
DEVELOPING AN OPEN SOURCE PREDICTIVE SPOT MODEL FOR

USE IN BROWN DWARF PHOTOMETRY

by

Kyle Dettman

A thesis submitted to the Faculty of the University of Delaware in partial
fulfillment of the requirements for the degree of Honors Bachelor of Science in Physics
and Astronomy with Distinction

Spring 2015

c© 2015 Kyle Dettman
All Rights Reserved

DEVELOPING AN OPEN SOURCE PREDICTIVE SPOT MODEL FOR

USE IN BROWN DWARF PHOTOMETRY

by

Kyle Dettman

Approved:
John Gizis, Ph.D.
Professor in charge of thesis on behalf of the Advisory Committee
Department of Physics and Astronomy

Approved:
James MacDonald, Ph.D.
Committee member from the Department of Physics and Astronomy

Approved:
Matthew DeCamp, Ph.D.
Committee member from the Board of Senior Thesis Readers
Department of Physics and Astronomy

Approved:
Michael Arnold, Ph.D.
Director, University Honors Program

ACKNOWLEDGMENTS

I would like to take this time to thank the people who supported me during this

entire process.

First and foremost, I would like to thank my parents for without them I could

not have had the college career that I was lucky enough enough to experience. Their

constant love and support has buoyed me through these past 4 years and especially

these last 2. I would also like to thank my advisor, Dr. John Gizis, for taking a chance

on an untested undergraduate to do work for him. Obviously, without this research

experience I would not have found a topic for my thesis, but more importantly, his

sponsorship of me allowed me to develop valuable skills that I otherwise would not

have had the resources to develop.

Finally, I would like to thank my friends in the Society of Physics students for

helping me survive both mentally and academically.

iii

TABLE OF CONTENTS

LIST OF FIGURES . vi
ABSTRACT . vii

Chapter

1 INTRODUCTION . 1

1.1 The Kepler Mission . 1
1.2 An Overview of Brown Dwarfs . 2

1.2.1 Distinction between Planets 3
1.2.2 Evolution . 4
1.2.3 Magnetic Properties . 5

1.3 History of Spots and Spot Modeling 6

2 METHODS . 8

2.1 Modeling the Spot . 8

2.1.1 Intent . 8
2.1.2 The Model . 8
2.1.3 Edge Conditions . 10
2.1.4 Limb-Darkening . 13

2.2 Analysis . 13
2.3 Data . 15

3 STARSPOTS AND SUNSPOTS . 17

3.1 Sunspots . 17
3.2 Weather-Related Features . 20

iv

4 CONCLUSION . 22

4.1 Results . 22

BIBLIOGRAPHY . 24

Appendix

A SPOTMODEL.PY . 25
B ANALYSIS.PY . 42

v

LIST OF FIGURES

1.1 A table containing some values for the magnetic field strength of
various low spectral type stars[9] 6

2.1 A single triangle within the model. Note, this triangle is enlarged for
detail, triangles in the actual model are much smaller with approx.
100 to a circle. 11

2.2 A triangle traveling over the edge. The portion over the edge is
subtracted from the total area. 11

2.3 An example of what a circle created as a collection of triangles . . . 12

2.4 An example of data collected by the Kepler Space Telescope for the
L1 dwarf WISEP J190648.47+401106.8 16

2.5 An example of the poor results that are obtained from a CCD being
switched on after a long period of inactivity 16

3.1 Low and High resolution pictures of Jupiter. Note both the
prominent spot and stripe features. 21

4.1 Output curve of spot, centered on the star with an area of 0.01 . . 23

4.2 Output curve of a stripe, centered on the star with a width of 0.02 23

vi

ABSTRACT

When studying ultracool stars such as brown dwarfs some of the most infor-

mative data comes photometric observations. These observations, though limited in

its accuracy due to the limitations of the collector, provide insight into features of

the atmosphere that produce fluctuations in the light curve. It is commonly thought

that the fluctuations are caused by traditional spots in the star’s atmosphere, though

analyzing the data can be difficult due to the sometimes sporadic data. This paper

seeks to create an open source program which can analyze this photometric data and

provide suggestions as to the structure of the spot to produce such a curve. It will

also look at the typical features of spots and determine if the features that are seen

on these stars are actually consistent with these features or if it some new phenomena

such as clouds or other weather related structures.

vii

Chapter 1

INTRODUCTION

The study of Brown Dwarf stars and their features is difficult by its very nature.

A combination of both dim objects and still somewhat imperfect equipment creates

data that is very noisy and thus hard to analyze. This and the naturally large data sets

makes for problems that are very difficult to analyze by hand. This stalls research and

interferes with doing actual physics as there is currently no widely available program

or method to handle this data. Therefore, a program or model must be developed to

facilitate in processing and analyzing the data. Using this model, a rough estimate as

to the properties of the features of the star can be determined and work as to the actual

properties of the feature and star can begin. The purpose of this paper, therefore, is

to present, at least on the most basic level, a model of a spot or some other feature

traveling along a star. Hopefully, this can be used as a basis for others to use and

make progressively better models and analysis tools so that they may be used by the

community to further their research endeavors. It will be created using the high-level

language python since that seems to the standard among the astronomy community

and its high readability, making editing the code by others much easier.

1.1 The Kepler Mission

Launched in March of 2009, the Kepler space telescope was designed to find

Earth-like planets in orbit around their star in what is known as the ”Habitable Zone”,

or distance from the host star where water can exist in liquid form. There are two main

ways in which an orbiting planet can be detected, measurements of the radial velocity

of the star to find orbital wobble, or measurements in the brightness of the star to find

a transiting planet. Of these two methods, Kepler was designed around transits.

1

Kepler is equipped with 42 charged coupled devices (CCDs) each with a resolu-

tion of 2200 X 1024 pixels. These CCDs take in light and convert it into an electrical

signal that is read out from each pixel every three seconds. Because each pixel is

slightly different in how it reads data, the incoming light is defocused by about 10

arcseconds so that light from any given star can either land on more than one pixel or

completely fill one pixel. In total, the array covers 105 square degrees of the sky and, as

of its initial launch, is constantly pointed at a patch of sky located in the Cygnus-Lyra

region. The sensitivity of the photometer is set such that it can detect the transit

of an Earth-like planet across a Sun-like star to 4 sigma precision. Additionally, the

filter of the photometer allows in light from the spectral band ranging from 400nm to

850nm, or approximately visible to near infrared light. In order to effectively observe

transiting planets, the spacecraft was designed to point at one section of the sky for

a very long period of time, approximately three and a half years, the mission’s initial

lifetime.

Because of the ability to see into the near infrared and the stability of the

field of view, the Kepler space telescope has become popular among those who study

ultracool stars as well as those searching for exoplanets. Ultracool stars, such as brown

dwarfs, emit mainly in the infrared due to their temperature and are difficult to observe

because of their low luminosities. These problems are solved thanks to the sensitivity

and spectral range of Kepler and these systems can be studied in great depth thanks

to the long viewing periods[8].

1.2 An Overview of Brown Dwarfs

Brown Dwarfs are stellar objects. They cannot be classified as stars because

they are to low in mass to facilitate the fusion of hydrogen in their core. Since the heat

that leads to the temperatures required to start fusion comes from the gravitational

contraction of the initial gas cloud, if there is not sufficient material, the collapsing

material becomes electron degenerate before adequate temperatures are reached, stop-

ping contraction. This inability to start the process of fusion leads to very dim objects

2

as the only radiating heat is supplied from the relatively cool contraction energy. Be-

cause these objects, classified as M, L, and Y spectral type stars, are so dim it took

very powerful telescopes to view them with any certainty, with the first L-Dwarf being

confirmed in 1997. Being such a recent edition to the astronomical catalog, much less

is known about these types of objects than almost any other stellar object[9].

1.2.1 Distinction between Planets

The extremely low temperatures of Brown Dwarfs lead to some very interesting

characteristics not found in other stellar objects. One of these oddities is the presence

of molecules in the photosphere of the star such as titanium oxide (TiO), calcium

hydride (CaH), iron hydride (FeH), and water[9]. With low mass, temperature, and

the presence of heavy elements in the atmosphere, it can be hard to distinguish Brown

Dwarfs from gas giants such as Jupiter. The similarities between these two objects

are strikingly many. Both primarily generate heat from their cores, both may have

complicated systems orbiting them such as moons or planets, and since the size of

a Brown Dwarf is set by its electron degeneracy, both can have comparable sizes[1].

