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ABSTRACT 

This research will focus on the challenges faced by drinking water utilities due to extreme 

weather events.  The higher occurrence of extreme weather events due to climate change 

is expected to lead to increased non-point source pollution from agricultural land. Using 

experiments with students we study behavioral responses towards various policies that 

can reduce non-point source pollution.  Specifically, we study responses toward ambient 

(output-based) verses targeted (input-based) subsidies to improve water quality under 

various weather scenarios. We find behavior changes with the type of subsidy offered due 

to differences in risk allocation. Under ambient policy, the risk is shared with the entire 

group while targeted policies involve individual risk. People that are risk-averse tend to 

prefer input-based policies more because they are given perfect information. Our results 

suggest both ambient and targeted subsidies work to improve social welfare and decrease 

pollution. We find that input-based subsidies, that could be implemented with real time 

sensing technology, are best to minimize the economic and social cost to the drinking 

water utility. In addition, the results of the experiment show that as weather variability 

increases and there is a greater likelihood of extreme events, both policies become more 

effective, resulting in lesser pollution. 

Key Words: Nonpoint source pollution, Laboratory economic experiment, Extreme 

Weather 
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Chapter 1 

INTRODUCTION 

According to the EPA, one of the largest sources of water quality impairment 

results from agricultural and other non-point source (NPS) polluters (U.S. Environmental 

Protection Agency). To reach federal water quality standards in the Clean Water Act will 

require new policies that focus on mitigating non-point source pollution from agriculture 

and other sources. Scientists are concerned that a climate change-related increase in 

extreme weather events will result in higher levels of dissolved organic carbon (DOC) in 

water. Increased DOC combined with chlorine used to treat bacteria at drinking water 

utilities (DWUs) can lead to increased levels of cancer-causing trihalomethanes such as 

chloroform in municipal drinking water (Delpa et al. 2009).  

The expense and difficulty of monitoring NPS pollution makes its regulation 

problematic. Early work in NPS pollution regulation focused on ambient tax/subsidy 

mechanisms to achieve an exogenous pollution target corresponding to socially optimal 

pollution levels (Xepapadeas 1992, Cabe & Herriges 1992, Xepapadeas 1995, Horan et 

al. 1998, Segerson 1988 etc.). Ambient policies are based on the total observed pollution 

concentration. These have attractive theoretical properties, and recent economic 

experiments have found them to be effective in achieving the target under a fairly broad 

variety of conditions (e.g., Spraggon, 2002, 2004, 2013; Alpízar et al. 2004; Poe et al. 

2004; Cochard et al. 2005; Vossler et al. 2006; Suter, Vossler and Poe, 2009; Vossler, 

Suter and Poe, 2013; Suter et al. 2008). Ambient mechanisms are output-based 

mechanisms because the transfers (a tax or subsidy to the producer) are based on the 

observed concentration of a byproduct of producers’ output decisions. In contrast, most 

current water quality programs used in practice are voluntary and offer input-based 
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mechanisms that subsidize land use and production practices.  Such as conservation 

easements and best management practices (BMPs).  Output-based mechanisms focus on 

the amount of pollution resulting from production. While input-based mechanisms focus 

on the amount of production or inputs such as fertilizer and practices used during 

production.  This research focuses on how DWUs are impacted by extreme weather 

events and how the risk allocation implied by mechanism structure affect the efficiency 

of NPS pollution regulations. Under ambient policy, the risk of getting no subsidy or a 

lower subsidy is shared with the entire group while targeted policies involve individual 

risk. People that are risk-averse tend to like the input-based policies more because they 

are given perfect information. In addition, as extreme weather events increase, the risk of 

increasing pollution and getting a lower subsidy increases. Laboratory-based economic 

experiments test ambient output-based and targeted input-based policies in reducing NPS 

pollution under various weather scenarios. In the experiments we assume the regulator is 

risk neutral. We are studying the risk-aversion of the producers, and find that producers 

tend to be more risk-averse when there is a greater likelihood of extreme weather events.   

We study the behavioral response towards output-based ambient versus input-

based targeted subsidies to improve water quality at the point of intake at a DWU facility. 

Ambient subsidies are based on downstream damage, while targeted policies subsidize 

reductions in individual production. This research aims to learn how to best minimize 

potential social damages from NPS water quality impairment by examining the 

performance of institutional arrangements in the context of changes in weather 

variability.  Extreme weather events increase the concentration of NPS contaminants 

leading to a significant decrease in water quality. Ultimately we are interested in 

classifying strategies to understand the interaction of mechanism structure, risk sharing, 

and strategic rent-seeking behavior to improve the design of NPS pollution regulations.  

