hence the 2-rank of R is

me +
e−1∑
i=1

(
e

i

)
mi = (m+ 1)e − 1.

This completes the proof. �

For future use, we also consider the case p = 3.

Corollary 4.3. Let R be the relative difference set in F∗
qm relative to F∗

q defined in (4.1),
and let q = 3e. Then the 3-rank of R is(

m+ 1

2

)e

+
∑

0<x<(q−1)

mn1(x)

(
m+ 1

2

)n2(x)

,
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where n1(x) and n2(x) are the number of 1’s and the number of 2’s respectively in the
ternary expansion of x. Furthermore, if e = 1 (i.e., q = 3), then the 3-rank of R is
m(m+ 3)/2.

Proof: This follows from Theorem 4.1. The proof is similar to that of Corollary 4.2. �

5. The 3-ranks of some non-classical relative difference sets

In this section, we compute the 3-rank of the relative difference set D constructed in
Section 3. In order to state our results, we introduce some notation first.

Let q = 3e, e ≥ 1, m = 3k, let d = q2k−qk +1, and let D = {x ∈ Fqm | Trqm/q(x+xd) =
1} be the relative difference set constructed in Theorem 3.2.

For P a prime ideal in Z[ξqm−1] lying over 3, let ωP be the Teichmüller character on
Fqm . Then any nontrivial character of F∗

qm takes the form ω−a
P , 0 < a < (qm − 1).

As in the proof of Theorem 3.2, we define for each a, 0 < a < qm − 1, the sum

Sd(ω
−a
P ) =

∑
x∈F∗qm

ω−a
P (x)ξ

Trqm/3(x+xd)

3 . (5.1)

Let P̃ be the prime ideal of Z[ξqm−1, ξ3] lying above P, and let

t(a) = νP̃(Sd(ω
−a
P )) (5.2)

be the P̃-adic valuation of Sd(ω
−a
P ).

Lemma 5.1. With the above notation, the 3-rank of D is A+B, where A = |{a | 0 < a <
(qm−1), (q−1)|a, t(a) = 2e}, and B = |{a | 0 < a < (qm−1), (q−1) 6 | a, t(a) = s1(a)}|.

Proof: By Lemma 2.2, the 3-rank of D is equal to the number of χ, where χ = ω−a
P ,

0 < a < (qm − 1), such that χ(D) (mod P)6= 0. Since P̃ | χ(D) if and only if P | χ(D),

the 3-rank of D is equal to the number of χ such that P̃ 6 | χ(D). To simplify notation,
we will usually drop the index in ωP if there is no confusion.

Corresponding to the two cases in (3.3), we have the following two cases.

Case 1. ω−a
∣∣
F∗q

= 1 (i.e., (q − 1)|a). By (3.3), we have ω−a(D) = − 1
3e Sd(ω

−a). By

definition, we have

νP̃(Sd(ω
−a)) = t(a).

Also it is clear that νP̃(3e) = 2e. Therefore in this case, the number of a, 0 < a < (qm−1),

such that ω−a(D) 6≡ 0 (mod P̃), is equal to the cardinality of the set

A = {a | 0 < a < (qm − 1), (q − 1)|a, t(a) = 2e}. (5.3)

We will denote this cardinality by A.

Case 2. ω−a
∣∣
F∗q
6= 1 (i.e., (q − 1) 6 | a). By (3.3),

ω−a(D) =
Sd(ω

−a
P )

g1(ω
−a
p )

.



CYCLIC RELATIVE DIFFERENCE SETS AND THEIR p-RANKS 11

So in this case the number of a, 0 < a < (qm − 1), such that ω−a(D) 6≡ 0 (mod P̃), is
equal to the cardinality of the set

B = {a | 0 < a < (qm − 1), (q − 1) 6 | a, t(a) = s1(a)}, (5.4)

where s1(a) is the p-ary weight of a (mod q − 1). We will denote this cardinality by B.
In summary, the 3-rank of D is A+B, where A,B are defined as above. This completes

the proof of the lemma. �

In order to compute explicitly the 3-rank of D, we have to compute t(a) first. By (2.1),
we have

ξ
Trqm/3(xd)

3 =
1

qm − 1

qm−2∑
b=0

g(ω−b)ωb(xd).