Officially, there is no strict dividing line between a Brown Dwarf and a planet, though

the International Astronomical Union (IAU) does tentatively place the division at

13 Jupiter masses as below this point fusion cannot occur at all even with the easily

fusible deuterium[3]. Of course, if one is observing a Brown Dwarf in infrared light, the

distinction between these two is obvious as planets are normally around 100K while

the larger dwarfs are on order 1000K, though very low mass dwarfs may approach

the temperature of a very large gas giant. There is one other observational way to

see a Brown Dwarf, using x-rays. Brown Dwarfs’ lack of a source of nuclear energy

causes them to have highly convective interiors much like Hayashi track main sequence

stars and their very small size give them a very high angular velocity. These two

factors produce very kinked magnetic fields near the surface that conduct other highly

magnetized material from just below the surface to the surface, creating a sub-surface

flare which, in turn, allows electric currents in the star to flow, creating an x-ray flare.

3

These x-ray flares can be easily detected by telescopes such as Chandra. However,

these kinds of flares are, at least to out knowledge, relatively rare, with Chandra only

recording one, though this may be an artifact of the sample size as the study of Brown

Dwarfs is fairly new and there are not many x-ray telescopes actively looking for such

flares[5].

1.2.2 Evolution

Like every other star, Brown Dwarfs begin as a large cloud of loosely associated

dust. This dust then collapses in on itself, becoming denser and hotter as potential en-

ergy is converted into thermal energy. During this process, the star travels down what

is known as the Hayashi track, gradually becoming smaller and, due to decreasing sur-

face area, dimmer. Eventually, most stars reach a point where they have accumulated

enough thermal energy that their core temperature is sufficient to start the process of

hydrogen fusion. However, since the gravitational energy, and thus subsequent thermal

energy, of the collapsing mass goes like M2

R
, some of these clouds do not have enough

mass, approximately 0.09R�, to reach the critical temperature required for fusion and

instead, their cores become electron degenerate. Because of this degeneracy and the

lack of fusion, no part of the star transitions from convective, energy transport via bulk

movement of warm and cold material, to radiative, energy transport via movement of

photons, unlike other main sequence stars which have radiative cores. Additionally,

their low mass and luminosity prevent them from reaching the main sequence of stars

and relegate them to the spectral types M, L, T, and Y.

Electron degeneracy occurs when the electrons in the plasma become so close

together that the force caused by quantum phenomenon, such as the Pauli Exclusion

Principle and uncertainty, is greater than the pressure generated by gravity. At this

point, we can no longer use an ideal gas equation to model the core of the star.

The degeneracy can be quantified with the parameter αE according to the equa-

tion:

αE =
Neh

3

2(2πM − EkT)2/3
∼ electronchemicalenergy

kT

4

Where Ne is the number of electron, M the mass of the star, E the Coulomb

energy of the star, and h, k, and T are Planck’s constant, Boltzmann’s constant and

temperature respectively. The electron chemical energy is the total potential energy

of the electrons in the system, also known as the Fermi level. If this parameter is less

than -4 then the plasma can be treated as a perfect gas and if it is over 20 then the

plasma is fully degenerate. As the parameter increase, less of the energy from gravita-

tional contraction goes to heating the gas, rather it decreases the separation between

electrons. Eventually, if the contraction continues, the star will reach a minimum size

of approximately 0.1R�. However, the star can contract to smaller radii as contraction

continues, but as it continues to shrink the degeneracy pressure increases, slowing the

rate that it contracts. Most Brown Dwarfs bottom out at 0.1R� because this is the

point when degeneracy pressure dominates[9].

1.2.3 Magnetic Properties

In this paper, perhaps the most pertinent feature of Brown Dwarfs is their

magnetic properties. As suggested by Reid et. al., the most attractive model for

the magnetic structure of a Brown Dwarf is a turbulent dynamo model. A turbulent

dynamo creates magnetic fields through the random motion of fluid in the convection

zone. These random motions create bundles of field which then escape to the surface

of the star[9]. Though some, such as Morin et. al., have observed fully convective

stars with stable poloidal fields, they admit that their observations break down below

about 0.2R� where they begin to observe significant non-axisymmetric components

and toroidal fields[7].

The Sun uses a similar mechanism to generate its magnetic field, though because

it has a radiative core and thus a radiative-convective, it can store and generate fields at

this boundary. However, since Brown Dwarfs do not have this boundary, it is generally

expected that they have no way to store fields nor have any cyclic phenomena. As

Reid et. al. mention, field in this model is generated, moved, and destroyed quickly[9].

5

Figure 1.1: A table containing some values for the magnetic field strength of various
low spectral type stars[9]

The strength of the magnetic fields in stars can be measured by observing line

splitting that occurs due to the Zeeman effect. These effects are easy to observe on

solar type stars due to their relatively high luminosity and the availability of the Sun

for study. Unfortunately, because Brown Dwarfs are both new and dim, there is not

much information regarding their magnetic fields. However, as can be seen in Figure

1.1, there is a general trend toward increasing magnetic fields with decreasing spectral

type[9].

1.3 History of Spots and Spot Modeling

The problem of modeling spots on cool stars is not a new one. At least as far

back as the 1980s, people have been trying to model the movement of spots across an

unresolved star and the resulting light curve. Surprisingly, even then, authors such

as Dorren[4], though observing much hotter F-type stars, struggled with the issues of

spot size, persistence, and even latitudinal location of spot. Dorren also notes that

though Sunspots generally have non-uniform brightness and temperature across their

6

surface, it is much simpler to simply model uniform spots without umbras as the extra

parameters reveal little about the actual structure of the spot itself.

In Dorren’s time, computers were not as powerful as they are today of course and

as such, this is reflected in the way Dorren creates his model. He uses a straightforward

double integral to integrate over the area of an arbitrary spot, whose shape is chosen

explicitly to simplify the integral, on a star’s surface and subtracts it from the total

area of the star (a unit sphere). Unlike in the model presented here, this method is far

more analytical and can be solved by hand. Today though, we can use computation to

better handle these types of problems through numerical methods and iterations. By

doing this we are not constrained as Dorren was to only choose easy shapes, using the

methods presented here, we can make almost any shape imaginable[4].

Today, the modeling of spots has become far more sophisticated, being used to

measure the properties of the star such as its inclination angle, radius, and differential

rotation rate. All of this is because we are able to more accurately model the spots

using computational methods. Spots have also taken on a slightly more important role

in Astronomy as the search for extraterrestrial life intensifies. Because spots are very

similar to planets as they move across the surface of a star, it becomes very important

to find a way to distinguish the two so that false positives can be avoided. In Dorren’s

time, spots were mainly studied in an effort to determine the properties of the spots

such as their temperature and how similar these spots behaved to the ones on the sun.

In his paper, Kipping prefers to use an analytical model because though numerical

models can produce many different shapes, analytical models are much faster for the

limited number of shapes that they use since they do not need to perform iteratively[6].

While this may be true, in this paper we would like to analyze, somewhat, the effects

that other shapes have so we will use a numerical method. Additionally, a numerical

method is easier to approach conceptually than an analytical model.

7

Chapter 2

METHODS

2.1 Modeling the Spot

2.1.1 Intent

Before we discuss how we actually go about modeling the spot, let us discuss

what we want to get out of the model first and, conceptually, how we will set up the

model. We know that we want to have some feature rotate around a sphere, but what

shape will it take and how will we deal with it passing over the edge of the sphere?

To start, let us consider the simplest case with the simplest shape, a single triangle.

A triangle contains three lines and three vertices so we must decide if we want to

represent this triangle in terms of its edges or vertices. If we want this triangle to

pass easily over the edge of the sphere it seems that using the vertices would be the

easiest implementation as we can simply make a new triangle that is not over edge by

adding additional points. Therefore, if a triangle goes over the edge we can still find

the total area covered by the triangle by adding extra points at the boundary to create

an appropriate triangle.

2.1.2 The Model

The first thing that this code must do is effectively model some feature (the spot)

on a sphere, have it rotate around the sphere, (into and out of view of the observer)

and from this, produce a light curve. To represent the sphere on which we will place

the spot we will simply use a circle. Some similar models will use a square, randomly

sample points within that square and define the inside and outside of a circle by their

distance from the center. This is too complicated and unnecessary for this model.

Instead, I will model the sphere through an essentially three-dimensional coordinate

8

system. If we place polygons on the sphere, these polygons are defined by the points of

their vertices. These points will be represented by three points, x, y, and z. The y and

z coordinates will define the location of the point within the plane and the x coordinate

representing how far into or out of the plane the point is. Using the x coordinate, we

can determine if the point is on the front of the sphere (in view) or on the back of the

sphere (out of view).