This research will add to the literature by comparing the effectiveness of ambient 

subsidies versus targeted subsidies of NPS pollution under various weather scenarios. In 
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addition, this research adds to the literature on NPS pollution, by analyzing the increased 

risk when there is a greater likelihood of extreme weather events. Currently, better water 

sensor technology with real time sensing capabilities is being developed. This research 

shows how real time sensing could improve water quality and social welfare especially 

under extreme weather events. We find that as extreme weather events increase, targeted 

subsides that could be implemented with real time sensing technology increases in 

effectiveness. Effectiveness is measured as the mechanism’s ability to result in socially 

optimal pollution levels. 

The experimental design involves six homogenous firms producing the same good 

in different locations along a river. However, there are no spatial differences influencing 

marginal damage.  The experiments implement two subsidy policies: an ambient subsidy 

policy, and a targeted input-based subsidy under three different weather scenarios. The 

homogenous firms represent farmers and we are studying how weather is likely to impact 

farmers’ decisions. 

 Based on the results of the experiments we find that having a policy (either 

ambient or targeted subsidy) increases social welfare by approximately 38% compared to 

a realm without any policies in place. Even though both policies are efficient, our 

research suggests targeted subsidies are significantly more effective than ambient 

subsidies at reducing pollution and increasing social welfare. Our research shows that 

targeted input subsidies become more effective as the likelihood of extreme events 

increase. Targeted policies could be implemented with sensors that detect the amount of 

pollution entering a stream from a farm.  
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Chapter 2 

BACKGROUND/MOTIVATION 

Human activities and climate change may decrease surface water quality (Delpa 

et al. 2009).  As temperature increases, the amount of dissolved organic matter, and other 

pollutants will rise. Amounts of organic material such as DOC in water might increase 

from drought-rewetting cycles that enhance decomposition and flush the matter into local 

waterways (Evans et al. 2005).  DOC increases have been seen in Northern Europe, 

Central Europe, and Northern America (Evans et al. 2005, Monteith et al. 2007, Worrall 

et al. 2004 and, Hejzlar et al. 2003). The combination of high levels of DOC in the water 

and chlorine used at DWUs can lead to the formation of cancer causing chemicals 

referred to as trihalomethanes.  Heavy rains lead to high levels of turbidity and organic 

matter found in river waters which cause deterioration in treatment performance (Delpa et 

al. 2009).  Heavy rainfalls will not only increase DOC but will also increase the amounts 

of pesticides that enter streams.  

Due to climate change, DWUs will be financially affected by changes in quantity 

and timing of annual runoff, saltwater intrusion into groundwater sources, changes in 

temperature, increased sea levels, and increased extreme events. As warmer temperatures 

cause surface water to evaporate more readily, some regions will receive more annual 

runoff and others less (Rayburn et al. 2008). Precipitation variability will increase due to 

reduced in-stream flows, snowpack decreasing earlier in the season, more intense 

snowmelt, and reduced aquifer recharge. Due to these changes in runoff, DWUs need to 

pay for additional water supply and management options (AMWA-NACWA 2009). 

Changes in the timing of runoff increase variability in the amount of water DWUs can 

capture in current reservoirs.  Seawater intrusion will lead to the contamination of 
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aquafers, decreasing the availability of drinking water in coastal regions. Changes in 

temperature could lead to increases in disinfection by-products (DBPs) and the 

probability of algal blooms. Climate change will lead to an increase in extreme events 

such as flooding, droughts, more intense tropical storms, and wildfires that greatly impact 

DWUs.  Increased flooding could lead to water storage problems, and damage such as 

pipe breaks (Rayburn et al 2008). Lower dissolved oxygen levels during droughts lead to 

microbial growth that results in color and odor issues.  

