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ABSTRACT 

Payments for environmental service contracts commonly suffer asymmetric 

information problems before and after a contract is signed between a regulator and 

private parties. Before a contract, private parties possess private information such as 

productivity and production cost, and they may lie on their cost to get higher 

payments. After a contract, private parties may avoid fulfilling their responsibility. 

These problems need to be considered by the regulator when designing the contract 

since they are fiscally inefficient. This article proposes to involve monitoring choices 

in the contract design scheme as a signal of cost type and develops a principal-agent 

framework to study the interaction of the two problems. We established a dichotomous 

optimization problem to quantify the optimal payment schedule under different 

contract scenarios.  We find that to design a feasible second-best contract, several 

conditions need to be met. Further analysis shows how the monitoring choices would 

affect the farmers’ expected payoff and potential actions so that the regulator could 

direct the high-cost farms into the program with minimal or zero payment. We also 

find the interesting interaction between the hidden information and hidden action 

problem in a signal game which is a result of different signal levels. The significance 

of the signal would affect the distribution of the payment.
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Chapter 1 

INTRODUCTION 

Payments for environmental services (PES), also known as payments for 

ecosystem services, are incentives offered to private parties in exchange for managing 

their land to provide some sort of environmental service. Compared with traditional 

approaches like regulatory restrictions, PES encourage private parties to carry out 

actions that will provide environmental benefits or stop negative externalities. There is 

a wide range of programs using PES.  Among different forms1, the bilateral contract 

technique is widely used. A leading example of contracting in the U.S. is the 

Conservation Reserve Program (CRP), which pays farmers to retire land. PES 

contracts also are used internationally. For example, the program in Costa Rica 

(Pagiola 2008) made substantial progress in transferring payments from environmental 

services (including water, biodiversity and carbon sequestrating) users to landowners. 

A research question arises about the optimal design of PES contracts. 

Participation only occurs if the payment for PES equals or exceeds the private party’s 

net cost of making the change. Asymmetric information problem arise when the 

private party has better information about their cost and may not fulfill their 

                                                 

 
1 PES could be realized by different schemes or market types. It could be a traditional 

subsidy paid by social planner. It could be a contract based on bilateral agreements. A 

trading market is also a kind of PES with a special feature that transactions are made 

between private parties while the social planner is only responsible for setting up the 

market. 
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responsibility because inadequate monitoring. This advantage may lead to adverse 

selection and moral hazard problems. There are potential applications of game theory 

under asymmetric information in PES contract design. Certain kinds of contracts can 

be worked out, such as Wu and Babcock (1995, 1996) who make farmers reveal their 

types. There will also be some kinds of trade-off between more monitoring and higher 

social net benefit (NSB), which means we may take a risk at certain level to trust the 

farmers, expecting them to underperform, and save some monitoring costs for some 

farms. In addition, since taxpayers provide these compensation payments and taxation 

itself incurs a deadweight loss, the regulator aims to pay compensation that covers the 

costs of compliance and no more. 

1.1 Asymmetric Information 

Asymmetric information comes in two major types in theory: hidden 

information and hidden action. See figure 1.1 for the relationship.  
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Figure 1.1: The structure of asymmetric information  

1.1.1 Hidden Information and Relative Research 

Hidden information arises when negotiating a PES contract if the private party 

has better information than the regulator. In a game, assume nature acts first to assign 

a value of talent2 to a land manager or owner, which will affect land productivity and 

emission levels. A similar difference could be found in the unobservable land 

capabilities to deliver production or abatement.  These differences result in the 

different costs for providing environmental services, which are unobservable to the 

regulator—in other words the PES market has an upward sloping supply curve. The 

problem is called adverse selection. One approach to solve the adverse selection 

problem is to get more information. But it is widely recognized that getting enough 

information is costly in time and in money. Furthermore, Wu and Bacock (1995) have 

argued that even if regulators could get enough information as private parties do, 

political pressure may preclude using it as the basis for policy formulation.  In other 

words, a perfect-information scenario or first-best scheme is impossible or too costly 

to get. First-best means: the regulator figures out the exact cost of each farm and make 

specific payment level for each farm.  Landowner compliance and monitoring would 

be costless. To make sure farmers’ compliance with the contract, first-best would also 

require every farm to be costlessly monitored. But this will be unlikely. 

                                                 

 
2 By the word “talent” here, we use it to stand for all these hidden information that 

affects both farm production and externality. It includes unobservable land 

characteristics, equipment quality, etc. 
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The solution to the hidden information problem depends on the use of key 

information. Some researchers set the uncertainty of talent as the key information, 

such as Wu and Babcock (1995). They developed a second-best contract, which could 

induce landowners with different land quality to choose the specific contract designed 

for them and reveal their types. The contract could reduce budgetary cost under hidden 

information.  However, Wu and Babcock (1995) simplified the problem with 

dichotomous types: a high-talent farm and a low-talent farm. Smith (1995) used a 

scalar-valued index, called an efficiency parameter, to represent the key information 

and characterized properties of a least-cost Conservation Reserve Program (CRP) by 

applying mechanism design theory. In a later paper, Wu and Babcock (1996) 

generalized and formalized the PES contract model by assigning continuous types for 

each farm as key information and derived the characteristics of an optimal contract.  

Others focused on the heterogeneity in cost directly, such as Moxey et al. (1999).  

They elaborate the information cost of establishing environmental contracts into 

selection cost, negotiation cost, and monitoring cost.  Similar to the work by Wu and 

Babcock (1995, 1996), they constructed a principal-agent model and a simulated 

example to demonstrate how the negotiation costs could be avoided through the 

revelation principle and mechanism design.  

There are also debates on whether a PES contract is an effective way to 

provide public benefits and which type of PES should the regulator use.  Ferraro 

(2008) compared procurement auctions and screening contracts with the conclusion 

that auction is better than screening contracts because the later one is difficult to 

realize in the real world. But the comparison depends merely on verbal description and 

further empirical study is needed for the argument. On the contrary, Arnold, Duke, and 
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Messer (2013) also compare the effectiveness of screening contracts, auctions, and 

externality-correcting tax and show results that screening contracts yield higher social 

surplus than auctions. Arnold, Duke, and Messer (2013) also show that a tax 

instrument can achieve first-best, though it is less likely to be observed in practice.  So 

based on the research above, I conclude that a second-best screening contract remains 

a promising instrument for delivering cost-effective PES.  

1.1.2 Hidden Action and Relative Research 

In contrast to hidden information, hidden action arises after a contract is signed 

and can lead to the moral hazard problem.  A regulator may find monitoring-contract 

compliance costly and may be unable to verify compliance with certainty.  For 

example, Spooner (1993) states that monitoring of land treatment and water quality 

should be multi-year before and after best management practice (BMP) 

implementation.  Thus, private parties have an incentive to avoid fulfilling their 

contractual responsibilities with incomplete monitoring.  If private parties “cheat” on 

agreed responsibilities, this is a form of efficiency loss.   