We run into another problem after we have decided this though. Since we

would like to accurately represent a shape moving upon a sphere we must account for

the apparent warping of the shape as it approaches the edges. To do this instead of

starting with the Cartesian coordinates we start with spherical coordinates and then

use spherical trigonometry to transform them into Cartesian coordinates. Therefore,

when a user inputs a feature, they will specify the polar angle (”phi” in the code)

and the azimuthal angle (”lamda” in the code because lambda is a reserved name in

Python) in degrees which the program will convert into polar. However, we can make

an assumption at this stage. If we assume that whatever feature we decide to make

using these points will be very small compared to the overall sphere on which it sits,

we can use simple Euclidean transformations instead of the messy spherical ones to

obtain the Cartesian coordinates from the spherical. Therefore, we have:

x = sin(φ) ∗ cos(λ), y = sin(φ) ∗ sin(λ), z = cos(λ)

Using these coordinates along with simple geometry allows us to get the area of

the shape we have created, giving us all the information we need to know about it.

The reason we only need to know the area of the shape is because we will

assume for this model that the spot is completely dark, stopping all light that would

have been produced by that area of the star. The reason for this is to simply keep

the computation time down. A spot that is slightly brighter will produce essentially

the same light curve as a slightly smaller, completely dark spot. Using this, we have a

fairly straightforward way of computing the light curve; we simply subtract from the

9

total area of the sphere in view (the area of a circle) the total area covered by some

kind of spot.

Finally, we must deal with exactly what shape we want to make with the pro-

gram. Since we are modeling spots on a star, a circle seems like the best option.

However, circles are not made of points which our model currently requires. Therefore,

we must look for other ways to construct a circle using other shapes. The best way to

do this is by using triangles, from which a circle can easily be constructed by creating

a small wedge and rotating it around the center, copying it each time.

Using triangles is good fit for two reasons: 1) We can make them very small

and adhere to our previously made assumption; and 2) We can make almost any other

polygon using triangles. This second reason will become helpful later when we try to

model stripes as well as spots.

2.1.3 Edge Conditions

Perhaps the most important case to deal with during the simulation process is

what happens when a triangle reaches the edge of the circle and travels over it onto the

other side. In order to determine how the triangle is traveling over the edge we look

at the three points that make up the triangle, tracking whether each point is on the

front of the circle or on the back. We can do this by tracking the sign of the x-value

of a point. If the x-value is positive or zero it is on the front of the circle and if it is

negative it is on the back of the circle. To account for the loss of area as the spot moves

over the side we must make another triangle equal either to the area of the triangle

over the edge or the area of the triangle still on the front of the circle. To do this we

must create additional ”false” points on the edge of the circle.

To correctly position these false points let us assume that the triangle of points

extends past the two-dimensional projection of the sphere. Where this triangle inter-

sects the circle is where the false point will be placed.

To find the slope of the line connecting two points we use simple rise over run.

10

Figure 2.1: A single triangle within the model. Note, this triangle is enlarged for
detail, triangles in the actual model are much smaller with approx. 100
to a circle.

Figure 2.2: A triangle traveling over the edge. The portion over the edge is subtracted
from the total area.

11

Figure 2.3: An example of what a circle created as a collection of triangles

12

slope =
y

′
2 − y1
z2 − z1

2.1.4 Limb-Darkening

One of the more complex features of a star is its limb-darkening. It is very

difficult to determine exactly how limb-darkening will affect the light profile of a star

or by what function it will be determined. Usually though, limb-darkening is described

by a linear function, something like 1 − µ ∗ x where x is the radial distance from the

center of the star. This effect is of course different at every point inside an extended

object such as our triangles, however, we will use the small triangle approximation again

to simplify the process slightly. Instead of calculating the limb-darkening at each point

we instead calculate the limb-darkening at the average center of the triangle. Since the

limb-darkening is linear the total decrease of the brightness of the spot would just be

the average at either end since the triangle is very small and line-like. We will now

simply modify the area of the spot by the limb-darkening parameter. The constant µ

can be input by the user.

2.2 Analysis

Originally, this program was to be a completely self-contained analysis tool,

unfortunately though I was unable to get the built-in functions in the scipy package of

python to properly analyze data. Instead, this program will format given data in such

a way that the user can use an outside data analysis tool such as Origin to produce a

least-squares curve fit.

The first step of the analysis process is for the user to input a data set of

photometric counts and the times the counts were taken. The input file should be a

”.txt” file with two columns, the left being the times the counts were taken and the

right being the photometric counts normalized to 1. As an additional parameter, the

user will also input the step time in days between one unit of time in the input file.

The program then runs through each row and finds the average time step over the

13

data set and then runs through the data again, dividing the data into separate files

based on the average time step. If there is a time step within the data larger than the

average time step the program will break the data and put the preceding data into a

new file. This step is to ensure that the user has a data set free from interruptions in

data collection and also identifies areas around which there may be low data fidelity

as a CCD comes back online. The user may then take these data files and run a least

squares analysis using whatever tool they wish.

Once the user has run their own analysis they will be prompted to input the

results into the program, specifically, the amplitude, period, and phase shift. There

are also additional parameters that may be input such as inclination angle of the star.

The program will then attempt to model the given data using the following

steps:

1. Determine how much area is covered by spots.

Assuming the input data was normalized it will use the amplitude to find the
percent area covered by percentarea = 1 − Amplitude. The radius of the circle
will be then found by r = (percentarea) since the circle in the model is a unit
circle. This program will not try to run an analysis with stripes as the total area
covered by stripes is highly dependent on the latitude they are at.

2. Create a reference file.

The program will take the fit parameters and run through them one period to
create a reference file of points for use later.

3. Iterate through one cycle.

The program will center the spot at a point such that the entire spot can be out
of view. During each iteration, it will subtract the output file from the reference
file and take the average. If during an iteration the average is lower it will replace
the current one. The iterations will continue at some interval until it reaches an
angle φ of 90. Once all the iterations are complete it will output the parameters
of the best run.

It should be noted that while the analysis tool is important, the main focus

of this thesis is to develop the spot model. Therefore, some features of the analysis

program may not work properly or be fully implemented.

14

2.3 Data

The data that is most commonly used for these problems, that is to say ob-

serving features on Brown Dwarfs, is photometric data. Photometric data is a set of

information containing the number times a photon, of any energy allowed by the fil-

ters, strikes a pixel on the camera. From this we can determine how much light the

observed star is emitting at any given time since the number of photons emitted is

directly proportional to the star’s luminosity and flux at the observation location.

In most every case, the camera collecting the data is a Charge-Coupled Device

or CCD. CCD cameras rely on the incoming photons exciting the surface of the device

and generating an electric current that registers with the software as one count. In the

data that we used as a template to design the model, the counts were normalized to 1

as can be seen in Figure 2.4. However, CCDs are not perfect. Each individual pixel has

its own sensitivity on different locations of the pixel itself, leading to misleading data

if the problem is not addressed. This is remedied by slightly defocussing the camera

lens so that an individual point of light does not hit one spot in a pixel, but rather the

image is smeared over the pixel and it neighbors.

Additionally, since Brown Dwarfs are very cool, these measurements are done

in the infrared and therefore the measurements are susceptible to interference from

thermal background noise. This combined with the already low signal-to-noise, because

of the low luminosity of these stars, creates very messy data that is hard to evaluate

by hand or eye. As can be seen in figure 2.5, when a CCD becomes active again after

a long period of inactivity, the results that it obtains are dubious at best. Due to the

nature of the CCD chip, it must first establish an equilibrium with the environment

before it can provide useful data, much like how its is difficult to see in a bright area

after you have been exposed to the dark for a period of time.

15

Figure 2.4: An example of data collected by the Kepler Space Telescope for the L1
dwarf WISEP J190648.47+401106.8

Figure 2.5: An example of the poor results that are obtained from a CCD being
switched on after a long period of inactivity

16

Chapter 3

STARSPOTS AND SUNSPOTS

Spots are an interesting phenomena because they are easily viewable on the

Sun, but very difficult to observe on distant stars. Because we cannot resolve the disk

on distant stars, its hard to determine if a decrease in observed luminosity is due to a

spot or some other phenomenological process. This puts us in an interesting position

since we can only determine the properties of a potential spot from basic observables

such as luminosity or spectroscopy. This leaves our understanding fairly limited and

based mainly on what we know of sunspots.

3.1 Sunspots

Sunspots are the most well understood spot phenomenon since they are directly

observable. Using our understanding of these we can devise a template to study other

spots on distant stars with our limited information.

Sunspots are grouped into several classifications, most of which involve bipolar

spots, or spots which have a twin spot on the other side of the star. One classification,

H, is known as a theoretician’s spot since it is the easiest to model, not containing

a multitude of smaller spots or having a large umbra/penumbra distribution. These

spots have been shown empirically to decay at a slow, constant rate of:

Ȧ ≈ −1.5× 108m2/s

though there is some evidence to suggest a parabolic decay rather than a linear one, a

linear model still provides usable results.

