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ABSTRACT

Density Functional Theory (DFT), in various local and semilocal approxima-

tions, cannot completely describe long-range correlations between the electrons re-

sponsible for dispersion interactions. A large number of methods have been designed

to correct DFT for the missing dispersion effects (DFT+D methods). These methods

add a fraction of true dispersion energy to DFT methods assuming that a part of it has

already been recovered by DFT. We estimate the amount of dispersion recovered by

different popular DFT methods and show that what appears to be recovered disper-

sion energy does not possess the physical character expected of dispersion interactions.

Moreover, a large part of it originates from those terms of the DFT interaction energy

that do not have any physical mechanism to capture such effects. The technique used to

estimate the recovered dispersion will help for future developments of DFT methods as

it points out the shortcomings of the dispersionless parts of the DFT interaction energy

as well. A new method for calculating dispersion interactions is also developed using a

modified polarizability density from nonlocal correlation methods. The performance of

the new method is tested on a set of dimers at various intermonomer separations. The

new method outperforms all nonlocal correlation functionals and reduces the average

error on the test set by at least a factor of 2. Finally, a path for the future development

of nonlocal correlation methods is provided by comparing polarizability densities from

nonlocal correlation functionals to the accurate one provided by time-dependent DFT.

xix



Chapter 1

INTRODUCTION

The dispersion interactions are quantum mechanical in nature and are absent

from classical picture of atoms. These interactions result from the long-range corre-

lation between electron motions. Symmetry-adapted perturbation theory (SAPT) [1,

2, 3, 4] identifies dispersion as a pure intermonomer correlation effect. SAPT is a

wave-function-based (WF-based) method which clearly defines dispersion up to all or-

ders in the intermolecular interaction potential, but its accurate calculation requires

usage of high-electron excitations, which leads to a high computational cost. This lim-

itation is same for all WF-based methods that account for dispersion interactions, for

example, the coupled-cluster method with single, double and noniterative triple excita-

tions [CCSD(T)]. The computational cost of WF-based methods scales so steeply (for

example, it scales as O(N7) for SAPT and CCSD(T) where N is the number of elec-

trons involved) that we cannot perform such calculations for systems with more than a

couple dozen atoms. Therefore, the development of accurate methods with an afford-

able computational cost is an essential requirement for understanding the properties

of materials through first principles.

Density functional theory (DFT) is an attempt to calculate all observables of a

system from its electron density. The advantage of this approach is that one needs to

find a function of only three coordinates (electron density) instead of a 3N -dimensional

function which represents a solution of Schrödinger’s equation for a system of N elec-

trons. The computational cost of DFT scales as N4 (if the so-called exact or Hartree-

Fock (HF) exchange is included), which is same as that of the HF method, but it

accounts for many properties much more accurately than the HF method.
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The subtle many-electron effects of an electronic system, including dispersion

interactions, are put together in the so-called exchange-correlation energy term defined

in the Kohn-Sham (KS) implementation of DFT [5]. The exact exchange-correlation

energy expression, unfortunately, remains unknown, so several approximate methods

have been developed to calculate it. The standard approaches either work within the

local density approximation (LDA) [5, 6, 7, 8, 9, 10] or various semilocal approximations

known under the name of generalized gradient approximations (GGAs) [11, 12, 13].

In Chapter 2, we criticise the popular assumption about DFT methods that

they recover a part of the dispersion interactions in the physically important region of

the van der Waals minimum and of shorter separations [14, 15, 16, 17]. The semilocal

DFT methods cannot retrieve the long-range correlation of electron motions (disper-

sion interactions) due to the tiny size of their exchange-correlation hole [18], a quan-

tity related to the electron pair-correlation function which will be defined precisely

later. This deficiency is such a serious problem that a large number of methods have

been designed to correct DFT by addition of a dispersion correction, the so-called

DFT+D methods. The dispersion corrections can be obtained using atom-atom dis-

persion functions [15, 16, 19, 20, 21], the many-body dispersion (MBD) model [22, 17],

the exchange-hole dipole model (XDM) [23, 24], and nonlocal correlation function-

als (vdW-DF1/2, VV09/10, DADE) [25, 26, 27, 28, 29]. A critical ingredient in this

addition of the dispersion energy is the use of damping mechanisms to taper off the

dispersion energy at close range based on the assumption that DFT should start recov-

ering dispersion energy when the monomers are sufficiently close. Nonlocal correlation

functionals have implicit damping procedure built in to their physical formulation,

while all other methods mentioned above use explicit damping functions. An assess-

ment whether DFT methods recover dispersion energies is not straightforward since

there are no explicit dispersion energy terms in these methods. Thus, we can estimate

this quantity for a given DFT method only in some indirect way. To this end, we

calculated the benchmark interaction energy using CCSD(T), and the benchmark dis-

persion energy using SAPT. The dispersionless part of the interaction energy is then
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computed by taking the difference of the CCSD(T) interaction and SAPT dispersion

energy. If dispersion were the only deficiency of DFT, then subtraction of the disper-

sionless energy from the DFT interaction energy (we call this difference Eextra) would

give us the dispersion energy recovered by a given DFT method. We performed DFT

calculations for the Ar-Li+ and the argon-proton systems establishing that DFT has

errors unrelated to dispersion interactions which could be several times larger than the

contribution of the dispersion energy to the interaction energy. Thus, Eextra contains

the dispersion energy recovered by a given DFT method, if any, as well as errors of

the dispersionless part of the DFT interaction energy. We show that the behavior of

Eextra is remarkably different from the one expected of the dispersion energy, since

its value continues to increase beyond the true dispersion energy when monomers are

brought very close and it has significant values, amounting up to 50% of the dispersion

energy, even when the monomers are separated more than the van der Waals minimum

distance, where there is unlikely to be any overlap of the exchange-correlation holes.

We also confirmed that Eextra needs a significant contribution from the interaction en-

ergy terms other than the exchange-correlation term. The former terms do not have

any physical mechanism to capture the electron correlation. Additionally, we refuted

the notion that for intermediate range exchange could contribute to the dispersion

energy, since exchange makes a positive contribution to the interaction energy in this

region for most of the investigated functionals. Even the cutting-edge DFT functional

SCAN [30], which satisfies seventeen exact physical constraints, is shown to have both

density-driven and functional-driven errors, and therefore even such constraints are not

sufficient. Other functionals have in general still more problems. Therefore, DFT+D

methods which adjust their correction to Eextra using damping are correcting DFT for

errors unrelated to dispersion in disagreement with their claimed justification that the

purpose of damping is to avoid a double counting of dispersion interactions at separa-

tions relevant for intermolecular interactions. Thus, a physically sound improvement

of DFT is possible if we improve the dispersionless part of the interaction energy along

with improving the dispersion corrections. A DFT approximation which works without
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cancelling errors for different types of interactions is more likely to work for all kind of

systems and for all kind of properties.

In Chapter 3, we develop a new method for calculating the dispersion energy

based on the local polarizability density. This new method, called damped asymptotic

dispersion energy (DADE), uses the modified polarizability density from van der Waals

density functionals (vdW-DF) [25, 26] in an expression for the dispersion energy ob-

tained under the assumption that the polarizability tensor is local and isotropic. This

expression was introduced by Anderson, Langreth, and Lundqvist (ALL) [31] and in-

dependently by Dobson and Dinte [32]. The value of the ALL expression is, in general,

infinite and a physical cutoff was used to avoid singularities. We used a generalized

Tang-Toennies damping function to regularize it. The three parameters of the damping

function and the one parameter of the polarizability density were roughly adjusted to

get good results for the argon dimer. The method was tested on a set of dimers used

in Ref. [33] in addition to Ar2 and Ar–HF dimers. The calculations were done for the

complete range of intermonomer separations, from the repulsive wall to the asymptotic

region of the interaction energy curve. The mean absolute percentage error (MAPE)

of dispersion energies relative to SAPT(DFT) (SAPT based on DFT description of

monomers) [34, 35, 36, 37]) values was found to be 2.3 times smaller than that in the

case of vdW-DF2. DADE does not have unphysical damping at medium and short

ranges, therefore, it should be used with those DFT functionals which give interac-

tion energies close to the dispersionless contributions. We found that when DADE is

added to the interaction energy from a dispersionless density functional (dlDF) [20], it

predicts interaction energies better than vdW-DF2.

In Chapter 4, we evalulate essentially all methods used in DFT for calcu-

lating the dispersion correction by comparing their results with those obtained by

SAPT(DFT) for the test set used in Chapter 3. The tested methods include atom-atom

functions based on an asymptotic expansion for the dispersion energy (Das [20, 21],

D3 [16, 19]), methods based on models of atoms in molecules (XDM [23, 24] and

MBD [22, 17]), and the methods involving nonlocal correlations (VV09 [27], VV10 [28],
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vdW-DF1 [25], vdW-DF2 [26], and DADE [29]). The performances of methods in dif-

ferent regions of monomer separations indicate the quality of the van der Waals dis-

persion coefficients related to the methods as well as the role of damping functions.

It is found that atom-atom functions perform best with the average of MAPEs about

10%, and DADE is quite close to these methods with a 12% value of this quantity.

All other nonlocal methods perform much worse with the average of MAPEs ranging

from 24% to 49%. The performance of DADE gives such a huge improvement over the

other nonlocal functionals (VV09 [27], VV10 [28], vdW-DF1 [25], vdW-DF2 [26]) that

it should replace them in the future DFT calculations which use such functionals.

In Chapter 5, we compare the dipole-dipole polarizability densities from vdW-

DF2 [26], VV09/10 [27, 28], and DADE [29] with the one obtained from time-dependent

DFT (TD-DFT). The polarizability density computed using vdW-DF2 agrees with TD-

DFT more closely than VV09/10. DADE is closest to TD-DFT, and also the differences

with vdW-DF2 are small. TD-DFT is known to give accurate polarizabilities and

that is the reason for its use in SAPT(DFT). Therefore, this comparison tests the

physical soundness of the tested methods and identifies regions of polarizability which

need improvement. The best agreement of DADE with TD-DFT is in line with its

performance described in Chapters 3 and 4. One way to improve DADE is to enhance

its agreement with TD-DFT at the dipole-dipole level. Another possibility is to improve

the DADE polarizability density such that it could reproduce TD-DFT polarizability

including quadrupole and higher order multipole effects. To get still closer to the exact

method, we need to go beyond the local and isotropic character of the polarizability.

1.1 Density Functional Theory

Atoms, molecules, clusters, and solids are composed of mutually interacting

electrons and nuclei. Since nuclei are very massive compared to electrons, they move

relatively slowly so that we can separate their motion from the motion of electrons, i.e.,

we can solve Schrödinger’s wave equation for electrons taking the nuclear coordinates

as parameters. This approximation is known as the Born-Oppenheimer approximation.
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The Hamiltonian for electrons in this approximation can be written in atomic units

as [38]

Ĥ = T̂ + Ŵ + V̂ext = −
N∑
j=1

1
2∇

2
j + 1

2
∑
i 6=j

1
|ri − rj|

−
∑
j,J

ZJ
|rj −RJ |

, (1.1)

where T̂ is kinetic energy operator, Ŵ is electron-electron repulsion energy, and V̂ext

is the potential energy representing the interaction of electrons with nuclei. ZJ and

RJ represent the charge and position of the Jth nucleus, respectively and values of

i, j run over all electrons. The external potential can be written as V̂ext = ∑
i vext(ri)

where vext(ri) = −∑J
ZJ

|ri−RJ |
is the total external potential for the ith electron. The

electron-density operator is defined as n̂(r) = ∑
i δ(r − ri), which allows us to write

V̂ext =
∫
d3rv(r)n̂(r).

The time independent Schrödinger wave equation for the systems discussed is

ĤΨj(x1,x2,x3, ...,xN) = EjΨj(x1,x2,x3, ...,xN), (1.2)

where Ψj is the wave function of the jth eigenstate of Ĥ with energy Ej and xi ≡ (ri, σi)

specifies both position and spin coordinates of the ith electron. All the information

about the system is contained in the wave function of the system and its observables are

obtained by calculating the expectation value of the corresponding operators. However,

the exact solution of the Schrödinger’s wave equation can only be obtained in very

simple cases and, therefore, several approximate methods [for example Hartree-Fock

(HF) theory, SAPT, and CCSD(T)] have been developed.

Alternatively, the ground state energy of the system, according to the Rayleigh-

Ritz principle, can be found by minimizing the expectation value of the Hamiltonian

with respect to the wave function [39], i.e.,

E0 = minΨ〈Ψ|Ĥ|Ψ〉 = minΨ〈Ψ|T̂ + Ŵ + V̂ext|Ψ〉

= minΨ
[
〈Ψ|F̂ |Ψ〉+ 〈Ψ|V̂ext|Ψ〉

]
, (1.3)
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where 〈Ψ|F̂ |Ψ〉 = 〈Ψ|T̂ + Ŵ |Ψ〉 and Ψ must be a normalized antisymmetric function

satisfying appropriate boundary conditions for the considered system. The ground-

state single-particle density of the system is given as

n0(r) = N
∑
σ

∫
d3r2· · ·

∫
d3rN |Ψ0(r, σ1,x2,x3, . . . ,xN)|2, (1.4)

where Ψ0 is the ground-state wave function and the integral of the density is the total

number of electrons in the system, i.e.,
∫
d3rn0(r) = N .

The basic idea of DFT is that we can completely describe the system if we

know its ground state density n0(r). In a system of N electrons, T̂ and Ŵ are fixed

and hence the wave function is a functional of the external potential V̂ext. Thus, the

ground state density is a functional of the external potential, i.e., n0[v](r), where we

used square brackets to denote the functional dependence.

The Hohenberg-Kohn theorem [6] states that the ground state density of a finite

system of electrons uniquely determines the local external field (such as the field of

nuclei) up to a constant. Thus, the external potential is a functional of the ground

density, v[n0](r). Note that this theorem is in general applicable to any finite number

of particles with a given particle-particle interaction. We will later use it for a system

of noninteracting particles [38]. Hence the Hamiltonian of the system is a functional of

the electron density, Ĥ[n0]. Consequently, via Schrödinger’s wave equation, the wave

function of the system is a functional of the ground state density (Ψj[n0](r)) and so is

the energy of the system (Ej[n0]) [38].

The variational principle in terms of the density becomes

E0 = minn(r){F [n] + Eext[n] }, (1.5)

where F [n] = 〈Ψ[n]|T̂ + Ŵ |Ψ[n]〉, Eext[n] = 〈Ψ[n]|V̂ext|Ψ[n]〉 =
∫
d3rvext(r)n(r), and

we used short-hand notation n(r) for n0(r). To get the stationary condition, we need

to equate the functional derivative of Eq. (1.5) to zero. If f is a functional of density
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n(r), f = f [n], then its functional derivative with respect to n(r), δf [n]
δn(r) , is defined

by [39]

lim
η→0

f [n+ ηδn]− f [n]
η

=
∫
d3r

δf [n]
δn(r)δn(r) , (1.6)

where η is a positive number and δn(r) is a density variation. The minimum condition

of the variational principle of Eq. (1.5), with the constraint that
∫
d3rn(r) = N , can

be replaced by the following condition on the functional derivative [38, 39]

δ

δn(r)

[
F [n] + Eext[n]− µ

∫
d3rn(r)

]
= δF [n]
δn(r) + vext(r)− µ = 0, (1.7)

where µ is a Lagrange multiplier ensuring that
∫
d3rn(r) = N . The density n(r) which

satisfies this equation is the ground state electron density and the sum of F [n] and

Eext[n] with that value of density gives precisely the ground state energy of the system

as indicated by Eq. (1.5). One could find the ground state density without solving

the Schrödinger wave equation corresponding to the system if one knew the functional

F [n]. However, this functional is not known.

Kohn and Sham in 1965 [5] proposed an approximate solution to this problem

by considering the so-called non-interacting system, i.e., a system analogous to the

physical system but with electron-electron interactions turned off. The Hamiltonian of

this non-interacting system is written as [38, 39]

Ĥs = T̂ + V̂s =
N∑
j=1

[
−1

2∇
2
j + vs(rj)

]
, (1.8)

where V̂s =
∑
j

vs(rj) is the so-called effective Kohn-Sham(KS) potential, which we

will define shortly. The Hohenberg-Kohn theorem applies to this system as well and,

hence, a unique one-to-one correspondence exists between its external potential and

the ground-state density. Since Ĥs is a sum of one-electron Hamiltonians, the solution

of the Schrödinger’s equation for the KS system is a product of one electron func-

tions (orbitals), and if the antisymmetry condition is taken into account, it is a Slater

determinant built of these orbitals.
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Each orbital in the Slater determinant satisfies the single-particle Schrödinger

equation called KS equation
[
−1

2∇
2 + vs(r)

]
ψj(x) = εjψj(x), (1.9)

where ψj is a spin-orbital. The corresponding electron density is

n(r) =
Nocc∑
s, j=1

|ψj(x)|2, (1.10)

where Nocc represents number of occupied orbitals and s in the sum represents the

summation over spin. The kinetic energy is then obtained using the orbitals as

Ts[n] = −1
2
∑
s,j

〈ψj|∇2|ψj〉. (1.11)

Therefore, the kinetic energy becomes an explicit functional of the orbitals and an

implicit functional of the density of the system. The total energy of the non-interacting

system is

Es[n] = Ts[n] +
∫
d3r n(r)vs(r) (1.12)

The variational principle for the KS system becomes

δ

δn

[
Ts[n] +

∫
d3r vs(r)n(r)− µ

∫
d3rn(r)

]
= δTs[n]

δn
+ vs − µ = 0, (1.13)

where again the Lagrange multiplier µ ensures that number of particles in the system

is N . The total energy of the KS system can also be written in terms of single orbital

energies as Es[n] = ∑Nocc
j=1 εj. Now one can write F [n] for the fully interacting system

as

F [n] = T [n] + W [n]

= Ts[n] + EH[n] + T [n]− Ts[n] + W [n]− EH[n]

= Ts[n] + EH[n] + Exc, (1.14)

where EH[n] = 1
2
∫∫
d3rd3r′ n(r)n(r′)

|r−r′| is the so-called Hartree energy, and defining in this

way the exchange-correlation energy Exc = T [n]− Ts[n] + W [n]−EH[n]. Thus, Exc[n]
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has both a kinetic component and a component arising from the electron-electron

interaction. It is a very clever decomposition which uses the density and orbitals of the

KS system to calculate a large part of F [n]. Exc turns out to be small as compared to

Ts[n] + EH[n], so even if it is approximated in a crude way, the resulting method may

work reasonably well. However, although Exc is a tiny part of the total energy of atoms

and molecules, it may contribute 100% to the binding and atomization energies [40].

The dispersion energy, being a correlation effect, is a part of Exc in KS DFT. The total

energy of the interacting system can be written as

E[n] = T [n] + W [n] + Eext[n] = Ts[n] + EH[n] + Exc[n] + Eext[n]. (1.15)

Now using Eq. (1.15) in Eq. (1.7) we get [38, 39]

δTs[n]
δn(r) + δEH[n]

δn(r) + δExc[n]
δn(r) + vext(r)− µ = 0. (1.16)

If we compare Eq. (1.16) with Eq. (1.13) we get the effective KS potential

vs(r) = δEH[n]
δn

+ δExc[n]
δn

+ vext(r) = vH(r) + vxc(r) + vext(r), (1.17)

where vH(r) = δEH[n]
δn

=
∫
d3r′ n(r′)

|r−r′| is the Hartree potential and vxc(r) = δExc[n]
δn

is

the exchange-correlation potential. Thus, we could calculate the energy of a fully

interacting system using the ground-state density and the orbitals of a noninteracting

(KS) system if we knew the exchange-correlation potential. If we knew the exact

vxc(r), the DFT results would be exact. While the exact vxc(r) is not known, several

approximations for it has been developed. The approximations which represent Exc

as a functional depending only on the density are called local-density approximations

(LDAs) [6, 5, 7, 8, 9, 10], while those which involve also gradients of the density are

called generalized gradient approximations (GGAs) [11, 41, 42, 43]. Note that both

LDAs and GGAs contain the Hartree term which is actually nonlocal, but Exc is

always local, i.e., it is an integral of the exchange-correlation energy density εxc(r) [

that Exc =
∫
dr n(r)εxc(r)] which depends on the density at a point r (LDA) and both

the density and its derivative (GGA). One of the common weakness of all local and
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semilocal methods is their inability to take into account long-range correlation effects

and hence the dispersion interactions.

Let us derive a wave function based expression for the exchange-correlation

energy using the adiabatic-connection approach [44, 45, 46]. In this approach the

electron-electron repulsion operator is multiplied by a positive parameter λ ∈ [0, 1] to

control its strength. Keeping the density of the system fixed at its physical value for

the fully interacting system, λ is varied so that if λ = 0 we get the Kohn-Sham system

and if λ = 1 we have the actual physical system of fully interacting electrons. The

Hamiltonian for the system at λ is

Ĥλ = T̂ + V̂ λ
ext + λŴ , (1.18)

where V̂ λ
ext = ∑

i v
λ
ext(ri) =

∫
d3rvλext(r)n̂(r). [Note that V̂ λ

ext has to be properly adjusted

to keep n(r) unchanged]. If Ψλ is the ground-state wave function of the system then

n(r) = 〈Ψλ|n̂|Ψλ〉 and Eλ
0 = 〈Ψλ|Ĥλ|Ψλ〉 are its ground-state density and energy,

respectively. The energy of the fully interacting system of electrons can be written as

Eλ=1
0 = Eλ=0

0 +
∫ 1

0
dλ
dEλ

0
dλ

= Eλ=0
0 +

∫ 1

0
dλ

[
〈Ψλ|dV̂

λ
ext
dλ
|Ψλ〉+ 〈Ψλ|Ŵ |Ψλ〉

]
, (1.19)

where we have used the Hellman-Feynman theorem which gives dEλ0
dλ

= 〈Ψλ|dĤλ

dλ
|Ψλ〉.

Now consider

∫ 1

0
dλ 〈Ψλ|dV̂

λ
ext
dλ
|Ψλ〉 =

∫ 1

0
dλ 〈Ψλ|

d
[∫
d3rvλext(r)n̂(r)

]
dλ

|Ψλ〉

=
∫
d3r n(r)

∫ 1

0
dλ

dvλext(r)
dλ

=
∫
d3r n(r)

[
vλ=1

ext (r)− vλ=0
ext (r)

]
. (1.20)

It should be noticed that Eλ=0
0 = Es is the ground-state energy of the KS system,

vλ=0
ext = vs is the effective KS potential, vλ=1

ext = vext is the external potential for the fully
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interacting system, and Eλ=1
0 = E0 is the ground-state energy of the fully interacting

system. Using this information and inserting Eq. (1.20) in Eq. (1.19) we get

E0 = Es −
∫
d3r n(r)vs(r) +

∫
d3r n(r)vext(r) +

∫ 1

0
dλ 〈Ψλ|Ŵ |Ψλ〉

= Ts + Eext +
∫ 1

0
dλ 〈Ψλ|Ŵ |Ψλ〉, (1.21)

where we used the fact that Ts = Es−
∫
d3r n(r)vs(r). Now comparing Eq. (1.15) and

Eq. (1.21), we get

Exc[n] =
∫ 1

0
dλ 〈Ψλ|Ŵ |Ψλ〉 − EH[n]. (1.22)

This is the formal expression for the exchange-correlation energy. The contrbution of

the electron-electron repulsion is evident here while the kinetic component is hidden

in the integration over the parameter λ.

A physically appealing way to compare various approximations for Exc is to

examine the so-called exchange-correlation hole. It is related to the pair correlation

function defined as [47]

g(r, r′) = 1
n(r)n(r′)〈Ψ0|

∑
i 6=j

δ(r − ri)δ(r′ − rj)|Ψ0〉. (1.23)

The pair correlation function g(r, r′) is the normalized probability of finding an electron

at r while there is another electron at r′. Now if we represent the electron-electron

repulsion operator in the form

Ŵ = 1
2
∑
i 6=j

1
|ri − rj|

= 1
2

∫∫
d3rd3r′

∑
i 6=j

δ(r − ri)δ(r′ − rj)
|r − r′|

, (1.24)

the expectation value of this operator can be written as

〈Ψ0|Ŵ |Ψ0〉 = 1
2

∫∫
d3rd3r′

∑
i 6=j

〈Ψ0|δ(r − ri)δ(r′ − rj)|Ψ0〉
|r − r′|

(1.25)

= 1
2

∫∫
d3rd3r′

n(r)n(r′)g(r, r′)
|r − r′|

, (1.26)

where in the last equation we used the definition of the pair correlation function from

Eq. (1.23). Using the definition for the pair-correlation function given in Eq. (1.23)

12



and expectation value of the electron-electron repulsion operator given in Eq. (1.26)

we can write the exchange-correlation energy as

Exc[n] = 1
2

∫∫
d3rd3r′

∫ 1

0
dλ

n(r)n(r′)[gλ(r, r′)− 1]
|r − r′|

, (1.27)

where gλ(r, r′) is the pair-correlation function for the system in which electron-electron

interaction is scaled by λ. This expression can be written in terms of the average

exchange-correlation hole function. The (regular) exchange-correlation hole function

is defined as

nλxc(r, r′) = n(r′)[gλ(r, r′)− 1]. (1.28)

The average exchange-correlation hole function nxc(r, r′) of the system is defined as [48]

nxc(r, r′) =
∫ 1

0
dλ nλxc(r, r′) =

∫ 1

0
dλ n(r′)[gλ(r, r′)− 1]. (1.29)

This function represents the reduction in the probability of finding an electron at

r′ in the presence of another electron at r. This reduction occurs due to the Pauli

exclusion principle (this effect applies only to electrons of the same spin) and the

Coulomb repulsion [40]. The exchange-correlation energy can now be written in terms

of nxc(r, r′) as

Exc[n] = 1
2

∫∫
d3rd3r′

n(r)nxc(r, r′)
|r − r′|

. (1.30)

Thus, the exchange-correlation energy is the Coulomb interaction between the electron-

density and the exchange-correlation hole surrounding it. The exchange-correlation

hole satisfies a sum rule
∫
d3r′nxc(r, r′) = −1. It played a major role in the development

of DFT approximations. It was obvious for a long time that the way to improve the

LDA is to use an expansion in terms of density gradients. This gives the so-called

gradient-expansion approximation (GEA) [6, 5, 49] which, however, gives less accurate

energies than the LDA and violates some of the sum rules. This problem has been

cured by analyzing the exchange-correlation hole and introducing a cutoff to make

the hole more physical. The resulting approximations are called generalized gradient

approximations (GGAs) [50, 51].
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1.2 Symmetry-Adapted Perturbation Theory

In a cluster of atoms or molecules the intermolecular interactions are a few

orders of magnitude weaker than the intramolecular interactions. Therefore, inter-

molecular interactions can be treated through perturbation theory. The fermionic

nature of electrons requires using properly antisymmetrized wave functions for the sys-

tem. The perturbation theory which uses antisymmetric wave functions is known as

symmetry-adapted perturbation theory (SAPT) [1, 2, 3, 4]. The starting point for the

perturbation theory would be the solution of Schrödinger equation for monomers, but

except for very simple systems this equation cannot be solved exactly. Hence even

at the monomer level, we have to use some approximate method. Thus, perturbation

theory is an obvious choice for monomers as well, and SAPT becomes a double per-

turbation theory. This approach resolves intermolecular interactions into several terms

and provides physical insight into these components by associating each one with a

particular physical phenomenon. The Hamiltonian of the dimer is

Ĥ = F̂ + V̂ + Ŵ , (1.31)

where F̂ = F̂A + F̂B is the sum of Fock operators for the monomers, Ŵ = ŴA + ŴB

is the sum of Møller-Plesset fluctuation operators coming from the difference between

Fock operator of each monomer with the actual Hamiltonian of that monomer, and

V̂ is the intermonomer interaction operator which represents the Coulomb interaction

between particles of the two monomers.

The use of V̂ and Ŵ as perturbations leads to an expansion for interaction

energy Eint as

Eint =
∞∑
n=1

∞∑
j=0

(E(nj)
RS + E

(nj)
exch), (1.32)

where the superscripts n and j denote the orders in V̂ and Ŵ respectively. The

corrections E(nj)
RS are defined in the Rayleigh-Schrödinger perturbation theory, while
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E
(nj)
exch are called the exchange corrections and result from the antisymmetrization of

the dimer wave function. The second-order dispersion energy given by SAPT is [3]

E
(2)
disp =

∑
k 6=0

∑
l 6=0

|〈ΦA
0 ΦB

0 |V̂ |ΦA
k ΦB

l 〉|2

EA
0 + EB

0 − EA
k − EB

l

, (1.33)

where V̂ is intermonomer interaction operator and ΦX
i and EX

i are the exact wave func-

tion and energy for the ith state of monomer X. This second-order dispersion energy

fully includes the charge overlap effects, i.e., is valid for all intermonomer separations.

This definition shows that the dispersion energy is a pure intermolecular correlation ef-

fect. The second-order dispersion energy can be written in terms of the density-density

response function (called also the frequency-dependent density susceptibility (FDDS))

as [52, 34, 35]

E
(2)
disp = − 1

2π

∫ ∞
0

du
∫ ∫ ∫ ∫

dr1dr2dr
′
1dr

′
2
χA(r1, r

′
1, iu)χB(r2, r

′
2), iu

|r1 − r2||r′1 − r′2|
, (1.34)

where χA and χB are response functions (FDDS’s) of monomer A and B and u is the

imaginary frequency. The response functions are purely monomer properties. Thus,

the second-order dispersion energy has been expressed here in terms of monomer prop-

erties. Note that sometimes the symbol α is used instead of χ in this context, with

α(r, r′, iu) = −χ(r, r′, iu). Eq. (1.34) is often called the generalized Casimir-Polder

expression. The second-order dispersion energy can also be written as

E
(2)
disp = 〈Φ0|V |Φ(1)

disp〉, (1.35)

where |Φ0〉 = |ΦA
0 ΦB

0 〉 and Φ(1)
disp is the first-order dispersion wave function of the system,

given by

|Φ(1)
disp〉 =

∑
k 6=0,l 6=0

|ΦA
k ΦB

l 〉〈ΦA
k ΦB

l |V |ΦA
0 ΦB

0 〉
EA

0 + EB
0 − EA

k − EB
l

. (1.36)

The antisymmetrization of Φ(1)
disp gives the second-order exchange-dispersion energy

which can be written as

E
(2)
exch−disp = −〈Φ0|(V − V̄ )(P1 − P̄1)|Φ(1)

disp〉, (1.37)
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where V̄ = 〈Φ0|V |Φ0〉 and P̄1 = 〈Φ0|P1|Φ0〉 with the antisymmetrization limited to

single pair exchanges of electrons between the monomers denoted by P1.

It should be mentioned that CCSD(T) is a very accurate method for many

electron systems and captures all kinds of interactions, but it does not give explicit value

for dispersion interactions. Hence, we used CCSD(T) results as benchmark interaction

energy and SAPT results for benchmark dispersion energy.
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Chapter 2

DO SEMILOCAL DENSITY-FUNCTIONAL APPROXIMATIONS
RECOVER DISPERSION ENERGIES AT SMALL INTERMONOMER

SEPARATIONS?

The methods that add dispersion energies to interaction energies computed using

density functional theory (DFT), known as DFT+D methods, taper off the dispersion

energies at distances near van der Waals minima and smaller based on an assumption

that DFT starts to reproduce the dispersion energies there. We show that this assump-

tion is not correct as the alleged contribution behaves unphysically and originates to a

large extent from non-exchange-correlation terms. Thus, dispersion functions correct

DFT in this region for deficiencies unrelated to dispersion interactions.

In the standard Kohn-Sham (KS) implementation of density functional theory

(DFT), all electron correlation effects are included in the exchange-correlation energy.

The existing semilocal functionals fail to describe interactions which involve regions

separated by several angstroms or more due to problems with long-range correlations

of electronic motion [53]. The semilocal generalized gradient approximations (GGA’s)

cannot describe such correlations due to the limited range of the exchange-correlation

hole, of the order of 1 Å [18]. One can say that these methods are myopic with the

range of vision of about 1 Å. An important question is at what separations inter-region

correlation effects are (partly) reproduced by GGA’s. Since dispersion interactions

result from long-range electron correlations and can be precisely defined as functions

of intermolecular separations, R, these interactions provide an excellent case study to

answer this question.

As an example, consider the interaction energy of Ar2, shown in Fig. 2.1, cal-

culated using various DFT methods, as well as the Hartree-Fock (HF) method and
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Figure 2.1: Performance of various DFT methods for Ar2: B3LYP [54], SCAN [30],
TPSS [55], PBE0 [42, 56], PBE [42], rPW86-PBE [43, 42] as used in
Ref. [28], PW91 [57, 58, 59], revPBE-PW92 [60, 58] as used in Ref. [25],
and LDA in the Perdew-Wang parametrization [58]. CCSD(T), SAPT,
and HF interaction energies are also shown, as well as the dispersion
energy, Edispx. For details of calculations, see Appendix B.

symmetry-adapted perturbation theory (SAPT) [1, 2, 3, 4]. The benchmark interac-

tion energies are from the coupled cluster method with single, double, and noniterative

triple excitations [CCSD(T)]. We have also plotted the dispersion energy

Edispx = E
(2)
disp + E

(2)
exch−disp + E

(3)
disp + E

(3)
exch−disp, (2.1)

where E(i)
disp (E(i)

exch−disp) are the ith-order SAPT dispersion (exchange-dispersion) ener-

gies. These results, as well all other results here, were obtained with extrapolations to
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the complete basis set limit. All DFT methods included in Fig. 2.1 fail to recover the

interaction energy essentially at all separations, most prominently in the asymptotic

region where they decay too fast (exponentially rather than as an inverse power of R),

which clearly can be attributed to the missing dispersion energy. For R roughly in

the range 3-5 Å, most DFT interaction energies still differ dramatically from accurate

values, but in a few cases the predictions are reasonable. The latter is sometimes in-

terpreted as a partial recovery of the dispersion interactions [14, 15, 16, 17], although

the size of the exchange-correlation hole is still small compared to this range of R’s.

Finally, for R smaller than about 3 Å, DFT interaction energies start to agree with

the benchmark. However, this is mainly because Edispx becomes a small fraction of the

total interaction energy, only 12% in magnitude at R = 1.5 Å.

Most methods displayed in Fig. 2.1 can be brought to agreement with CCSD(T)

by adding a negative correction, which, at very large R, is simply the dispersion energy.

At shorter R, the dispersion energy has to be tapered, differently for each DFT method.

This observation led to a family of methods supplementing DFT interaction energies

by a “dispersion" correction referred to as DFT+D type methods [61, 14, 15, 62, 63, 16,

19, 17]. These methods became enormously popular and perform reasonably well, see,

e.g., Ref. [64] showing that some DFT+D methods reproduce benchmark interaction

energy curves with a median unsigned percentage error of only 4-5%. Only SAPT

based on DFT [SAPT(DFT)][36, 37] performed better, with an error of 2%.

In DFT+D, to taper the magnitude of dispersion energy in the region of van

der Waals (vdW) minimum and at smaller R, one uses switching functions fitted to

the total interaction energies computed using accurate wave function methods on a

set of dimers. They are called in literature “damping functions", but are substantially

different from the conventional damping functions used to account for the charge-

overlap effects neglected in the asymptotic expansions [65, 66, 67, 68, 3]. This is shown

in Fig. 2.2 on an example of a popular dispersion correction, called D3BJ [16, 19,

24]. The correction without switching is shown as D3(no-switching). The changes of

D3(no-switching) values due to switching are quite significant at all R. For example,
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Figure 2.2: The dispersion corrections D3BJ [multiplied by R6] for Ar2 corresponding
to various DFT functionals compared to E

(2)
disp + E

(2)
exch−disp and to the

dispersion energy from the asymptotic expansion, E(2)
disp,as. The latter

quantities were computed using SAPT(DFT) to be at the same level of
theory as D3, see Appendix B.

D3BJ(PBE) is reduced in magnitude by a factor of almost 2 at the vdW minimum,

RvdW = 3.76 Å, as compared to D3(no-switching). This reduction is strikingly different

from the physical damping of the asymptotic dispersion energy, E(2)
disp,as, as shown by

the ratio of this quantity to E(2)
disp amounting to about 1.06. The D3BJ switching is

also too large to account for the exchange-dispersion effects, included in the curve

E
(2)
disp + E

(2)
exch−disp. This curve defines an upper limit for the physical damping of the
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asymptotic expansion, the damping which accounts for the exchange and charge-overlap

effects and thus removes the singularities of 1/Rn terms. The significant additional

amount of damping displayed by the D3BJ curves is therefore unphysical. One may

notice that for R > 4 Å, several dispersion functions, in particular D3BJ(revPBE), are

“antidamped". This is an artifact of D3BJ, for explanations see Appendix B.

The standard explanation for the extent of switching off of asymptotic disper-

sion energies in DFT+D is that this has to be done to avoid double counting since

DFT methods start to recover dispersion effects at small R [14, 15, 16, 17], i.e., the

conjecture of such recovery is fundamental in the construction of DFT+D. It implicitly

assumes that errors of DFT result almost exclusively from the dispersion component

which is certainaly true for large R in dispersion-dominated dimers where the DFT

interaction energy is exponentially small. However, at smaller separations, the errors

not related to dispersion can be large. To demonstrate this behavior, we show in

Fig. 2.3 the ratio of interaction energies from different DFT methods to the CCSD(T)

interaction energies as well as the ratio Edispx/E
CCSD(T)
int for Ar–Li+. Surprisingly, all

DFT methods overestimate the magnitude of interaction energy by about 10-25% at

RvdW (2.4 Å) where the dispersion energy amounts to only 5% of ECCSD(T)
int . Thus, if

one accepts the hypothesis that DFT approximations recover a part of the dispersion

energy near RvdW, for Ar–Li+, they recover 200-500% of this quantity. This does not

appear reasonable and, therefore, the only option is to attribute these errors to the

dispersionless component of the DFT interaction energy. In Appendix B, similar re-

sults are shown for Ar-proton. Although there is no dispersion energy involved in this

case, DFT interaction energies have significant negative errors at almost all separations

included.

To further analyze the issue, let us divide the exact interaction energy into

the dispersion contribution and the remainder, which we will call the dispersionless

interaction energy

Edl = E
CCSD(T)
int − Edispx. (2.2)
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Figure 2.3: Ratio of DFT interaction energies and Edispx to CCSD(T) interaction
energy for the Ar− Li+ complex.

Edl does not contain any of the intermonomer electron correlation effects as these

are, by definition, included in Edispx. However, it still contains some intramonomer

correlation effects on interaction energies. Another quantity, Eextra, is defined as

Eextra = EDFT
int − Edl. (2.3)

Thus, Eextra represents the dispersion energy recovered by a given DFT functional, if

any, as well as errors of DFT approximations unrelated to dispersion energies. The

ratio Eextra/Edispx for Ar2 is plotted in Fig. 2.4. The following observations can be

made: (a) The ratio is tiny in the asymptotic region for all methods; (b) While there
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Figure 2.4: Comparison of Eextra/Edispx for Ar2.
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Figure 2.5: The ratios Eextra/Edispx, ∆Ex/Edispx, ∆Ec/Edispx, and ∆Exc/Edispx for
the argon dimer.

is a considerable spread in the values of this ratio near RvdW, the values are again

very close to each other for the shortest separations shown (except for HF, LDA and

dlDF [20]); (c) The ratio Eextra/Edispx reaches the value of 1 near R = 2 Å for most

methods, but does not remain constant and continues to increase further for shorter

separations (for the special case of SCAN, see Appendix B. Thus, all functionals give

Eextra larger in magnitude than Edispx at these R’s, which means these methods need a

positive “dispersion" correction in this region. This behavior is a strong indicator that

DFT approximations do not reproduce dispersion energies at the separations included

in Fig. 2.4. If the dispersion energies were reproduced for the right reasons, i.e., because

the exchange-correlation holes start to overlap, the behavior should be as shown in the
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inset of Fig. 2.4; (d) For B3LYP and revPBE-PW92, the ratio is negative in some

regions, which means that the corresponding correction should be larger than the true

dispersion energy; (e) Almost all DFT methods “recover" a significant portion of the

dispersion energy at separations somewhat larger than RvdW which is well beyond the

region where any overlap of exchange-correlation holes is possible; (f) An interesting

example is provided by the HF curve since, by definition, the HF method cannot give

any dispersion energy. Yet, EHF
int is not equal to Edl since the HF method also neglects

intramonomer correlation effects in interaction energies. One may wrongly think that

the HF method reproduces about 23% of the dispersion energy at 1.5 Å. Clearly, all

these findings indicate that Eextra given by the DFT methods included in Fig. 2.4 cannot

be considered to represent the dispersion energy. In contrast, Fig. 3 of Appendix B

shows that Eextra computed using wave-function methods is approximately constant

with R.

To get insights into the origin of Eextra, we plot in Fig. 2.5 the ratios Eextra/Edispx,

∆Ec/Edispx, ∆Ex/Edispx, and ∆Exc/Edispx = (∆Ex + ∆Ec)/Edispx, where ∆Ex (∆Ec)

is the contribution of the exchange (correlation) energy to the interaction energy and

is obtained by subtracting the sum of exchange (correlation) energies of monomers

from the dimer exchange (correlation) energy (exact exchange is not included in ∆Ex).

One may assume that if any component of DFT reproduces the dispersion energy, it

should be mainly ∆Ec, but ∆Ex can also contribute [69, 70]. Let us discuss these

ratios for the SCAN functional. The behavior of ∆Ec is reasonably physical as the

ratio ∆Ec/Edispx increases gradually with the decrease of R from zero to about 1 near

R = 2.5 Å (but then starts to decrease). However, ∆Ec/Edispx is in general different

from Eextra/Edispx by up to a factor of 2. Thus, effects other than correlation are

equally important. In contrast to ∆Ec/Edispx, ∆Ex/Edispx changes rapidly with R,

ranging from -1 to 3.5, the behavior clearly rooted in LDA. The negative sign for

separations somewhat larger than Rvdw, i.e., positive ∆Ex, means that the notion that

∆Ex could contribute to dispersion energy for such R is not true for SCAN as the

dispersion energy is, by definition, a negative quantity. Furthermore, in the region
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Figure 2.6: The ratios Eextra/Edispx for Ar–HF and (H2O)2.

where ∆Ex is positive, ∆Ec is almost zero, but Eextra/Edispx reaches values as high

as 0.5. This means that the non-exchange-correlation (non-xc) components of Eextra

“reproduce" dispersion. For other functionals in Fig. 2.5, the relations are generally

more chaotic and in particular ∆Ec/Edispx and Eextra/Edispx are much farther from

each other than for SCAN. We believe the important finding of this analysis is that

it always requires significant non-xc contributions to explain the difference between

∆Exc/Edispx and Eextra/Edispx. In Appendix B we present similar results for LRC-

ωPBEh [71] and ωB97 [72], range-separated hybrid functionals, as well as analyze the

non-xc contributions and the dependence on density.

Figure 2.6 shows Eextra/Edispx for Ar–HF and (H2O)2. The results for Ar–HF are
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very similar to Ar2, but significant differences are seen for the water dimer, especially

at large R. This is because at these R’s the interaction energy is dominated by the

electrostatic component and errors in this component (unavoidable since the dipole

moments given by the methods studied are a few percent different from the CCSD(T)

ones) could be several times larger than Edispx, as the latter quantity amounts to only

1% of Eint at R = 10 Å.

If semilocal DFT approximations do not recover Edispx in the range of R’s rele-

vant for intermolecular interactions, the excessive damping in the dispersion corrections

in DFT+D methods is unwarranted, in particular since one type of physical interac-

tion (long-range electron correlation) is used to fix errors in another type of interaction

(electrostatic, polarization and first-order exchange that do not involve long-range cor-

relations). One way to go around this problem is to add the physical dispersion energy

at all R’s to those DFT methods which give interaction energies close to Edl, such

as revPBE-LDA or rPW86-PBE. These functionals were paired with nonlocal density

functionals in Refs. [25] and [28], respectively. One may mention here that the exchange

functional rPW86 was parametrized in Ref. [43] to give interaction energies similar to

the HF ones, in order to be applied with nonlocal density functionals. The fact that

nonlocal functionals typically do not include excessive damping supports our thesis

that such damping should be avoided. Another nearly dispersionless functional is the

APF functional of Ref. [73]. Possibly the best choice is to use DFT methods optimized

on Edl, such as dlDF [20], since this part of the interaction energy contains physical

components not involving long-range electron correlations, so that a semilocal DFT

should be able to accurately recover Edl for good physical reasons. The observations

made in the present work may guide development of future DFT+D methods as well

as of nonlocal functionals.

In conclusion, we have shown that the claim that semilocal DFTmethods recover

a significant portion of dispersion energies at separations of vdW minima cannot be

defended. For dispersion-dominated dimers, numerical results might suggest otherwise

since Eextra changes from zero at R→∞ to a value close to Edispx at some R somewhat
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smaller thanRvdW. We show, however, that Eextra does not have physical characteristics

expected of dispersion energy. A major failure is that after becoming equal to Edispx,

Eextra continues to increase in magnitude as R decreases. Furthermore, Eextra originates

only in a small part from ∆Ec, whereas the major contributions come from ∆Ex and

the non-xc components of the functionals. The non-xc terms should not reproduce

dispersion energies (or any correlation effects), so this behavior is unphysical. We also

demonstrate that DFT gives poor interaction energies even for systems with no or very

small dispersion interactions such as Ar–proton and Ar–Li+. These observations show

that DFT approximations have severe accuracy problems other than their inability to

recover dispersion energies. Thus, our final conclusion is that the success of DFT+D

methods is mainly due to cancellations of various errors in the exchange and non-xc

components by the dispersion functions, i.e., the results are right mostly for wrong

reasons.
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Chapter 3

DISPERSION ENERGY FROM LOCAL POLARIZABILITY DENSITY

A simple functional for calculating dispersion energies is proposed. Compared

with similar formulas used earlier, we introduced a regularization to remove its singu-

larities and used a dynamic polarizability density similar to those in the recent so-called

van der Waals density functionals. The performance of the new functional is tested on

a set of representative dimers. It is found that it is significantly more accurate than

the most recent van der Waals density functional.

Density functional theory (DFT) is the most popular method for studying the

electronic properties of matter due to its reasonable accuracy relative to computational

costs. The exact form of a term in the DFT energy called the exchange-correlation

energy is unknown, and a large number of approximations to this term have been

constructed, in particular, the local density approximations (LDA) [6, 5, 58] and the

semilocal generalized-gradient approximations (GGA) [41, 74, 13]. All local or semilo-

cal approximations are incapable of describing long-range correlations of electron mo-

tions and hence fail to capture dispersion interactions [53, 75, 76, 77]. The van der

Waals density functional (vdW-DF) [25, 26] was designed to overcome this problem

and account for the nonlocal electron correlation. It uses the plasmon-pole model of

Lundqvist [78] to build an approximate response function that can describe long-range

collective behavior of an electronic system and therefore describe dispersion interac-

tions.

An alternative approach is to start from the generalized Casimir-Polder formula
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for the second-order dispersion energy [52, 34, 35]

E
(2)
disp = −

∫ ∞
0

du

2π

∫∫∫∫
d3r1d

3r2d
3r3d

3r4

×χA(r1, r2, iu)χB(r3, r4, iu)w(r14)w(r23), (3.1)

where w(rij) = 1/rij = 1/|ri−rj| is the inverse of the interelectronic distance and χX ,

X = A,B is the density-density response function of system X at imaginary frequency

iu. This response function can be written in terms of the polarizability-density tensor

αijX(r1, r2, iu) [79, 80]

χX(r1, r2, iu) = −
3∑

i,j=1

∂2

∂x1 i ∂x2 j
αijX(r1, r2, iu), (3.2)

where xki are the components of rk. If one assumes that αijX can be approximated by

a diagonal and local quantity,

αijX(r1, r2, iu) = δij αX(r1, iu) δ(r1 − r2), (3.3)

where αX(r1, iu) is called the local polarizability density, Eq. (3.1) becomes

E
(2)
disp =− 3

π

∫ ∞
0

du
∫∫

d3r1d
3r2

× αA(r1, iu)αB(r2, iu)
r6

12
. (3.4)

This expression is singular if αA and αB overlap, which shows how drastic the ap-

proximation of Eq. (3.3) is. Nevertheless, this expression was proposed by Anderson,

Langreth, and Lundqvist (ALL) [31] and, independently, by Dobson and Dinte [32]. In

applications of Eq. (3.4), one had to assume that αA and αB do not overlap, which is

a reasonable assumption only for very large intermonomer separations.

