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U.S. cereal rye winter cover crop 
growth database
Alexandra M. Huddell et al.#

Winter cover crop performance metrics (i.e., vegetative biomass quantity and quality) 
affect ecosystem services provisions, but they vary widely due to differences in agronomic 
practices, soil properties, and climate. Cereal rye (Secale cereale) is the most common 
winter cover crop in the United States due to its winter hardiness, low seed cost, and high 
biomass production. We compiled data on cereal rye winter cover crop performance metrics, 
agronomic practices, and soil properties across the eastern half of the United States. The 
dataset includes a total of 5,695 cereal rye biomass observations across 208 site-years 
between 2001–2022 and encompasses a wide range of agronomic, soils, and climate 
conditions. Cereal rye biomass values had a mean of 3,428 kg ha−1, a median of 2,458 kg ha−1, 
and a standard deviation of 3,163 kg ha−1. The data can be used for empirical analyses, to 
calibrate, validate, and evaluate process-based models, and to develop decision support tools 
for management and policy decisions.

Background & Summary
Winter cover crops provide many ecosystem services such as weed suppression, improved soil structural and 
hydraulic properties, increased soil organic carbon (C) stocks, reduced erosion, reduced winter nitrogen (N) 
leaching, and N provision to cash crops1–4. Cover crop biomass production is often positively correlated to 
ecosystem service provisions1. For example, previous research has shown that weed biomass often decreases 
with greater cereal rye (Secale cereale) residue5,6, and soil organic C often increases with cover crop biomass7,8. 
Similarly, there were greater reductions in nitrate leaching with increases in non-leguminous cover crop shoot 
biomass in a global meta-analysis3. Elucidating the agronomic, soils, and climate controls on winter cover crop 
performance can help farmers determine the optimal time to terminate cover crops for maximum agronomic 
benefits, and support broader adoption of winter cover crops for increased climate resilience, reduced soil ero-
sion, and lower nutrient pollution2.

We focused on performance data of cereal rye, the most commonly used cover crops in the United States9,10. 
To acquire data for this study, we reached out to potential data contributors through regional cover crop groups 
and the Precision Sustainable Agriculture and Getting Rid of Weeds networks, two national research consortia 
with a major focus on cover crop research. Recruiting data contributors through this network enabled us to 
assimilate many plot-level observations from both on-station and on-farm studies (Fig. 1). Our goal was to cre-
ate a dataset on cereal rye cover crop biomass quantity and quality across heterogeneous agronomic, soils, and 
climate conditions with broad coverage across the eastern half of United States (Fig. 1).

Methods
We collected data on cereal rye cover crop performance metrics (biomass, N content, and C:N ratio), addi-
tional agronomic and soil data, and metadata such as any associated publications (Table 1). The minimum data 
required from a location for inclusion in our dataset was aboveground (shoot) cereal rye biomass, the respective 
harvest or sampling date, the experimental site name, year, latitude and longitude, cereal rye planting date, cereal 
rye planting method (drilled vs. broadcast), and whether N fertilizer was applied during cover crop growth 
(Table 1).

Additional data gathered included cereal rye cultivar; seeding rate; row spacing; plant population; tiller den-
sity; growth stage at sampling; cumulative growing degree days; shoot N (concentration or content); shoot C:N 
ratio; N fertilizer rate, type (form), and application date; presence of fall tillage; and previous and subsequent 
cash crop. Root C and N data were requested but not available for any study. Additional soil data gathered 
included texture class and/or clay, silt, and sand percentages; bulk density; soil pH; soil ammonium, nitrate, 
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Fig. 1  Map of research locations with the point color scaled by the number of available observations.

File description File name Purpose Variables included

Data dictionary 1_data_dictionary.csv
Definition of 
variables for the 
following files

File name, attribute name, attribute definition, string format, unit, 
number type

Study metadata 2_study_metadata.csv
Detailed site 
location and study 
design information

study ID, site ID, year, state, latitude, longitude, whether location 
was obscured for privacy, experimental design, number of 
replications, publication DOI, methods for unpublished data

Rye data 3_rye_data.csv
Cereal rye related 
data associated 
with biomass 
observations

study ID, site ID, year, planting and sampling dates, N rate applied 
fall or spring to cover crop, cultivar, biomass, C and N data, seeding 
rate, cumulative growing degree days, plant population measurements

