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ABSTRACT

Traditional analog and digital coding systems present their own advantages and

constraints. Digital systems show excellent BER performance, but optimizing them

over a wide range of signal to noise ratios (SNR) requires switching between different

systems (e.g., adaptive coding). Analog systems allow high throughput communica-

tions over a wide dynamic range, but their bit error rate (BER) performance is not as

good as in digital schemes. The aim of this work is to explore how to overcome these

drawbacks by properly integrating both analog and digital systems into a hybrid one.

The proposed hybrid coding scheme is realized by parallel concatenation of

Rate Compatible Modulation (RCM) and a Low Density Generator Matrix (LDGM)

code. RCM generates its output symbols by standard linear combinations of input

bits. In addition, an LDGM code produces a few output bits. Because of dense

constellation and fine-grain energy accumulation, RCM is able to achieve smooth rate

adaptation, but it experiences performance degradation due to the presence of error

floors. The introduction of the LDGM code allows to reduce most of the residual errors,

substantially improving the system performance.

This work considers the application of the hybrid scheme to point-to-point

AWGN channels and to multiple access channels (MAC). For AWGN channels, our

study focuses on optimizing the design for uniform and non-uniform memoryless sources.

Decoding is implemented by building an appropriate graph and performing belief prop-

agation. The influence of several design parameters on the system performance and the

existing trade-offs are discussed. The proposed hybrid coding scheme achieves better

performance than traditional joint source channel coding techniques in terms of gaps

to the theoretical limit. We also introduce a simplified decoding technique for the pro-

posed hybrid scheme. The idea is to treat the coded symbols as real values, and to use

xvi



a Gaussian approximation, so that very simple analog message passing can be applied.

This substantially reduces the decoding complexity, while the system performance does

not experience significant degradation.

For the MAC, a synthetic decoder structure and decoding algorithm has been

developed and studied to tackle the ambiguity problem resulting from the existence

of multi-level symbols proceeding from the RCM sub-block. The synthetic decoder

also reduces the computational complexity by jointly considering messages propagated

in the graph. As we will see, the hybrid scheme can achieve high transmission rates

with good BER performance in MAC environments, even when the simplified decoding

technique is applied.
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Chapter 1

INTRODUCTION

This dissertation focuses on developing a hybrid analog-digital coding scheme

for digital sources in different scenarios. The first problem we are trying to address

is how to properly combining the analog and digital coding systems so that they do

not degrade the performance of each other. The first part of the dissertation focuses

on this problem, where we choose the analog and the digital components, and propose

encoding and decoding structures. The second problem is to design good hybrid coding

schemes over point-to-point AWGN channels for memoryless uniform and non-uniform

sources. The decoding complexity of the proposed scheme is relatively high. Although

the implementation is feasible by introducing proper decoding techniques, it is desirable

to have a more efficient decoding algorithm. We address this problem in the third part.

In the last part, we focus on the problem of transmission of correlated sources over

MAC with the proposed hybrid coding scheme. This problem plays a critical part in

many important applications, such as video compression and sensor networks. For this

problem, there are two important questions. The first question is how to apply the

proposed hybrid coding scheme in the MAC scenario. This results in two sub-problems.

The first is how to design the joint decoder structure so that the decoding complexity

is practical and the performance good. The second sub-problem is how to exploit the

correlation between sources at the decoder site. The second important question is what

factors contribute to the good design of a hybrid coding scheme over MAC. We try

to address these problems by proposing a novel decoding structure for the MAC, and

analyzing the effects of various design factors on the system performance.

1



1.1 Motivation

Digital coding and analog coding schemes have their respective advantages.

Digital codes such as turbo codes and low-density parity check (LDPC) codes can

achieve near capacity performance. They generally perform better than analog coding

schemes in terms of rate distortion and capacity performance, which makes them good

candidates in practical communication systems. However, digital codes lack robustness

to changes in channel quality, i.e., they have a narrow dynamic range. Therefore, a

group of coding systems has to be designed to adapt to different channel conditions.

Even with the mechanism of switching between different systems, rate adaptation is

staircase-like instead of a smooth one, resulting in the waste of spectrum resources. On

the other hand, analog coding is robust to changing channel conditions. It has wide

dynamic range, smooth rate adaptation, and high throughput capability. Moreover,

for many analog coding schemes, there is low encoding and decoding complexity, and

zero delay due to short block lengths. However, performance of linear analog coding

systems is not as good as that of digital ones.

A new coding scheme that can overcome the disadvantages of analog and digital

coding can be a promising design for future communication systems. As we will see in

this dissertation, by properly combining analog and digital coding schemes, it is possible

to maintain their respective advantages, while overcoming the drawbacks. This results

in a hybrid coding scheme, where both analog and digital coding schemes work jointly.

In this dissertation, we focus on binary sources.

The realization of this hybrid coding scheme requires a number of concepts and

techniques. As the scheme is considered in various scenarios, such as in the presence

of source redundancy or correlated sources, the idea of joint source channel coding

is applied to jointly consider the compression and error protection for the source.

Moreover, in the context of binary source inputs, it is challenging to find a proper

“analog” coding scheme, as the input of most analog coding schemes are real-valued

symbols. Compressive sensing, which has been studied in the literature in recent years,

can be considered as an analog coding technique in broad sense, and a subset of the
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studies on compressive sensing has considered binary data as the input to the system.

Moreover, compressive sensing can be used for source compression and noise protection,

making it good as a joint source channel coding scheme. These properties make it a

good candidate for the analog component of the hybrid coding scheme, while a digital

code with low encoding and decoding complexity will be chosen for the digital part.

1.2 Joint Source-Channel Coding

1.2.1 Separation Principle

In his fundamental work ”A Mathematical Theory of Communication” [1], Shan-

non proved that reliable communications can be achieved as long as the transmission

rate is below the channel capacity. This can be achieved by a separation approach,

which divides the encoding process into two steps: first, compress the source up to its

theoretical limit, which is given by the entropy H, by applying a source encoder. Then,

protect the sequence by applying a capacity achieving channel code. This procedure

maintains optimality, and also simplifies the construction of the system, as the source

encoder can be optimized without any knowledge of the channel statistics, while the

channel encoder can be optimized irrespectively of the source. Changes in either the

source or the channel only lead to the modification of one part in the system, leaving

the other unchanged.

However, the separation approach has several limitations in practical applica-

tions, and the optimality fails in general time-varying channels [2, 3], and multi-user

channels. The separation approach requires long sequences, leading to high complexity

and large delays, which is a problem for real-time communications. For multi-user

channels, we no longer have an optimal system with this approach. In addition, the

separation method may lead to catastrophic error propagation, as the channel code is

not able to correct the errors when the channel quality falls below a certain threshold,

which leads to the breaking down of the whole system. This lack of the robustness to

changes in the channel quality may make it impractical to implement a system based

on separation in scenarios where the channel quality changes.
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1.2.2 Joint Source-Channel Coding Techniques

To address the aforementioned problems, source coding and channel coding can

be considered and optimized jointly under certain constraints, which is referred to as

joint source-channel coding (JSCC). The objective of JSCC is to integrate the source

and channel coding modules into one processing module in order to reduce the com-

plexity and achieve better results. Moreover, this may make transmission more robust

to the effects of channel fading, noise and interference. JSCC can greatly improve the

performance of the system in terms of distortion when there are complexity concerns,

as shown in [4]. [5, 6, 7, 8, 9] study joint source-channel coding with complexity con-

straints for AWGN channels. In [5], an algorithm is developed to obtain the necessary

conditions to achieve a local optimum solution by jointly considering the encoder and

the modulation. [8] observes that with the same length constraint, the jointly optimized

codes are better than separately designed and optimized codes.

As mentioned before, the separation theorem does not hold for fluctuating chan-

nels. Jointly considering many modules in the design would be more feasible and prac-

tical. [3] and [10] consider the case of time-varying channels. In [3], a joint optimization

of a variable channel coder with a source coder is studied to minimize the distortion,

while [10] extends the study by substituting the capacity achieving channel codes by

channel codes with non-zero distortion to adapt to practical applications. [12] pro-

poses an optimal rate allocation policy with a modified Gilbert noise channel, which

models the combination of channel encoder, channel, and channel decoder, to mini-

mize end-to-end distortion. [13, 14] use automatic repeat request (ARQ) for adaptive

JSCC over independent and nonindependent channels. Implementation of JSCC over

fading channels is studied in [15, 16, 17]. Using minimum mean-squared error as the

optimality criterion, [15] presents a non-linear receiver to jointly optimize the vector

quantizer and the modulation signal set using an iterative algorithm, while [16] uses

linear coding and shows the power allocation strategy with and without channel state

information (CSI) available at the transmitter. To simplify these algorithms, a header

field with variable length coded data is inserted with minimum distance decoding [17].
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There are many other works dealing with JSCC [19, 18, 20, 21, 22, 23, 24].

Unequal error protection (UEP) [25] has been designed to better protect more sensitive

information bits which are prone to errors or to protect more important contents with

stronger channel codes. This technique has been studied widely for the transmission

of multimedia material [26, 27, 28]. Index assignment is the labeling of source symbols

by binary integer numbers [29]. It is important in determining the overall distortion of

a communication system in the presence of channel noise [30, 31, 32].

1.2.3 Distributed Joint Source Channel Coding for Correlated Sources

JSCC has also been used in the compression and error protection of correlated

sources. In the case of multiple access channels (MAC), it is necessary to design the

codewords for the different sources to take advantage of the correlation existing be-

tween sources [33]. [34] considers joint source-channel coding for two correlated binary

information sequences with turbo codes. [35], [36], [37], and [38] propose practical

coding schemes to deal with the problem with Turbo codes and concatenated LDGM

codes, where the correlation is exploited by exchanging extrinsic information between

two decoders constituting the joint decoder. If the correlation model is not known at

the decoder, it can be estimated iteratively at the decoder site. [39, 40] extend the

work by taking full advantage of the correlation in the decoding process. [41] designs

turbo codes and serially concatenated LDGM codes for correlated sources. The cases

where the correlation is known and unknown at the decoder site are both studied, and

the resulting performance is very close to the theoretical limit. [42] and [43] introduce

the use of a more straightforward design, parallel concatenated LDGM codes, which

allows the correlation between sources to be preserved in the codewords by using the

same encoder structure for both senders. For the MAC, there is ambiguity at the code-

word level, i.e., the decoder needs to assign recovered codewords to the right senders.

To solve this problem, the outer coded bits are interleaved and a fraction of the inner

coded bits are also interleaved with serial LDGM codes in [41]. With parallel LDGM

codes, it is not necessary to interleave high rate coded bits when the degree is high, as
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the ambiguity only exists at the codeword level. With the help of an identification bit

at each sender, the ambiguity can be resolved. As shown in [42] and [43], the result-

ing performance is better than the theoretical limit assuming the separation approach.

Other codes have also been studied in this scenario. LDPC codes are used for data

collection in wireless sensor networks (WSNs) [44], and a single Raptor code is used

for both video compression and packet loss protection for scalable video transmission

over wireless networks [45]. However, few existing joint source-channel coding schemes

are capable of high transmission rate with good performance.

1.3 Compressive Sensing

Compressive sensing (CS) was introduced in 2004 by Donoho, Candes, Romberg

and Tao [46, 47, 48]. The idea is that a sparse signal can be recovered from a limited

set of linear measurements, even when the dimension of the measurement is smaller

than the dimension of the signal [47, 49]. The reason is that the whole information of

the sparse signal can be represented with only a few significant components. Natural

images, speech signals and medical images are all good examples of signals having

sparse representation. The system model can be represented as

Y = GX, (1.1)

where G ∈ Rm×n is sampling matrix or measurement matrix, Y ∈ Rm is the compressed

measurements, and X is the original signal we want to recover. There are generally

three cases in terms of signal recovery: m = n, where a unique solution exists; m > n,

i.e., the dimension of the compressed measurements is greater than that of the original

signal, where a single best approximate solution can also be found; and m < n, which

is the usual case. In this last case there are infinite solutions, and the sparsity of

the source is exploited to recover X. There are many recovery algorithms including

convex relaxation [50, 51], matching pursuit [52, 53, 54], iterative threshold methods

[55], subspace pursuit [56], and Bayesian frameworks [57, 58].

CS can be used as a joint source-channel coding scheme [59, 60, 61, 62, 63, 64,

65, 66, 67]. [68] develops a framework based on distributed compressed sensing (DCS),
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which utilizes the joint sparsity to exploit intra-signal and inter-signal correlations. In

[69], a distributed joint-source channel communication system, in which processing and

communication are combined into one operation, is proposed to save scarce resources

in wireless sensor networks such as power and bandwidth. [70] reveals many aspects

of CS in joint source-channel coding. Sparse Distributed Compression is proposed for

a family of correlated sources, which provides a trade-off between compression rate

and decoding complexity. Similarly, sparse Channel Coding is proposed by combining

CS with random channel coding, which provides a trade-off between the capacity loss

and the decoding complexity. [71] considers the usage of CS for joint source-channel

coding for sources exhibiting temporal and spatial dependencies. Similar to [69], [72]

also considers the energy aspect of CS based wireless sensor applications. It evaluates

the trade-off between the transmission energy and the recovery quality. Notice that

these studies only consider highly-sparse real-valued signals and the complexity of

the decoding algorithm is high. However, some of this research shows an important

characteristic in CS: robustness, which is somehow the drawback of traditional digital

coding techniques. In addition, CS provides a promising approach for high throughput

systems, which are widely used in wireless communication networks [73, 74, 75].

Although these algorithms can be extended to digital signals, their high com-

putational complexity and failure to effectively exploit the digital nature of binary

sources require research of new methods. Several techniques have been studied includ-

ing [76], where the principle of turbo encoding decoding is applied by the adoption of a

permutation based sensing matrix and an iterative recovery algorithm with maximum

likelihood (ML) local detector, [77], where the CS process is modeled with a bi-partite

graph and a novel sampling matrix with unique sum property has been designed, and

[78], where analog fountain codes (AFCs) [79] are used for the compression and recon-

struction of sparse binary signals. In order to reduce the decoding complexity of CS,

[80, 81, 82] proposes different ways of applying constraints. In [81] and [82], a closed

form formulation has been derived for the decoding of binary input sources. Belief

propagation is used for the decoding process of CS over noisy channels. Therefore,
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the advantages of CS make it an excellent candidate for the analog component of the

proposed hybrid scheme, but its drawbacks, shown in previous studies, have to be dealt

with in the new scheme.

1.4 Dissertation Organization

This dissertation starts by providing an overview of the proposed hybrid cod-

ing scheme. The hybrid coding scheme is realized by parallel concatenation of Rate

Compatible Modulation (RCM) and a Low Density Generator Matrix (LDGM) code.

RCM is essentially a CS scheme that generates most of the output symbols by standard

linear combinations of input bits, and an LDGM code that generates a few digital bits.

RCM is able to achieve high throughput and smooth rate adaptation, but it experi-

ences performance degradation due to the presence of error floors. Because of this, its

performance is far from the Shannon theoretical limits, especially at high SNR values.

The introduction of the LDGM code is able to reduce most of the residual errors in

the RCM scheme, substantially improving the system performance.

In Chapter 2, we discuss the structure of the hybrid coding scheme and its

components: the RCM scheme as the analog component and the LDGM code as the

digital component. The advantages and drawbacks of the RCM scheme will be studied,

as well as those of LDGM codes. Then, we introduce the encoder structure of the hybrid

coding scheme to explain how to combine the two components so that they encode the

source jointly without interfering with each other.

After defining the type of hybrid schemes that will be studied in this work, we

present the decoding architecture and algorithms for the proposed scheme in Chapter

3. Due to the operations involved in the encoding process, the generated symbols

are related to the original information block through generator matrices. Therefore, a

bipartite graph can be formed from this relationship. Belief propagation is a powerful

technique to perform decoding in graphs, and we apply it to the decoding of the hybrid

system. We will discuss how to integrate the message passing for the analog and the

digital components within the hybrid scheme.
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In Chapter 4, we will investigate the application of the hybrid scheme to point-

to-point AWGN channels. For AWGN channels, our study focuses on optimizing the

design for uniform and non-uniform memoryless sources. For uniform sources, we

approach the design by tackling the problems existing in RCM systems. RCM is

able to achieve smooth rate adaptation in a broad dynamic range, but it suffers from

performance degradation, especially at high SNRs, resulting from high error floors.

By properly introducing LDGM codes, the error floor can be significantly reduced.

For non-uniform sources, we will design hybrid schemes for different degrees of source

sparsity. The redundancy existing in the source can be exploited to further improve

the throughput in communication systems. The influence of several design parameters

on the system performance and their trade-offs will be discussed. We will see that the

proposed hybrid coding scheme has better performance than traditional joint source

channel coding schemes in terms of gaps to the theoretical limit.