When we consider modeling sunspots we must start by idealizing the umbra of

the spot. Because these umbra are very inhomogeneous it is much easier to consider a

17

mean spot rather than the actual spot. Additionally, it has been theorized and observed

that sunspots represent a physical depression in the sun due to their lower opacity. This

means that when the spot reaches the edge of the sun the disc-side penumbra appears

to be narrower than the limb-side penumbra, an important consequence that must be

remembered when modeling the transit of a spot, especially later when we deal with

spots on Brown Dwarfs. There are also considerations that must be made for the

magnetohydrostatics of the problem since there are some dynamical elements. These

elements are the decay of the spot and the moat, an area encircling the spot where the

surface of the sun flows away from the spot to remove heat from underneath it. We

simplify this though by simply observing that both of these processes are very slow

and do not greatly affect the static problem. Having the static problem, we use the

magnetohydrostatic equilibrium equation:

−∇P + ρg + j×B = 0

to determine the magnetic properties of the spot and its underlying structure

where P is the pressure of the gas, ρ is the density of the gas, g is the gravitational

acceleration, j is the current density, and B is the magnetic field. The most basic models

of this approach effectively determine the strength of the field and the spots depression

by using temperature as a free parameter to find the eigenvalue corresponding to mixing

length over scale height. However, these models do not effectively explain the sharp

transitions between umbra, penumbra, and surrounding area. This can be solved by

introducing current sheets into the model. These current sheets separate the magnetic

fields, by running tangent to the magnetic field, of the umbra and penumbra and the

whole system from the quiet outside. These two sheets are known as the magnetopause,

which surrounds the entire system, and the peripatopause, which surrounds the umbra.

Earlier, we had broached the subject of spot decay as an essentially constant

process. Now we will look at spot decay in terms of the magnetic field of the spot. To

start, we assume that the spot and its associated field decay diffusively according to

the turbulent diffusivity ηt caused by the random motion of the gas in deeper levels of

18

the sun. By using the magnetic diffusion equation Ḃ = 1
s

∂
∂s

(sηt
∂B
∂s

) where s is the spot

radius, we can solve for B to obtain:

B =
Φ

4πηtte
s2

4ηtt

Where Φ is the total flux. This equation states that for small t, B is very large,

though we know that the magnetic field is limited by the magnetohydrostatic equilib-

rium. Therefore, a correction term is introduced, Φ∗, which represents the amount of

flux that is actually observable through the spot. Physically, Φ∗ represents the amount

of the magnetic field greater than some critical value that allows it to actually affect

convective energy transport, the source of the visibility of the spot. Therefore, the

expression for this new visible flux is:

Φ∗ = Φ− 4πηtBct

and from this we can determine the approximate decay of the area of the spot as:

Ȧ ∼= −10π
Bc

Bm

with Bm the portion of the field greater than the critical field. As we can see, this

decay is related to the overall size of the spot, with larger spots having longer lifetimes.

The total number of spots on the surface of the sun vary over an approximately

eleven year cycle. At the height of the cycle, the Sun may have as many 200 spots

while at the depth there are almost none. Additionally, the spots also seem to migrate

uniformly from latitudes of 40 degrees down to the equator where they disappear.

When the cycle restarts, the spots reappear around 40 degree latitude. It is difficult

to say how the number of spots equate to total area of the Sun covered by said spots.

Spots come in many classifications ranging from large homogeneous spots to collections

of small, irregular spots. Additionally, these spots, while generally black in terms of

brightness, can have complex umbras and penumbras which do not lend themselves to

efficient models. However, the largest of these spots are usually very black and have

minimal penumbras that can be effectively ignored with respect to the overall area of

the spot [10].

19

3.2 Weather-Related Features

As we will discuss later, it may be possible to explain the brightness curves of

Brown Dwarfs by weather-related effects. To examine these we will look to Jupiter as

it is well studied and has both large spots and stripes in its atmosphere. Firstly, the

Great Red Spot on Jupiter is very stable, having lasted for over 100 years as can be

seen in Figure 3.1. As noted by Beebe, maintaining a large spot like the one on Jupiter

requires a lot of internal energy, a quantity that a star, albeit a very weak star, has

in spades. There have also been observations over the course of many decades that

show an occasionally fast but usually slow longitudinal drift. These drifts, in their slow

periods, can be as slow as 20 degrees over 10 years.

The brightness contribution of the spot changes over time. At times, ice crystals

are funneled into the main body of the spot, making it largely homogeneous with the

surrounding cloud layer. At other times, ice crystals are evacuated from the spot,

making the spot well defined and dark with respect to the surrounding cloud layer.

Unfortunately, because Jupiter is so close and so easily resolved there is no data directly

measuring the brightness of Jupiter, especially since Jupiter must rely on the Sun for

its luminosity.

In 1939, new features were observed on the surface of Jupiter, notably ellipsoid

flat clouds. These clouds are noteworthy because they seems to have similar properties

to the Great Red Spot, such as color, and are very long-lived and stable in terms of

size. They have lasted from 1939 when they were discovered until at least 1989 when

they were still being observed [2].

20

Figure 3.1: Low and High resolution pictures of Jupiter. Note both the prominent
spot and stripe features.

21

Chapter 4

CONCLUSION

Though the model and analysis tools do not work perfectly, they provide a solid
basis to start processing astronomical data and a solid basis from which others can
build and improve. Overall, things that need to be improved are

1. Fully encompassed data analysis package that can run a least squares analysis
without additional user input.

2. Faster model or more mathematically correct model that relies less on assump-
tions

3. A model that accurately includes an inclination angle correction

4. More efficient model runs

4.1 Results

From what we know about both star spots and the data we collect, see Figure

2.4, we can make the assumption that the features on Brown Dwarfs are not spots in

the typical sense. The features that are observed are far to long lived, especially for

the large magnetic fields that are present in such stars. Running the model as both a

spot and stripe of similar areas produce similar curves. As can be seen in figures 4.1

and 4.2 the two different features produce very similar curves. Because the curves for

spots and stripes are so similar, this suggests that the feature could be a stripe, which

is to say that the feature decreasing the luminosity is a striped cloud, similar to what

we see on Jupiter (see figure 3.1). Conceptually, this does make sense as ultracool stars

like Brown Dwarfs are cool enough to contain heavy molecules just as dust and water

vapor. This may lead to the condensation of clouds in the cool outer photosphere

creating a blanketing layer that reduces the overall luminosity of the star. This fact

has been speculated by Gizis, et. al. as a way to accurately explain the incredibly long

lived features found on Brown Dwarfs.

22

Figure 4.1: Output curve of spot, centered on the star with an area of 0.01

Figure 4.2: Output curve of a stripe, centered on the star with a width of 0.02

23

BIBLIOGRAPHY

[1] Gibor Basri and Michael E. Brown. PLANETESIMALS TO BROWN DWARFS:
What is a Planet? Annual Review of Earth and Planetary Sciences, 34.1:193–216,
2006.

[2] Reta Beebe. Jupiter: The Giant Planet Second Edition. Smithsonian Institution
Press, 1997.

[3] Lars L. Christensen, Helen Sim, Raquel Y. Shida, Nadja Wolf, and Lars H. Nielsen.
The Public Comunication at the IAU GA 2006. Proceedings of the International
Astronomical Union, 2.S240, 2006.

[4] J. D. Dorren. A New Formulation of the Starspot Model, and the Consequences
of Starspot Structure. Astrophysical Journal, 320:756–767, September 1987.

[5] Harvard. Chandra :: Field Guide to X-ray Sources :: Brown Dwarfs, June 2012.

[6] David M. Kipping. An Analytic Model for Rotational Modulations in the Pho-
tometry of Spotted Stars. Monthly Notices of the Royal Astronomical Society,
pages 1–30, November 2012.

[7] J. Morin, J. F. Donati, P. Petit, L. Albert, M. Auriere, R. Cabanac, C. Catala,
X. Delfosse, B. Dintrans, R. Fares, T. Forveille, T. Gastine, M. Jardine,
R. Konstantinova-Antova, J. Lanoux, F. Lingires, A. Morgenthaler, F. Paletou,
J. C. Ramirez Velez, S. K. Solanki, S. Thado, and V. Van Grootel. Exploring the
magnetic topologies of cool stars. The Physics of Sun and Star Spots Proceedings
IAU Symposium, 2010.

[8] NASA. Kepler and K2, April 2015.