Research on hidden action identifies the importance of private parties’ risk 

preference with respect to their willingness to risk getting caught for cheating on the 

contract.  For example Ozanne et al. (2001) find that if monitoring costs are negligible 

or fixed, or farmers are highly risk averse, the moral hazard problem can be 

eliminated.  Peterson and Boisvert (2004) proposed a method to accommodate 

asymmetric information on farmers’ preferences in policy design and showed that 

incentives would be inadequate for many risk-averse producers, if the regulator does 

not account for the diversity in risk preference.  But work by Ozanne and White 

(2008) find different results.  They analyzed the design of PES schemes based on 
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monitoring and fines for risk-averse producers and, quite interestingly, they find that 

risk preferences play a relatively minor role in designing an efficient scheme.  As 

such, they argue that regulators should focus on assessing producers’ compliance cost 

because if the regulator adjusts the contract level to the producer’s expectation, the 

optimal input and level of monitoring is determined by the profit function, instead of 

risk preference. The profit function is a kind of hidden information. So the conclusion 

leads the discussion back to the hidden information problem instead of hidden action.  

1.1.3 Modeling both Hidden Information and Hidden Action 

The best way to simulate reality is to consider both types of asymmetric 

information together because they exist in the real world simultaneously.  Some recent 

works have sought to model both types of information asymmetry simultaneously 

such as Ozanne and White (2007).  Based on the input quota work by Moxey et al. 

(1999) and input charge work by White (2002), they  demonstrated that input charge 

and input quota approaches lead to identical outcomes, they also establish a general 

result that the presence of moral hazard may undermine attempts by the regulator to 

discriminate between producer types by differentiated contracts.  

Such works are still scarce, and the most obvious reason for not considering 

the two types together is that the combination will make the model extremely 

complicated.  In contrast, there are other approaches from empirical and theoretical 

literature that focus more on the value of information.  Borisova et al. (2005) 

addresses the value of information for water quality control and compares the value of 

information for price and quantity instruments.   
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1.2 Using Monitor as a Signal in a Screening Contract 

My review of the literature found no source that considered using monitoring 

as a signal in a screening contract.  It is reasonable to take a farmer’s choice of 

monitoring as a signal for several reasons.  First of all, Spence (1973) introduced the 

idea of signaling into the education model in which education has no direct effect on 

improving a person’s productivity, but the signal is useful for demonstrating ability to 

employers.  Compared to the PES contract scenario here, we find that monitoring, 

which comes with a cost just like education, cannot help the private parties to increase 

their productivity, either.  But monitoring can help farmers demonstrate their abilities 

to provide the environmental service, given that the regulator pays them for providing 

the service.  So, those private parties with low abatement costs would have the 

incentive to accept monitor and thereby reveal their ability to deliver desired services 

from the PES program.   

Based on the game theoretic contract design models presented in Rasmusen 

(2007), this paper develops PES contracts that fit the screening game framework and 

that an effective design could be cost-effective in certain situations.  In addition, the 

treatment of monitoring as a signal could transfer the monitoring cost from regulators 

to private parties, so that it becomes internal to the private parties’ decision making.  

This could largely simplify the asymmetric information problem.  The existence of 

monitoring could help prevent PES participants from cheating and those low-

abatement-cost participants would have the incentive to choose accept monitoring for 

a higher payment. 

This study would contribute to the literature in several ways.  First, in contrast 

to most previous studies of hidden information and hidden action, this study takes 

monitoring as a choice in the screening contract and also as a signal in the game and 
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compares the results of the optimal contract under different assumptions to show the 

theoretical effectiveness of the screening contract.  Second, by allowing different 

monitoring levels and probabilities of observing truth, we could see how the hidden 

information and hidden action interact theoretically.  

1.3 Mechanism Design 

In this incomplete information scenario where the regulator is uncertain about 

the farmer’s effort level and compliance cost, we examine the use of monitoring as 

signal, or a choice variable, in the PES contract.  On one hand, monitoring can help 

reveal the farmers’ effort level to a certain extent so that the regulator could set up a 

payment schedule based on the revealed effort.  On the other hand, through the choice 

of monitoring, the regulator gains information about farmers’ compliance cost.  By 

making farmers pay for the monitoring cost at first, as we predicted, all these farms 

with high compliance cost would choose low monitoring levels and low effort to get a 

baseline payment.  Similarly, the low cost farms would choose high monitoring level 

and high effort so that they could not only get the baseline payment, but also extra 

payment based on the effort information shown by monitor.  

The rest of the thesis is organized as follows. Chapter 2 sets up the 

assumptions and model.  Chapter 3 shows analysis of the model.  Chapter 4 lists and 

discusses results under different assumptions, and Chapter 5 contains the concluding 

remarks. 
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Chapter 2 

MODELING THE PES CONTRACT PROGRAM 

2.1 Game Structure 

2.1.1 Define Players and Types Assigned by Nature 

The set of players is N={R, LF, HF} representing a Regulator (R), a Low-cost 

farm (LC), and a High-cost farm (HC)3.  In other words, this simple game formulation 

consists of dichotomous types.  

Farmer’s best management practices (BMPs) provide environmental services, 

but they also come with a cost. As mentioned in the introduction part, the solution to 

the hidden information problem depends on the use of key information and researchers 

uses different kinds of key information such as type, talent, and cost. Here we follow 

Moxey et al. (1999) and assume heterogeneity in cost among different farms and 

consider the case of two farms4 for simplicity.  Let CL(x): X→ ℝ denote the cost 

function of low-cost farms while CH(x): X→ ℝ denotes the cost function of high-cost 

                                                 

 
3 Note that Nature is actually another player in the game and nature assigns the type to 

the farmers. But as nature only acts in the very first step, we omit it for simplicity, 

which will not affect the following interaction between regulator and farmers  

4 Extension of the two-type case to a continuum of farm types is relatively 

straightforward, but requires a more complicated structure and likely offers few 

additional analytical insights. Similar works are Wu and Babcock (1995), Moxey et al. 

(1999).  As this is a first effort to combine hidden action and hidden information, we 

maintain this simplifying assumption.   
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farms.  That is, for given effort level, x ϵ X= {0, 1}5, where 0 means low effort and 1 

means high effort, the relationship between the two different types’ cost is: CH(x)> 

CL(x). Under full information, first-best, a PES contract would offer a payment s 

which just covers the farmer’s compliance cost.  However, the hidden information 

prohibits this optimal schedule since the government do not know the cost type.  

While knowing their own types, farmers may report a higher than true abatement cost 

to get more payment.  To simplify the model, we assume that the government knows 

that there are two types of farms, but it cannot identify to which type a farm belongs. 

Thus, there is an asymmetric information (hidden information, adverse selection) 

problem because of the heterogeneity in compliance cost. 

At the farm level, the unobservable effort cost function, C(x), is defined as the 

difference between the unconstrained farm profit and the constrained profit. It is 

notable that the BMPs may change the profit function of the farm.  A BMP not only 

brings extra costs (like labor, installment, and management cost) to the farm, but may 

also bring private benefits to the farm.  For example, the use of cover crops may 

reduce the soil erosion and increase the nitrogen concentration of the soil.  So there is 

a chance that C(x) < 0, which means the BMPs’ private benefit exceeds private cost. 