To eliminate the singularity, we introduce a damping function in the integral

(3.4)

EDADE
disp = − 3

π

∫ ∞
0

du
∫∫

d3r1d
3r2 f8(β(r12), r12)

× αA(r1, iu)αB(r2, iu)
r6

12
, (3.5)
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where f(β, r12) is a generalized Tang-Toennies damping function [66], f8(β, x) = 1 −

e−βx
∑8
i=0

(βx)i
i! , with the short-range behavior limx→0 f8(β, x)/(βx)6 = (βx)3/9! This

function removes the singularities and damps the energy at short separations. We call

the resulting quantity the damped asymptotic dispersion energy (DADE).

The polarizability density is related to the so-called polarization S-function used

in van der Waals density functionals: α(r1, iu) = 1/4π
∫
d3r2 S(r1, r2, iu) [81]. The

formula for the S-function assumed in Ref. [25] leads to the following expression for

the local polarizability density [82, 83]:

α(r, iu) = n(r)
ω2

0(r) + u2 , (3.6)

where n(r) is the electron density and ω0(r) is a local excitation frequency. This

frequency was assumed in Ref. [25] to be of the form

ω0(r) = 9
8π

kF(r)
1−Zab9

(
|∇n(r)|

2kF(r)n(r)

)2


− 4π
3 εLDA

c (r)
2

, (3.7)

where kF(r) = [3π2n(r)]1/3 is the length of the Fermi wave vector, εLDA
c (r) is the LDA

correlation energy density, and Zab is a parameter which was interpreted in Ref. [25]

as originating from screened exchange. The excitation frequency ω0 is a special value

of a more general function ωq(r) defined in Ref. [25]: ω0(r) = ωq(r)
∣∣∣
q=0

. The choice

of ω0(r) given by Eq. (3.7) ensures that the polarizability density decays like n(r)7/3,

which leads to finite static polarizabilities and avoids nonphysical contribution from

low density regions present in ALL. Using α(r, iu) given by Eq. (3.6) in Eq. (3.5) and

integrating over the frequency, we get

EDADE
disp = −3

2

∫∫
d3r1d

3r2

× f8(β(r12), r12) nA(r1)nB(r2)
ωA0 (r1)ωB0 (r2) [ωA0 (r1) + ωB0 (r2)] r6

12
. (3.8)

Thus, we end up with an expression for the dispersion energy which requires only a six-

dimensional integration as compared to the thirteen-dimensional integration involved
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in Eq. (3.1). The parameter Zab has been chosen to have a value between those used in

vdW-DF1 [25] and vdW-DF2 [26], i.e., Zab = −1.1972. The function β(r12) has been

chosen of the form β(r12) = β0 +β1e
−β2r2

12 , where β0 = 1.70, β1 = 1.90, and β2 = β0/10.

The values of Zab and βi were roughly adjusted to achieve the best agreement with

dispersion energies from symmetry-adapted perturbation theory (SAPT) based on DFT

description of monomers [SAPT(DFT)] [34, 35, 36, 37] for the argon dimer. These

choices are universal, i.e., do not depend on the interacting systems. Notice that the

non-empirical SCAN functional [30] also uses Ar2 data [84] to fit its parameters. Thus,

our approach is non-empirical in this sense.

To perform the integration over r1 and r2 in Eq. (3.8), we rewrite this equation

as

EDADE
disp =− 3

2

∫∫
d3r1 d

3r2 F (r1, r2) (3.9)

and use Becke’s atomic partitioning scheme [85] to numerically evaluate the integral

using grids centered on atoms

EDADE
disp = −3

2
∑
a∈A

∑
b∈B

∑
i,j

∆3rai ∆3rbj

× W a(rai )W b(rbj)F (rai , rbj), (3.10)

where W c is Becke’s atomic weight for atom c and ∆3rci is the volume of the grid cell

at the grid point rci . This point is defined as rci = Rc + ri, where Rc is the position

of atom c and ri belongs to the grid centered at Rc. The integration grid for electron

1(2) can be restricted to the atoms of molecule A(B) since the the density nA(nB) in

Eq. (3.8) is well represented on such a grid. The spatial integration is performed using

the Euler-Maclaurin [86] radial grid and the Lebedev [87] angular grid with 75 and 302

points, respectively.

To test the performance of our method, we chose the dimers from a recent

blind test of DFT-based methods for calculation of interaction energies [33] and, in

addition, the argon dimer and the Ar-HF dimer. The benchmark dispersion energy

Edispx is the sum of the second order dispersion and exchange-dispersion energies from
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Figure 3.1: Ratios of the approximate dispersion energies from DADE and vdW-
DF2 to SAPT(DFT) benchmarks for ethylenedinitramine dimer (top-
left), methylformate dimer (top-right), nitrobenzene dimer (bottom-left),
and benzene-methane (bottom-right). The vertical lines indicate the sep-
arations of the van der Waals minima. The inserted molecular graphs
have white, gray, blue, and red spheres representing hydrogen, carbon,
nitrogen, and oxygen atoms, respectively.
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Table 3.1: MAPEs of dispersion energies for the investigated dimers with respect to
the benchmark dispersion energies Edispx.

DADE disp(vdW-DF2)
Argon dimer 9.55 26.98
Ar-HF 6.86 23.56
Water dimer 15.03 29.40
Ethanol dimer 6.77 25.96
Nitromethane dimer 10.52 26.31
Methylformate dimer 6.85 29.20
Benzene-methane 6.58 28.75
Benzene-water 9.06 17.14
Imidazole dimer 24.89 42.10
Nitrobenzene dimer 7.82 23.05
FOX-7 dimer 27.68 42.08
EDNA dimer 11.55 30.14
average of MAPEs 11.93 28.72

SAPT(DFT). The benchmark interaction energies are CCSD(T) values in the complete

basis set (CBS) limit. The SAPT(DFT) and CCSD(T) calculations for the argon

dimer and Ar-HF were performed in the present work using the same methodology

as in Ref. [33] and the ORCA codes [88], while for all the remaining systems the

values were taken from Ref. [33]. Note that while CCSD(T) benchmarks are at CBS

limits, SAPT(DFT) quantities are computed in an augmented triple-zeta quality basis

set with midbond functions [33]. The comparisons are done at various separations of

monomers, from the repulsive wall to the asymptotic region, rather than only at the

equilibrium separations. The systems taken from Ref. [33] have 80 data points while

for the Ar2 and Ar-HF we used 20 more points making the total number of points 100.

The comparison of the interaction energies is done, as in Ref. [33], by calculating the

median values for the absolute percentage errors (MedAPE) so that the large relative

differences with the benchmarks close to the points where the interaction energy curves

go through zero do not affect the whole picture. The dispersion energy does not have

this problem, so we compare the mean absolute percentage errors (MAPE) in this case.

The calculations for DADE and vdW-DF2 are done using a code written by us which is
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available at http://www.physics.udel.edu/∼szalewic/DADE-1.0. The coefficients

of the molecular orbitals were calculated using ORCA [88] with PBE [13] functional

and the aug-cc-pVTZ [89, 90, 91] basis sets. The dispersion energy given by the vdW-

DF2 method, disp(vdW-DF2), is calculated by subtracting the nonlocal correlation

energies of the monomers from the nonlocal correlation energy of the dimer. These

energies are counterpoise corrected as all calculations are done in the same basis as for

the dimer [92].

Table 3.1 shows that the MAPE values given by DADE relative to Edispx are sig-

nificantly better than those of disp(vdW-DF2) for all systems, and the average MAPE

is 12% for DADE while it is 29% for disp(vdW-DF2). Figure 3.1 compares the per-

formance of DADE and disp(vdW-DF2) by plotting their ratio to Edispx as function of

the separations R for the EDNA dimer, methylformate dimer, nitrobenzene dimer, and

benzene-methan. DADE outperforms disp(vdW-DF2) at almost all Rs, in particular

at small Rs and in the asymptotic region. The better performance in the asymp-

totic region means improved C6 dispersion coefficients. Also for the remaining dimers,

DADE agrees better with Edispx than disp(vdW-DF2) at a majority of R values, see

Appendix C and Appendix D. It is remarkable that DADE performs so well since it

is an extension of an asymptotic method while disp(vdW-DF2) is formulated for an

arbitrary separation.

We next calculated the interaction energies by adding the dispersion energies

from DADE and disp(vdW-DF2) to the interaction energies given by the dispersionless

density functional (dlDF) [20]. We denote the resulting energies as dlDF+DADE and

dlDF+disp(vdW-DF2). Since DADE recovers the true dispersion energy, it can be

added only to interaction energies computed by density functionals such as dlDF which

were optimized to exclude dispersion interactions [20]. The dlDF functional should also

be a reasonable choice for disp(vdW-DF2) as the authors of Refs. [25] and [26] paired

vdW-DF nonlocal terms with functionals which give interaction energies close to the HF

ones which are dispersionless. The pairing of DFT functionals with dispersion energies
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Table 3.2: MedAPEs of interaction energies for the investigated dimers with respect
to the benchmark interaction energies.

dlDF+DADE dlDF+disp(vdW-DF2)
Argon dimer 11.99 29.52
Ar-HF 8.16 21.58
Water dimer 1.47 1.51
Ethanol dimer 5.74 14.52
Nitromethane dimer 11.25 8.68
Methylformate dimer 1.08 10.54
Benzene-methane 8.15 35.61
Benzene-water 3.86 10.31
Imidazole dimer 4.79 5.67
Nitrobenzene dimer 13.25 3.82
FOX-7 dimer 7.98 7.03
EDNA dimer 6.79 1.38
average of MedAPEs 7.04 12.51

has been recently discussed by the present authors in Ref. [77]. The dlDF energies for

the argon dimer and Ar-HF were calculated using the Gaussian [93] package, while for

all the remaining systems the dlDF values were taken from Ref. [33]. These energies

are counterpoise corrected [92].

Table 3.2 shows that for the majority of systems MedAPEs given by dlDF+DADE

are better than those of dlDF+disp(vdW-DF2). The average of MedAPEs for dlDF+DADE,

7.0%, is smaller than for dlDF+disp(vdW-DF2), 12.5%, by a factor of 1.78, while the

dispersion energies from DADE have the average of MAPEs 2.4 times smaller than that

of disp(vdW-DF2). The dlDF+DADE also has relatively narrow spread of MedAPEs:

1.1% to 13.3%, whereas for dlDF+disp(vdW-DF2) the spread is 1.4% to 35.6%. One

should note that the set of systems in the blind test of Ref. [33] was intentionally

chosen to be a blend of systems encountered in typical investigations of intermolecular

forces. Therefore, for all dimers the dispersion effects are relatively small at large R,

except for the benzene-methane. For this system, the MedAPE of dlDF+DADE is

4.4 times smaller than that of dlDF+disp(vdW-DF2). Similarly large ratios are found

for Ar2 and Ar–HF which are dispersion dominated at large R. Thus, for systems of
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this kind improvements of accuracy resulting from using DADE should be particularly

large. In Ref. [33], dlDF was paired with an accurate atom-atom dispersion functions

from Ref. [94] and disp(vdW-DF2) was paired with the rPW86 exchange functional

[43] and the P86 correlation functional [95]. The averages of MedAPEs from Ref. [33]

(denoted as MUPEs there), on the set not including Ar2 and Ar-HF, were 6.56% and

11.96%, respectively, very close to what we get in Table II for the methods used by

us (for the 10 dimers from Ref. [33] we get 6.44% and 9.91%,respectively). Note that

Ref. [33] also used MedAPEs defined as the median absolute percentage errors for the

whole set of data and such errors tend to be smaller than averages of MedAPEs. We

have not used the former since they tend to place too much weight on the performence

in the asymptotic region.

In summary, we present a new nonlocal correlation energy functional that pro-

vides the best intermolecular interaction energies for the set of benchmarks used among

the nonempirical nonlocal functionals. The DADE method for calculations of disper-

sion energies has the important advantage of resulting from a straightforward deriva-

tion. This is in contrast with the vdW-DF2 method which uses many approximations

that are difficult to justify. In fact, as Dobson and Gould [96] wrote “a complete and

self-contained derivation of this functional seems to be lacking in the literature". Since

the straightforward DADE approach performs so much better than vdW-DF, this may

indicate that some of these approximations are not working well. DADE is also com-

putationally at least as effective as vdW-DF2. Both functionals can be considered

nonempirical in the sense that no fitting to a large number of benchmarks was in-

volved. In both functionals, the parameter Zab was adjusted, in DADE the parameters

of the function βi were adjusted as well. DADE gives significantly better dispersion

energies and, paired with dlDF, interaction energies than vdW-DF2, the most widely

used nonlocal density functional. Thus, the use of DADE should significantly improve

the accuracy of nonlocal functional approaches.
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Chapter 4

EVALUATION OF METHODS FOR OBTAINING DISPERSION
ENERGIES USED IN DENSITY-FUNCTIONAL CALCULATIONS OF

INTERMOLECULAR INTERACTIONS

Since semilocal density-functional theory (DFT) approximations cannot recover

the dispersion components of interaction energies at intermonomer separations near

van der Waals minima and larger, dispersion energies computed by methods other

than semilocal DFT’s are often added to DFT interaction energies. Such dispersion

energies are assessed here by comparing them to accurate dispersion energies obtained

from symmetry-adapted perturbation theory on a set of molecular dimers, including

variations of intermonomer separations. The evaluated methods include nonlocal DFT

correlation functionals, parametrized atom-atom dispersion functions originating from

the asymptotic expansion, and methods based on models of atoms in molecules. In

contrast to many published comparisons of such methods focused on total interaction

energies, our comparisons evaluate the performance on the actual physical quantity for

which these methods have been designed. This performance is discussed in the context

of the physical soundness of the methods. Our results show that atom-atom functions

reproduce dispersion energies best, with a mean absolute percentage error of the order

of 10%. The nonlocal correlation functionals perform much worse, with errors in the

range 24% to 49%, far from what could be called quantitative reproduction of this

quantity. The only exception is the recently proposed damped asymptotic dispersion

energy functional which gave an error of 12%. The atoms-in-molecule methods also

gave large errors, above 29%.
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4.1 Introduction

Density functional theory (DFT) is the most widely used computational tool

in studies of matter. The exact DFT should be able to describe all components of

intermolecular interaction energies including dispersion interactions. However, only

approximate DFT approaches are available in practice, such as the local density ap-

proximations (LDA) [6, 5, 10, 58], the generalized-gradient approximations (GGA) [50,

41, 85, 57, 42], and meta-GGA’s [55, 30]. A deficiency of all these methods is their in-

ability to capture long-range correlation effects [53], which originates from the limited

spatial extent, of the order of 1 Å, of the exchange-correlation hole [18] (one may say

that these methods are myopic). Since the dispersion energies result from long-range

correlations of motions of electrons in one monomer with those in the interacting part-

ner and since physically relevant separations between regions of interacting molecules

that are closest to each other are of the order of a couple of angstroms or larger, such

semilocal DFT methods cannot describe this component of intermolecular interaction

energies. Only for atom-atom interactions at very short separations, not relevant for

most physical applications, the electrons will eventually be close enough for DFT to

capture a part of dispersion energy (for molecules, there will always be regions too far

apart). These issues have been recently discussed by the present authors in Ref. [77].

The dispersion energy was identified for the first time in a 1930 paper of Eisen-

schitz and London [97] and is sometimes called the London dispersion energy. This

quantity is a component of symmetry-adapted perturbation theory (SAPT) [3, 98]. The

first calculations of dispersion energies for many-electron monomers at arbitrary separa-

tions appeared in the 1970s [99, 100, 101, 1]. While initial work computed dispersion en-

ergies for monomers described by the Hartree-Fock (HF) approximation [99, 100, 101],

later developments [1, 2, 102, 103, 104] included gradually higher and higher levels of

electron correlation. Another method of computing dispersion energies is to use a DFT

description of monomers, a part of SAPT(DFT) approach [105, 34, 35, 106, 36, 37, 107],

a method that gives dispersion energies nearly as accurate as those of SAPT at the

highest levels of intramonomer electron correlation and at the same time is much less
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expensive. Antisymmetrization of the dispersion wave functions produces an addi-

tional, short-range dispersion component called the exchange-dispersion energy. This

contribution is also not recovered by semilocal DFT approximations, so it has to be

included in the correction to the semilocal DFT interaction energies.

A large number of methods going beyond semilocal DFT have been developed

to amend semilocal DFT interaction energies for the missing dispersion effects. The

dispersion energies computed using such methods are then simply added to semilocal

DFT interaction energies. Thus, all these methods can be labeled as DFT plus dis-

persion (DFT+D) methods, although this term is usually applied only to the methods

that use parametrized atom-atom dispersion functions originating from the asymptotic

expansion. The most accurate DFT+D approach would be to use SAPT dispersion

plus exchange-dispersion energies. While this method was applied occasionally [108],

it has not become a mainstream DFT+D method due to the costs of calculations of

SAPT dispersion energies compared to simple atom-atom functions. In fact, these

costs are not unreasonable: in the density-fitting version [107, 109, 108], the method

scales with system size as N4 for pure functionals and as N5 for hybrid functionals,

i.e., one power of N worse than the corresponding calculations of DFT interaction

energies. Furthermore, since the dispersion energies computed with pure functionals

are very close to those computed with hybrid ones, one can use a hybrid functional to

compute DFT interaction energies (which usually gives more accurate results) and a

pure functional to compute dispersion energies. The exchange-dispersion energy which

should also be included scales as N5, but its magnitude is relatively small compared

to the magnitude of the dispersion energy, so it could possibly be neglected. However,

most of the methods computing the “+D" correction that will be discussed below are

much less expensive than DFT, often of negligible costs, which is one of the reasons

for their popularity.

Physically the most appealing DFT+D approaches are those that compute dis-

persion energies using nonlocal correlation density functionals [25, 26, 27, 28, 29]. In

fact, most of such methods can be used self-consistently [110], i.e., the derivative of
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the nonlocal functional can be included in the Kohn-Sham (KS) equations. However,

the self-consistency effects were found to be small [111] so that this method is often

applied in the DFT+D fashion.

The most popular DFT+D approach uses dispersion functions of the form orig-

inating from the ∑Cn/R
n asymptotic expansion of dispersion energies [3, 112], where

R is the separation between monomers and Cn are van der Waals (vdW) constants.

This approach uses a distributed form of such an expansion [113, 114, 112, 115, 116],

i.e., a sum of atom-atom interactions. The atom-atom Cab
n parameters are either fitted

to empirical van der Waals constants [15, 62, 63] or computed using time-dependent

DFT (TD-DFT) [16, 117]. The coefficients can also be fitted to SAPT dispersion plus

exchange-dispersion energies computed on a training set of dimers [20, 21]. In methods

of this type, the dispersion function for any dimer is defined by a set of parameters

(the actual atom-atom Cab
n constants are usually obtained using combination rules from

atom-specific constants). The parameters can be partly dependent on environment by

fitting a reference set of parameters for an atom in several chemical environments

and interpolating between these values for a specific environment of this atom. The

DFT+D methods of this type are also popular in condensed phase calculations [118].

The exchange-hole dipole moment (XDM) method [23, 24] was derived using

heuristic arguments to express dispersion energies via interactions of exchange holes

represented by their dipole moments. An alternative and more rigorous derivation

was given by Ángyán [119]. Another method, called many-body dispersion (MBD)

approach [22, 17], approximates atom-atom dispersion interactions by interactions be-

tween quantum harmonic oscillators centered on each atom. The atomic oscillators are

parametrized to reproduce empirical van der Waals constants. An important feature

of both methods is that dispersion energies depend on the density assigned to each

atom, thus, are seamlessly depending on the environment. Robust condensed matter

implementations of MBD were developed in Refs. [120, 121, 122, 123].

Several of the methods discussed above include multiplicative factors that switch

off dispersion energies at shorter R. These factors are parametrized to make DFT+D

41



total interaction energies agree as close as possible with benchmarks obtained using

wave function methods. This switching off is much stronger than the physical damping

of asymptotic dispersion energies accounting for the overlap effects (in this way remov-

ing the singularity of the asymptotic expansion for R → 0). The excess damping is

often justified by the need to avoid double counting as semilocal DFTs presumably start

to partially recover dispersion energies at the region of van der Waals minimum and for

shorter separations. In Ref. [77], the validity of this assumption has been questioned

by showing that although some semilocal DFT methods may appear as if they behave

this way, this behaviour originates to a large extent from DFT components which are

not supposed to describe correlation effects, i.e., from the non-exchange-correlation

components. All but one of these components originate from the one-electron parts

of the Hamiltonian, which by definition are unrelated to correlation energies while the

two-electron Hartree term is a part of the Hartree-Fock theory, also by definition not

including correlation energies. The methods that apply the excessive damping are not

expected to reproduce dispersion energies at the van der Waals minima and for shorter

R. Therefore, in the present work, we tried to remove this damping from all methods

that use it, but in some cases we were not able to achieve this for technical reasons.

An important question is what is the most appropriate benchmark to compare

with for each approximate dispersion energy method. The goal for all such methods is

to reproduce the complete dispersion energy (with charge-overlap effects, i.e., obtained

without use of the multipole expansion of the intermolecular interaction operator V )

plus the exchange-dispersion energy. However, atom-atom functions with no damping

should agree most closely with the asymptotic dispersion energies. Then, some of the

methods, based on their derivation, include charge-overlap effects but do not include

exchange effects and these methods should be compared with dispersion energies only.

We attempted to finesse these subtleties in our comparisons.

One may note here that the excessive damping can be avoided if the DFT

functional chosen in a DFT+D is selected to reproduce well the dispersionless part of
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the interactions energy, i.e., the interaction energy with the dispersion and exchange-

dispersion components removed. This is an appealing approach from physics point of

view since semilocal DFT includes all the necessary mechanisms to recover this part

of the interaction energies. Several approaches of this type have been proposed in

literature [20, 43, 73]. In particular, the dispersionless density functional (dlDF) of

Ref. [20] was optimized to recover benchmark dispersionless interaction energies.

We have examined virtually all popular methods which can be classified as

belonging to the DFT+D class. There are also methods which use DFT in combina-

tion with some wave function approach, for example, mixing a range-separated hybrid

(RSH) DFT with the second-order many-body perturbation correction based on the

Møller-Plesset partition of the Hamiltonian (MP2), leading to the RSH-MP2 method

of Refs. [124, 125, 126]. Another option is to combine an RSH functional with the

random-phase approximation (RPA) method for the correlation energy [127, 128, 129,

130, 131, 132, 133]. In such methods, it is not possible to isolate the dispersion en-

ergies from other physical components, therefore we could not include them in our

comparisons.

The methods for computation of dispersion energies were evaluated using the set

of dimers from Ref. [33] plus the Ar2 and Ar-HF dimers. For each dimer, several values

of R were included, sampling regions from repulsive walls to the asymptotic separations.

The test set is diverse in terms of dominant interaction energy components and includes

mostly dimers that have not been used in fitting DFT+D methods.

While a large number of papers evaluating the performance of DFT+D methods

have been published, among them Ref. [33] and a very recent one of Ref. [134], all such

evaluations made the comparisons at the level of interaction energies. In this way,

errors coming from the DFT and the ‘+D’ components are not distinguishable. Our

comparison appears to be the first one that applies directly to dispersion energies.
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4.2 Benchmark dispersion energies

The main component of the dispersion energy appears in SAPT at the second

order in V . The contributions of higher orders are substantially smaller [2, 4, 135]. One

should also point out that beyond the second order, SAPT includes mixed, induction-

dispersion terms [4, 135]. In Ref. [77], the dispersion energy was represented by the

sum of the following terms

Edispx = E
(20)
disp + E

(21)
disp + E

(22)
disp + E

(20)
exch−disp + E

(30)
disp + E

(30)
exch−disp, (4.1)

where the first superscript denotes the order with respect to intermolecular interaction

operator V and the second one with respect to the intramolecular correlation operator

(Møller-Plesset fluctuation potential) W . An analysis performed in Ref. [77] shows

that the uncertainty of Edispx resulting from the truncation of perturbation expansion

in powers of V and W is only of the order of 1%.

In the present work, we could not use the expression (B.2) since some of the

dimers in our benchmark set were so large that calculations would be too time con-

suming. Therefore, we considered only the terms of second-order in V and applied

SAPT(DFT) [105, 34, 35, 106, 36, 37, 107]. This approach uses the so-called gen-

eralized Casimir-Polder expression for the second-order dispersion energy in terms of

density-density response functions [called also frequency-dependent density suscepti-

bilites (FDDSs)] [34, 35]

E
(2)
disp = − 1

2π

∫ ∞
0

du
∫∫∫∫

d3rd3r′d3r′′d3r′′′
χa(r, r′, iu)χb(r′′, r′′′, iu)
|r − r′′||r′ − r′′′|

, (4.2)

where χa and χb are the FDDSs of monomers and u is the frequency. Note that this

expression is exact if exact FDDSs are used. In SAPT(DFT), FDDSs are obtained

from the TD-DFT level of theory and are sometimes called coupled KS (CKS) FDDSs.

To the dispersion energy computed in this way, we add exchange-dispersion energies

computed from CKS amplitudes (i.e., we do not use scaled uncoupled KS amplitudes).

Thus, our benchmark energy is

Edispx = E
(2)
disp(CKS) + E

(2)
exch−disp(CKS). (4.3)
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The values of Edispx defined by this equation have been taken from the calculations in

Taylor et al. [33], except for the Ar2 and Ar-HF dimers for which the values were taken

from Ref. [29].

4.3 Nonlocal Correlation Functionals

The physically most appealing way to cure problems of semilocal DFT ap-

proximations is to develop nonlocal correlation functionals and several such methods

have been proposed. These methods are usually derived from the adiabatic-connection

fluctuation-dissipation (ACFD) theorem [44, 45, 9]. This theorem expresses the cor-

relation energy Ec of a system (note that this correlation energy is different from

the one defined as the difference of exact and Hartree-Fock energies) in terms of the

density-density response functions of the interacting and noniteracting systems. This

relation is exact and, in contrast to the usual way of approximating Ec in terms of

ground-state density and its gradient, uses the complete orbital space, i.e., includes all

virtual orbitals. Thus, one may expect that approximations derived from ACFD will

not suffer the shortsightedness of semilocal DFTs. However, since methods including

virtual orbitals are significantly more time consuming than DFT, the FDDSs have to

be severely approximated to produce nonlocal functionals applicable to large systems.

The exact FDDS at real frequencies can be expressed by a spectral expansion with

poles at the values of excitation energies of a system. In the theory of homogeneous

electron gas (HEG), it is possible to approximate the response function with a single-

pole model [136, 137, 138], often called the plasmon model since it is used to describe

collective excitations of HEG called plasmons. In the 1990s, this model was applied for

the first time to systems with dispersion interactions [139, 31, 140, 141, 32, 142, 143].

These functionals require a physical cutoff in the resulting integrals to give reasonable

results and were applicable only for large intermolecular separations. In 2004, Dion

et al. [25] proposed a nonlocal functional, called the van der Waals density functional

(vdW-DF), which did not suffer from this problem. The essential quantity in this

method is the r-dependent pole frequency which was assumed to be a simple function
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depending also on the magnitude of the wave vector q

ωq(r) = q2

2

1− e−
4π
9

(
q

q0(r)

)2−1

. (4.4)

where

q0(r) = kF(r)
1− Zab

9

(
|∇ρ(r)|

2kF (r)ρ(r)

)2
− 4π

3 εLDA
c (r). (4.5)

The quantities appearing in Eq. (4.5) are the same as used in semilocal DFTs: ρ(r)

is the ground-state electron density, kF(r) = [3π2ρ(r)]1/3 is the magnitude of the

Fermi vector, and εLDA
c (r) is the correlation energy density in LDA. The value of the

parameter Zab was taken to be −0.8491 in the original version denoted as vdW-DF1 [25]

and −1.887 in the 2010 version denoted as vdW-DF2 [26]. Note that also the factor

4π/9 is a parameter of the method and has been chosen differently in Ref. [81] discussed

later on. The nonlocal correlation energy can be written in terms of ωq(r) as

Enl
c ≈

1
2

∫∫
d3rd3r′ ρ(r)Φ(r, r′)ρ(r′), (4.6)

with the so-called nonlocal correlation kernel Φ(r, r′) given by

Φ(r, r′) = 2
π2

∫ ∞
0

da
∫ ∞

0
db a2b2W (a, b)T (ν(a), ν(b), ν ′(a), ν ′(b)), (4.7)

where

T (w, x, y, z) = 1
2

 1
w + x

+ 1
y + z

 1
(w + y)(x+ z) + 1

(w + x)(y + z)

, (4.8)

W (a, b) =
(a2 + b2 − 3) sin a sin b− 3ab cos a cos b

+ a(3− b2) cos a sin b+ b(3− a2) sin a cos b
 2
a3b3 , (4.9)

and the auxiliary variables are ν(a) = ωq(r)|r − r′|2 and ν ′(a) = ωq(r′)|r − r′|2 with

q = a/|r − r′| and similarly for b. Thus, Enl
c is given entirely in terms of ground-state

densities and density gradients.
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Since the vdW-DF methods give contributions to the total energies, the contri-

butions to the interaction energies are computed by the supermolecular method, i.e.,

by subtracting the nonlocal energies of monomers from that of the dimer. We used here

and in all other cases the counterpoise correction, i.e., all these energies were computed

in the exactly the same basis set.

The vdW-DF nonlocal functionals were not fitted to any benchmark interac-

tion energies, although the change of the parameter Zab was partly made to improve

agreement with such benchmarks. Therefore, these functionals do not include exces-

sive damping discussed earlier and have to be paired with DFT functionals which are

dispersionless to a large extent. The functional vdW-DF1 was paired with revPBE-

PW92 [42, 60, 58], but in vdW-DF2 the revPBE [42, 60] exchange functional was

replaced by rPW86 [43, 41]. Later, several other choices have been made [144, 145,

146, 147]. Based on the derivation, vdW-DF functionals should recover the dispersion

energies with overlap, as well as exchange-dispersion energies. Thus, these methods

should be compared to Edispx.

Another method tested here is the damped asymptotic dispersion energy (DADE) [29]

approach. It modifies the dispersion energy expression of Anderson, Langreth, and

Lundqvist (ALL) [31] by including a damping function analogous to the Tang-Toennies

function [66]. In this way, the singularities present in the ALL method are avoided and

the expression can be applied at any separations. DADE uses the polarizability density

from vdW-DF, however, with a different value of Zab.

One more set of nonlocal correlation functionals was developed by Vydrov and

van Voorhis. In 2009, they proposed a simplified version of vdW-DF1 with changed

parameters and a simplified pole frequency, called vdW-DF-09 [81]. The parameters

were chosen to make the method perform better when paired with DFT functionals

that are far from dispersionless. In the same year, they introduced another functional,

called VV09 [27]. Its main feature was the removal of the wave vector dependence

in the pole frequency and a simplification of the expression for this quantity to the

form ω2
0(r) = C

∣∣∣∇ρ(r)
ρ(r)

∣∣∣4 + 4πρ(r)/3. The constant C was fitted to reproduce empirical
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C6 constants for a number of molecular dimers. A flaw in VV09 is the violation of

charge conservation (f-sum rule) [148]. In 2010, Vydrov and van Voorhis [28] proposed

a functional, referred to as VV10, with the kernel not derived from the ACFD theorem

but rather postulated directly in the form

ΦVV10(r, r′) = −3
2

1
g(r)g(r′) [g(r) + g(r′)] , (4.10)

where g(r) =
√
ω2

0(r) |r− r′|2 +κ(r). The term κ(r) = b k2
F(r)/(2πρ(r)) controls here

the short-range damping where b is a constant determined by fitting to benchmark

data of ab initio computed interaction energies for a number of dimers. The VV10

functional is more flexible and became more successful than its predecessor, but is

also significantly empirical. Since the fitting in the VV09 method did not involve

any R-dependent dimer data, this method should be compared to Edispx. VV10, in

contrast, used such data. However, there is no simple way to establish a value of the

parameter b which would correspond to only physical damping. However, since b was

fitted using VV10 paired with rPW86-PBE which is close to a dispersionless functional

the comparison of unmodified VV10 to Edispx should be adequate.

4.4 Asymptotics-based atom-atom dispersion functions

The simplest way to correct semilocal DFT results is the addition of asymptotic

dispersion energies, possibly damped to account for charge-overlap effects, to DFT

interaction energies, analogously to the so-called HFD method [149], known since 1975

(note that such an addition is completely rigorous in this case since HF interaction

energies by definition do not include any electron correlation effects). The DFT+D

idea of this type was first applied by Gianturco et al. [61] and later by Wu et al. [14] to

some specific systems. Wu and Yang [15] proposed a universal approach by constructing

atom-atom dispersion functions similar to those used in biomolecular force fields. In

2004, Grimme [62] used the same Cab
6 constants, but introduced damping functions

(switching off factors) with parameters fitted in such a way that DFT+D reproduces

as closely as possible benchmark interaction energies obtained using wave-function
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methods. As discussed earlier, such functions damp dispersion energies much stronger

than physical damping functions [77], but this excessive damping led to dramatically

improved predictions for interaction energies. Consecutive versions of this method were

published in Refs. [63, 16]. The latter dispersion function, denoted by D3, replaced

empirical van der Waals constants by the Cab
6 constants computed from the Casimir-

Polder expression using TD-DFT FDDSs. The Cab
8 and higher constants were then

computed from Cab
6 using approximate formulas [16]. The calculations were performed

for molecules involving a given atom in several chemical environments. Then for an

atom in a molecule of interest its coefficients are interpolated between these values

depending on the coordination number of this atom. A popular damping function

used with D3 is Becke-Johnson’s damping function (BJ) [19, 24] forming an approach

denoted as D3BJ. In 2016, Smith et al. [150] refitted BJ parameters to a larger training

set, resulting in a method denoted as D3MBJ.

The D3 energies are calculated for the whole dimer including interactions be-

tween atoms inside each monomer (as programmed in the D3 codes available at https:

//www.chemie.uni-bonn.de/pctc/mulliken-center/software/dft-d3/get-the

-current-version-of-dft-d3). Thus, the dispersion energies have to be calculated

using the supermolecular method, i.e., subtracting monomer values from the dimer

value. While one would expect that the interactions within monomers cancel exactly

during this subtraction, this is not the case since the coordination numbers are slightly

different in monomers and dimer calculations. We found that in some cases this led

to artifacts such as positive dispersion energies at large separations. Therefore, we

computed the D3BJ dispersion function from a “perturbational” expression

Edisp =−
∑

a∈A,b∈B

∑
n=6,8,10

sn
Cab
n

rnab +
[
fdamp(a1, a2, Rab

0 )
]n , (4.11)

where rab is the separation between atoms a and b and sn are overall scaling parameters.

Only n = 6 and 8 terms were used in our calculations. The function fdamp = a1R
ab
0 +a2,

where a1 and a2 are adjustable parameters and Rab
0 =

√
Cab

8 /C
ab
6 .
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As discussed earlier, the damping/scaling parameters have been fitted to a set

of ab initio interaction energies separately for each DFT method that the correction

will be paired with, which leads to excessive, unphysical damping (cf. Ref. [77]). In

fact, this unphysical damping is the reason for success of such DFT+D approaches

since the ‘+D’ functions cancel DFT interaction energy errors due to reasons other

than dispersion interactions.

As discussed in the Introduction, a solution of this somewhat unsatisfactory

situation is to use DFT methods which give interaction energies close to HF interaction

energies [43, 73]. Even better, one can develop a DFT method with parameters fitted to

benchmark interaction energies with dispersion energies subtracted, such as the dlDF

method of Ref. [20]. One can then add to dlDF interaction energies dispersion energies

developed by fitting an atom-atom expansion to Edispx from SAPT. Such a dispersion

function, Das, was developed in Ref. [20]. An improved function was developed in

Ref. [21]. In our comparisons, we used an extended version of the latter (version 2),

available at http://www.physics.udel.edu/∼szalewic/dldf/dispersion.

4.5 Exchange-hole dipole moment model

The XDM model was proposed by Becke and Johnson [23, 24] in 2005. The

original derivation was heuristic and used arguments based on induction (polariza-

tion) interactions which are physically distinct from dispersion interactions. A rig-

orous derivation from the generalized Casimir-Polder formula was later presented by

Ángyán [119]. This derivations clearly delineates the set of approximations that have

to be made. Ángyán has also shown that the XDM formula for C6 is equivalent to the

expression derived earlier by Salem, Tang, and Karplus [151, 152].

The XDM method defines position-dependent exchange-hole dipole moments of

the form

dXσ(r) = 1
ρσ(r)

∑
ij

φiσ(r)φjσ(r)
∫
r′φiσ(r′)φjσ(r′) d3r′ − r, (4.12)
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where ρσ(r) is the density of electrons with spin σ and φiσ’s are occupied HF or KS

orbitals with spin σ (the orbitals are assumed to be real). The average of the square

of this moment assigned to atom a is defined as

〈d2
X〉a =

∑
σ

∫
ωa(r) ρσ(r)|dXσ(r)|2 d3r, (4.13)

where ωa(r) is the Hirshfeld atomic partition weight [153]. The dispersion coefficients

are then calculated as

Cab
6 = αaαb〈d2

X〉a〈d2
X〉b

〈d2
X〉aαb + 〈d2

X〉bαa
, (4.14)

where αc is the effective atom-in-molecule polarizability of atom c, c = a, b. This

polarizability is calculated from the free atomic polarizability, αfree
a , using the following

expression

αa =
∫
r3wa(r)ρ(r)d3r∫
r3ρfree

a (r)d3r
αfree
a = V eff

a

V free
a

αfree
a , (4.15)

where ρfree
a (r) is the density of the free atom a. The ratio is often interpreted as the

ratio of effective volumes of the atom-in-molecule, V eff
a , and of the free atom, V free

a .

The coefficients Cab
8 and Cab

10 are defined in an analogous way. The dispersion energy is

then computed from a formula similar to Eq. (4.11), except that the scaling parameters

sn are omitted and the constant Rab
0 is replaced by 1

3

[(
Cij8
Cij6

)1/2
+
(
Cij10
Cij6

)1/4
+
(
Cij10
Cij8

)1/2
]

(Ref. [154]). Note that the original XDM formulation uses the supermolecular variant

of the expression (4.11).

4.6 Many-Body Dispersion

The MBD method [17] maps the atoms of a given system onto a model system

of quantum harmonic oscillators. Using an expression for C6 coefficients in terms of

polarizabilities of these oscillators, the parameters defining the oscillators are fitted

to accurate empirical C6’s for more than one thousand of atoms and small molecules.

The effects of immediate environment of an atom are included using Eq. (4.15). The

polarizabilites assigned to the oscillators are then adjusted for each particular system

by solving a self-consistent set of equations involving a dipole-dipole interaction tensor.
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The oscillators consist of charged particles which interact with particles of other

oscillators via the Coulomb potential in the multipole expansion truncated at the

dipole-dipole term. The Hamiltonian of this system is diagonalized in the basis set

of the noninteracting oscillators [155]. The dipole-dipole interaction tensor is assumed

in the form [17, 156, 157]

τab =
3∑

i,j=1

∂2

∂xia∂x
j
b

1− exp[(rab/r̄vdW
ab )β]

rab
, (4.16)

where r̄vdW
ab = r̄vdW

a + r̄vdW
b is sum of van der Waals radii. The term in the numera-

tor introduces damping in the MBD method and the parameter β is fitted to match

DFT+D interaction energies to accurate dimer interaction energy benchmarks.

Note that the phrase “many-body" in MBD is confusing in the context of in-

termolecular interactions where “many-body (nonadditive) effects" is the term used to

describe interactions in a cluster of several atoms or molecules that are beyond the

sum of pair (two-body) interactions [158]. In contrast, MBD gives “many-body" effects

already in molecular dimers. Clearly, MBD views each atom in a molecules as a sepa-

rate body. The name may also suggest that MBD will reproduce well the many-body

effects defined in the standard way. However, it has been recently shown [159] that

MBD is not capable of predicting reliable nonadditive three-body interaction energies.

4.7 Computational Details

The benchmark values of Edispx defined by Eq. (4.3) were taken from Ref. [33]

except for those for Ar2 and Ar-HF which were taken from Ref. [29]. The aug-cc-pVTZ

basis [160, 161, 91] set plus a set of (3s3p2d2f) midbond functions in the monomer-

centered ‘plus’ basis set (MC+BS) [162] format were used in all cases. All the su-

permolecular calculations of dispersion energies used the aug-cc-pVTZ basis set and

were counterpoise corrected by performing monomer calculations using same basis as

for the dimer. There is no need to use midbond functions here since these functions

are important only if dispersion energies are computed from expressions depending on

virtual orbitals.
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Five nonlocal functionals have been considered. The results for DADE were

taken from Ref. [29] where they were computed using a program written by the present

authors. This program is available at http://www.physics.udel.edu

/∼szalewic/DADE. As a check, we have also programmed the vdW-DF method and

our codes were used to obtain the vdW-DF1 and vdW-DF2 dispersion energies. For

the VV09 and VV10 methods, we used Q-Chem [163] and ORCA [88], respectively.

All calculations, except those for VV09, were done in the non-self-consistent way, i.e.,

not using the derivatives of the nonlocal correlation energies in KS equations. The

differences with self-consistent calculations are expected to be very small [110, 111].

The Q-Chem program used for VV09 apparently does not offer the non-self-consistent

option. The authors of nonlocal methods recommended to pair them with some specific

DFT functionals. However, the choice of the base functional makes little difference in

our work since it affects only the density used to compute the nonlocal correlation

energies and the sensititvity of these energies to density differences given by modern

DFT methods is weak. In particular, the authors of Ref. [27] recommended that VV09

should be used with a range-separated hybrid (RSH) functional designed by them,

but we decided to use a more popular LRC-ωPBE [71] RSH functional. The VV10

calculations were done withe PBE base functional but parameters “b" and “C" were

taken to be 5.9 and 0.0093 respectively. These are the values of these parameters fit-

ted for rPW86-PBE. For DADE, vdW-DF1, and vdW-DF2, we used the densities and

density-gradients obtained from PBE calculations performed using ORCA [88].

The MBD calculations were done non-self-consistently in terms of affecting KS

equations, but self-consistently in terms of iterating the polarizabilities and fully cou-

pling the quantum harmonic oscillators. The PBE method was used to compute den-

sities needed for calculations of Hirshfeld weighting functions. MBD calculations were

performed using the stand-alone DFT/MBD program from Ref. [164].

The D3BJ[PBE] and D3MBJ[PBE] calculations used damping and scaling pa-

rameters corresponding to the PBE functional, while D3BJ[HF] used those correspond-

ing to the HF method. D3[No-switching] does not use any scaling or damping and is
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the sum of Cab
6 /r

6
ab and Cab

8 /r
8
ab terms only. All D3 dispersion energies were calculated

in the perturbative way as defined in Sec. 4.4 using the dispersion coefficients com-

puted for the dimers and then using only those involving pairs of atoms from different

monomers. We used the D3 codes referenced in Sec. 4.4.

XDM calculations were done using NWChem [165] with PW86 [166] exchange

and PBE correlation functionals. Since supermolecular calculations gave positive val-

ues of dispersion energies in some range of R, the XDM dispersion energies here were

calculated perturbatively, as in the case of D3, cf. Eq. (4.11). Also as in the cases of D3,

the coefficients were calculated using dimer densities. We will denote by XDM8[PW86-

PBE] the approach that uses terms involving Cab
6 and Cab

8 , while XDM10[PW86-PBE]

uses Cab
10 as well with the damping corresponding to PW86-PBE. XDM8[No-switching]

and XDM10[No-switching] are XDM8[PW86-PBE] and XDM10[PW86-PBE], respec-

tively, without any damping.

The dispersion energies used to compute the errors and ratios of dispersion

energies presented in the following sections are included in Appendix D.

4.8 Results

The mean absolute percentage errors (MAPEs) of various dispersion energies

relative to Edispx are listed in Table 4.1 and shown as scatter plots in Fig. 4.1. The

ratios of the dispersion energies to Edispx as functions of intermonomer separation R

are plotted in Figs. 4.2, 4.3, and 4.4. The MAPEs obtained by us are rather large,

tens of percent, compared to the several percent errors of total interaction energies

computed in Ref. [33] for some of the same dispersion methods as we use [note that

Ref. [33] used the median absolute percentage errors (MedAPEs), see a discussion of

this issue below]. The reason for this disparity is that dispersion energies are only a

relatively small fraction of the total energies for most systems considered in Ref. [33].

For example, for the water dimer at R = 10 Å, the dispersion energy is only 1% of

the total interaction energy. Thus, the very large errors of dispersion energies given

by some methods at large R, as seen in Figs. 4.2, 4.3, and 4.4, have almost no effect
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on MedAPEs of Ref. [33]. Consequently, the criterion used by us gives a far more

stringent evaluation of the quality of dispersion energies. Some of the differences also

come from comparing MAPEs with MedAPEs. The MedAPE measure has to be used

for evaluations of interaction energy curves since otherwise the percentage errors near

the points where the curves cross zero, which can sometimes be huge, would bias the

picture. This problem does not appear in assessments of dispersion energies. Note that

if errors are changing linearly over the set, MAPEs and MedAPEs have the same value.

Also note that our MAPEs include two additional systems compared to Ref. [33], but

these systems have errors comparable to other systems.

In some cases, it is not clear if the benchmarks should include the exchange-

dispersion energies. To enable comparisons without the latter terms, we have prepared

Table 4.2 which is analogous to Table 4.1 but the errors are computed relative to

the values of Edisp (i.e., it is Edispx with the exchange-dispersion energy removed). In

majority of cases, the changes are negligible and we will not discuss much the data

from Table 4.2 later on.

Table 4.1 and Fig. 4.1 show that the ability of the investigated methods to

recover dispersion interactions varies enormously, with averages of MAPEs ranging

from 7% to 113%. For individual dimers, the range is from 1.5% to 455%. Even

if the large outliers are removed, the upper limits are 49% and 102%, respectively.

The asymptotics-based atom-atom functions give most accurate dispersion energies,

followed by the best nonlocal corelation functionals (but most functionals of this type

perform poorly). The atoms-in-molecules-type methods have the worst overall per-

formance. There is also a significant spread of MAPEs among individual dimers for

each method, which is well visible in Fig. 4.1. Generally, methods with best overall

performance have also narrowest spread.

4.8.1 Asymptotics-based methods

Table 4.1 and Fig. 4.1 show that the lowest MAPEs for individual dimers are

generally those given by Das, this method also gives the lowest average of MAPE of

57



7.3%. Also the spread of MAPEs for individual dimers is very narrow: between 1.5%

and 12.7%. This good performance is also well visible in Figs. 4.2, 4.3, and 4.4 where

the Das curves are everywhere very close to the 1.0 value, with deviations observed only

at the smallest R’s (with a few exceptions like the error of about 20% at the largest

R for the FOX-7 dimer). This very good performance could partly be expected since

this function was fitted to a benchmark set of Edispx values and therefore includes the

physical damping of asymptotic expansion. However, the training set used to fit Das

was [20, 21], with a couple exceptions, completely different from our test set, so our

results do confirm robustness of Das.

The next best performance, with 11.3% error, is given by the D3BJ method with

damping fitted to the Hartree-Fock method, D3BJ[HF]. Since HF interaction energies

are reasonably close to dispersionless energies, the D3BJ[HF] dispersion energies can be

treated as containing very little of unphysical damping. This good performance is con-

sistent with the fact that the reference D3 van der Waals coefficients are computed using

TD-DFT which is known to give accurate values for these coefficients [SAPT(DFT)

gives asymptotically the same coefficients]. Also, the account for chemical environment

effects apparently works well in D3, i.e., the precomputed atom-specific constants are

combined properly to get distributed van der Waals constants. Figures 4.2, 4.3, and 4.4

show that D3BJ[HF] is quite accurate at large R for smaller dimers, but for benzene-

water and the four dimers in Fig. 4.4 the errors are up to about 20%. For most systems,

D3BJ[HF] tends to understimate the magnitude of dispersion energy at small R. This

is clearly connected with the truncation of this expansion at 1/r8
ab.