The EPA estimates costs of $300- 500 billion for infrastructure upgrade, renewal, 

and replacement programs for DWU and wastewater for 2007-2027 (AMWA-NACWA 

2009). The net present value costs of climate change adaption for drinking water systems 

through 2050 is estimated to be $362-692 billion. This estimate includes capital and 

operation and maintenance costs. DWUs have been implementing short- and long-term 

water conservation policies to reduce water demand or to reallocate water resources for 

the past 30 years. (Hughes and Leurig 2013). An example of a conservation technique is 

offering farmers financial incentives to irrigate less or to install best management 

practices (BMPs) that reduce nutrient flow. For instance, the Watershed Agricultural 

Council (WAC) with funding from the DEP and USDA in NY worked to decrease 

nutrient eutrophication in the Catskills by helping farmers implement BMPs. In 2011 the 

WAC helped implement 102 new BMPs on small and large farms such as fencing, animal 

waste storage, and conservation crop rotation (New York State Department of 

Environmental Conservation 2016). In addition, the City of Syracuse Department of 

Water created the Skaneateles Lake Watershed Agricultural Program (SLWAP).  

SLWAP helps farmers create environmental protection plans and then helps pay farmers 

to install management practices that reduce runoff (Miner et al. 2015). The Skaneateles 

lake watershed is 59 square miles and 48% of the land use in the area is by agriculture. 

Thanks to the SLWAP program in 2011 the Skaneateles lake was named the cleanest of 

the Finger lakes (Miner et al. 2015). 
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This research will add to the literature on climate change impacts on DWU. It will 

also contribute to literature focused on identifying policy mechanisms that efficiently 

abate non-point source pollution. Segerson (1988) present a theoretically optimal ambient 

tax/subsidy incentive mechanism. Under an ambient tax/subsidy regime, every polluter 

pays the same amount that amount is equivalent to the full marginal benefit of reduced 

ambient pollutant levels.  This ambient tax/subsidy transfer is a linear function calculated 

from estimates of ambient pollution, abatement costs, and it is dependent on each 

individual’s abatement. If agents pollute over a target, a tax equal to marginal damage is 

used as a penalty. If agents pollute under a target, agents are rewarded with a subsidy 

equal to marginal damage. An ambient tax or subsidy decreases the cost for a regulator 

when there is asymmetric information, and it gives firms the freedom to choose the least 

cost pollution abatement technique that ensures a set level of abatement at minimized 

costs.  

A large number of laboratory experiments focused on non-point source pollution 

instruments have been built off of Segerson’s theoretical work. Spraggon (2002) uses a 

laboratory experiment that finds that both an ambient tax/subsidy and an ambient tax are 

more efficient than other mechanisms such as a group fine. Building off Spraggon’s 

work, Cochard et al. (2005) studied a NPS pollution problem with endogenous 

externalities. The experiment compared an input tax, an ambient tax/subsidy, an ambient 

tax and a group fine. Cochard et al. (2005) concluded that an ambient tax/subsidy is not 

the best policy since it decreases social welfare and is very unreliable compared to other 

instruments. An alternative to an ambient tax/subsidy is an input tax which is effective, 

but is expensive.  

Suter et al. (2008) compared linear vs. non-linear ambient taxes and concluded 

that when communication is not allowed both mechanisms reach the social optimum. A 

linear tax follows Segerson’s theoretical work where each firm is charged a constant 

marginal tax that is equal to marginal damages at the social optimum, while a non-linear 
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tax requires that each polluter pay a tax equal to total economic damages. Suter et al. 

(2009) compares homogenous and heterogeneous groups and concluded that an ambient 

tax mechanism lowers emissions levels significantly in both the homogeneous and 

heterogeneous settings. The homogenous pollution setting was composed of six firms 

with identical profit and emission functions (Suter et al. 2009). While the heterogeneous 

pollution setting was composed of three small firms, two medium firms, and one large 

firm.  In the heterogeneous setting each firm had different profit and emission functions 

depending on their size. Suter shows that the distribution of firm sizes does have a 

significant impact on observed group decision-making, and that heterogeneity can 

generate both some relatively desirable outcomes as well as some undesirable outcomes. 

One undesirable outcome was that small firms can go bankrupt due to predatory actions 

by large firms.  

Miao et al. (2016) shows that when there are spatial differences, increasing the 

frequency of ambient monitoring improves emissions reductions. Fooks et al. (2016) ran 

an economic experiment using “estimated” pollution source policy, an ambient 

exogenous targeted tax policy, and an exact information policy.  Fooks et al. (2016) 

found that an increase in information under estimated and exact information actually lead 

to higher levels of pollution than under ambient information.  This study used student and 

farmer participants and found no significant difference in the emissions decisions 

between the two groups. Our study uses a similar framework based on the work by Miao 

et al. (2016) and Fooks et al. (2016). We based the number of firms and parcels off the 