In Chapter 5, we will discuss a simplified decoding algorithm for the proposed

hybrid schemes in the context of AWGN channels. Because of the usage of random

projections in the encoding process, obtaining the probability mass function (pmf) of

the weighted combination of the inputs at the constraint node (RP symbol node) in

the iterative decoding process is expensive. In order to reduce the computational com-

plexity, we propose a simplified method to approximate the distribution of the linear

combination as Gaussian, so that only the mean and the variance of the approximated

distribution are to be computed. We can also approximate the distribution of each

input bit as Gaussian in the iterative decoder, so that analog message passing can be

applied [115]. We provide the complexity analysis for the original decoding method and

the proposed simplified method. The complexity is measured in number of additions

and multiplications. As will be shown, the simplified decoding algorithm substantially

reduces the decoding complexity by one order of magnitude. Simulation results show

that the BER performance of the system using the simplified method is similar to the

original one, experiencing small degradation in some cases. This makes it possible to

implement faster systems when necessary.
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In Chapter 6, we will study the application of the hybrid scheme for the trans-

mission of correlated sources over multiple access channels. In this case, it is well known

that separation between source and channel coding is not optimal, although the theo-

retical limit is not known. The basic idea for the transmission of correlated sources over

a multiple access channel is to keep the existing correlation in the codewords produced

at the encoders, which allows the exploitation of the correlation at the decoder. The

superposition of the multi-level RP symbols proceeding from the senders introduces

ambiguity in the standard decoding process. To solve the problem, we propose a novel

synthetic decoder structure and a decoding algorithm for the new structure to con-

sider messages jointly for the RCM sub-block, so that the ambiguity introduced by the

multi-level RP symbols can be effectively eliminated. In order to evaluate the proposed

approach, we compare the system performance with the theoretical limit assuming that

the separation approach is used. Simulation results will show that the performance of

the system is close to that bound when high transmission rate is considered, and that

the hybrid scheme is robust to the sparsity of the source, as in the case of point to

point AWGN channels. The results also show that the proposed scheme is capable of

implementing a communication system that transmits at a much higher information

rate than standard digital coding techniques. The simplified method is also extended

for the MAC. Finally, Chapter 7 summarizes the contributions of this dissertation and

provides suggestions for future work.
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Chapter 2

HYBRID ANALOG-DIGITAL ENCODER

2.1 Introduction

In this chapter, we study the encoder structure of the hybrid analog-digital

coding scheme. It consists of an RCM system, the analog component and essentially

CS with binary inputs, and an LDGM code, the digital component. The structure and

work flow of an RCM system is explained, as well as the structure of an LDGM code.

After that, we study the parallel concatenation of an RCM system and an LDGM code

to build the proposed hybrid coding scheme.

The remainder of the chapter is organized as follows. In Section 2.2 we review the

structure of the RCM scheme, mainly of the matrix design, encoding and modulation

process. Section 2.3 discusses the encoding structure of the LDGM code. In Section 2.4,

we provide the encoder structure of the hybrid coding scheme. Finally, the conclusion

is given in Section 2.5.

2.2 Rate Compatible Modulation

Adaptive modulation and coding (AMC) [84], [85], is a popular rate adaptation

technique that has been deployed widely in practice. It requires accurate and instant

channel estimation, but, even if the sender knows the channel conditions perfectly, only

stair-case rate adjustments can be achieved. Hybrid automatic repeat request (HARQ)

[86] can obtain a smoother rate adjustment through an acknowledgment mechanism

that controls the retransmission activity of the sender. However, the dynamical rate

range of HARQ is limited. RCM [87] tackles the adaptation problem by generating ran-

dom projections (RP) from weighted sums of information bits, similar to compressed
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sensing with binary input symbols. The generated symbols are used to form a con-

stellation directly, without the need of any labeling. RCM is robust to changes in the

channel quality, provides a smooth rate adaptation, and is robust to variations in the

sparsity of the source.

The basic idea of RCM is to generate multi-level real-valued symbols by weighted

linear combinations of input bits. This process is realized by using a random map-

ping matrix with real-valued entries. This bit-to-symbol mapping is essentially a CS

scheme with binary input. On the other hand, since the generated RP symbols are di-

rectly mapped into constellation points, RCM can be considered as a coded modulation

scheme. Moreover, in addition to the function of error protection, RCM also performs

compression of the data. Therefore, it is an enhanced version of coded modulation.

In conventional modulation, the free distance, i.e. the minimum Euclidean distance

between adjacent constellation points, is controlled by the rate of the modulation. The

rate of modulation is determined by the number of bits a constellation symbol contains

(for instance, 16-QAM or 64-QAM). However, there is a second way to adjust the free

distance instead of switching between different modulations for channel adaptation.

As mentioned in [89], the free distance is proportional to Eb, the average energy per

information bit. Therefore, different free distances can be obtained by varying the

number of transmitted symbols to accumulate the average energy per information bit.

More specifically, larger distances can be obtained by accumulating symbols at the

receiver. However, with conventional modulation, the accumulation of the energy is

not even, which leads to uneven BER. With RCM, even energy allocation is achieved

[87]. The reason is that each constellation point is formed by a random mapping from

bits instead of a fixed mapping, allowing each bit to be sampled by multiple symbols.

Figure 2.1 represents the encoding graph. Each one of the RP symbols is formed

by a weighted linear combination of input bits. Each link has an associated weight and

the source bits connected to each RP symbol are randomly chosen. Specifically, if the

input block is denoted as b = [b1, b2, ..., bK ]T , the vector of RP symbols a is generated

as a = Gr · b, where Gr is a generator matrix with entries belonging to the weight set

12



1 11 0 0 1 0 1 0 0

5 -1 4 -9

RP symbols

Source bits

Figure 2.1: Bipartite graph representation of an RCM system.

{±g1,±g2, · · · ± gF}. The choice of weight set determines the characteristics of the

constellation, and the number of sampled bits per RP symbol. Therefore, this choice

is crucial to the performance of an RCM scheme.

There are certain constraints in constructing the generator matrix (see [87, 88]

for details). Basically, the generator matrix, Gr, is constructed from a unit matrix G0.

Without loss of generality, let us assume the weight set is {±g1,±g2,±g3,±g4}. We

construct matrix G0, with dimension K/2×K, where K is the number of input bits,
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as

G0 =


π(Ag3) π(Ag4) π(Ag1) π(Ag2)

π(Ag1) π(Ag2) π(Ag3) π(Ag4)

π(Ag4) π(Ag3) π(Ag2) π(Ag1)

π(Ag2) π(Ag1) π(Ag4) π(Ag3)

 ,
where π(·) is the operation of random column permutations of a matrix, which is

different for each sub-matrix, and Agi is the elementary matrix with specific structure

Agi =


+gi −gi

+gi −gi
. . .

+gi −gi

 .

By using different permutation choices and arrangements of Agi positions in G0,

different matrices G0 can be constructed, each leading to different system performance.

Notice that, in general, the proposed scheme is used at high rates, so the number of

RP symbols will be much less than the number of input bits. In this case, we construct

matrix Gr by using the desired number of rows in matrix G0. To generate one RP

symbol, one row from Gr is used. If more rows are needed, we would stack two or more

matrices G0, and then choose the appropriate number of rows. Since every weight from

the weight set appears exactly once in each row, every RP symbol node has a degree

of 2F , i.e., 2F links connected to every RP node in Figure 2.1, and every weight has

exactly one associated link.

Finally, RP symbols are grouped two by two and transmitted directly through

the channel. Notice that the resulting constellation is QAM, but the number of symbols

in the constellation will depend on the cardinality of the RP symbols. For instance, if

the RP symbols range from integer −x to integer x and the values are consecutive, the

number of constellation points would be (2x+1)×(2x+1). Based on the distribution of

the constellation points, the expected energy of a constellation point can be obtained

and the normalization factor can be computed. For instance, Figure 2.2 shows the

constellation for the modulation of a RCM scheme with weight set {±1,±2,±4,±4}.
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Figure 2.2: Illustration of constellation for an RCM scheme with weight set
{±1,±2,±4,±4}.

The value range of an RP symbol can be computed: am ∈ [−11, 11]. Notice that

not every weight set can generate an interval with consecutive values. Thus, two

consecutive RP symbols with value x1 and x2 are mapped into (x1, x2) directly in

the constellation. Since each dimension has 23 candidate values, a 23 × 23 QAM

constellation can be formed. Notice that due to the transmission power constraint, the

constellation is normalized based on its distribution.

2.3 Low Density Generator Matrix (LDGM) Codes

Random-like codes with iterative decoding are able to approach capacity. Turbo

codes [90] and low-density parity check (LDPC) codes [91, 92, 93, 94] have been widely

studied and applied in a variety of systems. Turbo codes have been the primary coding
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scheme in the third and fourth generation (3G and 4G), while LDPC will replace

them in 5G. However, complexity constraints in some practical applications present

challenges. Turbo codes have low encoding complexity, but the decoding complexity

is high. On the other hand, LDPC codes have low decoding complexity and high

encoding complexity. Therefore, a random-like code with low encoding and decoding

complexity would be a good candidate in many applications.

Low density generator matrix (LDGM) codes, first recognized by MacKay [94],

are a special family of LDPC codes which, due to the sparse nature of their generator

matrix, have low encoding complexity. On the other hand, LDGM codes also utilize

the sparse matrix for decoding as in LDPC, so they also have low decoding complexity.

Different from the standard LDPC codes, regular LDGM codes have excellent perfor-

mance, and the improvement that can be obtained using irregular LDGM codes rather

than regular ones is very small1. However, LDGM codes suffer from error floors that

are independent of the block length. LDGM codes with small degrees have high error

floors but good convergence thresholds, which the contrary happens when the degrees

are high [98]. Because of the existence of error floors, LDGM codes were first con-

sidered bad codes [94] or error-reduction codes [96]. However, with some adaptation,

LDGM codes can be very good for standard communication channels: serial [98], [97],

[99] or parallel [100] concatenation of two regular LDGM codes can reduce the error

floors significantly to achieve performance comparable to state-of-the-art codes. The

idea of the parallel scheme is to use a powerful low rate code together with a high rate

code. The low rate code is capable of correcting most of the errors, while the high rate

code is designed to eliminate as many of the residual errors as possible.

For a systematic LDGM code of rate Rc = K/N , the generator matrix with

binary entries can be expressed as Gl = [I;P ], where I is a K×K identity matrix and P

is a K×(N−K) sparse matrix. If the systematic bits are denoted as b = [b1, b2, ..., bK ],

the coded bits are generated as c = bP , with c = [c1, ..., cM ]. These bits, together

1 Irregular codes are those in which the number of ones changes for different
rows/columns in the generator matrix.

16



Systematic bits

Coded bits

uji vij

Figure 2.3: Bipartite graph representation of an LDGM code

with the information bits are transmitted through the channel. Figure 2.3 shows the

structure of an LDGM code. Circle nodes represent systematic bits, b, while rectangular

nodes represent coded bits, c. Links between the nodes are constructed from the

generator matrix Gl. Therefore, the degree of a coded bit node, i.e., the number of

links a coded bit node has, is the number of 1’s in each column of Gl, while the degree

of a systematic node is the number of 1’s in each row. At the decoder, instead of using

the parity check matrix to decode as in the case of LDPC codes, LDGM codes use

the generator matrix for the decoding process. A regular LDGM code can be defined

by the parameter set (N,K, du, dc), which denote the codeword length, the systematic

bits block length, and the row weight and column weight of matrix Gl.
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2.4 The Structure of the Hybrid Scheme

Performance degradation in RCM is expected, as random projections using XOR

combinations of input bits (as in Low Density Generator Matrix, LDGM, codes) present

error floors, while linear random projections of real numbers (e.g., compressed sensing)

also get stuck in terms of performance at high SNRs [112]. This explains the need to

utilize a digital channel code, in this case an LDGM code, as the digital coding sub-

block of the hybrid scheme, aiming at reducing the error floor. Interestingly, LDGM

codes are also able to achieve smooth rate adaption [95], and thus, since both sub-

blocks are able to achieve smooth error adaption, the hybrid scheme will also have this

property.

The fact that the proposed hybrid coding scheme utilizes LDGM codes as the

digital sub-block to reduce the error floor proceeding from the RCM sub-block requires

some comments. It is well known that LDGM codes are characterized by the existence

of significant error floors, which can be reduced greatly by serial or parallel concatena-

tion of two regular LDGM codes. The idea of the parallel scheme in LDGM codes is

to use a powerful low rate code and a high rate code. The low rate code is capable of

correcting most of the errors, while the high rate code is designed to eliminate as many

of the residual errors as possible. In the proposed parallel concatenated hybrid system,

the digital-to-analog RCM sub-block substitutes the low rate LDGM code. The RCM

sub-block generates RP symbols and uses a QAM modulation so that RP symbols are

directly mapped to the corresponding constellation point. On the other hand, a high

rate LDGM code generates a small number of bits and uses an independent 4-QAM

modulation in which the average energy of the channel symbols is the same as that in

RCM sub-block. At the receiver, the RCM and LDGM sub-blocks perform decoding

jointly using belief propagation/message passing [113, 114]. As we will see later, the

RCM sub-block is able to correct most of the errors, while the LDGM sub-block cor-

rects most of the remaining ones, so that the error floors of pure RCM schemes are

eliminated in practice and much better performance can be achieved.

The encoder structure of the proposed hybrid system is shown in Figure 2.4.
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Figure 2.4: Encoder diagram of the proposed hybrid system consisting of the parallel
concatenation of an RCM sub-block and an LDGM code.

It consists of a parallel encoder structure of an RCM scheme, which from K input

bits produces M RP symbols, and a high-rate regular LDGM code that produces I

non-systematic coded bits from the K input bits. We denote the input source bits

as b = [b1, b2, ..., bK ]T . The sparse generator matrices for the RCM sub-block and

LDGM sub-block are denoted as Gr and Gl = [I;Pl], respectively. The coded symbols

are generated as Cs = [Grb; b
TPl] = [a, c] = [a1, ..., aM , c1, ..., cI ], which are transmitted

through a noisy channel. Notice that the matrix operations involved in generating a and

c are different: Grb is a normal linear combination while bTPl is modular operation. a

and c use different modulations: every two consecutive RP symbols in a are grouped and

mapped to one constellation point directly, while bits in c use a 4-QAM constellations.

At the receiver, the corrupted sequence at the decoder is denoted as r = [a′, c′], where

a′m = am + em and cl
′ = cl + el, with em and el being the noise introduced by the

channel.

As explained before, RP symbols and coded bits are grouped two by two and
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transmitted using a QAM constellation, so that the throughput, T , is

T =
2 ·K
M + I

, (2.1)

and the information rate, R, is calculated as

R = TH. (2.2)

where H is the entropy of the binary source.

2.5 Conclusion

In this chapter, we have reviewed the analog and digital components of the

proposed hybrid coding scheme. The RCM, which can be seen as a compressive sensing

scheme with digital input, as well as coded modulation with compression function, is

robust to the channel conditions and has a smooth rate adaptation by providing an

even distribution of energy to the information bits. However, it suffers from error floors.

LDGM codes are very good codes when used in concatenated schemes, and they have

low encoding and decoding complexity. Based on the idea of parallel concatenation,

we have proposed the encoder structure for the hybrid scheme. The encoding process

has been explained, as well as the modulation method.
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Chapter 3

HYBRID ANALOG DIGITAL DECODER: BELIEF PROPAGATION

3.1 Introduction

The decoding for the hybrid scheme can be seen as a method to find the most

probable solution for the equation a = Grb and c = bTPl, where a is the vector of

RP symbols generated at the RCM encoder, c is the vector of coded bits generated at

the LDGM encoder and b is the source vector that we want to calculate. Denote the

received vectors as r = [a′, c′], the optimum decoder aims at finding the bit vector with

the maximum a posteriori (MAP) probability:

b̂ = arg max
b∈{0,1}K

P (b|r). (3.1)

As a brute force approach to obtain b̂ is not practical, we will build a factor graph

for the hybrid system and utilize belief propagation/message passing [114] to perform

decoding.

The remainder of the chapter is organized as follows. Section 3.2 explains the

decoder structure of the hybrid scheme, i.e., the way to build the bipartite graph for

belief propagation. Section 3.3 provides a detailed description of the message update

rule for each group of nodes. Section 3.4 briefly discusses the order to activate the

nodes in the graph. Finally, Section 3.5 concludes the chapter.

3.2 Decoder Structure

Because RP symbols and coded bits are associated with source bits through

their respective generator matrix, a factor graph/bipartite graph can be formed [113],

[114], as shown in Figure 3.1. The graph consists of three groups of nodes: RP symbol
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RP symbols Coded bits

Source bits

Figure 3.1: Bipartite graph representation of the proposed hybrid system consisting
of the parallel concatenation of an RCM sub-block and an LDGM sub-
block.

nodes, coded bit nodes and source bit nodes. Each node connects to some other nodes,

i.e., neighboring nodes, in a different group. Notice that links are only between source

bit nodes and RP symbol nodes, and between source bit nodes and coded bit nodes.

These links are constructed from two generator matrices: the links between RP symbol

nodes and source bit nodes are from Gr, and the links connecting coded bit nodes and

source bit nodes are from Gl. The difference is that in the RCM sub-block the links

are weighted, but there is no weight associated with links in the LDGM sub-block. As

explained in Section 2.2, because of the special structure in Gr, every RP symbol node

has the same degree, which is equal to the size of the weight set.
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3.3 Message Passing for the Hybrid Scheme

The decoding algorithm is obtained by applying belief propagation/message

passing to the graph [114], [96]. One problem we need to address is how to integrate

the message passing of both sub-blocks: in RCM pmf messages are usually exchanged,

while log likelihood ratio (LLR) messages are normally used in LDGM codes. As the

source bits are binary, the pmf can be represented by LLR values. Thus, the messages

can be easily exchanged between the RCM sub-block and the LDGM sub-block by just

using LLR values. The LLR values are only converted to a pmf representation when

updating the links of the RP node, as the operation of linear combination of input

bits for multi-leveled RP symbols require the use of the corresponding pmfs for the

computation of messages.

The details of the decoding algorithm are provided below, defining all the mes-

sages as Log-Likelihood Ratios (LLRs). In the description, we will use b to denote a

source bit node, a to denote an RP symbol node, and c to denote a coded bit node.