D3[No-switching] does not use any scaling or damping and its MAPE of 17.5% is

about 6% larger than that of D3BJ[HF]. This increase of the error is expected since the

benchmark values do contain damping. At large R, D3[No-switching] nearly concides

with D3BJ[HF]. At small R, it overstimates the magnitude of dispersion energy (except

for Ar2 and Ar–HF), as expected for a completely undamped asymptotic expansion.

Note that it would be very difficult to create precise benchmarks for undamped methods

since the undamped expansions diverge quite strongly in the region of the van der Waals
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minimum and for smaller R for all dimers containing monomers with more than a few

atoms. Different truncations of the expansions and different distribution schemes lead

to dramatically different values of dispersion energies at small R. One may add that

the MAPE of D3[No-switching] decreases by 4% if comparisons are made with respect

to Edisp rather than to Edispx, see Table 4.2. This is an expected improvement since

D3[No-switching] does not include exchange-dispersion effects.

The D3BJ[PBE] and D3MBJ[PBE] methods, i.e., methods with the switching-

off functions fitted for the PBE method, have much larger errors, 30% and 31%, re-

spectively, than the D3 variants discussed above. They also strongly underestimate

the magnitude of dispersion energy at short R. This shows how highly unphysical is

the excessive damping included in these methods. The two methods are very close to

each other for all dimers and for all R.

It can be noticed in the figures that D3BJ[PBE] is quite different from D3[No-

switching] not only at short, but also at large R’s. The reason is the scaling parameter

for Cab
8 terms, see a discussion of this issue in Ref. [77].

4.8.2 Nonlocal functionals

Out of the nonlocal functional methods, DADE performs best and its error,

11.9%, is close to the errors of Das and D3BJ(HF) and better than those of all other

methods. DADE’s average error is strongly affected by two systems, the FOX-7 dimer

and the imidazole dimer, systems for which Das performs quite well but most other

methods considered here give large errors, similarly to DADE. Still, the spread of

DADE predictions is among the smallest. For the largest R, DADE underestimates

the magnitude of the dispersion energy typically by about 15%, but for the FOX-7

dimer the underestimation is about 40%. This is clearly related to the approximate

representation of dynamic polarizability in the vdW-DF methods from which this quan-

tity has been taken. As R decreases, the ratio curve of DADE to Edispx increases until it

reaches a maximum at some R, and then starts to decrease. This behaviour is common

with the vdW-DF methods.
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The next in performance among nonlocal-functional methods is VV10 which

gives the average MAPE of 24%, twice as large as that for DADE. As mentioned

earlier, this functional is more empirical than the other investigated nonlocal ones. It

was fitted paired with rPW86-PBE, a DFT method which gives interaction energies

fairly close to HF ones. Thus, it should include physical damping and one could expect

that it should not be much affected by excessive damping. However, Figs. 4.2–4.4

show that this is not the case since at shorter R the VV10 functional gives results

somewhat better but still very close to methods that include significant amounts of

excessive damping. The overall 24% error is also in line with the errors of such methods.

Clearly, errors of this size are too large to consider these methods as providing a faithful

description of dispersion interactions. However, VV10 performs reasonably well at the

largest R. Another functional from the same group, VV09, has a larger overall error,

29%, and quite different dependence on R. For most systems, it has very large errors

at large R (interestingly, VV09 results are very accurate at large R for the FOX-7

dimer, where most other methods perform poorly). VV09 usually overestimates the

magnitude of dispersion energy at large R (except for the water dimer where it strongly

underestimates), and then in most cases the ratios shown in Figs. 4.2–4.4 decrease,

leading to an underestimation at small R.

The vdW-DF2 method with its 29% overall error is close in performance to the

VV methods. However, at large R vdW-DF2 performs much worse than any other

method, recovering typically only about 50% of the magnitude of the dispersion en-

ergy. In all cases, this performance is significantly worse than that of DADE, which

indicates that the value of the parameter Zab used in DADE represents monomer po-

larizabilities better. As R decreases, the vdW-DF2 ratio goes through a maximum

and then decreases. This behavior is similar to DADE, but the recovery of the disper-

sion energy at small R is significantly worse than in the case of DADE. The related

vdW-DF1 functional performs much worse than vdW-DF2, with the overall MAPE of

49%. Figures 4.2–4.4 show that the behavior of vdW-DF1 is very irregular and errors

at various R can be as large as 250%. This method overestimates the magnitude of
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dispersion energy at most R for all systems. Clearly, the value of the parameter Zab,

the only difference between vdW-DF1 and vdW-DF2, was not well chosen in the case

of vdW-DF1.

4.8.3 Atoms-in-molecules methods

The best performance in the family of XDM methods, average MAPE of 30%,

was achieved by XDM10[PW86-PBE], with XDM8[PW86-PBE] following with 33%.

Thus, the performance of these methods is close to that of D3BJ/MBJ[PBE] and this

closeness results from fitting to similar interaction energy benchmarks. Indeed, the

XDM8[PW86-PBE] and D3BJ[PBE] curves are very close to each other for all systems

and all distances, with minor exceptions, cf. Figs. 4.2–4.4, and XDM10[PW86-PBE]

is quite close too. On the other hand, the average MAPE of XDM8[No-switching] is

35%, twice larger than that of D3[No-switching] which was 17.5%. Clearly, the van der

Waals constants in the latter case are much better than in the former. If comparisons

are made to Edisp, cf. Table 4.2, both errors decrease, to 25% and 13%, respectively, but

the ratio remains close to two. Figures 4.2–4.4 show that for most systems and most

Rs, the XDM8[No-switching] curve is above the D3[No-switching] curve and further

from the 1.0 line, consistent with MAPEs.

The XDM10[No-switching] method performs still much worse, giving the average

MAPE of 113% (86% if compared to Edisp). This is due to various inaccuracies of

XDM10, but also partly reflects the strong divergence of the asymptotic expansion for

small separations of large monomers. XDM10[No-switching] acquires particularly large

errors for two dimers: 455% for the water dimer and 310% for the imidazole dimer.

Concluding from this observation, as well as from the earlier observation concerning

XDM8[No-switching] vs. D3[No-switching], one may say that that the XDM method

gives significantly less accurate van der Waals coefficients than D3.

A comparison of dispersion energies from all completely undamped methods:

D3[No-switching], XDM8[No-switching], and XDM10[No-switching] shows that for shorter

61



Rs the ordering of their magnitudes depends on the dimer, but in most cases the mag-

nitude of energy from XDM10[No-switching] is the largest and from D3[No-switching]

the smallest. The reasons for the former were discussed above and the reason for the

latter is the lack of the most divergent terms with tenth inverse powers of separations.

As mentioned earlier, for the MBD method we were not able to remove switching

and we used the switching resulting from pairing with the PBE functional. Expect-

edly, the performance of disp(MBD) is similar to all other methods with significant

switching. Consequently, we cannot evaluate how well MBD reproduces dispersion ef-

fects as a function of R. At the largest R, where sixth inverse power dominates, MBD

performs similarly to Das and D3BJ[HF], as expected from the fact that it was fitted

to asymptotic constants.

4.9 Summary and Conclusions

Various methods of supplementing the DFT interaction energies for the disper-

sion effects that DFT cannot describe have been evaluated by comparing the dispersion

energies predicted by such methods to dispersion energies from SAPT(DFT). The com-

parisons have been made on a diverse set of dimers using for each dimer the whole range

of intermolecular distances, from the repulsive region of the total potential, through

the van der Waals minimum region, to asymptotic distances. The overall conclusion

is that most of the methods in use reproduce dispersion energies poorly, with tens

of percent errors. The best performance, about 10% average errors, is found for the

asymptotics-based atom-atom functions which do not include excessive damping (un-

physical switching off of dispersion energy for very small R). If switching-off is included,

the errors increase to about 30%. At small R, the ratio of dispersion energies from

such methods to Edispx is often about 0.2, which means that these energies are five

times too small in magnitude (one can hardly consider them to be dispersion energies

in this region). Most nonlocal correlation functionals perform much worse, with errors

in the range 24% to 49%, far from what could be called quantitative reproduction of

this quantity. The only exception is the recently proposed DADE functional which
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gave error of 12%. The atoms-in-molecule methods (XDM and MBD) also gave large

errors, above 29%. For the XDM case, the quality of van der Waals constants is shown

to be poor compared to the D3 constants. For the MBD method we were not able

to compute undamped values, so we cannot comment on the constants except for the

leading one which is of good quality.

At the largest R, where the dispersion energy is dominated by terms that decay

as the sixth inverse power of interatomic distances, both the asymptotics-based and

atoms-in-molecules methods perform generally well, with typical errors of a few percent

for most systems. This is expected as these methods have been trained to reproduce

the dipole-dipole polarizabilities and/or the leading van der Waals constants. One

exception is the XDM method which for most systems gives errors larger than 10% at

such separations. Another exception are the four largest dimers, depicted in Fig. 4.4,

where the errors of theses methods at such separations are around 20% for all methods

in this category. This is partly due to the fact that for these systems the largest R

included by us may be still not far enough in the asymptotic region or perhaps the

performance of these types of methods deteriorates for large molecules.

The generally adequate performance of the asymptotics-based and atoms-in-

molecular methods at large R is not shared by the nonlocal functionals. Both vdW-DF

functionals can have 50% errors in this region (with overestimation in the case of vdW-

DF1 and underestimation in the case of vdW-DF2). DADE does somewhat better,

with errors closer to 15% and underestimation in all cases. Also VV09 significantly

overestimates for most dimers. VV10 performs at large R best of all nonlocal methods,

with errors similar to those of the asymptotics-based functions.

As R decreases, the desired behavior is that the ratios of the approximate dis-

persion energies to the Edispx values remain approximately constant. This is not the

case in general and the ratios change dramatically for most methods except for Das in

which case the change is modest. The other method with modest changes is D3BJ[HF].

For the methods with excessive damping, the ratio decreases more or less continuously

63



to reach a value generally in the range of 0.1–0.3 at the shortest R. One should re-

alize that the excessive damping depends strongly on the density functional that the

dispersion energy is paired with (see Fig. 2 in Ref. [77]). If we included several such

functionals, the results for the same method and different functionals would be all over

the place.

The methods without damping behave in just the opposite way: the ratio in-

creases and the approximate dispersion energies become a few times larger than the

reference values at the shorter R. This is an expected effect due to the divergence of

the asymptotic expansion. This divergence is particularly dramatic for the XDM10[No-

switching] method due to the use of terms with tenth inverse powers and generally too

large values of van der Waals coefficients. The latter can be seen from the fact that

the XDM8[No-switching] dispersion energies are are always much larger in magnitude

than the D3[No-switching] energies at short separations (except for the argon dimer).

The dependence on R is completely different for nonlocal functionals, especially

for vdW-DFs. As R decreases, the ratio of the approximate dispersion energy to the

Edispx first increases, then goes through a maximum which in the case of vdW-DF2 is

close to 1.0, and then decreases. This decrease is actually beneficial for applications

of the vdW-DF2 method since, as shown in Ref. [77], all semilocal functionals behave

at those R as if they were gradually starting to reproduce dispersion energy (note,

however, that we argued in Ref. [77] that this behavior is due to components of DFT

that should not be able to describe electron correlation phenomena such as dispersion

energies). This decline of the ratio for nonlocal functionals is due to the design of such

methods. In particular, note that Eq. (4.5) includes the LDA correlation energy density

and the interplay between this quantity and other terms may possibly contribute to

the observed behavior of nonlocal functionals at small R. Although DADE largely

overcomes the behavior of vdW-DF functionals described above, i.e., its curves are

much more flat, it still exhibits the decline at small R. There is one more reason for

the decline of the ratio for nonlocal functionals at short R: the restriction to dipole-

dipole-type terms in the polarization function whereas higher-rank multipolar effects
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become important at short separation.

The VV and vdW-DF methods have become enormously popular in recent years.

It appears that the replacement of these functionals by DADE should lead to signifi-

cantly improved predictions in applications of nonlocal-functional methods. Although

DADE performs somewhat worse than Das and D3BJ[HF], the latter two methods are

just parametrized atom-atom functions with tabulated parameters, whereas DADE is

essentially a first-principles approach as it was only minimally fitted to benchmark

data.
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Figure 4.1: The mean absolute percentage errors of dispersion energies from the
considered methods relative to Edispx.
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Figure 4.2: The ratios of dispersion energies from investigated methods to Edispx for
Ar2, Ar-HF, water dimer, and ethanol dimer. The method disp(MBD)
uses switching factors fitted by pairing it to the PBE functional. The
vertical lines indicate positions of van der Waals minima. The inserted
molecular graphs have cyan, lime, white, gray, and red spheres represent-
ing argon, fluorine, hydrogen, carbon, and oxygen atoms, respectively.
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Figure 4.3: The ratios of dispersion energies from investigated methods to Edispx
for nitromethane dimer, methyl formate dimer, benzene–methane, and
benzene–water. The blue spheres represent nitrogen atoms. For other
details, see Fig. 4.2.
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Figure 4.4: The ratios of dispersion energies from investigated methods to Edispx for
homogeneous dimers of imidazole, nitrobenzene, FOX-7, and EDNA. For
other details, see Figs. 4.2 and 4.3.

69



Chapter 5

POLARIZABILITY DENSITY FROM TIME DEPENDENT
DENSITY-FUNCTIONAL THEORY AND FURTHER DEVELOPMENT

OF DADE

In previous two chapters, we discussed the development of a new method for

dispersion energy calculations and comparison of most methods used in DFT for this

purpose. Our new method of dispersion energy calculation, DADE, takes the polar-

izability density expression from nonlocal correlation functionals. Thus, one may ask

question if this expression can be improved or replaced by a more adequate one. The

polarizability is an important physical quantity in itself, so such improvements are

relavant not only for dispersion energy. If we could develop a polarizability function

which is physically more sound than the one used in DADE, the predictions of DADE

should improve.

In Chapter 3, we wrote the density-density response function χ(r, r′, iu) in terms

of the polarizability-density tensor αij(r, r′, iu) [79, 80] as

χ(r, r′, iu) = −
3∑

i,j=1

∂2

∂xi ∂x′j
αij(r, r′, iu), (5.1)

where xi are the components of r. Furthermore, we introduced an approximate αij, a

local and isotropic quantity by

αij(r, r′, iu) = δij α(r, iu) δ(r − r′), (5.2)

where α(r, iu) is called the local polarizability density.

The Cartesian dipole-dipole polarizability can be obtained from the density-

density response function χ(r, r′, iu) of time-dependent DFT (TD-DFT) as [167]

αij(iu) = −
∫∫

d3rd3r′ xix
′
jχ(r, r′, iu) (5.3)
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where xi are components of r. Plugging Eq. (5.1) into Eq. (5.3) we get

αij(iu) =
3∑

i′,j′=1

∫∫
d3rd3r′ xix

′
j

∂2

∂xi′ ∂x′j′
αi′j′(r, r′, iu), (5.4)

Now integrating by parts and assuming αij and its gradient vanish when coordinates

go to infinity we get

αij(iu) =
∫∫

d3rd3r′ αij(r, r′, iu). (5.5)

Thus, αij(r, r′, iu) can be called two-electron dipole-dipole polarizability density at

points r and r′ since integration of this quantity over all coordinates gives us dipole-

dipole polarizability of the system. Comparing Eq. (5.5) and Eq. (5.3) we get

αij(r, r′, iu) = −xix′jχ(r, r′, iu) (5.6)

Although the knowledge of χ gives αij in a trivial way, it does not allow us to find

α(r, iu) in Eq. (5.2). The polarizability density αij(r, iu) can be defined from Eq. (5.6)

as

αij(r, iu) =
∫
d3r′ αij(r, r′, iu) = −xi

∫
d3r′ x′jχ(r, r′, iu). (5.7)

Now integrating Eq. (5.2) and using Eq. (5.7) we can write
∫
d3rαij(r, r′, iu) = δij

∫
d3r α(r, iu)δ(r − r′),

αij(r′, iu) = δijα(r′, iu), (5.8)

Therefore, the polarizability density given in Eq. (5.2) is α(r, iu) = ∑
i αii(r, iu)/3

which is the polarizability density defined for nonlocal functionals in Ref. [83]. To

calculate the same quantity in TD-DFT we use density-density response function from

TD-DFT in Eq. (5.7). The density-density response function can be computed as [34]

χ(r, r′, iu) = −
∑
iv,i′v′

Civ,i′v′(iu)φi(r)φv(r)φi′(r′)φv′(r′), (5.9)
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Figure 5.1: Comparison of the polarizability density α(r, iu) for the argon atom in
the case x = z, y = 0.0, and u = 0.79 in atomic units.

where φi and φv are occupied and virtual orbitals of the considered system and Civ,i′v′(iu)

linear coefficients determined by equations of TD-DFT. Using Eq. (5.9) in Eq. (5.7),

the polarizability density can be written as

αjk(r, iu) =
∑
iv,i′v′

Civ,i′v′(iu) xj φi(r)φv(r)
∫
d3r′ x′k φi′(r′)φv′(r′). (5.10)

We computed polarizability density α(r, iu) using this quantity and compared

it to the polarizability densities from different nonlocal functionals in Figs. 5.1 and 5.2.

The polarizability densities corresponding to vdW-DF2 and DADE, denoted as αvdWDF2

and αDADE, are obtained from Eqs. (3.6) and (3.7) with values of Zab taken to be -1.887

and -1.1972, respectively. For VV09 and VV10 cases, the polarizability density is same,
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denoted as αV V and given by Eq. (3.6) with ω0(r) =
√

4πn(r)/3 + 0.0089
∣∣∣∇n(r)
n(r)

∣∣∣4
from Ref. [83]. The density-density response function for the argon atom was obtained

using the TD-DFT codes from the SAPT2016 package [168]. The basis set aug-cc-

pVDZ [91] were used and the orbital coefficients for nonlocal functionals were obtained

using ORCA [88]. Both response function and ORCA calculations were done using the

PBE0 [42, 56] method. The polarizability densities were obtained using density-density

response function and orbital coefficients through a code written by us.

Figure 5.2: Comparison of polarizability density α(r, iu) for the argon atom from
vdW-DF2 (bottom-right), VV09/10 (top-right), and DADE (bottom-
left) with the one obtained from TD-DFT (top-left) for y = 0.0 and
u = 0.79 in atomic units.

The polarizability densities αvdW−DF2(r, iu) and αDADE(r, iu) agree reasonably
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closely with αTD−DFT(r, iu), in particular when compared to αVV(r, iu) which gives too

much large values at about 1 bohr from the nucleus. The agreement of DADE with

TD-DFT is the best of the methods studied, which is in line with DADE giving better

dispersion energies. Note that the difference between the polarizability densities from

vdW-DF2 and DADE are due only to the different values of Zab. When we approach

close to the nucleus, TD-DFT and VV have pronounced wiggles. Around this region,

close to the nucleus, all nonlocal functionals give much larger values than TD-DFT.

Furthermore, in the density tail the decay rate of polarizability densities from nonlocal

functionals is faster than in the case of TD-DFT. Figure 5.2 gives 3D surface plots of

the polarizability densities in order to provide an overall view of these quantities.

In future work we plan to improve the nonlocal correlation functionals by im-

proving the accuracy of polarizability density so that it agrees better with TD-DFT.

Yet, another step is to go beyond the dipole-dipole polarizability and include higher

order multipole effects which are included in TD-DFT response functions. A more

significant improvement can be made if we go beyond the severe approximations of

Eq. (5.2) and use the two-electron polarizability density instead of the present one,

i.e., replace the Dirac delta function δ(r − r′) in this equation by less severe approxi-

mation.
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Chapter 6

POTENTIAL ENERGY SURFACE DEVELOPMENT FOR CRYSTAL
STRUCTURE PREDICTION

The advancement of technology is possible if new materials with the novel prop-

erties can be designed. If the properties of such systems could be predicted compu-

tationally, the development processes might be shortened by screening the candidate

materials, and new classes of materials could be suggested based on theoretical insights.

An important element of the theoretical study of molecular crystals is the development

of intermolecular potential energy surfaces (PES) for the considered dimers. PES is

used to run molecular dynamics for the system and predict the crystal structure and

properties. We developed PESs for the molecular dimers given in Table 6.1 using data

from quantum calculations. The autoPES code [169], which automates the PES gener-

ation, was used. It divides the PES generation into five different parts. In the first part,

the asymptotic interaction energies are calculated from monomer properties using mul-

tipole expansion. The asymptotic interaction energies have sufficient accuracy up to

1.5 times the van der Waals minimum separation. Thus, asymptotic expansion causes

an enormous reduction in the computational cost of PES development. Moreover, as

asymptotic calculations use the same level of theory as SAPT(DFT), the two regions

connect seamlessly. For the region of shorter separations, a suitable grid is generated

using a guided Monte Carlo procedure such that the energetically favorable region has

relatively more grid points, especially, around the local minima. Then SAPT(DFT)

calculations are performed on these grid points and then following analytic function V
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of the form

V =
∑

a∈A,b∈B
uab(rab) = Velst + Vexp + V (2)

asymp

=
∑

a∈A,b∈B

[
uelst,ab(rab) + uexp,ab(rab) + u

(2)
asymp,ab(rab)

]
(6.1)

where a (b) goes over the sets of atoms in monomer A (B), respectively. The atom-atom

function are of the form

uelst,ab(rab) =qaqb
rab

uexp,ab(rab) =
[
1 +

k∑
i=1

aabi (rab)i
]
eα

ab−βabrab + Aab12
(rab)12

u
(2)
asymp,ab(rab) =−

∑
n=6,8

fn(δabn , rab)
Cab
n

(rab)n
, (6.2)

where fn are Tang-Toennies damping functions [66]

fn(δabn , rab) = 1− e−δr
n∑

m=0

(δr)m
m! . (6.3)

The partial charges qx and induction plus dispersion coefficients Cab
n are fitted

on asymptotic data and then keeping them fixed, parameters αab, βab, δabn , aabi , and Aab12

are fit to the grid of short-range interaction energy. The PES obtained in this way is

first checked for the presence of holes on the repulsive wall. Holes are regions where

PES on the repulsive wall suddenly deviates from the physically expected behavior.

If holes are present then more grid points are selected in this region to perform the

SAPT(DFT) calculations and refit the surface. The PES is fitted on 85% of the grid

points while remaining 15% points are used as a test set. If the root mean square error

(RMSE) on the test set is 20% or larger than that for PES then it is assumed that

PES has not converged, more grid points are added and the whole cycle is repeated to

get a new PES.

The quality of each component of V is tested by comparing them to correspond-

ing components of SAPT(DFT) as shown in Figs. 1 for 4-amino-2,3,6-trinitrophenol and

4-amino-2,3,6-trinitrophenol dimer. The reasonable agreement of PES to SAPT(DFT)
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Figure 6.1: 4,4-bipyridine (left) and 4-amino-2,3,6-trinitrophenol (right) with the
atomic partial charges. The integer label on each ball is to specify the
atoms treated equivalently for PES calculations. The white, grey, blue,
and red balls denote hydrogen, carbon, nitrogen, and oxygen atom re-
spectively.

for individual components and the total interaction energy shows the physical sound-

ness of the methods. A similar agreement exists in other cases. There are two

manuscripts in preparation [170, 171] which include these molecular dimers for pre-

diction of crystal structures. Our PES generation part is complete and contributions

from our collaborators who will run molecular dynamics and experimental prepare

these crystals are needed to publish them.

Table 6.1: The combinations of monomers, number of atoms, number of electrons,
number of grid points, and corresponding RMSEs of the PESs.

Monomer A Monomer B Natoms Nelectrons Ngrid RMSE
E < 0

(kcal/mol)

RMSE
E < 10

(kcal/mol)
4-amino-2,3,6-trinitrophenol 4-amino-2,3,6-

trinitrophenol
21+21 124+124 1132 0.3 0.52

4-amino-2,3,6-trinitrophenol 4,4-bipyridine 21+20 124+82 1298 0.22 0.51
4,4-bipyridine 4,4-bipyridine 20+20 82+82 884 0.19 0.44

5,5-dinitro-2H,2H-3,3-bi-1,2,4-
triazole

2,4,6-Trinitrophenol 18+19 114+116 2100 0.32 0.58

77



Figure 6.2: 5,5-dinitro-2H,2H-3,3-bi-1,2,4-triazole (left) and 2,4,6-Trinitrophenol
(right) with the atomic partial charges. The integer label on each ball
is to specify the atoms treated equivalently for PES calculations. The
white, grey, blue, and red balls denote hydrogen, carbon, nitrogen, and
oxygen atom respectively.

Figure 6.3: PES for 4-amino-2,3,6-trinitrophenol with 4,4-bipyridine compared with
SAPT(DFT) for the the orientation corresponding to first minimum.
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Appendix B

APPENDIX FOR CHAPTER 2

B.1 Basis sets and CBS Extrapolation

The interaction energies presented here were obtained (except for data plotted

in Fig. 2.2, see below) by an extrapolation to the complete basis set (CBS) limit. The

Hartree-Fock parts of SAPT and CCSD(T) interaction energies, as well as the DFT

interaction energies, were extrapolated using EY = ECBS + Be−αY , where Y is the

cardinal number and B and α are constants. The constant α was chosen to be 1.63,

as recommended in Refs. [172, 173]. The correlation parts of SAPT and CCSD(T)

interaction energies were extrapolated using the formula EY = ECBS + A/Y 3, where

A is a constant. The calculations were performed using the aug-cc-pVTZ and aug-cc-

pVQZ basis sets [160, 161, 91]. The (3s3p2d2f1g) set of midbond functions was used for

Ar–Ar, Ar–HF, and Ar–Li+ dimers whereas the set (3s3p2d2f) was used for the water

dimer [174, 4]. Such functions were not used for Ar–proton. The calculations were done

using Orca [88], Erkale [175], Q-Chem [176], and SAPT2016 [177]. The supermolecular

energies were counterpoise corrected by performing monomer calculations with the

same basis as used for the dimer [92]. Also SAPT calculations were done in exactly the

same basis set, i.e., using the dimer-centered plus midbond basis set (DC+BS) [162].

All listed energies are in kcal/mol and the distances between centers of mass, R, of

the interacting monomers are given in angstroms. All electrons were correlated in

CCSD(T) and SAPT calculations.
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B.2 Level of SAPT Theory

The SAPT [1, 2, 3, 4] interaction energy was calculated as the sum of the

following corrections

ESAPT
int =E(10)

elst + E
(10)
exch + E

(20)
ind,resp + E

(20)
exch−ind,resp + E

(12)
elst,resp + E

(13)
elst,resp + ε

(1)
exch(CCSD)

+ tE
(22)
ind + tE

(22)
exch−ind + E

(20)
disp + E

(21)
disp + E

(22)
disp + E

(20)
exch−disp + E

(30)
ind−disp

+ E
(30)
exch−ind−disp + E

(30)
ind + E

(30)
exch−ind + E

(30)
disp + E

(30)
exch−disp, (B.1)

where E(ij) are corrections of the ith-order in intermolecular interaction operator V

and of the jth-order in the Møller-Plesset fluctuation operator W , and ε(1)
exch(CCSD) =

E
(1)
exch(CCSD) − E

(10)
exch is the intramonomer correlation contribution to the first-order

exchange energy calculated with CCSD wave functions. The subscripts denote elec-

trostatic (elst), exchange (exch), induction (ind), and dispersion (disp) contributions,

whereas “resp" indicates the coupled HF level of theory. An additional term was in-

cluded for Ar2 and Ar–HF at very small separations, see below.

The dispersion energy Edispx defined in Eq.(2.1) approximates the leading term

by the following expansion in W

E
(2)
disp = E

(20)
disp + E

(21)
disp + E

(22)
disp , (B.2)

whereas the remaining terms are of zeroth-order in W .

B.3 Uncertainties of SAPT Results

An important question is how well the dispersion energy given by Eq. (2.1)

reproduces the “exact” dispersion energy. Since the dispersion energy can be defined

only within SAPT, this question actually concerns the convergence of SAPT and un-

certainties resulting from the truncations assumed in Edispx. One has to point out first

that the dispersion energy cannot be uniquely defined beyond the second order in V .

Already in the third order, there are mixed, induction-dispersion terms [4, 135], cf.

Eq. (B.1), which we have not included in Edispx. For the purpose of the present work,

we have to determine if the truncation of the dispersion energy in the third order in V
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is adequate, i.e., the higher-order terms can be neglected. Since the higher-order terms

are unknown, we can only infer from the rate of convergence. At the vdW minimum,

the ratio of the magnitude of the third-order dispersion terms to the second-order ones

is 0.021, 0.018, 0.022, and 0.032 for Ar2 , Ar–HF, Ar–Li+, and (H2O)2, respectively.

This indicates that the terms of higher order in V are completely negligible.

One may add that if terms of higher order in V were available, the uncertainty

of the dispersion energy would be reduced, since the SAPT series is semi-convergent.

Convergence of this series has been extensively investigated (see Ref. [178] for a review

of this work). This convergence depends on the type of symmetry adaptation. The

method used by us, called symmetrized Rayleigh-Schrödinger (SRS) expansion, is not

convergent, but is semi-convergent in the sense that a sum of several lowest-order

corrections provides an excellent approximation to the exact interaction energy and the

divergence is visible only in a very high order. Furthermore, low-order SRS corrections

are identical to the corresponding corrections of the Jeziorski-Kolos theory (JK) which

is convergent. One may also note that since SAPT does not use the asymptotic (long-

range) multipole expansion of V and properly antisymmetrizes the wave function,

it includes all overlap and exchange effects. Although SAPT does not utilize the

asymptotic expansion in powers of 1/R, it is seamlessly connected to such expansion,

i.e., for sufficiently large R the SAPT and the properly truncated asymptotic expansion

interaction energies agree to an arbitrary number of digits.

The next question are the uncertainties resulting from the truncations in powers

ofW assumed in Edispx. For some terms, higher level of theory than we used is available

and can be applied to provide estimates of uncertainties. Equation (B.2) truncates the

series inW at the second order. A higher-level treatment can use the dispersion energy

based on the CCD description of intramonomer correlation [102] and compute

Ẽ
(2)
disp = E

(2)
disp[CCD] + E

(2)
disp[S(CCD)] + E

(2)
disp[T(CCD)]. (B.3)

A still higher level, based on CCSD description of monomers, was developed in Ref. [104].

The argon dimer was not investigated in this work, but Ar–Ne was. For this system,
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the use of the CCD level increases the value of E(2)
disp defined by Eq. (B.2) by 0.15%,

while the use of the CCSD level by 1.4%. The analogous changes for the water dimer

are −1.7% and 0.7%, respectively.

Now consider the neglected terms ε(n)
exch−disp = E

(n)
exch−disp − E

(n0)
exch−disp, n = 2, 3.

For n = 2, one can use the values of E(2)
exch−disp computed at the CCSD level in Ref. [179].

For Ar2 near the vdWminimum, ε(2)
exch−disp constitutes 11% of E(20)

exch−disp. Since the latter

correction accounts for 7.6% of Edispx, the addition of ε(2)
exch−disp would have changed

Edispx by less than 1%. Such a change is negligible from the point of view of comparisons

made in our work. The neglected effects of intramonomer correlation in the third order

in V , ε(3)
exch−disp, are unknown, but since the third-order corrections are about 50 times

smaller in magnitude than the second-order ones, this effect is certainly negligible.

Thus, one can conclude that our analysis based on the convergence patterns in V and

W shows that Edispx has uncertainties of the order of 1%.

Another way to estimate uncertainies of Edispx is provided by comparisons of

SAPT results with CCSD(T) ones. For Ar2, Fig. (2.1) and Table B.1 here show that

the two methods agree reasonably well. The relative discrepancies between SAPT and

CCSD(T) interaction energies at the vdW minima are 4.9%, 5.4%, 1.7%, and 5.1%

for Ar2, Ar–HF, Ar–Li+, and (H2O)2, respectively (see Tables B.1, B.2, B.3, and B.4).

[Many papers comparing SAPT and CCSD(T) can be found in literature, see, e.g.,

Refs. [98, 180, 64, 181]]. Since a part of the discrepancy between SAPT and CCSD(T)

is due to the dispersion terms, we conclude that the dispersion energies have to be

at least similarly accurate as the total interaction energies. In fact, they should be

more accurate since the largest part of the discrepancy between SAPT and CCSD(T)

interaction energy results from truncations of theory level in SAPT, so the physical

components already accounted for should be more accurate than it is suggested by the

percentages given above, closer to 1%. Therefore, both estimates (from the convergence

in V andW and from comparisons with CCSD(T)) of the accuracy of Edispx suggest that

its uncertainty is of the order of 1%. Thus, when subtracted from E
CCSD(T)
int , it will give

equally accurate values of Edl. One more source of uncertainty of the latter quantity
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is, of course, the fact that CCSD(T) interaction energies are at least 1% different from

the exact interaction energies. Nevertheless, even if all these uncertainties sum up to

a couple percent of Edl, they are unimportant relative to the differences between Edl

and interaction energies given by DFT methods.

In our work, we have performed SAPT calculations also for distances much

smaller than in any previous investigations of the convergence of SAPT. The estimates

made above may not extend to such short distances. We discuss these issues in the

next section.

B.4 SAPT at small R’s

Our calculations for the argon dimer extend to a very small distance of 1.5 Å,

where the interaction energy is more than three orders of magnitude larger than the

absolute value of this quantity at the vdW minimum, while in studies of intermolecular

interactions one typically includes only separations where this ratio is less than 10.

Thus, one may ask if the use of dispersion energies from SAPT is justified at such

separations since SAPT, being a perturbation theory starting from isolated monomers,

may diverge at very small R. Table B.1 indicates that apparently there may be a

problem since the SAPT energy of Eq. (B.1) is very different from CCSD(T) interaction

energy for R ≤ 2.4 Å. However, the reason is not a divergence of SAPT but the so-called

S2 approximation, i.e., the restriction to terms which are quadratic in orbital-overlap

integrals, used for all exchange corrections but E(10)
exch. The performance of the S2

approximation was recently investigated by Schäffer and Jansen [182] who computed

the exchange-induction energies without this approximation and have shown that the

addition of the δHF
int correction effectively cures the S2 problem for smallR. The quantity

δHF
int is defined as

δHF
int = EHF

int − E
(10)
elst − E

(10)
exch − E

(20)
ind,resp − E

(20)
exch−ind,resp − E

(30)
ind − E

(30)
exch−ind, (B.4)

where EHF
int is the supermolecular Hartree-Fock interaction energy. One should note,

however, that the addition of δHF
int is not recommended for nonpolar systems, as em-

phasized in Ref. [135] where it was shown that such addition increases the SAPT error
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relative to CCSD(T) interaction energies (this behaviour is also seen in Table B.1 for

R’s down to 3.2 Å). This is because while the inclusion of δHF
int adds induction and

exchange-induction terms beyond the third order and removes the S2 approximation,

it involves some double counting at the first three orders. Therefore, the addition of

δHF
int is not recommended for systems with small induction effects like Ar2 at separa-

tions relevant in studies of intermolecular interactions. We have therefore decided to

include δHF
int in Fig. 2.1 only at R ≤ 2.8 Å. This results in a reasonably good agreement

between the SAPT and CCSD(T) interaction energies for all separations, in particular,

at R = 1.5 Å the two quantities differ by only 6%. This agreement indicates that the

Edispx contribution, a part of the SAPT interaction energy, also has to be similarly

accurate. One may note that although the addition of δHF
int cannot improve over the S2

approximation in the E(i0)
exch−disp terms, this approximation works much better in this

case than in the case of E(i0)
exch−ind contributions [182].

The SAPT interaction energies for Ar–HF differ significantly from the CCSD(T)

ones for R ≤ 3 Å (see Table B.2) due to the failure of S2 approximation, however, the

addition of δHF
int at these distances makes the agreement reasonably good. This justifies

the usage of Edispx for all separations displayed in Fig. (2.6).

For Ar–Li+ and for the water dimer, the agreement between SAPT and CCSD(T)

is reasonable even at the smallest R (see Tables B.3 and B.4), therefore we have not

included δHF
int in the SAPT interaction energies (the use of δHF

int is actually recommended

for such systems, but if the third order of SAPT is used, the improvements are small).

As an aside, let us note that an alternative definition of the dispersionless energy

could be

Ẽdl = ESAPT
int − Edispx. (B.5)

For Ar2 at R > 3.5 Å, it would lead to identical conclusions as the definition used,

based on CCSD(T), since the differences between SAPT and CCSD(T) interaction

energies are less than 4% of Edispx (see Table B.1 ). However, for smaller R, as it has

been discussed above, while the differences between SAPT and CCSD(T) interaction
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energies remain reasonably small as a fraction of either energy (6% at R = 1.5 Å),

they are large as a fraction of Edispx (52% at R = 1.5 Å). Since this is the region where

a perturbation expansion starting from isolated monomers has to decline in accuracy,

the use of the definition based on CCSD(T) is the only choice.

Figure B.1: The ratio of the interaction energies from DFT to the corresponding
CCSD(T) values for the Ar-proton complex.

B.5 Physical Damping

To estimate the physical damping, we calculated the dispersion energy E
(2)
disp

using the SAPT formulation based on DFT description of monomers, SAPT(DFT) [34,
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Figure B.2: The ratio of the DFT interaction energies and the dispersion energies to
the CCSD(T) interaction energies for the Ar–Li+ complex.

35, 106, 37, 107]. The asymptotic expansion of this quantity, E(2)
disp,as, in powers of

1/R up to the term 1/R12 was computed using the asymptotic part of the autoPES

package [169] (see the appendix of that paper), based on earlier work of Refs. [183, 184,

185, 186]. The calculations were performed for the argon dimer using the aug-cc-pVTZ

basis (this is the only exception of not using CBS extrapolations). Both quantities

were computed from density-density response functions of the time-dependent density-

functional theory (TD-DFT) and are seamlessly connected: for sufficiently large R,

they agree to an arbitrary number of digits. For any finite R, the physical damping is
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Figure B.3: The ratio Eextra/Edispx for the argon dimer calculated using MP2, MP3,
and CCSD methods. The scale is same as in Fig. 2.4.

the difference between E(2)
disp and E(2)

disp,as. In chapter 2 , we compare this damping with

the switching included in the D3BJ dispersion correction. The asymptotic expansion

used in D3 is also based on TD-DFT calculations in a basis set of a similar size to

aug-cc-pVTZ, which is why we used SAPT(DFT) and no CBS extrapolations.

B.6 “Antidamping" in D3BJ

The D3BJ dispersion energy [16, 19, 24] is given by

D3BJ(DFT) = −
∑

a∈A,b∈B

∑
n=6,8

sn
Cab
n

Rn
ab +

[
fdamp(a1, a2, Rab

0 )
]n , (B.6)
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where Cab
n is the effective isotropic vdW dispersion constant for atom pair ab and

Rab is the separation between these atoms. The parameters sn are the overall scaling

parameters. [D3BJ is usually computed in the supermolecular way rather than the

perturbative way as in Eq. (B.6), but differences between the two approaches are

usually negligible]. The Becke-Johnson (BJ) damping function [24, 19] is

fdamp(a1, a2, R
ab
0 ) = a1R

ab
0 + a2, (B.7)

where ai, i = 1, 2 are adjustable parameters and Rab
0 =

√
Cab

8 /C
ab
6 . The parameters

sn and ai are different for each DFT method and are fitted to minimize the error of

DFT+D on a set of wave function benchmarks. Table B.5 gives values of D3BJ× R6

corresponding to various DFT methods for Ar2. D3(no-switching) uses neither damping

nor scaling, i.e., ai = 0 and sn = 1. It can be seen in this table and in Fig. 2.2 that

for most methods there is an “antidamping" effect for R ≥ 4 Å. To understand it,

we show in Table B.6 the components of D3BJ(revPBE) at R = 6 Å. Clearly, the

damping coming from fdamp is almost negligible at this R (about 3% relative to the

undamped dispersion energy). However, the contribution from C8 is still large and

this contribution multiplied by the factor s8 = 2.355 leads to an overestimation of the

magnitude of the dispersion energy by about 26% relative to the undamped value (the

multiplication by such a large s8 leads to a decrease of the 1/R8 term from -244 Å6

kcal/mol to -574 Å6 kcal/mol).

B.7 Argon–proton

The argon–proton interaction energies obtained using various DFT methods and

CCSD(T) are listed in Table B.7. The energies were computed using the aug-cc-pVTZ

and aug-cc-pVQZ basis sets without any midbond functions (as these functions are

important only for dispersion energies) and extrapolated to the CBS limit. The ratios

of the DFT interaction energies to their CCSD(T) counterparts are plotted in Fig. B.1.

In addition to the functionals considered in chapter 2, we included in this figure two

range-separated hybrid (RSH) functionals, LRC-ωPBEh [71] and ωB97 [72]. Almost

105



Figure B.4: The ratios Eextra/Edispx, ∆Ex/Edispx, ∆Ec/Edispx, and ∆Exc/Edispx for
the argon dimer using LRC-ωPBEh (Ref. [71]).

everywhere, EDFT
int is below E

CCSD(T)
int . The errors at the vdW minimum, R = 1.4

Å, are between 0.04% and 3.6%, whereas at R = 2.5 Å between 2.5% and 9.2%.

Since there is no dispersion energy in this system, these results show that the DFT

methods considered here give substantial errors in recovering the dispersionless parts

of interaction energies. The two RSH methods perform better for large R than other

methods except PBE0 which performs equally well. This shows that the inclusion of

the HF (“exact") exchange, in the RSH or regular hybrid form, does help in this region.

LRC-ωPBEh and PBE0 give a ratio that is fairly constant with R, which is a desired
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Figure B.5: The ratios Eextra/Edispx, ∆Ex/Edispx, ∆Ec/Edispx, and ∆Exc/Edispx for
the argon dimer using ωB97 (Ref. [72]).

behavior.

B.8 Argon–Lithium Cation (Ar− Li+)

Figure B.2 is an extended version of Fig. 2.3 with the curves for the two RSH

functionals added. As in Fig. B.1 here, the LRC-ωPBEh functional behaves very

similarly to PBE0 and these two functionals give smaller errors at large R than the

other functionals except for ωB97. All functionals considered switch the sign of the

error at very short separations.
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B.9 Eextra for Wave Function Methods

In contrast to DFT approximations, the values of Eextra/Edispx are approxi-

mately constant for wave-function methods, as shown in Fig. B.3 [MPn denotes the

nth order of many-body perturbation theory based on the Møller-Plesset partition of

the Hamiltonian]. The constant ratio provides one more argument that our values of

Edispx are sufficiently accurate at all R.

B.10 RSH Functionals

The RSH functionals use the HF (“exact") exchange for large inter-electron sepa-

rations. Since the HF exchange assures correct asymptotics of the exchange-correlation

potentials, one may expect that this approximation leads to electron densities behaving

better at large separations. This was recently shown not to be true for the standard val-

ues of the range-separation parameter, but densities were improved if system-specific

ionization-potential adjusted values of this parameter were used [187]. Still, it is of

interest to check how Eextra from RSH functionals behaves. We have computed this

quantity for two RSH functionals: LRC-ωPBEh [71] and ωB97 [72] (with the stan-

dard values of the range-separation parameter). The results are presented in Figs. B.4

and B.5 (as in chapter 2, the exact exchange is not included in ∆Ex). The two RSH

functional give Eextra/Edispx which behaves smoothly, similar to the most smoothly

performing functionals included in chapter 2. In the case of LRC-ωPBEh, the ratio is

a function very similar to that for rPW86–PBE, except around vdW minimum where

it is smaller than that of rPW86–PBE. The ratio for ωB97 is different from all other

functionals in that it flattens after reaching 1 at R of about 3.5 Å, i.e., it has the be-

havior of a functional which recovers the dispersion energy for right reasons. However,

the wild behavior of all components of Eextra/Edispx, even ∆Ec/Edispx, and the very

large contribution of the non-xc terms in this region do not allow one to conclude that

ωB97 genuinely reproduces dispersion interactions for 1.5 ≤ R ≤ 3.5 Å. The compo-

nents behave more smoothly in the case of LRC-ωPBEh, but this behavior is similar

to those of DFT methods included in Fig. 2.5. Thus, apparently the RSH functionals
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with the standard values of the range-separation parameter do not offer improvements

over standard pure or hybrid functionals.

B.11 Dependence of non-xc interaction energy on density

In chapter 2, we used an ad absurdum argument to demonstrate that Eextra can-

not be considered to represent dispersion energy in the vdW well region. Let us repeat

this argument in greater detail. For the SCAN functional at R = 5 Å, Eextra is about

0.4Edispx and ∆Ec is close to zero. Since we assume that Eextra is the dispersion en-

ergy, the only remaining component of SCAN which may give this type contribution is

∆Ex. However, ∆Ex is positive and equal to about −Edispx. Thus, it cannot represent

dispersion [of course, one may also say that ∆Ex consists of two components: Edispx

and −2Edispx, but this is hardly a convincing explanation]. Thus, the only source of

Eextra is the non-xc part of EDFT
int , but since non-xc components cannot describe cor-

relation effects, we conclude that Eextra cannot be considered to be dispersion energy.

The reason that the non-xc contributions cannot describe correlation effects is a fol-

lows. Such contributions include integrals of one-electron operators: the kinetic energy

operator and the external potential operator, i.e., electron-nuclei interaction, by def-

inition unrelated to electron-electron interactions. They also include a two-electron

component, the Hartree term which describes electron-electron interactions, but only

in a mean-field approximation which by definition does not include correlation effects.

Although the equation

EDFT
int = ∆Enon−xc + ∆Ex + ∆Ec = Edl + Eextra

does not allow any partition of DFT components into dispersionless part and the

remainder, some approximate classification can be done on physical grounds. As dis-

cussed in chapter 2, ∆Ec appears to be related to Eextra. As discussed above, ∆Enon−xc

should contribute only to Edl. Furthermore, all the terms included in ∆Enon−xc are

also a part of EHF
int . The latter quantity includes in addition the exchange energy. As

seen in Fig. 2.4, EHF
int is a reasonably good approximation of Edl. Thus, we can eval-

uate DFT methods by checking how close is ∆Enon−xc to its HF counterpart. Such
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results are shown in Fig. B.6 for SCAN, PBE, and B3LYP functionals. Perhaps sur-

prisingly, the curves for each regular DFT method (DFT@KS) are very similar to those

in Fig. 2.1, except that they are shifted to the right by about 0.5 Å. The SCAN and

PBE curves show significant attractive interactions, which is, of course, physically not

allowed: the attractive interactions in Ar2 come almost exclusively from the dispersion

component and ∆Enon−xc has no physical mechanisms to describe dispersion interac-

tions. If ∆Enon−xc is computed with HF densities, it becomes repulsive, as expected

on physical grounds since such a contribution is by definition purely dispersionless. In

contrast to SCAN and PBE, the B3LYP@KS curve, however, is repulsive and close

to the corresponding B3LYP@HF curve. Thus, from this point of view, B3LYP is a

more sound functional than SCAN or PBE. The ∆Enon−xc components of SCAN and

PBE functionals exhibit what is sometimes called “density-driven error”. Thus, more

sound version of these functionals should be constructed by requiring that the electron

density is closer to the HF density than it is the case for the current version. The

SCAN@HF and PBE@HF curves are, of course, identical since all non-xc terms are

the same in both methods. These terms are also the same for B3LYP@HF, but this

method includes one additional term in the non-xc part, the exact exchange, leading

to the differences seen in Fig. B.6. This figure also shows EHF
int which is below both

DFT@HF curves. The reason is that the negative exact exchange contribution is either

not included in the latter curves or only a fraction of it is included. The EHF
int curve is

very close to the Edl curve, also shown in Fig. B.6. Thus, either curve shows what one

would expect a semilocal DFT to recover for right reasons.