Here, we only consider the case of positive C(x). As we mentioned above, C(x) is a 

kind of net cost, which has already taken the private benefits of BMPs into 

consideration.  

                                                 

 
5 We make an assumption here that x is a dichotomous BMP practice and farmers 

could only choose between 0 and 1.  We could extend the effort level x to a continuous 

variable. 
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2.1.2 Define the Signal: Monitor 

On the performance side, there is also asymmetric information (hidden action 

or moral hazard) because of the imperfection in observing or monitoring the true 

BMPs effort.  We assume monitoring expenditures could potentially reveal the true 

effort.  With monitoring devices or technology on the farm, there is a positive 

relationship between monitoring level (m) and the probability of knowing the true 

effort: Pr(m).  The relationship depends on the type of the BMPs (see figure 2.1 for 

reference).  

 

 

Figure 2.1: Monitor effort and the probability of reveal the true effort 

For example, structural BMPs, such as forest buffer, may only need very low 

effort or even just one visit to reveal the effort because once installed, it is costly for 

farmers to remove or change structural BMPs.  So, the probability would be a 

horizontal line at Pr(m) =1 (100%) as long as the monitoring effort is positive.  Other 
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BMPs, like cover crops may need additional effort to monitor.  The use of low level 

monitoring effort could result in a higher probability of capturing the true costs.  There 

are also BMPs that requires high levels of monitoring, like fertilizer reduction, if the 

true level of farm effort is to be observed.  In this case, low level monitoring would 

result in a low probability of capturing the true costs, because fertilizer use is flexible 

and easy to change.  The latter two monitoring functions are assumed to be concave 

because initial monitoring effort is more productive than later monitoring effort. 

Let Pr (m): M→ [0, 1] denote the corresponding probability of knowing the 

true effort BMP effort level given a monitor level m. Then 1－Pr (m) represents the 

probability that the regulator get the wrong observed effort level.  Since we made a 

dichotomous assumption of the true BMP effort, the wrong observed effort is easy to 

understand.  For example, if a farmer chooses high BMP effort x=1 on his farm and a 

monitor level m.  The regulator will observe the high effort with a probability of Pr 

(m) and may also make a mistake, with a probability of 1－Pr (m), to conclude that 

the farmer adopts low effort level.  For simplicity here, we only consider a 

dichotomous monitor choice here, which means m ϵ M= {0, 1}, where 0 means low 

monitoring level and 1 means high monitoring.  

2.2 Contract Design 

The regulator’s aim is to design a contract schedule over the observed effort 

level, monitoring choice, and payment level, {xj, m, sj}, j=l, h, where xj is the observed 

effort level, m is the monitoring level choice and sj is the payment level base on the 

observed abatement such that social welfare is maximized.  To get the payment, the 

farmers not only need to make a BMP effort xj, but also need to pay for the monitoring 

cost by themselves at first.  Let K: M→ ℝ++ denote the monitoring cost based on the 
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monitoring effort.  Knowing that farmers would maximize their own payoff, the 

regulator needs to design the contract very carefully to get to the desired results.  

Based on the assumption of homogeneous benefit and heterogeneous cost, the 

regulator would want these LC farms to take more responsibility and supply the 

environmental services because they are relatively cost-effective compared to the HC 

farms, i.e., they could supply the same environment benefit with a relatively low cost.  

In another words, regulators would want LC farm to choose the “good” contract ({xh, 

1, sh} (high effort, high monitor level and high payment)).  For the rest HC farms, it is 

not cost effective for them to supply environmental services because of their high cost.  

It is still necessary to encourage them to get into the program.  So the regulator would 

want HC farm to choose the “bad” contract, {xl, 0, sl} (low effort, low monitor and 

low payment).  

This game starts with a screening-type contract.  The regulator moves first by 

giving a contract menu to the two farmers.  Since the type of the farmers is 

unobservable, the game tree contains an oval around the two nodes of LC farm and 

HC farm.  Farmers are free to choose different contracts, but after they make a 

decision there is uncertainty about their payoffs because of the uncertainty of monitor 

results (figure 2.2).  
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Figure 2.2: Game tree 

Facing the contract menu {xj, mk, sj}, j, k=l, h, farmers will make decision on 

monitor effort and true BMP effort individually.  The strategies of farmers consist of a 

monitoring choice and a BMP effort choice.  Assume farmers make choice on 

monitoring effort first.  The choice set is  

m𝑘 = {
1     𝑖𝑓 ℎ𝑖𝑔ℎ 𝑚𝑜𝑛𝑖𝑡𝑜𝑟
0     𝑖𝑓 𝑙𝑜𝑤 𝑚𝑜𝑛𝑖𝑡𝑜𝑟

 

One farmer could choose high monitoring level or low monitoring level, as we only 

consider the dichotomous situation here.  After making a choice on monitoring effort, 

the farmers would make decisions on true BMP effort. They could choose between a 

high effort and a low effort.  
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σ = {
𝑥ℎ = 1    𝑖𝑓 ℎ𝑖𝑔ℎ 𝐵𝑀𝑃 𝑒𝑓𝑓𝑜𝑟𝑡
𝑥𝑙 = 0     𝑖𝑓 𝑙𝑜𝑤 𝐵𝑀𝑃 𝑒𝑓𝑓𝑜𝑟𝑡

 

We assume the payoffs for status quo or no participation is 0, which means that the 

payoffs from playing the BMP/monitoring game are deviations from the status quo.  

We use Bn
i to represent payoffs under different choice where i=L or H, stands for low 

cost farm or high cost farm and n is just an ordinal number assigned to different 

scenarios for simplicity.  Since there is a chance that the monitoring may be incorrect, 

the payoff to the farm involves uncertainty and a rational farmer will choose the 

strategies to maximize his expected payoff (the payoffs for a low-cost farm with 

different choices are shown in table 2.1. The payoffs for the high-cost farm is 

symmetric and could be derived easily by the same means).  

Table 2.1: Payoffs to Low-Cost Farm Under Different Scenarios 

Choice 

Observe 

effort and 

payment 

Payoff and 

corresponding 

probability 

Expected payoff 

m=1 ; xh 

high monitor; 

high effort 

xh;  sh 

high effort; 

high payment 

BL
1=SH –K(1)-CL(xh) 

Prob: Pr(1) 

E(B12)=Pr(1) BL
1+[1－Pr(1)] 

BL
2 xl

 ;  sl 

high effort; 

high payment 

BL
2=sl –K(1)-CL(xh) 

Prob: 1-Pr(1) 

m=1 ; xl 

high monitor; 

low effort 

xh
 ;  sh 

high effort; 

high payment 

BL
3=sl –K(1)-CL(xl) 

Prob: Pr(1) 

 
xl;  sl  

low effort; low 

payment 

BL
4=sh –K(1)-CL(xl) 

Prob: 1-Pr(1) 

m=0 ; xh 

low monitor; 

high effort 

xl;  sl  

low effort; low 

payment 

BL
5=sl –K(0)-CL(xh) 

Prob: Pr(0)  
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xh
 ;  sh 

high effort; 

high payment 

BL
6=sh –K(0)-CL(xh)                                         