Hence

Sd(ω
−a) =

1

qm − 1

∑
x∈F∗qm

ω−a(x)ξ
Trqm/3(x)

3

qm−2∑
b=0

g(ω−b)ωbd(x)

=
1

qm − 1

qm−2∑
b=0

g(ω−b)g(ωbd−a)

For any integer x not divisible by qm − 1, we as usual use s(x) to denote the 3-adic
weight of x (mod qm − 1). In addition, if x ≡ 0 (mod qm − 1), we set s(x) = 0. With this
convention, using Theorem 2.1, we see that

t(a) ≥ min0≤b≤qm−2 {s(b) + s(a− bd)}. (5.5)

Moreover, if the above minimum is attained at exactly one value of b in [0, qm− 2], then

t(a) = min0≤b≤qm−2 {s(b) + s(a− bd)}.
In general, the function t(a) is hard to control, hence it is difficult to compute explicitly
the cardinalities of A and B (defined (5.3) and (5.4)). However in the case q = 3 (i.e.,
e = 1), the counting problem can be solved easily.

Lemma 5.2. Let q = 3e, e = 1, m = 3k, k > 1 and d = 32k − 3k + 1. With the definition
of A given in (5.3), we have

A = {3i + 3j | 0 ≤ i 6= j ≤ m− 1} ∪ {(d+ 3i)3j | 0 ≤ i, j ≤ m− 1, i 6= k}
∪ {2d3i | 0 ≤ i ≤ m− 1} ∪ {d(3i + 3j) | 0 ≤ i < j ≤ m− 1, j 6= k + i, j 6= 2k + i}.

The cardinality of A is 2m2 − 2m.

Proof: Let a be an integer such that 0 < a < 3m − 1. Then a ∈ A if and only if a is
even and t(a) = 2. By (5.5), we need to consider min0≤b≤3m−2 {s(b) + s(a− bd)}.

The only way for s(b) + s(a− bd) = 0 to occur is a = b = 0. This does not occur since
we require that a 6≡ 0 (mod 3m − 1). Now a is even: s(b) and s(a − bd) are either both
even or both odd; so s(b) + s(a− bd) = 1 does not occur. Therefore

min0≤b≤3m−2 {s(b) + s(a− bd)} ≥ 2.
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We now find all values of a and b for which s(b) + s(a − bd) = 2. There are three
possibilities:

(i) s(b) = 0 and s(a− bd) = 2,
(ii) s(b) = s(a− bd) = 1,
(iii) s(b) = 2 and s(a− bd) = 0.
In the first case, b = 0 and a has 3-adic weight 2, that is, either a = 2 ·3i, 0 ≤ i ≤ m−1

or a = 3i + 3j, 0 ≤ i 6= j ≤ m − 1. But for a = 2 · 3i, there are two b’s such that
s(b) + s(a− bd) = 2, namely b = 0 and b = (1 + 3k)3i. We will show in Lemma 5.3 that
t(2 · 3i) > 2; so these a are not contained in A. For a = (1 + 32k)3i, even though there
are two b’s (b = 0 and b = 3i) satisfying s(b) + s(a− bd) = 2, we will show in Lemma 5.3
that t((1 + 32k)3i) = 2. For other a’s, one can show that there is a unique b in the
range satisfying s(b) + s(a − bd) = 2, hence t(a) = 2. Therefore in this case, the total
contribution to A is

(
m
2

)
.

In the second case, b has 3-adic weight 1 and a is the sum of bd and another number
with 3-adic weight 1. We write a = (3i + d)3j, 0 ≤ i, j ≤ m − 1. Note that when i = k,
we have (3i + d)3j = 3j + 3j+2k. These are already counted in Case (i); they should be
excluded from consideration in this case. For other values of a, one can see that there is
a unique b such that s(b) + s(a− bd) = 2. So we get m2 −m values of a in this case.

In the third case, b has 3-adic weight 2 and a = bd. Write a = d(1 + 3i)3j. We get
another m+

(
m
2

)
values of a, but m of these (i.e., i = k, so a = 2 · 3j) should be excluded

since they are already considered in Case (i). So the contribution to A is
(

m
2

)
.