To get more insight into the issue of density-driven error, we show in Figs. B.7,

B.8, and B.9 the values of the remaining DFT contributions computed with HF versus

KS orbitals and densities. For SCAN, ∆Ec is virtually the same in the KS and HF

cases. The same is true for Eextra. On the other hand, the KS vs. HF differences

are very large for ∆Ex, even the sign is different in some ranges of R. The @HF

curve is physically more sound than the @KS one, as it does not have a region of

positive values of ∆Ex. The differences in ∆Ex partly cancel with the differences in
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the non-xc contribution and the total interaction energies EDFT
int @KS and @HF shown

in Fig. B.10 are closer to each other than are the non-xc energies in Fig. B.6 (several

times closer near the minimum of each curve). The results for the PBE functional are

essentially identical to those for SCAN. The SCAN and PBE @HF interaction energies

are attractive for R larger than about 3.5-3.7 Å and the attractive interaction comes

from the xc term. In the case of SCAN@HF, the value at R = 3.76 Å is about 0.4

kcal/mol below Edl, the energy that it should recover. Thus, this 0.4 kcal/mol lower

value should be considered a failing of SCAN@HF rather than a good performance.

The reason for this failing is probably a functional-driven error. Thus, our previous

suggestion for improvement of densities is insufficient to make SCAN and PBE give

physically sound (i.e., positive) interaction energies at these distances and changes

of the exchange-correlation functional are needed to make the ∆Exc contribution less

negative with HF densities.

The B3LYP results are also similar to the SCAN results for ∆Ec and Eextra in

terms of @KS vs. @HF closeness. However, the ∆Ex @KS vs. @HF values are in this

case also quite close to each other for all R smaller than 4.1 Å. Overall, the behavior

of B3LYP is more acceptable on physical grounds than that of SCAN and PBE. On

the other hand, the undulatory dependence of the B3LYP components on R does not

appear to be physical.

B.12 Detailed results for Figs. 2.3, 2.4, 2.5, and 2.6.

The interaction energies for Ar–Li+ are listed in Table B.3. The ratios of DFT

interaction energies EDFT
int and Edispx to ECCSD(T)

int are listed in Table B.8. These ratios

are plotted in Fig. 2.3.

Table B.9 gives the ratios of the apparent dispersion energy from DFT methods,

Eextra, to Edispx for the argon dimer. These are plotted in Fig. 2.4. Tables B.10 and

B.11 give the exchange, ∆Ex, and correlation, ∆Ec, contributions to the interaction

energy. Figure 2.5 shows the ratio of these contributions to Edispx.
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Table B.2 gives CBS extrapolated interaction energies for Ar–HF. The contri-

butions of the exchange and correlation energy to these interaction energies are listed

in Tables B.12 and B.13. The ratios of Eextra to Edispx listed in Table B.14 are plotted

in Fig. 2.6.

The interaction energies, exchange contributions, and correlation contributions

for the water dimer are listed in Tables B.4, B.15, and B.16, respectively. The ratios

Eextra/Edispx plotted in Fig. 2.6 are given in Table B.17.

B.13 SCAN at small R’s

As seen in Figs. 2.4 and 2.5, the SCAN functional [30] exhibits one of the best

behaviors among the investigated functionals in that after reaching the value of 1 at

R =∼2.2 Å, Eextra/Edispx is reasonably flat for smaller R, getting up to 1.017 at 1.5

Å, the smallest R included. However, this curve would flatten even better had we

used a more accurate benchmark. The reason is that SCAN was fitted to accurate

Ar2 CCSD(T) interaction energies from Ref. [84]. The separation R = 1.5 Å is not

included in that work, but at 1.8 Å the values relative to our benchmarks and to

Ref. [84] benchmarks are 1.09 and 1.02, respectively. At 2.0 Å, one can additionally

compare with even more accurate benchmarks of Ref. [188] and the corresponding

ratios are 1.03, 0.98, and 0.97. This shows that in this region our ratios may have

uncertainties up to 0.07. However, this does not change any conclusions of our work

since, as seen in Table B.9, those functionals that cross 1 for R > 2.0 Å have the value

of Eextra/Edispx at 1.5 Å between 0.99 and 1.77, with the average value of 1.30. Thus,

the typical ratios are much larger than the differences resulting from uncertainties of

the benchmarks.

For Ar-HF, the ratio Eextra/Edispx from SCAN also flattens quite well: it crosses

1 at about 3.7 Å, goes up to 1.11 at 3.0 Å, and then down to 1.06 at the shortest R of

1.8 Å, cf. Table B.14. For the water dimer, the crossing is at about 3.3 Å, whereas the

value at the shortest distance of 2.5 Å is 1.15, cf. Table B.17. Note that only SCAN,

PBE, PBE0, and LDA functionals reach 1 in the range of R’s shown in Table B.17.
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Figure B.6: The non-xc part of the Ar2 interaction energy (in kcal/mol), i.e., the sum
of the electron-nuclei interaction energy (external potential energy), the
Hartree term, and of the nuclear repulsion Z2/R. The curves computed
with KS orbitals and densities are components from a standard sumper-
molecular DFT calculation. The HF ones are computed using the same
density functional expressions but the orbitals and densities are taken
from an HF calculations for Ar2.
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Figure B.7: Ratios of SCAN Ar2 interaction energy components to Edispx computed
with KS and HF densities.
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Figure B.8: Ratios of PBE Ar2 interaction energy components to Edispx computed
with KS and HF densities.
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Figure B.9: Ratios of B3LYP Ar2 interaction energy components to Edispx computed
with KS and HF densities.
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Figure B.10: Total interaction energy from SCAN, PBE, and B3LYP functionals
computed with KS versus HF orbitals and densities.
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Table B.4: Water dimer interaction energies (kcal/mol) from various methods in the
CBS limit. The basis sets utilized are aug-cc-pVTZ and aug-cc-pVQZ
with midbond functions (3s3p2d2f). These data are used to construct
Table B.17.

R B3LYP SCAN TPSS PBE0 PBE rPW86-PBE LDA Edispx SAPT CCSD(T) Edl
2.50 -0.1259 -1.7595 -0.3211 -1.1854 -0.9864 -0.4188 -6.5035 -5.9498 -0.0436 -0.8442 5.1056
3.00 -4.4296 -5.1651 -4.3483 -4.8376 -4.8571 -4.7938 -7.3009 -2.0927 -4.6938 -4.9435 -2.8508
3.50 -3.0224 -3.3734 -3.0158 -3.2796 -3.3243 -3.2186 -4.2508 -0.7734 -3.4245 -3.4042 -2.6308
4.00 -1.8047 -1.9787 -1.8941 -1.9914 -2.0117 -1.8905 -2.3266 -0.3072 -2.1120 -2.0681 -1.7609
4.50 -1.1263 -1.2080 -1.2035 -1.2415 -1.2388 -1.1563 -1.3486 -0.1340 -1.3249 -1.2903 -1.1563
5.00 -0.7554 -0.7897 -0.7913 -0.8161 -0.8011 -0.7574 -0.8508 -0.0639 -0.8757 -0.8508 -0.7868
5.50 -0.5374 -0.5480 -0.5448 -0.5663 -0.5476 -0.5270 -0.5788 -0.0332 -0.6093 -0.5909 -0.5578
6.00 -0.3982 -0.3982 -0.3928 -0.4114 -0.3936 -0.3841 -0.4166 -0.0185 -0.4422 -0.4283 -0.4098
6.50 -0.3037 -0.2997 -0.2943 -0.3098 -0.2944 -0.2898 -0.3123 -0.0109 -0.3320 -0.3212 -0.3103
7.00 -0.2368 -0.2319 -0.2271 -0.2399 -0.2270 -0.2245 -0.2412 -0.0067 -0.2560 -0.2475 -0.2408
7.50 -0.1882 -0.1835 -0.1794 -0.1898 -0.1792 -0.1778 -0.1906 -0.0043 -0.2020 -0.1951 -0.1908
8.00 -0.1520 -0.1478 -0.1444 -0.1530 -0.1442 -0.1433 -0.1535 -0.0029 -0.1623 -0.1567 -0.1538
8.50 -0.1245 -0.1210 -0.1181 -0.1252 -0.1179 -0.1172 -0.1255 -0.0019 -0.1325 -0.1278 -0.1259
9.00 -0.1033 -0.1003 -0.0979 -0.1039 -0.0977 -0.0971 -0.1041 -0.0014 -0.1096 -0.1058 -0.1044
10.00 -0.0734 -0.0712 -0.0695 -0.0738 -0.0693 -0.0690 -0.0739 -0.0007 -0.0776 -0.0749 -0.0742
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Table B.6: The antidamping effect for D3BJ(revPBE) at R = 6 Å for the argon
dimer. The parameters are C6 = 64.646200, C8 = 2304.037662, s6 = 1.00,
s8 = 2.3550, a1 = 0.5238, and a2 = 3.5016 in atomic units.

R6× Dispersion Energy (Å6 kcal/mol)
−C6/R

6 -890.7797
−C8/R

8 -246.9544
−C6/R

6 − C8/R
8 -1137.7341

−C6/(R6 + f 6
damp) -856.5795

−C8/(R8 + f 8
damp) -243.6297

−C6/(R6 + f 6
damp)− C8/(R8 + f 8

damp) -1100.2092
−s6C6/(R6 + f 6

damp) - 856.5795
−s8C8/(R8 + f 8

damp) -573.7480
−s6C6/(R6 + f 6

damp)− s8C8/(R8 + f 8
damp) -1430.3275
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Table B.12: Exchange energy contributions ∆Ex (kcal/mol) in the interaction en-
ergy of Ar–HF in the complete basis set limit. The midbond functions
(3s3p2d2f1g) were added to aug-cc-pVTZ and aug-cc-pVQZ basis sets.
These data are not discussed in chapter 2 but are included for compati-
bility with Ar2 molecule.

R B3LYP SCAN TPSS PBE0 PBE rPW86-PBE PW91 LDA
1.80 -53.7950 -65.1496 -64.7076 -49.1420 -64.6667 -63.8483 -65.5186 -82.0288
2.00 -33.1455 -40.9974 -40.0471 -30.1820 -40.2611 -40.2542 -40.8148 -51.6911
2.50 -7.8619 -10.0812 -9.7717 -7.4821 -10.3124 -10.3121 -10.4972 -13.2241
2.75 -3.3838 -4.3566 -4.6430 -3.5268 -4.9400 -4.7437 -5.1156 -5.9525
3.00 -1.2720 -1.6080 -2.2605 -1.6180 -2.2873 -2.0086 -2.4991 -2.3506
3.25 -0.3618 -0.3999 -1.1242 -0.7192 -1.0069 -0.7541 -1.2454 -0.6978
3.40 -0.1157 -0.0630 -0.7321 -0.4318 -0.5896 -0.3817 -0.8265 -0.2161
3.50 -0.0234 0.0641 -0.5426 -0.3024 -0.4000 -0.2269 -0.6275 -0.0223
3.60 0.0310 0.1451 -0.3951 -0.2078 -0.2608 -0.1229 -0.4727 0.1014
4.00 0.0643 0.1997 -0.0712 -0.0269 0.0047 0.0279 -0.1067 0.2272
4.50 0.0145 0.1155 0.0364 0.0192 0.0627 0.0297 0.0766 0.1396
5.00 -0.0076 0.0527 0.0370 0.0161 0.0447 0.0128 0.1113 0.0628
5.50 -0.0089 0.0214 0.0203 0.0082 0.0226 0.0040 0.0763 0.0251
6.00 -0.0056 0.0080 0.0091 0.0035 0.0098 0.0009 0.0327 0.0096
7.00 -0.0015 0.0010 0.0014 0.0005 0.0015 -0.0001 0.0024 0.0013
8.00 -0.0003 0.0001 0.0002 0.0001 0.0002 0.0000 0.0002 0.0002
9.00 -0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
10.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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Table B.13: Correlation energy contributions ∆Ec (kcal/mol) in the interaction en-
ergy of Ar–HF in the complete basis set limit. The midbond functions
(3s3p2d2f1g) were added to aug-cc-pVTZ and aug-cc-pVQZ basis sets.
These data are not discussed in chapter 2 but are included for compati-
bility with Ar2 molecule.

R B3LYP SCAN TPSS PBE0 PBE rPW86-PBE PW91 LDA
1.80 -10.2732 -12.8710 -11.8352 -12.5320 -12.6716 -12.6019 -12.5072 -5.3175
2.00 -7.6239 -8.6668 -8.0754 -8.5046 -8.6841 -8.6566 -8.6404 -3.7203
2.50 -3.2952 -3.0308 -2.6659 -2.7471 -2.8908 -2.9080 -2.9422 -1.2904
2.75 -2.0767 -1.7284 -1.4259 -1.4433 -1.5529 -1.5610 -1.5992 -0.7146
3.00 -1.2709 -0.9612 -0.7357 -0.7205 -0.7961 -0.7935 -0.8303 -0.3800
3.25 -0.7536 -0.5224 -0.3680 -0.3401 -0.3870 -0.3804 -0.4104 -0.1932
3.40 -0.5419 -0.3588 -0.2382 -0.2098 -0.2428 -0.2373 -0.2610 -0.1256
3.50 -0.4319 -0.2780 -0.1761 -0.1494 -0.1747 -0.1708 -0.1896 -0.0932
3.60 -0.3423 -0.2145 -0.1285 -0.1045 -0.1233 -0.1214 -0.1351 -0.0685
4.00 -0.1278 -0.0736 -0.0287 -0.0180 -0.0208 -0.0264 -0.0209 -0.0172
4.50 -0.0340 -0.0182 0.0025 0.0033 0.0062 -0.0018 0.0165 -0.0011
5.00 -0.0093 -0.0041 0.0047 0.0034 0.0060 0.0006 0.0181 0.0010
5.50 -0.0031 -0.0008 0.0026 0.0017 0.0031 0.0003 0.0108 0.0008
6.00 -0.0012 -0.0001 0.0011 0.0007 0.0013 0.0001 0.0043 0.0004
7.00 -0.0002 0.0000 0.0002 0.0001 0.0002 0.0000 0.0003 0.0001
8.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
9.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
10.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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Table B.14: The ratio Eextra/Edispx for Ar–HF in the CBS limit. The midbond func-
tions (3s3p2d2f1g) were added to aug-cc-pVTZ and aug-cc-pVQZ basis
sets. These data are plotted in Fig. 2.6.

R B3LYP SCAN TPSS PBE0 PBE rPW86-PBE PW91 LDA
1.80 0.8822 1.0574 0.9894 1.0526 1.0708 0.9101 1.1152 1.7686
2.00 0.8134 1.0477 0.8934 0.9854 0.9667 0.8448 1.0248 1.7797
2.50 0.6676 1.0809 0.6309 0.8374 0.8013 0.7707 0.8928 1.8266
3.00 0.4819 1.1099 0.4489 0.7430 0.7769 0.7037 0.9479 1.8309
3.40 0.2606 1.0803 0.4788 0.7107 0.8345 0.6029 1.1818 1.7323
3.50 0.1965 1.0633 0.5061 0.7058 0.8534 0.5722 1.2669 1.6902
3.60 0.1301 1.0408 0.5372 0.7006 0.8716 0.5397 1.3599 1.6411
4.00 -0.1360 0.9028 0.6574 0.6622 0.9138 0.4016 1.7590 1.3832
4.50 -0.3786 0.6768 0.6895 0.5511 0.8438 0.2411 2.0710 0.9959
5.00 -0.4556 0.4650 0.5638 0.3934 0.6511 0.1202 1.8717 0.6460
6.00 -0.3102 0.1722 0.2338 0.1490 0.2632 0.0166 0.6064 0.2277
7.00 -0.1277 0.0657 0.0838 0.0610 0.0945 0.0168 0.0969 0.0864
8.00 -0.0366 0.0287 0.0310 0.0280 0.0353 0.0142 0.0267 0.0375
9.00 0.0004 0.0172 0.0211 0.0205 0.0219 0.0141 0.0229 0.0258
10.00 0.0162 0.0181 0.0216 0.0211 0.0207 0.0152 0.0262 0.0234
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Table B.15: Exchange energy contributions ∆Ex (kcal/mol) to the interaction energy
of the water dimer in the CBS limit. The basis sets utilized are aug-
cc-pVTZ and aug-cc-pVQZ with midbond functions (3s3p2d2f). These
data are not discussed in chapter 2 but are included for compatibility
with Ar2 molecule.

R B3LYP SCAN TPSS PBE0 PBE rPW86-PBE LDA
2.50 -17.3215 -20.9318 -21.3237 -15.9164 -21.5999 -21.4286 -28.4036
3.00 -3.7223 -4.2101 -4.6845 -3.7246 -5.0762 -4.9145 -6.8863
3.50 -0.5982 -0.4791 -1.1390 -0.9042 -1.1455 -0.8773 -1.2363
4.00 -0.1067 0.0178 -0.3832 -0.2887 -0.2897 -0.1546 -0.1393
4.50 -0.1004 -0.0370 -0.1606 -0.1413 -0.1112 -0.0947 -0.0582
5.00 -0.1177 -0.0960 -0.0991 -0.0999 -0.0836 -0.1042 -0.1026
5.50 -0.1090 -0.1104 -0.0874 -0.0835 -0.0842 -0.1023 -0.1216
6.00 -0.0900 -0.1034 -0.0818 -0.0714 -0.0819 -0.0908 -0.1163
6.50 -0.0718 -0.0898 -0.0733 -0.0601 -0.0742 -0.0768 -0.1018
7.00 -0.0575 -0.0759 -0.0633 -0.0502 -0.0645 -0.0640 -0.0860
7.50 -0.0467 -0.0636 -0.0539 -0.0419 -0.0549 -0.0533 -0.0719
8.00 -0.0385 -0.0534 -0.0456 -0.0351 -0.0465 -0.0446 -0.0602
8.50 -0.0321 -0.0450 -0.0386 -0.0295 -0.0394 -0.0376 -0.0506
9.00 -0.0272 -0.0382 -0.0329 -0.0251 -0.0336 -0.0320 -0.0429
10.00 -0.0200 -0.0282 -0.0244 -0.0185 -0.0249 -0.0237 -0.0315
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Table B.16: Correlation energy contributions ∆Ec (kcal/mol)in the interaction en-
ergy of the water dimer in the CBS limit. The basis sets utilized are aug-
cc-pVTZ and aug-cc-pVQZ with midbond functions (3s3p2d2f). These
data are not discussed in chapter 2 but are included for compatibility
with Ar2 molecule.

R B3LYP SCAN TPSS PBE0 PBE rPW86-PBE LDA
2.50 -4.7657 -5.1481 -4.7401 -4.9369 -5.1019 -5.1013 -2.3759
3.00 -2.0517 -1.9237 -1.5564 -1.5729 -1.6790 -1.6895 -0.7898
3.50 -0.8015 -0.6477 -0.4380 -0.4120 -0.4536 -0.4513 -0.2291
4.00 -0.2866 -0.2054 -0.1153 -0.0964 -0.1029 -0.1044 -0.0609
4.50 -0.0993 -0.0655 -0.0288 -0.0248 -0.0202 -0.0283 -0.0186
5.00 -0.0389 -0.0234 -0.0103 -0.0118 -0.0067 -0.0148 -0.0096
5.50 -0.0199 -0.0105 -0.0078 -0.0095 -0.0063 -0.0115 -0.0077
6.00 -0.0128 -0.0061 -0.0073 -0.0083 -0.0067 -0.0095 -0.0067
6.50 -0.0092 -0.0043 -0.0067 -0.0070 -0.0064 -0.0077 -0.0058
7.00 -0.0070 -0.0033 -0.0058 -0.0058 -0.0056 -0.0062 -0.0050
7.50 -0.0055 -0.0026 -0.0049 -0.0048 -0.0048 -0.0051 -0.0042
8.00 -0.0044 -0.0022 -0.0041 -0.0040 -0.0040 -0.0042 -0.0035
8.50 -0.0037 -0.0018 -0.0034 -0.0033 -0.0034 -0.0035 -0.0030
9.00 -0.0031 -0.0015 -0.0029 -0.0028 -0.0028 -0.0029 -0.0026
10.00 -0.0022 -0.0011 -0.0021 -0.0020 -0.0021 -0.0021 -0.0019
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Table B.17: The ratio Eextra/Edispx for water dimer in the CBS limit. The basis
sets utilized are aug-cc-pVTZ and aug-cc-pVQZ with midbond functions
(3s3p2d2f) added in each case. These data are plotted in Fig. 2.6.

R B3LYP SCAN TPSS PBE0 PBE rPW86-PBE LDA
2.50 0.8793 1.1538 0.9121 1.0574 1.0239 0.9285 1.9512
3.00 0.7544 1.1059 0.7156 0.9494 0.9587 0.9285 2.1265
3.50 0.5064 0.9602 0.4979 0.8389 0.8968 0.7600 2.0947
4.00 0.1426 0.7089 0.4333 0.7501 0.8163 0.4217 1.8414
4.50 -0.2244 0.3852 0.3521 0.6354 0.6156 -0.0005 1.4350
5.00 -0.4921 0.0450 0.0705 0.4574 0.2225 -0.4606 1.0011
5.50 -0.6138 -0.2937 -0.3912 0.2578 -0.3059 -0.9277 0.6338
6.00 -0.6260 -0.6310 -0.9219 0.0874 -0.8779 -1.3930 0.3653
6.50 -0.6058 -0.9746 -1.4704 -0.0425 -1.4595 -1.8808 0.1810
7.00 -0.5982 -1.3292 -2.0406 -0.1433 -2.0588 -2.4201 0.0501
7.50 -0.6047 -1.6953 -2.6397 -0.2173 -2.6851 -3.0199 -0.0411
8.00 -0.6348 -2.0894 -3.2888 -0.2765 -3.3615 -3.6996 -0.1108
8.50 -0.7008 -2.5355 -4.0158 -0.3400 -4.1175 -4.4822 -0.1826
9.00 -0.8088 -3.0488 -4.8407 -0.4218 -4.9740 -5.3818 -0.2738
10.00 -1.1146 -4.2711 -6.7791 -0.6244 -6.9868 -7.5143 -0.5057
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Appendix C

APPENDIX FOR CHAPTER 3

The data used in chapter 3 is partly given here. The absolute percentage errors

(APEs) and median absolute percentage errors (MedAPEs) of the interaction energies

relative to CCSD(T) results that are listed in Table 3.2 are also given. The ratios of

DADE and disp(vdW-DF2) to Edispx plotted in Fig. 3.1 and mean absolute percentage

errors (MAPEs) given in Table 3.1 are given in Appendix D. See chapter 3 for other

details of these results.
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Table C.1: Dispersion and interaction energies (kcal/mol) at various separations of
monomers (angstrom) for the benzene-methane dimer.

R Edisp Eexch−disp Edispx CCSD(T) DADE disp(vdW-DF2) dlDF dlDF+DADE dlDF+disp(vdWDF2)
3.2800 -6.9226 1.3290 -5.5936 0.1194 -5.8932 -3.7809 6.4498 0.5566 2.6689
3.8000 -2.9475 0.3844 -2.5631 -1.4280 -2.8173 -2.0961 1.1997 -1.6176 -0.8964
4.8000 -0.6508 0.0282 -0.6226 -0.6383 -0.6549 -0.5968 -0.0354 -0.6903 -0.6322
5.8000 -0.1851 0.0017 -0.1834 -0.2157 -0.1872 -0.1520 -0.0423 -0.2295 -0.1943
6.8000 -0.0662 0.0001 -0.0661 -0.0828 -0.0646 -0.0417 -0.0195 -0.0840 -0.0612
7.8000 -0.0279 0.0000 -0.0279 -0.0364 -0.0256 -0.0154 -0.0080 -0.0336 -0.0234
8.8000 -0.0132 0.0000 -0.0132 -0.0177 -0.0115 -0.0069 -0.0038 -0.0153 -0.0107

Table C.2: Dispersion and interaction energies (kcal/mol) at various separations of
monomers (angstrom) for the benzene-water dimer.

R Edisp Eexch−disp Edispx CCSD(T) DADE disp(vdW-DF2) dlDF dlDF+DADE dlDF+disp(vdWDF2)
2.5000 -12.9665 3.0565 -9.9100 5.4577 -9.2485 -5.3623 17.7185 8.4701 12.3562
3.0000 -5.3002 0.8814 -4.4188 -2.6842 -4.7651 -3.1561 2.4843 -2.2808 -0.6718
3.5000 -2.2270 0.2328 -1.9942 -2.8021 -2.2675 -1.7751 -0.6428 -2.9103 -2.4179
4.0000 -0.9882 0.0580 -0.9302 -1.9127 -1.0548 -0.9630 -0.9113 -1.9661 -1.8743
4.5000 -0.4703 0.0139 -0.4564 -1.2346 -0.5113 -0.5055 -0.7237 -1.2350 -1.2292
5.0000 -0.2408 0.0032 -0.2376 -0.8148 -0.2658 -0.2576 -0.5412 -0.8070 -0.7988
6.0000 -0.0766 0.0002 -0.0764 -0.3978 -0.0839 -0.0683 -0.2989 -0.3829 -0.3673
7.0000 -0.0296 0.0000 -0.0296 -0.2199 -0.0306 -0.0239 -0.1733 -0.2039 -0.1972
8.0000 -0.0131 0.0000 -0.0131 -0.1323 -0.0127 -0.0110 -0.1076 -0.1203 -0.1186

Table C.3: Dispersion and interaction energies (kcal/mol) at various separations of
monomers (angstrom) for the diamino-dinitroethylene (FOX-7) dimer.

R Edisp Eexch−disp Edispx CCSD(T) DADE disp(vdW-DF2) dlDF dlDF+DADE dlDF+disp(vdWDF2)
6.3790 -10.6981 1.7913 -8.9068 -10.9250 -6.5088 -4.7574 -2.1349 -8.6438 -6.8924
6.5790 -7.4265 1.0524 -6.3741 -12.4044 -4.8760 -3.7798 -6.3064 -11.1824 -10.0862
7.5790 -1.4311 0.0582 -1.3729 -7.6001 -1.0781 -1.0728 -6.7080 -7.7861 -7.7808
8.5790 -0.4006 0.0026 -0.3980 -4.2065 -0.2955 -0.2629 -4.1699 -4.4654 -4.4328
9.5790 -0.1502 0.0001 -0.1501 -2.6672 -0.1033 -0.0732 -2.7658 -2.8691 -2.8390
10.5790 -0.0675 0.0000 -0.0675 -1.8430 -0.0424 -0.0282 -1.9553 -1.9976 -1.9835
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Table C.4: Dispersion and interaction energies (kcal/mol) at various separations of
monomers (angstrom) for the ethanol dimer.

R Edisp Eexch−disp Edispx CCSD(T) DADE disp(vdW-DF2) dlDF dlDF+DADE dlDF+disp(vdWDF2)
3.2560 -8.8101 1.5662 -7.2439 -1.2469 -7.4522 -4.9447 6.4891 -0.9631 1.5445
3.5580 -5.1426 0.7110 -4.4316 -2.7159 -4.8290 -3.5174 1.9281 -2.9009 -1.5893
4.5580 -1.0289 0.0454 -0.9835 -1.3517 -1.0934 -1.0126 -0.3382 -1.4316 -1.3508
5.5580 -0.2766 0.0025 -0.2741 -0.4930 -0.2988 -0.2537 -0.2226 -0.5213 -0.4763
6.5580 -0.0953 0.0001 -0.0952 -0.2146 -0.0995 -0.0666 -0.1207 -0.2202 -0.1873
7.5580 -0.0390 0.0000 -0.0390 -0.1110 -0.0381 -0.0226 -0.0708 -0.1088 -0.0933
8.5580 -0.0181 0.0000 -0.0181 -0.0651 -0.0166 -0.0096 -0.0460 -0.0626 -0.0556

Table C.5: Dispersion and interaction energies (kcal/mol) at various separations of
monomers (angstrom) for the ethylenedinitramine (EDNA) dimer.

R Edisp Eexch−disp Edispx CCSD(T) DADE disp(vdW-DF2) dlDF dlDF+DADE dlDF+disp(vdWDF2)
4.4980 -23.9854 4.0908 -19.8946 -6.2616 -17.7126 -14.4684 15.3192 -2.3934 0.8508
4.7980 -16.3291 2.3052 -14.0239 -10.9089 -12.9756 -11.2365 3.9595 -9.0162 -7.2771
5.7980 -4.9909 0.3423 -4.6486 -8.3537 -4.4335 -4.4677 -3.8909 -8.3244 -8.3586
6.7980 -1.7678 0.0554 -1.7124 -4.2986 -1.5959 -1.6030 -2.8256 -4.4215 -4.4286
7.7980 -0.6965 0.0090 -0.6875 -2.2874 -0.6214 -0.5279 -1.7853 -2.4067 -2.3132
8.7980 -0.2944 0.0011 -0.2933 -1.2750 -0.2553 -0.1698 -1.1018 -1.3572 -1.2716
9.7980 -0.1340 0.0001 -0.1339 -0.7283 -0.1105 -0.0600 -0.6698 -0.7803 -0.7298
10.7980 -0.0657 0.0000 -0.0657 -0.4271 -0.0509 -0.0242 -0.4099 -0.4608 -0.4341

Table C.6: Dispersion and interaction energies (kcal/mol) at various separations of
monomers (angstrom) for the imidazole dimer.

R Edisp Eexch−disp Edispx CCSD(T) DADE disp(vdW-DF2) dlDF dlDF+DADE dlDF+disp(vdWDF2)
4.9250 -11.1155 2.5149 -8.6006 -5.7778 -5.5920 -2.9359 1.6914 -3.9005 -1.2445
5.2470 -5.8871 1.1944 -4.6927 -10.0238 -3.5851 -2.1125 -5.3519 -8.9370 -7.4644
6.2470 -0.9901 0.0781 -0.9120 -5.3982 -0.7904 -0.6812 -4.3977 -5.1881 -5.0790
7.2470 -0.2457 0.0041 -0.2416 -2.4642 -0.1979 -0.1878 -2.1527 -2.3505 -2.3405
8.2470 -0.0852 0.0002 -0.0850 -1.3334 -0.0656 -0.0538 -1.2039 -1.2695 -1.2578
9.2470 -0.0365 0.0000 -0.0365 -0.8177 -0.0261 -0.0203 -0.7516 -0.7777 -0.7719
10.2470 -0.0178 0.0000 -0.0178 -0.5438 -0.0120 -0.0098 -0.5063 -0.5183 -0.5161
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Table C.7: Dispersion and interaction energies (kcal/mol) at various separations of
monomers (angstrom) for the methylformate dimer.

R Edisp Eexch−disp Edispx CCSD(T) DADE disp(vdW-DF2) dlDF dlDF+DADE dlDF+disp(vdWDF2)
4.2430 -5.5211 0.9202 -4.6009 -2.7780 -4.2640 -2.9155 1.7343 -2.5298 -1.1812
4.4340 -3.8547 0.5398 -3.3149 -3.3172 -3.1936 -2.3321 -0.0838 -3.2774 -2.4159
5.4340 -0.7280 0.0293 -0.6987 -1.5655 -0.6894 -0.6490 -0.8792 -1.5686 -1.5282
6.4340 -0.1976 0.0015 -0.1961 -0.5693 -0.1884 -0.1594 -0.3863 -0.5747 -0.5457
7.4340 -0.0702 0.0001 -0.0701 -0.2335 -0.0638 -0.0440 -0.1674 -0.2313 -0.2115
8.4340 -0.0298 0.0000 -0.0298 -0.1055 -0.0251 -0.0161 -0.0771 -0.1021 -0.0932

Table C.8: Dispersion and interaction energies (kcal/mol) at various separations of
monomers (angstrom) for the nitrobenzene dimer.

R Edisp Eexch−disp Edispx CCSD(T) DADE disp(vdW-DF2) dlDF dlDF+DADE dlDF+disp(vdWDF2)
2.9000 -31.1856 6.3583 -24.8273 0.8073 -26.5027 -19.3432 31.3840 4.8813 12.0408
3.2000 -18.6056 2.9529 -15.6527 -6.5251 -17.5432 -13.6700 11.6672 -5.8760 -2.0028
4.2000 -3.9495 0.1932 -3.7563 -4.5104 -4.1479 -3.9044 -0.7785 -4.9264 -4.6829
5.2000 -1.1270 0.0107 -1.1163 -1.8406 -1.1731 -1.0211 -0.8572 -2.0302 -1.8783
6.2000 -0.4084 0.0006 -0.4078 -0.9102 -0.4066 -0.2833 -0.6241 -1.0307 -0.9074
7.2000 -0.1739 0.0000 -0.1739 -0.5400 -0.1612 -0.1038 -0.4530 -0.6142 -0.5569
8.2000 -0.0827 0.0000 -0.0827 -0.3607 -0.0721 -0.0469 -0.3438 -0.4159 -0.3906

Table C.9: Dispersion and interaction energies (kcal/mol) at various separations of
monomers (angstrom) for the nitromethane dimer.

R Edisp Eexch−disp Edispx CCSD(T) DADE disp(vdW-DF2) dlDF dlDF+DADE dlDF+disp(vdWDF2)
2.8130 -13.0887 2.4216 -10.6671 -2.7945 -8.6551 -7.4249 8.7503 0.0952 1.3254
3.1310 -7.2632 1.0156 -6.2476 -6.1538 -5.4106 -4.9847 0.1512 -5.2593 -4.8335
4.1310 -1.3376 0.0553 -1.2823 -3.4767 -1.1759 -1.2792 -2.4832 -3.6591 -3.7624
5.1310 -0.3359 0.0026 -0.3333 -1.5789 -0.3192 -0.2831 -1.4328 -1.7520 -1.7159
6.1310 -0.1103 0.0001 -0.1102 -0.8461 -0.1049 -0.0717 -0.8376 -0.9425 -0.9093
7.1310 -0.0437 0.0000 -0.0437 -0.5120 -0.0394 -0.0256 -0.5293 -0.5687 -0.5549
8.1310 -0.0197 0.0000 -0.0197 -0.3355 -0.0169 -0.0114 -0.3564 -0.3733 -0.3678
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Table C.10: Dispersion and interaction energies (kcal/mol) at various separations of
monomers (angstrom) for the water dimer.

R Edisp Eexch−disp Edispx CCSD(T) DADE disp(vdW-DF2) dlDF dlDF+DADE dlDF+disp(vdWDF2)
2.3100 -11.7208 3.1567 -8.5641 8.3579 -4.1889 -2.0923 15.9488 11.7599 13.8565
2.6100 -5.9090 1.4370 -4.4720 -3.0752 -2.7503 -1.4609 1.4020 -1.3483 -0.0589
2.9100 -3.0150 0.6097 -2.4053 -5.0051 -1.7297 -1.0167 -2.5873 -4.3170 -3.6040
3.2100 -1.5692 0.2487 -1.3205 -4.4021 -1.0493 -0.7062 -3.1479 -4.1972 -3.8542
3.5100 -0.8386 0.0991 -0.7395 -3.3870 -0.6221 -0.4874 -2.7231 -3.3452 -3.2105
4.0100 -0.3176 0.0206 -0.2970 -2.0610 -0.2605 -0.2529 -1.8081 -2.0686 -2.0610
4.5100 -0.1336 0.0041 -0.1295 -1.2887 -0.1174 -0.1229 -1.1893 -1.3067 -1.3122
5.0100 -0.0625 0.0008 -0.0617 -0.8512 -0.0582 -0.0570 -0.8103 -0.8685 -0.8673
5.5100 -0.0321 0.0002 -0.0319 -0.5921 -0.0309 -0.0268 -0.5723 -0.6033 -0.5991
6.0100 -0.0178 0.0000 -0.0178 -0.4297 -0.0172 -0.0136 -0.4190 -0.4362 -0.4325
6.5100 -0.0104 0.0000 -0.0104 -0.3225 -0.0100 -0.0077 -0.3166 -0.3266 -0.3243
7.0100 -0.0064 0.0000 -0.0064 -0.2487 -0.0060 -0.0047 -0.2457 -0.2517 -0.2504
7.5050 -0.0041 0.0000 -0.0041 -0.1966 -0.0038 -0.0031 -0.1953 -0.1991 -0.1984
8.0050 -0.0027 0.0000 -0.0027 -0.1579 -0.0025 -0.0022 -0.1575 -0.1600 -0.1597
8.5050 -0.0019 0.0000 -0.0019 -0.1289 -0.0016 -0.0016 -0.1291 -0.1307 -0.1307
9.0050 -0.0013 0.0000 -0.0013 -0.1066 -0.0011 -0.0012 -0.1072 -0.1083 -0.1084

Table C.11: Dispersion and interaction energies (kcal/mol) at various separations of
monomers (angstrom) for the argon dimer.

R Edisp Eexch−disp Edispx CCSD(T) DADE disp(vdW-DF2) dlDF dlDF+DADE dlDF+disp(vdWDF2)
3.2000 -1.9126 0.2370 -1.6756 0.5257 -1.4119 -1.0385 2.2528 0.8409 1.2143
3.5000 -1.0335 0.0878 -0.9457 -0.1739 -0.8396 -0.6870 0.7430 -0.0966 0.0560
3.7600 -0.6232 0.0362 -0.5870 -0.2765 -0.5327 -0.4749 0.2771 -0.2556 -0.1977
4.2500 -0.2597 0.0066 -0.2531 -0.1968 -0.2349 -0.2296 0.0404 -0.1945 -0.1893
4.5000 -0.1729 0.0027 -0.1702 -0.1462 -0.1601 -0.1554 0.0105 -0.1496 -0.1449
5.0000 -0.0826 0.0005 -0.0821 -0.0774 -0.0799 -0.0680 -0.0072 -0.0871 -0.0753
6.0000 -0.0241 0.0000 -0.0241 -0.0238 -0.0239 -0.0198 -0.0027 -0.0266 -0.0226
7.0000 -0.0089 0.0000 -0.0089 -0.0088 -0.0084 -0.0059 -0.0003 -0.0087 -0.0062
8.0000 -0.0038 0.0000 -0.0038 -0.0038 -0.0034 -0.0024 0.0000 -0.0034 -0.0025
9.0000 -0.0019 0.0000 -0.0019 -0.0018 -0.0016 -0.0011 0.0000 -0.0016 -0.0011
10.0000 -0.0010 0.0000 -0.0010 -0.0010 -0.0008 -0.0005 0.0000 -0.0008 -0.0005

Table C.12: Dispersion and interaction energies (kcal/mol) at various separations of
monomers (angstrom) for the Ar-HF dimer.

R Edisp Eexch−disp Edispx CCSD(T) DADE disp(vdW-DF2) dlDF dlDF+DADE dlDF+disp(vdWDF2)
3.0000 -1.4120 0.1601 -1.2519 0.2846 -1.0066 -0.7749 1.5059 0.4993 0.7310
3.5000 -0.4923 0.0271 -0.4652 -0.2229 -0.4104 -0.3805 0.2057 -0.2047 -0.1748
4.0000 -0.1922 0.0044 -0.1878 -0.1534 -0.1744 -0.1785 0.0119 -0.1625 -0.1666
4.5000 -0.0842 0.0007 -0.0835 -0.0806 -0.0821 -0.0781 -0.0143 -0.0964 -0.0924
5.0000 -0.0409 0.0001 -0.0408 -0.0417 -0.0422 -0.0334 -0.0115 -0.0537 -0.0448
6.0000 -0.0121 0.0000 -0.0121 -0.0129 -0.0129 -0.0103 -0.0025 -0.0154 -0.0128
7.0000 -0.0045 0.0000 -0.0045 -0.0049 -0.0046 -0.0033 -0.0006 -0.0051 -0.0038
8.0000 -0.0020 0.0000 -0.0020 -0.0021 -0.0019 -0.0012 -0.0002 -0.0021 -0.0014
9.0000 -0.0009 0.0000 -0.0009 -0.0010 -0.0009 -0.0005 -0.0001 -0.0010 -0.0006
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Table C.13: APEs and MedAPEs relative to CCSD(T) values for the benzene-
methane dimer.

R dlDF+DADE dlDF+disp(vdWDF2)
3.2800 366.0720 2134.7953
3.8000 13.2749 37.2278
4.8000 8.1479 0.9534
5.8000 6.3760 9.9421
6.8000 1.4706 26.1361
7.8000 7.6615 35.6093
8.8000 13.2646 39.2619

MedAPE 8.1479 35.6093

Table C.14: APEs and MedAPEs relative to CCSD(T) values for the benzene-water
dimer.

R dlDF+DADE dlDF+disp(vdWDF2)
2.5000 55.1955 126.4001
3.0000 15.0304 74.9720
3.5000 3.8613 13.7117
4.0000 2.7897 2.0092
4.5000 0.0348 0.4387
5.0000 0.9549 1.9631
6.0000 3.7602 7.6800
7.0000 7.2654 10.3119
8.0000 9.0246 10.3406

MedAPE 3.8613 10.3119

Table C.15: APEs and MedAPEs relative to CCSD(T) values for the diamino-
dinitroethylene (FOX-7) dimer.

R dlDF+DADE dlDF+disp(vdWDF2)
6.3790 20.8808 36.9121
6.5790 9.8510 18.6880
7.5790 2.4466 2.3767
8.5790 6.1551 5.3790
9.5790 7.5726 6.4426
10.5790 8.3912 7.6252
MedAPE 7.9819 7.0339
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Table C.16: APEs and MedAPEs relative to CCSD(T) values for the ethanol dimer.
R dlDF+DADE dlDF+disp(vdWDF2)

3.2560 22.7622 223.8660
3.5580 6.8115 41.4824
4.5580 5.9137 0.0644
5.5580 5.7441 3.3870
6.5580 2.6030 12.7285
7.5580 1.9563 15.9070
8.5580 3.8580 14.5239

MedAPE 5.7441 14.5239

Table C.17: APEs and MedAPEs relative to CCSD(T) values for the ethylene-
dinitramine (EDNA) dimer.

R dlDF+DADE dlDF+disp(vdWDF2)
4.4980 61.7770 113.5879
4.7980 17.3499 33.2923
5.7980 0.3514 0.0582
6.7980 2.8600 3.0254
7.7980 5.2165 1.1303
8.7980 6.4462 0.2634
9.7980 7.1353 0.2035
10.7980 7.8887 1.6240
MedAPE 6.7908 1.3772

Table C.18: APEs and MedAPEs relative to CCSD(T) values for the imidazole dimer.
R dlDF+DADE dlDF+disp(vdWDF2)

4.9250 32.4905 78.4610
5.2470 10.8427 25.5332
6.2470 3.8919 5.9133
7.2470 4.6135 5.0201
8.2470 4.7916 5.6720
9.2470 4.8901 5.6049
10.2470 4.6983 5.1000
MedAPE 4.7916 5.6720
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Table C.19: APEs and MedAPEs relative to CCSD(T) values for the methylformate
dimer.

R dlDF+DADE dlDF+disp(vdWDF2)
4.2430 8.9368 57.4806
4.4340 1.2007 27.1712
5.4340 0.2009 2.3821
6.4340 0.9548 4.1374
7.4340 0.9639 9.4393
8.4340 3.1756 11.6488

MedAPE 1.0823 10.5440

Table C.20: APEs and MedAPEs relative to CCSD(T) values for the nitrobenzene
dimer.

R dlDF+DADE dlDF+disp(vdWDF2)
2.9000 504.6461 1391.4795
3.2000 9.9476 69.3057
4.2000 9.2239 3.8249
5.2000 10.3029 2.0476
6.2000 13.2458 0.3025
7.2000 13.7483 3.1328
8.2000 15.2844 8.2896

MedAPE 13.2458 3.8249

Table C.21: APEs and MedAPEs relative to CCSD(T) values for the nitromethane
dimer.

R dlDF+DADE dlDF+disp(vdWDF2)
2.8130 103.4063 147.4279
3.1310 14.5350 21.4549
4.1310 5.2454 8.2161
5.1310 10.9604 8.6766
6.1310 11.3959 7.4688
7.1310 11.0776 8.3782
8.1310 11.2466 9.6234

MedAPE 11.2466 8.6766
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Table C.22: APEs and MedAPEs relative to CCSD(T) values for the water dimer.

R dlDF+DADE dlDF+disp(vdWDF2)
2.3100 40.7042 65.7892
2.6100 56.1541 98.0841
2.9100 13.7481 27.9924
3.2100 4.6536 12.4472
3.5100 1.2348 5.2124
4.0100 0.3680 0.0037
4.5100 1.3980 1.8263
5.0100 2.0310 1.8924
5.5100 1.8790 1.1737
6.0100 1.5124 0.6565
6.5100 1.2738 0.5474
7.0100 1.2043 0.6727
7.5050 1.2560 0.9144
8.0050 1.3177 1.1400
8.5050 1.4277 1.3811
9.0050 1.5861 1.6382

MedAPE 1.4700 1.5097

Table C.23: APEs and MedAPEs relative to CCSD(T) values for the argon dimer.

R dlDF+DADE dlDF+disp(vdWDF2)
3.2000 59.9569 130.9812
3.5000 44.4562 132.1916
3.7600 7.5636 28.4900
4.2500 1.1407 3.8197
4.5000 2.2863 0.9170
5.0000 12.6289 2.7128
6.0000 11.9913 5.0739
7.0000 1.5176 29.5157
8.0000 9.5346 34.5668
9.0000 14.0281 38.6664
10.0000 16.6972 47.9597
MedAPE 11.9913 29.5157

143



Table C.24: APEs and MedAPEs relative to CCSD(T) values for the Ar-HF dimer.

R dlDF+DADE dlDF+disp(vdWDF2)
3.0000 75.4079 156.8348
3.5000 8.1584 21.5795
4.0000 5.8969 8.6167
4.5000 19.6502 14.7148
5.0000 28.6668 7.5273
6.0000 18.7991 0.7818
7.0000 5.2974 21.9431
8.0000 2.3270 33.2879
9.0000 5.9300 43.1671

MedAPE 8.1584 21.5795
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Appendix D

APPENDIX FOR CHAPTERS 3 AND 4

In the following tables we give dispersion energies from various methods used

in chapter 3 and 4. We also listed ratios of the dispersion energies from these methods

to Edispx values which are plotted in Fig. 3.1 and Figs. 4.2, 4.3, and 4.2. The absolute

percentage errors (APEs) at the different monomer separations are also given which are

used to calculate mean absolute percentage errors (MAPEs) for the given dimers which

are listed in Table 3.1 and plotted in Fig.4.1. The APEs and MAPEs relative to Edisp

are also given which are listed in Table 4.2. All energy values are given in (kcal/mol)

and all separations are given in angstrom. See chapter 3 and 4 for the computational

details of these results.

145



T
ab

le
D
.1
:

D
isp

er
sio

n
en
er
gi
es

(k
ca
l/
m
ol
)f
ro
m

va
rio

us
m
et
ho

ds
fo
rt

he
be

nz
en
e-
m
et
ha

ne
at

va
rio

us
m
on

om
er

se
pa

ra
tio

ns
(a
ng

st
ro
m
).