Prob: 1-Pr(0) 

m=0 ; xl 

low monitor; 

low effort 

xl
 ;  sl 

low effort; low 

payment 

BL
7=sl –K(0)-CL(xl) 

Prob: Pr(0) 

E(B78)=Pr(0) BL
7+[1-Pr(0)] BL

8 
xl;  sh 

high effort; 

high payment 

BL
8=sh –K(0)-CL(xl) 

Prob: 1-Pr(0) 

No 

participation 

NA 0 
0 

 

        With an objective to maximize the overall social benefit by using the PES 

contract, society’s goal could be expressed as：  

Max: 𝜋 = ∑ 𝑒𝑠(𝑥𝑗) + {𝑠𝑗 − [𝐶𝑖(𝑥𝑗) + 𝐾(𝑚)]} − (1 + 𝑒)𝑠𝑗                  (1) 

Where es(xj) is the value of the environmental service from BMP xj and we assume 

that It may save a lot of work if we simply assume that all ES values exceed the costs 

of the practices.  I don’t think this is too controversial.  If you make this assumption, 

then the solution is much easier. (1 + 𝑒)𝑠𝑗 is the cost of transferring payment sj.  

Further, e is the deadweight loss of raising tax revenue to support government 

payments. 

To make sure that farmers join the program voluntarily, the contract must 

satisfy the individual rationality constraint, i.e., the payment must exceed farmers’ 

compliance cost and monitoring cost.  Because of the uncertainty of monitoring 

results, the final payoff to the farmers will be in the format of expected net return as in 

this individual rationality constraint for the LC farm (IRC1):  

E(𝐵12
𝐿 ) = 𝑃𝑟(1) ∙ 𝐵1

𝐿 + [1 − 𝑃𝑟(1)] ∙ 𝐵2
𝐿 ≥ 0 

which can be substituted according to table 2.1, revealing: 
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Pr(1) ∙ [𝑠ℎ − K(1) − 𝐶𝐿(𝑥ℎ)] + [1 − Pr (1)] ∙ [𝑠𝑙 − K(1) − 𝐶𝐿(𝑥ℎ)] ≥ 0 

which simplifies to:    

Pr(1) ∙ 𝑠ℎ + [1 − Pr(1)] ∙ 𝑠𝑙 ≥ K(1) + 𝐶𝐿(𝑥ℎ)                           (2) 

Function (2) makes sure that the expected payoff of the LC farm to take the correct 

contract is non-negative.  In another words, LC farms will be better off after taking the 

contract {xh, 1, sh}.  Similarly, the individual rationality constraint for the HC farm 

(IRC2):  

 

E(𝐵78
𝐻 ) = 𝑃𝑟(0) ∙ 𝐵7

𝐻 + [1 − 𝑃𝑟(0)] ∙ 𝐵8
𝐻 ≥ 0, or 

Pr(0) ∙ [𝑠𝑙 − K(0) − 𝐶𝐻(𝑥𝑙)] + [1 − Pr (0)] ∙ [𝑠ℎ − K(0) − 𝐶𝐻(𝑥𝑙)] ≥ 0 

which reduces to:    

Pr(0) ∙ 𝑠𝑙 + [1 − Pr(0)] ∙ 𝑠ℎ ≥ K(0) + 𝐶𝐻(𝑥𝑙)                           (3) 

Equation (3) makes sure that the expected payoff of HC farm to choose {0, 0, sl} is 

non-negative.  In another words, high cost farms will be better off after taking the 

contract {xl, 0, sl}. 

Also, to reveal the cost type of the farms, the contracts also need to make sure 

that farms of one type have no incentive to choose the option intended for the other 

type.  This is called self-selection or incentive compatibility constraint.  In functional 

form under our assumptions, it could be shown as this self-selection constraint for the 

LC farm (SSC1):  

E(𝐵12
𝐿 ) ≥ E(𝐵78

𝐿 ), or 

𝑃𝑟(1) ∙ 𝐵1
𝐿 + [1 − 𝑃𝑟(1)] ∙ 𝐵2

𝐿 ≥ 𝑃𝑟(0) ∙ 𝐵7
𝐿 + [1 − 𝑃𝑟(0)] ∙ 𝐵8

𝐿 

which reduces to:    
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[Pr(1) + Pr(0) − 1] ∙ 𝑠ℎ + [1 − Pr(0) − Pr(1)] ∙ 𝑠𝑙 

≥ 𝐾(1) − 𝐾(0) + [𝐶𝐿(𝑥ℎ) − 𝐶𝐿(𝑥𝑙)]                                   (4) 

Equation (4) makes sure that the expected payoff of LC farm to choose {1, 1, sh} is 

bigger than the Expected payoff to choose {0, 0, sl}.  The self-selection constraint for 

the HC farm (SSC2):  

E(𝐵78
𝐻 ) ≥ E(𝐵12

𝐻 )      

𝑃𝑟(0) ∙ 𝐵7
𝐻 + [1 − 𝑃𝑟(0)] ∙ 𝐵8

𝐻 ≥ 𝑃𝑟(1) ∙ 𝐵1
𝐻 + [1 − 𝑃𝑟(1)] ∙ 𝐵2

𝐻 

which reduces to:    

[Pr(1) + Pr(0) − 1] ∙ 𝑠ℎ + [1 − Pr(0) − Pr(1)] ∙ 𝑠𝑙 

≤ 𝐾(1) − 𝐾(0) + [𝐶𝐻(𝑥ℎ) − 𝐶𝐻(𝑥𝑙)]                                 (5) 

The HC farm is better off when choosing the intended contract over the good contract, 

which makes sure that the expected payoff of HC farm to choose {0, 0, sl} is bigger 

than the Expected payoff to choose {1, 1, sh}. 
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Chapter 3 

ANALYSIS OF THE MODEL 

To see how asymmetric information affects social benefit and the contract 

program, we analyzed the model with under three situations: the first-best scenario, 

second-best situation with no deadweight loss (e=0) and second-best situation with 

deadweight loss (e≠0). 

3.1 First-Best Scenario 

The first-best situation here leaves out 3 imperfections.  When the asymmetric 

information problem does not exist (regulator knows the cost functions exactly for 

each farm and also there is no cheating), (1) there will be no incentive compatibility 

constraint beacuase the regulator could just assign the socially optimal choices to 

different farmers accurately.  Also, (2) the monitoring effort is not necessary since no 

one is going to cheat.  Finally, (3) there is no deadweight loss from transferring money 

from taxpayers to farmers.  When the regulator pays each farm according to its type, 

then this is the objective function: 

 

Max:
 x𝑗

𝜋 = [𝑒𝑠(𝑥𝑗) − 𝐶𝐿(𝑥𝑗)] + [𝑒𝑠(𝑥𝑗) − 𝐶𝐻(𝑥𝑗)]            (6) 

s.t.: 𝑠ℎ − 𝐶𝐿(𝑥𝑗) ≥ 0 

       𝑠𝑙 − 𝐶𝐻(𝑥𝑗) ≥ 0 

𝑠ℎ + 𝑠𝑙 ≤ 𝑚𝑖𝑛{𝑠ℎ + 𝑠𝑙} 
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Note that the only constraints left here are individual rationality constraints that make 

sure the farmers will better off after accepting the contracts.  