An overview of the notation used in the sequel is shown in Table 3.1. Notice that the

same algorithm can be applied for pure RCM schemes by just discarding the steps in

the coded bit nodes.

3.3.1 Initialization

Message passing starts with the initial information on the source bit nodes.

Assume source bits are transmitted, and let the channel observation be rb. The initial

information consists of two parts: channel information and the prior knowledge of the

input bits. Thus, the Log-Likelihood Ratio (LLR) value of the initial information can

be computed as

u0 = log
Pr(rb|b = 0)

Pr(rb|b = 1)
+ log

p0
p1

= −2
√
Esrb
σ2

+ log
p0
p1
, (3.2)

where as defined before p0 = 1−p1 is the probability that an input bit is equal to 0, Es

is the average energy used to transmit one symbol through the channel, and σ2 is the

noise variance. Message u0 has to be taken into account in all iterations of the message
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Table 3.1: Notation used in the message passing for the hybrid scheme

Notation Definition
b Source bit node
a RP symbol node
c Coded bit node
rb Channel observation of the source bit node
rs Channel observation of the RP symbol node
rc Channel observation of the coded bit node
da Degree of an RP symbol node
dc Degree of a coded bit node
dva Degree of a source bit node only considering connections with RP symbol

nodes
dvc Degree of a source bit node only considering connections with coded bit nodes
vi LLR message from a source bit node to its ith neighboring node (an RP symbol

node or an coded bit node)
uj LLR message from an RP symbol node or coded bit node to its jth neighboring

source bit node
bj The jth neighboring source bit node of an RP symbol node or a coded bit

node
wj The jth weight of an RP symbol node
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Figure 3.2: Computation at an RP symbol node.

passing algorithm. If the source bits are not sent through the channel, u0 would only

be computed from the prior knowledge of the source bits.

3.3.2 Computation at the RP symbol nodes

As shown in Figure 3.2, an RP symbol node has channel observation rs, and

vj’s as incoming messages. Channel observation rs does not change throughout the

iterations and is taken as the initial information for the RP symbol node. This initial

information will be transformed to a pmf vector that contains the priori probability of

each possible value for the RP symbol. Messages vj’s come from neighboring source

bit nodes and do change in each iteration as they are updated in the iterative process.

Assume we calculate the outgoing messages for the jth RP symbol node. There

are da incoming LLR messages, with vj = log
P (bj=0)

P (bj=1)
corresponding to the one proceed-

ing from the jth neighboring source bit node bj. Because RP symbols are multi-leveled,
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the computations are implemented using pmfs. Therefore, vj will be converted to a

pmf based on its value and the associated weight of the link. Specifically,

Pr(bwj = 0) =
evj

1 + evj
(3.3)

Pr(bwj = wj) =
1

1 + evj
, (3.4)

where bwj = wjbj, i.e., the weighted bit. As mentioned previously, the pmf messages

are converted back to LLR messages when passed back to the neighboring source bit

nodes. Notice that

rs = Γa+ n = Γ
da∑
j=1

wj · bj + n, (3.5)

where rs is the received value corresponding to the RP symbol node, Γ is the normal-

ization factor, n ∼ N(0, N0/2), and wj is the weight associated with the link between

RP node a and jth neighboring source bit node bj. From (3.5), the probability of each

possible value of a can be computed and the pmf of a can be obtained as Pa, which is

calculated only once throughout the iterations. If a ∈ [−l, l], then Pa is defined as

Pa = [Pa(−l), · · · , Pa(l)], (3.6)

where Pa(k) is the density at value k, computed from the distribution N(rs, σ
2), and

Pa is normalized so that the sum of the densities is equal to one. As discussed before,

Pa is taken as the initial information of the RP symbol node. By denoting the linear

combination of all bj’s except bj as

xi =
da∑

j=1,
j 6=i

wj · bj, (3.7)

we can express

a = xi + wi · bi. (3.8)
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Therefore, the probability of bi being 0 and 1 can be calculated as

P (bi = 0) = P (a = xi) =
∑
k

P (xi = k) · P (rs|a = k), (3.9)

P (bi = 1) = P (a = xi + wi) =
∑
k

P (xi = k) · P (rs|a = k + wi), (3.10)

where the sum in k is over all possible values of x. Notice that the pmf of xi, P (xi = k),

is calculated in a straightforward manner by convolving the pmf of the terms in (3.7),

wjbj, while P (a = k|rs) and P (a = k + wi|rs) can be obtained from Pa.

The operation of convolving the pmf of wj · bj to obtain the pmf of xi, i =

1, ..., da is computationally expensive. The number of convolution operations for each

RP symbol node is da in each iteration, which makes this step the bottleneck of the

decoding algorithm in terms of computational complexity. A solution is to compute

the convolution only once and implement a deconvolution process da times, which

takes much less complexity [88]. The first step is to compute the pmf of the overall

linear combination
da∑
j=1

wjbj, denoted as Px, by convolving the pmfs of all wjbj’s. In

the encoding process, the value of the RP symbol is equivalent to the result of the

linear combination. However, Pa and Px are different, as Pa is obtained from the

channel information, while Px is obtained by combining the information from other

parts of the network. By deconvolving the pmfs of wibi’s from Px, the pmf of xi can

be obtained. The deconvolution can be implemented recursively or iteratively. The

detailed explanation can be found in [88].

Finally, the pmfs are converted back to an LLR message so that it can be easily

exchanged in the graph. The LLR message exchanged from the RP node to its ith

neighboring source bit node, bi, is calculated as

ui = log
P (bi = 0)

P (bi = 1)
. (3.11)

3.3.3 Computation at the coded bit nodes

A coded bit node is shown in Figure 3.3. Similar to an RP symbol node, it

has channel observation rs, and dc incoming LLR messages, vi, from its neighboring
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Figure 3.3: Computation at a coded bit node.

source bit nodes. We denote the channel message of the coded bit node c as v0. Same

as for u0, v0 should be taken into consideration in the computation of the messages

proceeding from the coded bit nodes in each iteration. Its value is calculated as

v0 = log
P (rs|c = 0)

P (rs|c = 1)
. (3.12)

As in standard LDGM codes, the LLR message transmitted from the coded bit

node cj to its ith neighboring source bit node bi can be obtained as [98]

ui = 2atanh(
dc∏
j=0
j 6=i

tanh(
vj
2

)). (3.13)
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Figure 3.4: (a) Computation of the message exchanged from a source bit node to
an RP symbol node, (b) Computation of the message exchanged from a
source bit node to a digital coded bit node.

3.3.4 Computation at the source bit nodes

A source bit node is shown in Figure 3.4. Incoming information consists of three

parts: the channel information, denoted as v0, messages from the RP symbol nodes

and messages from the coded bit nodes. For each source bit node, the message to the

ith neighboring node (either RP symbol node or coded bit node) is computed as

vi =
dva+dvc∑

j=0
j 6=i

uj. (3.14)

After any iteration, the value of information bit node i can be determined by calculating

di =
dva+dvc∑
j=0

uj. (3.15)

If di is greater than 0, the decision for this bit will be 0. Otherwise, it will be 1.
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3.4 Decoding Schedule

Belief propagation starts from the source bit nodes with the initial information.

The nodes are activated serially by order of appearance in the schedule definition. The

schedule can be defined as:

• Decoding Schedule: Repeat b, a, c,

where b is the group of source bit nodes, a is the group of RP symbol node, and c is

the group of coded bit nodes. Thus, three groups of nodes are activated sequentially

by the order defined repetitively until the decoding process ends.

It is possible to define other activation schedules by activating the source bit

nodes between the activation of RP symbol nodes and coded bit nodes. Since there is no

significant performance change, we just utilize the schedule indicated above. Therefore,

each group of nodes are activated exactly once in each iteration. The process continues

until the termination condition is satisfied: either a fixed number of iterations are

completed or all source bit nodes make the same decision five times in a row.

3.5 Conclusion

The decoding algorithm is the cornerstone for the implementation of the hybrid

scheme. We have explained the construction of the bipartite graph from the generator

matrices of the RCM and the LDGM code. We have also discussed the problem of in-

tegrating the message passing for the RCM and the LDGM sub-blocks. The exchanged

messages are maintained as LLRs except when computing the outgoing messages for

the RP node. By converting the LLR messages to the corresponding pmf, RP symbol

nodes can complete their computations and convert the pmf back to LLR messages to

be passed to the source bit nodes. We have also provided the detailed message update

algorithms for the RP symbol nodes, the coded bit nodes and the source bit nodes, as

well as the decision method. Finally, we have provided the schedule for activating the

nodes in the graph.
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Chapter 4

APPLICATION TO POINT-TO-POINT AWGN CHANNELS

4.1 Introduction

In this chapter, we design hybrid schemes for the point-to-point AWGN channel

for sources with different degrees of non-uniformity. More specifically, the application

of the hybrid scheme for the transmission of uniform and non-uniform sources over

noisy AWGN channels is studied. We explain the design objectives for the RCM

sub-system and the LDGM sub-system within the hybrid scheme. We adopt a non-

systematic approach for the design, i.e., the source bits are not transmitted through the

channel. The reason is that generally non-systematic codes have better performance

than systematic ones [105], [106], [107].

We first consider the case of uniform sources. As will be shown, the incorpo-

ration of the LDGM code substantially reduces the error floor existing in the RCM

scheme, and the overall performance improves significantly. We will extend our study

to the transmission of non-uniform sources. Simulation results show that the hybrid

coding scheme has excellent BER performance with high throughput. For non-uniform

sources, the designed hybrid coding scheme is robust to the degree of source non-

uniformity, and able to maintain the gap to the theoretical limit, outperforming many

traditional digital coding techniques.

The remainder of the chapter is organized as follows. Section 4.2 summarizes

the design objectives for the RCM sub-block and the LDGM sub-block within the

hybrid coding schemes. Section 4.3 focuses on the problem of the transmission of i.i.d.

uniform sources over AWGN channels, presenting simulation results, while Section 4.4

considers the transmission of i.i.d. non-uniform sources over AWGN channels. Section

4.5 concludes the chapter.
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4.2 Design Objective

The key design parameters for the hybrid scheme are the weight set for the

RCM scheme, the ratio between the number of RP symbols and the number of coded

bits, and the degree of the source bit node only considering the LDGM sub-block. As

discussed in Chapter 2, different weight sets generate RP symbols with different value

ranges, which results in different constellations. The weight set also determines the

number of source bits participating in producing an RP symbol, i.e., the degree of the

RP symbol node. Therefore, the choice of weight set is critical to the performance of

the RCM system, affecting the performance of the whole system. The ratio between

the number of symbols produced by analog and digital sub-blocks determines their

relative influences in the hybrid scheme. Each sub-block has its own design objectives

and there is a trade off that depends on the ratio. Our approach is to search for a

good weight set for the RCM sub-block, and fix it for our further study on the impact

of the two other design factors on the system performance. Monte Carlo simulations

are used to evaluate the performance of the hybrid scheme.

If the total number of generated symbols, including RP symbols and coded bits,

is fixed, the ratio between the number of symbols produced by the analog and digital

sub-blocks can be explicitly expressed by the number of the coded bits, denoted as I.

As the LDGM encoder is a high rate encoder, the number of the coded bits would be

small. As the intuition behind the hybrid scheme is that the analog part takes care of

most of the errors while the digital part correct the residual errors, the introduction of

an LDGM code should not interfere or degrade the performance of the RCM sub-block.

Otherwise, the RCM sub-block would not be able to reduce errors to a certain level

that can be corrected by the LDGM sub-block. On the other hand, if the number of

the coded bits is too small, i.e., the rate of LDGM code is too high, the LDGM would

not be powerful enough to reduce the error floors. Therefore, the ratio is critical.

The other important design factor is the degree of the source bit node when only

considering the LDGM sub-block, which is denoted as dvc. This degree and the number

of coded bits determine the performance of the LDGM sub-block. Assume that the

32



number of the coded bits, I, is fixed. If dvc is too large, there would be cycles in the

LDGM sub-block graph, which could degrade the performance significantly. On the

other hand, if dvc is too small, the code would not be powerful enough to correct residual

errors. The parameter dvc largely determines the convergence threshold and where the

“waterfall” region does happen: larger dvc’s delay the convergence threshold and lead

to lower error floors. Therefore, different design requirements may need different dvc’s.

4.3 Uniform Memoryless Sources

The work started by tackling the error floor problem in the pure RCM system

when the input is i.i.d and uniformly distributed. We performed Monte Carlo simu-

lations for pure RCM systems and several proposed hybrid schemes to evaluate their

performance and the impact of the design factors. For comparison purposes, in all

simulations we fixed the transmission rate to 7.4 information bits per channel use, and

considered an input block length of 37, 000 bits. Therefore, the total number of symbols

at the output of the hybrid system is 10, 000, I of which proceeding from the LDGM

code and 10, 000−I from the RCM system ( I << 10, 000, with I=0 for the pure RCM

system). Since QAM signaling is utilized, the channel is used 5, 000 times. Notice that

we simulated 5, 000 blocks for each hybrid scheme and obtained the average BER.

For the implementation of the pure RCM system we utilized the weight set

{±1,±2,±4,±4}, which in [88] was the best choice for i.i.d. uniformly distributed

input bits. To implement the hybrid system, we first fixed the weight set, and modified

the value of I. Another parameter that affects the performance of the hybrid system

is dvc, as mentioned previously.

Figure 4.1 shows the resulting BER for the pure RCM system defined before

and for three hybrid schemes using the same weight set as the pure RCM system for

the RCM sub-block and a regular non-systematic LDGM with parameters (I,dvc) equal

to (100,3), (148, 2) and (200,1)1. As shown in the figure, the pure RCM system has a

1 Notice that since the input block length is fixed to 37, 000 and the LDGM code is
regular, the code is perfectly defined by I and dvc.
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Figure 4.1: System performance for the pure RCM system and three hybrid schemes
when the weight set of the RCM sub-block is {±1,±2,±4,±4}. The
length of the information bits is 37, 000 and the number of channel uses
is 5000 for a rate of 7.4 information bits per channel use.

relatively high error floor of around 10−4-10−5, while the hybrid schemes are able to

practically eliminate the error floor. Notice that the convergence threshold improves

when I increases.

We performed numerous simulations of hybrid systems with different parameters

(I,dvc). For a fixed dvc, we have investigated the system performance when the range

of I varies between 50 and 400 bits. We have observed that when I decreases, the

number of blocks that contain errors also decreases, as well the number of errors in the

blocks in error. However, when I is too small the number of blocks in error begins to
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increase again. As discussed before, if I is too large, the RCM sub-block will become

weaker, as the number of RP symbols will decrease too much, and this will affect the

behavior of the whole hybrid system. On the other hand, if I is too small, error floors

can not be reduced and not much improvement is observed.

We have also studied the system performance when the value of I is kept con-

stant and dvc varies. Specifically, we have considered the values 0.8, 1, 2, 3, and 4

for dvc. We have observed that when the degree decreases, the number of blocks that

contain errors decreases, but the number will begin to increase for very small values

of dvc. The intuition behind this observation is that when the value of dvc is high, the

degree of the coded bit node will be very high (notice we have 37, 000 input bits but

only I coded bits). This will produce a graph with many cycles, in which the perfor-

mance of message passing will suffer substantial degradation. On the other hand, if dvc

is smaller than 1, some information bit nodes will have no connection to the LDGM

sub-block part, which will affect the performance of the whole hybrid scheme.

Notice that the hybrid designs that we have considered until now are based on

using the best weight set found in [88] for the pure RCM scheme. However, a weight

set that leads to the best possible performance in pure RCM will not necessarily be

the optimal choice for the hybrid scheme. The reason is that in a pure RCM scheme

the objective is to obtain the best possible performance, while, in the hybrid scheme,

the objective of the RCM sub-block is to leave, for all blocks, a residual number of

errors that can be corrected by the LDGM sub-block. This is an important difference.

For instance, for a pure RCM scheme a weight set that led to one tenth of blocks with

200 residual errors would be a much better choice than a weight set with which all the

blocks had 100 errors. However, if the high rate LDGM code were able to correct up

to 150 residual errors, the hybrid scheme would not be able to help at all in the former

case, while it would eliminate all the errors in the latter and obtain an overall much

better performance. In other words, if the total number of errors is the same, the RCM

scheme that has a more even distribution of errors among blocks is the better choice

for the hybrid scheme.
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Figure 4.2: System performance for the pure RCM system and three hybrid schemes
when the weight set of the RCM sub-block is {±2,±3,±4,±8}. The
length of the information bits is 37, 000 and the number of channel uses
is 5000 for a rate of 7.4 information bits per channel use.

With this in mind, we searched for good weight sets for the hybrid scheme.

Figure 4.2 shows the BER performance for a pure RCM and three hybrid systems

that utilize {±2,±3,±4,±8} as the weight set in the RCM sub-block. Notice that the

pure RCM system in Figure 4.2 gets to a BER level of 10−3 at 24 dB, while Figure

4.1 gets to the same level at 26 dB. Although the RCM system in Figure 4.2 has a

flatter and higher error floor at high SNR, the level of 10−3 indicates that the average

number of errors for each block is around 37, which is easy for the LDGM sub-block

to correct. Therefore, the performance improvement when a hybrid scheme is used is
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huge. Compared with the best case in Figure 4.1, where error free decoding is achieved

at Es/N0 = 26 dB, the hybrid scheme with parameters (I,dvc)=(200,1) achieves error

free decoding at Es/N0 = 24.5 dB, only 2.3 dB away from the Shannon limit. The

reason is that, looking for instance at Es/N0 = 25.5 dB, the RCM sub-block in Figure

4.1 presents errors in all blocks, with an average number of errors of 77 and a maximum

number of 185. Therefore, there are many blocks that cannot be corrected by the high-

rate LDGM sub-block. On the other hand, although the RCM sub-block in Figure 4.2

also presents errors in all blocks, the maximum number of errors is always less than

10 and thus the high-rate LDGM code will be able to correct all the residual errors,

leading to error free performance.