To see that each admissible a above is associated with a unique value of b, with the
exceptions noted above, it is enough to show that the above three cases produce distinct
a’s. Let us consider the ternary expansion of each a. From Case (i), each a is of the form
3i + 3j, i 6= j. As for Case (ii), we have a = (3i + d)3j, i 6= k. Note that d is represented
by k 0’s, followed by k 2’s, and then followed by (k−1) 0’s and a 1. If a 1 is added to any
place in the first or last group, a unique run of k 2’s remains (see (5.6)). If a 1 is added
to any of the 2’s but the lowest, the result is a shorter run of 2’s and 1’s in the low-order
places of the first and third groups (see (5.7)). So the a’s from Case (ii) are different from
those a’s in Case (i) except the ones already noted. For Case (iii), a = d(1 + 3i)3j, i 6= k,
we note three possibilities: i = 0 and a = 2d3j; 0 < i < k; and k < i ≤ 3k/2. If d is
doubled, we get (k − 1) 2’s bordered by 1’s (see (5.8)). If 0 < i < k, we get a run of
(k− 1) 2’s with a 1 inserted somewhere (see (5.9)). If k < i ≤ 3k/2, we get two separated
runs of 2’s (see (5.10)). These are all different from the a’s from Case (i) or (ii). Finally
note also that a never has a period less than 3k.

d = 000022220001
+ 001000000000

a = 001022220001
(5.6)

d = 000022220001
+ 000001000000

a = 000100220001
(5.7)
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d = 000022220001
d = 000022220001
a = 000122210002

(5.8)

d = 000022220001
+ 002222000100

a = 010021220101
(5.9)

d = 000022220001
+ 222000100002

a = 222100020010
(5.10)

In summary, we can write down the elements of A explicitly, and the cardinality of A
is 2

(
m
2

)
+m2 −m = 2m2 − 2m. �

The following lemma shows that t(2) > 2, and t(1 + 32k) = 2. From these, it follows
that t(2 · 3i) > 2, and t((1 + 32k)3i) = 2 for all i. These are needed to complete the proof
of Lemma 5.2.

Lemma 5.3. Using the notation above, we have

νP̃(g(ω−0)g(ω−1−3k

) + g(ω−0)g(ω−2)) > 2

and

νP̃(g(ω−0)g(ω−1−32k

) + (g(ω−1))2) = 2

Proof: We use the Stickelberger congruence as stated in Theorem 2.1. Given an
integer a in the interval (0, 3m− 1), we write a = a0 + a13 + a23

2 + · · ·+ am−13
m−1, where

ai = 0, 1 or 2 for all i, 0 ≤ i ≤ (m− 1). We remind the reader that γ(a) is defined to be

a0!a1! · · · am−1!. Since 2 ≡ −1 (mod P̃), we have γ(a) ≡ 1 (mod P̃) if the 3-adic expansion

of a has an even number of 2’s, and γ(a) ≡ −1 (mod P̃) if the number of 2’s is odd. Thus
by Stickelberger’s congruence,

g(ω−0)g(ω−1−3k
) + g(ω−0)g(ω−2)

(ξ3 − 1)2
≡ (−1)

−1

γ(1 + 3k)
+ (−1)

−1

γ(2)

≡ (−1)(−1) + (−1)(1)

≡ 0 (mod P̃)

and

g(ω−0)g(ω−1−32k
) + (g(ω−1))2

(ξ3 − 1)2
≡ (−1)(−1) + (−1)(−1) ≡ −1 (mod P̃)

The conclusion of the lemma now follows. �
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Lemma 5.4. Let q = 3e, e = 1, m = 3k, k > 1 and d = 32k − 3k + 1. With the definition
of B give in (5.4), we have

B = {3i, d3i | 0 ≤ i ≤ m− 1}.
Proof: We need to solve for odd a, 0 < a < 3m − 1, such that t(a) = s1(a) where
s1(a) is the 3-adic weight of a (mod 2). That is, t(a) = 1. Here we have two cases. Either
s(b) = 0 and s(a) = 1, or s(b) = 1 and a = bd. So either a = 3i or a = d3i. For
these a’s, there is a unique b in the range [0, 3m − 2] satisfying s(b) + s(a − bd) = 1. So
t(a) = min0≤b≤3m−2{s(b) + s(a− bd)} = 1. Therefore the lemma follows. �

Theorem 5.5. Let q = 3e, e = 1, m = 3k, k > 1 and d = 32k − 3k + 1. Let D = {x ∈
Fqm | Trqm/q(x+ xd) = 1} be the relative difference set constructed in Theorem 3.2. Then
the 3-rank of D is 2m2.