Note the payments themselves are cancelled out in the objective function and only 

appear in the participation constraint.  While the regulator’s aim to maximize the 

social benefit, it is also reasonable to assume that the regulator would like to achieve 

this goal with the least payment.  This means that the regulator wants to pay as little as 

possible.  This assumption leads to the third constraint in the optimization problem. 

Solving the maximization problem gives the solution that: 

𝑠ℎ = 𝐶𝐿(𝑥ℎ) 𝑎𝑛𝑑 𝑠𝑙 = 𝐶𝐻(𝑥𝑙)       (8) 

which is the same as a common conclusion that the optimal BMP level should be the 

point where the marginal benefit of BMP is equal to the marginal cost of BMP.  And 

the payment should just cover the cost of installing the BMP. 

3.2 2nd-Best Scenario with e=0  

The second best solution takes individual rationality constraints and self-

selection constraints into consideration because the regulator cannot observe farmer 

types.  Starting with the situation when e=0, which means no deadweight loss, the 

optimization problem could be written as: 

Max
 

:  𝜋 = 𝑒𝑠(𝑥ℎ) − {[𝐶𝐿(𝑥ℎ) + 𝐾(1)]} + 𝑒𝑠(𝑥𝑙) − {[𝐶𝐻(𝑥𝑙) + 𝐾(0)]} (9) 

s.t.: 

Pr(1) ∙ 𝑠ℎ + [1 − Pr(1)] ∙ 𝑠𝑙 ≥ K(1) + 𝐶𝐿(𝑥ℎ)                      (IRC1) 

Pr(0) ∙ 𝑠𝑙 + [1 − Pr(0)] ∙ 𝑠ℎ ≥ K(0) + 𝐶𝐻(𝑥𝑙)                     (IRC2) 

[Pr(1) + Pr(0) − 1] ∙ 𝑠ℎ + [1 − Pr(0) − Pr(1)] ∙ 𝑠𝑙 
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≥ 𝐾(1) − 𝐾(0) + [𝐶𝐿(𝑥ℎ) − 𝐶𝐿(𝑥𝑙)] (SSC1) 

[Pr(1) + Pr(0) − 1] ∙ 𝑠ℎ + [1 − Pr(0) − Pr(1)] ∙ 𝑠𝑙 ≤ 

𝐾(1) − 𝐾(0) + [𝐶𝐻(𝑥ℎ) − 𝐶𝐻(𝑥𝑙)] (SSC2) 

Note the constraints here are reduced form which is a simplification from 

function (2), (3), (4), and (5). IRC1 and IRC2 stands for the individual rationality 

constraints which make sure that farmers will better off after participation. SSC1 and 

SSC2 stands for the self-selection constraints which make sure that different types of 

farmers would choose the contract designed exactly for him. 

If all the above variables were continuous, the problem would be a constrained 

maximization problem.  By using Kuhn-Tucker necessary conditions, one could solve 

the problem just as Wu and Babcock (1995) to reveal the optimal BMP efforts and 

monitor efforts for the problem.  However, we made dichotomous assumptions for the 

variables in this thesis and have an idea about the optimal value that xh*=1, xl*=0.  

The problem here could be recast to find a range of sh and sl which leads to the optimal 

solution.  We could solve the problem by constructing a two dimensional coordinate 

system by setting sh as the horizontal axis and sl as the vertical axis. Then the 

constraints form different ranges of feasible solutions in the coordinate system.  A 

feasible solution is one in which an equilibrium contract could be written. 
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(𝒂𝟏 =
𝑲(𝟏)+𝑪𝑳(𝟏)

𝐏𝐫 (𝟏)
, 𝒃𝟏 =

𝑲(𝟏)+𝑪𝑳(𝟏)

𝟏−𝐏𝐫 (𝟏)
) 

Figure 3.1: Individual rational constraint for the LC-farm  

Starting with IRC1, the possible combinations of sh and sl could be found by 

graphing the constraint in the two coordinate system. With equality, function Pr(1) ∙

𝑠ℎ + [1 − Pr(1)] ∙ 𝑠𝑙 = K(1) + 𝐶𝐿(𝑥ℎ), could be described by a line as shown in 

figure 3.1 as a1b1 where a1 is the intercept on the horizontal axis and b1 is the intercept 

on the vertical axis. And from simple algebra, we can get that 𝑎1 =
𝐾(1)+𝐶𝐿(1)

Pr (1)
, 𝑏1 =

𝐾(1)+𝐶𝐿(1)

1−Pr (1)
. Then considering about the inequality, it gives the shaded area in figure 

3.1.  The shaded area shows the feasible ranges of sh and sl of individual rationality 

constraint for LC-farm combined with the underlying assumption that sh ≥ sl. Since 

both the denominator and the numerator are positive, the intersection of the line and 

the axis are both positive, too. The slope of the constraint line is k1=Pr(1)/(Pr(1)-1). 
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(𝒂𝟐 =
𝑲(𝟎)+𝑪𝑯(𝟎)

𝟏−𝐏𝐫 (𝟎)
, 𝒃𝟐 =

𝑲(𝟎)+𝑪𝑯(𝟎)

𝐏𝐫 (𝟎)
) 

Figure 3.2: Individual rational constraint for the HC-farm 

By the same means of figure 3.1 and IRC1, we can get that the shaded area in 

figure 3.2 shows the feasible ranges of sh and sl of individual rational constraint for 

HC-farm(IRC2), which is a result of the inequality constraint function (3).  Since both 

the denominator and the numerator are positive, the intersection of the line and the 

axis are both positive, too. The slope of the constraint line is k2=Pr(0)/(Pr(0)-1). 

From figure 3.1 and figure 3.2, one can derive the condition that k1－k2=[Pr(0) 

－Pr(1)]/{[Pr(1) －1][Pr(0) －1]}<0.  So the constraint line in figure 3.1 is steeper 

than the constraint line in figure 3.2.  Both sets are sets with positive infinity. So the 

intersection of the two constraints is non-empty. 
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(a)        (b) 

(𝒂𝟑 =
𝑲(𝟏)−𝑲(𝟎)+𝑪𝑳(𝟏)−𝑪𝑳(𝟎)

𝑷𝒓(𝟏)+ 𝑷𝒓(𝟎)−𝟏
, 𝒃𝟑 =

𝑲(𝟏)−𝑲(𝟎)+𝑪𝑳(𝟏)−𝑪𝑳(𝟎)

𝟏−𝑷𝒓(𝟏)− 𝑷𝒓(𝟎)
) 

Figure 3.3: Self-selection constraint for the LC-farm.  