4.4 Non-uniform Memoryless Sources

4.4.1 Background

In standard channel coding, the input to the channel encoder is assumed to be

i.i.d. uniformly distributed, i.e., the input does not have any redundancy. However, in

practical applications, sources like texts, images, and speech often present redundancy.

In this case, a standard approach is to apply an ideal source encoder to compress the

source and eliminate all the redundancy to produce i.i.d. uniform input for a capacity

achieving channel encoder. This approach is referred to separation theorem. Thus, the

theoretical limit can be expressed by

HRc <
1

2
log2(1 +

2Es
N0

) (4.1)

where H is the entropy of the source, Rc is the code rate, and Es is the average en-

ergy per channel symbol. However, most source existing encoders are only suboptimal.

Therefore, the input to the channel encoder still contains a certain degree of redun-

dancy. Considering this and the reasons discussed in Section 1.2.1, it is important to

study this joint source-channel coding problem to simplify the design and take advan-

tage of the source redundancy to combat noise. Hagenauer first proposed in [101] a

source-controlled channel decoding scheme. In [102, 103], a systematic approach was
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adopted to optimize the encoder structure by modifying the extrinsic information to

exploit the redundancy. However, the drawback of systematic codes is that the out-

put coded sequences are not uniformly distributed for most redundant sources, which

is far from the capacity achieving distribution [104]. The reason is that systematic

codes force constraint on the channel input distribution by including source bits in the

transmitted symbols. Without the constraint, the distribution of transmitted symbols

can better match the channel. Based on this idea, the work in [102, 103] was extended

in [105, 106], where non-systematic convolutional encoders are used as the constituent

encoders to produce asymptotically uniform outputs: the channel mutual information

is maximized, and substantial gains can be obtained over systematic turbo codes. In

[107], non-systematic LDPC codes based on the concatenation of a pre-coder or post-

coder with an LDPC or an LDGM encoder was proposed. The systematic bits are not

sent over the channel, with only a-priori information provided for the systematic bit

nodes at the decoder. The proposed encoder/decoder structures can be configured in

many ways, providing design flexibility. [108] continues the study by using high rate

non-systematic LDPC codes.

Other methods for this scenario have also been studied. In [109, 110], an un-

equal energy allocation (UEA) scheme with turbo codes was studied, where the non-

uniformity of the source was taken into account to generate non-binary PAM symbols.

This approach successfully lowered the sensitivity of the scheme to the degree of source

non-uniformity, which was a problem in [105, 106]. Using unequal energy allocation, the

gap to the theoretical limit increases less with the increase of source non-uniformity.

Systematic and non-systematic LDPC codes with UEA were proposed in [111], re-

sulting in better performance than previously LDPC based schemes for nonuniform

sources. However, all previous schemes still present sensitivity to the degree of source

non-uniformity, and performance degrades when the source becomes more asymmetric.

Moreover, few of them consider the case in which high throughput is required, which

is a common requirement in many practical communication systems.
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4.4.2 Simulation Results

As explained before, we adopt a non-systematic approach to design the hybrid

coding scheme for non-uniform sources. For the simulations, we consider i.i.d. non-

uniform sources with p1 = 0.1, 0.01, 0.005, where p1 is the probability of a source bit

being 1. In order to assess the system performance, we focus on the case in which

the code rate is Rc = 5. Because QAM is used to transmit the generated symbols,

the throughput of the system is 10. The length of the input binary stream is fixed

to 50, 000. Therefore, the total number of symbols at the output of the encoder will

be 10, 000, I of them proceeding from the LDGM sub-block and 10, 000 − I from the

RCM sub-block (I = 0 for the pure RCM system). Since QAM signaling is utilized,

the channel will be used 5, 000 times.

In our simulations, we use the weight set W = {±1,±1,±1,±1,±2,±2,±2,±2}

for the implementation of the pure RCM system and of the RCM sub-block in the

hybrid scheme. This weight set has been optimized via Monte-Carlo techniques for

the hybrid system. After fixing the weight set, we still focus on optimizing the two

important parameters that affect the performance of the hybrid scheme: I, the number

of coded bits within the generated symbols, and dvc, the degree of the input bit nodes

when only the LDGM connections are considered. In general, the optimal parameter

set (I, dvc) depends on the degree of the source non-uniformity.

Figure 4.3 shows the resulting performance for the source with p1 = 0.1. The

four hybrid schemes use the same weight set (defined before) for the RCM sub-block

as the pure RCM system, and a regular non-systematic LDGM code with parameters

(I,dvc) equal to (25, 1), (40, 1), (50, 1) and (80, 1). For an objective of BER < 10−4

or BER < 10−5, the best result is obtained with (I, dvc) = (50, 1). Notice that with

the increase in the number of bits, I, within the generated symbols, the convergence

threshold tends to degrade and the “waterfall” region tends to be steeper. The pure

RCM system has a relatively high error floor of around 10−4-10−5, while the hybrid

schemes are able to reduce and eventually practically eliminate the error floor.

39



14.5 15 15.5 16 16.5 17 17.5
E

s
 / N

0
 (dB)

10 -8

10 -7

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

B
it 

E
rr

or
 R

at
e

RCM
(I,d

vc
)=(25,1)

(I,d
vc

)=(40,1)

(I,d
vc

)=(50,1)

(I,d
vc

)=(80,1)

Figure 4.3: System performance of a pure RCM system and four hybrid systems when
p = 0.1. In all the hybrid systems dvc = 1 and the weight set is the same
as in the pure RCM system, as defined in the text. Different number of
coded bits, I, are considered as indicated in the figure.

For the source with p1 = 0.01, Figure 4.4 shows the performance of hybrid sys-

tems with different number of coded bits, I, within the 10, 000 generated symbols. For

all seven hybrid schemes in the figure, dvc has been fixed to 8, which is the optimal

degree we have found through simulations. Again, the hybrid schemes use the same

weight set (defined before) for the RCM sub-block as the pure RCM system. In this

case, the gain obtained by using hybrid systems is more significant than in the case

of p1 = 0.1. When I increases from 0 to 1, 000, the error floor experiences a substan-

tial reduction with respect to the pure RCM system. However, when I continues to

40



0 0.5 1 1.5 2 2.5 3
E

s
 / N

0
 ( dB )

10 -6

10 -5

10 -4

10 -3

10 -2

B
it 

E
rr

or
 R

at
e

RCM
(I,d

vc
)=(800,8)

(I,d
vc

)=(1000,8)

(I,d
vc

)=(1250,8)

(I,d
vc

)=(1600,8)

(I,d
vc

)=(2000,8)

(I,d
vc

)=(2500,8)

(I,d
vc

)=(3200,8)

Figure 4.4: System performance of a pure RCM system and seven hybrid systems
when p = 0.01. In all the hybrid systems dvc = 8 and the weight set is
the same as in the pure RCM system, as defined in the text. Different
number of coded bits, I, are considered as indicated in the figure.

increase, the error floor becomes higher again. On the other hand, the convergence

threshold experiences a consistent improvement with the increase in I. If BER < 10−4

is taken as a criterion, the best scheme would be the one having I = 2, 500 coded bits

within the 10, 000 generated symbols.

In order to study the impact of dvc, the best scheme in Figure 4.4, (I, dvc) =

(2500, 8), is chosen. Figure 4.5 shows the results when the number of coded bits is fixed

and the degree is varied. An interesting observation is that here hybrid schemes also

show the dangling performance with the increase of dvc observed in Figure 4.4. The
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Figure 4.5: System performance for five hybrid schemes when p1 = 0.01. In all
the hybrid systems I = 2500. Different values of dvc are considered as
indicated in the figure.

error floor is reduced with the increase of dvc, while the convergence threshold improves

first and starts to degrade when dvc = 7. In terms of BER < 10−4 or BER < 10−5,

the performance of the best scheme in Figure 4.4 is further improved.

We further simulate two groups of hybrid schemes, where each group has the

same value of I but different values of dvc, as shown in Figure 4.6. Schemes with both

good convergence threshold and error floor performance are chosen from Figure 4.4:

(1000, 8) and (1250, 8). The group with 1000 coded bits is represented by solid lines in

Figure 4.6 and the other group with 1, 250 coded bits is represented by dashed lines.

Within each group, dvc ranges from 6 to 10. A clear observation is that within each
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Figure 4.6: System performance for the pure RCM system and two pairs of hybrid
schemes when p1 = 0.01. The first pair has 1,000 coded bits within 10,000
generated symbols and the values of dvc are 6, 8 and 10 respectively. The
second pair has 1250 coded bits within 10000 generated symbols and the
values of dvc are also 6, 8 and 10.

group the convergence threshold degrades with the increase in dvc, while the change in

the error floor is not relevant.

For the source with p1 = 0.005, Figure 4.7 shows the performance of hybrid

systems with different number of coded bits, I, within the 10, 000 generated symbols.

For all seven hybrid schemes in the figure, dvc has been fixed to 14, which is the optimal

degree we have found through simulations. Compared to the case where p1 = 0.01,

dvc needs to be higher, as the coded bit nodes need more connections to distinguish

bits when the sparsity increases. Again, the hybrid schemes use the same weight set
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Figure 4.7: System performance for the pure RCM system and two pairs of hybrid
schemes when p1 = 0.005. In all the hybrid systems dvc = 14 and the
weight set is the same as in the pure RCM system, as defined in the
text. Different number of coded bits, I, are considered as indicated in
the figure.

(defined before) for the RCM sub-block as the pure RCM system. In this case, the

gain obtained by using hybrid systems is comparable to that in the case of p1 = 0.01.

It is interesting to see that when I increases from 0 to 1, 000, the error floor is reduced

greatly, which also happened in Figure 4.4. However, when I continues to increase,

the error floor does not change as much as in Figure 4.4 until I = 2, 500. On the other

hand, the convergence threshold still improves consistently with the increase in I. If

BER < 10−4 is taken as a criterion, the best scheme would be the one having I = 2, 500

bits within the 10, 000 generated symbols. In Figure 4.7, (I, dvc) = (2000, 14) can be
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Figure 4.8: System performance for five hybrid schemes when p1 = 0.01. In all
the hybrid schemes I = 2, 500. Different value of dvc are considered as
indicated in the figure.

considered as the best scheme if BER < 10−4 or BER < 10−5 are taken as criterion.

We also fix I and change dvc in Figure 4.8. Compared to Figure 4.5, the increase in

dvc leads to much smaller changes in the error floors and convergence thresholds.

For p1 = 0.005, we also simulated two groups of hybrid schemes, shown in Figure

4.9. The schemes have the same value of I as the schemes in Figure 4.6, but with larger

degrees. Comparing the schemes within each group, it is obvious that the increase of

dvc improves error floors to a larger degree compared to the case in which p1 = 0.01

(shown in Figure 4.6), while the convergence threshold does not degrade as much. By

comparing Figure 4.6 with Figure 4.9, we can find that different design parameter sets
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Figure 4.9: System performance for the pure RCM system and two groups of hybrid
schemes when p1 = 0.005. The first group has 1, 000 coded bits within
10, 000 generated symbols and the values of dvc are 10, 12 and 14 respec-
tively. The second group has 1, 250 coded bits within 10, 000 generated
symbols and the values of dvc are also 10, 12 and 14.

may result in similar performance.

The theoretical limit for the proposed schemes can be obtained as

Es
N0

(dB) = 10log10[2
RcH − 1]. (4.2)

When p1 = 0.1, the gaps to the theoretical limit for existing joint source-channel

coding schemes [102, 103, 105, 106, 110] are usually less than 2 dB for BER < 10−4

or BER < 10−5, while, as shown in Table 4.1, for the proposed hybrid scheme the gap
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Table 4.1: Theoretical limit and gap to the limit for BER < 10−4. A throughput
of 10 source bits per channel use is considered. Three nonuniform binary
memoryless sources with p1 = 0.1, p1 = 0.01, p1 = 0.005 are considered.

p1 Theoretical limit in terms of Es/N0(dB) Gap (dB)
0.1 14 2.2
0.01 -1.2 2
0.005 -4.3 2

is around 2 dB. However, the proposed system can get a much higher throughput2.

For p1 = 0.01, the proposed scheme, with a gap of about 2 dB to the theoretical

limit, performs better than the aforementioned existing systems. For p1 = 0.005, the

proposed scheme maintains a gap of about 2 dB to the theoretical limit, while keeping

the same high throughput. The implication of this is that unlike other joint source-

channel schemes, which are sensitive to the sparsity of the source and where the gap

to capacity increases with the increase in source sparsity, the proposed hybrid schemes

are robust to changes in the degree of source non-uniformity. In addition, the high

throughput provided by the hybrid schemes provides a great advantage in high speed

communication systems.

4.5 Conclusion

In this chapter, we have designed hybrid coding schemes for i.i.d. uniform and

non-uniform sources. The hybrid scheme can be optimized as a function of I, the

number of coded bits within a fixed number of generated symbols (which determines

the ratio between real-valued symbols and binary bits), dvc, the degree of the source

bits only considering the LDGM sub-block, and the weight set, which determines the

performance of the RCM sub-block. For i.i.d. uniform sources, we have mitigated

the error floor existing in the RCM scheme by introducing an LDGM code. After

we optimize the RCM sub-block in the context of the hybrid scheme, the resulting

2 Notice that the throughput of our scheme is 10, while most existing schemes have a
throughput of 1/3 or 1/2.
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performance is just 2.3 dB away from the theoretical limit for a high throughput of 7.4

source bits per channel use.

For non-uniform sources, we have considered different degrees of non-uniformity

(p1 = 0.1, 0.01, 0.005). Generally, non-systematic codes outperform systematic codes

for non-uniform sources, as they are able to produce channel symbols with distribution

that better matches the channel. Therefore, we have adopted a non-systematic ap-

proach to design the hybrid coding scheme for non-uniform sources. After optimizing

the weight set for non-uniform sources, we have studied the impact of design factors

I and dvc on the error floor and the convergence threshold. Simulation results have

shown that the hybrid coding scheme is able to maintain a gap of around 2 dB to

the theoretical limit when the degree of source non-uniformity increases. This result

is better than with existing schemes, where the gap to the theoretical limit typically

increases with the degree of non-uniformity.
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Chapter 5

SIMPLIFIED DECODING ALGORITHM

5.1 Introduction

The decoding algorithm introduced in Chapter 3 has high computational com-

plexity, as explained in Section 3.3.2. The decoding process is implemented through

message passing on the bipartite graph of the hybrid system, and the bottle-neck in

terms of time complexity is in the decoding stage of the multi-level RP symbols. For

each RP symbol, its density function is calculated from the channel observation and the

density function of the linear combination of its associated bits. Although a deconvo-

lution technique is introduced to reduce the computational complexity, the complexity

is still high.

In this chapter, we propose a simplified decoding method that approximates the

distribution of the linear combinations of the input bits as Gaussian. As will be shown,

this reduces the decoding complexity in almost one order of magnitude. As we will

illustrate in the sequel, the resulting performance is, in most cases, comparable to that

of the original method, especially for non-uniform memoryless sources. Only when the

throughput is high can we observe a small performance degradation.

The remainder of the chapter is organized as follows. Section 5.2 describes

the proposed simplified algorithm. Section 5.3 analyzes the complexity of the original

decoding method and of the simplified method, providing a comparison in terms of the

number of additions and multiplications. Section 5.4 presents simulation results on the

optimization of the hybrid scheme utilizing the simplified method, and compares the

BER performance of the simplified and original decoding techniques. Finally, Section

5.5 concludes the chapter.

49



5.2 Proposed Simplified Decoding Algorithm

Since the initialization step is the same as in the original method, we focus on

the computation at the RP symbol nodes, the LDGM coded bit nodes, and the source

bit nodes.

5.2.1 Computation at the RP Symbol Nodes

Most of the complexity in the decoding process comes from the computation

at this stage. Computations in each RP symbol node involve the calculation of an

outgoing message by combining all the other incoming messages, as shown in Figure

5.1. Specifically, in order to compute the outgoing message on edge i, the pmf of the

RP symbol from channel observation rs and the pmf of xi =
∑da

j=1,j 6=iwjbj, where wj

is the weight associated with the jth neighboring input bit bj, have to be calculated.

The complexity of obtaining the pmf of the RP symbols is low as the pmf is only

computed once based on the channel observation. However, getting the pmfs of all

xi’s is expensive. Even with the application of the deconvolution technique, which was

introduced in [88], and we discussed in Section 3.3.2, the complexity is still high and

the implementation takes a significant amount of the time.