R
E

di
sp

E
ex

ch
−

di
sp

E
di

sp
x

D
as

D
3B

J[
H
F]

D
A
D
E

D
3[
N
o-
sw

itc
hi
ng

]
di
sp
(V

V
10

)
di
sp
(v
dW

-D
F2

)
di
sp
(M

BD
)

di
sp
(V

V
09

)
D
3B

J[
PB

E]
X
D
M
10

[P
W

86
-P

BE
]

D
3M

BJ
[P
BE

]
X
D
M
8[
PW

86
-P

BE
]

X
D
M
8[
N
o-
sw

itc
hi
ng

]
di
sp
(v
dW

-D
F1

)
X
D
M
10

[N
o-
sw

itc
hi
ng

]
3.
28

00
-6
.9
22

6
1.
32

90
-5
.5
93

6
-5
.6
08

8
-5
.2
97

7
-5
.8
93

2
-6
.9
53

5
-2
.3
49

0
-3
.7
80

9
-2
.1
43

6
-2
.8
19

1
-2
.1
39

1
-1
.9
84

1
-2
.2
00

4
-1
.5
73

2
-9
.5
35

0
-5
.3
39

2
-1
6.
38

47
3.
80

00
-2
.9
47

5
0.
38

44
-2
.5
63

1
-2
.4
59

4
-2
.3
68

6
-2
.8
17

3
-2
.6
68

0
-1
.4
31

7
-2
.0
96

1
-1
.3
68

3
-1
.8
58

4
-1
.3
66

6
-1
.4
07

4
-1
.3
40

4
-1
.1
37

1
-3
.4
90

3
-3
.0
83

3
-4
.9
81

1
4.
80

00
-0
.6
50

8
0.
02

82
-0
.6
22

6
-0
.5
81

5
-0
.5
72

6
-0
.6
54

9
-0
.5
94

9
-0
.4
96

1
-0
.5
96

8
-0
.4
38

9
-0
.6
53

1
-0
.4
82

2
-0
.5
84

8
-0
.4
53

7
-0
.5
00

9
-0
.7
33

0
-1
.0
29

4
-0
.8
62

0
5.
80

00
-0
.1
85

1
0.
00

17
-0
.1
83

4
-0
.1
72

9
-0
.1
77

6
-0
.1
87

2
-0
.1
81

2
-0
.1
73

2
-0
.1
52

0
-0
.1
46

4
-0
.2
20

8
-0
.1
66

9
-0
.2
08

0
-0
.1
57

5
-0
.1
91

0
-0
.2
15

7
-0
.3
36

4
-0
.2
33

9
6.
80

00
-0
.0
66

2
0.
00

01
-0
.0
66

1
-0
.0
62

7
-0
.0
66

8
-0
.0
64

6
-0
.0
67

7
-0
.0
66

1
-0
.0
41

7
-0
.0
57

3
-0
.0
82

8
-0
.0
64

9
-0
.0
78

9
-0
.0
62

0
-0
.0
75

4
-0
.0
78

8
-0
.1
08

6
-0
.0
82

4
7.
80

00
-0
.0
27

9
0.
00

00
-0
.0
27

9
-0
.0
26

4
-0
.0
28

9
-0
.0
25

6
-0
.0
29

2
-0
.0
29

0
-0
.0
15

4
-0
.0
25

5
-0
.0
34

9
-0
.0
28

5
-0
.0
33

9
-0
.0
27

4
-0
.0
33

0
-0
.0
33

6
-0
.0
39

4
-0
.0
34

5
8.
80

00
-0
.0
13

2
0.
00

00
-0
.0
13

2
-0
.0
12

5
-0
.0
13

9
-0
.0
11

5
-0
.0
14

0
-0
.0
14

2
-0
.0
06

9
-0
.0
12

5
-0
.0
16

3
-0
.0
13

8
-0
.0
16

1
-0
.0
13

4
-0
.0
15

8
-0
.0
15

9
-0
.0
17

1
-0
.0
16

2

T
ab

le
D
.2
:

D
isp

er
sio

n
en
er
gi
es

(k
ca
l/
m
ol
)f

ro
m

va
rio

us
m
et
ho

ds
fo
rt

he
be

nz
en
e-
wa

te
ra

tv
ar
io
us

m
on

om
er

se
pa

ra
tio

ns
(a
ng

st
ro
m
).

R
E

di
sp

E
ex

ch
−

di
sp

E
di

sp
x

D
as

D
3B

J[
H
F]

D
A
D
E

D
3[
N
o-
sw

itc
hi
ng

]
di
sp
(V

V
10
)

di
sp
(v
dW

-D
F2

)
di
sp
(M

BD
)

di
sp
(V

V
09
)

D
3B

J[
PB

E]
X
D
M
10
[P
W

86
-P

BE
]

D
3M

BJ
[P
BE

]
X
D
M
8[
PW

86
-P

BE
]

X
D
M
8[
N
o-
sw

itc
hi
ng

]
di
sp
(v
dW

-D
F1

)
X
D
M
10
[N

o-
sw

itc
hi
ng

]
2.
50
00

-1
2.
96
65

3.
05
65

-9
.9
10
0

-1
1.
27
40

-1
0.
19
67

-9
.2
48
5

-1
8.
12
32

-3
.1
24
0

-5
.3
62
3

-2
.4
31
8

-2
.7
24
9

-2
.4
82
1

-1
.8
87

2
-2
.6
94
8

-1
.4
90
3

-2
6.
14
73

-7
.6
36
6

-5
7.
44
21

3.
00
00

-5
.3
00
2

0.
88
14

-4
.4
18
8

-4
.7
56
7

-4
.7
24
5

-4
.7
65
1

-5
.9
13
0

-2
.0
42
8

-3
.1
56
1

-1
.9
14
3

-2
.1
55
3

-1
.8
70
0

-1
.6
07
6

-1
.9
13
4

-1
.2
69
3

-8
.0
89
8

-4
.5
82
3

-1
3.
45
03

3.
50
00

-2
.2
27
0

0.
23
28

-1
.9
94
2

-2
.1
08
2

-2
.0
95
6

-2
.2
67
5

-2
.3
20
9

-1
.2
39
4

-1
.7
75
1

-1
.2
35
7

-1
.4
35
8

-1
.2
32
6

-1
.2
18
0

-1
.1
99
4

-0
.9
70
8

-3
.0
30
6

-2
.6
58
2

-4
.2
44
5

4.
00
00

-0
.9
88
2

0.
05
80

-0
.9
30
2

-0
.9
94
9

-0
.9
79
6

-1
.0
54
8

-1
.0
36
1

-0
.7
21
4

-0
.9
63
0

-0
.6
96
4

-0
.8
53
6

-0
.7
33
1

-0
.8
22
2

-0
.6
93
4

-0
.6
72
0

-1
.3
04
0

-1
.5
28
5

-1
.6
38
7

4.
50
00

-0
.4
70
3

0.
01
39

-0
.4
56
4

-0
.5
01
1

-0
.4
91
2

-0
.5
11
3

-0
.5
09
0

-0
.4
14
4

-0
.5
05
5

-0
.3
78
7

-0
.4
83
0

-0
.4
17
3

-0
.5
04
1

-0
.3
91
3

-0
.4
28
4

-0
.6
22
6

-0
.8
79
9

-0
.7
29
6

5.
00
00

-0
.2
40
8

0.
00
32

-0
.2
37
6

-0
.2
68
3

-0
.2
62
8

-0
.2
65
8

-0
.2
69
5

-0
.2
38
6

-0
.2
57
6

-0
.2
10
8

-0
.2
71
2

-0
.2
38
4

-0
.2
94
7

-0
.2
23
8

-0
.2
61
1

-0
.3
22
6

-0
.5
05
2

-0
.3
61
1

6.
00
00

-0
.0
76
6

0.
00
02

-0
.0
76
4

-0
.0
89
8

-0
.0
88
2

-0
.0
83
9

-0
.0
89
6

-0
.0
85
6

-0
.0
68
3

-0
.0
74
1

-0
.0
90
6

-0
.0
84
6

-0
.1
02
9

-0
.0
80
3

-0
.0
96
5

-0
.1
04
0

-0
.1
65
7

-0
.1
10
4

7.
00
00

-0
.0
29
6

0.
00
00

-0
.0
29
6

-0
.0
35
4

-0
.0
34
8

-0
.0
30
6

-0
.0
35
3

-0
.0
34
9

-0
.0
23
9

-0
.0
30
3

-0
.0
33
5

-0
.0
34
1

-0
.0
40
3

-0
.0
32
7

-0
.0
38
9

-0
.0
40
1

-0
.0
57
5

-0
.0
41
5

8.
00
00

-0
.0
13
1

0.
00
00

-0
.0
13
1

-0
.0
15
8

-0
.0
15
5

-0
.0
12
7

-0
.0
15
7

-0
.0
16
2

-0
.0
11
0

-0
.0
13
8

-0
.0
13
5

-0
.0
15
4

-0
.0
17
8

-0
.0
14
9

-0
.0
17
4

-0
.0
17
6

-0
.0
24
2

-0
.0
18
0

T
ab

le
D
.3
:

D
isp

er
sio

n
en
er
gi
es

(k
ca
l/
m
ol
)
fro

m
va
rio

us
m
et
ho

ds
fo
r
th
e
di
am

in
o-
di
ni
tr
oe
th
yl
en
e
(F

O
X
-7
)
di
m
er

at
va
rio

us
m
on

om
er

se
pa

ra
tio

ns
(a
ng

st
ro
m
).

R
E

di
sp

E
ex

ch
−

di
sp

E
di

sp
x

D
as

D
3B

J[
H
F]

D
A
D
E

D
3[
N
o-
sw

itc
hi
ng

]
di
sp
(V

V
10
)

di
sp
(v
dW

-D
F2

)
di
sp
(M

BD
)

di
sp
(V

V
09
)

D
3B

J[
PB

E]
X
D
M
10
[P
W

86
-P

BE
]

D
3M

BJ
[P
BE

]
X
D
M
8[
PW

86
-P

BE
]

X
D
M
8[
N
o-
sw

itc
hi
ng

]
di
sp
(v
dW

-D
F1

)
X
D
M
10
[N

o-
sw

itc
hi
ng

]
6.
37
90

-1
0.
69
81

1.
79
13

-8
.9
06
8

-9
.7
62
2

-6
.9
54
4

-6
.5
08
8

-1
4.
88
42

-3
.4
05
1

-4
.7
57
4

-2
.6
59
3

-3
.9
04
1

-2
.4
13
1

-2
.1
43
0

-2
.4
13
1

-1
.7
68
9

-2
0.
03
37

-7
.0
87
6

-4
6.
87
88

6.
57
90

-7
.4
26
5

1.
05
24

-6
.3
74
1

-6
.8
23
5

-5
.3
13
6

-4
.8
76
0

-8
.9
84
6

-2
.7
95
2

-3
.7
79
8

-2
.3
19
4

-3
.3
81
0

-2
.0
66
2

-1
.8
87
9

-2
.0
66
2

-1
.5
64
7

-1
1.
69
62

-5
.7
11
9

-2
3.
45
72

7.
57
90

-1
.4
31
1

0.
05
82

-1
.3
72
9

-1
.3
45
1

-1
.1
98
8

-1
.0
78
1

-1
.3
01
2

-0
.9
45
2

-1
.0
72
8

-0
.9
64
1

-1
.2
46
4

-0
.8
33
8

-0
.8
61
2

-0
.8
33
8

-0
.7
40
8

-1
.4
90
9

-1
.8
48
6

-1
.9
18
3

8.
57
90

-0
.4
00
6

0.
00
26

-0
.3
98
0

-0
.3
68
5

-0
.3
31
9

-0
.2
95
5

-0
.3
40
6

-0
.3
19
5

-0
.2
62
9

-0
.3
37
1

-0
.4
11
2

-0
.3
00
0

-0
.3
28
3

-0
.3
00
0

-0
.2
98
8

-0
.3
64
0

-0
.5
70
1

-0
.4
01
7

9.
57
90

-0
.1
50
2

0.
00
01

-0
.1
50
1

-0
.1
32
4

-0
.1
20
4

-0
.1
03
3

-0
.1
22
3

-0
.1
23
8

-0
.0
73
2

-0
.1
30
6

-0
.1
54
2

-0
.1
16
4

-0
.1
24
8

-0
.1
16
4

-0
.1
19
2

-0
.1
26
1

-0
.1
78
8

-0
.1
31
8

10
.5
79
0

-0
.0
67
5

0.
00
00

-0
.0
67
5

-0
.0
57
2

-0
.0
52
3

-0
.0
42
4

-0
.0
53
0

-0
.0
55
4

-0
.0
28
2

-0
.0
57
7

-0
.0
67
1

-0
.0
51
6

-0
.0
53
8

-0
.0
51
6

-0
.0
52
6

-0
.0
53
6

-0
.0
66
4

-0
.0
54
8

146



T
ab

le
D
.4
:

D
isp

er
sio

n
en
er
gi
es

(k
ca
l/
m
ol
)
fro

m
va
rio

us
m
et
ho

ds
fo
r
th
e
et
ha

no
ld

im
er

at
va
rio

us
m
on

om
er

se
pa

ra
tio

ns
(a
ng

st
ro
m
).

R
E

di
sp

E
ex

ch
−

di
sp

E
di

sp
x

D
as

D
3B

J[
H
F]

D
A
D
E

D
3[
N
o-
sw

itc
hi
ng

]
di
sp
(V

V
10

)
di
sp
(v
dW

-D
F2

)
di
sp
(M

BD
)

di
sp
(V

V
09

)
D
3B

J[
PB

E]
X
D
M
10

[P
W

86
-P

BE
]

D
3M

BJ
[P
BE

]
X
D
M
8[
PW

86
-P

BE
]

X
D
M
8[
N
o-
sw

itc
hi
ng

]
di
sp
(v
dW

-D
F1

)
X
D
M
10

[N
o-
sw

itc
hi
ng

]
3.
25

60
-8
.8
10

1
1.
56

62
-7
.2
43

9
-7
.1
82

5
-6
.3
73

0
-7
.4
52

2
-8
.9
17

6
-3
.1
35

6
-4
.9
44

7
-2
.8
04

6
-3
.6
24

4
-2
.4
45

5
-2
.2
65

2
-2
.4
30

6
-1
.8
13

5
-1
2.
70

11
-7
.0
94

8
-2
2.
44

05
3.
55

80
-5
.1
42

6
0.
71

10
-4
.4
31

6
-4
.3
80

5
-4
.0
31

5
-4
.8
29

0
-4
.8
82

5
-2
.3
36

1
-3
.5
17

4
-2
.2
14

6
-2
.8
88

4
-1
.9
26

7
-1
.9
08

0
-1
.8
64

3
-1
.5
37

1
-6
.7
30

7
-5
.1
56

2
-1
0.
40

28
4.
55

80
-1
.0
28

9
0.
04

54
-0
.9
83

5
-0
.9
90

2
-0
.9
30

3
-1
.0
93

4
-0
.9
77

8
-0
.8
00

7
-1
.0
12

6
-0
.7
49

5
-1
.0
48

0
-0
.7
24

4
-0
.8
53

9
-0
.6
74

7
-0
.7
20

7
-1
.2
35

6
-1
.7
13

6
-1
.5
08

3
5.
55

80
-0
.2
76

6
0.
00

25
-0
.2
74

1
-0
.2
81

5
-0
.2
70

3
-0
.2
98

8
-0
.2
76

3
-0
.2
72

1
-0
.2
53

7
-0
.2
44

3
-0
.3
48

4
-0
.2
48

0
-0
.3
06

5
-0
.2
33

0
-0
.2
77

4
-0
.3
31

0
-0
.5
48

6
-0
.3
64

7
6.
55

80
-0
.0
95

3
0.
00

01
-0
.0
95

2
-0
.0
97

7
-0
.0
96

2
-0
.0
99

5
-0
.0
97

5
-0
.1
00

9
-0
.0
66

6
-0
.0
92

2
-0
.1
27

0
-0
.0
92

7
-0
.1
11

9
-0
.0
88

3
-0
.1
06

2
-0
.1
12

9
-0
.1
72

9
-0
.1
18

8
7.
55

80
-0
.0
39

0
0.
00

00
-0
.0
39

0
-0
.0
39

7
-0
.0
39

8
-0
.0
38

1
-0
.0
40

3
-0
.0
42

4
-0
.0
22

6
-0
.0
39

7
-0
.0
52

5
-0
.0
39

1
-0
.0
45

9
-0
.0
37

7
-0
.0
44

6
-0
.0
45

7
-0
.0
59

6
-0
.0
47

0
8.
55

80
-0
.0
18

1
0.
00

00
-0
.0
18

1
-0
.0
18

2
-0
.0
18

5
-0
.0
16

6
-0
.0
18

7
-0
.0
20

0
-0
.0
09

6
-0
.0
18

9
-0
.0
24

1
-0
.0
18

3
-0
.0
21

1
-0
.0
17

8
-0
.0
20

7
-0
.0
20

9
-0
.0
24

4
-0
.0
21

3

T
ab

le
D
.5
:

D
isp

er
sio

n
en
er
gi
es

(k
ca
l/
m
ol
)
fro

m
va
rio

us
m
et
ho

ds
fo
r
th
e
et
hy

le
ne
di
ni
tr
am

in
e
(E

D
N
A
)
di
m
er

at
va
rio

us
m
on

om
er

se
pa

ra
tio

ns
(a
ng

st
ro
m
).

R
E

di
sp

E
ex

ch
−

di
sp

E
di

sp
x

D
as

D
3B

J[
H
F]

D
A
D
E

D
3[
N
o-
sw

itc
hi
ng

]
di
sp
(V

V
10
)

di
sp
(v
dW

-D
F2

)
di
sp
(M

BD
)

di
sp
(V

V
09
)

D
3B

J[
PB

E]
X
D
M
10
[P
W

86
-P

BE
]

D
3M

BJ
[P
BE

]
X
D
M
8[
PW

86
-P

BE
]

X
D
M
8[
N
o-
sw

itc
hi
ng

]
di
sp
(v
dW

-D
F1

)
X
D
M
10
[N

o-
sw

itc
hi
ng

]
4.
49
80

-2
3.
98
54

4.
09
08

-1
9.
89
46

-2
4.
43
46

-1
7.
79
13

-1
7.
71
26

-2
6.
16
40

-9
.5
90
4

-1
4.
46
84

-6
.9
91
4

-1
3.
17
21

-6
.5
80
7

-5
.6
96
2

-6
.7
36
0

-4
.6
11
4

-3
3.
68
74

-2
0.
01
13

-6
2.
10
68

4.
79
80

-1
6.
32
91

2.
30
52

-1
4.
02
39

-1
6.
71
38

-1
2.
74
43

-1
2.
97
56

-1
6.
54
86

-7
.7
60
6

-1
1.
23
65

-6
.0
28
9

-1
0.
99
22

-5
.5
52
0

-5
.0
23
7

-5
.5
68
6

-4
.0
81
3

-2
0.
79
69

-1
5.
80
15

-3
4.
31
10

5.
79
80

-4
.9
90
9

0.
34
23

-4
.6
48
6

-5
.1
08
2

-4
.1
59
8

-4
.4
33
5

-4
.5
36
0

-3
.5
55
3

-4
.4
67
7

-3
.0
55
9

-5
.1
28
2

-2
.7
88
0

-2
.9
42
8

-2
.6
64
3

-2
.4
42
7

-5
.3
28
0

-6
.8
55
8

-6
.9
33
2

6.
79
80

-1
.7
67
8

0.
05
54

-1
.7
12
4

-1
.7
56
6

-1
.4
85
4

-1
.5
95
9

-1
.5
44
6

-1
.5
35
0

-1
.6
03
0

-1
.3
42
6

-2
.1
53
4

-1
.2
37
1

-1
.4
17
6

-1
.1
65
5

-1
.2
34
2

-1
.7
29
3

-2
.8
48
3

-1
.9
92
1

7.
79
80

-0
.6
96
5

0.
00
90

-0
.6
87
5

-0
.6
68
8

-0
.5
85
6

-0
.6
21
4

-0
.5
99
6

-0
.6
56
8

-0
.5
27
9

-0
.5
85
1

-0
.8
97
3

-0
.5
34
5

-0
.6
17
0

-0
.5
04
5

-0
.5
65
5

-0
.6
54
5

-1
.1
29
8

-0
.7
11
0

8.
79
80

-0
.2
94
4

0.
00
11

-0
.2
93
3

-0
.2
76
1

-0
.2
48
6

-0
.2
55
3

-0
.2
52
7

-0
.2
87
7

-0
.1
69
8

-0
.2
63
8

-0
.3
84
7

-0
.2
36
9

-0
.2
67
8

-0
.2
25
2

-0
.2
54
3

-0
.2
71
3

-0
.4
28
2

-0
.2
85
1

9.
79
80

-0
.1
34
0

0.
00
01

-0
.1
33
9

-0
.1
23
2

-0
.1
13
1

-0
.1
10
5

-0
.1
14
6

-0
.1
32
6

-0
.0
60
0

-0
.1
24
8

-0
.1
73
6

-0
.1
10
2

-0
.1
21
7

-0
.1
05
6

-0
.1
18
0

-0
.1
21
5

-0
.1
63
1

-0
.1
25
3

10
.7
98
0

-0
.0
65
7

0.
00
00

-0
.0
65
7

-0
.0
59
2

-0
.0
55
2

-0
.0
50
9

-0
.0
55
8

-0
.0
65
0

-0
.0
24
2

-0
.0
62
5

-0
.0
83
5

-0
.0
54
3

-0
.0
58
9

-0
.0
52
5

-0
.0
57
8

-0
.0
58
6

-0
.0
67
0

-0
.0
59
7

T
ab

le
D
.6
:

D
isp

er
sio

n
en
er
gi
es

(k
ca
l/
m
ol
)f
ro
m

va
rio

us
m
et
ho

ds
fo
rt

he
im

id
az
ol
e
di
m
er

at
va
rio

us
m
on

om
er

se
pa

ra
tio

ns
(a
ng

st
ro
m
).

R
E

di
sp

E
ex

ch
−

di
sp

E
di

sp
x

D
as

D
3B

J[
H
F]

D
A
D
E

D
3[
N
o-
sw

itc
hi
ng

]
di
sp
(V

V
10
)

di
sp
(v
dW

-D
F2

)
di
sp
(M

BD
)

di
sp
(V

V
09
)

D
3B

J[
PB

E]
X
D
M
10
[P
W

86
-P

BE
]

D
3M

BJ
[P
BE

]
X
D
M
8[
PW

86
-P

BE
]

X
D
M
8[
N
o-
sw

itc
hi
ng

]
di
sp
(v
dW

-D
F1

)
X
D
M
10
[N

o-
sw

itc
hi
ng

]
4.
92
50

-1
1.
11
55

2.
51
49

-8
.6
00
6

-9
.5
70
2

-4
.8
30
6

-5
.5
92
0

-2
5.
26
17

-2
.1
11
7

-2
.9
35
9

-1
.7
13
4

-2
.0
29
7

-1
.7
10
4

-1
.5
91
0

-1
.7
32
8

-1
.2
93
4

-3
8.
65
54

-4
.4
78
6

-1
45
.8
19
0

5.
24
70

-5
.8
87
1

1.
19
44

-4
.6
92
7

-4
.9
85
5

-3
.3
39
3

-3
.5
85
1

-7
.9
54
1

-1
.5
95
1

-2
.1
12
5

-1
.3
65
6

-1
.7
18
9

-1
.3
31
5

-1
.2
82
9

-1
.3
22
8

-1
.0
54
4

-1
1.
22
34

-3
.2
57
7

-2
8.
44
91

6.
24
70

-0
.9
90
1

0.
07
81

-0
.9
12
0

-0
.8
55
6

-0
.7
50
2

-0
.7
90
4

-0
.8
26
6

-0
.5
77
3

-0
.6
81
2

-0
.5
68
0

-0
.7
21
3

-0
.5
18
8

-0
.5
67
5

-0
.4
92
1

-0
.4
87
2

-1
.0
15
5

-1
.1
35
0

-1
.3
50
0

7.
24
70

-0
.2
45
7

0.
00
41

-0
.2
41
6

-0
.2
22
2

-0
.2
01
8

-0
.1
97
9

-0
.2
08
1

-0
.1
99
5

-0
.1
87
8

-0
.2
01
3

-0
.2
41
7

-0
.1
84
0

-0
.2
16
0

-0
.1
73
5

-0
.1
96
0

-0
.2
39
5

-0
.3
76
9

-0
.2
65
9

8.
24
70

-0
.0
85
2

0.
00
02

-0
.0
85
0

-0
.0
77
9

-0
.0
72
7

-0
.0
65
6

-0
.0
74
3

-0
.0
77
2

-0
.0
53
8

-0
.0
78
6

-0
.0
88
3

-0
.0
70
8

-0
.0
82
1

-0
.0
67
5

-0
.0
78
2

-0
.0
82
8

-0
.1
24
0

-0
.0
86
9

9.
24
70

-0
.0
36
5

0.
00
00

-0
.0
36
5

-0
.0
33
0

-0
.0
31
3

-0
.0
26
1

-0
.0
32
1

-0
.0
34
3

-0
.0
20
3

-0
.0
35
1

-0
.0
37
2

-0
.0
31
2

-0
.0
35
3

-0
.0
30
0

-0
.0
34
3

-0
.0
35
1

-0
.0
45
8

-0
.0
36
0

10
.2
47
0

-0
.0
17
8

0.
00
00

-0
.0
17
8

-0
.0
15
9

-0
.0
15
2

-0
.0
12
0

-0
.0
15
6

-0
.0
17
1

-0
.0
09
8

-0
.0
17
2

-0
.0
17
5

-0
.0
15
3

-0
.0
17
0

-0
.0
14
9

-0
.0
16
7

-0
.0
16
9

-0
.0
20
4

-0
.0
17
1

147



T
ab

le
D
.7
:

D
isp

er
sio

n
en
er
gi
es

(k
ca
l/
m
ol
)
fro

m
va
rio

us
m
et
ho

ds
fo
r
th
e
m
et
hy

lfo
rm

at
e
di
m
er

at
va
rio

us
m
on

om
er

se
pa

ra
tio

ns
(a
ng

st
ro
m
).

R
E

di
sp

E
ex

ch
−

di
sp

E
di

sp
x

D
as

D
3B

J[
H
F]

D
A
D
E

D
3[
N
o-
sw

itc
hi
ng

]
di
sp
(V

V
10

)
di
sp
(v
dW

-D
F2

)
di
sp
(M

BD
)

di
sp
(V

V
09

)
D
3B

J[
PB

E]
X
D
M
10

[P
W

86
-P

BE
]

D
3M

BJ
[P
BE

]
X
D
M
8[
PW

86
-P

BE
]

X
D
M
8[
N
o-
sw

itc
hi
ng

]
di
sp
(v
dW

-D
F1

)
X
D
M
10

[N
o-
sw

itc
hi
ng

]
4.
24

30
-5
.5
21

1
0.
92

02
-4
.6
00

9
-4
.2
76

6
-3
.7
54

9
-4
.2
64

0
-5
.4
71

3
-1
.9
97

6
-2
.9
15

5
-1
.7
09

7
-2
.2
19

3
-1
.5
50

9
-1
.4
45

0
-1
.5
43

7
-1
.1
82

6
-7
.0
37

9
-4
.3
96

5
-1
2.
28

73
4.
43

40
-3
.8
54

7
0.
53

98
-3
.3
14

9
-3
.0
62

7
-2
.8
05

0
-3
.1
93

6
-3
.5
99

6
-1
.6
40

6
-2
.3
32

1
-1
.4
66

5
-1
.9
13

9
-1
.3
23

8
-1
.2
71

9
-1
.2
95

4
-1
.0
45

2
-4
.5
39

3
-3
.5
67

0
-7
.1
32

9
5.
43

40
-0
.7
28

0
0.
02

93
-0
.6
98

7
-0
.6
47

1
-0
.6
30

0
-0
.6
89

4
-0
.6
61

8
-0
.5
43

8
-0
.6
49

0
-0
.5
08

6
-0
.6
82

9
-0
.4
94

5
-0
.5
54

1
-0
.4
62

7
-0
.4
73

5
-0
.7
71

1
-1
.1
52

0
-0
.9
24

5
6.
43

40
-0
.1
97

6
0.
00

15
-0
.1
96

1
-0
.1
83

4
-0
.1
84

0
-0
.1
88

4
-0
.1
88

0
-0
.1
83

0
-0
.1
59

4
-0
.1
67

6
-0
.2
24

2
-0
.1
70

0
-0
.1
96

4
-0
.1
60

0
-0
.1
79

7
-0
.2
08

6
-0
.3
58

1
-0
.2
27

2
7.
43

40
-0
.0
70

2
0.
00

01
-0
.0
70

1
-0
.0
65

1
-0
.0
66

9
-0
.0
63

8
-0
.0
67

8
-0
.0
69

5
-0
.0
44

0
-0
.0
64

4
-0
.0
82

2
-0
.0
64

7
-0
.0
72

7
-0
.0
61

7
-0
.0
69

5
-0
.0
73

1
-0
.1
12

5
-0
.0
76

4
8.
43

40
-0
.0
29

8
0.
00

00
-0
.0
29

8
-0
.0
27

2
-0
.0
28

4
-0
.0
25

1
-0
.0
28

7
-0
.0
30

3
-0
.0
16

1
-0
.0
28

3
-0
.0
34

3
-0
.0
27

9
-0
.0
30

5
-0
.0
26

9
-0
.0
29

8
-0
.0
30

4
-0
.0
40

2
-0
.0
31

1

T
ab

le
D
.8
:

D
isp

er
sio

n
en
er
gi
es

(k
ca
l/
m
ol
)
fro

m
va
rio

us
m
et
ho

ds
fo
r
th
e
ni
tr
ob

en
ze
ne

di
m
er

at
va
rio

us
m
on

om
er

se
pa

-
ra
tio

ns
(a
ng

st
ro
m
).

R
E

di
sp

E
ex

ch
−

di
sp

E
di

sp
x

D
as

D
3B

J[
H
F]

D
A
D
E

D
3[
N
o-
sw

itc
hi
ng

]
di
sp
(V

V
10

)
di
sp
(v
dW

-D
F2

)
di
sp
(M

BD
)

di
sp
(V

V
09

)
D
3B

J[
PB

E]
X
D
M
10

[P
W

86
-P

BE
]

D
3M

BJ
[P
BE

]
X
D
M
8[
PW

86
-P

BE
]

X
D
M
8[
N
o-
sw

itc
hi
ng

]
di
sp
(v
dW

-D
F1

)
X
D
M
10
[N

o-
sw

itc
hi
ng

]
2.
90

00
-3
1.
18

56
6.
35

83
-2
4.
82

73
-2
9.
54

16
-2
2.
74

11
-2
6.
50

27
-2
7.
64

07
-1
2.
42

14
-1
9.
34

32
-9
.7
11

9
-1
9.
61

98
-1
0.
04

26
-8
.1
20

2
-1
1.
02

62
-6
.4
17

5
-3
1.
89

72
-2
5.
59

40
-5
0.
07

57
3.
20

00
-1
8.
60

56
2.
95

29
-1
5.
65

27
-1
7.
81

00
-1
4.
31

53
-1
7.
54

32
-1
6.
21

08
-9
.4
32
5

-1
3.
67

00
-7
.7
77

5
-1
5.
20

99
-7
.9
75

3
-7
.0
99

0
-8
.3
19

1
-5
.6
35

8
-1
8.
62

01
-1
8.
51

54
-2
6.
58

04
4.
20

00
-3
.9
49

5
0.
19

32
-3
.7
56

3
-4
.0
79

2
-3
.5
53
4

-4
.1
47

9
-3
.7
14
1

-3
.4
20

0
-3
.9
04

4
-2
.8
60

0
-5
.2
56

6
-2
.9
64

0
-3
.2
86

7
-2
.8
12

0
-2
.7
63

7
-4
.1
07

7
-6
.0
14

5
-4
.8
71

1
5.
20

00
-1
.1
27

0
0.
01

07
-1
.1
16

3
-1
.2
35

3
-1
.1
30
9

-1
.1
73

1
-1
.1
59
8

-1
.2
08

9
-1
.0
21

1
-1
.0
09

7
-1
.7
45

9
-1
.0
55

9
-1
.2
00

0
-0
.9
91

8
-1
.0
91

4
-1
.2
44

8
-1
.9
64

8
-1
.3
60

3
6.
20

00
-0
.4
08

4
0.
00

06
-0
.4
07

8
-0
.4
57

0
-0
.4
32
2

-0
.4
06

6
-0
.4
40
3

-0
.4
74

0
-0
.2
83

3
-0
.4
02

1
-0
.6
45

9
-0
.4
18

6
-0
.4
65

0
-0
.3
96

5
-0
.4
41

5
-0
.4
64

3
-0
.6
45

9
-0
.4
88

0
7.
20

00
-0
.1
73

9
0.
00

00
-0
.1
73

9
-0
.1
94

9
-0
.1
88
4

-0
.1
61

2
-0
.1
91
5

-0
.2
09

8
-0
.1
03

8
-0
.1
79

1
-0
.2
77

6
-0
.1
85

3
-0
.2
01

2
-0
.1
77

3
-0
.1
95

1
-0
.1
99

5
-0
.2
35

6
-0
.2
05

6
8.
20

00
-0
.0
82

7
0.
00

00
-0
.0
82

7
-0
.0
92

4
-0
.0
90
6

-0
.0
72

1
-0
.0
92
1

-0
.1
02

2
-0
.0
46

9
-0
.0
87

2
-0
.1
29

9
-0
.0
90

0
-0
.0
95

9
-0
.0
86

7
-0
.0
94

1
-0
.0
95

1
-0
.1
01

8
-0
.0
96

9

T
ab

le
D
.9
:

D
isp

er
sio

n
en
er
gi
es

(k
ca
l/
m
ol
)
fro

m
va
rio

us
m
et
ho

ds
fo
r
th
e
ni
tr
om

et
ha

ne
di
m
er

at
va
rio

us
m
on

om
er

se
pa

-
ra
tio

ns
(a
ng

st
ro
m
).

R
E

di
sp

E
ex

ch
−

di
sp

E
di

sp
x

D
as

D
3B

J[
H
F]

D
A
D
E

D
3[
N
o-
sw

itc
hi
ng

]
di
sp
(V

V
10

)
di
sp
(v
dW

-D
F2

)
di
sp
(M

BD
)

di
sp
(V

V
09

)
D
3B

J[
PB

E]
X
D
M
10

[P
W

86
-P

BE
]

D
3M

BJ
[P
BE

]
X
D
M
8[
PW

86
-P

BE
]

X
D
M
8[
N
o-
sw

itc
hi
ng

]
di
sp
(v
dW

-D
F1

)
X
D
M
10

[N
o-
sw

itc
hi
ng

]
2.
81

30
-1
3.
08

87
2.
42

16
-1
0.
66

71
-1
2.
43

25
-8
.6
01

1
-8
.6
55

1
-1
2.
10

14
-4
.5
35

9
-7
.4
24

9
-2
.6
49

9
-5
.3
60

2
-2
.6
59

1
-2
.3
29

8
-2
.8
48

4
-1
.8
67

9
-1
4.
52

76
-1
0.
40

78
-2
4.
59

45
3.
13

10
-7
.2
63

2
1.
01

56
-6
.2
47

6
-6
.8
63

7
-5
.1
96
3

-5
.4
10

6
-6
.3
82

1
-3
.2
71

0
-4
.9
84

7
-2
.2
46

6
-4
.2
05

6
-2
.1
51

0
-2
.0
10

9
-2
.2
15

1
-1
.6
16

7
-7
.5
70

4
-7
.1
68

7
-1
1.
42

45
4.
13

10
-1
.3
37

6
0.
05

53
-1
.2
82

3
-1
.3
03

9
-1
.1
16
7

-1
.1
75

9
-1
.1
81

5
-1
.0
39

3
-1
.2
79

2
-0
.8
88

6
-1
.4
33

3
-0
.8
35

9
-0
.9
34

3
-0
.7
92

1
-0
.7
84

0
-1
.3
38

2
-2
.1
44

0
-1
.6
17

0
5.
13

10
-0
.3
35

9
0.
00

26
-0
.3
33

3
-0
.3
36

4
-0
.3
06
6

-0
.3
19

2
-0
.3
14

3
-0
.3
26

8
-0
.2
83

1
-0
.2
88

2
-0
.4
45

0
-0
.2
77

9
-0
.3
20

6
-0
.2
61

0
-0
.2
90

6
-0
.3
43

2
-0
.6
26

7
-0
.3
76

3
6.
13

10
-0
.1
10

3
0.
00

01
-0
.1
10

2
-0
.1
10

7
-0
.1
05
0

-0
.1
04

9
-0
.1
06

6
-0
.1
16

6
-0
.0
71

7
-0
.1
04

4
-0
.1
53

2
-0
.1
00

7
-0
.1
12

8
-0
.0
95

6
-0
.1
07

3
-0
.1
13

6
-0
.1
82

3
-0
.1
19

3
7.
13

10
-0
.0
43

7
0.
00

00
-0
.0
43

7
-0
.0
43

4
-0
.0
42
3

-0
.0
39

4
-0
.0
42

8
-0
.0
48

1
-0
.0
25

6
-0
.0
43

3
-0
.0
60

5
-0
.0
41

4
-0
.0
45

1
-0
.0
39

7
-0
.0
43

9
-0
.0
44

9
-0
.0
62

3
-0
.0
46

2
8.
13

10
-0
.0
19

7
0.
00

00
-0
.0
19

7
-0
.0
19

4
-0
.0
19
2

-0
.0
16

9
-0
.0
19

4
-0
.0
22

3
-0
.0
11

4
-0
.0
20

0
-0
.0
26

9
-0
.0
19

0
-0
.0
20

3
-0
.0
18

4
-0
.0
19

9
-0
.0
20

2
-0
.0
26

0
-0
.0
20

5

148



T
ab

le
D
.1
0:

D
isp

er
sio

n
en
er
gi
es

(k
ca
l/
m
ol
)
fro

m
va
rio

us
m
et
ho

ds
fo
r
th
e
wa

te
r
di
m
er

at
va
rio

us
m
on

om
er

se
pa

ra
tio

ns
(a
ng

st
ro
m
).

R
E

di
sp

E
ex

ch
−

di
sp

E
di

sp
x

D
as

D
3B

J[
H
F]

D
A
D
E

D
3[
N
o-
sw

itc
hi
ng

]
di
sp
(V

V
10
)

di
sp
(v
dW

-D
F2

)
di
sp
(M

BD
)

di
sp
(V

V
09
)

D
3B

J[
PB

E]
X
D
M
10
[P
W

86
-P

BE
]

D
3M

BJ
[P
BE

]
X
D
M
8[
PW

86
-P

BE
]

X
D
M
8[
N
o-
sw

itc
hi
ng

]
di
sp
(v
dW

-D
F1

)
X
D
M
10
[N

o-
sw

itc
hi
ng

]
2.
31
00

-1
1.
72
08

3.
15
67

-8
.5
64
1

-8
.6
42
2

-3
.5
76
1

-4
.1
88
9

-4
8.
93
40

-1
.2
01
8

-2
.0
92
3

-0
.4
95
8

0.
44
83

-0
.5
45
5

-0
.4
19
7

-0
.5
39
0

-0
.3
36
7

-8
2.
44
27

-3
.3
63
2

-4
17
.2
71
2

2.
61
00

-5
.9
09
0

1.
43
70

-4
.4
72
0

-4
.4
27
4

-2
.5
75
6

-2
.7
50
3

-1
2.
49
34

-0
.9
14
8

-1
.4
60
9

-0
.4
79
9

-0
.0
10
5

-0
.4
83
1

-0
.4
07
5

-0
.4
71
1

-0
.3
26
3

-1
9.
47
49

-2
.3
59
4

-6
4.
29
71

2.
91
00

-3
.0
15
0

0.
60
97

-2
.4
05
3

-2
.2
92
6

-1
.7
33
5

-1
.7
29
7

-4
.2
24
5

-0
.6
70
0

-1
.0
16
7

-0
.4
35
7

-0
.2
32
1

-0
.4
09
7

-0
.3
73
8

-0
.3
93
3

-0
.2
99
4

-6
.2
36
8

-1
.6
38
3

-1
4.
97
31

3.
21
00

-1
.5
69
2

0.
24
87

-1
.3
20
5

-1
.2
21
2

-1
.0
82
4

-1
.0
49
3

-1
.7
32
9

-0
.4
75
6

-0
.7
06
2

-0
.3
66
7

-0
.2
85
9

-0
.3
33
3

-0
.3
21
3

-0
.3
15
2

-0
.2
58
9

-2
.4
47
2

-1
.1
38
3

-4
.6
53
0

3.
51
00

-0
.8
38
6

0.
09
91

-0
.7
39
5

-0
.6
73
6

-0
.6
36
5

-0
.6
22
1

-0
.8
15
2

-0
.3
30
0

-0
.4
87
4

-0
.2
89
5

-0
.2
56
6

-0
.2
60
1

-0
.2
61
3

-0
.2
43
4

-0
.2
13
2

-1
.1
08
6

-0
.7
96
0

-1
.7
80
2

4.
01
00

-0
.3
17
6

0.
02
06

-0
.2
97
0

-0
.2
71
9

-0
.2
59
7

-0
.2
60
5

-0
.2
86
4

-0
.1
74
5

-0
.2
52
9

-0
.1
71
5

-0
.1
65
1

-0
.1
58
2

-0
.1
71
2

-0
.1
46
7

-0
.1
42
8

-0
.3
70
3

-0
.4
43
4

-0
.4
95
1

4.
51
00

-0
.1
33
6

0.
00
41

-0
.1
29
5

-0
.1
21
8

-0
.1
14
9

-0
.1
17
4

-0
.1
20
6

-0
.0
91
6

-0
.1
22
9

-0
.0
90
8

-0
.0
93
2

-0
.0
89
0

-0
.1
04
6

-0
.0
82
5

-0
.0
89
3

-0
.1
50
3

-0
.2
45
0

-0
.1
80
8

5.
01
00

-0
.0
62
5

0.
00
08

-0
.0
61
7

-0
.0
59
9

-0
.0
55
9

-0
.0
58
2

-0
.0
57
5

-0
.0
49
1

-0
.0
57
0

-0
.0
47
6

-0
.0
50
6

-0
.0
48
8

-0
.0
60
0

-0
.0
45
6

-0
.0
53
0

-0
.0
69
8

-0
.1
32
1

-0
.0
78
8

5.
51
00

-0
.0
32
1

0.
00
02

-0
.0
31
9

-0
.0
31
8

-0
.0
29
5

-0
.0
30
9

-0
.0
30
1

-0
.0
27
3

-0
.0
26
8

-0
.0
26
1

-0
.0
27
5

-0
.0
27
3

-0
.0
33
7

-0
.0
25
7

-0
.0
30
8

-0
.0
35
8

-0
.0
70
0

-0
.0
38
9

6.
01
00

-0
.0
17
8

0.
00
00

-0
.0
17
8

-0
.0
18
0

-0
.0
16
6

-0
.0
17
2

-0
.0
16
9

-0
.0
15
8

-0
.0
13
6

-0
.0
15
0

-0
.0
15
2

-0
.0
15
9

-0
.0
19
3

-0
.0
15
1

-0
.0
18
2

-0
.0
19
7

-0
.0
37
6

-0
.0
20
9

6.
51
00

-0
.0
10
4

0.
00
00

-0
.0
10
4

-0
.0
10
8

-0
.0
09
9

-0
.0
10
0

-0
.0
10
0

-0
.0
09
5

-0
.0
07
7

-0
.0
09
1

-0
.0
08
6

-0
.0
09
6

-0
.0
11
5

-0
.0
09
2

-0
.0
11
0

-0
.0
11
6

-0
.0
21
1

-0
.0
12
1

7.
01
00

-0
.0
06
4

0.
00
00

-0
.0
06
4

-0
.0
06
7

-0
.0
06
2

-0
.0
06
0

-0
.0
06
2

-0
.0
06
0

-0
.0
04
7

-0
.0
05
7

-0
.0
05
0

-0
.0
06
0

-0
.0
07
1

-0
.0
05
8

-0
.0
06
9

-0
.0
07
1

-0
.0
12
5

-0
.0
07
3

7.
50
50

-0
.0
04
1

0.
00
00

-0
.0
04
1

-0
.0
04
4

-0
.0
04
0

-0
.0
03
8

-0
.0
04
0

-0
.0
03
9

-0
.0
03
1

-0
.0
03
8

-0
.0
02
9

-0
.0
03
9

-0
.0
04
6

-0
.0
03
8

-0
.0
04
5

-0
.0
04
6

-0
.0
07
9

-0
.0
04
7

8.
00
50

-0
.0
02
7

0.
00
00

-0
.0
02
7

-0
.0
02
9

-0
.0
02
7

-0
.0
02
5

-0
.0
02
7

-0
.0
02
6

-0
.0
02
2

-0
.0
02
5

-0
.0
01
7

-0
.0
02
6

-0
.0
03
0

-0
.0
02
5

-0
.0
03
0

-0
.0
03
0

-0
.0
05
2

-0
.0
03
1

8.
50
50

-0
.0
01
9

0.
00
00

-0
.0
01
9

-0
.0
02
0

-0
.0
01
8

-0
.0
01
6

-0
.0
01
8

-0
.0
01
8

-0
.0
01
6

-0
.0
01
7

-0
.0
00
9

-0
.0
01
8

-0
.0
02
1

-0
.0
01
8

-0
.0
02
0

-0
.0
02
0

-0
.0
03
6

-0
.0
02
1

9.
00
50

-0
.0
01
3

0.
00
00

-0
.0
01
3

-0
.0
01
4

-0
.0
01
3

-0
.0
01
1

-0
.0
01
3

-0
.0
01
3

-0
.0
01
2

-0
.0
01
2

-0
.0
00
5

-0
.0
01
3

-0
.0
01
4

-0
.0
01
2

-0
.0
01
4

-0
.0
01
4

-0
.0
02
6

-0
.0
01
4

T
ab

le
D
.1
1:

D
isp

er
sio

n
en
er
gi
es

(k
ca
l/
m
ol
)
fro

m
va
rio

us
m
et
ho

ds
fo
r
th
e
ar
go
n
di
m
er

at
va
rio

us
m
on

om
er

se
pa

ra
tio

ns
(a
ng

st
ro
m
).