The shades area in figure 3.3a or 3.3b shows the feasible ranges of sh and sl of 

self-selection constraint for LC-farm, which is a result of the inequality constraint 

equation (4).  Note that the numerators of the intersections, a3 and b3 are always 

positive while the sign of the denominators depends on the value of [Pr(0)+ Pr(1) 

－1]. When Pr(0)+Pr(1) – 1>0, the constraint line intersects with the positive part of 

the horizontal axis and the negative part of the vertical axis, which is the case of figure 

3.3a. When Pr(0)+Pr(1) – 1<0, the constraint line intersects with the negative part of 

the horizontal axis and the positive part of the vertical axis, which is the case of figure 

3.3b. But the feasible area could not satisfy the constraint that sh>sl. So we get the idea 
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that Pr(0)+Pr(1) – 1<0 is not a feasible case.  Note the slope of the constraint line is 

k3=1 in both cases. 

 

(𝒂𝟒 =
𝑲(𝟏)−𝑲(𝟎)+𝑪𝑯(𝟏)−𝑪𝑯(𝟎)

𝑷𝒓(𝟏)+ 𝑷𝒓(𝟎)−𝟏
, 𝒃𝟒 =

𝑲(𝟏)−𝑲(𝟎)+𝑪𝑯(𝟏)−𝑪𝑯(𝟎)

𝟏−𝑷𝒓(𝟏)− 𝑷𝒓(𝟎)
) 

Figure 3.4: Self-selection constraint for the LC-farm 

The shaded area in figure 3.4 shows the feasible ranges of sh and sl of self-

selection constraint for HC-farm, which is a result of the inequality constraint function 

(5).  Similar to figure 3.3, the intersection depends on the value of [Pr(0)+ Pr(1)－1]. 

Since we get the idea that Pr(0)+Pr(1) – 1>0 always holds from figure 3.3, we do not 

need to consider the case that Pr(0)+Pr(1) – 1<0 here.  The constraint line intersects 

with the negative part of the horizontal axis and the positive part of the vertical axis, 

which is the case of figure 3.4a.  Note the slope of the constraint line is k4=1, too. 

The optimal solution of sl and sh must satisfy all the four above constraints at 

the same time, and also sl < sh.  To find this optimal solution, we could put all 4 

constraint sets into the same graph and find the intersection of the 4 sets. The final 
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solution set depends on the value of the individual constraint sets (which in graph, is 

the position of the shaded area.).  Further parameterization and assumptions are 

needed to get these values because there are too many unknowns to derive a unique set 

of equilibria. 

3.3 2nd-Best Scenario with e≠0  

Further analysis takes the deadweight loss of transferring tax money into 

consideration. The optimization problem could be written as: 

 

max
𝑥𝑗,𝑠𝑗

: π = 𝑒𝑠(𝑥ℎ) − {[𝐶𝐿(𝑥ℎ) + 𝐾(1)]} + 𝑒𝑠(𝑥𝑙) − {[𝐶𝐻(𝑥𝑙) + 𝐾(0)]} − e(𝑠𝑙 + 𝑠ℎ)    

(10) 

with the same two individual rationality constraints and two self-selection constraints. 

One interesting thing in this scenario is that the deadweight loss factor, e, only enters 

the objective function and would not affect farmers’ decisions.  It is actually a kind of 

constraint for which only the regulator would consider when determining whether it is 

socially optimal to write any contract.  In the optimization problem, it has the same 

function as minimizing payment constraint.  Since we will get the optimal payment 

level from the constraint sets, the final payment level would be exactly the same as 

results in section 3.2. The only difference is a lower social benefit caused by 

transferring money. 
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Chapter 4 

RESULTS DISCUSSION 

4.1 Proof of Non-Existence 

When we graph the two self-selection constraints together in one figure, there 

will be different situations based on the relative value of a3 and a4. 

 

(a)      (b) 
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(c) 

 

Figure 4.1: Intersections of self-selection constraints 

Note when a4<a3 (so that b4>b3), as figure 4.1a above, there is no intersection 

between the two sets, which means no optimal solution.  We will get a4<a3 when  

𝑎4−𝑎3 =
[𝐶𝐻(1)−𝐶𝐻(0)]−[𝐶𝐿(1)−𝐶𝐿(0)]

Pr(1)+Pr(0)−1
< 0   ,                               (11) 

which is [𝐶𝐻(1) − 𝐶𝐻(0)] − [𝐶𝐿(1) − 𝐶𝐿(0)] < 0 (Since we have Pr(0)+Pr(1) – 

1>0 always holds.).  On the opposite side, as long as [𝐶𝐻(1) − 𝐶𝐻(0)] − [𝐶𝐿(1) −

𝐶𝐿(0)] > 0, which implies a4>a3, as figure 4.1b, the intersection between the self-

selection constraints is non-empty with positive infinitive values.  So the intersection 

of four constraint sets is non-empty, too.  When [𝐶𝐻(1) − 𝐶𝐻(0)] − [𝐶𝐿(1) −

𝐶𝐿(0)] = 0, which is shown by figure 4.1c, the self-selection constraint set are the 

constraint line.  
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From the discussion of figure 3.3b above, one sees that cases with Pr(0)+Pr(1) 

– 1<0 are not feasible.  So in certain circumstances, there is no equilibrium because it 

is impossible to write a second-best contract.  Or in other words, the separating 

equilibrium is impossible here and only a pooling equilibrium (a single payment 

contract) might be obtained.  With certain assumptions, we can compare the results 

between separating equilibrium and pooling equilibrium to see how much better do we 

do with separating equilibrium. 

d 

 

4.2 Parameterization for Second-Best Scenario with e=0  

As we can see from the optimization problem, to get a precise and analytically 

useful final equilibrium more information of the above variables (BMP cost, monitor 

cost, probability of knowing the truth) needs to be acquired or assumed.  For BMP 

cost here, we use cover crops as an example. 

Table 4.1: Cover-Crop Cost/Payment Data 

Cost study 
Range($/Acre) 

Factors driving 

heterogeneity in cost  

Tourte and Buchanan 

(2003) 
[48, 163] 

 

Bergtold and Maddy 

(2008) 
[62, 107] 

CC type 

Wieland, Parker et al. 

(2009) 
[31.4, 37.3] 

CC type, planting time, 

method and geology 

SARE CTIC CC Survey 

Report (2012-2013) 
40 

Median value 

MDA CC cost estimation  

(2014) 
[56.63, 161.63] 

CC type 

Tyner and Pratt (2014) [35.78, 69.81] CC type 
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Payment Examples   

Sussex Conservation 

District CC Program 

(2014) 

{40, 50} 

Planting dates 

Maryland’s CC program 

(2014-2015) 
[45, 100] 

Traditional CC, Planting 

dates and practices(manure, 

tillage, broadcast and so 

on) 

{25, 35} Harvest CC, CC type 

 

Based on these cost studies, we assume cost estimation of $140 for a high-cost 

type farm using high BMP effort (CH(1)=140), $100 using low BMP 

effort(CH(0)=100).  Similarly, we assume $80 cost for low-cost type farm using high 

BMP effort (CL(1)=80), $60 using low BMP effort(CL(0)=60).  These assumptions 

satisfy the relationship that[𝐶𝐻(1) − 𝐶𝐻(0)] − [𝐶𝐿(1) − 𝐶𝐿(0)] ≥ 0. 