We consider two ways to simplify the decoding procedure using a Gaussian ap-

proximation, which are equivalent. In the first method, the linear combination of all the

neighboring source bits, except the ith neighboring bit, denoted as xi = ·
∑da

j=1,j 6=iwj ·bj,

xi ∼ N(mi, σ
2
i ), is assumed to be Gaussian. Since all the bj’s are independent variables,

the mean of xi, mi, and the variance of xi, σ
2
i , can be computed as

mi =
da∑
j=1
j 6=i

wj · E{bj} (5.1)

σ2
i =

da∑
j=1
j 6=i

w2
j · V ar{bj}. (5.2)
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Figure 5.1: Simplified computation at RP symbol nodes

Therefore, the equation at an RP symbol node can then be written as

rs = Γ · wi · bi + Γ ·
da∑
j=1
j 6=i

wj · bj + n = wi
′ · bi + Γxi + n = wi

′ · bi + n′i, (5.3)

where Γ is normalization factor, and n′i is the equivalent noise and follows the Gaussian

distribution N(mni
, σ2

ni
), with mni

= Γmi and σ2
ni

= σ2
n + Γ2σ2

i . Therefore, the LLR

message to the ith link can be calculated as

log
P (rs|bi = 0)

P (rs|bi = 1)
= log

P (n′i = rs)

P (n′i = rs − w′i)
(5.4)

=
w′i

2 − 2 · w′i · (rs −mni
)

2 · σ2
ni

. (5.5)

In this way, instead of computing the pmf of xi by convolution and deconvolution, we

only need to compute the approximated mean and variance of xi.
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Another equivalent manner of making the approximation is to consider each bj

as an analog symbol following a Gaussian distribution N ∼ (mbi , σ
2
bi

), and to apply the

analog message passing as described in [115]. Notice that the RP symbol comes from

a Gaussian channel, and thus it is truly a Gaussian random variable a ∼ N(rs, σn
2).

As it is well known, if x1+x2+x3 = 0 and x2, x3 are Gaussian random variables,

we can write

g(x1) = (g2 ? g3)(−x1) (5.6)

mx1 = −(mx2 +mx3) (5.7)

σx1
2 = σx2

2 + σx3
2. (5.8)

In our case, the equation at the RP symbol node is

w′1 · b1 + w′2 · b2 + ...+ w′da · bda +X = 0, (5.9)

where X = −a. Since each variable is assumed to be Gaussian, the message at each

link can be described by just the mean and the variance, instead of using the whole

densities or LLR messages. Thus, we can simply calculate the outgoing mean and

variance based on all the incoming means and variances

mi,out =
−1

wi′
· (msum − wi′ ·mi,in) (5.10)

σi,out
2 =

1

wi′
· (σsum2 − wi′2 · σi,in2). (5.11)

where,

msum =
da∑
i=1

wi
′ ·mi,in − rs (5.12)

σsum
2 =

da∑
i=1

wi
′2 · σi,in2 + σn

2 (5.13)
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If the source bit node processes the messages in a LLR fashion, the outgoing

mean and variance can be converted into an LLR message and passed to the source bit

nodes. Otherwise, the obtained mean and variance can be passed to the corresponding

neighboring source bit nodes directly.

5.2.2 Computation at the LDGM Coded Bit Nodes

The computations at this stage do not change with respect to the original

method: from all incoming LLR messages vj, j = 1, ..., dc, the goal is to calculate

the ith outgoing LLR message ui. A coded bit node also receives an observation from

the channel, from which the initial message, denoted as v0, can be computed and is

incorporated in the message update in each iteration. This initial message can be

calculated as

v0 = log
P (rs|c = 0)

P (rs|c = 1)
. (5.14)

Thus, the ith outgoing message can be updated as

ui = 2 · atanh(
dc∏
j=0
j 6=i

tanh(
vj
2

)). (5.15)

5.2.3 Computation at the Source Bit Nodes

If the source bit node processes the messages in an LLR fashion (i.e., all the

incoming and outgoing messages are LLR messages), the calculation of the messages

passed to the RP symbol nodes and coded bit nodes can be expressed as

vi =
dva+dvc∑

j=0
j 6=i

uj. (5.16)

If the messages coming from the RP symbol nodes are means and variances,

the LLR messages proceeding from the LDGM coded bit nodes should be converted to
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mean and variance messages. Then, the analog messages to the ith RP symbol node

can be calculated as [115]

mi,out =

∑dva+dvc
j=0
j 6=i

mj,in

σj,in2∑dva+dvc
j=0
j 6=i

1
σj,in2

(5.17)

1

σi,out2
=

dva+dvc∑
j=0
j 6=i

1

σj,in2
. (5.18)

The second step is to calculate the LLR messages exchanged to the LDGM

coded bits. The calculation method is identical to that of LDGM codes, except that

messages coming from RP symbol nodes have to be converted to LLR messages.

5.2.4 Decision

LLR messages are used for the decision of the source bits regardless of the

incoming message format. If there are mean and variance messages, they have to be

converted to LLR messages first. After each iteration, the value of each bit can be

determined by calculating

d =
dva+dvc∑
j=0

uj. (5.19)

If d is greater than 0, the decision for this bit is 0. Otherwise, it is 1. In our

simulations, the decoding process is terminated when every source bit node makes the

same decision for five iterations in a row or the number of iterations has reached 200.

5.3 Computational Complexity Analysis

The computational complexity is measured in terms of number of additions,

denoted as A, and number of multiplications, denoted as M . To facilitate the analysis,

we denote the degree of the RP node as D, and the length of the pmf vector obtained by

convolving D pmf messages as LD. For simplicity, we ignore insignificant computations,

such as the computation to obtain the pmf of the RP symbol based on the channel
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observation. Also, the operations of subtraction and division are counted as addition

and multiplication.

5.3.1 Complexity of the Original Method

5.3.1.1 Convolution

As discussed in Section 3.3.2, the pmf of the linear combination is obtained by

convolving all the incoming pmfs of wibi. Suppose the linear combination of the first i

neighboring bits is

zi = gi +
i−1∑
j=1

wjbj = xi + zi−1 (5.20)

where gi = wibi, the ith neighboring weighted bit. The pmf of zi can be obtained by

the convolution of the pmfs of gi and zi−1. The convolution process can be expressed

as

Pzi [n] =
∞∑

k=−∞

Pgi [k]Pzi−1
[n− k] = p0Pzi−1

[n] + p1Pzi−1
[n− wi]. (5.21)

where Pzi [n] is the density of zi at n, Pgi [k] is the density of gi at k, and p0 and p1 are

the probabilities of bi being 0 and 1. The pmf of gi is given by

Pgi [k] =


p0, k = 0

p1, k = wi

0, otherwise

The pmf of zi−1, Pzi−1
of length Li−1, is obtained by the convolution of the previous

i− 1 incoming pmfs. Thus, the length of the pmf vector of zi, Pzi , is Li = Li−1 + |wi|.

(5.21) takes 1 addition and 2 multiplications to compute the density at one index for zi.

Therefore, the number of operations required to obtain the pmf of zi is approximately

Li additions and 2Li multiplications. Since Li depends on the absolute values of wi’s,

larger values of weights results in longer pmf vectors, which leads to more operations

in the computation. In Table 5.1, the complexity for the convolution at each stage

is shown. More specifically, the number of additions and multiplications required to

obtain the pmf for each zi, i = 0, . . . , D, starting with z1 = x1, is shown. In each row,
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Table 5.1: Complexity Analysis of the Convolution

zi length of Pgi length of Pzi−1
length of Pzi (Li) (A, M)

z2 |w2|+ 1 |w1|+ 1 L2 =
∑2

i=1 |wi|+ 1 L2, 2L2

z3 |w3|+ 1 L2 L3 =
∑3

i=1 |wi|+ 1 L3, 2L3

z4 |w4|+ 1 L3 L4 =
∑4

i=1 |wi|+ 1 L4, 2L4
...

...
...

...
...

zD |wD|+ 1 LD−1 LD =
∑D

i=1 |wi|+ 1 LD, 2LD

the number of operations required for convolving the ith incoming pmf of gi, Pgi , with

the pmf of zi−1, Pzi−1
is provided. By combining the number of additions at each

stage, the total number of additions, denoted as Ac, can be computed as

Ac = L2 + L3 + L4 + · · ·+ LD

=
2∑
i=1

|wi|+
3∑
i=1

|wi|+
4∑
i=1

|wi|+ · · ·+
D∑
i=1

|wi|+D − 1

= (D − 1)|w1|+ (D − 1)|w2|+ (D − 2)|w3|+ (D − 3)|w4|+ . . .

+ 2|wD−1|+ |wD|+D − 1,

(5.22)

Define another variable Bc as

Bc = |w1|+ 2|w2|+ 3|w3|+ · · ·+D|wD|. (5.23)

Then,

Ac +Bc = D|w1|+ (D + 1)|w2|+ (D + 1)|w3|+ · · ·+ (D + 1)|wD|+D − 1

= (D + 1)
D∑
i=1

|wi| − |w1|+D − 1 = (D + 1)LD − |w1| − 2, (5.24)

As explained in Section 2.2, weight sets are balanced and consist of pairs of weights.

For instance, {±1,±2,±4,±4} and {±1,±1,±1,±1,±2,±2,±2,±2} used in Chapter

4 have four pairs of weights and eight pairs of weights respectively. Therefore, it is
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safe to assume the weights paired as {(w1, wD), (w2, wD−1), . . . , (wD/2, wD/2+1)}. Thus,

Bc can be expressed by substituting the absolute value of the weight for the absolute

value of the other weight in the pair

Bc = |wD|+ 2|wD−1|+ 3|wD−1|+ · · ·+ (D − 1)|w2|+D|w1|

= Ac + |w1| − (D − 1).
(5.25)

Therefore, the total numbers of additions and multiplications in the convolution are

Ac =
(D + 1)(LD + 1)

2
− |w1| − 2, (5.26)

Mc = 2Ac = (D + 1)(LD + 1)− 2|w1| − 4. (5.27)

5.3.1.2 Deconvolution

The technique of deconvolution is used to obtain the pmf of xi =
∑D

j=1
j 6=i

wjbj

efficiently [88]. The technique is implemented by removing the pmf of xi from the pmf

of zD, which is obtained by convolving all incoming pmf of xi’s. The density of zD at

k can be expressed as

P (zD = k) = P (bi = 0)P (xi = k) + P (bi = 1)P (xi = k − wi), (5.28)

where k ∈ [−LD−1
2
, LD−1

2
]. Therefore,

P (xi = k) =
P (zD = k)− P (bi = 1)P (xi = k − wi)

P (bi = 0)
, (5.29)

which takes 1 addition and 2 multiplications. There is another formula to update the

densities in the opposite direction [88]

P (xi = k) =
P (zD = k + wi)− P (bi = 0)P (xi = k + wi)

P (bi = 1)
. (5.30)

Notice that (5.29) is applied when wi is a positive number, while (5.30) is used when

wi is negative, but the number of computations in (5.29) and (5.30) is the same. To

obtain the complete pmf of xi, LD additions and 2LD multiplications are needed. Since
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there are D deconvolution operations, one for each link, the total number of additions,

denoted as Ad, and the total number of multiplications, denoted as Md, are

Ad = DLD,Md = 2DLD. (5.31)

5.3.1.3 Computation of Outgoing Messages

(3.9) and (3.10) are used to update each outgoing message. Thus, updating

P (bi = 0) takes LD − 1 additions and LD multiplications, which is also the complexity

required to update P (bi = 1). As there are D outgoing messages to be updated, the

total required number of additions and multiplications are 2D(LD − 1) and 2DLD.

In summary, the computational complexity for each RP symbol node in each

iteration using the original method is shown in Table 5.2.

Table 5.2: Computational Complexity of the Original Method

Operation Addition Multiplication

Convolution (D+1)(LD+1)
2

− |w1| − 2 (D + 1)(LD + 1)− 2|w1| − 4

Deconvolution DLD 2DLD

Message Update 2D(LD − 1) 2DLD

Total 6DLD+(LD−3)(D+1)
2

− |w1| 5DLD +D + LD − 3− 2|w1|

5.3.2 Complexity of the Simplified Method

In the simplified method, the first step is to compute

P =
D∑
j=1

wjE{bj}, Q =
D∑
j=1

w2
jV ar{bj}, (5.32)

so that mi and σ2
i in (5.1) and (5.2) can be obtained efficiently by subtracting the ith

component from P and Q. One addition and two multiplications are needed to obtain

each E{bj}, while three additions and four multiplications are needed to obtain each

V ar{bj}. The summations for P and Q both take D−1 additions and D multiplications

58



(w2
j can be precomputed so that its complexity is not counted). Thus, the total numbers

of operations to obtain P and Q are 6D − 2 additions and 8D multiplications.

The second step is to update the outgoing messages for each link. For each link,

the subtraction involved in getting mi and σ2
i takes one addition and one multiplication

each. Obtaining the outgoing LLR message by (5.5) takes two additions and two

multiplications. Thus, the complexity of updating outgoing messages on one link is

four additions and four multiplications, so that the second step takes a total of 4D

additions and 4D multiplications. The complexity is provided in Table 5.3

Table 5.3: Complexity of the Simplified Method

Operation Addition Multiplication

Step 1

E{bj}’s D 2D
V ar{bj}’s 3D 4D

P D − 1 D
Q D − 1 D

Step 2
mi’s D D
σ2
i ’s D D

D messages 2D 2D
Total 10D − 2 12D

5.3.3 Complexity Comparison

In order to compare the complexity of the original method and the simplified

method, we study the following cases

• W1 = {±1,±2,±4,±4}

• W2 = {±2,±3,±4,±8}

• W3 = {±1,±1,±1,±1,±2,±2,±2,±2},

which are the weight sets used in Chapter 4 for the uniform and non-uniform sources.

The number of operations for each weight set is shown in Table 5.4. For simplicity, the

term |w1| is removed from the results in Table 5.2, as it does not affect the complexity
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in practice. The numbers inside parentheses are the numbers of additions and multi-

plications. As mentioned previously, D is the degree of the RP symbol node and LD

Table 5.4: Complexity Comparison

W1 W2 W3

D 8 8 16
LD 23 35 25

Original Method (Appr.) (642, 948) (984, 1440) (1220, 2038)
Simplified Method (Appr.) (78, 96) (78, 96) (158, 192)

is the length of the pmf vector of the linear combination
∑D

j=1wjbj. The complexity

of the original method depends both on D and LD, which can be seen from the results

in Table 5.2. Therefore, an increase in either variable could result in an increase of the

total complexity. This can be observed by comparing W1 and W2, where LD increases

when larger values of weights are considered, and by comparing W1 and W3, where

D increases while the value of LD is very similar. However, the number of operations

for the simplified method only depends on the value of D, as it only approximates the

mean and variance of the linear combination and the computations do not rely on the

true pmf. In all three cases, the required number of operations for the original method

is approximately 10 times larger than the required number for the simplified technique.

Therefore, the proposed simplified method effectively reduces the complexity by around

one order of magnitude.

5.4 Simulation Results

5.4.1 Optimization of the Hybrid Scheme with Simplified Decoding

Our first objective is to study the impact of the design parameters over the

system performance when the simplified decoding method is used. For this part, we

focus on the cases in which the code rates are Rc = 0.5 and Rc = 1. The length of the

input binary stream is fixed to 10, 000. Therefore, the total number of symbols at the

output of the encoder will be 20, 000 (for throughput T = 1) and 10, 000 (for T = 2).
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Figure 5.2: System performance for the simplified decoding method in the case of
uniform sources when T = 1. The labels represent parameters (I, dvc).
The dashed line curve corresponds to the system performance using the
original decoding method.

Since QAM signaling is utilized, the channel will be used 10, 000 and 5, 000 times

respectively, and the throughput will be T = 1 and T = 2, respectively. We consider

i.i.d. uniform sources and i.i.d. non-uniform sources with p1 = 0.1. In order to evaluate

the system performance, we use the gap to the Shannon Limit when BER < 10−4 as

criterion. The theoretical limit can be obtained as:

Es
N0

(dB) = 10log10(2
RcH − 1). (5.33)

61



For the optimization, we also adopt a non-systematic approach. We use the

weight set W = {±2,±3,±7,±10} for the implementation of the RCM system. We

fixed the analog part and evaluated the system by optimizing the LDGM part using

the same strategy as in Chapter 4. We have implemented many systems based on

different proportion of digital bits, I, and different degrees for the LDGM sub-block,

dvc. As discussed before, the value of I should be able to maintain a balance between

the functionality of the analog sub-block and the digital sub-block, while dvc mainly

concerns with the functionality of the digital sub-block.

For the case of uniform sources, the simulation results for T = 1 using the

simplified decoder are shown in Figure 5.2. As observed in Chapter 4.4 for the orig-

inal decoder, within certain range higher degree, dvc, leads to lower error floors and

worse convergence threshold. For comparison purposes, we simulated the system with

(I, dvc)=(10000, 7) using the original decoding method. Notice that both decoding

methods, original and simplified, result in almost identical performance, just 2.5 dB

away from the Shannon limit for BER ∼ 10−4. However, the simplified method is

almost 10 times faster than the original method.

Figure 5.3 shows the performance of simplified decoding for i.i.d. uniform

sources when the throughput is T = 2 and different number of bits, I, within the

10, 000 generated symbols are used. When compared to Figure 5.2, here we do not

have any error floors and the performance is characterized just by the convergence

threshold. The convergence threshold improves when I increases from 1, 000 to 2, 000.

However, further increases of I lead to performance degradation. This behavior is

similar to the one shown in Section 4.4 with the original decoding method. In order

to compare the simplified method to the original decoding method, we simulated the

best system (I, dvc) = (2000, 3) with the original decoding method (dashed line in the

figure). Notice that the degradation using the simplified method is just 0.5 dB, but

the simplified method still produces a very reasonable performance, only 3 dB away

from the theoretical limit for BER ∼ 10−4.