Proof: By Lemma 5.1, the 3-rank of D is equal to |A| + |B|. In Lemma 5.2 and
Lemma 5.4, we find that when e = 1, |A| = 2m2 − 2m, and |B| = 2m. So the 3-rank of
D is 2m2. �

Remarks: The 3-rank formula in Theorem 5.5 is not valid in the case k = 1 (i.e., m = 3).
The reason is that when m = 3, the elements 2d3i, 0 ≤ i ≤ m− 1, of the set A coincide
with some of the elements in {(d + 3i)3j | 0 ≤ i, j ≤ m − 1, i 6= k} ⊂ A. In the case
k = 1, the relative difference set D has parameters (13, 2, 9, 3), and it has 3-rank 12. This
relative difference set D is equivalent to the first (13,2,9,3) relative difference set listed on
Page 90 of [17] (see also [12]). The second (13, 2, 9, 3) relative difference set listed on the
same page is the classical relative difference set, which has 3-rank 9.

Corollary 5.6. Let D be defined as in (3.1), and let ρ : F∗
q3k → F∗

q3k/F∗
q be the natural

epimorphism. Let e = 1, m = 3k, k > 1. Then the 3-rank of ρ(D) is 2m2 − 2m.

Proof: The 3-rank of ρ(D) is equal to the size of A, which is 2m2 − 2m in the case
e = 1. �

Remarks: The 3-rank of ρ(D) was computed recently in [16]. Our method here is
different from that of [16].

6. Inequivalence of relative difference sets

In this section, we use rank comparison to obtain inequivalence results of relative dif-
ference sets with classical parameters.

Theorem 6.1. Let q = 3e, e = 1, m = 3k, k > 1 and d = 32k − 3k + 1. Let D = {x ∈
Fqm | Trqm/q(x+ xd) = 1} be the relative difference set constructed in Theorem 3.2. Then
D is inequivalent to the classical relative difference set R with the same parameters.

Proof: By Theorem 5.5, the 3-rank of D is 2m2. On the other hand, by Corollary 4.3,
the 3-rank of R is m(m+ 3)/2. These ranks are not equal: the theorem follows. �

Besides the classical relative difference sets, there is another large family of relative
difference sets with classical parameters known previously. These are the so-called affine
GMW difference sets. The idea is the same as in the classical GMW construction. We
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describe the construction of affine GMW difference sets as follows. For more details, see
[17, p. 77].

Let m = st, where s > 1, t > 1 are integers, let q be a power of a prime p. Define

T = {x ∈ Fqt | Trqt/q(x) = 1},
and

S = {x ∈ Fqm | Trqm/qt(x) = 1}.
Let r be an integer coprime to qt − 1. Then the set T (r)S is a ((qm − 1)/(q − 1), q −
1, qm−1, qm−2) relative difference set in F∗

qm relative to F∗
q. This is an affine GMW difference

set. If r = 1 or r is a power of p, then T (r)S is nothing but the classical relative difference
set R. So we will not consider the case where r is a power of p.

In principle, we can also derive a formula for the p-ranks of affine GMW difference sets
as we did for GMW difference sets in [1]. But the formula will be very complicated. So we
will use MAGMA ([5]) to do some numerical computations of the 3-ranks of affine GMW
difference sets.

Example 6.2. Let q = 3, m = 6, t = 2. The possible choices of r are 5, 7. We choose
r = 5 since 7 ≡ 3 ·5 (mod 8). Using MAGMA, we find that the 3-rank of the affine GMW
difference set T (5)S is 57 (this was also computed by Pott in [17, p. 86]). On the other
hand, the 3-rank of D (defined in Theorem 3.2) in this case is 2m2 = 72. Hence D is not
equivalent to this affine GMW difference set.

Example 6.3. Let q = 3, m = 6, t = 3. The possible choices of r are 5, 7, 17 and their
multiples by powers of 3. Using MAGMA, we find that the 3-rank of T (5)S is 57, the
3-rank of T (7)S is 63, and the 3-rank of T (17)S is 117. (These 3-ranks were also computed
by Pott [17, p. 86].) On the other hand, the 3-rank of D (defined in Theorem 3.2) in this
case is 2m2 = 72. Hence D is not equivalent to any of these affine GMW difference sets.