[9] I. Neil Reid and Suzanne L. Hawley. New Light on Dark Stars: Red Dwarfs,
Low-mass Stars, Brown Dwarfs. Springer, 2000.

[10] Michael Stix. The Sun: An Introduction Second Edition. Springer, 2002.

24

Appendix A

SPOTMODEL.PY

#Spot Model Program

#Kyle Dettman 2015

import math

from math import s i n

from math import cos

from math import tan

from math import pi

import numpy

import matp lo t l i b . pyplot as p l t

#Making Spot Objec t

class Spot :

”””A spot i s made up o f three po in t s de f inded by t h e i r i n c l i n a t i o n ang le

phi and po la r ang le lamda”””

s p o t L i s t = []

def i n i t (s e l f , phi1 , lamda1 , phi2 , lamda2 , phi3 , lamda3 , i n c l=None) : #I know I s p e l t lambda wrong , i t s a r e s e rved keyword in Python

#do not use the i n c l i n a t i o n parameter , i t i s not p rope r l y implemented

i f (i n c l i s not None) :

s e l f . phi1 = s e l f . phi1+i n c l

25

s e l f . phi2 = s e l f . phi2+i n c l

s e l f . phi3 = s e l f . phi3+i n c l

s e l f . phi1 = (phi1∗ pi)/180

s e l f . lamda1 = (lamda1∗ pi)/180

s e l f . phi2 = (phi2∗ pi)/180

s e l f . lamda2 = (lamda2∗ pi)/180

s e l f . phi3 = (phi3∗ pi)/180

s e l f . lamda3 = (lamda3∗ pi)/180

#The f o l l ow i n g a t t r i b u t e s keep t rack o f how many po in t s have passed behind the s t a r

s e l f . onePoint = False

s e l f . twoPoint = False

#The f o l l ow i n g a t t r i b u t e s keep t rack o f which po in t i s OTE

s e l f .OTE1 = False

s e l f .OTE2 = False

s e l f .OTE3 = False

#To dea l wi th OTE po in t s we need f a l s e po in t s

s e l f . f a l s e P o i n t s = Fal se

s e l f . fp1 = None

s e l f . fp2 = None

#By convent ion I would l i k e to make f a l s e po in t 1 (fp1) to be the more northern po in t

#In t e r i o r Angles

s e l f . angleA = s e l f . calcCenAngle (phi1 , phi2 , lamda1−lamda2)

s e l f . angleB = s e l f . calcCenAngle (phi2 , phi3 , lamda2−lamda3)

s e l f . angleC = s e l f . calcCenAngle (phi3 , phi1 , lamda3−lamda1)

#Surface Angles

s e l f . a = (math . cos (s e l f . angleA)−math . cos (s e l f . angleB)∗math . cos (s e l f . angleC)) / (math . s i n (s e l f . angleB)∗math . s i n (s e l f . angleC))

s e l f . b = (math . cos (s e l f . angleB)−math . cos (s e l f . angleC)∗math . cos (s e l f . angleA)) / (math . s i n (s e l f . angleC)∗math . s i n (s e l f . angleA))

s e l f . c = (math . cos (s e l f . angleC)−math . cos (s e l f . angleA)∗math . cos (s e l f . angleB)) / (math . s i n (s e l f . angleA)∗math . s i n (s e l f . angleB))

26

#Add i t i ona l l y I cou ld conver t to c a r t e s s i an coord ina t e s

#x i s de f ined to be out o f the screen

#y i s the a x i s going l e f t to r i g h t

#z i s the a x i s going up and down

s e l f . x1 = s i n (phi1)∗ cos (lamda1)

s e l f . y1 = s i n (phi1)∗ s i n (lamda1)

s e l f . z1 = cos (phi1)

s e l f . x2 = s i n (phi2)∗ cos (lamda2)

s e l f . y2 = s i n (phi2)∗ s i n (lamda2)

s e l f . z2 = cos (phi2)

s e l f . x3 = s i n (phi3)∗ cos (lamda3)

s e l f . y3 = s i n (phi3)∗ s i n (lamda3)

s e l f . z3 = cos (phi3)

#To account f o r limb−darkening we need to f i nd the average x o f the spo t

s e l f . averageX = (s e l f . x1+s e l f . x2+s e l f . x3)/3

#When x i s l e s s than zero d i s coun t the po in t

i f (s e l f . x1 >= 0 and s e l f . x2 >= 0 and s e l f . x3 >= 0) : #Messy approximation , though f i n e f o r sma l l t r i a n g l e s

s e l f . z1 = cos (s e l f . phi1)

s e l f . y1 = s i n (s e l f . phi1)∗ s i n (s e l f . lamda1)

s e l f . z2 = cos (s e l f . phi2)

s e l f . y2 = s i n (s e l f . phi2)∗ s i n (s e l f . lamda2)

s e l f . z3 = cos (s e l f . phi3)

s e l f . y3 = s i n (s e l f . phi3)∗ s i n (s e l f . lamda3)

s e l f . onePoint = False

s e l f . twoPoint = False

s e l f .OTE1 = False

s e l f .OTE2 = False

s e l f .OTE3 = False

e l i f (s e l f . x1 >= 0 and s e l f . x2 >= 0 and s e l f . x3 < 0) :

27

s e l f . z1 = cos (s e l f . phi1)

s e l f . y1 = s i n (s e l f . phi1)∗ s i n (s e l f . lamda1)

s e l f . z2 = cos (s e l f . phi2)

s e l f . y2 = s i n (s e l f . phi2)∗ s i n (s e l f . lamda2)

s e l f . z3 = 0

s e l f . y3 = 0

s e l f . onePoint = True

s e l f . twoPoint = False

s e l f .OTE1 = False

s e l f .OTE2 = False

s e l f .OTE3 = True

e l i f (s e l f . x1 >= 0 and s e l f . x2 < 0 and s e l f . x3 >= 0) :

s e l f . z1 = cos (s e l f . phi1)

s e l f . y1 = s i n (s e l f . phi1)∗ s i n (s e l f . lamda1)

s e l f . z3 = cos (s e l f . phi3)

s e l f . y3 = s i n (s e l f . phi3)∗ s i n (s e l f . lamda3)

s e l f . z2 = 0

s e l f . y2 = 0

s e l f . onePoint = True

s e l f . twoPoint = False

s e l f .OTE1 = False

s e l f .OTE2 = True

s e l f .OTE3 = False

e l i f (s e l f . x1 < 0 and s e l f . x2 >= 0 and s e l f . x3 >= 0) :

s e l f . z3 = cos (s e l f . phi3)

s e l f . y3 = s i n (s e l f . phi3)∗ s i n (s e l f . lamda3)

s e l f . z2 = cos (s e l f . phi2)

s e l f . y2 = s i n (s e l f . phi2)∗ s i n (s e l f . lamda2)

s e l f . z1 = 0

28

s e l f . y1 = 0

s e l f . onePoint = True

s e l f . twoPoint = False

s e l f .OTE1 = True

s e l f .OTE2 = False

s e l f .OTE3 = False

e l i f (s e l f . x1 >= 0 and s e l f . x2 < 0 and s e l f . x3 < 0) :

s e l f . z1 = cos (s e l f . phi1)

s e l f . y1 = s i n (s e l f . phi1)∗ s i n (s e l f . lamda1)

s e l f . z2 = 0

s e l f . y2 = 0

s e l f . z3 = 0

s e l f . y3 = 0

s e l f . onePoint = True

s e l f . twoPoint = True

s e l f .OTE1 = False

s e l f .OTE2 = True

s e l f .OTE3 = True

e l i f (s e l f . x1 < 0 and s e l f . x2 >= 0 and s e l f . x3 < 0) :

s e l f . z2 = cos (s e l f . phi2)

s e l f . y2 = s i n (s e l f . phi2)∗ s i n (s e l f . lamda2)

s e l f . z1 = 0

s e l f . y1 = 0

s e l f . z3 = 0

s e l f . y3 = 0

s e l f . onePoint = True

s e l f . twoPoint = True

s e l f .OTE1 = True

s e l f .OTE2 = False

29

s e l f .OTE3 = True

e l i f (s e l f . x1 < 0 and s e l f . x2 < 0 and s e l f . x3 >= 0) :

s e l f . z3 = cos (s e l f . phi3)

s e l f . y3 = s i n (s e l f . phi3)∗ s i n (s e l f . lamda3)

s e l f . z1 = 0

s e l f . y1 = 0

s e l f . z2 = 0

s e l f . y2 = 0

s e l f . onePoint = True

s e l f . twoPoint = True

s e l f .OTE1 = True

s e l f .OTE2 = True

s e l f .OTE3 = False

else :

s e l f . z1 = 0

s e l f . y1 = 0

s e l f . z2 = 0

s e l f . y2 = 0

s e l f . z3 = 0

s e l f . y3 = 0

s e l f . onePoint = True

s e l f . twoPoint = True

s e l f .OTE1 = True

s e l f .OTE2 = True

s e l f .OTE3 = True

s e l f . s p o t L i s t . append (s e l f)