Figure 5.4 shows the system performance for the case of non-uniform sources
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Figure 5.3: System performance for the simplified decoding method in the case of
uniform sources when T = 2. The labels represent parameters (I, dvc).
The dashed line curve corresponds to the system performance using the
original decoding method.

with p1 = 0.1 when the transmission rate is T = 2, and the same weight set as

in the uniform case is used. Compared to Figure 5.3, in the case of non-uniform

sources a more powerful LDGM code is necessary to achieve good performance, and

the influence of parameters I and dvc on the system performance (error floors and

convergence thresholds) is greater. We chose the system with the best convergence

threshold, (I, dvc) = (6000, 7), and simulated it with the original decoding method. For

BER = 4× 10−4, the performance is 1.6 dB away from the theoretical limit. Different

from the case of uniform sources with throughput T = 2, presented in Figure 5.3, Figure
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Figure 5.4: System performance for the simplified decoding method in the case of
non-uniform sources with p0 = 0.1 when T = 2. The labels represent
parameters (I, dvc). The dashed line curve corresponds to the system
performance using the original decoding method.

5.4 shows that for the considered non-uniform source, the use of the simplified method

leads to no performance degradation. That is, in the case of non-uniform sources the

simplified decoding method can be successfully applied at rates higher than in the case

of uniform sources.

5.4.2 Performance Comparison with the Original Decoding Method

As demonstrated in Section 5.3, on average, the simplified method is 10 times

faster than the original decoding method. This complexity reduction should be at
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the cost of decoding accuracy, as the precise information of the pmf is replaced by an

approximation. The simulation results in Section 5.4.1 have presented some comparison

between the original method and the simplified method. A preliminary observation

is that for the same design parameters, the simplified method can achieve almost

the same performance as the original method when the rate is low, while a small

degradation occurs with a higher rate. However, when the non-uniformity increases,

identical performance is achieved at higher rates.

In order to further study the problem, we compare the BER performance of the

original method and of the simplified method in different settings. More specifically,

we study the case of i.i.d. uniform sources and i.i.d. non-uniform sources where p1 =

0.1, 0.01, 0.005. For each p1, BER performance with the two decoding algorithms is

compared for different throughputs. We fix the RCM sub-block by using the optimized

weight set for uniform and non-uniform sources in Chapter 4. For each throughput, the

hybrid scheme with the original decoding algorithm is optimized over the parameter set

(I, dvc) first. Then, the simplified algorithm is implemented to assess the performance

loss. In all the simulations, the total number of generated symbols is fixed to 10, 000,

i.e., M + I = 10, 000 where M is the number of RP symbols, while the block length is

varied to obtain different throughputs.

5.4.2.1 Uniform Sources

For i.i.d uniform sources, we use the weight set {±2,±3,±4,±8} from Section

4.3 for the RCM sub-block. From Section 5.4.1, we know that when the entropy of the

source is high, i.e., low degree of non-uniformity, the simplified method can not afford to

use high rates without serious performance degradation. Therefore, instead of using a

throughput of 7.4 source bits per channel use as in Section 4.3, we use lower code rates,

which are still comparable to the rates used in digital coding schemes. In this case,

T = 1 and T = 2 are considered. Figure 5.5 shows the performance of the two decoding

methods. The blue dashed lines show the performance of the optimized hybrid scheme

with the original decoding method, while the black solid lines show the performance
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Figure 5.5: Performance comparison of the simplified decoding method and the orig-
inal decoding method for i.i.d. uniform sources. The labels represent
parameters {(K,M, I)}, throughput T , and dvc. The blue dashed line
indicates the performance of the original method, while the black solid
line indicates the performance of the simplified method with the same
design.

of the hybrid scheme with the same design but using the simplified decoding method.

Notice the similarities to the results in Figure 5.2 and Figure 5.3, where for T = 1,

the scheme with the simplified method achieves almost the same performance as the

original algorithm, while for T = 2, there is a performance degradation of 0.5 dB if we

use BER < 10−4 as the reference point. Moreover, we can observe that the scheme

with lower throughput has a larger ratio of coded bits. The reason behind this is that

a smaller number of RP symbols is required to achieve a certain level of errors, while
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leaving room for more digital bits to get more decoding precision. For instance, 10, 000

source bits require 8, 000 RP symbols to eliminate “general” errors to a certain level,

so that the digital bits are able to reduce the number of residual errors, as shown in the

right group. When the block length decreases to 5, 000, that number of RP symbols

would be an overkill, i.e., the performance would not improve much by using the same

number of RP symbols. Instead, the proportion of RP symbols should be reduced so

that more digital coded bits can be introduced to obtain more precise decoding. The

performance of the original and the simplified decoding methods is shown in Table 5.5.

Table 5.5: Gap to the theoretical limit for hybrid schemes using the original and the
simplified decoding methods when p1 = 0.5. The theoretical limit is in
terms of Es/N0. The gap is measured at BER < 10−4. All results are in
dB.

Throughput [Es/N0]lim Gap (original) Gap (simplified) Degradation
1 0 2.1 2.1 0
2 4.77 2.4 2.9 0.5

5.4.2.2 Non-uniform Sources

For p1 = 0.1, we use the weight set {±1,±1,±1,±1,±2,±2,±2,±2} from Sec-

tion 4.3 for the RCM sub-block. We simulate hybrid schemes with throughputs T = 2,

T = 4, and T = 5, as shown from left to right in Figure 5.6. As observed previously,

when p1 decreases from 0.5 to 0.1, the degradation shown in Figure 5.5 with T = 2

disappears in Figure 5.6. The reason is that when the degree of non-uniformity in-

creases, the amount of information transmitted through the channel is reduced when

the throughput is maintained. Therefore, the hybrid scheme can afford the loss of

information due to the use of the simplified method again, and obtain the same perfor-

mance as the original method. A conclusion is that when the degree of non-uniformity

increases, i.e., p1 decreases, we are able to use the simplified decoding method with

higher throughput and obtain results that are comparable to those obtained using the

original decoding method. When the throughput is further increased, the degradation
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Figure 5.6: Performance comparison of the simplified decoding method and the orig-
inal decoding method for i.i.d. non-uniform sources with p1 = 0.1. The
labels represent parameters {(K,M, I)}, throughput T , and dvc. The
blue dashed line indicates the performance of the original method, while
the black solid line indicates the performance of the simplified method
with the same design.

resulting from the simplified decoding method starts to increase again. For T = 4,

there is a degradation of 0.3 dB when BER < 10−4, while for T = 5, the degradation

increases to 0.7 dB, as shown in Table 5.6. We also observe that the portion of RP

symbols decreases as the throughput decreases.

For i.i.d. non-uniform sources with p1 = 0.01, we maintain the weight set for

the RCM sub-block. As explained previously, with the increase of the non-uniformity

of the source, a higher throughput can be maintained. Therefore, we simulated hybrid
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Table 5.6: Gap to the theoretical limit for hybrid schemes using the original and
simplified decoding methods when p1 = 0.1. The theoretical limit is in
terms of Es/N0. The gap is measured at BER < 10−4. All the results are
in dB.

Throughput [Es/N0]lim Gap (original) Gap (simplified) Degradation
2 -0.38 2.3 2.3 0
4 4.27 1.9 2.2 0.3
5 6.1 2.1 2.8 0.7

schemes with the two decoding methods and high throughputs of T = 4, T = 6, and

T = 8, as shown from left to right in Figure 5.7. The simplified method obtains the

same performance as the original technique in all three cases. There is only a small gap

in terms of convergence threshold. Notice that the throughputs used here are close to

the one used in Section 4.4. The performance of the original and simplified decoding

methods for p1 = 0.01 is shown in Table 5.7.

Table 5.7: Gap to the theoretical limit for hybrid schemes using the original and
simplified decoding methods when p1 = 0.01. The theoretical limit is in
terms of Es/N0. The gap is measured at BER < 10−4. All results are in
dB.

Throughput [Es/N0]lim Gap (original) Gap (simplified) Degradation
4 -6 2.2 2.2 0
6 -3.98 1.8 1.8 0
8 -2.48 2 2 0

For i.i.d. non-uniform sources with p1 = 0.005, we further increase the through-

put. Figure 5.8 shows the performance of two decoding methods with T = 6, T = 8,

and T = 9. For T = 6, the performance of the two decoding methods are very similar,

while for T = 8 and T = 9 there is gap in terms of convergence threshold. but not in

the error floor region. The performance of the original and simplified decoding methods

for p1 = 0.005 is shown in Table 5.8.
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Figure 5.7: Performance comparison of the simplified decoding method and the orig-
inal decoding method for i.i.d. non-uniform sources with p1 = 0.01. The
labels represent parameters {(K,M, I)}, throughput T , and dvc. The
blue dashed line indicates the performance of the original method, while
the black solid line indicates the performance of the simplified method
with the same design.

5.4.2.3 Observations

There are some observations from Figure 5.5, Figure 5.6, Figure 5.7, and Figure

5.8 that are worth mentioning. The most important one is that the performance of the

simplified decoding method starts to degrade when the throughput increases. However,

this degradation is offset when the value of p1 decreases. The second observation is

that when the throughput increases, the proportion of RP symbols also increases, as
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Figure 5.8: Performance comparison of the simplified decoding method and the origi-
nal decoding method for i.i.d. non-uniform sources with p1 = 0.005. The
labels represent parameters {(K,M, I)}, throughput T , and dvc. The
blue dashed line indicates the performance of the original method, while
the black solid line indicates the performance of the simplified method
with the same design.

is shown in all four figures. As explained previously, this is because an RP symbol

is more capable of carrying more information (i.e., higher entropy) than a binary bit.

Since the number of generated symbols is fixed, when the amount of information to

be sent increases, the proportion of RP symbols has to be increased to keep up with

the rate, which comes at the cost of more residual errors. However, since the source

block is longer, even with a larger number of residual errors, the same BER level can

still be achieved. The third observation is that dvc does decrease when the throughput
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Table 5.8: Gap to the theoretical limit for hybrid schemes using the original and
simplified decoding methods when p1 = 0.005. The theoretical limit is in
terms of Es/N0. The gap is measured at BER < 10−4. All results are in
dB.

Throughput [Es/N0]lim Gap (original) Gap (simplified) Degradation
6 -6.8 1.8 1.8 0
8 -5.4 1.6 1.7 0.1
9 -4.8 1.9 2.1 0.2

increases, which is also shown in all four figures. Notice that the throughput is increased

by increasing the source block length, which leads to a larger number of source bits

and smaller number of coded bits. If the same dvc is used, cycles would be generated,

which would degrade the system performance. At the same time, dvc should still be

large enough to maintain the power of the LDGM code to correct residual errors.

The fourth observation is obtained by comparing the hybrid schemes with the same

throughput but different values of p1. For instance, {20000, 8000, 2000} in Figure

5.6 and {20000, 6500, 3500} in Figure 5.7, or {40000, 8000, 2000} in Figure 5.7 and

{40000, 7500, 2500} in Figure 5.8. It can be seen that the proportion of the RP symbols

decreases when p1 decreases. The reason is the same as for the second observation: as

p1 decreases, the amount of information contained in the block with the same length

has been reduced. Therefore, we do not need the same number of RP symbols to carry

the information. Thus, some of the RP symbols can be replaced by coded bits to

gain some precision in the decoding process. These observations suggest a relationship

between the amount of information that needs to be carried through the channel and

the capability of correcting the errors to a certain level, providing guidance for the

design.

5.5 Conclusion

In this chapter, we have proposed a simplified method for the decoding process

of the hybrid scheme. The method is to simplify the computations at the RP symbol
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nodes by Gaussian approximations of the density function of the linear combination.

Thus, the linear combination can be treated as noise, and the operations of convolution

and deconvolution can be replaced by simple calculations over the mean and variance

of the approximated distributions. We have analyzed the complexity of the original

and simplified decoding methods in terms of the required number of additions and

multiplications. The analysis has shown that the simplified method can reduce the

computational complexity by one order of magnitude on average. We have studied

the impact of the design parameters by optimizing the hybrid scheme with simplified

decoding. In order to evaluate the performance loss with the simplified method, we

have compared the performance of the two decoding methods for sources with p1 =

0.5, 0.1, 0.01, 0.005. For each of them, hybrid schemes with different throughputs have

been studied by comparing the performance of the optimized hybrid scheme using the

original decoding method to the performance for the simplified decoding method. The

results have shown that, in most cases, the performance of the simplified method is

comparable to that of the original method.

73



Chapter 6

MULTIPLE ACCESS CHANNEL

6.1 Introduction

It is well known (see [118] and [119]) that two jointly ergodic sources (U 1,U 2),

defined over countably infinite alphabets, can be compressed at rates (R′1, R
′
2) provided

that

R′1 ≥ H(U 1|U 2) (6.1)

R′2 ≥ H(U 2|U 1) (6.2)

R′1 +R′2 ≥ H(U 1,U 2). (6.3)

Each source is compressed independently and a joint decoder is applied to recover the

original sequences. The Slepian-Wolf result can be seen as a problem of channel coding

with side information [120], [121]. Therefore, powerful channel codes can be utilized to

exploit prior knowledge at decoder side, such as turbo [90], Low-Density Parity Check

(LDPC) [91, 92], [93], and concatenated LDGM [99, 100] codes.

The transmission of correlated sources over a multiple access channel with trans-

mitted energy constraint presents more challenges than the case of just source com-

pression. Although it is optimal to separate the source and channel coding when the

energy constraint is defined at the receiver (see for instance [123]), when the energy

constraint is at the transmitter the separation principle is not optimal [33]. Interest-

ingly, the theoretical limit in this case is not known. Designing the codewords of the

different sources to take advantage of the correlation among sources is necessary to

optimize performance [33], but the optimal way to do this is not known.
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We consider the scenario where two correlated binary sources are transmitted

over a MAC channel. The basic idea is to maintain the correlation between sources in

the corresponding codewords, and to exploit the preserved correlation at the decoder

site. With the proposed hybrid scheme, the correlation can be exploited by iteratively

exchanging information between the decoders of both senders, as done in [43] when

digital codes are used. The idea is to use the same RCM structure for both senders

so that the low-density nature of the encoder maintains much of the correlation in the

resulting codewords.

However, because of the existence of multi-level RP symbols proceeding from

the RCM sub-block, the decoding process becomes more cumbersome than for digital

coding schemes. On the one hand, symbol reinforcement, which is the basis for good

digital schemes (see [43]), becomes more ambiguous for RP symbols, which leads to

degradation in the system performance. On the other hand, the complexity to decode

superimposed multi level RP symbols is very high. Therefore, we will present a novel

effective decoding structure to tackle these problems. The resulting performance is

very close to the theoretical limit assuming separation between source and channel

coding, even for high information rates.

The remainder of this chapter is organized as follows. Section 6.2 introduces

the multiple access channel model used in this chapter and presents the theoretical

limit assuming separation between source and channel coding. Section 6.2 provides an

overview of the hybrid coding scheme, while Section 6.3.1 explains how the encoder is

applied to MAC. Section 6.3.2 provides an overview of the decoding procedure, which

is explained in detail in Section 6.4. Section 6.5 presents the simulation results, and

Section 6.6 concludes the chapter.

6.2 Multiple Access Channel

Figure 6.1 shows the system model for the two user MAC. Each source is encoded

independently with a hybrid encoder of rate Rci , producing sequences X1 and X2,

which are transmitted over the AWGN MAC. The average energy used by sender i is

75



Hybrid Encoder 
1

Hybrid Encoder 
2

N(0, 2)

Joint Decoder

Source 1

Source 2

X1

X2

Figure 6.1: System diagram for a multiple access channel.

denoted as Esi. Thus, the average energy per channel use is Es = Es1+Es2. To define a

reference point to compare the performance of the proposed hybrid coding scheme, we

consider the theoretical limit assuming separation between source and channel coding.

The separation approach requires compression of the correlated sources to the Slepian-

Wolf limit first, and then utilizing a capacity achieving code. The theoretical limit of

the two user MAC with QAM modulation (assuming separation) can be defined as:

R1 < log2(1 +
Es1
N0

), (6.4)

R2 < log2(1 +
Es2
N0

), (6.5)

R = R1 +R2 < log2(1 +
Es
N0

), (6.6)

where Ri is the number of information bits transmitted per channel use for sender

i and Es = Es1 + Es2. Therefore, the energy spent to transmit one source bit is

Eso = Es/(4Rc). We will consider symmetric systems where Rc = Rc1 = Rc2 and

Es1 = Es2. Therefore, the information rate, R, is defined as R = 2H(U1,U2)Rc,
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where H(U1,U2) is the joint entropy of the two sources. Thus, the theoretical limit

in terms of Eso/N0 can be computed as

Eso
N0

(dB) = 10log10(
2R − 1

4Rc

). (6.7)

6.3 Proposed Joint Source Channel Coding Structure

6.3.1 Proposed Hybrid Encoder

As discussed previously, we consider the scenario where two correlated binary

sources are transmitted over a multiple access channel. As shown in Figure 6.2, each

source is encoded independently using a hybrid encoder. The structure of each encoder

is a hybrid encoder. Therefore, X1 and X2 contain both RP symbols and digital bits,

which are superimposed in the MAC.

Figure 6.2: Encoder structure of the proposed hybrid coding scheme for the MAC.

To obtain good performance, correlation between sources should be preserved as

much as possible in the generated codewords, so that it can be exploited at the decoder
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site. To achieve this, source bits are also transmitted over the MAC, which is different

from the case of point-to-point communications considered in Chapter 4, where only RP

symbols and coded bits are transmitted through the channel. Because the sources are

highly correlated at the bit level, there is mutual reinforcement between senders in most

of the positions of the source bits, with few positions that have interference. These

mutual reinforced positions help correct positions with interference in the iterative

decoding process. In addition, the same RCM encoder structure is used for both

hybrid encoders to maintain the correlation in the generated RP symbols, i.e., the

generator matrices for both RCM systems are the same, G1
r = G2

r. However, for the

positions with interference, it is difficult to assign the bit to the right sender by just

looking at the received symbols. If the assignment is wrong, this will reinforce the error

in the other decoder and degrade the performance. These errors are specific for the

MAC case, and occur in addition to the errors in the original hybrid coding scheme.