For monitoring costs, we assume K(1)=$80 and K(0)=$40 because the 

monitoring of cover crop is relatively low cost to the regulator, generally regulator 

could just pay a visit at certain time to eyeball the practice. Here low monitoring level 

could be interpreted as a one-time visit with a cost of $40 while high monitoring be 

visiting twice with a cost of $80. 

The assumption on Pr(1) and Pr(0) needs to satisfy both Pr(1) > Pr(0) and 

Pr(1) +Pr(0)>1.  Varying by 0.1 we get the possible combinations of Pr(1) and Pr(0) 

as: 

Table 4.2: Possible Combinations of Pr(1) and Pr(0) 

Pr(1) 0.6 0.7 0.8 0.9 

Pr(0) 

0.5 0.6 0.7 0.8 

NA 0.5 0.6 0.7 

NA 0.4 0.5 0.6 

NA NA 0.4 0.5 



 31 

NA NA 0.3 0.4 

NA NA NA 0.3 

NA NA NA 0.2 

 

Before we get the final results here, we need to make another assumption about 

the upper limit of the payment level. It is the rational regulator government. In the 

optimization model, the constraints work to drive different types of farmers to make 

the optimal choice. But no constraint is showed to limit the payment ability of the 

government. A rational regulator should pay no more than the net benefit results from 

the practices. In functional form, it should be note as: 

s*
h ≤ es(xh)-C

L(xh)-K(1) 

s*
l ≤ es(xl)-C

H(xl)-K(0) 

We assume that the environment service value is high enough that the payment level is 

always lower that the net benefit of the practices. 

Given above assumptions and parameterizations, we calculate the values of an 

and bn (n=1, 2, 3, 4).  Results are shown in table below. A binding constraint means 

the constraint holds with equality. In economics, this means that the farmer is 

indifferent between the choices made in the constraints. 

Table 4.3: Simulation Results 

Pr(1) Pr(0) sh sl sh+sl Binding constraints 

0.6 0.5 600 0 600 SSC1 

0.7 0.6 259 29 288 SSC1, IRC2 

0.7 0.5 300 0 300 SSC1 

0.7 0.4 600 0 600 SSC1 

0.8 0.7 223 103 326 SSC1, IRC2 

0.8 0.6 259 59 318 SSC1, IRC2 

0.8 0.5 200 0 200 SSC1, IRC1 

0.8 0.4 300 0 300 SSC1 
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0.8 0.3 600 0 600 SSC1 

0.9 0.8 208 123 331 SSC1, IRC2 

0.9 0.7 211 111 322 SSC1, IRC2 

0.9 0.6 211 91 302 SSC1, IRC2 

0.9 0.5 215 65 280 SSC1, IRC2 

0.9 0.4 233 0 233 IRC2 

0.9 0.3 300 0 300 SSC1 

0.9 0.2 600 0 600 SSC1 

 

For example, with Pr(1)=07, Pr(0)=0.6, we derive the relative values of an and 

bn to graph the different constraints in figure 4.2.  Then the shaded area is the solution 

set that satisfies all four constraints for a separating equilibrium.  To find the optimal 

solution, note that we also have a constraint to minimize the total payment level, 

which is sh+sl.  The dashed line stands for sh+sl = P in the figure 4.2, and as the line 

moves to the right/up direction, P will increase accordingly and decrease in the 

opposite direction.  So as the total payment line moves out from the origin (0, 0) to the 

upper right direction and intersects the solution set, the first solution we could get is 

the lowest level of P, which is the optimal sh+sl value. In this case, it is sh= 259, sl =29 

and sh+sl=P=288.  

When we compare the different payment schedules in table 4.3 with first best 

payment schedule and actual cost to the farms, we find interesting results here. Based 

on our parameterization, sh= CH(1)=140 , sl = CL(0)=60 and sh+sl=P=200, the total 

payment is higher in our model but within a reasonable range. The extra payments 

come from the efficiency loss results from the asymmetric information. But there is a 

special case when Pr(1)=0.8, Pr(0)=0.5, such that sh= $200 , sl =$0 and sh+s-

l=P=$200, which is identical to the first best case. This means no efficiency loss and 

second-best achieved the same results with first-best. Further, if we compare the 

payment level with the actual cost of farmers, we find something interesting. The 
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actual cost for high cost farms are actually CH(1) +K(1)=$140+$80=$220, which is 

less than sh under corner solution cases but may be higher than other cases. And when 

we looked at the actual cost to low cost farms, CL(0) +K(0)=$60+$40=$120, it is 

actually higher than the payment schedules. This is a result of the expectation method 

we used in the model constraints.   

In this case, there are two constraints binding, IRC1 and SSC1. 

 

Figure 4.2: Optimal solution with Pr(1)=07, Pr(0)=0.6 
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Note that when sl is 0, it means a corner solution where the optimal solution 

happens to be on the horizontal axis. Just as shown in figure 4.3. In this case, there is 

only one constraint binding, the SSC1. 

 

Figure 4.3: Example of a corner solution 

4.3 Results Discussion 

 

To find out how the final payment level would change according to different 

probabilities, we graphed the results of table 4.3 in figure 4.4. In the two graphs, the 

horizontal axis and vertical axis stands for the probability levels so each point in the 

coordinate system stands for a possible combination of the two monitor levels. Under 

each combination, there is an equilibria contract level derived. To show how the 

underlying assumptions and different probabilities affect the contract level, we use the 
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size of the circle. The larger the circle, the higher of sh+sl, which is the total payment 

level. 

 

Figure 4.4: Equilibria contract levels 

From the above figure, we can see that: 

(1) Under the parameterization and assumptions we made, the corner solutions 

shows extreme results (larger payment than interior optimum).  All these corner 

solutions result from the only binding constraint: SSC1. This occurs, theoretically, 

from the inequality of SSC1, we derive that an unreasonable high payment corner 

solution when Pr(1)+Pr(0)－1 is relatively small.  The small value of Pr(1)+Pr(0)－1 

blows up the SSC1 (higher payment schedule to make sure the LC farms to select the 

right contract) since Pr(1)+Pr(0)－1 is in the denominator.  However, the value 

Pr(1)+Pr(0) really does not make that much sense in the real world. Since the 

probability of different monitor choice is independent action and it’s true that we can 
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compare monitoring probability by Pr(1)－Pr(0) but summing up the different 

probability does not make any realistic sense.  

Another interesting interpretation of the corner solution is that the HC farm 

would still join the program even the potential payment level, sl, is 0. This seems 

unreasonable in the real world but it makes sense here and it could be explained by the 

expected payoff to the farmers.  The expected payoff includes a chance that when HC 

farms invest a low effort and a low monitor on their farms, the regulator may observe 

the low effort as high effort by mistake and give them a high payment.  Especially 

when Pr(0) is relatively low, which means that the regulator is very likely to make the 

above mistake and sh is very high.  This explanation matches the corner solution 

results since they come with low Pr(0) and high sh.  So, by making sh really high, the 

regulator could trick the high cost farmers into the program. 