R
E

di
sp

E
ex

ch
−

di
sp

E
di

sp
x

D
as

D
3B

J[
H
F]

D
A
D
E

D
3[
N
o-
sw

itc
hi
ng

]
di
sp
(V

V
10
)

di
sp
(v
dW

-D
F2

)
di
sp
(M

BD
)

di
sp
(V

V
09
)

D
3B

J[
PB

E]
X
D
M
10
[P
W

86
-P

BE
]

D
3M

BJ
[P
BE

]
X
D
M
8[
PW

86
-P

BE
]

X
D
M
8[
N
o-
sw

itc
hi
ng

]
di
sp
(v
dW

-D
F1

)
X
D
M
10
[N

o-
sw

itc
hi
ng

]
3.
20
00

-1
.9
12
6

0.
23
70

-1
.6
75
6

-1
.0
70
2

-1
.2
70
6

-1
.4
11
9

-1
.6
38
2

-0
.6
77
2

-1
.0
38
5

-0
.2
39
8

-0
.6
20
6

-0
.3
94
0

-0
.3
50
3

-0
.5
70
8

-0
.2
75
2

-1
.4
61
2

-1
.5
94
1

-2
.1
54
0

3.
50
00

-1
.0
33
5

0.
08
78

-0
.9
45
7

-0
.7
66
4

-0
.7
47
3

-0
.8
39
6

-0
.8
79
4

-0
.4
70
7

-0
.6
87
0

-0
.2
20
1

-0
.4
95
7

-0
.3
22
0

-0
.3
04
0

-0
.4
06
6

-0
.2
38
8

-0
.7
89
2

-1
.0
88
3

-1
.0
74
0

3.
76
00

-0
.6
23
2

0.
03
62

-0
.5
87
0

-0
.5
32
2

-0
.4
78
6

-0
.5
32
7

-0
.5
37
8

-0
.3
39
9

-0
.4
74
9

-0
.1
88
2

-0
.3
84
3

-0
.2
57
4

-0
.2
53
9

-0
.2
94
0

-0
.2
01
1

-0
.4
84
1

-0
.7
84
5

-0
.6
23
8

4.
25
00

-0
.2
59
7

0.
00
66

-0
.2
53
1

-0
.2
51
7

-0
.2
18
9

-0
.2
34
9

-0
.2
34
7

-0
.1
81
8

-0
.2
29
6

-0
.1
21
4

-0
.2
21
8

-0
.1
54
4

-0
.1
58
7

-0
.1
55
9

-0
.1
31
0

-0
.2
11
7

-0
.4
26
1

-0
.2
52
9

4.
50
00

-0
.1
72
9

0.
00
27

-0
.1
70
2

-0
.1
72
5

-0
.1
51
4

-0
.1
60
1

-0
.1
60
1

-0
.1
32
0

-0
.1
55
4

-0
.0
93
2

-0
.1
64
1

-0
.1
16
2

-0
.1
19
7

-0
.1
13
2

-0
.1
01
4

-0
.1
44
5

-0
.3
12
0

-0
.1
67
8

5.
00
00

-0
.0
82
6

0.
00
05

-0
.0
82
1

-0
.0
84
6

-0
.0
76
7

-0
.0
79
9

-0
.0
79
8

-0
.0
70
2

-0
.0
68
0

-0
.0
53
8

-0
.0
90
8

-0
.0
65
3

-0
.0
66
5

-0
.0
61
4

-0
.0
59
1

-0
.0
71
9

-0
.1
64
7

-0
.0
80
1

6.
00
00

-0
.0
24
1

0.
00
00

-0
.0
24
1

-0
.0
24
6

-0
.0
23
8

-0
.0
23
9

-0
.0
24
4

-0
.0
22
6

-0
.0
19
8

-0
.0
18
8

-0
.0
29
5

-0
.0
22
2

-0
.0
21
8

-0
.0
20
6

-0
.0
20
5

-0
.0
21
9

-0
.0
43
7

-0
.0
23
3

7.
00
00

-0
.0
08
9

0.
00
00

-0
.0
08
9

-0
.0
08
8

-0
.0
09
0

-0
.0
08
4

-0
.0
09
1

-0
.0
08
7

-0
.0
05
9

-0
.0
07
5

-0
.0
11
0

-0
.0
08
6

-0
.0
08
2

-0
.0
08
1

-0
.0
08
0

-0
.0
08
2

-0
.0
12
6

-0
.0
08
5

8.
00
00

-0
.0
03
8

0.
00
00

-0
.0
03
8

-0
.0
03
7

-0
.0
03
9

-0
.0
03
4

-0
.0
03
9

-0
.0
03
9

-0
.0
02
4

-0
.0
03
4

-0
.0
04
6

-0
.0
03
8

-0
.0
03
6

-0
.0
03
6

-0
.0
03
5

-0
.0
03
5

-0
.0
05
1

-0
.0
03
6

9.
00
00

-0
.0
01
9

0.
00
00

-0
.0
01
9

-0
.0
01
7

-0
.0
01
9

-0
.0
01
6

-0
.0
01
9

-0
.0
01
9

-0
.0
01
1

-0
.0
01
7

-0
.0
02
2

-0
.0
01
8

-0
.0
01
7

-0
.0
01
7

-0
.0
01
7

-0
.0
01
7

-0
.0
02
8

-0
.0
01
7

10
.0
00
0

-0
.0
01
0

0.
00
00

-0
.0
01
0

-0
.0
00
9

-0
.0
01
0

-0
.0
00
8

-0
.0
01
0

-0
.0
01
0

-0
.0
00
5

-0
.0
00
9

-0
.0
01
1

-0
.0
01
0

-0
.0
00
9

-0
.0
00
9

-0
.0
00
9

-0
.0
00
9

-0
.0
01
3

-0
.0
00
9

T
ab

le
D
.1
2:

D
isp

er
sio

n
en
er
gi
es

(k
ca
l/
m
ol
)f

ro
m

va
rio

us
m
et
ho

ds
fo
rt

he
A
r-
H
F
di
m
er

at
va
rio

us
m
on

om
er

se
pa

ra
tio

ns
(a
ng

st
ro
m
).

R
E

di
sp

E
ex

ch
−

di
sp

E
di

sp
x

D
as

D
3B

J[
H
F]

D
A
D
E

D
3[
N
o-
sw

itc
hi
ng

]
di
sp
(V

V
10

)
di
sp
(v
dW

-D
F2

)
di
sp
(M

BD
)

di
sp
(V

V
09

)
D
3B

J[
PB

E]
X
D
M
10

[P
W

86
-P

BE
]

D
3M

BJ
[P
BE

]
X
D
M
8[
PW

86
-P

BE
]

X
D
M
8[
N
o-
sw

itc
hi
ng

]
di
sp
(v
dW

-D
F1

)
X
D
M
10

[N
o-
sw

itc
hi
ng

]
3.
00

00
-1
.4
12

0
0.
16

01
-1
.2
51

9
-1
.2
05

6
-0
.8
20

9
-1
.0
06

6
-1
.0
23

0
-0
.5
14

9
-0
.7
74

9
-0
.2
40

0
-0
.4
05

3
-0
.2
82

8
-0
.2
81

6
-0
.3
24

7
-0
.2
24

7
-1
.1
71

3
-1
.2
40

2
-1
.7
02

9
3.
50

00
-0
.4
92

3
0.
02

71
-0
.4
65

2
-0
.4
66

9
-0
.3
32

8
-0
.4
10

4
-0
.3
69

6
-0
.2
68

6
-0
.3
80

5
-0
.1
69

2
-0
.2
74

2
-0
.1
85

9
-0
.2
06

8
-0
.1
91

6
-0
.1
66

2
-0
.4
14

5
-0
.6
48

6
-0
.5
32

5
4.
00

00
-0
.1
92

2
0.
00

44
-0
.1
87

8
-0
.1
94

0
-0
.1
46

1
-0
.1
74

4
-0
.1
55

0
-0
.1
37

0
-0
.1
78

5
-0
.0
98

1
-0
.1
57

8
-0
.1
06

8
-0
.1
25

4
-0
.1
03

3
-0
.1
04

7
-0
.1
70

4
-0
.3
44

4
-0
.2
02

3
4.
50

00
-0
.0
84

2
0.
00

07
-0
.0
83

5
-0
.0
88

0
-0
.0
69

9
-0
.0
82

1
-0
.0
72

7
-0
.0
70

4
-0
.0
78

1
-0
.0
53

6
-0
.0
86

0
-0
.0
58

6
-0
.0
68

9
-0
.0
55

3
-0
.0
60

5
-0
.0
78

6
-0
.1
80

0
-0
.0
88

6
5.
00

00
-0
.0
40

9
0.
00

01
-0
.0
40

8
-0
.0
43

4
-0
.0
36

2
-0
.0
42

2
-0
.0
37

2
-0
.0
37

5
-0
.0
33

4
-0
.0
29

6
-0
.0
47

0
-0
.0
32

5
-0
.0
37

5
-0
.0
30

5
-0
.0
34

2
-0
.0
39

6
-0
.0
91

2
-0
.0
43

1
6.
00

00
-0
.0
12

1
0.
00

00
-0
.0
12

1
-0
.0
12

9
-0
.0
11

6
-0
.0
12

9
-0
.0
11

8
-0
.0
12

2
-0
.0
10

3
-0
.0
10

2
-0
.0
15

3
-0
.0
11

1
-0
.0
12

3
-0
.0
10

4
-0
.0
11

7
-0
.0
12

3
-0
.0
26

3
-0
.0
12

9
7.
00

00
-0
.0
04

5
0.
00

00
-0
.0
04

5
-0
.0
04

7
-0
.0
04

5
-0
.0
04

6
-0
.0
04

5
-0
.0
04

7
-0
.0
03

3
-0
.0
04

1
-0
.0
05

7
-0
.0
04

3
-0
.0
04

7
-0
.0
04

1
-0
.0
04

6
-0
.0
04

7
-0
.0
08

8
-0
.0
04

8
8.
00

00
-0
.0
02

0
0.
00

00
-0
.0
02

0
-0
.0
02

0
-0
.0
02

0
-0
.0
01

9
-0
.0
02

0
-0
.0
02

1
-0
.0
01

2
-0
.0
01

8
-0
.0
02

5
-0
.0
01

9
-0
.0
02

0
-0
.0
01

9
-0
.0
02

0
-0
.0
02

0
-0
.0
03

5
-0
.0
02

1
9.
00

00
-0
.0
00

9
0.
00

00
-0
.0
00

9
-0
.0
01

0
-0
.0
01

0
-0
.0
00

9
-0
.0
01

0
-0
.0
01

0
-0
.0
00

5
-0
.0
00

9
-0
.0
01

2
-0
.0
00

9
-0
.0
01

0
-0
.0
00

9
-0
.0
01

0
-0
.0
01

0
-0
.0
01

5
-0
.0
01

0

149



T
ab

le
D
.1
3:

R
at
io

of
di
sp
er
sio

n
en
er
gy

fro
m

va
rio

us
m
et
ho

ds
to

th
e
E

di
sp

x
va
lu
es

fo
r
th
e
be

nz
en
e-
m
et
ha

ne
at

va
rio

us
m
on

om
er

se
pa

ra
tio

ns
(a
ng

st
ro
m
).

R
D

as
D
3B

J[
H
F]

D
A
D
E

D
3[
N
o-
sw

itc
hi
ng

]
di
sp
(V

V
10

)
di
sp
(v
dW

-D
F2

)
di
sp
(M

BD
)

di
sp
(V

V
09

)
D
3B

J[
PB

E]
X
D
M
10

[P
W

86
-P

BE
]

D
3M

BJ
[P
BE

]
X
D
M
8[
PW

86
-P

BE
]

X
D
M
8[
N
o-
sw

itc
hi
ng

]
di
sp
(v
dW

-D
F1

)
X
D
M
10

[N
o-
sw

itc
hi
ng

]
3.
28

00
1.
00

27
0.
94

71
1.
05

36
1.
24

31
0.
42

00
0.
67

59
0.
38

32
0.
50

40
0.
38

24
0.
35

47
0.
39

34
0.
28

13
1.
70

46
0.
95

45
2.
92

92
3.
80

00
0.
95

95
0.
92

41
1.
09

92
1.
04

09
0.
55

86
0.
81

78
0.
53

38
0.
72

51
0.
53

32
0.
54

91
0.
52

30
0.
44

36
1.
36

18
1.
20

30
1.
94

34
4.
80

00
0.
93

41
0.
91

97
1.
05

18
0.
95

54
0.
79

68
0.
95

85
0.
70

50
1.
04

89
0.
77

45
0.
93

93
0.
72

87
0.
80

45
1.
17

74
1.
65

34
1.
38

46
5.
80

00
0.
94

26
0.
96

83
1.
02

07
0.
98

80
0.
94

46
0.
82

88
0.
79

81
1.
20

42
0.
91

01
1.
13

42
0.
85

90
1.
04

13
1.
17

64
1.
83

44
1.
27

56
6.
80

00
0.
94

87
1.
01

05
0.
97

68
1.
02

49
1.
00

04
0.
63

08
0.
86

70
1.
25

21
0.
98

22
1.
19

34
0.
93

73
1.
14

01
1.
19

21
1.
64

30
1.
24

60
7.
80

00
0.
94

77
1.
03

53
0.
91

70
1.
04

78
1.
04

00
0.
55

25
0.
91

57
1.
25

19
1.
02

00
1.
21

34
0.
98

26
1.
18

18
1.
20

42
1.
41

33
1.
23

60
8.
80

00
0.
94

48
1.
05

01
0.
87

10
1.
06

25
1.
07

27
0.
52

32
0.
94

82
1.
23

71
1.
04

20
1.
21

59
1.
01

16
1.
19

61
1.
20

68
1.
29

34
1.
22

67

T
ab

le
D
.1
4:

R
at
io

of
di
sp
er
sio

n
en
er
gy

fro
m

va
rio

us
m
et
ho

ds
to

th
e
E

di
sp

x
va
lu
es

fo
r
th
e
be

nz
en
e-
wa

te
r
at

va
rio

us
m
on

om
er

se
pa

ra
tio

ns
(a
ng

st
ro
m
).

R
D

as
D
3B

J[
H
F]

D
A
D
E

D
3[
N
o-
sw

itc
hi
ng

]
di
sp
(V

V
10

)
di
sp
(v
dW

-D
F2

)
di
sp
(M

BD
)

di
sp
(V

V
09

)
D
3B

J[
PB

E]
X
D
M
10

[P
W

86
-P

BE
]

D
3M

BJ
[P
BE

]
X
D
M
8[
PW

86
-P

BE
]

X
D
M
8[
N
o-
sw

itc
hi
ng

]
di
sp
(v
dW

-D
F1

)
X
D
M
10

[N
o-
sw

itc
hi
ng

]
2.
50

00
1.
13

76
1.
02

89
0.
93

32
1.
82

88
0.
31

52
0.
54

11
0.
24

54
0.
27

50
0.
25

05
0.
19

04
0.
27

19
0.
15

04
2.
63

85
0.
77

06
5.
79

64
3.
00

00
1.
07

65
1.
06

92
1.
07

84
1.
33

81
0.
46

23
0.
71

42
0.
43

32
0.
48

77
0.
42

32
0.
36

38
0.
43

30
0.
28

72
1.
83

08
1.
03

70
3.
04

39
3.
50

00
1.
05

72
1.
05

09
1.
13

71
1.
16

38
0.
62

15
0.
89

01
0.
61

96
0.
72

00
0.
61

81
0.
61

08
0.
60

14
0.
48

68
1.
51

97
1.
33

30
2.
12

84
4.
00

00
1.
06

96
1.
05

31
1.
13

39
1.
11

38
0.
77

55
1.
03

53
0.
74

87
0.
91

77
0.
78

81
0.
88

39
0.
74

54
0.
72

24
1.
40

19
1.
64

32
1.
76

16
4.
50

00
1.
09

79
1.
07

62
1.
12

04
1.
11

53
0.
90

81
1.
10

76
0.
82

98
1.
05

82
0.
91

44
1.
10

46
0.
85

74
0.
93

86
1.
36

41
1.
92

80
1.
59

86
5.
00

00
1.
12

90
1.
10

60
1.
11

87
1.
13

44
1.
00

42
1.
08

41
0.
88

74
1.
14

15
1.
00

35
1.
24

03
0.
94

21
1.
09

89
1.
35

77
2.
12

63
1.
51

96
6.
00

00
1.
17

57
1.
15

42
1.
09

85
1.
17

27
1.
12

00
0.
89

44
0.
96

94
1.
18

56
1.
10

71
1.
34

62
1.
05

04
1.
26

36
1.
36

11
2.
16

84
1.
44

55
7.
00

00
1.
19

64
1.
17

68
1.
03

27
1.
19

13
1.
17

87
0.
80

64
1.
02

24
1.
13

12
1.
15

20
1.
36

22
1.
10

49
1.
31

49
1.
35

49
1.
94

18
1.
40

24
8.
00

00
1.
20

47
1.
18

60
0.
97

10
1.
19

94
1.
23

45
0.
83

81
1.
05

39
1.
03

09
1.
17

26
1.
35

60
1.
13

38
1.
32

75
1.
34

57
1.
84

44
1.
37

42

T
ab

le
D
.1
5:

R
at
io

of
di
sp
er
sio

n
en
er
gy

fro
m

va
rio

us
m
et
ho

ds
to

th
eE

di
sp

x
va
lu
es

fo
rt

he
di
am

in
o-
di
ni
tr
oe
th
yl
en
e(

FO
X
-7
)

at
va
rio

us
m
on

om
er

se
pa

ra
tio

ns
(a
ng

st
ro
m
).

R
D

as
D
3B

J[
H
F]

D
A
D
E

D
3[
N
o-
sw

itc
hi
ng

]
di
sp
(V

V
10

)
di
sp
(v
dW

-D
F2

)
di
sp
(M

BD
)

di
sp
(V

V
09
)

D
3B

J[
PB

E]
X
D
M
10

[P
W

86
-P

BE
]

D
3M

BJ
[P
BE

]
X
D
M
8[
PW

86
-P

BE
]

X
D
M
8[
N
o-
sw

itc
hi
ng

]
di
sp
(v
dW

-D
F1

)
X
D
M
10

[N
o-
sw

itc
hi
ng

]
6.
37

90
1.
09

60
0.
78

08
0.
73

08
1.
67

11
0.
38

23
0.
53

41
0.
29

86
0.
43

83
0.
27
09

0.
24

06
0.
27

09
0.
19

86
2.
24

93
0.
79

58
5.
26

33
6.
57

90
1.
07

05
0.
83

36
0.
76

50
1.
40

95
0.
43

85
0.
59

30
0.
36

39
0.
53

04
0.
32
42

0.
29

62
0.
32

42
0.
24

55
1.
83

50
0.
89

61
3.
68

01
7.
57

90
0.
97

98
0.
87

32
0.
78

53
0.
94

78
0.
68

85
0.
78

14
0.
70

22
0.
90

79
0.
60
73

0.
62

73
0.
60

73
0.
53

96
1.
08

60
1.
34

65
1.
39

73
8.
57

90
0.
92

59
0.
83

39
0.
74

26
0.
85

58
0.
80

27
0.
66

05
0.
84

70
1.
03

31
0.
75
37

0.
82

49
0.
75

37
0.
75

09
0.
91

45
1.
43

24
1.
00

92
9.
57

90
0.
88

23
0.
80

20
0.
68

83
0.
81

45
0.
82

51
0.
48

76
0.
86

98
1.
02

70
0.
77
52

0.
83

14
0.
77

52
0.
79

41
0.
83

98
1.
19

10
0.
87

82
10

.5
79

0
0.
84

78
0.
77

53
0.
62

75
0.
78

57
0.
82

06
0.
41

83
0.
85

50
0.
99

48
0.
76

49
0.
79

74
0.
76

49
0.
77

89
0.
79

39
0.
98

32
0.
81

25

150



T
ab

le
D
.1
6:

R
at
io

of
di
sp
er
sio

n
en
er
gy

fro
m

va
rio

us
m
et
ho

ds
to

th
e
E

di
sp

x
va
lu
es

fo
r
th
e
et
ha

no
l
di
m
er

at
va
rio

us
m
on

om
er

se
pa

ra
tio

ns
(a
ng

st
ro
m
).

R
D

as
D
3B

J[
H
F]

D
A
D
E

D
3[
N
o-
sw

itc
hi
ng

]
di
sp
(V

V
10

)
di
sp
(v
dW

-D
F2

)
di
sp
(M

BD
)

di
sp
(V

V
09
)

D
3B

J[
PB

E]
X
D
M
10

[P
W

86
-P

BE
]

D
3M

BJ
[P
BE

]
X
D
M
8[
PW

86
-P

BE
]

X
D
M
8[
N
o-
sw

itc
hi
ng

]
di
sp
(v
dW

-D
F1

)
X
D
M
10

[N
o-
sw

itc
hi
ng

]
3.
25

60
0.
99

15
0.
87

98
1.
02

88
1.
23

11
0.
43

29
0.
68

26
0.
38

72
0.
50

03
0.
33

76
0.
31

27
0.
33

55
0.
25

03
1.
75

33
0.
97

94
3.
09

79
3.
55

80
0.
98

85
0.
90

97
1.
08

97
1.
10

17
0.
52

72
0.
79

37
0.
49

97
0.
65

18
0.
43

48
0.
43

05
0.
42

07
0.
34

68
1.
51

88
1.
16

35
2.
34

74
4.
55

80
1.
00

68
0.
94

59
1.
11

17
0.
99

42
0.
81

41
1.
02

96
0.
76

20
1.
06

56
0.
73

65
0.
86

82
0.
68

60
0.
73

28
1.
25

63
1.
74

24
1.
53

36
5.
55

80
1.
02

70
0.
98

60
1.
08

99
1.
00

79
0.
99

26
0.
92

57
0.
89

13
1.
27

12
0.
90

47
1.
11

82
0.
84

99
1.
01

19
1.
20

75
2.
00

14
1.
33

04
6.
55

80
1.
02

66
1.
01

01
1.
04

49
1.
02

39
1.
06

03
0.
69

93
0.
96

84
1.
33

41
0.
97

40
1.
17

57
0.
92

78
1.
11

53
1.
18

56
1.
81

57
1.
24

74
7.
55

80
1.
01

92
1.
02

17
0.
97

61
1.
03

22
1.
08

61
0.
57

91
1.
01

73
1.
34

54
1.
00

29
1.
17

78
0.
96

56
1.
14

36
1.
17

16
1.
52

88
1.
20

59
8.
55

80
1.
00

77
1.
02

27
0.
91

53
1.
03

20
1.
10

38
0.
53

17
1.
04

41
1.
32

95
1.
01

20
1.
16

37
0.
98

22
1.
14

32
1.
15

57
1.
34

60
1.
17

61

T
ab

le
D
.1
7:

R
at
io

of
di
sp
er
sio

n
en
er
gy

fro
m

va
rio

us
m
et
ho

ds
to

th
e
E

di
sp

x
va
lu
es

fo
r
th
e
et
hy

le
ne
di
ni
tr
am

in
e
(E

D
N
A
)

di
m
er

at
va
rio

us
m
on

om
er

se
pa

ra
tio

ns
(a
ng

st
ro
m
).

R
D

as
D
3B

J[
H
F]

D
A
D
E

D
3[
N
o-
sw

itc
hi
ng

]
di
sp
(V

V
10

)
di
sp
(v
dW

-D
F2

)
di
sp
(M

BD
)

di
sp
(V

V
09
)

D
3B

J[
PB

E]
X
D
M
10

[P
W

86
-P

BE
]

D
3M

BJ
[P
BE

]
X
D
M
8[
PW

86
-P

BE
]

X
D
M
8[
N
o-
sw

itc
hi
ng

]
di
sp
(v
dW

-D
F1

)
X
D
M
10

[N
o-
sw

itc
hi
ng

]
4.
49

80
1.
22

82
0.
89

43
0.
89

03
1.
31

51
0.
48

21
0.
72

73
0.
35

14
0.
66

21
0.
33
08

0.
28

63
0.
33

86
0.
23

18
1.
69

33
1.
00

59
3.
12

18
4.
79

80
1.
19

18
0.
90

88
0.
92

53
1.
18

00
0.
55

34
0.
80

12
0.
42

99
0.
78

38
0.
39
59

0.
35

82
0.
39

71
0.
29

10
1.
48

30
1.
12

68
2.
44

66
5.
79

80
1.
09

89
0.
89

49
0.
95

37
0.
97

58
0.
76

48
0.
96

11
0.
65

74
1.
10

32
0.
59
97

0.
63

31
0.
57

31
0.
52

55
1.
14

62
1.
47

48
1.
49

14
6.
79

80
1.
02

58
0.
86

74
0.
93

19
0.
90

20
0.
89

64
0.
93

61
0.
78

40
1.
25

75
0.
72
24

0.
82

79
0.
68

06
0.
72

07
1.
00

99
1.
66

33
1.
16

34
7.
79

80
0.
97

28
0.
85

17
0.
90

39
0.
87

22
0.
95

53
0.
76

79
0.
85

10
1.
30

52
0.
77
74

0.
89

75
0.
73

38
0.
82

26
0.
95

20
1.
64

34
1.
03

41
8.
79

80
0.
94

15
0.
84

76
0.
87

05
0.
86

15
0.
98

10
0.
57

89
0.
89

94
1.
31

16
0.
80
78

0.
91

30
0.
76

77
0.
86

69
0.
92

49
1.
46

00
0.
97

22
9.
79

80
0.
91

98
0.
84

50
0.
82

51
0.
85

55
0.
99

03
0.
44

81
0.
93

21
1.
29

68
0.
82
28

0.
90

91
0.
78

85
0.
88

13
0.
90

75
1.
21

77
0.
93

55
10

.7
98

0
0.
90

13
0.
83

98
0.
77

54
0.
84

87
0.
98

88
0.
36

81
0.
95

18
1.
27

09
0.
82

70
0.
89

67
0.
79

87
0.
87

97
0.
89

19
1.
02

04
0.
90

89

T
ab

le
D
.1
8:

R
at
io

of
di
sp
er
sio

n
en
er
gy

fro
m

va
rio

us
m
et
ho

ds
to

th
e
E

di
sp

x
va
lu
es

fo
r
th
e
im

id
az
ol
e
di
m
er

at
va
rio

us
m
on

om
er

se
pa

ra
tio

ns
(a
ng

st
ro
m
).

R
D

as
D
3B

J[
H
F]

D
A
D
E

D
3[
N
o-
sw

itc
hi
ng

]
di
sp
(V

V
10

)
di
sp
(v
dW

-D
F2

)
di
sp
(M

BD
)

di
sp
(V

V
09
)

D
3B

J[
PB

E]
X
D
M
10

[P
W

86
-P

BE
]

D
3M

BJ
[P
BE

]
X
D
M
8[
PW

86
-P

BE
]

X
D
M
8[
N
o-
sw

itc
hi
ng

]
di
sp
(v
dW

-D
F1

)
X
D
M
10

[N
o-
sw

itc
hi
ng

]
4.
92

50
1.
11

27
0.
56

17
0.
65

02
2.
93

72
0.
24

55
0.
34

14
0.
19

92
0.
23

60
0.
19
89

0.
18

50
0.
20

15
0.
15

04
4.
49

45
0.
52

07
16

.9
54

5
5.
24

70
1.
06

24
0.
71

16
0.
76

40
1.
69

50
0.
33

99
0.
45

02
0.
29

10
0.
36

63
0.
28
37

0.
27

34
0.
28

19
0.
22

47
2.
39

17
0.
69

42
6.
06

24
6.
24

70
0.
93

81
0.
82

26
0.
86

66
0.
90

64
0.
63

30
0.
74

70
0.
62

28
0.
79

08
0.
56
88

0.
62

22
0.
53

96
0.
53

42
1.
11

35
1.
24

45
1.
48

02
7.
24

70
0.
91

98
0.
83

53
0.
81

90
0.
86

12
0.
82

58
0.
77

75
0.
83

31
1.
00

03
0.
76
15

0.
89

41
0.
71

80
0.
81

12
0.
99

14
1.
56

01
1.
10

06
8.
24

70
0.
91

63
0.
85

51
0.
77

15
0.
87

45
0.
90

78
0.
63

34
0.
92

50
1.
03

92
0.
83
28

0.
96

62
0.
79

41
0.
91

96
0.
97

38
1.
45

89
1.
02

19
9.
24

70
0.
90

47
0.
85

82
0.
71

52
0.
87

87
0.
93

88
0.
55

51
0.
96

29
1.
01

84
0.
85
43

0.
96

61
0.
82

28
0.
94

09
0.
96

03
1.
25

40
0.
98

56
10

.2
47

0
0.
89

26
0.
85

35
0.
67

14
0.
87

84
0.
96

12
0.
54

87
0.
96

82
0.
98

57
0.
86

09
0.
95

48
0.
83

52
0.
94

00
0.
94

82
1.
14

51
0.
96

30

151



T
ab

le
D
.1
9:

R
at
io

of
di
sp
er
sio

n
en
er
gy

fro
m

va
rio

us
m
et
ho

ds
to

th
e
E

di
sp

x
va
lu
es

fo
rt

he
m
et
hy

lfo
rm

at
e
di
m
er

at
va
rio

us
m
on

om
er

se
pa

ra
tio

ns
(a
ng

st
ro
m
).

R
D

as
D
3B

J[
H
F]

D
A
D
E

D
3[
N
o-
sw

itc
hi
ng

]
di
sp
(V

V
10

)
di
sp
(v
dW

-D
F2

)
di
sp
(M

BD
)

di
sp
(V

V
09
)

D
3B

J[
PB

E]
X
D
M
10

[P
W

86
-P

BE
]

D
3M

BJ
[P
BE

]
X
D
M
8[
PW

86
-P

BE
]

X
D
M
8[
N
o-
sw

itc
hi
ng

]
di
sp
(v
dW

-D
F1

)
X
D
M
10

[N
o-
sw

itc
hi
ng

]
4.
24

30
0.
92

95
0.
81

61
0.
92

68
1.
18

92
0.
43

42
0.
63

37
0.
37

16
0.
48

24
0.
33

71
0.
31

41
0.
33

55
0.
25

70
1.
52

97
0.
95

56
2.
67

06
4.
43

40
0.
92

39
0.
84

62
0.
96

34
1.
08

59
0.
49

49
0.
70

35
0.
44

24
0.
57

74
0.
39

94
0.
38

37
0.
39

08
0.
31

53
1.
36

93
1.
07

60
2.
15

18
5.
43

40
0.
92

61
0.
90

17
0.
98

67
0.
94

72
0.
77

83
0.
92

88
0.
72

79
0.
97

74
0.
70

77
0.
79

30
0.
66

23
0.
67

77
1.
10

37
1.
64

88
1.
32

32
6.
43

40
0.
93

54
0.
93

84
0.
96

08
0.
95

85
0.
93

33
0.
81

29
0.
85

47
1.
14

32
0.
86

69
1.
00

18
0.
81

59
0.
91

64
1.
06

36
1.
82

59
1.
15

83
7.
43

40
0.
92

86
0.
95

43
0.
91

04
0.
96

71
0.
99

21
0.
62

81
0.
91

92
1.
17

33
0.
92

27
1.
03

74
0.
87

99
0.
99

10
1.
04

24
1.
60

52
1.
08

95
8.
43

40
0.
91

31
0.
95

33
0.
84

11
0.
96

32
1.
01

58
0.
54

12
0.
95

08
1.
15

07
0.
93

68
1.
02

51
0.
90

25
0.
99

94
1.
01

95
1.
34

88
1.
04

53

T
ab

le
D
.2
0:

R
at
io

of
di
sp
er
sio

n
en
er
gy

fro
m

va
rio

us
m
et
ho

ds
to

th
e
E

di
sp

x
va
lu
es

fo
r
th
e
ni
tr
ob

en
ze
ne

di
m
er

at
va
rio

us
m
on

om
er

se
pa

ra
tio

ns
(a
ng

st
ro
m
).

R
D

as
D
3B

J[
H
F]

D
A
D
E

D
3[
N
o-
sw

itc
hi
ng

]
di
sp
(V

V
10

)
di
sp
(v
dW

-D
F2

)
di
sp
(M

BD
)

di
sp
(V

V
09
)

D
3B

J[
PB

E]
X
D
M
10

[P
W

86
-P

BE
]

D
3M

BJ
[P
BE

]
X
D
M
8[
PW

86
-P

BE
]

X
D
M
8[
N
o-
sw

itc
hi
ng

]
di
sp
(v
dW

-D
F1

)
X
D
M
10

[N
o-
sw

itc
hi
ng

]
2.
90

00
1.
18

99
0.
91

60
1.
06

75
1.
11

33
0.
50

03
0.
77

91
0.
39

12
0.
79

03
0.
40

45
0.
32

71
0.
44

41
0.
25

85
1.
28

48
1.
03

09
2.
01

70
3.
20

00
1.
13

78
0.
91

46
1.
12

08
1.
03

57
0.
60

26
0.
87

33
0.
49

69
0.
97

17
0.
50

95
0.
45

35
0.
53

15
0.
36

01
1.
18

96
1.
18

29
1.
69

81
4.
20

00
1.
08

60
0.
94

60
1.
10

43
0.
98

88
0.
91

05
1.
03

94
0.
76

14
1.
39

94
0.
78

91
0.
87

50
0.
74

86
0.
73

58
1.
09

36
1.
60

12
1.
29

68
5.
20

00
1.
10

66
1.
01

31
1.
05

08
1.
03

90
1.
08

30
0.
91

47
0.
90

45
1.
56

40
0.
94

59
1.
07

50
0.
88

85
0.
97

77
1.
11

51
1.
76

01
1.
21

86
6.
20

00
1.
12

05
1.
05

97
0.
99

71
1.
07

97
1.
16

25
0.
69

47
0.
98

60
1.
58

38
1.
02

64
1.
14

02
0.
97

23
1.
08

26
1.
13

85
1.
58

38
1.
19

68
7.
20

00
1.
12

08
1.
08

33
0.
92

67
1.
10

12
1.
20

64
0.
59

71
1.
03

01
1.
59

63
1.
06

58
1.
15

69
1.
01

94
1.
12

20
1.
14

71
1.
35

48
1.
18

20
8.
20

00
1.
11

73
1.
09

58
0.
87

21
1.
11

38
1.
23

59
0.
56

70
1.
05

43
1.
57

09
1.
08

79
1.
15

97
1.
04

87
1.
13

76
1.
14

99
1.
23

12
1.
17

20

T
ab

le
D
.2
1:

R
at
io

of
di
sp
er
sio

n
en
er
gy

fro
m

va
rio

us
m
et
ho

ds
to

th
e
E

di
sp

x
va
lu
es

fo
rt

he
ni
tr
om

et
ha

ne
di
m
er

at
va
rio

us
m
on

om
er

se
pa

ra
tio

ns
(a
ng

st
ro
m
).

R
D

as
D
3B

J[
H
F]

D
A
D
E

D
3[
N
o-
sw

itc
hi
ng

]
di
sp
(V

V
10

)
di
sp
(v
dW

-D
F2

)
di
sp
(M

BD
)

di
sp
(V

V
09
)

D
3B

J[
PB

E]
X
D
M
10

[P
W

86
-P

BE
]

D
3M

BJ
[P
BE

]
X
D
M
8[
PW

86
-P

BE
]

X
D
M
8[
N
o-
sw

itc
hi
ng

]
di
sp
(v
dW

-D
F1

)
X
D
M
10

[N
o-
sw

itc
hi
ng

]
2.
81

30
1.
16

55
0.
80

63
0.
81

14
1.
13

45
0.
42

52
0.
69

61
0.
24

84
0.
50

25
0.
24

93
0.
21

84
0.
26

70
0.
17

51
1.
36

19
0.
97

57
2.
30

56
3.
13

10
1.
09

86
0.
83

17
0.
86

60
1.
02

15
0.
52

36
0.
79

79
0.
35

96
0.
67

32
0.
34

43
0.
32

19
0.
35

46
0.
25

88
1.
21

17
1.
14

74
1.
82

86
4.
13

10
1.
01

68
0.
87

08
0.
91

71
0.
92

14
0.
81

05
0.
99

76
0.
69

30
1.
11

78
0.
65

19
0.
72

86
0.
61

77
0.
61

14
1.
04

36
1.
67

20
1.
26

10
5.
13

10
1.
00

93
0.
92

00
0.
95

77
0.
94

31
0.
98

04
0.
84

95
0.
86

46
1.
33

52
0.
83

38
0.
96

18
0.
78

32
0.
87

20
1.
02

98
1.
88

02
1.
12

90
6.
13

10
1.
00

43
0.
95

28
0.
95

22
0.
96

72
1.
05

84
0.
65

07
0.
94

74
1.
38

99
0.
91

36
1.
02

40
0.
86

71
0.
97

35
1.
03

11
1.
65

41
1.
08

24
7.
13

10
0.
99

40
0.
96

83
0.
90

23
0.
97

89
1.
10

18
0.
58

60
0.
99

11
1.
38

39
0.
94

73
1.
03

27
0.
90

85
1.
00

39
1.
02

74
1.
42

56
1.
05

63
8.
13

10
0.
98

47
0.
97

66
0.
85

67
0.
98

55
1.
13

03
0.
58

02
1.
01

45
1.
36

38
0.
96

39
1.
03

02
0.
93

23
1.
01

27
1.
02

34
1.
31

98
1.
04

09

152



T
ab

le
D
.2
2:

R
at
io

of
di
sp
er
sio

n
en
er
gy

fro
m

va
rio

us
m
et
ho

ds
to

th
eE

di
sp

x
va
lu
es

fo
rt

he
wa

te
rd

im
er

at
va
rio

us
m
on

om
er

se
pa

ra
tio

ns
(a
ng

st
ro
m
).

R
D

as
D
3B

J[
H
F]

D
A
D
E

D
3[
N
o-
sw

itc
hi
ng

]
di
sp
(V

V
10

)
di
sp
(v
dW

-D
F2

)
di
sp
(M

BD
)

di
sp
(V

V
09
)

D
3B

J[
PB

E]
X
D
M
10

[P
W

86
-P

BE
]

D
3M

BJ
[P
BE

]
X
D
M
8[
PW

86
-P

BE
]

X
D
M
8[
N
o-
sw

itc
hi
ng

]
di
sp
(v
dW

-D
F1

)
X
D
M
10

[N
o-
sw

itc
hi
ng

]
2.
31

00
1.
00

91
0.
41

76
0.
48

91
5.
71

39
0.
14

03
0.
24

43
0.
05

79
-0
.0
52

3
0.
06

37
0.
04

90
0.
06

29
0.
03

93
9.
62

65
0.
39

27
48

.7
23

3
2.
61

00
0.
99

00
0.
57

59
0.
61

50
2.
79

37
0.
20

46
0.
32

67
0.
10

73
0.
00

23
0.
10

80
0.
09

11
0.
10

53
0.
07

30
4.
35

49
0.
52

76
14

.3
77

7
2.
91

00
0.
95

32
0.
72

07
0.
71

91
1.
75

63
0.
27

85
0.
42

27
0.
18

12
0.
09

65
0.
17

03
0.
15

54
0.
16

35
0.
12

45
2.
59

29
0.
68

11
6.
22

50
3.
21

00
0.
92

48
0.
81

97
0.
79

46
1.
31

23
0.
36

02
0.
53

48
0.
27

77
0.
21

65
0.
25

24
0.
24

33
0.
23

87
0.
19

60
1.
85

32
0.
86

20
3.
52

37
3.
51

00
0.
91

09
0.
86

07
0.
84

13
1.
10

24
0.
44

62
0.
65

91
0.
39

14
0.
34

70
0.
35

18
0.
35

33
0.
32

92
0.
28

83
1.
49

92
1.
07

64
2.
40

73
4.
01

00
0.
91

56
0.
87

44
0.
87

72
0.
96

43
0.
58

75
0.
85

14
0.
57

75
0.
55

60
0.
53

27
0.
57

63
0.
49

40
0.
48

09
1.
24

68
1.
49

29
1.
66

71
4.
51

00
0.
94

08
0.
88

75
0.
90

62
0.
93

13
0.
70

76
0.
94

89
0.
70

15
0.
71

99
0.
68

71
0.
80

78
0.
63

74
0.
68

95
1.
16

04
1.
89

17
1.
39

60
5.
01

00
0.
97

08
0.
90

66
0.
94

31
0.
93

27
0.
79

55
0.
92

40
0.
77

16
0.
81

97
0.
79

13
0.
97

21
0.
73

93
0.
85

93
1.
13

09
2.
14

03
1.
27

74
5.
51

00
0.
99

82
0.
92

55
0.
96

96
0.
94

33
0.
85

61
0.
83

87
0.
81

66
0.
86

09
0.
85

61
1.
05

58
0.
80

71
0.
96

71
1.
12

09
2.
19

59
1.
21

82
6.
01

00
1.
01

39
0.
93

49
0.
96

81
0.
94

82
0.
88

71
0.
76

15
0.
84

44
0.
85

49
0.
89

09
1.
08

58
0.
84

68
1.
02

12
1.
10

91
2.
11

04
1.
17

60
6.
51

00
1.
03

64
0.
95

21
0.
96

09
0.
96

22
0.
91

48
0.
73

56
0.
87

52
0.
82

82
0.
92

20
1.
10

65
0.
88

21
1.
05

91
1.
11

18
2.
03

25
1.
15

98
7.
01

00
1.
05

05
0.
96

19
0.
94

15
0.
97

00
0.
93

64
0.
73

48
0.
89

73
0.
77

58
0.
94

03
1.
11

21
0.
90

40
1.
07

71
1.
10

96
1.
95

00
1.
14

49
7.
50

50
1.
06

53
0.
97

19
0.
92

45
0.
97

94
0.
95

00
0.
76

07
0.
91

84
0.
70

39
0.
95

66
1.
11

73
0.
92

44
1.
09

07
1.
11

18
1.
91

72
1.
13

84
8.
00

50
1.
07

91
0.
98

31
0.
91

01
0.
98

88
0.
97

11
0.
80

62
0.
93

78
0.
61

41
0.
97

15
1.
12

11
0.
94

13
1.
10

07
1.
11

46
1.
93

16
1.
13

50
8.
50

50
1.
05

07
0.
95

45
0.
86

52
0.
96

01
0.
94

93
0.
83

36
0.
91

93
0.
48

63
0.
94

46
1.
08

24
0.
92

14
1.
06

71
1.
07

62
1.
91

10
1.
09

15
9.
00

50
1.
07

70
0.
97

99
0.
86

94
0.
98

18
0.
98

11
0.
91

22
0.
94

76
0.
36

67
0.
97

02
1.
10

14
0.
94

61
1.
08

90
1.
09

54
2.
01

55
1.
10

78

T
ab

le
D
.2
3:

R
at
io

of
di
sp
er
sio

n
en
er
gy

fro
m

va
rio

us
m
et
ho

ds
to

th
eE

di
sp

x
va
lu
es

fo
rt

he
ar
go
n
di
m
er

at
va
rio

us
m
on

om
er

se
pa

ra
tio

ns
(a
ng

st
ro
m
).

R
D

as
D
3B

J[
H
F]

D
A
D
E

D
3[
N
o-
sw

itc
hi
ng

]
di
sp
(V

V
10

)
di
sp
(v
dW

-D
F2

)
di
sp
(M

BD
)

di
sp
(V

V
09
)

D
3B

J[
PB

E]
X
D
M
10

[P
W

86
-P

BE
]

D
3M

BJ
[P
BE

]
X
D
M
8[
PW

86
-P

BE
]

X
D
M
8[
N
o-
sw

itc
hi
ng

]
di
sp
(v
dW

-D
F1

)
X
D
M
10

[N
o-
sw

itc
hi
ng

]
3.
20

00
0.
63

87
0.
75

83
0.
84

26
0.
97

77
0.
40

42
0.
61

98
0.
14

31
0.
37

04
0.
23
51

0.
20

90
0.
34

07
0.
16

43
0.
87

20
0.
95

14
1.
28

55
3.
50

00
0.
81

04
0.
79

02
0.
88

77
0.
92

98
0.
49

77
0.
72

64
0.
23

28
0.
52

41
0.
34
05

0.
32

15
0.
42

99
0.
25

25
0.
83

45
1.
15

07
1.
13

56
3.
76

00
0.
90

67
0.
81

54
0.
90

76
0.
91

62
0.
57

91
0.
80

90
0.
32

06
0.
65

47
0.
43
85

0.
43

26
0.
50

08
0.
34

26
0.
82

47
1.
33

65
1.
06

28
4.
25

00
0.
99

44
0.
86

48
0.
92

81
0.
92

73
0.
71

84
0.
90

73
0.
47

95
0.
87

63
0.
61
00

0.
62

71
0.
61

58
0.
51

74
0.
83

64
1.
68

36
0.
99

94
4.
50

00
1.
01

37
0.
88

96
0.
94

08
0.
94

11
0.
77

55
0.
91

33
0.
54

79
0.
96

42
0.
68
27

0.
70

36
0.
66

55
0.
59

60
0.
84

89
1.
83

33
0.
98

60
5.
00

00
1.
02

98
0.
93

35
0.
97

29
0.
97

11
0.
85

48
0.
82

84
0.
65

51
1.
10

58
0.
79
55

0.
80

95
0.
74

77
0.
71

89
0.
87

54
2.
00

51
0.
97

46
6.
00

00
1.
01

95
0.
98

69
0.
98

96
1.
01

06
0.
93

55
0.
82

15
0.
78

11
1.
22

38
0.
91
88

0.
90

25
0.
85

22
0.
84

87
0.
90

97
1.
81

14
0.
96

43
7.
00

00
0.
98

93
1.
00

62
0.
93

86
1.
02

27
0.
98

10
0.
66

21
0.
84

42
1.
23

03
0.
96
68

0.
92

54
0.
90

41
0.
89

38
0.
91

96
1.
41

51
0.
95

13
8.
00

00
0.
95

74
1.
00

84
0.
88

34
1.
02

14
1.
00

82
0.
63

64
0.
87

88
1.
20

89
0.
98
40

0.
92

53
0.
93

01
0.
90

59
0.
91

79
1.
33

38
0.
93

72
9.
00

00
0.
92

93
1.
00

52
0.
84

27
1.
01

55
1.
02

22
0.
60

01
0.
89

92
1.
18

51
0.
98
83

0.
91

83
0.
94

09
0.
90

59
0.
91

19
1.
50

19
0.
92

42
10

.0
00

0
0.
90

73
1.
00

25
0.
81

51
1.
00

97
1.
03

15
0.
50

78
0.
91

32
1.
16

62
0.
98

95
0.
91

15
0.
95

07
0.
90

33
0.
90

65
1.
29

14
0.
91

47

T
ab

le
D
.2
4:

R
at
io

of
di
sp
er
sio

n
en
er
gy

fro
m

va
rio

us
m
et
ho

ds
to

th
eE

di
sp

x
va
lu
es

fo
rt

he
A
r-
H
F
di
m
er

at
va
rio

us
m
on

om
er

se
pa

ra
tio

ns
(a
ng

st
ro
m
).

R
D

as
D
3B

J[
H
F]

D
A
D
E

D
3[
N
o-
sw

itc
hi
ng

]
di
sp
(V

V
10

)
di
sp
(v
dW

-D
F2

)
di
sp
(M

BD
)

di
sp
(V

V
09
)

D
3B

J[
PB

E]
X
D
M
10

[P
W

86
-P

BE
]

D
3M

BJ
[P
BE

]
X
D
M
8[
PW

86
-P

BE
]

X
D
M
8[
N
o-
sw

itc
hi
ng

]
di
sp
(v
dW

-D
F1

)
X
D
M
10

[N
o-
sw

itc
hi
ng

]
3.
00

00
0.
96

30
0.
65

57
0.
80

41
0.
81

72
0.
41

13
0.
61

90
0.
19

17
0.
32

38
0.
22

59
0.
22

50
0.
25

93
0.
17

95
0.
93

56
0.
99

06
1.
36

03
3.
50

00
1.
00

38
0.
71

54
0.
88

23
0.
79

46
0.
57

74
0.
81

80
0.
36

37
0.
58

95
0.
39

96
0.
44

46
0.
41

18
0.
35

72
0.
89

11
1.
39

44
1.
14

49
4.
00

00
1.
03

33
0.
77

78
0.
92

86
0.
82

54
0.
72

96
0.
95

08
0.
52

22
0.
84

02
0.
56

88
0.
66

76
0.
55

01
0.
55

77
0.
90

77
1.
83

42
1.
07

73
4.
50

00
1.
05

39
0.
83

73
0.
98

29
0.
86

99
0.
84

28
0.
93

53
0.
64

14
1.
02

88
0.
70

15
0.
82

52
0.
66

17
0.
72

39
0.
94

08
2.
15

51
1.
06

00
5.
00

00
1.
06

30
0.
88

59
1.
03

35
0.
91

02
0.
91

95
0.
81

75
0.
72

61
1.
15

12
0.
79

58
0.
91

96
0.
74

62
0.
83

89
0.
97

08
2.
23

33
1.
05

67
6.
00

00
1.
06

58
0.
95

64
1.
06

18
0.
97

20
1.
00

96
0.
85

31
0.
83

85
1.
25

97
0.
91

14
1.
01

24
0.
86

02
0.
96

56
1.
01

70
2.
16

83
1.
06

42
7.
00

00
1.
05

17
0.
99

25
1.
01

97
1.
00

36
1.
05

39
0.
72

42
0.
90

40
1.
27

66
0.
96

60
1.
04

31
0.
92

14
1.
01

56
1.
03

75
1.
94

62
1.
06

51
8.
00

00
1.
02

76
1.
00

43
0.
96

84
1.
01

28
1.
07

21
0.
63

25
0.
93

90
1.
26

09
0.
98

82
1.
04

53
0.
94

97
1.
02

84
1.
03

86
1.
77

31
1.
05

55
9.
00

00
1.
00

65
1.
00

79
0.
93

10
1.
01

57
1.
08

45
0.
52

97
0.
95

90
1.
24

26
0.
99

47
1.
04

11
0.
96

81
1.
03

04
1.
03

55
1.
61

28
1.
04

63

153



T
ab

le
D
.2
5:

A
PE

sa
tv

ar
io
us

m
on

om
er

se
pa

ra
tio

ns
(a
ng

st
ro
m
)r

el
at
iv
e
to

th
e
E

di
sp

x
va
lu
es

an
d
M
A
PE

sf
or

th
e
be

nz
en
e-

m
et
ha

ne
.