To resolve this ambiguity, each sender uses a different LDGM code. This leads to a

loss in the degree of correlation that can be exploited in the decoder for the coded bits.

6.3.2 Synthetic Joint Decoder

At the receiver, a joint decoder should be used to jointly decode the two sources.

Figure 6.3 shows the standard structure of a joint decoder from [43] applied to the pro-

posed hybrid scheme. Notice that two hybrid decoders connect to each other through

the source bit nodes and the channel observation links. The structure of each decoder

is the same as in Figure 3.1. Belief propagation starts from one decoder and messages

are exchanged between the two decoders through the source bit nodes and the channel

observation links in each iteration. However, the ambiguity mentioned before appears

when updating the messages proceeding from the multi-level RP symbols. To see this,

recall that the channel observation rs is expressed as

rs = Γa1 + Γa2 + n, (6.8)

where a1 and a2 are RP symbols before modulation, Γ is a normalization factor and

n ∼ N(0, σ2). Assuming a noiseless MAC channel and highly correlated binary sources,
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Figure 6.3: Standard joint decoder for MAC applied to the hybrid scheme.

the received symbols for the source bits can only have three possible values: most of

them are 2
√
Es/2 and −2

√
Es/2 with few 0’s. The values of 2

√
Es/2 and −2

√
Es/2

correspond to positions where mutual reinforcement occurs. Therefore, the transmitted

bits pairs can be decoded easily. With multi-level RP symbols, this interpretation

becomes more complicated, as the received symbols at each position can be produced

by different combinations of a1 and a2. More specifically, in each iteration, the density

function of each RP node has to be calculated based on the density function of the

other RP node in the pair. Defining the set of possible RP symbol values as S, we have

P (rs|ap = k) =
∑
m∈S

P (rs|ap = k, aq = m), k,m ∈ S, (6.9)

where p, q = 1, 2. For instance, assuming a noiseless channel, if S = [−6, 6] and

both senders send a 4 (the normalization factor is not considered), the observation
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Figure 6.4: Structure of the proposed synthetic decoder for the MAC.

for the superimposed RP symbol (a1 + a2) would be 8. Instead of a unique solution

as in the case of binary bits, the pairs (2, 6), (3, 5), (4, 4), (5, 3), (6, 2) are all equally

likely. The larger the set S is, the more candidate pairs will exist. Therefore, there

is uncertainty even at the positions with mutual reinforcement. This ambiguity can

produce estimation errors in the RP nodes, and further introduce errors to the source

bit nodes, degrading the performance of the RCM sub-block in both decoders so that

the LDGM codes are not able to correct the large number of errors.

To address this issue, we propose a decoder composed of the Cartesian product

of the source bit nodes (synthetic source bit nodes), the Cartesian product of the

RP nodes (synthetic RP nodes), and the coded bit nodes for each LDGM code, as

shown in Figure 6.4. The basic idea of using synthetic nodes is to integrate the nodes
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corresponding to the two decoders into one “super” node, merging corresponding links.

Notice that the RCM generator matrices for the two senders are the same, and thus

every two RP symbol nodes at the same position (one from decoder 1 and one from

decoder 2) have the same links and weight order. Therefore, every two RP symbol

nodes in Figure 6.3 can be integrated into one synthetic RP symbol node, as shown

in Figure 6.4. Analogously, for the source bit nodes we integrate the source bit nodes

from the two decoders into one synthetic source bit node. Then, we use this structure

to compute the messages within the RCM sub-block. Notice that the links between

synthetic RP nodes and synthetic source bit nodes transfer joint messages, as described

in the sequel. When computing the messages within the LDGM sub-block, the source

bit nodes from the two senders are treated individually, as the LDGM encoders for the

two senders are different, and the coded bit nodes for each sender remain as individual

nodes connected to the corresponding individual component of the synthetic source bit

nodes. Thus, only the RCM sub-block propagates the joint messages, which as we will

see in the sequel are the density functions of the synthetic source bit nodes, i.e., the

sum of the two source bits, and the LDGM sub-block aims at distinguishing between

senders by using different LDGM codes for each source. By utilizing synthetic nodes,

the performance can be improved significantly, and the computational complexity can

also be reduced.

6.4 Algorithm for Synthetic Decoding

As shown in Figure 6.4, there are two forms of messages propagated in the graph:

joint messages propagated in the RCM sub-block, and individual messages propagated

between coded bit nodes and its neighboring individual source node components in the

LDGM sub-block. Table 6.1 presents all the notations used in the synthetic decoding

algorithm.
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Table 6.1: Definitions for the synthetic decoding algorithm

b Synthetic source bit nodes representing the sum of the source bits bs =
b1 + b2.

a Synthetic RP nodes representing the sum of the RP symbols as = a1 +a2.

rb Channel observation for the superimposed source bits.

rs Channel observation for the superimposed RP symbols.

rc Channel observation for the superimposed coded bits.

P b
0 Channel message for the synthetic source bit node.

P a
0 Channel message for the synthetic RP node.

Lc
(1,2)

0 Channel message for the coded bit nodes.

P a→b pmf message from a synthetic RP node to a neighboring synthetic source
bit node.

P b→a pmf message from a synthetic source bit node to a neighboring synthetic
RP node.

PRP (·) pmf of a synthetic source bit node considering information within the
RCM sub-block.

PL1(·) pmf of a source bit node in decoder 1 considering information within
LDGM 1.

PL2(·) pmf of a source bit node in decoder 2 considering information within
LDGM 2.

Lb→c
q

LLR message from an individual source bit node to a neighboring coded
bit node of LDGM q (q = 1, 2).

Lc
q→b LLR message from a coded bit node to a neighboring individual source

bit node of LDGM q (q = 1, 2).

6.4.1 Computation at the Synthetic RP node

As explained before, the RP symbol nodes corresponding to the same position

have the same number of links, and the weights associated with the links are arranged

in the same manner. Each node in the pair also connects to the source bit nodes in

the same position in their respective graphs, as shown in Figure 6.3. Therefore, as

explained before, every pair of RP symbol nodes can be integrated into a synthetic

node, so that information can be jointly considered. Figure 6.5 shows the structure of

a synthetic RP symbol node. To calculate the messages exchanged from the synthetic
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Figure 6.5: Structure of a synthetic RP node for the MAC.

RP node to its neighboring synthetic source bit nodes, P a→b, we have to consider the

message proceeding from the channel observation rs, P
a
0 , and the messages proceeding

from da neighboring synthetic source bit nodes, P b→a.

To obtain the message proceeding from the channel observation rs, which will

not change with the iteration number, we consider the equation

rs = Γas + n = Γ(a1 + a2) + n = Γ
da∑
i=1

wib
s
i + n, (6.10)

where Γ is a normalization factor. Based on (6.10), we calculate the pmf vector P a
0

for as, which consists of the density at each possible value of as computed from the

distribution N(rs, σ
2). Notice that P a

0 is normalized so that the sum of the densities
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in the vector is 1. Specifically, P a
0 (k) is defined as

P a
0 (k) = P (rs|as = k), k ∈ [−2l, 2l], (6.11)

Notice that if aq ∈ [−l, l], q = 1, 2, then as ∈ [−2l, 2l]. Thus, the vector P a
0 can be

built as

P a
0 = [P a

0 (−2l), . . . , P a
0 (2l)] (6.12)

To calculate the joint messages exchanged from the synthetic RP node to its

neighboring synthetic source bit nodes, P a→b, we start by considering the relationship

between as and bsi , as shown in (6.10). Notice that bsi = b1i+b
2
i ,∈ [0, 1, 2], the summation

of two source bits in the same position, characterizes the joint message to be passed.

Without loss of generality, to calculate the message to the first neighboring synthetic

source bit node

P a→b
1 = [P a→b

1 (0), P a→b
1 (1), P a→b

1 (2)], (6.13)

where P a→b
1 (k) is the probability that b11 + b21 = bs1 = k, we consider

as = w1b
s
1 +

da∑
i=2

wib
s
i . (6.14)

Therefore, we can obtain

P a→b
1 (0) =

∑
k∈[−2l,2l]

P (as = k)P (
da∑
i=2

wib
s
i = k), (6.15)

P a→b
1 (1) =

∑
k∈[−2l,2l]

P (as = k)P (
da∑
i=2

wib
s
i = k − w1), (6.16)

P a→b
1 (2) =

∑
k∈[−2l,2l]

P (as = k)P (
da∑
i=2

wib
s
i = k − 2w1), (6.17)

where P (as = k) ∝ P a
0 (k) is obtained from channel message vector P a

0 in (6.12), and

P (
∑da

i=2wib
s
i = k) can be obtained by convolving the incoming pmf messages P b→a. In
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order to reduce the computational complexity, the pmf of
∑da

i=1wib
s
i is computed first

by convolving the pmfs of messages wib
s
i , which can be obtained from P b→a

i , the pmfs

of messages bsi , and the value of wi. When computing the pmf of
∑da

i=2wib
s
i , we just

deconvolve the pmf of w1b
s
1 from the pmf of the whole linear combination. The zig-zag

deconvolution technique in [88] is extended here to get the values in (6.15), (6.16) and

(6.17). See appendix for more details.

6.4.2 Computation at the LDGM Coded Bit Node

The computation at the LDGM coded bit node is the same as in a regular

LDGM code [116]. However, since the coded bit node for source 1, c1, is connected to

the coded bit node for source 2, c2, through a channel state node, i.e., rc = c1 + c2 +n,

the channel message is different at each iteration. The channel message for c1, defined

as Lc
1

0 , can be computed as

Lc
1

0 = log
P (rc|c1 = 0)

P (rc|c1 = 1)

= log
P (rc|c1 = 0, c2 = 0)P (c2 = 0) + P (rc|c1 = 0, c2 = 1)P (c2 = 1)

P (rc|c1 = 1, c2 = 0)P (c2 = 0) + P (rc|c1 = 1, c2 = 1)P (c2 = 1)
,

(6.18)

Notice that P (c2 = k) is calculated by using the messages calculated proceeding from

the synthetic source bit nodes connected to c2 (see Section 6.4.3.2). The channel

message for c2, Lc
2

0 , can be computed in the same way.

After obtaining Lc
q

0 , q = 1, 2, for sender q in each iteration, the messages to the

source bit nodes, Lc
q→b
i , q = 1, 2, are calculated as in regular LDGM codes, using the

channel message calculated in (6.18), and the messages proceeding from the synthetic

source bit nodes (see Section 6.4.3).

6.4.3 Computation at the Synthetic Source Bit Node

The messages from the synthetic RP symbol nodes, P a→b, and the individual

messages from LDGM coded bit nodes, Lc
1→b and Lc

2→b, are the inputs to the synthetic

source bit node, as shown in Figure 6.6. The synthetic source bit node as a whole

receives the joint messages, P a→b, while each individual source bit node receives the
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Figure 6.6: Structure of a synthetic source bit node.

individual messages from its corresponding LDGM coded bit nodes, i.e., source bit

node 1 receives Lc
1→b, and source bit node 2 receives Lc

2→b.

Message passing starts with initial messages computed from the channel obser-

vation rb. Denote the sum of the source bits from the two senders in a given position

as bs = b1 + b2. From the channel observation, rb = bs + n, we build the vector

P b
0 = [P (rb|bs = 0), P (rb|bs = 1), P (rb|bs = 2)]

= [P b
0 (0), P b

0 (1), P b
0 (2)],

(6.19)

This vector corresponds to the initial message proceeding from the channel, and will

be used in each iteration of the decoding algorithm. Notice that P b
0 is normalized.
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There are two types of messages calculated in the synthetic source bit nodes as

computed below.

6.4.3.1 Messages to synthetic RP nodes (P b→a)

Without loss of generality, assume the joint message to the first neighboring

synthetic RP node, P b→a
1 , is to be computed. From incoming messages Lc

1→b, the

probability of b1 being 0 or 1 based on the information proceeding from LDGM 1,

denoted as PL1(0) = 1− PL1(1), can be obtained as

PL1(0) =
e
∑dvc

i=1 L
c1→b
i

1 + e
∑dvc

i=1 L
c1→b
i

. (6.20)

(6.21)

Similarly, PL2(0) and PL2(1) can be obtained from Lc
2→b.

The messages proceeding from the synthetic RP nodes can be combined as

PRP (k) = β

dva∏
i=1

P a→b
i (k), k = 0, 1, 2, (6.22)

where PRP (k) is the probability that bs = b1 + bs = k using only the information

proceeding from the synthetic RP nodes.

Thus, we obtain the messages to the first neighboring synthetic RP node,

P b→a
1 = [P b→a

1 (0), P b→a
1 (1), P b→a

1 (2)], by considering the information proceeding from

the channel, neighboring synthetic RP nodes and LDGM codes as

P b→a
1 (0) = β[PRP (0)/P a→b

1 (0)]PL1(0)PL2(0)P b
0 (0) (6.23)

P b→a
1 (1) = β[PRP (1)/P a→b

1 (1)](PL1(0)PL2(1) + PL1(1)PL2(0))P b
0 (1) (6.24)

P b→a
1 (2) = β[PRP (2)/P a→b

1 (2)]PL1(1)PL2(1)P b
0 (2), (6.25)

where P b
0 (·) is the initial pmf message computed from the channel observation and β

is the normalization factor.
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6.4.3.2 Individual messages to coded bit nodes (Lb→c
1
, Lb→c

2
)

When updating the outgoing messages to the LDGM coded bit nodes, an ob-

servation into the internal state of the synthetic source bit node is required. Notice

that the two individual source bit nodes are connected by the channel observation and

there is correlation between them, which needs to be exploited properly. Assume the

LLR message exchanged to the first neighboring coded bit node in LDGM 1, Lb→c
1

1 , is

to be computed. The process starts by computing the probability of b1 at iteration m

by considering all incoming messages

Pm(b1 = 0) = PL1(0)[Pm−1(b2 = 0)(1− p) + Pm−1(b2 = 1)p][P b
0 (0)

+P b
0 (1)Pm−1(b2 = 1)][PRP (0) + PRP (1)Pm−1(b2 = 1)]

(6.26)

Pm(b1 = 1) = PL1(1)[Pm−1(b2 = 0)p+ Pm−1(b2 = 1)(1− p)][P b
0 (2)

+P b
0 (1)Pm−1(b2 = 0)][PRP (2) + PRP (1)Pm−1(b2 = 0)],

(6.27)

where P b
0 (·) is the initial estimate calculated in (6.19) and Pm−1(b2 = k) is the estimate

of b2 from the previous iteration. Thus, the LLR message, denoted as L1
s, can be

obtained as L1
s = log P

m(b1=0)
Pm(b1=1)

. Therefore, the message passed to the first neighboring

coded bit node in LDGM 1 is computed as

Lb→c
1

1 = L1
s − Lc

1→b
1 . (6.28)

Similarly, L2
s and Lb→c

2
can be computed.

6.4.3.3 Decision

As there are joint messages and individual messages, the decision can be made

utilizing either the overall joint messages or the overall LLR values. Here, the overall
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joint messages are used, choosing the pair that has the highest possibility

P (b1 = 0, b2 = 0) = 0.5(1− p) · PRP (0) · PL1(0) · PL2(0) · P b
0 (0), (6.29)

P (b1 = 0, b2 = 1) = 0.5p · PRP (1) · PL1(0) · PL2(1) · P b
0 (1), (6.30)

P (b1 = 1, b2 = 0) = 0.5p · PRP (1) · PL1(1) · PL2(0) · P b
0 (1), (6.31)

P (b1 = 1, b2 = 1) = 0.5(1− p) · PRP (2) · PL1(1) · PL2(1) · P b
0 (2). (6.32)

6.4.4 Simplified Method for MAC

Even with the synthetic decoder structure, which simplifies the decoding algo-

rithm by jointly considering the messages, the decoding complexity is still high. In

order to reduce computational complexity, we can apply the simplified method pro-

posed in Chapter 5 to this scenario. Specifically, we approximate the distribution of

the synthetic RP symbol node, i.e., the value of as, as a Gaussian distribution. The

difference with Section 5.2.1 is that the value of the neighboring synthetic source bit

nodes, bs, may be 0, 1, and 2, while only binary values are considered in Chapter 5.

Using the same notation as in Section 5.2.1, we denote the linear combination

of synthetic source bits except the ith one as

xi =
da∑
j=1
j 6=i

w′jb
s
i , (6.33)

where w′j = Γwj (Γ is a normalization factor), and bsi = b1i + b2i ,∈ [0, 1, 2]. Thus the

mean, mi, and the variance, σ2
i , can be properly computed. As we have

rs = w′ib
s
i + xi + n = x′ib

s
i + n′i (6.34)

where n′i is the equivalent noise by considering xi as noise and n′i ∼ N(mi, σ
2
i + σ2).

Therefore, the pmf message to the ith neighboring synthetic source bit node, P a→b
1 ,

can be obtained as
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P a→b
1 (0) = βP (rs|bsi = 0) (6.35)

P a→b
1 (1) = βP (rs|bsi = 1) (6.36)

P a→b
1 (2) = βP (rs|bsi = 2), (6.37)

where β is the normalization factor, and P (rs|bsi = k), k = 0, 1, 2, can be computed

using the Gaussian density function. Therefore, the complicated computations at the

synthetic RP symbol node are replaced by simple calculations, and the complexity is

reduced.