(2) The highest total payment happens at corner solutions (which is the left 

lower bound of the range).  High payments are not necessarily ineffient (unless there is 

deadweight loss), but they do affect the separating equilibrium.  As the probabilities 

increase to the upper right corner, the total payment level decreases to the lowest at 

first but start increasing after that.  This means, the regulator is worse off only if the 

deadweight loss factor e≠0.  The more payment made by the regulator, the lower the 

total social benefit.  If the regulator operates, however, in a constrained budget world, 

then this higher payment would mean lower enrollment. 

(3) Results in (2) seems counter intuitive as the probability for knowing the 

truth increases, the actual total payment increases too.  Why does this happen?  One 

possible reason is that the interaction between the hidden information problem and the 

hidden action problem.  Note that we introduced monitoring as a signal in this game 
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and the probabilities are reflections of monitoring.  So, we could define the difference 

of Pr(1) and Pr(0) as the truth-revelation of the signal of the signal.  The larger the 

difference, the more significant the signal is. When both Pr(1) and Pr(0) increase to 

the upper limit ( to the up-right corner of the quadrant), it is true that higher 

probability could make sure that the regulator could observe the real effort so that fix 

the hidden action or cheating problem.  However, it will not help to distinguish the 

type or the heterogeneity in the cost.  The regulator still wants to distinguish them so 

that he or she can customize the payment.  As the difference in probabilities of truth-

revelation of the signal, or Pr(1)－Pr(0), drops, the significance of the signal is not 

strong enough or the signals are so similar that it cannot distinguish the two types.  In 

other words, the signal is not working anymore and the whole contract is heading to a 

single payment contract schedule (pooling equilibrium) and higher payments.  

Another interpretation is that there might be higher information rent for these 

high cost type farms.  To find out whether this is true, we need to see what is the 

distribution of payments for each type?  Or what is the size of sh and sl?  How is the 

distribution going to change according to the change in probability and why?  This 

could be seen from figure 4.5 
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Figure 4.5: Distribution of optimal payment 

When a corner solution happens, all the payments goes to sh so sl =0. But as 

long as sl≠0, it shows a strictly increasing trend as either probability increases.  The 

change in sh is relatively small when sl is not 0.  Why?  This result can be understood 

from two different perspectives.  

Mathematically, the principal driver of the difference between these corner 

solutions and inner solutions is the binding constraints.  From table 4.3, almost all the 

optimal solutions (except the specially case of Pr(1)=0.9, Pr(0)=0.4) have SSC1 

binding.  But the inner solutions all have one more binding constraint, which is IRC2. 

Therefore, the inner solutions are actually the result of solving the two binding 

equations set, which makes sure that the optimal point is in the positive quadrant. 

IRC2 is used to assure the expected net benefit of the HC farm which should get the 

payment sl. 
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From another perspective, we could use an extreme case to understand the 

result.  What if there is only a perfect monitoring choice, which is Pr(1)=Pr(0)=1? We 

take this special parameterization back in to the optimization functions which is: 

Max
 

:  𝜋 = 𝑒𝑠(𝑥ℎ) − {[𝐶𝐿(𝑥ℎ) + 𝐾(1)]} + 𝑒𝑠(𝑥𝑙) − {[𝐶𝐻(𝑥𝑙) + 𝐾(0)]} (12) 

s.t.: 

𝑠ℎ ≥ K(1) + 𝐶𝐿(𝑥ℎ)                                           (IRC1) 

𝑠𝑙 ≥ K(0) + 𝐶𝐻(𝑥𝑙)                                           (IRC2) 

𝑠ℎ − 𝑠𝑙 ≥ 𝐾(1) − 𝐾(0) + [𝐶𝐿(𝑥ℎ) − 𝐶𝐿(𝑥𝑙)]            (SSC1) 

𝑠ℎ − 𝑠𝑙 ≤ 𝐾(1) − 𝐾(0) + [𝐶𝐻(𝑥ℎ) − 𝐶𝐻(𝑥𝑙)]          (SSC2) 

The objective function is still not affected and the constraints are largely simplified 

because of the extreme situation (the probability parameters is simplify to 1).  The 

optimization problem is simplified to a simple hidden information problem similar to 

those in Wu and Babcock (1995, 1996) and the monitor cost works as a kind of fixed 

cost in the function.  In this extreme situation, IRC2 assures that 𝑠𝑙 ≥ K(0) +

𝐶𝐻(𝑥𝑙) = 140.  So we could conclude that starting from the corner solutions where 

sl=0, as both Pr(1) and Pr(0) increases to the upper limit of 1, IRC2 shifted to the 

upper right and push the solution set  to the extreme case. 

4.4 Further Discussion on e 

When e≠0, it affects the total social benefit but does not affect the results of 

payment schemes, since deadweight loss does not enter the constraints by which we 

get the results of total payments.  But it is useful to show the net benefit of transferring 

payment.  If e is so high that the cost of transferring money is higher than the benefits 
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of BMP efforts, the system will collapse.  This could be verified by assuming a dollar 

amount of environmental service. 
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Chapter 5 

CONCLUSION 

This article has identified an optimal PES contract schedule by involving 

monitoring choice as a signal in the contract that aims to solve both the hidden 

information and hidden action problem faced by the regulator.  By setting an optimal 

payment schedule, the regulator could tell which farm is a low-cost or high-cost farm 

and which one is a high-cost or low productive farm by their choice of monitoring 

level, since the farmers’ expected net benefit is maximized only if he or she chooses 

the contract designed specifically for that farmer.  

Although much literature has devised methods, such as auctions or trading, to 

reduce the potential information rents by inducing private parties to reveal voluntarily 

private information, our findings suggest that setting monitoring in the contract 

schedule could not only distinguish different types of agents but also reveal the true 

effort on site to keep the agents from cheating.  This conclusion is built on 

assumptions of different monitor choice combination which may not hold in general 

because of the reality of imperfect monitoring, the proof of non-existence showed the 

cases when a separating contract is not working. .  We find that under certain levels of 

probability to observe the true effort, which is based on the monitor level, it is 

impossible to write a separating contract. 

In addition, the uncertainty of payment, which results from the uncertainty of 

monitoring results, would not only affect the payment schedule, but also affect the 

action of the agents.  The regulator could set the low payment level to zero but set the 
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high payment level really high so that he can motivate the high-cost type farms into 

the scheme since they believe that there is a chance for the regulator to make a 

mistake. 

At last, the interaction between the hidden information and hidden action 

problem is significant and would affect the optimal payment level in certain ways.  As 

we defined above, the significance of the signal, will affect the payment distribution. 

As both monitoring choices tend to perfect monitoring, the significance of the signal 

drops so that it is useless to tell the difference of different types, which leads to a 

normal hidden information problem and a higher total payment.  

Of course a primary disadvantage of the model here is the largely simplified 

dichotomous case since the both the effort level and cost heterogeneity in the real 

word should be a viewed as a continuously changing factor.  A limitation of our 

empirical analysis is that our Parameterization are based on other researchers and may 

vary significantly between the BMP choice, geographical region and many other 

factors. The result depends on the relative value of different variables in the model.  

Without further parameterizations on these variables, it is hard to find an optimal 

solution.  This could limit the generalization our findings.  Finally, the model structure 

is somewhat stylized, and does not apply to the current interactions between regulators 

and farmers. 
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