R
D

as
D
3B

J[
H
F]

D
A
D
E

D
3[
N
o-
sw

itc
hi
ng

]
di
sp
(V

V
10
)

di
sp
(v
dW

-D
F2

)
di
sp
(M

BD
)

di
sp
(V

V
09
)

D
3B

J[
PB

E]
X
D
M
10
[P
W

86
-P

BE
]

D
3M

BJ
[P
BE

]
X
D
M
8[
PW

86
-P

BE
]

X
D
M
8[
N
o-
sw

itc
hi
ng

]
di
sp
(v
dW

-D
F1

)
X
D
M
10
[N

o-
sw

itc
hi
ng

]
3.
28
00

0.
27
11

5.
29
07

5.
35
61

24
.3
12
1

58
.0
04
7

32
.4
06
9

61
.6
77
4

49
.6
01
2

61
.7
58
9

64
.5
29
0

60
.6
62
3

71
.8
74
1

70
.4
61
9

4.
54
82

19
2.
91
80

3.
80
00

4.
04
54

7.
58
91

9.
91
76

4.
09
42

44
.1
42
1

18
.2
19
6

46
.6
16
6

27
.4
95
0

46
.6
79
9

45
.0
88
4

47
.7
02
6

55
.6
35
9

36
.1
76
9

20
.2
97
0

94
.3
40
3

4.
80
00

6.
59
39

8.
03
15

5.
18
02

4.
45
50

20
.3
16
7

4.
15
00

29
.4
98
2

4.
89
39

22
.5
51
1

6.
06
63

27
.1
31
9

19
.5
45
9

17
.7
37
1

65
.3
40
4

38
.4
57
6

5.
80
00

5.
73
91

3.
16
71

2.
07
27

1.
20
35

5.
53
82

17
.1
22
4

20
.1
89
4

20
.4
18
0

8.
99
40

13
.4
19
5

14
.0
98
9

4.
12
62

17
.6
36
6

83
.4
42
0

27
.5
56
1

6.
80
00

5.
12
86

1.
04
71

2.
32
10

2.
48
64

0.
03
54

36
.9
15
4

13
.2
97
0

25
.2
10
5

1.
78
20

19
.3
44
3

6.
27
23

14
.0
14
7

19
.2
12
6

64
.2
95
7

24
.5
99
9

7.
80
00

5.
23
47

3.
52
78

8.
30
12

4.
77
53

4.
00
19

44
.7
45
7

8.
42
61

25
.1
87
7

1.
99
84

21
.3
41
8

1.
73
52

18
.1
75
8

20
.4
21
8

41
.3
30
2

23
.5
95
0

8.
80
00

5.
51
73

5.
01
27

12
.8
95
1

6.
24
79

7.
27
23

47
.6
84
7

5.
18
42

23
.7
14
0

4.
20
46

21
.5
92
4

1.
16
21

19
.6
13
1

20
.6
84
9

29
.3
37
3

22
.6
65
3

M
A
PE

4.
64
72

4.
80
94

6.
57
77

6.
79
64

19
.9
01
6

28
.7
49
3

26
.4
12
7

25
.2
17
2

21
.1
38
4

27
.3
40
2

22
.6
80
8

28
.9
98
0

28
.9
04
5

44
.0
84
4

60
.5
90
3

T
ab

le
D
.2
6:

A
PE

sa
tv

ar
io
us

m
on

om
er

se
pa

ra
tio

ns
(a
ng

st
ro
m
)r

el
at
iv
e
to

th
e
E

di
sp

x
va
lu
es

an
d
M
A
PE

sf
or

th
e
be

nz
en
e-

wa
te
r.

R
D

as
D
3B

J[
H
F]

D
A
D
E

D
3[
N
o-
sw

itc
hi
ng

]
di
sp
(V

V
10
)

di
sp
(v
dW

-D
F2

)
di
sp
(M

BD
)

di
sp
(V

V
09
)

D
3B

J[
PB

E]
X
D
M
10
[P
W

86
-P

BE
]

D
3M

BJ
[P
BE

]
X
D
M
8[
PW

86
-P

BE
]

X
D
M
8[
N
o-
sw

itc
hi
ng

]
di
sp
(v
dW

-D
F1

)
X
D
M
10
[N

o-
sw

itc
hi
ng

]
2.
50
00

13
.7
63
8

2.
89
31

6.
67
56

82
.8
77
8

68
.4
76
3

45
.8
89
6

75
.4
61
4

72
.5
03
8

74
.9
53
4

80
.9
56
8

72
.8
07
0

84
.9
62
1

16
3.
84
79

22
.9
40
8

47
9.
63
73

3.
00
00

7.
64
64

6.
91
92

7.
83
60

33
.8
14
7

53
.7
71
2

28
.5
76
0

56
.6
79
3

51
.2
25
1

57
.6
81
7

63
.6
18
2

56
.6
99
5

71
.2
75
5

83
.0
77
4

3.
69
99

20
4.
38
73

3.
50
00

5.
71
78

5.
08
50

13
.7
05
2

16
.3
82
8

37
.8
49
0

10
.9
87
5

38
.0
37
7

28
.0
02
5

38
.1
89
3

38
.9
20
9

39
.8
56
4

51
.3
19
5

51
.9
70
4

33
.2
96
2

11
2.
83
98

4.
00
00

6.
95
62

5.
30
85

13
.3
92
9

11
.3
81
4

22
.4
47
6

3.
52
51

25
.1
29
5

8.
23
38

21
.1
91
6

11
.6
06
1

25
.4
55
1

27
.7
58
1

40
.1
88
6

64
.3
24
2

76
.1
61
7

4.
50
00

9.
79
26

7.
62
39

12
.0
37
3

11
.5
34
0

9.
19
18

10
.7
56
3

17
.0
21
4

5.
82
23

8.
55
88

10
.4
61
6

14
.2
57
8

6.
14
45

36
.4
06
1

92
.7
96
6

59
.8
57
9

5.
00
00

12
.9
04
0

10
.6
01
2

11
.8
71
2

13
.4
37
5

0.
42
46

8.
41
36

11
.2
62
6

14
.1
45
6

0.
34
87

24
.0
25
1

5.
79
17

9.
88
70

35
.7
72
8

11
2.
63
40

51
.9
63
0

6.
00
00

17
.5
72
3

15
.4
15
7

9.
85
03

17
.2
65
2

12
.0
04
1

10
.5
60
0

3.
05
57

18
.5
64
9

10
.7
09
4

34
.6
24
9

5.
04
21

26
.3
61
3

36
.1
06
3

11
6.
83
78

44
.5
53
1

7.
00
00

19
.6
36
6

17
.6
79
2

3.
26
95

19
.1
29
8

17
.8
66
3

19
.3
59
3

2.
23
83

13
.1
24
3

15
.1
98
9

36
.2
15
9

10
.4
92
6

31
.4
89
0

35
.4
90
0

94
.1
84
5

40
.2
37
8

8.
00
00

20
.4
75
0

18
.6
04
1

2.
90
28

19
.9
38
2

23
.4
50
0

16
.1
90
1

5.
38
60

3.
09
12

17
.2
62
8

35
.5
96
7

13
.3
82
8

32
.7
45
6

34
.5
68
0

84
.4
39
9

37
.4
22
3

M
A
PE

12
.7
18
3

10
.0
14
5

9.
06
01

25
.0
84
6

27
.2
75
7

17
.1
39
7

26
.0
30
2

23
.8
57
0

27
.1
21
6

37
.3
36
2

27
.0
87
2

37
.9
93
6

57
.4
91
9

69
.4
61
6

12
3.
00
67

T
ab

le
D
.2
7:

A
PE

sa
tv

ar
io
us

m
on

om
er

se
pa

ra
tio

ns
(a
ng

st
ro
m
)r

el
at
iv
e
to

th
e
E

di
sp

x
va
lu
es

an
d
M
A
PE

sf
or

th
e
di
am

in
o-

di
ni
tr
oe
th
yl
en
e
(F

O
X
-7
)
di
m
er
.

R
D

as
D
3B

J[
H
F]

D
A
D
E

D
3[
N
o-
sw

itc
hi
ng

]
di
sp
(V

V
10
)

di
sp
(v
dW

-D
F2

)
di
sp
(M

BD
)

di
sp
(V

V
09
)

D
3B

J[
PB

E]
X
D
M
10
[P
W

86
-P

BE
]

D
3M

BJ
[P
BE

]
X
D
M
8[
PW

86
-P

BE
]

X
D
M
8[
N
o-
sw

itc
hi
ng

]
di
sp
(v
dW

-D
F1

)
X
D
M
10
[N

o-
sw

itc
hi
ng

]
6.
37
90

9.
60
38

21
.9
19
8

26
.9
22
7

67
.1
10
8

61
.7
69
7

46
.5
86
6

70
.1
43
5

56
.1
67
1

72
.9
07
6

75
.9
40
2

72
.9
07
6

80
.1
39
6

12
4.
92
60

20
.4
24
4

42
6.
32
64

6.
57
90

7.
04
99

16
.6
37
9

23
.5
03
2

40
.9
54
2

56
.1
47
2

40
.7
00
5

63
.6
12
7

46
.9
57
1

67
.5
83
8

70
.3
80
9

67
.5
83
8

75
.4
52
8

83
.4
95
7

10
.3
88
4

26
8.
00
77

7.
57
90

2.
02
23

12
.6
79
8

21
.4
71
3

5.
22
04

31
.1
51
6

21
.8
58
2

29
.7
79
2

9.
21
09

39
.2
66
1

37
.2
72
1

39
.2
66
1

46
.0
44
8

8.
59
83

34
.6
49
4

39
.7
27
4

8.
57
90

7.
40
63

16
.6
13
8

25
.7
44
2

14
.4
20
2

19
.7
31
3

33
.9
47
2

15
.3
02
7

3.
30
76

24
.6
32
6

17
.5
12
4

24
.6
32
6

24
.9
12
6

8.
55
37

43
.2
44
1

0.
91
85

9.
57
90

11
.7
67
1

19
.7
99
2

31
.1
66
1

18
.5
49
0

17
.4
89
4

51
.2
44
6

13
.0
15
2

2.
70
17

22
.4
83
1

16
.8
62
6

22
.4
83
1

20
.5
86
0

16
.0
18
1

19
.1
03
6

12
.1
81
3

10
.5
79
0

15
.2
20
0

22
.4
67
7

37
.2
52
9

21
.4
31
4

17
.9
39
0

58
.1
68
4

14
.5
03
1

0.
52
26

23
.5
08
9

20
.2
61
5

23
.5
08
9

22
.1
12
7

20
.6
07
4

1.
67
74

18
.7
48
1

M
A
PE

8.
84
49

18
.3
53
0

27
.6
76
8

27
.9
47
6

34
.0
38
0

42
.0
84
3

34
.3
92
7

19
.8
11
2

41
.7
30
4

39
.7
04
9

41
.7
30
4

44
.8
74
8

43
.6
99
9

21
.5
81
2

12
7.
65
16

154



T
ab

le
D
.2
8:

A
PE

s
at

va
rio

us
m
on

om
er

se
pa

ra
tio

ns
(a
ng

st
ro
m
)r

el
at
iv
e
to

th
e
E

di
sp

x
va
lu
es

an
d
M
A
PE

s
fo
rt

he
et
ha

no
l

di
m
er
.

R
D

as
D
3B

J[
H
F]

D
A
D
E

D
3[
N
o-
sw

itc
hi
ng

]
di
sp
(V

V
10
)

di
sp
(v
dW

-D
F2

)
di
sp
(M

BD
)

di
sp
(V

V
09
)

D
3B

J[
PB

E]
X
D
M
10
[P
W

86
-P

BE
]

D
3M

BJ
[P
BE

]
X
D
M
8[
PW

86
-P

BE
]

X
D
M
8[
N
o-
sw

itc
hi
ng

]
di
sp
(v
dW

-D
F1

)
X
D
M
10
[N

o-
sw

itc
hi
ng

]
3.
25
60

0.
84
75

12
.0
22
6

2.
87
56

23
.1
05
5

56
.7
13
4

31
.7
40
3

61
.2
83
0

49
.9
65
8

66
.2
39
9

68
.7
30
1

66
.4
46
4

74
.9
65
2

75
.3
34
7

2.
05
83

20
9.
78
53

3.
55
80

1.
15
36

9.
02
74

8.
96
76

10
.1
74
0

47
.2
84
6

20
.6
29
0

50
.0
26
8

34
.8
21
9

56
.5
24
1

56
.9
45
6

57
.9
32
3

65
.3
15
3

51
.8
79
8

16
.3
49
9

13
4.
74
06

4.
55
80

0.
68
18

5.
40
53

11
.1
73
0

0.
57
95

18
.5
86
4

2.
95
70

23
.7
97
1

6.
55
89

26
.3
49
5

13
.1
80
5

31
.4
02
1

26
.7
23
1

25
.6
29
8

74
.2
37
5

53
.3
56
7

5.
55
80

2.
69
75

1.
40
02

8.
99
47

0.
79
23

0.
73
98

7.
42
86

10
.8
71
6

27
.1
22
1

9.
52
74

11
.8
19
9

15
.0
10
4

1.
18
90

20
.7
52
8

10
0.
14
07

33
.0
43
1

6.
55
80

2.
65
67

1.
00
79

4.
48
78

2.
38
57

6.
02
61

30
.0
73
4

3.
15
93

33
.4
07
1

2.
59
76

17
.5
68
7

7.
21
82

11
.5
30
9

18
.5
64
0

81
.5
65
4

24
.7
42
1

7.
55
80

1.
92
21

2.
17
14

2.
38
85

3.
22
42

8.
61
17

42
.0
91
6

1.
72
58

34
.5
44
5

0.
28
89

17
.7
75
9

3.
44
40

14
.3
62
1

17
.1
62
0

52
.8
80
9

20
.5
90
2

8.
55
80

0.
77
20

2.
27
36

8.
47
48

3.
19
95

10
.3
84
8

46
.8
26
0

4.
40
93

32
.9
53
0

1.
19
89

16
.3
65
9

1.
78
27

14
.3
24
7

15
.5
71
5

34
.5
99
1

17
.6
14
6

M
A
PE

1.
53
30

4.
75
84

6.
76
60

6.
20
87

21
.1
92
4

25
.9
63
7

22
.1
81
8

31
.3
39
0

23
.2
46
6

28
.9
12
4

26
.1
76
6

29
.7
72
9

32
.1
27
8

51
.6
90
3

70
.5
53
2

T
ab

le
D
.2
9:

A
PE

sa
tv

ar
io
us

m
on

om
er

se
pa

ra
tio

ns
(a
ng

st
ro
m
)r

el
at
iv
e
to

th
e
E

di
sp

x
va
lu
es

an
d
M
A
PE

sf
or

th
e
et
hy

le
ne
-

di
ni
tr
am

in
e
(E

D
N
A
)
di
m
er
.

R
D

as
D
3B

J[
H
F]

D
A
D
E

D
3[
N
o-
sw

itc
hi
ng

]
di
sp
(V

V
10
)

di
sp
(v
dW

-D
F2

)
di
sp
(M

BD
)

di
sp
(V

V
09
)

D
3B

J[
PB

E]
X
D
M
10
[P
W

86
-P

BE
]

D
3M

BJ
[P
BE

]
X
D
M
8[
PW

86
-P

BE
]

X
D
M
8[
N
o-
sw

itc
hi
ng

]
di
sp
(v
dW

-D
F1

)
X
D
M
10
[N

o-
sw

itc
hi
ng

]
4.
49
80

22
.8
20
2

10
.5
72
2

10
.9
67
7

31
.5
13
2

51
.7
93
8

27
.2
74
7

64
.8
57
6

33
.7
90
7

66
.9
22
4

71
.3
68
3

66
.1
41
8

76
.8
21
0

69
.3
29
2

0.
58
64

21
2.
17
93

4.
79
80

19
.1
81
1

9.
12
42

7.
47
47

18
.0
02
9

44
.6
61
9

19
.8
76
0

57
.0
10
1

21
.6
18
3

60
.4
10
8

64
.1
77
9

60
.2
92
2

70
.8
97
3

48
.2
96
1

12
.6
75
5

14
4.
66
11

5.
79
80

9.
88
78

10
.5
14
4

4.
62
72

2.
42
27

23
.5
19
9

3.
89
12

34
.2
62
9

10
.3
17
5

40
.0
25
1

36
.6
94
4

42
.6
85
2

47
.4
53
5

14
.6
15
7

47
.4
81
2

49
.1
45
0

6.
79
80

2.
58
05

13
.2
57
9

6.
80
52

9.
80
12

10
.3
62
5

6.
39
00

21
.5
95
4

25
.7
52
8

27
.7
58
4

17
.2
13
4

31
.9
38
1

27
.9
26
5

0.
98
88

66
.3
34
4

16
.3
36
4

7.
79
80

2.
72
22

14
.8
27
6

9.
61
47

12
.7
80
4

4.
46
90

23
.2
10
0

14
.8
95
9

30
.5
15
6

22
.2
55
5

10
.2
53
8

26
.6
20
2

17
.7
43
6

4.
79
87

64
.3
40
6

3.
41
48

8.
79
80

5.
85
46

15
.2
38
1

12
.9
45
6

13
.8
49
0

1.
89
68

42
.1
12
3

10
.0
62
7

31
.1
58
4

19
.2
21
8

8.
69
92

23
.2
31
2

13
.3
13
8

7.
51
04

45
.9
95
4

2.
78
36

9.
79
80

8.
02
05

15
.4
99
4

17
.4
87
8

14
.4
50
6

0.
96
65

55
.1
91
1

6.
78
72

29
.6
77
4

17
.7
16
1

9.
08
97

21
.1
51
3

11
.8
67
9

9.
24
93

21
.7
72
1

6.
45
39

10
.7
98
0

9.
86
64

16
.0
16
9

22
.4
63
9

15
.1
35
0

1.
11
99

63
.1
90
5

4.
82
31

27
.0
86
1

17
.2
96
7

10
.3
32
4

20
.1
33
4

12
.0
28
6

10
.8
08
7

2.
03
97

9.
10
97

M
A
PE

10
.1
16
7

13
.1
31
3

11
.5
48
4

14
.7
44
4

17
.3
48
8

30
.1
42
0

26
.7
86
9

26
.2
39
6

33
.9
50
8

28
.4
78
6

36
.5
24
2

34
.7
56
5

20
.6
99
6

32
.6
53
2

55
.5
10
5

T
ab

le
D
.3
0:

A
PE

sa
tv

ar
io
us

m
on

om
er

se
pa

ra
tio

ns
(a
ng

st
ro
m
)r

el
at
iv
e
to

th
e
E

di
sp

x
va
lu
es

an
d
M
A
PE

sf
or

th
e
im

id
az
ol
e

di
m
er
.

R
D

as
D
3B

J[
H
F]

D
A
D
E

D
3[
N
o-
sw

itc
hi
ng

]
di
sp
(V

V
10
)

di
sp
(v
dW

-D
F2

)
di
sp
(M

BD
)

di
sp
(V

V
09
)

D
3B

J[
PB

E]
X
D
M
10
[P
W

86
-P

BE
]

D
3M

BJ
[P
BE

]
X
D
M
8[
PW

86
-P

BE
]

X
D
M
8[
N
o-
sw

itc
hi
ng

]
di
sp
(v
dW

-D
F1

)
X
D
M
10
[N

o-
sw

itc
hi
ng

]
4.
92
50

11
.2
73
5

43
.8
34
2

34
.9
81
5

19
3.
71
96

75
.4
47
0

65
.8
63
9

80
.0
78
7

76
.4
00
1

80
.1
12
5

81
.5
00
9

79
.8
53
1

84
.9
61
2

34
9.
45
00

47
.9
26
6

15
95
.4
51
5

5.
24
70

6.
24
03

28
.8
41
0

23
.6
03
1

69
.4
99
5

66
.0
09
7

54
.9
82
6

70
.8
99
0

63
.3
70
7

71
.6
26
0

72
.6
61
2

71
.8
10
9

77
.5
31
0

13
9.
16
73

30
.5
78
8

50
6.
24
07

6.
24
70

6.
18
91

17
.7
44
0

13
.3
38
2

9.
36
15

36
.7
03
0

25
.3
02
8

37
.7
16
3

20
.9
15
2

43
.1
18
2

37
.7
78
7

46
.0
43
8

46
.5
75
8

11
.3
52
1

24
.4
49
1

48
.0
22
8

7.
24
70

8.
01
74

16
.4
68
0

18
.1
04
6

13
.8
81
6

17
.4
24
1

22
.2
51
3

16
.6
85
7

0.
03
00

23
.8
52
1

10
.5
87
6

28
.1
97
4

18
.8
84
8

0.
86
24

56
.0
06
9

10
.0
62
9

8.
24
70

8.
36
54

14
.4
88
9

22
.8
47
2

12
.5
51
3

9.
22
47

36
.6
58
2

7.
50
24

3.
92
39

16
.7
18
4

3.
37
67

20
.5
86
8

8.
04
16

2.
62
17

45
.8
92
1

2.
19
12

9.
24
70

9.
53
47

14
.1
77
3

28
.4
81
3

12
.1
30
8

6.
12
15

44
.4
94
8

3.
71
34

1.
84
45

14
.5
72
7

3.
38
86

17
.7
18
9

5.
90
65

3.
96
87

25
.3
95
2

1.
43
97

10
.2
47
0

10
.7
36
1

14
.6
51
7

32
.8
61
2

12
.1
55
0

3.
87
89

45
.1
32
4

3.
18
07

1.
43
45

13
.9
11
3

4.
52
25

16
.4
84
8

6.
00
27

5.
17
88

14
.5
13
1

3.
69
73

M
A
PE

8.
62
24

21
.4
57
9

24
.8
88
2

46
.1
85
6

30
.6
87
0

42
.0
98
0

31
.3
96
6

23
.9
88
4

37
.7
01
6

30
.5
45
2

40
.0
99
4

35
.4
14
8

73
.2
28
7

34
.9
66
0

30
9.
58
66

155



T
ab

le
D
.3
1:

A
PE

sa
tv

ar
io
us

m
on

om
er

se
pa

ra
tio

ns
(a
ng

st
ro
m
)r

el
at
iv
e
to

th
e
E

di
sp

x
va
lu
es

an
d
M
A
PE

sf
or

th
e
m
et
hy

l-
fo
rm

at
e
di
m
er
.

R
D

as
D
3B

J[
H
F]

D
A
D
E

D
3[
N
o-
sw

itc
hi
ng

]
di
sp
(V

V
10
)

di
sp
(v
dW

-D
F2

)
di
sp
(M

BD
)

di
sp
(V

V
09
)

D
3B

J[
PB

E]
X
D
M
10
[P
W

86
-P

BE
]

D
3M

BJ
[P
BE

]
X
D
M
8[
PW

86
-P

BE
]

X
D
M
8[
N
o-
sw

itc
hi
ng

]
di
sp
(v
dW

-D
F1

)
X
D
M
10
[N

o-
sw

itc
hi
ng

]
4.
24
30

7.
04
87

18
.3
88
2

7.
32
16

18
.9
18
2

56
.5
82
9

36
.6
32
4

62
.8
39
2

51
.7
63
2

66
.2
90
9

68
.5
93
6

66
.4
48
6

74
.2
96
7

52
.9
67
6

4.
44
17

16
7.
06
21

4.
43
40

7.
60
84

15
.3
80
8

3.
66
07

8.
58
98

50
.5
07
7

29
.6
49
3

55
.7
61
8

42
.2
62
6

60
.0
64
8

61
.6
32
1

60
.9
21
0

68
.4
68
2

36
.9
34
8

7.
60
42

11
5.
17
80

5.
43
40

7.
39
17

9.
82
80

1.
33
02

5.
27
61

22
.1
65
0

7.
11
76

27
.2
14
0

2.
25
61

29
.2
25
3

20
.6
97
6

33
.7
72
5

32
.2
31
8

10
.3
67
4

64
.8
82
6

32
.3
16
2

6.
43
40

6.
46
47

6.
16
16

3.
92
30

4.
15
02

6.
67
44

18
.7
05
1

14
.5
28
0

14
.3
15
8

13
.3
10
2

0.
17
60

18
.4
11
0

8.
35
97

6.
35
94

82
.5
94
4

15
.8
34
0

7.
43
40

7.
13
98

4.
56
66

8.
96
03

3.
28
75

0.
78
76

37
.1
93
4

8.
07
63

17
.3
26
9

7.
72
66

3.
73
66

12
.0
14
4

0.
90
03

4.
23
89

60
.5
15
1

8.
95
27

8.
43
40

8.
68
80

4.
67
33

15
.8
87
6

3.
68
12

1.
58
47

45
.8
81
9

4.
91
78

15
.0
73
0

6.
31
58

2.
50
99

9.
74
81

0.
05
74

1.
95
41

34
.8
82
3

4.
52
97

M
A
PE

7.
39
02

9.
83
31

6.
84
72

7.
31
72

23
.0
50
4

29
.1
96
6

28
.8
89
5

23
.8
32
9

30
.4
88
9

26
.2
24
3

33
.5
52
6

30
.7
19
0

18
.8
03
7

42
.4
86
7

57
.3
12
1

T
ab

le
D
.3
2:

A
PE

sa
tv

ar
io
us

m
on

om
er

se
pa

ra
tio

ns
(a
ng

st
ro
m
)r

el
at
iv
e
to

th
e
E

di
sp

x
va
lu
es

an
d
M
A
PE

sf
or

th
e
ni
tr
ob

en
-

ze
ne

di
m
er
.

R
D

as
D
3B

J[
H
F]

D
A
D
E

D
3[
N
o-
sw

itc
hi
ng

]
di
sp
(V

V
10
)

di
sp
(v
dW

-D
F2

)
di
sp
(M

BD
)

di
sp
(V

V
09
)

D
3B

J[
PB

E]
X
D
M
10
[P
W

86
-P

BE
]

D
3M

BJ
[P
BE

]
X
D
M
8[
PW

86
-P

BE
]

X
D
M
8[
N
o-
sw

itc
hi
ng

]
di
sp
(v
dW

-D
F1

)
X
D
M
10
[N

o-
sw

itc
hi
ng

]
2.
90
00

18
.9
88
3

8.
40
27

6.
74
80

11
.3
31
8

49
.9
68
8

22
.0
89
0

60
.8
82
2

20
.9
74
9

59
.5
50
2

67
.2
93
2

55
.5
88
5

74
.1
51
5

28
.4
76
4

3.
08
80

10
1.
69
59

3.
20
00

13
.7
82
0

8.
54
43

12
.0
77
7

3.
56
57

39
.7
38
9

12
.6
66
7

50
.3
12
0

2.
82
92

49
.0
48
3

54
.6
46
6

46
.8
52
0

63
.9
95
0

18
.9
57
8

18
.2
88
7

69
.8
13
5

4.
20
00

8.
59
73

5.
40
28

10
.4
26
4

1.
12
48

8.
95
26

3.
94
36

23
.8
61
1

39
.9
40
9

21
.0
93
1

12
.5
01
1

25
.1
37
9

26
.4
24
7

9.
35
58

60
.1
18
5

29
.6
79
3

5.
20
00

10
.6
55
8

1.
30
71

5.
08
48

3.
89
58

8.
29
92

8.
52
69

9.
54
85

56
.4
04
4

5.
41
26

7.
50
22

11
.1
50
9

2.
23
13

11
.5
12
5

76
.0
13
6

21
.8
57
5

6.
20
00

12
.0
52
6

5.
97
49

0.
29
28

7.
97
45

16
.2
45
3

30
.5
31
6

1.
40
01

58
.3
79
7

2.
64
35

14
.0
19
8

2.
76
99

8.
26
11

13
.8
52
3

58
.3
80
1

19
.6
76
9

7.
20
00

12
.0
78
5

8.
32
57

7.
33
06

10
.1
15
1

20
.6
39
0

40
.2
91
5

3.
01
26

59
.6
25
1

6.
57
92

15
.6
87
6

1.
93
51

12
.2
02
0

14
.7
05
9

35
.4
84
3

18
.2
00
8

8.
20
00

11
.7
31
9

9.
58
27

12
.7
91
9

11
.3
82
8

23
.5
89
6

43
.3
03
3

5.
43
26

57
.0
85
4

8.
78
60

15
.9
73
1

4.
87
07

13
.7
64
1

14
.9
89
7

23
.1
24
9

17
.2
00
4

M
A
PE

12
.5
55
2

6.
79
15

7.
82
18

7.
05
58

23
.9
19
0

23
.0
50
4

22
.0
64
1

42
.1
77
1

21
.8
73
3

26
.8
03
4

21
.1
86
4

28
.7
18
5

15
.9
78
6

39
.2
14
0

39
.7
32
0

T
ab

le
D
.3
3:

A
PE

s
at

va
rio

us
m
on

om
er

se
pa

ra
tio

ns
(a
ng

st
ro
m
)
re
la
tiv

e
to

th
e
E

di
sp

x
va
lu
es

an
d
M
A
PE

s
fo
r
th
e
ni
-

tr
om

et
ha

ne
di
m
er
.

R
D

as
D
3B

J[
H
F]

D
A
D
E

D
3[
N
o-
sw

itc
hi
ng

]
di
sp
(V

V
10
)

di
sp
(v
dW

-D
F2

)
di
sp
(M

BD
)

di
sp
(V

V
09
)

D
3B

J[
PB

E]
X
D
M
10
[P
W

86
-P

BE
]

D
3M

BJ
[P
BE

]
X
D
M
8[
PW

86
-P

BE
]

X
D
M
8[
N
o-
sw

itc
hi
ng

]
di
sp
(v
dW

-D
F1

)
X
D
M
10
[N

o-
sw

itc
hi
ng

]
2.
81
30

16
.5
49
9

19
.3
67
9

18
.8
61
6

13
.4
46
1

57
.4
77
6

30
.3
94
2

75
.1
57
7

49
.7
50
1

75
.0
71
7

78
.1
59
0

73
.2
97
0

82
.4
89
2

36
.1
90
7

2.
43
09

13
0.
56
44

3.
13
10

9.
86
14

16
.8
27
2

13
.3
97
9

2.
15
24

47
.6
43
8

20
.2
13
9

64
.0
40
2

32
.6
84
0

65
.5
71
5

67
.8
13
7

64
.5
44
9

74
.1
23
0

21
.1
73
1

14
.7
43
6

82
.8
63
0

4.
13
10

1.
68
19

12
.9
17
9

8.
29
50

7.
86
25

18
.9
51
3

0.
24
06

30
.7
00
7

11
.7
78
7

34
.8
09
1

27
.1
37
3

38
.2
31
7

38
.8
59
9

4.
36
14

67
.2
02
8

26
.1
02
2

5.
13
10

0.
92
55

8.
00
48

4.
23
14

5.
69
09

1.
96
38

15
.0
50
3

13
.5
42
5

33
.5
17
6

16
.6
22
0

3.
81
69

21
.6
79
0

12
.8
02
0

2.
98
30

88
.0
21
9

12
.9
03
7

6.
13
10

0.
42
57

4.
71
76

4.
77
71

3.
27
57

5.
83
96

34
.9
27
4

5.
25
76

38
.9
89
6

8.
63
53

2.
39
76

13
.2
93
2

2.
65
47

3.
11
26

65
.4
07
1

8.
24
28

7.
13
10

0.
60
01

3.
17
40

9.
76
89

2.
10
71

10
.1
80
1

41
.3
97
9

0.
88
54

38
.3
93
7

5.
27
05

3.
26
99

9.
14
75

0.
38
68

2.
73
75

42
.5
57
0

5.
62
94

8.
13
10

1.
53
47

2.
33
79

14
.3
33
6

1.
45
42

13
.0
26
8

41
.9
78
6

1.
44
67

36
.3
77
9

3.
61
20

3.
01
61

6.
76
55

1.
26
67

2.
33
94

31
.9
83
1

4.
09
01

M
A
PE

4.
51
13

9.
62
10

10
.5
23
6

5.
14
13

22
.1
54
7

26
.3
14
7

27
.2
90
1

34
.4
98
8

29
.9
41
7

26
.5
15
8

32
.4
22
7

30
.3
68
9

10
.4
13
9

44
.6
20
9

38
.6
27
9

156



T
ab

le
D
.3
4:

A
PE

s
at

va
rio

us
m
on

om
er

se
pa

ra
tio

ns
(a
ng

st
ro
m
)
re
la
tiv

e
to

th
e
E

di
sp

x
va
lu
es

an
d
M
A
PE

s
fo
r
th
e
wa

te
r

di
m
er
.

R
D

as
D
3B

J[
H
F]

D
A
D
E

D
3[
N
o-
sw

itc
hi
ng

]
di
sp
(V

V
10
)

di
sp
(v
dW

-D
F2

)
di
sp
(M

BD
)

di
sp
(V

V
09
)

D
3B

J[
PB

E]
X
D
M
10
[P
W

86
-P

BE
]

D
3M

BJ
[P
BE

]
X
D
M
8[
PW

86
-P

BE
]

X
D
M
8[
N
o-
sw

itc
hi
ng

]
di
sp
(v
dW

-D
F1

)
X
D
M
10
[N

o-
sw

itc
hi
ng

]
2.
31
00

0.
91
14

58
.2
43
6

51
.0
87
4

47
1.
38
56

85
.9
67
0

75
.5
68
4

94
.2
10
5

10
5.
23
45

93
.6
30
7

95
.0
99
7

93
.7
06
2

96
.0
68
6

86
2.
65
44

60
.7
28
8

47
72
.3
30
4

2.
61
00

0.
99
76

42
.4
06
9

38
.4
99
2

17
9.
36
90

79
.5
44
7

67
.3
32
5

89
.2
69
6

99
.7
65
1

89
.1
96
4

90
.8
87
3

89
.4
65
2

92
.7
02
8

33
5.
48
55

47
.2
40
2

13
37
.7
69
9

2.
91
00

4.
68
48

27
.9
29
2

28
.0
89
9

75
.6
33
7

72
.1
45
3

57
.7
30
1

81
.8
84
1

90
.3
52
4

82
.9
65
4

84
.4
58
5

83
.6
47
7

87
.5
53
1

15
9.
29
31

31
.8
89
3

52
2.
50
33

3.
21
00

7.
51
74

18
.0
32
2

20
.5
35
9

31
.2
32
9

63
.9
84
3

46
.5
17
3

72
.2
29
1

78
.3
50
3

74
.7
63
2

75
.6
67
3

76
.1
28
0

80
.3
95
1

85
.3
23
2

13
.7
98
0

25
2.
36
53

3.
51
00

8.
91
19

13
.9
34
0

15
.8
72
5

10
.2
39
9

55
.3
78
7

34
.0
90
1

60
.8
57
1

65
.2
96
2

64
.8
22
1

64
.6
65
9

67
.0
81
8

71
.1
74
3

49
.9
18
2

7.
63
51

14
0.
73
01

4.
01
00

8.
44
19

12
.5
58
6

12
.2
79
0

3.
57
13

41
.2
47
1

14
.8
58
1

42
.2
51
4

44
.3
95
5

46
.7
25
1

42
.3
73
5

50
.5
95
8

51
.9
09
9

24
.6
82
6

49
.2
90
5

66
.7
14
5

4.
51
00

5.
92
38

11
.2
52
2

9.
37
56

6.
87
25

29
.2
36
4

5.
11
35

29
.8
46
2

28
.0
09
7

31
.2
88
9

19
.2
23
6

36
.2
60
5

31
.0
46
4

16
.0
41
8

89
.1
73
5

39
.6
01
5

5.
01
00

2.
91
79

9.
34
17

5.
68
90

6.
73
07

20
.4
45
6

7.
60
06

22
.8
38
4

18
.0
33
8

20
.8
74
8

2.
78
99

26
.0
71
8

14
.0
71
8

13
.0
90
9

11
4.
03
02

27
.7
41
9

5.
51
00

0.
17
98

7.
44
73

3.
04
13

5.
66
87

14
.3
91
4

16
.1
33
4

18
.3
37
1

13
.9
09
6

14
.3
91
2

5.
57
69

19
.2
89
3

3.
29
17

12
.0
89
5

11
9.
59
06

21
.8
17
3

6.
01
00

1.
38
68

6.
50
81

3.
18
77

5.
18
23

11
.2
91
4

23
.8
47
9

15
.5
58
7

14
.5
07
8

10
.9
14
8

8.
57
76

15
.3
21
5

2.
11
87

10
.9
14
3

11
1.
04
42

17
.5
95
1

6.
51
00

3.
64
27

4.
78
75

3.
91
43

3.
77
96

8.
51
98

26
.4
40
2

12
.4
77
5

17
.1
76
6

7.
80
43

10
.6
46
1

11
.7
86
6

5.
90
88

11
.1
79
1

10
3.
24
97

15
.9
79
7

7.
01
00

5.
05
45

3.
81
45

5.
85
24

3.
00
24

6.
36
45

26
.5
15
6

10
.2
73
2

22
.4
15
3

5.
97
16

11
.2
10
4

9.
59
94

7.
70
76

10
.9
64
3

95
.0
00
6

14
.4
86
8

7.
50
50

6.
52
99

2.
81
24

7.
55
37

2.
05
60

4.
99
54

23
.9
32
0

8.
15
83

29
.6
07
2

4.
34
32

11
.7
31
9

7.
55
71

9.
07
31

11
.1
76
9

91
.7
24
1

13
.8
42
5

8.
00
50

7.
91
29

1.
69
00

8.
98
58

1.
12
37

2.
89
06

19
.3
76
7

6.
21
88

38
.5
85
4

2.
85
22

12
.1
08
4

5.
87
37

10
.0
67
6

11
.4
57
6

93
.1
58
9

13
.5
01
0

8.
50
50

5.
07
19

4.
55
26

13
.4
80
9

3.
99
48

5.
06
99

16
.6
36
8

8.
07
31

51
.3
74
6

5.
54
32

8.
24
24

7.
85
53

6.
70
81

7.
61
80

91
.0
96
3

9.
15
32

9.
00
50

7.
70
27

2.
01
23

13
.0
58
0

1.
81
74

1.
89
02

8.
78
46

5.
23
91

63
.3
29
3

2.
97
77

10
.1
36
0

5.
39
08

8.
89
70

9.
54
32

10
1.
54
62

10
.7
82
6

M
A
PE

4.
86
17

14
.2
07
7

15
.0
31
4

50
.7
28
8

31
.4
60
1

29
.4
04
9

36
.1
07
6

48
.7
71
5

34
.9
41
5

34
.5
87
2

37
.8
51
9

36
.1
68
4

10
1.
96
45

76
.2
62
3

45
4.
80
72

T
ab

le
D
.3
5:

A
PE

s
at

va
rio

us
m
on

om
er

se
pa

ra
tio

ns
(a
ng

st
ro
m
)
re
la
tiv

e
to

th
e
E

di
sp

x
va
lu
es

an
d
M
A
PE

s
fo
r
th
e
ar
go
n

di
m
er
.

R
D

as
D
3B

J[
H
F]

D
A
D
E

D
3[
N
o-
sw

itc
hi
ng

]
di
sp
(V

V
10
)

di
sp
(v
dW

-D
F2

)
di
sp
(M

BD
)

di
sp
(V

V
09
)

D
3B

J[
PB

E]
X
D
M
10
[P
W

86
-P

BE
]

D
3M

BJ
[P
BE

]
X
D
M
8[
PW

86
-P

BE
]

X
D
M
8[
N
o-
sw

itc
hi
ng

]
di
sp
(v
dW

-D
F1

)
X
D
M
10
[N

o-
sw

itc
hi
ng

]
3.
20
00

36
.1
27
6

24
.1
69
4

15
.7
36
7

2.
23
30

59
.5
83
7

38
.0
20
3

85
.6
86
2

62
.9
60
0

76
.4
87
4

79
.0
95
1

65
.9
34
0

83
.5
73
2

12
.7
95
9

4.
86
22

28
.5
48
5

3.
50
00

18
.9
62
2

20
.9
80
1

11
.2
27
3

7.
01
70

50
.2
29
0

27
.3
61
2

76
.7
23
8

47
.5
86
4

65
.9
51
8

67
.8
54
6

57
.0
05
6

74
.7
53
1

16
.5
54
1

15
.0
72
0

13
.5
62
5

3.
76
00

9.
32
54

18
.4
64
5

9.
24
18

8.
38
18

42
.0
91
2

19
.0
99
8

67
.9
36
2

34
.5
29
7

56
.1
50
2

56
.7
44
3

49
.9
22
0

65
.7
35
4

17
.5
32
9

33
.6
49
7

6.
27
64

4.
25
00

0.
55
99

13
.5
21
5

7.
18
93

7.
27
05

28
.1
63
9

9.
27
24

52
.0
46
3

12
.3
67
6

39
.0
00
4

37
.2
86
8

38
.4
17
8

48
.2
55
6

16
.3
61
7

68
.3
57
2

0.
05
91

4.
50
00

1.
37
17

11
.0
42
7

5.
91
60

5.
88
82

22
.4
47
2

8.
66
89

45
.2
06
9

3.
58
31

31
.7
26
8

29
.6
44
5

33
.4
52
6

40
.3
96
6

15
.1
11
1

83
.3
29
5

1.
40
06

5.
00
00

2.
97
74

6.
65
10

2.
71
13

2.
89
24

14
.5
20
6

17
.1
61
0

34
.4
86
0

10
.5
83
6

20
.4
54
8

19
.0
53
7

25
.2
29
2

28
.1
05
7

12
.4
63
3

10
0.
50
92

2.
53
96

6.
00
00

1.
94
83

1.
30
64

1.
04
37

1.
06
25

6.
44
99

17
.8
52
1

21
.8
88
0

22
.3
79
0

8.
12
00

9.
74
63

14
.7
77
6

15
.1
29
0

9.
03
31

81
.1
44
3

3.
56
64

7.
00
00

1.
06
66

0.
62
38

6.
14
41

2.
26
85

1.
89
91

33
.7
91
8

15
.5
80
5

23
.0
35
0

3.
31
95

7.
45
84

9.
58
64

10
.6
18
9

8.
04
22

41
.5
12
0

4.
87
11

8.
00
00

4.
26
05

0.
84
41

11
.6
60
5

2.
14
30

0.
81
96

36
.3
57
3

12
.1
21
2

20
.8
88
9

1.
60
36

7.
47
28

6.
98
85

9.
40
72

8.
21
40

33
.3
83
5

6.
27
78

9.
00
00

7.
06
67

0.
52
28

15
.7
26
4

1.
54
68

2.
21
69

39
.9
94
4

10
.0
77
1

18
.5
08
6

1.
16
95

8.
17
34

5.
90
79

9.
40
78

8.
81
09

50
.1
91
7

7.
57
62

10
.0
00
0

9.
27
26

0.
24
63

18
.4
86
9

0.
97
22

3.
15
09

49
.2
23
4

8.
68
21

16
.6
15
6

1.
04
72

8.
85
14

4.
92
77

9.
67
48

9.
35
39

29
.1
36
8

8.
53
03

M
A
PE

8.
44
90

8.
94
30

9.
55
31

3.
78
87

21
.0
52
0

26
.9
82
0

39
.1
30
4

24
.8
21
6

27
.7
30
1

30
.1
25
6

28
.3
77
2

35
.9
14
3

12
.2
06
6

49
.1
95
3

7.
56
44

T
ab

le
D
.3
6:

A
PE

s
at

va
rio

us
m
on

om
er

se
pa

ra
tio

ns
(a
ng

st
ro
m
)
re
la
tiv

e
to

th
e
E

di
sp

x
va
lu
es

an
d
M
A
PE

s
fo
r
th
e
A
r-
H
F

di
m
er
.

R
D

as
D
3B

J[
H
F]

D
A
D
E

D
3[
N
o-
sw

itc
hi
ng

]
di
sp
(V

V
10
)

di
sp
(v
dW

-D
F2

)
di
sp
(M

BD
)

di
sp
(V

V
09
)

D
3B

J[
PB

E]
X
D
M
10
[P
W

86
-P

BE
]

D
3M

BJ
[P
BE

]
X
D
M
8[
PW

86
-P

BE
]

X
D
M
8[
N
o-
sw

itc
hi
ng

]
di
sp
(v
dW

-D
F1

)
X
D
M
10
[N

o-
sw

itc
hi
ng

]
3.
00
00

3.
70
01

34
.4
29
4

19
.5
92
1

18
.2
80
3

58
.8
67
3

38
.1
04
9

80
.8
31
4

67
.6
21
1

77
.4
12
7

77
.5
02
9

74
.0
66
8

82
.0
49
3

6.
43
82

0.
93
74

36
.0
29
3

3.
50
00

0.
37
62

28
.4
60
9

11
.7
68
8

20
.5
38
6

42
.2
58
4

18
.1
99
6

63
.6
26
9

41
.0
49
2

60
.0
42
5

55
.5
44
3

58
.8
17
6

64
.2
79
9

10
.8
90
8

39
.4
36
5

14
.4
85
5

4.
00
00

3.
33
00

22
.2
18
5

7.
13
88

17
.4
58
9

27
.0
39
3

4.
91
65

47
.7
75
1

15
.9
82
5

43
.1
21
8

33
.2
37
9

44
.9
86
5

44
.2
26
5

9.
22
64

83
.4
22
7

7.
72
78

4.
50
00

5.
39
36

16
.2
72
6

1.
70
86

13
.0
13
5

15
.7
15
2

6.
46
87

35
.8
63
8

2.
88
12

29
.8
45
3

17
.4
81
3

33
.8
26
3

27
.6
05
1

5.
92
24

11
5.
50
70

5.
99
93

5.
00
00

6.
30
32

11
.4
11
1

3.
34
53

8.
98
01

8.
05
04

18
.2
51
5

27
.3
93
2

15
.1
16
5

20
.4
19
1

8.
04
35

25
.3
84
3

16
.1
12
1

2.
91
85

12
3.
32
56

5.
66
56

6.
00
00

6.
58
25

4.
36
43

6.
17
55

2.
80
28

0.
95
57

14
.6
93
9

16
.1
51
2

25
.9
72
3

8.
86
42

1.
23
99

13
.9
84
7

3.
43
75

1.
69
55

11
6.
82
93

6.
42
26

7.
00
00

5.
17
10

0.
75
04

1.
97
35

0.
35
91

5.
39
25

27
.5
84
1

9.
59
94

27
.6
61
1

3.
39
90

4.
31
10

7.
85
96

1.
56
09

3.
75
08

94
.6
22
5

6.
50
74

8.
00
00

2.
76
26

0.
42
51

3.
15
86

1.
28
14

7.
21
18

36
.7
54
5

6.
10
06

26
.0
86
5

1.
17
91

4.
52
63

5.
02
93

2.
84
33

3.
86
17

77
.3
09
7

5.
54
58

9.
00
00

0.
65
37

0.
79
20

6.
89
57

1.
56
91

8.
44
89

47
.0
31
7

4.
10
18

24
.2
59
2

0.
53
42

4.
11
47

3.
18
67

3.
03
66

3.
54
96

61
.2
80
4

4.
62
79

M
A
PE

3.
80
81

13
.2
36
0

6.
86
19

9.
36
49

19
.3
26
6

23
.5
56
1

32
.3
82
6

27
.4
03
3

27
.2
02
0

22
.8
89
1

29
.6
82
4

27
.2
39
0

5.
36
16

79
.1
85
7

10
.3
34
6

157



T
ab

le
D
.3
7:

A
PE

sa
tv

ar
io
us

m
on

om
er

se
pa

ra
tio

ns
(a
ng

st
ro
m
)r

el
at
iv
e
to

th
e
E

di
sp

va
lu
es

an
d
M
A
PE

sf
or

th
e
be

nz
en
e-

m
et
ha

ne
di
m
er
.