Agronomic data 4_agronomic_data.csv
Agronomic 
management data 
general to each 
study

study ID, site ID, year, previous and next cash crop, planting method, 
fall tillage, row spacing, whether N fertilizer was applied during cover 
crop growth, N fertilization date

Soil data 5_soil_data.csv
Soil sample data 
and/or general site 
soils data

study ID, site ID, year, whether soil samples were taken, sampling 
event timing and depths, soil ammonium, soil nitrate, total inorganic 
N, soil texture class, sand %, silt %, clay %, bulk density, percent soil 
organic matter or carbon, pH

Table 1.  Structure of the data records with file name, purpose, and variables included for each tabular dataset 
included. Bolded variables were required for inclusion in the (minimum) dataset; other variables were not 
available for all sites.

Fig. 2  Histogram of cereal rye shoot dry biomass data.
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and/or total inorganic N; soil organic matter or C; as well as soil sampling depth and timing. The overwhelming 
majority of observations were recorded as plot level data. In the few cases (17 observations) when plot level data 
were not available, we collected treatment means with standard deviations (Table 1). At least 14 of the 28 studies 
correspond to existing publications, which are detailed in the study metadata CSV file11–25. Plot sizes varied from 
as small as 6.1 × 6.1 m to as large as 30.5 × 42.7 m depending on the study. These published datasets described 
methods for cereal rye biomass collection and some soil analyses in each publication. The DOI from any publi-
cations associated with data provided is listed in the “publication_DOI” column in the study metadata file, and 

Fig. 3  Cereal rye shoot biomass versus time elapsed between cereal rye planting to termination date.

Variable Mean Standard deviation Observations with reported data (%)

Fall fertilization rate (kg N ha−1) 4.7 14.7 93.0

Spring fertilization rate (kg N ha−1) 17.4 37.0 93.0

Shoot N (%) 2.5 5.23 40.8

Shoot C:N 32.0 22.5 38.3

Seeding rate (kg ha−1) 101 35.3 50.4

Table 2.  Summary of commonly-reported ancillary data from the rye growth dataset.

Fig. 4  Summary of planting method data.
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“NA” is listed for studies with unpublished data. The methods for cereal rye biomass collection and some soil 
analyses and unpublished are detailed in the “methods_unpublished_data” column of the study metadata file.

To focus on the vegetative biomass of cereal rye that is planted in the fall and followed by cash crops in the 
spring, we only included biomass sampling that occurred in February, March, April, or May. We excluded obser-
vations from sites that terminated winter cover crops after May—such as forage experiments where cover crop 
vegetative biomass and grain were sampled in June or later. We also omitted biomass data outliers that fell above 
the 99.9th percentile (n = 6) because the upper end of the distribution appeared to have unrealistic values. All 
figures and summary statistics were created using the statistical software R (v4.1.3)26 and the following packages: 
ggplot2 v3.4.127, ggmap v3.0.128, and ggsn 0.5.029.

Data Records
The metadata and primary data collected can be accessed through the following repository: https://doi.
org/10.5061/dryad.tx95x6b3h30. The data are organized in tabular CSV files including a data dictionary, study 
metadata, rye data, agronomic data, and soil data. (Table 1). In 26 out of 245 site years, location data from private 
farms were obscured to ensure privacy and have lower location accuracy than the rest of the dataset; as such, 
those locations are indicated as “TRUE” in the “location_obscured” variable. We reported location data with 
as much precision as possible for each datapoint, as a result, there are varying levels of precision in reported 
latitude and longitude coordinates.

Technical Validation
To check the validity of the data we collected, we examined the spread of the data and found some unreasonable 
values. Cereal rye biomass data outliers that fell above the 99.9th percentile were excluded. The final dataset had 
a mean of 3,428 kg ha−1, a median of 2,458 kg ha−1 and a standard deviation of 3,163 kg ha−1 (Fig. 2). We also 
checked overall data validity by assessing whether cereal rye biomass generally increased with time elapsed 
from planting to termination date. This increase was observed; however, there was a large amount of variability 
(Fig. 3). This variability in cereal rye biomass production may be explained by differences in agronomic, soil, and 
climate factors. A subset of commonly reported ancillary data is summarized in Table 2 and Fig. 4.

Code availability
The code used to create figures for this study can be accessed at the following repository: https://doi.org/10.5061/
dryad.tx95x6b3h30. Figures and analyses were produced using R v4.1.3.
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