30

#Ca l cu l a t e s the c en t r a l ang l e between two ang l e s

def calcCenAngle (s e l f , phi1 , phi2 , delLamda) :

return numpy . a r c co s ((math . s i n (phi1)∗math . s i n (phi2))+(math . cos (phi1)∗math . cos (phi2)∗math . cos (delLamda)))

#TODO: Add i f s ta tement to check f o r sma l l ang l e s

#Current ly not implemented as i t i s not c a r t e s s i an

def ca lcArea (s e l f) :

#Assuming un i t sphere

return s e l f . a + s e l f . b + s e l f . c − math . p i

def calcAreaCart (s e l f) :

i f (not s e l f . onePoint) :#No po in t s OTE

#need to mu l t i p l y by a limb−darkening c o e f f i c i e n t

#re turn (1−(s e l f . averageX +.01))∗ (0 .5∗ (s e l f . d i s t ance (s e l f . z1 , s e l f . y1 , s e l f . z2 , s e l f . y2)∗ abs (s in (s e l f . b)))∗ s e l f . d i s t ance (s e l f . z1 , s e l f . y1 , s e l f . z3 , s e l f . y3))

return (0 . 5∗ (s e l f . d i s t anc e (s e l f . z1 , s e l f . y1 , s e l f . z2 , s e l f . y2)∗abs (s i n (s e l f . b)))∗ s e l f . d i s t anc e (s e l f . z1 , s e l f . y1 , s e l f . z3 , s e l f . y3))

e l i f (not s e l f . twoPoint) :#One po in t OTE

s e l f . f a l s e P o i n t s = True

#With one po in t OTE we need to make two f a l s e po in t s a t the edge o f the c i r c l e

#To do t h i s we need to know the s l o p e o f the l i n e between the non−OTE po in t s and the OTE po in t

#area = (1−(s e l f . averageX +.01))∗ (0 .5∗ (s e l f . d i s t ance (s e l f . z1 , s e l f . y1 , s e l f . z2 , s e l f . y2)∗ abs (s in (s e l f . b)))∗ s e l f . d i s t ance (s e l f . z1 , s e l f . y1 , s e l f . z3 , s e l f . y3))

area = (0 . 5∗ (s e l f . d i s t anc e (s e l f . z1 , s e l f . y1 , s e l f . z2 , s e l f . y2)∗abs (s i n (s e l f . b)))∗ s e l f . d i s t anc e (s e l f . z1 , s e l f . y1 , s e l f . z3 , s e l f . y3))

i f (s e l f .OTE1) :#Point 1 OTE

yOTE1 = 2− s e l f . y2−s e l f . y1

yOTE2 = 2− s e l f . y3−s e l f . y1

d i f f = 1 − s e l f . y1

i f (yOTE1−s e l f . y2 != 0) :#Check to e l im ina t e d i v i d e by zero e r ro r s

s l ope1 = (s e l f . z1−s e l f . z2)/ (yOTE1−s e l f . y2)

s e l f . fp1 = s e l f . z1 + s lope1 ∗ d i f f

else :

31

s e l f . fp1 = s e l f . z1 #TODO: check t ha t t h i s i s c o r r e c t

i f (yOTE2−s e l f . y3 != 0) :

s l ope2 = (s e l f . z1−s e l f . z3)/ (yOTE2−s e l f . y3)

s e l f . fp2 = s e l f . z2 + s lope2 ∗ d i f f

else :

s e l f . fp2 = s e l f . z2

#Need to c a l c u l a t e area o f OTE t r i a n g l e wi th new po in t s a t (0 ,1 , fp)

#negArea = (1−(s e l f . averageX +.01))∗ (0 .5∗ (s e l f . d i s t ance (s e l f . z1 , s e l f . y1 , s e l f . fp1 , 1)∗ abs (s in (s e l f . b)))∗ s e l f . d i s t ance (s e l f . z1 , s e l f . y1 , s e l f . fp2 , 1))

negArea = (0 . 5∗ (s e l f . d i s t anc e (s e l f . z1 , s e l f . y1 , s e l f . fp1 , 1)∗abs (s i n (s e l f . b)))∗ s e l f . d i s t anc e (s e l f . z1 , s e l f . y1 , s e l f . fp2 , 1))

return area−negArea

e l i f (s e l f .OTE2) :#Point 2 OTE

yOTE1 = 2− s e l f . y1−s e l f . y2

yOTE2 = 2− s e l f . y3−s e l f . y2

d i f f = 1− s e l f . y2

i f (yOTE1−s e l f . y1 != 0) :

s l ope1 = (s e l f . z2−s e l f . z1)/ (yOTE1−s e l f . y1)

s e l f . fp1 = s e l f . z2 + s lope1 ∗ d i f f

else :

s e l f . fp1 = s e l f . z2

i f (yOTE2−s e l f . y3 != 0) :

s l ope2 = (s e l f . z2−s e l f . z3)/ (yOTE2−s e l f . y3)

s e l f . fp2 = s e l f . z3 + s lope2 ∗ d i f f

else :

s e l f . fp2 = s e l f . z3

#negArea = (1−(s e l f . averageX +.01))∗ (0 .5∗ (s e l f . d i s t ance (s e l f . z2 , s e l f . y2 , s e l f . fp1 , 1)∗ abs (s in (s e l f . b)))∗ s e l f . d i s t ance (s e l f . z2 , s e l f . y2 , s e l f . fp2 , 1))

negArea = (0 . 5∗ (s e l f . d i s t anc e (s e l f . z2 , s e l f . y2 , s e l f . fp1 , 1)∗abs (s i n (s e l f . b)))∗ s e l f . d i s t anc e (s e l f . z2 , s e l f . y2 , s e l f . fp2 , 1))

return area−negArea

else :#Point 3 OTE

yOTE1 = 2− s e l f . y1−s e l f . y3

32

yOTE2 = 2− s e l f . y2−s e l f . y3

d i f f = 1− s e l f . y3

i f (yOTE1−s e l f . y1 != 0) :

s l ope1 = (s e l f . z3−s e l f . z1)/ (yOTE1−s e l f . y1)

s e l f . fp1 = s e l f . z3 + s lope1 ∗ d i f f

else :

s e l f . fp1 = s e l f . z3

i f (yOTE2−s e l f . y2 != 0) :

s l ope2 = (s e l f . z3−s e l f . z2)/ (yOTE2−s e l f . y2)

s e l f . fp2 = s e l f . z1 + s lope2 ∗ d i f f

else :

s e l f . fp2 = s e l f . z1

#negArea = (1−(s e l f . averageX +.01))∗ (0 .5∗ (s e l f . d i s t ance (s e l f . z3 , s e l f . y3 , s e l f . fp1 , 1)∗ abs (s in (s e l f . b)))∗ s e l f . d i s t ance (s e l f . z3 , s e l f . y3 , s e l f . fp2 , 1))

negArea = (0 . 5∗ (s e l f . d i s t anc e (s e l f . z3 , s e l f . y3 , s e l f . fp1 , 1)∗abs (s i n (s e l f . b)))∗ s e l f . d i s t anc e (s e l f . z3 , s e l f . y3 , s e l f . fp2 , 1))

return area−negArea

e l i f (s e l f .OTE1 and s e l f .OTE2 and s e l f .OTE3) :#Three po in t s OTE

return 0

else :#Two po in t s OTE

i f (s e l f .OTE1 and s e l f .OTE2) :

yOTE1 = 2− s e l f . y3−s e l f . y1

yOTE2 = 2− s e l f . y3−s e l f . y2

d i f f 1 = 1− s e l f . y1

d i f f 2 = 1− s e l f . y2

i f (yOTE1−s e l f . y3 != 0) :

s l ope1 = (s e l f . z1−s e l f . z3)/ (yOTE1−s e l f . y3)

s e l f . fp1 = s e l f . z1 + s lope1 ∗ d i f f 1

else :

s e l f . fp1 = s e l f . z1

i f (yOTE2−s e l f . y3 != 0) :