Example 6.4. Let q = 3, m = 9, t = 3. The possible choices of r are 5, 7, 17 and their
multiples by powers of 3. Using MAGMA, we find that the 3-rank of T (5)S is 189, the
3-rank of T (7)S is 234, and the 3-rank of T (17)S is 594. On the other hand, the 3-rank of
D (defined in Theorem 3.2) in this case is 2m2 = 162. Hence D is not equivalent to any
affine GMW difference sets.

These examples show that the relative difference set D is in general not equivalent to
affine GMW difference sets. Since there are only two types of relative difference sets with
these parameters known (i.e., the classical and affine GMW relative difference sets), the
relative difference set D is new.

References

[1] K. T. Arasu, H. D. L. Hollmann, K. Player, and Q. Xiang, On the p-ranks of GMW difference sets,
submitted to Dijen65 conference proceedings.

[2] B. C. Berndt, R. J. Evans and K. S. Williams, Gauss and Jacobi sums, Wiley Interscience, 1998.
[3] T. Beth, D. Jungnickel, and H. Lenz, Design Theory, vol.1, Second edition, Cambridge University

Press, Cambridge, 1999.
[4] R. C. Bose, An affine analogue of Singer’s theorem, J. Indian Math. Soc. 6 (1942), 1–15.
[5] J. Cannon, C. Playoust, An Introduction to MAGMA, University of Sydney, Australia, 1993.
[6] J. E. H. Elliott, A. T. Butson, Relative Difference Sets, Illinois J. Math. 10 (1966), 517–531.



16 DAVID B. CHANDLER, QING XIANG

[7] R. Evans, H. D. L. Hollmann, C. Krattenthaler, and Q. Xiang, Gauss sums, Jacobi sums and p-ranks
of difference sets, J. Combin. Theory Ser. A 87 (1999), 74–119.

[8] J. M. Goethals and P. Delsarte, On a class of majority logic decodable cyclic codes, IEEE Trans.
Inform. Theory, 14 (1968), 182–188.

[9] B. Gordon, W. H. Mills and L. R. Welch, Some new difference sets, Canad. J. Math. 14 (1962),
614–625.

[10] T. Helleseth, P. V. Kumar, and H. M. Martinsen, A new family of ternary sequences with ideal
two-level autocorrelation, Designs, Codes and Cryptography, 23 (2), (2001), 157–166.

[11] D. Jungnickel, V. D. Tonchev, Decompositions of difference sets, J. Algebra, 217 (1999), 21–39.
[12] C. W. H. Lam, On relative difference sets, in “Proc. 7th Manitoba Conference on Numerical Math-

ematics and Computing” (1977), 445–474.
[13] S. Lang, Cyclotomic Fields, Springer-Verlag, New York, 1978.
[14] J. MacWilliams and H. B. Mann, On the p-rank of the design matrix of a difference set , Inform.

Control 12 (1968), 474–488.
[15] J.-S. No, New cyclic difference sets with Singer parameters constructed from d-homogeneous func-

tions, preprint.
[16] J.-S. No, D.-J. Shin, T. Helleseth, On the p-ranks and characteristic polynomials of cyclic difference

sets, preprint.
[17] A. Pott, Finite geometry and character theory , Springer LNM 1601, 1995.
[18] J. Singer, A theorem in finite projective geometry and some applications to number theory, Trans.

AMS 43 (1938), 377–385.
[19] K. J. C. Smith, On the p-rank of the incidence matrix of points and hyperplanes in a finite projective

geometry , J. Combin. Theory 7 (1969), 122–129.
[20] E. Spence, Hadamard matrices from relative difference sets, J. Combin. Theory 19 (1975), 287–300.
[21] M. Yamada, On a relation between a cyclic relative difference sets associated with the quadratic

extensions of a finite field and the Szekeres difference set, Combinatorica 8 (1988), 207–216.
[22] K. Yamamoto, On congruences arising from relative Gauss sums, in: “Number Theory and Combi-

natorics”, Japan 1984, World Scientific Publ., 1985, 423–446.

Department of Mathematical Sciences, University of Delaware, Newark, DE 19716,
USA,

E-mail address: chandler@math.udel.edu, xiang@math.udel.edu