R
D

as
D
3B

J[
H
F]

D
A
D
E

D
3[
N
o-
sw

itc
hi
ng

]
di
sp
(V

V
10
)

di
sp
(v
dW

-D
F2

)
di
sp
(M

BD
)

di
sp
(V

V
09
)

D
3B

J[
PB

E]
X
D
M
10
[P
W

86
-P

BE
]

D
3M

BJ
[P
BE

]
X
D
M
8[
PW

86
-P

BE
]

X
D
M
8[
N
o-
sw

itc
hi
ng

]
di
sp
(v
dW

-D
F1

)
X
D
M
10
[N

o-
sw

itc
hi
ng

]
3.
28
00

18
.9
79
0

23
.4
73
0

14
.8
70
1

0.
44
67

66
.0
67
0

45
.3
83
4

69
.0
34
5

59
.2
76
8

69
.1
00
4

71
.3
38
7

68
.2
14
3

77
.2
73
7

37
.7
36
6

22
.8
73
0

13
6.
68
36

3.
80
00

16
.5
59
4

19
.6
40
9

4.
41
74

9.
48
13

51
.4
26
8

28
.8
85
0

53
.5
78
7

36
.9
50
7

53
.6
33
7

52
.2
49
7

54
.5
23
0

61
.4
21
6

18
.4
17
3

4.
60
84

68
.9
95
3

4.
80
00

10
.6
41
3

12
.0
16
6

0.
62
26

8.
59
51

23
.7
69
5

8.
30
33

32
.5
53
2

0.
34
87

25
.9
07
0

10
.1
36
6

30
.2
89
4

23
.0
32
1

12
.6
35
4

58
.1
76
0

32
.4
58
1

5.
80
00

6.
60
48

4.
05
65

1.
13
53

2.
11
08

6.
40
58

17
.8
83
6

20
.9
22
4

19
.3
12
1

9.
82
98

12
.3
77
8

14
.8
87
9

3.
16
99

16
.5
56
2

81
.7
57
3

26
.3
84
6

6.
80
00

5.
27
19

0.
89
44

2.
46
85

2.
33
16

0.
11
58

37
.0
10
7

13
.4
28
0

25
.0
21
3

1.
93
03

19
.1
64
0

6.
41
39

13
.8
42
5

19
.0
32
5

64
.0
47
5

24
.4
11
7

7.
80
00

5.
23
47

3.
52
78

8.
30
12

4.
77
53

4.
00
19

44
.7
45
7

8.
42
61

25
.1
87
7

1.
99
84

21
.3
41
8

1.
73
52

18
.1
75
8

20
.4
21
8

41
.3
30
2

23
.5
95
0

8.
80
00

5.
51
73

5.
01
27

12
.8
95
1

6.
24
79

7.
27
23

47
.6
84
7

5.
18
42

23
.7
14
0

4.
20
46

21
.5
92
4

1.
16
21

19
.6
13
1

20
.6
84
9

29
.3
37
3

22
.6
65
3

M
A
PE

9.
82
98

9.
80
31

6.
38
72

4.
85
55

22
.7
22
7

32
.8
42
4

29
.0
18
2

27
.1
15
9

23
.8
00
6

29
.7
43
0

25
.3
18
0

30
.9
32
7

20
.7
83
5

43
.1
61
4

47
.8
84
8

T
ab

le
D
.3
8:

A
PE

s
at

va
rio

us
m
on

om
er

se
pa

ra
tio

ns
(a
ng

st
ro
m
)
re
la
tiv

e
to

th
e
E

di
sp

va
lu
es

an
d
M
A
PE

s
fo
r
th
e
be

nz
en
e-

wa
te
r
di
m
er
.

R
D

as
D
3B

J[
H
F]

D
A
D
E

D
3[
N
o-
sw

itc
hi
ng

]
di
sp
(V

V
10
)

di
sp
(v
dW

-D
F2

)
di
sp
(M

BD
)

di
sp
(V

V
09
)

D
3B

J[
PB

E]
X
D
M
10
[P
W

86
-P

BE
]

D
3M

BJ
[P
BE

]
X
D
M
8[
PW

86
-P

BE
]

X
D
M
8[
N
o-
sw

itc
hi
ng

]
di
sp
(v
dW

-D
F1

)
X
D
M
10
[N

o-
sw

itc
hi
ng

]
2.
50
00

13
.0
52
9

21
.3
61
1

28
.6
74
3

39
.7
69
4

75
.9
07
2

58
.6
44
7

81
.2
45
7

78
.9
85
3

80
.8
57
5

85
.4
45
7

79
.2
17
0

88
.5
06
8

10
1.
65
29

41
.1
05
4

34
3.
00
35

3.
00
00

10
.2
54
7

10
.8
61
0

10
.0
96
6

11
.5
61
9

61
.4
58
8

40
.4
53
5

63
.8
83
3

59
.3
36
2

64
.7
19
1

69
.6
68
3

63
.9
00
1

76
.0
52
3

52
.6
32
4

13
.5
44
9

15
3.
76
90

3.
50
00

5.
33
34

5.
90
01

1.
81
90

4.
21
67

44
.3
46
0

20
.2
92
5

44
.5
14
9

35
.5
28
8

44
.6
50
7

45
.3
05
8

46
.1
43
5

56
.4
08
3

36
.0
84
2

19
.3
62
1

90
.5
90
5

4.
00
00

0.
67
87

0.
87
23

6.
73
75

4.
84
42

26
.9
99
4

2.
55
11

29
.5
23
9

13
.6
19
8

25
.8
17
1

16
.7
94
2

29
.8
30
3

31
.9
98
2

31
.9
60
6

54
.6
79
6

65
.8
22
3

4.
50
00

6.
54
76

4.
44
30

8.
72
60

8.
23
76

11
.8
75
7

7.
48
29

19
.4
73
8

2.
69
47

11
.2
61
4

7.
19
68

16
.7
91
9

8.
91
84

32
.3
74
5

87
.0
98
4

55
.1
33
2

5.
00
00

11
.4
03
6

9.
13
14

10
.3
84
6

11
.9
30
0

0.
90
99

6.
97
29

12
.4
41
9

12
.6
28
7

0.
98
48

22
.3
76
9

7.
04
36

8.
42
67

33
.9
68
5

10
9.
80
83

49
.9
43
6

6.
00
00

17
.2
65
4

15
.1
14
4

9.
56
35

16
.9
59
0

11
.7
11
7

10
.7
93
5

3.
30
88

18
.2
55
3

10
.4
20
4

34
.2
73
4

4.
76
79

26
.0
31
4

35
.7
50
9

11
6.
27
17

44
.1
75
7

7.
00
00

19
.6
36
6

17
.6
79
2

3.
26
95

19
.1
29
8

17
.8
66
3

19
.3
59
3

2.
23
83

13
.1
24
3

15
.1
98
9

36
.2
15
9

10
.4
92
6

31
.4
89
0

35
.4
90
0

94
.1
84
5

40
.2
37
8

8.
00
00

20
.4
75
0

18
.6
04
1

2.
90
28

19
.9
38
2

23
.4
50
0

16
.1
90
1

5.
38
60

3.
09
12

17
.2
62
8

35
.5
96
7

13
.3
82
8

32
.7
45
6

34
.5
68
0

84
.4
39
9

37
.4
22
3

M
A
PE

11
.6
27
5

11
.5
51
9

9.
13
04

15
.1
76
3

30
.5
02
8

20
.3
04
5

29
.1
13
0

26
.3
62
7

30
.1
30
3

39
.2
08
2

30
.1
74
4

40
.0
64
1

43
.8
31
3

68
.9
43
9

97
.7
88
7

T
ab

le
D
.3
9:

A
PE

sa
tv

ar
io
us

m
on

om
er

se
pa

ra
tio

ns
(a
ng

st
ro
m
)r

el
at
iv
e
to

th
e
E

di
sp

va
lu
es

an
d
M
A
PE

sf
or

th
e
di
am

in
o-

di
ni
tr
oe
th
yl
en
e
(F

O
X
-7
)
di
m
er
.

R
D

as
D
3B

J[
H
F]

D
A
D
E

D
3[
N
o-
sw

itc
hi
ng

]
di
sp
(V

V
10
)

di
sp
(v
dW

-D
F2

)
di
sp
(M

BD
)

di
sp
(V

V
09
)

D
3B

J[
PB

E]
X
D
M
10
[P
W

86
-P

BE
]

D
3M

BJ
[P
BE

]
X
D
M
8[
PW

86
-P

BE
]

X
D
M
8[
N
o-
sw

itc
hi
ng

]
di
sp
(v
dW

-D
F1

)
X
D
M
10
[N

o-
sw

itc
hi
ng

]
6.
37
90

8.
74
84

34
.9
93
6

39
.1
58
9

39
.1
29
6

68
.1
71
1

55
.5
30
2

75
.1
42
7

63
.5
06
5

77
.4
43
9

79
.9
68
8

77
.4
43
9

83
.4
65
1

87
.2
64
1

33
.7
48
6

33
8.
19
78

6.
57
90

8.
12
00

28
.4
51
1

34
.3
43
4

20
.9
79
8

62
.3
61
5

49
.1
03
8

68
.7
69
1

54
.4
73
7

72
.1
77
5

74
.5
78
2

72
.1
77
5

78
.9
31
3

57
.4
92
8

23
.0
87
1

21
5.
85
78

7.
57
90

6.
00
68

16
.2
30
9

24
.6
64
9

9.
07
49

33
.9
51
6

25
.0
36
1

32
.6
35
0

12
.9
03
1

41
.7
36
0

39
.8
23
1

41
.7
36
0

48
.2
39
1

4.
18
18

29
.1
73
5

34
.0
44
9

8.
57
90

8.
00
72

17
.1
55
0

26
.2
26
1

14
.9
75
6

20
.2
52
3

34
.3
75
9

15
.8
52
4

2.
63
71

25
.1
21
8

18
.0
47
7

25
.1
21
8

25
.3
99
9

9.
14
72

42
.3
14
4

0.
26
35

9.
57
90

11
.8
25
8

19
.8
52
6

31
.2
12
0

18
.6
03
2

17
.5
44
3

51
.2
77
0

13
.0
73
1

2.
63
34

22
.5
34
7

16
.9
17
9

22
.5
34
7

20
.6
38
9

16
.0
74
0

19
.0
24
3

12
.2
39
8

10
.5
79
0

15
.2
20
0

22
.4
67
7

37
.2
52
9

21
.4
31
4

17
.9
39
0

58
.1
68
4

14
.5
03
1

0.
52
26

23
.5
08
9

20
.2
61
5

23
.5
08
9

22
.1
12
7

20
.6
07
4

1.
67
74

18
.7
48
1

M
A
PE

9.
65
47

23
.1
91
8

32
.1
43
0

20
.6
99
1

36
.7
03
3

45
.5
81
9

36
.6
62
6

22
.7
79
4

43
.7
53
8

41
.5
99
5

43
.7
53
8

46
.4
64
5

32
.4
61
2

24
.8
37
6

10
3.
22
53

158



T
ab

le
D
.4
0:

A
PE

s
at

va
rio

us
m
on

om
er

se
pa

ra
tio

ns
(a
ng

st
ro
m
)
re
la
tiv

e
to

th
e
E

di
sp

va
lu
es

an
d
M
A
PE

s
fo
r
th
e
et
ha

no
l

di
m
er
.

R
D

as
D
3B

J[
H
F]

D
A
D
E

D
3[
N
o-
sw

itc
hi
ng

]
di
sp
(V

V
10
)

di
sp
(v
dW

-D
F2

)
di
sp
(M

BD
)

di
sp
(V

V
09
)

D
3B

J[
PB

E]
X
D
M
10
[P
W

86
-P

BE
]

D
3M

BJ
[P
BE

]
X
D
M
8[
PW

86
-P

BE
]

X
D
M
8[
N
o-
sw

itc
hi
ng

]
di
sp
(v
dW

-D
F1

)
X
D
M
10
[N

o-
sw

itc
hi
ng

]
3.
25
60

18
.4
74
1

27
.6
62
7

15
.4
12
9

1.
22
06

64
.4
08
6

43
.8
75
1

68
.1
65
9

58
.8
60
6

72
.2
41
5

74
.2
89
1

72
.4
11
3

79
.4
15
8

44
.1
64
9

19
.4
69
7

15
4.
71
37

3.
55
80

14
.8
19
8

21
.6
05
0

6.
09
79

5.
05
83

54
.5
72
9

31
.6
02
6

56
.9
35
9

43
.8
33
2

62
.5
34
9

62
.8
98
2

63
.7
48
4

70
.1
10
7

30
.8
81
3

0.
26
37

10
2.
28
61

4.
55
80

3.
76
08

9.
57
92

6.
26
75

4.
96
64

22
.1
78
8

1.
58
59

27
.1
59
5

1.
85
70

29
.5
99
3

17
.0
11
4

34
.4
28
9

29
.9
56
5

20
.0
86
4

66
.5
49
3

46
.5
89
8

5.
55
80

1.
76
93

2.
29
14

8.
00
96

0.
11
86

1.
63
69

8.
26
53

11
.6
77
2

25
.9
73
1

10
.3
45
1

10
.8
09
3

15
.7
78
5

0.
27
44

19
.6
61
4

98
.3
31
7

31
.8
40
6

6.
55
80

2.
54
90

0.
90
20

4.
37
81

2.
27
83

5.
91
49

30
.1
46
8

3.
26
09

33
.2
67
1

2.
69
98

17
.4
45
3

7.
31
56

11
.4
13
9

18
.4
39
6

81
.3
74
9

24
.6
11
2

7.
55
80

1.
92
21

2.
17
14

2.
38
85

3.
22
42

8.
61
17

42
.0
91
6

1.
72
58

34
.5
44
5

0.
28
89

17
.7
75
9

3.
44
40

14
.3
62
1

17
.1
62
0

52
.8
80
9

20
.5
90
2

8.
55
80

0.
77
20

2.
27
36

8.
47
48

3.
19
95

10
.3
84
8

46
.8
26
0

4.
40
93

32
.9
53
0

1.
19
89

16
.3
65
9

1.
78
27

14
.3
24
7

15
.5
71
5

34
.5
99
1

17
.6
14
6

M
A
PE

6.
29
53

9.
49
79

7.
28
99

2.
86
66

23
.9
58
4

29
.1
99
0

24
.7
62
1

33
.0
41
2

25
.5
58
3

30
.9
42
1

28
.4
15
6

31
.4
08
3

23
.7
09
6

50
.4
95
6

56
.8
92
3

T
ab

le
D
.4
1:

A
PE

s
at

va
rio

us
m
on

om
er

se
pa

ra
tio

ns
(a
ng

st
ro
m
)r

el
at
iv
e
to

th
e
E

di
sp

va
lu
es

an
d
M
A
PE

s
fo
rt

he
et
hy

le
ne
-

di
ni
tr
am

in
e
(E

D
N
A
)
di
m
er
.

R
D

as
D
3B

J[
H
F]

D
A
D
E

D
3[
N
o-
sw

itc
hi
ng

]
di
sp
(V

V
10
)

di
sp
(v
dW

-D
F2

)
di
sp
(M

BD
)

di
sp
(V

V
09
)

D
3B

J[
PB

E]
X
D
M
10
[P
W

86
-P

BE
]

D
3M

BJ
[P
BE

]
X
D
M
8[
PW

86
-P

BE
]

X
D
M
8[
N
o-
sw

itc
hi
ng

]
di
sp
(v
dW

-D
F1

)
X
D
M
10
[N

o-
sw

itc
hi
ng

]
4.
49
80

1.
87
27

25
.8
24
4

26
.1
52
5

9.
08
32

60
.0
15
6

39
.6
78
3

70
.8
51
3

45
.0
83
0

72
.5
63
9

76
.2
51
5

71
.9
16
5

80
.7
74
3

40
.4
49
5

16
.5
69
0

15
8.
93
60

4.
79
80

2.
35
62

21
.9
53
2

20
.5
36
7

1.
34
43

52
.4
74
0

31
.1
87
2

63
.0
79
0

32
.6
83
5

65
.9
99
6

69
.2
35
0

65
.8
97
8

75
.0
05
8

27
.3
61
0

3.
23
11

11
0.
12
19

5.
79
80

2.
35
12

16
.6
51
7

11
.1
68
3

9.
11
50

28
.7
65
3

10
.4
82
8

38
.7
71
5

2.
75
14

44
.1
38
5

41
.0
36
2

46
.6
16
1

51
.0
57
4

6.
75
48

37
.3
66
2

38
.9
15
9

6.
79
80

0.
63
42

15
.9
76
3

9.
72
58

12
.6
27
9

13
.1
71
6

9.
32
36

24
.0
52
5

21
.8
11
9

30
.0
22
3

19
.8
07
8

34
.0
71
0

30
.1
85
2

2.
17
60

61
.1
21
8

12
.6
90
6

7.
79
80

3.
97
92

15
.9
28
1

10
.7
82
7

13
.9
07
5

5.
70
34

24
.2
02
3

15
.9
95
6

28
.8
29
1

23
.2
60
0

11
.4
13
5

27
.5
68
4

18
.8
06
5

6.
02
89

62
.2
17
0

2.
07
85

8.
79
80

6.
20
64

15
.5
54
8

13
.2
70
8

14
.1
70
9

2.
26
34

42
.3
28
6

10
.3
98
7

30
.6
68
3

19
.5
23
6

9.
04
03

23
.5
18
0

13
.6
37
7

7.
85
60

45
.4
49
9

3.
14
68

9.
79
80

8.
08
91

15
.5
62
5

17
.5
49
3

14
.5
14
4

1.
04
04

55
.2
24
5

6.
85
67

29
.5
80
6

17
.7
77
5

9.
15
76

21
.2
10
1

11
.9
33
7

9.
31
71

21
.6
81
3

6.
52
37

10
.7
98
0

9.
86
64

16
.0
16
9

22
.4
63
9

15
.1
35
0

1.
11
99

63
.1
90
5

4.
82
31

27
.0
86
1

17
.2
96
7

10
.3
32
4

20
.1
33
4

12
.0
28
6

10
.8
08
7

2.
03
97

9.
10
97

M
A
PE

4.
41
94

17
.9
33
5

16
.4
56
2

11
.2
37
3

20
.5
69
2

34
.4
52
2

29
.3
53
5

27
.3
11
7

36
.3
22
8

30
.7
84
3

38
.8
66
4

36
.6
78
6

13
.8
44
0

31
.2
09
5

42
.6
90
4

T
ab

le
D
.4
2:

A
PE

sa
tv

ar
io
us

m
on

om
er

se
pa

ra
tio

ns
(a
ng

st
ro
m
)r

el
at
iv
e
to

th
e
E

di
sp

va
lu
es

an
d
M
A
PE

sf
or

th
e
im

id
az
ol
e

di
m
er
.

R
D

as
D
3B

J[
H
F]

D
A
D
E

D
3[
N
o-
sw

itc
hi
ng

]
di
sp
(V

V
10
)

di
sp
(v
dW

-D
F2

)
di
sp
(M

BD
)

di
sp
(V

V
09
)

D
3B

J[
PB

E]
X
D
M
10
[P
W

86
-P

BE
]

D
3M

BJ
[P
BE

]
X
D
M
8[
PW

86
-P

BE
]

X
D
M
8[
N
o-
sw

itc
hi
ng

]
di
sp
(v
dW

-D
F1

)
X
D
M
10
[N

o-
sw

itc
hi
ng

]
4.
92
50

13
.9
02
3

56
.5
41
8

49
.6
92
0

12
7.
26
51

81
.0
02
2

73
.5
87
2

84
.5
85
9

81
.7
39
6

84
.6
12
1

85
.6
86
4

84
.4
11
4

88
.3
63
7

24
7.
76
12

59
.7
08
3

12
11
.8
52
9

5.
24
70

15
.3
14
2

43
.2
78
0

39
.1
02
8

35
.1
10
7

72
.9
05
8

64
.1
16
0

76
.8
03
2

70
.8
02
2

77
.3
82
6

78
.2
07
8

77
.5
30
1

82
.0
89
6

90
.6
44
0

44
.6
63
3

38
3.
24
40

6.
24
70

13
.5
89
0

24
.2
32
4

20
.1
74
2

16
.5
11
2

41
.6
95
9

31
.1
94
9

42
.6
29
3

27
.1
53
5

47
.6
05
1

42
.6
86
8

50
.2
99
9

50
.7
90
0

2.
56
86

14
.6
32
4

36
.3
46
6

7.
24
70

9.
55
24

17
.8
61
9

19
.4
71
2

15
.3
18
6

18
.8
02
1

23
.5
48
7

18
.0
76
0

1.
63
92

25
.1
22
8

12
.0
79
6

29
.3
95
6

20
.2
38
4

2.
51
67

53
.4
03
7

8.
22
62

8.
24
70

8.
58
05

14
.6
89
6

23
.0
28
3

12
.7
56
5

9.
43
78

36
.8
06
9

7.
71
95

3.
68
00

16
.9
13
9

3.
60
35

20
.7
73
2

8.
25
75

2.
85
03

45
.5
49
7

1.
95
13

9.
24
70

9.
53
47

14
.1
77
3

28
.4
81
3

12
.1
30
8

6.
12
15

44
.4
94
8

3.
71
34

1.
84
45

14
.5
72
7

3.
38
86

17
.7
18
9

5.
90
65

3.
96
87

25
.3
95
2

1.
43
97

10
.2
47
0

10
.7
36
1

14
.6
51
7

32
.8
61
2

12
.1
55
0

3.
87
89

45
.1
32
4

3.
18
07

1.
43
45

13
.9
11
3

4.
52
25

16
.4
84
8

6.
00
27

5.
17
88

14
.5
13
1

3.
69
73

M
A
PE

11
.6
01
3

26
.4
90
4

30
.4
01
6

33
.0
35
4

33
.4
06
3

45
.5
54
4

33
.8
15
4

26
.8
99
1

40
.0
17
2

32
.8
82
2

42
.3
73
4

37
.3
78
3

50
.7
84
0

36
.8
37
9

23
5.
25
12

159



T
ab

le
D
.4
3:

A
PE

s
at

va
rio

us
m
on

om
er

se
pa

ra
tio

ns
(a
ng

st
ro
m
)
re
la
tiv

e
to

th
e
E

di
sp

va
lu
es

an
d
M
A
PE

s
fo
r
th
e
m
et
hy

l-
fo
rm

at
e
di
m
er
.

R
D

as
D
3B

J[
H
F]

D
A
D
E

D
3[
N
o-
sw

itc
hi
ng

]
di
sp
(V

V
10
)

di
sp
(v
dW

-D
F2

)
di
sp
(M

BD
)

di
sp
(V

V
09
)

D
3B

J[
PB

E]
X
D
M
10
[P
W

86
-P

BE
]

D
3M

BJ
[P
BE

]
X
D
M
8[
PW

86
-P

BE
]

X
D
M
8[
N
o-
sw

itc
hi
ng

]
di
sp
(v
dW

-D
F1

)
X
D
M
10
[N

o-
sw

itc
hi
ng

]
4.
24
30

22
.5
40
9

31
.9
90
4

22
.7
68
3

0.
90
18

63
.8
19
2

47
.1
93
8

69
.0
32
8

59
.8
02
8

71
.9
09
2

73
.8
28
1

72
.0
40
6

78
.5
80
7

27
.4
72
6

20
.3
68
4

12
2.
55
10

4.
43
40

20
.5
46
6

27
.2
30
6

17
.1
51
8

6.
61
68

57
.4
38
4

39
.5
01
0

61
.9
56
8

50
.3
47
9

65
.6
57
2

67
.0
05
0

66
.3
93
5

72
.8
83
8

17
.7
58
9

7.
46
44

85
.0
45
1

5.
43
40

11
.1
18
9

13
.4
57
1

5.
30
14

9.
08
85

25
.2
97
6

10
.8
55
9

30
.1
43
4

6.
19
00

32
.0
73
8

23
.8
89
3

36
.4
37
9

34
.9
59
3

5.
92
54

58
.2
46
5

26
.9
90
9

6.
43
40

7.
17
47

6.
87
39

4.
65
24

4.
87
78

7.
38
28

19
.3
22
2

15
.1
76
8

13
.4
48
0

13
.9
68
3

0.
58
44

19
.0
30
3

9.
05
54

5.
55
20

81
.2
08
3

14
.9
54
7

7.
43
40

7.
27
21

4.
70
26

9.
08
99

3.
42
53

0.
92
89

37
.2
82
8

8.
20
72

17
.1
59
8

7.
85
80

3.
58
88

12
.1
39
7

1.
04
15

4.
09
04

60
.2
86
4

8.
79
75

8.
43
40

8.
68
80

4.
67
33

15
.8
87
6

3.
68
12

1.
58
47

45
.8
81
9

4.
91
78

15
.0
73
0

6.
31
58

2.
50
99

9.
74
81

0.
05
74

1.
95
41

34
.8
82
3

4.
52
97

M
A
PE

12
.8
90
2

14
.8
21
3

12
.4
75
2

4.
76
52

26
.0
75
3

33
.3
39
6

31
.5
72
5

27
.0
03
6

32
.9
63
7

28
.5
67
6

35
.9
65
0

32
.7
63
0

10
.4
58
9

43
.7
42
7

43
.8
11
5

T
ab

le
D
.4
4:

A
PE

sa
tv

ar
io
us

m
on

om
er

se
pa

ra
tio

ns
(a
ng

st
ro
m
)r

el
at
iv
e
to

th
e
E

di
sp

va
lu
es

an
d
M
A
PE

sf
or

th
e
ni
tr
ob

en
-

ze
ne

di
m
er
.

R
D

as
D
3B

J[
H
F]

D
A
D
E

D
3[
N
o-
sw

itc
hi
ng

]
di
sp
(V

V
10
)

di
sp
(v
dW

-D
F2

)
di
sp
(M

BD
)

di
sp
(V

V
09
)

D
3B

J[
PB

E]
X
D
M
10
[P
W

86
-P

BE
]

D
3M

BJ
[P
BE

]
X
D
M
8[
PW

86
-P

BE
]

X
D
M
8[
N
o-
sw

itc
hi
ng

]
di
sp
(v
dW

-D
F1

)
X
D
M
10
[N

o-
sw

itc
hi
ng

]
2.
90
00

5.
27
17

27
.0
78
1

15
.0
16
4

11
.3
67
1

60
.1
69
4

37
.9
74
0

68
.8
57
8

37
.0
87
0

67
.7
97
3

73
.9
61
6

64
.6
43
4

79
.4
21
6

2.
28
19

17
.9
30
2

60
.5
73
0

3.
20
00

4.
27
64

23
.0
59
3

5.
71
02

12
.8
71
3

49
.3
02
9

26
.5
27
4

58
.1
98
0

18
.2
51
2

57
.1
34
8

61
.8
44
7

55
.2
87
1

69
.7
09
3

0.
07
79

0.
48
49

42
.8
62
3

4.
20
00

3.
28
50

10
.0
30
3

5.
02
46

5.
96
15

13
.4
06
4

1.
14
11

27
.5
85
6

33
.0
95
4

24
.9
53
1

16
.7
81
3

28
.8
00
0

30
.0
23
8

4.
00
64

52
.2
85
9

23
.3
35
7

5.
20
00

9.
60
52

0.
34
53

4.
08
71

2.
90
93

7.
27
10

9.
39
53

10
.4
07
2

54
.9
19
5

6.
31
07

6.
48
16

11
.9
94
4

3.
15
96

10
.4
53
8

74
.3
42
4

20
.7
00
5

6.
20
00

11
.8
88
0

5.
81
92

0.
43
92

7.
81
59

16
.0
74
5

30
.6
33
6

1.
54
50

58
.1
47
0

2.
49
27

13
.8
52
3

2.
91
27

8.
10
20

13
.6
85
0

58
.1
47
5

19
.5
01
1

7.
20
00

12
.0
78
5

8.
32
57

7.
33
06

10
.1
15
1

20
.6
39
0

40
.2
91
5

3.
01
26

59
.6
25
1

6.
57
92

15
.6
87
6

1.
93
51

12
.2
02
0

14
.7
05
9

35
.4
84
3

18
.2
00
8

8.
20
00

11
.7
31
9

9.
58
27

12
.7
91
9

11
.3
82
8

23
.5
89
6

43
.3
03
3

5.
43
26

57
.0
85
4

8.
78
60

15
.9
73
1

4.
87
07

13
.7
64
1

14
.9
89
7

23
.1
24
9

17
.2
00
4

M
A
PE

8.
30
52

12
.0
34
4

7.
20
00

8.
91
76

27
.2
07
5

27
.0
38
0

25
.0
05
5

45
.4
58
7

24
.8
64
8

29
.2
26
0

24
.3
49
1

30
.9
11
8

8.
60
01

37
.4
00
0

28
.9
10
5

T
ab

le
D
.4
5:

A
PE

s
at

va
rio

us
m
on

om
er

se
pa

ra
tio

ns
(a
ng

st
ro
m
)
re
la
tiv

e
to

th
e
E

di
sp

va
lu
es

an
d

M
A
PE

s
fo
r
th
e
ni
-

tr
om

et
ha

ne
di
m
er
.

R
D

as
D
3B

J[
H
F]

D
A
D
E

D
3[
N
o-
sw

itc
hi
ng

]
di
sp
(V

V
10
)

di
sp
(v
dW

-D
F2

)
di
sp
(M

BD
)

di
sp
(V

V
09
)

D
3B

J[
PB

E]
X
D
M
10
[P
W

86
-P

BE
]

D
3M

BJ
[P
BE

]
X
D
M
8[
PW

86
-P

BE
]

X
D
M
8[
N
o-
sw

itc
hi
ng

]
di
sp
(v
dW

-D
F1

)
X
D
M
10
[N

o-
sw

itc
hi
ng

]
2.
81
30

5.
01
36

34
.2
86
0

33
.8
73
4

7.
54
31

65
.3
44
9

43
.2
72
3

79
.7
53
9

59
.0
47
0

79
.6
83
8

82
.1
99
9

78
.2
37
4

85
.7
29
0

10
.9
93
4

20
.4
82
6

87
.9
06
7

3.
13
10

5.
50
04

28
.4
57
1

25
.5
07
3

12
.1
31
4

54
.9
64
7

31
.3
70
2

69
.0
68
4

42
.0
96
7

70
.3
85
6

72
.3
14
3

69
.5
02
6

77
.7
41
3

4.
22
97

1.
30
08

57
.2
93
6

4.
13
10

2.
52
19

16
.5
18
2

12
.0
86
3

11
.6
71
8

22
.3
02
1

4.
36
49

33
.5
65
7

7.
15
74

37
.5
04
3

30
.1
49
6

40
.7
85
4

41
.3
87
6

0.
04
68

60
.2
90
2

20
.8
88
8

5.
13
10

0.
14
43

8.
71
69

4.
97
27

6.
42
09

2.
72
26

15
.7
07
9

14
.2
11
7

32
.4
84
1

17
.2
67
4

4.
56
14

22
.2
85
2

13
.4
76
9

2.
18
58

86
.5
66
5

12
.0
29
7

6.
13
10

0.
33
47

4.
80
40

4.
86
34

3.
36
34

5.
74
37

34
.9
86
4

5.
34
35

38
.8
63
6

8.
71
81

2.
30
47

13
.3
71
8

2.
74
30

3.
01
91

65
.2
57
1

8.
14
47

7.
13
10

0.
60
01

3.
17
40

9.
76
89

2.
10
71

10
.1
80
1

41
.3
97
9

0.
88
54

38
.3
93
7

5.
27
05

3.
26
99

9.
14
75

0.
38
68

2.
73
75

42
.5
57
0

5.
62
94

8.
13
10

1.
53
47

2.
33
79

14
.3
33
6

1.
45
42

13
.0
26
8

41
.9
78
6

1.
44
67

36
.3
77
9

3.
61
20

3.
01
61

6.
76
55

1.
26
67

2.
33
94

31
.9
83
1

4.
09
01

M
A
PE

2.
23
57

14
.0
42
0

15
.0
58
0

6.
38
45

24
.8
97
8

30
.4
39
8

29
.1
82
2

36
.3
45
8

31
.7
77
4

28
.2
59
4

34
.2
99
3

31
.8
18
8

3.
65
02

44
.0
62
5

27
.9
97
6

160



T
ab

le
D
.4
6:

A
PE

s
at

va
rio

us
m
on

om
er

se
pa

ra
tio

ns
(a
ng

st
ro
m
)
re
la
tiv

e
to

th
e
E

di
sp

va
lu
es

an
d
M
A
PE

s
fo
r
th
e
wa

te
r

di
m
er
.

R
D

as
D
3B

J[
H
F]

D
A
D
E

D
3[
N
o-
sw

itc
hi
ng

]
di
sp
(V

V
10
)

di
sp
(v
dW

-D
F2

)
di
sp
(M

BD
)

di
sp
(V

V
09
)

D
3B

J[
PB

E]
X
D
M
10
[P
W

86
-P

BE
]

D
3M

BJ
[P
BE

]
X
D
M
8[
PW

86
-P

BE
]

X
D
M
8[
N
o-
sw

itc
hi
ng

]
di
sp
(v
dW

-D
F1

)
X
D
M
10
[N

o-
sw

itc
hi
ng

]
2.
31
00

26
.2
66
5

69
.4
89
6

64
.2
60
8

31
7.
49
74

89
.7
46
4

82
.1
48
4

95
.7
69
8

10
3.
82
47

95
.3
46
1

96
.4
19
5

95
.4
01
3

97
.1
27
5

60
3.
38
79

71
.3
05
5

34
60
.0
91
8

2.
61
00

25
.0
73
8

56
.4
12
9

53
.4
55
5

11
1.
42
97

84
.5
19
2

75
.2
76
8

91
.8
79
1

99
.8
22
2

91
.8
23
7

93
.1
03
4

92
.0
27
2

94
.4
77
4

22
9.
58
05

60
.0
70
8

98
8.
12
10

2.
91
00

23
.9
59
7

42
.5
03
5

42
.6
31
7

40
.1
16
7

77
.7
78
1

66
.2
78
0

85
.5
47
5

92
.3
03
4

86
.4
10
2

87
.6
01
3

86
.9
54
5

90
.0
70
1

10
6.
85
83

45
.6
62
8

39
6.
61
93

3.
21
00

22
.1
74
8

31
.0
23
1

33
.1
30
1

10
.4
34
0

69
.6
92
4

54
.9
93
7

76
.6
30
5

81
.7
81
5

78
.7
63
0

79
.5
23
8

79
.9
11
5

83
.5
02
2

55
.9
51
6

27
.4
60
0

19
6.
51
94

3.
51
00

19
.6
76
1

24
.1
04
7

25
.8
14
1

2.
78
75

60
.6
51
8

41
.8
78
9

65
.4
82
8

69
.3
97
2

68
.9
79
2

68
.8
41
4

70
.9
71
9

74
.5
80
7

32
.2
01
9

5.
08
45

11
2.
28
23

4.
01
00

14
.3
80
5

18
.2
30
1

17
.9
68
7

9.
82
58

45
.0
57
9

20
.3
80
5

45
.9
97
1

48
.0
02
1

50
.1
80
6

46
.1
11
2

53
.8
00
2

55
.0
29
1

16
.5
95
5

39
.6
07
3

55
.9
01
1

4.
51
00

8.
81
09

13
.9
75
8

12
.1
56
7

9.
73
05

31
.4
08
1

8.
02
55

31
.9
99
1

30
.2
19
0

33
.3
97
6

21
.7
02
5

38
.2
16
6

33
.1
62
5

12
.4
80
7

83
.3
68
0

35
.3
17
3

5.
01
00

4.
16
06

10
.5
02
1

6.
89
62

7.
92
45

21
.4
63
9

8.
78
33

23
.8
26
1

19
.0
83
0

21
.8
87
6

4.
03
42

27
.0
18
1

15
.1
71
7

11
.6
43
4

11
1.
29
06

26
.1
06
8

5.
51
00

0.
80
18

8.
02
39

3.
64
54

6.
25
65

14
.9
24
8

16
.6
56
0

18
.8
45
9

14
.4
46
0

14
.9
24
6

4.
91
91

19
.7
92
2

3.
89
43

11
.3
91
1

11
8.
22
24

21
.0
58
3

6.
01
00

1.
38
68

6.
50
81

3.
18
77

5.
18
23

11
.2
91
4

23
.8
47
9

15
.5
58
7

14
.5
07
8

10
.9
14
8

8.
57
76

15
.3
21
5

2.
11
87

10
.9
14
3

11
1.
04
42

17
.5
95
1

6.
51
00

3.
64
27

4.
78
75

3.
91
43

3.
77
96

8.
51
98

26
.4
40
2

12
.4
77
5

17
.1
76
6

7.
80
43

10
.6
46
1

11
.7
86
6

5.
90
88

11
.1
79
1

10
3.
24
97

15
.9
79
7

7.
01
00

5.
05
45

3.
81
45

5.
85
24

3.
00
24

6.
36
45

26
.5
15
6

10
.2
73
2

22
.4
15
3

5.
97
16

11
.2
10
4

9.
59
94

7.
70
76

10
.9
64
3

95
.0
00
6

14
.4
86
8

7.
50
50

6.
52
99

2.
81
24

7.
55
37

2.
05
60

4.
99
54

23
.9
32
0

8.
15
83

29
.6
07
2

4.
34
32

11
.7
31
9

7.
55
71

9.
07
31

11
.1
76
9

91
.7
24
1

13
.8
42
5

8.
00
50

7.
91
29

1.
69
00

8.
98
58

1.
12
37

2.
89
06

19
.3
76
7

6.
21
88

38
.5
85
4

2.
85
22

12
.1
08
4

5.
87
37

10
.0
67
6

11
.4
57
6

93
.1
58
9

13
.5
01
0

8.
50
50

5.
07
19

4.
55
26

13
.4
80
9

3.
99
48

5.
06
99

16
.6
36
8

8.
07
31

51
.3
74
6

5.
54
32

8.
24
24

7.
85
53

6.
70
81

7.
61
80

91
.0
96
3

9.
15
32

9.
00
50

7.
70
27

2.
01
23

13
.0
58
0

1.
81
74

1.
89
02

8.
78
46

5.
23
91

63
.3
29
3

2.
97
77

10
.1
36
0

5.
39
08

8.
89
70

9.
54
32

10
1.
54
62

10
.7
82
6

M
A
PE

11
.4
12
9

18
.7
77
7

19
.7
49
5

33
.5
59
9

33
.5
16
5

32
.4
97
2

37
.6
23
5

49
.7
42
2

36
.3
82
5

35
.9
31
8

39
.2
17
4

37
.3
43
5

72
.0
59
0

78
.0
55
7

33
6.
70
99

T
ab

le
D
.4
7:

A
PE

s
at

va
rio

us
m
on

om
er

se
pa

ra
tio

ns
(a
ng

st
ro
m
)
re
la
tiv

e
to

th
e
E

di
sp

va
lu
es

an
d
M
A
PE

s
fo
r
th
e
ar
go
n

di
m
er
.

R
D

as
D
3B

J[
H
F]

D
A
D
E

D
3[
N
o-
sw

itc
hi
ng

]
di
sp
(V

V
10
)

di
sp
(v
dW

-D
F2

)
di
sp
(M

BD
)

di
sp
(V

V
09
)

D
3B

J[
PB

E]
X
D
M
10
[P
W

86
-P

BE
]

D
3M

BJ
[P
BE

]
X
D
M
8[
PW

86
-P

BE
]

X
D
M
8[
N
o-
sw

itc
hi
ng

]
di
sp
(v
dW

-D
F1

)
X
D
M
10
[N

o-
sw

itc
hi
ng

]
3.
20
00

44
.0
41
2

33
.5
64
7

26
.1
76
7

14
.3
46
2

64
.5
91
2

45
.6
99
5

87
.4
59
7

67
.5
49
2

79
.4
00
6

81
.6
85
2

70
.1
54
7

85
.6
08
4

23
.6
00
4

16
.6
49
6

12
.6
21
6

3.
50
00

25
.8
45
3

27
.6
91
8

18
.7
67
4

14
.9
14
7

54
.4
56
4

33
.5
30
9

78
.7
00
8

52
.0
38
3

68
.8
43
7

70
.5
84
9

60
.6
57
4

76
.8
97
5

23
.6
41
8

5.
29
82

3.
91
69

3.
76
00

14
.5
97
1

23
.2
04
9

14
.5
18
3

13
.7
08
4

45
.4
58
0

23
.8
03
2

69
.8
00
3

38
.3
36
0

58
.6
99
6

59
.2
59
1

52
.8
33
5

67
.7
27
5

22
.3
27
5

25
.8
79
5

0.
09
76

4.
25
00

3.
08
01

15
.7
13
2

9.
54
15

9.
62
06

29
.9
84
5

11
.5
71
8

53
.2
61
7

14
.5
88
5

40
.5
46
4

38
.8
76
2

39
.9
78
5

49
.5
67
0

18
.4
81
5

64
.0
90
3

2.
59
20

4.
50
00

0.
22
51

12
.4
44
0

7.
39
80

7.
37
07

23
.6
68
9

10
.1
07
6

46
.0
70
0

5.
10
19

32
.8
02
2

30
.7
52
7

34
.5
00
9

41
.3
35
5

16
.4
48
3

80
.4
41
6

2.
95
38

5.
00
00

2.
40
38

7.
17
10

3.
25
32

3.
43
33

14
.9
96
7

17
.6
22
4

34
.8
50
9

9.
96
77

20
.8
97
8

19
.5
04
6

25
.6
45
6

28
.5
06
1

12
.9
50
9

99
.3
92
5

3.
08
24

6.
00
00

1.
89
23

1.
36
06

1.
09
81

1.
00
70

6.
50
13

17
.8
97
2

21
.9
30
9

22
.3
11
8

8.
17
05

9.
79
59

14
.8
24
5

15
.1
75
7

9.
08
31

81
.0
44
7

3.
61
94

7.
00
00

1.
07
13

0.
61
90

6.
14
86

2.
26
36

1.
90
38

33
.7
95
0

15
.5
84
6

23
.0
29
0

3.
32
41

7.
46
28

9.
59
08

10
.6
23
2

8.
04
66

41
.5
05
2

4.
87
57

8.
00
00

4.
26
17

0.
84
28

11
.6
61
6

2.
14
17

0.
81
83

36
.3
58
2

12
.1
22
3

20
.8
87
3

1.
60
49

7.
47
40

6.
98
97

9.
40
84

8.
21
51

33
.3
81
8

6.
27
90

9.
00
00

7.
06
67

0.
52
28

15
.7
26
4

1.
54
68

2.
21
69

39
.9
94
4

10
.0
77
1

18
.5
08
6

1.
16
95

8.
17
34

5.
90
79

9.
40
78

8.
81
09

50
.1
91
7

7.
57
62

10
.0
00
0

9.
27
26

0.
24
63

18
.4
86
9

0.
97
22

3.
15
09

49
.2
23
4

8.
68
21

16
.6
15
6

1.
04
72

8.
85
14

4.
92
77

9.
67
48

9.
35
39

29
.1
36
8

8.
53
03

M
A
PE

10
.3
41
6

11
.2
16
5

12
.0
70
6

6.
48
41

22
.5
22
4

29
.0
54
9

39
.8
67
3

26
.2
66
7

28
.7
73
3

31
.1
29
1

29
.6
37
4

36
.7
21
1

14
.6
32
7

47
.9
10
2

5.
10
41

T
ab

le
D
.4
8:

A
PE

s
at

va
rio

us
m
on

om
er

se
pa

ra
tio

ns
(a
ng

st
ro
m
)
re
la
tiv

e
to

th
e
E

di
sp

va
lu
es

an
d
M
A
PE

s
fo
r
th
e
A
r-
H
F

di
m
er
.

R
D

as
D
3B

J[
H
F]

D
A
D
E

D
3[
N
o-
sw

itc
hi
ng

]
di
sp
(V

V
10
)

di
sp
(v
dW

-D
F2

)
di
sp
(M

BD
)

di
sp
(V

V
09
)

D
3B

J[
PB

E]
X
D
M
10
[P
W

86
-P

BE
]

D
3M

BJ
[P
BE

]
X
D
M
8[
PW

86
-P

BE
]

X
D
M
8[
N
o-
sw

itc
hi
ng

]
di
sp
(v
dW

-D
F1

)
X
D
M
10
[N

o-
sw

itc
hi
ng

]
3.
00
00

14
.6
18
2

41
.8
63
6

28
.7
08
4

27
.5
45
4

63
.5
30
7

45
.1
22
3

83
.0
04
7

71
.2
92
1

79
.9
73
5

80
.0
53
6

77
.0
07
0

84
.0
84
5

17
.0
45
9

12
.1
68
7

20
.6
06
8

3.
50
00

5.
15
02

32
.3
99
6

16
.6
26
6

24
.9
13
4

45
.4
37
5

22
.7
03
2

65
.6
29
5

44
.2
94
8

62
.2
42
4

57
.9
91
9

61
.0
84
9

66
.2
46
5

15
.7
96
8

31
.7
59
7

8.
18
23

4.
00
00

0.
95
27

24
.0
08
0

9.
27
52

19
.3
57
9

28
.7
17
9

7.
10
41

48
.9
76
6

17
.9
15
5

44
.4
30
4

34
.7
73
9

46
.2
52
2

45
.5
09
7

11
.3
14
8

79
.2
02
8

5.
24
93

4.
50
00

4.
51
87

16
.9
67
7

2.
52
46

13
.7
35
6

16
.4
14
8

7.
24
51

36
.3
96
2

2.
02
71

30
.4
27
7

18
.1
66
4

34
.3
75
6

28
.2
06
1

6.
70
34

11
3.
71
79

5.
11
93

5.
00
00

6.
01
52

11
.6
51
2

3.
06
53

9.
22
67

8.
29
95

18
.4
73
0

27
.5
89
9

14
.8
04
6

20
.6
34
7

8.
29
26

25
.5
86
4

16
.3
39
4

3.
18
16

12
2.
72
05

5.
37
93

6.
00
00

6.
55
74

4.
38
67

6.
15
06

2.
82
56

0.
93
19

14
.7
13
9

16
.1
70
9

25
.9
42
7

8.
88
56

1.
21
61

14
.0
04
9

3.
46
01

1.
67
17

11
6.
77
84

6.
39
76

7.
00
00

5.
16
86

0.
75
26

1.
97
12

0.
35
69

5.
39
01

27
.5
85
7

9.
60
14

27
.6
58
3

3.
40
11

4.
30
87

7.
86
17

1.
55
86

3.
74
85

94
.6
18
2

6.
50
50

8.
00
00

2.
76
16

0.
42
41

3.
15
96

1.
28
03

7.
21
07

36
.7
55
1

6.
10
16

26
.0
85
2

1.
18
01

4.
52
52

5.
03
02

2.
84
22

3.
86
07

77
.3
07
9

5.
54
47

9.
00
00

0.
65
37

0.
79
20

6.
89
57

1.
56
91

8.
44
89

47
.0
31
7

4.
10
18

24
.2
59
2

0.
53
42

4.
11
47

3.
18
67

3.
03
66

3.
54
96

61
.2
80
4

4.
62
79

M
A
PE

5.
15
51

14
.8
05
1

8.
70
86

11
.2
01
2

20
.4
86
9

25
.1
92
7

33
.0
63
6

28
.2
53
3

27
.9
67
8

23
.7
15
9

30
.4
87
7

27
.9
20
4

7.
43
03

78
.8
39
4

7.
51
25

161


	Table of Contents
	List of Tables
	List of Figures
	Abstract
	1 Introduction
	1.1 Density Functional Theory
	1.2 Symmetry-Adapted Perturbation Theory

	2 Do semilocal density-functional approximations recover dispersion energies at small intermonomer separations?
	3 Dispersion energy from local polarizability density
	4 Evaluation of methods for obtaining dispersion energies used in density-functional calculations of intermolecular interactions
	4.1 Introduction
	4.2 Benchmark dispersion energies
	4.3 Nonlocal Correlation Functionals
	4.4 Asymptotics-based atom-atom dispersion functions
	4.5 Exchange-hole dipole moment model
	4.6 Many-Body Dispersion
	4.7 Computational Details
	4.8 Results
	4.8.1 Asymptotics-based methods
	4.8.2 Nonlocal functionals
	4.8.3 Atoms-in-molecules methods

	4.9 Summary and Conclusions

	5  Polarizability Density from time dependent density-functional theory and further development of DADE
	6 Potential Energy Surface development for crystal structure prediction
	Bibliography
	A List of Publications
	B Appendix for chapter 2
	B.1 Basis sets and CBS Extrapolation
	B.2 Level of SAPT Theory
	B.3 Uncertainties of SAPT Results
	B.4 SAPT at small R's
	B.5 Physical Damping
	B.6 ``Antidamping" in D3BJ
	B.7 Argon–proton
	B.8 Argon–Lithium Cation (Ar-Li+)
	B.9 Eextra for Wave Function Methods
	B.10 RSH Functionals
	B.11 Dependence of non-xc interaction energy on density
	B.12 Detailed results for Figs. 2.3, 2.4, 2.5, and 2.6.
	B.13 SCAN at small R's

	C Appendix for chapter 3
	D Appendix for chapters 3 and 4