33

s l ope2 = (s e l f . z2−s e l f . z3)/ (yOTE2−s e l f . y3)

s e l f . fp2 = s e l f . z2 + s lope2 ∗ d i f f 2

else :

s e l f . fp2 = s e l f . z2

#area = (1−(s e l f . averageX +.01))∗ (0 .5∗ (s e l f . d i s t ance (s e l f . z1 , s e l f . y1 , s e l f . fp1 , 1)∗ abs (s in (s e l f . b)))∗ s e l f . d i s t ance (s e l f . z1 , s e l f . y1 , s e l f . fp2 , 1))

area = (0 . 5∗ (s e l f . d i s t anc e (s e l f . z1 , s e l f . y1 , s e l f . fp1 , 1)∗abs (s i n (s e l f . b)))∗ s e l f . d i s t anc e (s e l f . z1 , s e l f . y1 , s e l f . fp2 , 1))

return area

e l i f (s e l f .OTE1 and s e l f .OTE3) :

yOTE1 = 2− s e l f . y2−s e l f . y1

yOTE2 = 2− s e l f . y2−s e l f . y3

d i f f 1 = 1− s e l f . y1

d i f f 2 = 1− s e l f . y3

i f (yOTE1−s e l f . y2 != 0) :

s l ope1 = (s e l f . z1−s e l f . z2)/ (yOTE1−s e l f . y2)

s e l f . fp1 = s e l f . z1 + s lope1 ∗ d i f f 1

else :

s e l f . fp1 = s e l f . z1

i f (yOTE2−s e l f . y2 != 0) :

s l ope2 = (s e l f . z3−s e l f . z2)/ (yOTE2−s e l f . y2)

s e l f . fp2 = s e l f . z3 + s lope2 ∗ d i f f 2

else :

s e l f . fp2 = s e l f . z3

#area = (1−(s e l f . averageX +.01))∗ (0 .5∗ (s e l f . d i s t ance (s e l f . z1 , s e l f . y1 , s e l f . fp1 , 1)∗ abs (s in (s e l f . b)))∗ s e l f . d i s t ance (s e l f . z1 , s e l f . y1 , s e l f . fp2 , 1))

area = (0 . 5∗ (s e l f . d i s t anc e (s e l f . z1 , s e l f . y1 , s e l f . fp1 , 1)∗abs (s i n (s e l f . b)))∗ s e l f . d i s t anc e (s e l f . z1 , s e l f . y1 , s e l f . fp2 , 1))

return area

else :#TODO check the areas to make sure they do the t h ing r i g h t

yOTE1 = 2− s e l f . y1−s e l f . y3

yOTE2 = 2− s e l f . y1−s e l f . y2

d i f f 1 = 1− s e l f . y3

34

d i f f 2 = 1− s e l f . y2

i f (yOTE1−s e l f . y1 != 0) :

s l ope1 = (s e l f . z3−s e l f . z1)/ (yOTE1−s e l f . y1)

s e l f . fp1 = s e l f . z3 + s lope1 ∗ d i f f 1

else :

s e l f . fp1 = s e l f . z3

i f (yOTE2−s e l f . y1 != 0) :

s l ope2 = (s e l f . z2−s e l f . z1)/ (yOTE2−s e l f . y1)

s e l f . fp2 = s e l f . z2 + s lope2 ∗ d i f f 2

else :

s e l f . fp2 = s e l f . z2

#area = (1−(s e l f . averageX +.01))∗ (0 .5∗ (s e l f . d i s t ance (s e l f . z1 , s e l f . y1 , s e l f . fp1 , 1)∗ abs (s in (s e l f . b)))∗ s e l f . d i s t ance (s e l f . z1 , s e l f . y1 , s e l f . fp2 , 1))

area = (0 . 5∗ (s e l f . d i s t anc e (s e l f . z1 , s e l f . y1 , s e l f . fp1 , 1)∗abs (s i n (s e l f . b)))∗ s e l f . d i s t anc e (s e l f . z1 , s e l f . y1 , s e l f . fp2 , 1))

return area

def d i s t ance (s e l f , x1 , y1 , x2 , y2) :

i f (x1 == x2 and y1 == y2) :

return 0

#return 10∗∗math . s q r t ((x1−x2)∗∗2 + (y1−y2)∗∗2)

return math . s q r t ((x1−x2)∗∗2 + (y1−y2)∗∗2)

#Reca l cu l a t e s Cart coords

def redo (s e l f) :

s e l f . x1 = s i n (s e l f . phi1)∗ cos (s e l f . lamda1)

s e l f . x2 = s i n (s e l f . phi2)∗ cos (s e l f . lamda2)

s e l f . x3 = s i n (s e l f . phi3)∗ cos (s e l f . lamda3)

#To account f o r limb−darkening we need to f i nd the average x o f the spo t

s e l f . averageX = (s e l f . x1+s e l f . x2+s e l f . x3)/3

i f (s e l f . x1 >= 0 and s e l f . x2 >= 0 and s e l f . x3 >= 0) : #Messy approximation , though f i n e f o r sma l l t r i a n g l e s

35

s e l f . z1 = cos (s e l f . phi1)

s e l f . y1 = s i n (s e l f . phi1)∗ s i n (s e l f . lamda1)

s e l f . z2 = cos (s e l f . phi2)

s e l f . y2 = s i n (s e l f . phi2)∗ s i n (s e l f . lamda2)

s e l f . z3 = cos (s e l f . phi3)

s e l f . y3 = s i n (s e l f . phi3)∗ s i n (s e l f . lamda3)

s e l f . onePoint = False

s e l f . twoPoint = False

s e l f .OTE1 = False

s e l f .OTE2 = False

s e l f .OTE3 = False

e l i f (s e l f . x1 >= 0 and s e l f . x2 >= 0 and s e l f . x3 < 0) :

s e l f . z1 = cos (s e l f . phi1)

s e l f . y1 = s i n (s e l f . phi1)∗ s i n (s e l f . lamda1)

s e l f . z2 = cos (s e l f . phi2)

s e l f . y2 = s i n (s e l f . phi2)∗ s i n (s e l f . lamda2)

s e l f . z3 = 0

s e l f . y3 = 0

s e l f . onePoint = True

s e l f . twoPoint = False

s e l f .OTE1 = False

s e l f .OTE2 = False

s e l f .OTE3 = True

e l i f (s e l f . x1 >= 0 and s e l f . x2 < 0 and s e l f . x3 >= 0) :

s e l f . z1 = cos (s e l f . phi1)

s e l f . y1 = s i n (s e l f . phi1)∗ s i n (s e l f . lamda1)

s e l f . z3 = cos (s e l f . phi3)

s e l f . y3 = s i n (s e l f . phi3)∗ s i n (s e l f . lamda3)

s e l f . z2 = 0

36

s e l f . y2 = 0

s e l f . onePoint = True

s e l f . twoPoint = False

s e l f .OTE1 = False

s e l f .OTE2 = True

s e l f .OTE3 = False

e l i f (s e l f . x1 < 0 and s e l f . x2 >= 0 and s e l f . x3 >= 0) :

s e l f . z3 = cos (s e l f . phi3)

s e l f . y3 = s i n (s e l f . phi3)∗ s i n (s e l f . lamda3)

s e l f . z2 = cos (s e l f . phi2)

s e l f . y2 = s i n (s e l f . phi2)∗ s i n (s e l f . lamda2)

s e l f . z1 = 0

s e l f . y1 = 0

s e l f . onePoint = True

s e l f . twoPoint = False

s e l f .OTE1 = True

s e l f .OTE2 = False

s e l f .OTE3 = False

e l i f (s e l f . x1 >= 0 and s e l f . x2 < 0 and s e l f . x3 < 0) :

s e l f . z1 = cos (s e l f . phi1)

s e l f . y1 = s i n (s e l f . phi1)∗ s i n (s e l f . lamda1)

s e l f . z2 = 0

s e l f . y2 = 0

s e l f . z3 = 0

s e l f . y3 = 0

s e l f . onePoint = True

s e l f . twoPoint = True

s e l f .OTE1 = False

s e l f .OTE2 = True

37

s e l f .OTE3 = True

e l i f (s e l f . x1 < 0 and s e l f . x2 >= 0 and s e l f . x3 < 0) :

s e l f . z2 = cos (s e l f . phi2)

s e l f . y2 = s i n (s e l f . phi2)∗ s i n (s e l f . lamda2)

s e l f . z1 = 0

s e l f . y1 = 0

s e l f . z3 = 0

s e l f . y3 = 0

s e l f . onePoint = True

s e l f . twoPoint = True

s e l f .OTE1 = True

s e l f .OTE2 = False

s e l f .OTE3 = True

e l i f (s e l f . x1 < 0 and s e l f . x2 < 0 and s e l f . x3 >= 0) :

s e l f . z3 = cos (s e l f . phi3)

s e l f . y3 = s i n (s e l f . phi3)∗ s i n (s e l f . lamda3)

s e l f . z1 = 0

s e l f . y1 = 0

s e l f . z2 = 0

s e l f . y2 = 0

s e l f . onePoint = True

s e l f . twoPoint = True

s e l f .OTE1 = True

s e l f .OTE2 = True

s e l f .OTE3 = False

else :

s e l f . z1 = 0

s e l f . y1 = 0

s e l f . z2 = 0

38

s e l f . y2 = 0

s e l f . z3 = 0

s e l f . y3 = 0

s e l f . onePoint = True

s e l f . twoPoint = True

s e l f .OTE1 = True

s e l f .OTE2 = True

s e l f .OTE3 = True

@staticmethod

def run () :

areaSpot = 0

radia lSweep = 0

a r e a L i s t = []

x = []

count = 0

while (radia lSweep < 2∗2∗ pi) :

x . append (count)

for s in Spot . s p o t L i s t :