6.5 Simulation Results

We consider a scenario where high correlation exists between two sources. The

correlation is defined by parameter p, the probability that source bits of the two senders

located at the same position differ. We will study the case where p = 0.01 and p =

0.005. The performance of the system is evaluated by calculating the gap to the

theoretical limit assuming separation between source and channel coding when BER <

10−4.

6.5.1 System Optimization

For each sender, the information block length is fixed to K = 10, 000 and the

total number of generated symbols is fixed to L = 20, 000, M of which coming from

the RCM system and I = 20000 − M of them proceeding from the LDGM code.

As discussed previously, the source bits are also transmitted through the channel.

Therefore, the overall code rate is Rc = 1/3. As mentioned before, QAM modulation

is used so that there are 15, 000 symbols transmitted over the channel.

Table 6.2 shows the joint entropy H(U1,U2) of the correlated sources, the

information rate R, and the theoretical limits assuming separation between source and

channel coding. Notice that p is known at the decoder in all cases.

For the implementation of the RCM system, we use a weight set that leads to

good performance for the case of point-to-point transmission of asymmetric sources,
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Table 6.2: Theoretical limits for different values of p (Rc = 1/3)

.
p H(U1, U2) R [Eso/N0]lim(dB)

0.01 1.08 0.72 -3.13
0.005 1.04 0.69 -3.31

studied in [117]: {±1,±1,±1,±1,±2,±2,±2,±2}. The basic unit of generator matrix

G0 is constructed as:

G0 =


π(A1) π(A2) π(A1) π(A2) π(A1) π(A2) π(A1) π(A2),

π(A2) π(A1) π(A2) π(A1) π(A2) π(A1) π(A2) π(A1),

π(A1) π(A2) π(A1) π(A2) π(A1) π(A2) π(A1) π(A2),

π(A2) π(A1) π(A2) π(A1) π(A2) π(A1) π(A2) π(A1).

 ,

By varying M , I, and dvc, the degree of the source bit node (individual) when consid-

ering only the LDGM sub-block, we assess the effect of these design parameters.

Figure 6.7 shows the system performance when p = 0.01. Three groups of hybrid

systems have been simulated, with different ratios between the number of RP symbols

and the number of LDGM coded bits. The number of digital bits, I, decreases from

15000 to 10000, while the number of RP symbols increases from 5000 to 10000, For

a fixed value of dvc, the change of the error floor is insignificant with the increase of

RP symbols, but with a larger value of dvc, the change of RP symbols leads to more

variations in error floors (compare the cases of dvc = 18 and dvc = 30). The error

floor also shows dangling behavior, similar to [117], where error floor dangles with the

increase of I, the number of coded bits. dvc has more impact on the error floors and

the convergence threshold: increasing dvc can significantly reduce the error floor and

degrade the convergence threshold. The system (M, I, dvc) = (5000, 15000, 25) can be

considered as the best scheme in terms of BER < 10−4 and it is 1.3 dB away from the

theoretical limit assuming separation.

Figure 6.8 shows the system performance when p = 0.005. The same groups of

hybrid systems have been simulated. The change in the ratios between the number of
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Figure 6.7: Simulation results for three groups of hybrid schemes when p = 0.01. For
each group, (M, I) is fixed and dvc varies from 18 to 30.

RP symbols and LDGM coded bits shows more impact than in the case of p = 0.01.

The systems with (5000, 15000) and (10000, 10000) have similar error floors for each

value of dvc, while the systems with (8000, 12000) have higher error floors in each case.

The explanation for this is that the decrease in I reduces the power of LDGM codes

to correct residual errors while the increased portion of RP symbols is not enough to

improve its performance of the joint estimation of the bit pairs, which leads to the

increase of the error floor. A further increase in the number of RP symbols would

improve the performance of the RCM sub-block, so that more correct joint estimations

are made. This would make it easier for the LDGM to correct errors and distinguish

between senders, leading to a reduction in the error floor. As in the case of p = 0.01,
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Figure 6.8: Simulation results for three groups of hybrid schemes when p = 0.005.
For each group, (M, I) is fixed and dvc varies from 18 to 30.

the best scheme maintains a gap of 1.3 dB to the theoretical limit.

6.5.2 High Transmission Rate System

As discussed in [116] and [117], the hybrid coding scheme can be utilized to

build a high transmission rate system with good BER performance. In addition, the

use of multi-level real-valued symbols improves the robustness of the system in many

aspects, such as its ability to maintain the gap to the theoretical limit with the increase

of source non-uniformity, as shown in [117] and in Section 6.5.1. In this section, we

have implemented several hybrid coding schemes with different information rates for

p = 0.01 and p = 0.005. The source block length is also fixed to K = 10, 000, and
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Figure 6.9: Performance of the proposed system with different information rates when
p = 0.01 and M = I.

the number of generated symbols is decreased continually so that the information rate

increases. As shown in Figure 6.7 and Figure 6.8, the system with the same number

of RP symbols and LDGM coded bits, i.e., M = I, shows well balanced performance,

i.e., good convergence threshold and low error floor. Therefore, we keep this ratio in

our simulations.

Figure 6.9 shows the performance of the hybrid coding scheme with different

information rates for p = 0.01. It is clear that for a wide range of rates, the system

maintains the gap to the theoretical limit with the increase of information rate. Indeed

the performance in terms of convergence threshold and error floor improves when the
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Figure 6.10: Performance of the proposed system with different information rates
when p = 0.005 and M = I.

information rate increases (compare the cases of R = 0.72 and R = 1.44). The explana-

tion is that, in order to transmit the source bits over the MAC using the hybrid coding

scheme, only a certain number of generated symbols (including RP symbols and coded

bits) is necessary. If more RP symbols are used, more ambiguity is introduced, and the

effect of RP symbols overcomes the gain obtained by using more symbols. When the

number is further decreased, i.e., higher information rate, the performance starts to

degrade. Figure 6.10 shows the performance of the hybrid coding scheme with different

information rates for p = 0.005. The same trend observed in Figure 6.9 can be seen

here. By comparing schemes with similar information rates in Figure 6.9 and Figure
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Figure 6.11: Performance comparison between the original decoding method and the
simplified decoding method when p = 0.01 and M = I.

6.10, we can find that the schemes in Figure 6.10 are able to maintain the gap to the

theoretical limit when the non-uniformity of the source increases.

6.5.3 System with Simplified Decoding Method

To evaluate the performance of the simplified method over MAC, we choose

schemes from Figure 6.9 and Figure 6.10, with transmission rates ranging from low to

high, and implement them with the simplified decoding method.

Figure 6.11 compares the performance of the original method (dashed lines) and

of the simplified decoding method (solid lines) when p = 0.01. Notice that the perfor-

mance of the simplified algorithm is close to that of the original method, even when

the transmission rate increases. For all the three schemes, the degradation observed
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for the simplified decoding method is smaller than 0.2 dB. Table 6.3 shows, for each

transmission rate, the gap to the theoretical limit assuming separation for the original

decoding method and for the simplified decoding method when p = 0.01.

Table 6.3: Gap to the theoretical limit assuming separation for hybrid schemes using
the original and the simplified decoding methods over MAC when p1 =
0.01. The theoretical limit is in terms of Eso/N0. The gap is measured at
BER < 10−4. All results are in dB.

Transmission rate [Es/N0]lim Gap (orgi.) Gap (simp.) Degradation
0.86 -2.9 1.3 1.4 0.1
1.20 -2.3 1 1.1 0.1
1.54 -1.7 1.05 1.2 0.15

Figure 6.12 compares the performance of the original decoding method (dashed

lines) and of the simplified decoding method (solid lines) when p = 0.005. For low rates,

for instance, (7500, 7500) and (2500, 2500), the two decoding methods achieve almost

identical performance. When the transmission rate is further increased, degradation

starts to appear, as in Section 5.4. Table 6.4 shows, for each transmission rate, the gap

to the theoretical limit assuming separation for the original decoding method and for

the simplified decoding method when p = 0.005.

Table 6.4: Gap to the theoretical limit assuming separation for hybrid schemes using
the original and the simplified decoding methods over MAC when p1 =
0.005. The theoretical limit is in terms of Eso/N0. The gap is measured
at BER < 10−4. All results are in dB.

Transmission rate [Es/N0]lim Gap (orgi.) Gap (simp.) Degradation
0.83 -3.1 1.4 1.4 0
1.39 -2.1 1 1 0
1.60 -1.8 0.9 1.4 0.5
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Figure 6.12: Performance comparison between the original method and the simplified
method when p = 0.005 and M = I.

6.6 Conclusion

We have introduced a hybrid analog-digital joint source-channel coding scheme

for the transmission of correlated sources over multiple access channels. Each source in

encoded independently using a proper designed encoder structure that can preserve the

correlation in the generated codeword. The proposed synthetic decoder structure and

the synthetic decoding algorithm allow the exploitation of the correlation and alleviate

the ambiguity introduced by multi-level real-valued symbols. The performance of the

hybrid coding scheme is very close to the theoretical limits assuming separation, while

achieving high information rate. Thus, the proposed hybrid coding scheme has great

potential for the design of high speed communication systems. Its robustness to the
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transmission rate and the non-uniformity of the source is a great advantage to many

traditional digital coding techniques. We have also discussed the extension of the

simplified decoding method for the synthetic decoding algorithm, showing that its

performance is similar to that of the original decoding method.
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Chapter 7

CONCLUSION AND FUTURE WORK

In this dissertation, we have explored hybrid analog-digital coding schemes for

digital sources in various scenarios. The objective is to design a robust coding scheme

with good BER performance by properly integrating analog and digital coding systems.

In our work, the hybrid coding scheme is constructed by parallel concatenation of an

RCM system and an LDGM code. The binary source bits are mapped into multi-level

RP symbols through random projections, and to coded binary bits through random

XOR operations. Therefore, the symbols generated in the hybrid scheme are a mixture

of real-valued symbols and binary bits, which are transmitted over noisy channels with

two independent QAM constellation with the same average energy constraint. Real-

valued symbols are mapped to modulation constellation points directly based on their

values, while coded bits use an independent 4-QAM scheme. At the receiver, belief

propagation is applied to a bipartite graph to decode the digital source iteratively. As

shown in the dissertation, RCM has several advantages over traditional techniques,

such as smooth rate adaptation, wide dynamic range, and robustness to the channel

and the sparsity of the source. By introducing an LDGM code, the error floor problem

can be taken care of, and the result coding scheme has excellent performance.

7.1 Summary of Contributions

7.1.1 Point to Point AWGN Channels

The first problem studied in this dissertation was the design of robust coding

schemes for point to point AWGN channels. We started by tackling the error floor

problem in high SNR with uniform sources. Regular LDGM codes are integrated with

the RCM scheme optimized as a stand-alone system. As shown in Section 4.3, the
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error floor can be reduced by optimizing the digital part of the system. We have shown

that the requirement for the RCM sub-system within a hybrid scheme is different from

a stand-alone RCM system. By optimizing the RCM sub-system, the performance is

further improved and is only 2.3 dB away from the theoretical limit.

In the case of nonuniform sources, we have designed hybrid coding schemes to

exploit the redundancy. More specifically, we have optimized the RCM scheme, using

larger weight sets so that more source bits are involved in generating the RP symbols.

In this way, the sparsity in the source can be exploited properly in the decoding process

to distinguish between RP symbols. In addition, more powerful LDGM codes are

employed, i.e., with lower rate and higher degrees. We have shown that hybrid coding

schemes are capable of maintaining a gap to the theoretical limit of around 2 dB,

independently of the degree of source non-uniformity, outperforming many traditional

digital coding techniques, where the gap to the theoretical limit increases with the

degree of source non-uniformity. The robustness of the hybrid coding scheme and its

capability for high transmission rate make it a promising technique for high speed

communication systems.

7.1.2 Simplified Decoding Method

The existence of real-valued RP symbols increases the decoding complexity. Al-

though the computational complexity is not impractical after the introduction of proper

techniques to compute the pmfs, it is still high compared to many coding techniques.

We have proposed a simplified decoding algorithm based on a Gaussian approxima-

tion, so that many operations can be reduced to simple formulas. We have analyzed the

computational complexity of the original and simplified decoding algorithm, showing

that the simplified algorithm reduces the complexity by around one order of magni-

tude. The BER performance of the simplified decoding algorithm is identical to the

original one in many cases, and only experiences minor degradation in some cases. This

makes it possible to implement a fast version of the hybrid scheme without performance

degradation.
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7.1.3 Transmission of Correlated Sources over Multiple Access Channels

The transmission of correlated sources over MAC presents many challenges.

In our proposed joint source-channel coding approach, each source is independently

encoded with a hybrid encoder. We have used the same RCM encoder structure for both

sources to maintain the correlation in the generated codewords, while different LDGM

code structures are used to distinguish between senders. We have designed a synthetic

decoder structure by integrating nodes and merging links for the two RCM decoders

in the joint decoder, while keeping nodes from LDGM decoders as individual nodes.

This synthetic decoder alleviates the ambiguity problem introduced by multi-level real-

valued RP symbols through jointly considering the messages exchanged between RP

nodes and source bit nodes. We have optimized the scheme and have shown that the

performance is close to the theoretical limit assuming separation. We have also shown

that the hybrid scheme is capable of high transmission rates over MAC, which is a great

advantage over existing coding schemes. The adaptation of the simplified method to

the synthetic algorithm can also reduce the complexity in many cases, making the

proposed scheme a promising candidate for multi-user communication systems.

7.2 Future Work

The work developed in this dissertation can provide multiple research directions,

as described below.

7.2.1 Density Evolution

The discretized density evolution (DDE) method proposed in [124] provides an

excellent tool to analyze and optimize the performance of LDPC codes in a theoretical

manner. Moreover, density evolution can predict the code performance in a much

shorter time. However, a main problem in optimizing the hybrid coding scheme is the

lack of theoretical analysis, which is complicated by the existence of multi-level RP

symbols. It is a great challenge to develop an innovative way to apply the density

evolution framework for the analysis of the hybrid coding schemes.
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7.2.2 Matrix Design

There are several constraints on the choice of the weight set and on the design of

the RCM generator matrix. These constraints are forced based on energy efficiency and

on the goal of maximizing the distance between codewords. However, these constraints

also affect the randomness of the generator matrix. In [125], weights are randomly

selected from a predefined distribution, and positions of non-zero entries in each row

are randomly chosen. This opens the door to the possibility of a more flexible choice of

the weight set and of matrix design. Research on the relationship between the design

and the performance of the hybrid coding scheme can be challenging and interesting.

7.2.3 Rate Adaptation

The focus of this dissertation is on the BER performance of the hybrid coding

scheme in a specific SNR range. As mentioned in the dissertation, the RCM scheme has

excellent performance for rate adaptation [88], while LDGM codes are also promising

candidates for rate adaptation [95]. It would be interesting to study the rate adaptation

problem with the hybrid coding scheme in general scenarios.

7.2.4 Multi-User Communication

Multi-user communication systems are acquiring an increased importance. Our

study of the application on the hybrid coding scheme to multiple access channels can

be a starting point for the research on hybrid coding schemes in more complicated

multi-user contexts, such as MIMO channels. It is certain that this type of scenarios

will require some adaptation for the hybrid coding scheme to be efficiently deployed.

7.2.5 General Coding Designs

The hybrid coding scheme studied in this dissertation is constructed by the

parallel concatenation of an RCM scheme and an LDGM code, but this is a very

particular case. Other design schemes, (e.g., serial concatenation rather than parallel),

are also possible, and the component analog and digital sub-blocks can be generalized

in order to improve performance.
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Appendix

DECONVOLUTION TECHNIQUE FOR MAC

In this part, we explain the extension of the deconvolution technique [88] to

the case of MAC. Denote
∑da

i=1wib
s
i as q (notice that q is different from as, as the

information of as comes from the channel while the information of q is obtained only

from incoming messages) and
∑da

i=2wib
s
i as r. Thus,

q = w1b
s
1 + r (A.1)

Because bs1 has three possible values: 0, 1 and 2, the following can be obtained:

P (q = k) = P (r = k)P (bs1 = 0) + P (r = k − w1)P (bs1 = 1)

+ P (r = k − 2w1)P (bs1 = 2), k ∈ [−2l, 2l],
(A.2)

when P (bs1 = 0) > P (bs1 = 2),

P (r = k) =
P (q = k)− P (r = k − w1)P (bs1 = 1)− P (r = k − 2w1)P (bs1 = 2)

P (bs1 = 0)
,

k ∈ [−2l, 2l],

(A.3)

where P (r = k) = 0 when k < −2l or k > 2l. If w1 < 0, r’s pmf vector is updated

from the right to left. Otherwise, the vector is updated from the left to the right.

On the other hand, if P (bs1 = 2) ≥ P (bs1 = 0), the following can derived from

(A.2):

P (r = k) =
P (q = k + 2w1)− P (r = k + 2w1)P (bs1 = 0)− p(r = k + w1)P (bs1 = 1)

P (bs1 = 2)
,

k ∈ [−2l, 2l].

(A.4)
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In this case, the update direction for the pmf of r also depends on if w1 is

positive or negative. The reason to have both Equation (A.2) and (A.4) to implement

the deconvolution is computational accuracy, which is also the reason for using two

equations for deconvolution in different cases in [88]. When P (bs1 = 0) or P (bs1 = 2) is

very small, the division is not accurate and the other way should be used. The method

can be implemented recursively and iteratively regardless of the updating direction.

Therefore, by using deconvolution, the pmf of
∑da

i=2wib
s
i can be obtained with

much lower complexity and (6.15), (6.16) and (6.17) can be finally used to obtain the

outgoing pmf to bs1 as well as other neighboring synthetic source bit nodes.
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