#ca l c u l a t e t o t a l area o f spo t

a = s . ca lcAreaCart ()

areaSpot+= a

areaSpotCor = (areaSpot) #adding a co r r e c t i on because the area ’ s seem to come out nega t i v e

a r e a L i s t . append (areaSpotCor)

print (areaSpot)

for s in Spot . s p o t L i s t :

#increa se a l l r a d i a l ang l e s by 0.1 rad ians

s . lamda1 += 0.1

s . lamda2 += 0.1

39

s . lamda3 += 0.1

s . redo ()

#areaSpot += s . calcArea

areaSpot = 0

radia lSweep += 0.1

count+=1

p l t . p l o t (x , a reaL i s t , ’ b . ’)

p l t . yl im (−0 .01 ,0 .01)

p l t . show () #supre s s ing p l o t show so model can run

return a r e a L i s t

def p lo tC i r (s e l f) :

po in t s = numpy . l i n s p a c e (−1 ,1)

y = []

yy = []

for x in po in t s :

y . append (math . s q r t (1−x∗∗2))

for x in po in t s :

yy . append(−math . s q r t (1−x∗∗2))

p l t . p l o t (po ints , y , ”b . ” , po ints , yy , ”b . ”)

p l t . show ()

@staticmethod

def makeCir (radius , phiCen , lamdaCen) :

x = 0

delPhi = 0 .01

while (de lPhi < 2∗ rad iu s) :

delLamda = (cos (rad iu s)/ (cos (phiCen)∗ cos (phiCen−rad iu s+delPhi))) − tan (phiCen)∗ tan (phiCen−rad iu s+delPhi)

s = Spot (phiCen , lamdaCen , phiCen−radius , lamdaCen , phiCen−rad iu s+delPhi , lamdaCen+delLamda)

40

p = Spot (phiCen , lamdaCen , phiCen−radius , lamdaCen , phiCen−rad iu s+delPhi , lamdaCen−delLamda)

de lPhi +=0.01

@staticmethod

def makeStr (length , width , phiStart , lamStart) : #crea t e s a s t r i p e whose upper l e f t corner i s a t ph iS tar t , lamStart

lenCount = 0

delLamda = 0.001 #t h i s d e f i n e s the r e s o l u t i o n o f the s t r i p e

while (lenCount < l ength) :

delLamda += lenCount

s = Spot (phiStart , lamStart+delLamda , ph iS ta r t+width , lamStart+delLamda , ph iS ta r t+width , lamStart +(2∗delLamda))

p = Spot (phiStart , lamStart+delLamda , phiStart , lamStart +(2∗delLamda) , ph iS ta r t+width , lamStart +(2∗delLamda))

delLamda += 0.01

lenCount += delLamda∗math . p i /180

@staticmethod

def c l e a r () :

Spot . s p o t L i s t = []

41

Appendix B

ANALYSIS.PY

#Analys i s Program fo r use wi th Spot Model Program

#Kyle Dettman 2015

import numpy

import SpotModel as sm

from math import pi

from math import s i n

def p a r t i t i o n (f i l e I n , outPre) :

f r = open(f i l e I n , ’ r ’)

l i s tT ime = []

l i s tCount = []

#Separate f i l e i n t o r eadab l e l i s t s

for l i n e in f r :

hold = l i n e . s p l i t ()

x=0

for x in range (2) :

i f (x == 0) :

l i s tT ime . append (hold [x])

e l i f (x == 1) :

l i s tCount . append (hold [x])

42

#f ind average time separa t i on

count = 0

t o t a l = 0

x=0

for x in range (len (l i s tT ime)) :

d i f f = f loat (l i s tT ime [x])− f loat (l i s tT ime [x−1])

i f (d i f f < 0) :

d i f f = d i f f ∗(−1)

count += 1

t o t a l += d i f f

ave = t o t a l / count

print (str (t o t a l) + ’ ’ + str (count) + ’\n ’)

print (str (ave) + ’\n ’)

#pa r t i t i o n data in t o f i l e s based on average time separa t i on

x=1

l istTimePrime = [l i s tT ime [0]]

l i s tCountPr ime = [l i s tCount [0]]

ver = 0

for x in range (len (l i s tT ime)) :

d i f f = f loat (l i s tT ime [x])− f loat (l i s tT ime [x−1])

i f (d i f f < 0) :

d i f f = d i f f ∗(−1)

i f (d i f f <= ave) :

l i s tTimePrime . append (l i s tT ime [x])

l i s tCountPr ime . append (l i s tCount [x])

else : #I f the time d i f f e r e n c e i s g r ea t e r than the average c r ea t e a new f i l e con ta in ing a l l p r ev ious data

name = outPre + ’ ’ + str (ver) + ’ . txt ’

43

ver += 1

fw = open(name , ’w ’)

for y in range (len (l i s tTimePrime)) :

fw . wr i t e (l i s tTimePrime [y] + ’ ’ + l i s tCountPr ime [y] + ’\n ’)

fw . c l o s e ()

l i s tTimePrime = []

l i s tCountPr ime = []

print (’ Created f i l e ’ + name + ’\n ’)

def modelRun (amp, per iod , phase , i n c l=None , numSpot=None , spotVst r ipe=None) :

i f (i n c l i s None) :

i n c l = 0

i f (numSpot i s None) :

numspot = 1

i f (spotVst r ipe i s None) :

spotVst r ipe = True

#need to genera te l i s t o f v a l u e s f o r the f i t parameters

l i s t F i t = []

x = 0

while (x <= (2∗2∗ pi)) :

po int = f loat (amp)∗ s i n (2∗ pi ∗ f loat (per iod)∗ f loat (x) + f loat (phase))

l i s t F i t . append (po int)

x += 0.1 #same increment as in SpotModel . py

x = 0

s = sm . Spot (0 , 1 , 2 , 3 , 4 , 5)#making s a v a l i d Spot o b j e c t

rad = amp

phi = 0

lam = 0

44

minum = −1

notComplete = True

while (x <= pi) : #f i r s t sweep o f model

while (notComplete) :

s . c l e a r ()#c l e a r i n g i n i t i a l i z a t i o n data

s . makeCir (rad , phi , lam)

a r e a L i s t = s . run ()

#i n i t i a l i z e v a r i a b l e s to t rack d i f f e r e n c e from input data

count = 0

t o t a l = 0

for y in range (len (a r e a L i s t)) :

i f (l i s t F i t [y] i s not None) : #ensur ing no l en g t h e r ro r s

d i f f = f loat (a r e a L i s t [y] − l i s t F i t [y])

i f (d i f f < 0) :

d i f f = −1∗ d i f f

t o t a l += d i f f

count += 1

ave = t o t a l / count

i f (minum == −1):

minum = ave

radMin = rad

phiMin = phi

lamMin = lam

e l i f (ave < minum) :

minum = ave

radMin = rad

phiMin = phi

lamMin = lam

lam += 0.01

45

i f (lam > 2∗ pi) :

notComplete = False

x+=0.01

phi += x

lam = 0

notComplete = True

s . makeCir (0 . 0 1 , 0 , 0)#making a c i r c l e on the o b j e c t s

46

	Table of Contents
	List of Figures
	Abstract
	1 Introduction
	1.1 The Kepler Mission
	1.2 An Overview of Brown Dwarfs
	1.2.1 Distinction between Planets
	1.2.2 Evolution
	1.2.3 Magnetic Properties

	1.3 History of Spots and Spot Modeling

	2 Methods
	2.1 Modeling the Spot
	2.1.1 Intent
	2.1.2 The Model
	2.1.3 Edge Conditions
	2.1.4 Limb-Darkening

	2.2 Analysis
	2.3 Data

	3 Starspots and Sunspots
	3.1 Sunspots
	3.2 Weather-Related Features

	4 Conclusion
	4.1 Results

	Bibliography
	A SpotModel.py
	B analysis.py