work by Miao et al. (2016) and Fooks et al. (2016). Palm-Forster et al. (2016) ran an 

economic experiment using ambient tax, and ambient subsidy mechanisms with and 

without individual assurances. Palm-Forster et al. (2016) found that both subsidy 

reduction mechanisms were as effective as an ambient tax mechanism in reducing 

emissions. Butler et al. (2016) used mascots and data visualizations in an economic 

experiment and found that when there is attachment to a mascot participants are more 
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likely to have “green behavior” and reduce pollution. Based on past studies, the regulator 

implements both ambient and targeted policies based on information from high-tech 

sensors in our experiment (Miao et al., 2016; Fooks et al. 2016; Butler et al. 2016.). The 

regulator finds the amount of ambient damage from a downstream sensor and implements 

ambient policies. Similarly, the regulator implements targeted input-based subsidies 

based off data from sensors near each parcel reporting pollution from that particular 

parcel.  Many studies add a symmetric error term to the measured concentration to mimic 

uncertainty caused by stochastic environmental factors such as weather (e.g., Spraggon, 

2002; Vossler et al. 2006). 
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Chapter 3 

EXPERIMENTAL DESIGN 

In this experiment, participants assume the role of business owners making 

production decisions on parcels along a river. Firms produce a good which generates 

income. Firms’ production generates pollution proportional to production which enters 

the river. In our research, firms represent farmers’ decisions’, however participants were 

only told they are business owners.  University of Delaware undergraduate students were 

recruited to participate in the experiment. Participants had the opportunity to earn more 

money based on the decisions that they made in the experiment. Experimental earnings 

were $30, on average. Past studies have used students and farmers as participants and 

found there were no significant differences between pollution decisions (Fooks et al. 

2016). The experiment was framed in a way in which the pollution does not affect the 

participants, however it may cause damage to a hypothetical downstream user external to 

the experiment. The amount of downstream damage depends on the pollution released by 

all six parcels and the weather. The firms receive a subsidy from a regulator either based 

on the measured ambient pollution or how much they individually produced. In our 

research, the regulator knows the amount of individual production from a sensor near the 

parcel; however, we did not include any language about sensors in the experiment. In our 

experiment, there are no spatial differences among firms; therefore, we believed adding 

language about sensors could increase confusion. Instead, participants were told that 

targeted subsidies were based on their amount of individual production.  The experiment 

has six treatments that vary weather variability and type of subsidy. To discover what 

would happen under a no policy regime we ran one session with weather variability, but 

there was no subsidy policy. This session was used as a baseline. The experimental 
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design is further explained in Table 1. To best understand the setting, we first describe 

the model followed by the details of the treatments and experiment set up. 

  

3.1 Model 

In each round, participants make individual production decisions that generate 

private income and damage. Based off the model used in Spraggon (2002), our research 

assumes we have N producers and each individual 𝑖 who produces output 𝑥𝑖 and receives 

income 𝐼𝑖(𝑥𝑖). The private income function takes the form 

𝐼𝑖(𝑥𝑖) =  𝛾0 −  𝛾1(𝛾2 − 𝑥𝑖)2 (1) 

Total output from production across all producers is the sum of all individual 

production: 

𝑋 =  ∑ 𝑥𝑖

𝑁

𝑖=1
, (2) 

Total Income is the sum of all individual income: 

𝐼 =  ∑ 𝐼𝑖(𝑥𝑖).
𝑁

𝑖=1
 

(3) 

              

Since producers are identical, production will be symmetric at the equilibrium so 

we can use total production in the income function to express total income as a function 

of total production. Then, the total cost of abatement borne by the producer is:  

𝑇𝐶(𝑥) = 𝐼(𝑥𝑚𝑎𝑥) − 𝐼(𝑥) =   𝐼(𝑥𝑚𝑎𝑥) − 𝛾0 + 𝛾1(𝛾2 −  𝑥𝑖)2. 
 

(4) 
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The producers’ marginal cost of abatement is: 

𝑀𝐶(𝑋) =  − 2𝛾1𝛾2 + 2𝛾1𝑋 (5) 

In addition to income to the producers, production also imposes a cost on 

downstream external users. This damage is a quadratic function of total production:  

𝑇𝐷(𝑋) =  𝛿(𝛽0 + 𝛽1𝑋 + 𝛽2𝑋2) (6) 

    The parameterization of this function is based on predicted weather scenarios 

and cost data from DWUs. We vary these across treatments, as discussed in depth in 

section 3.3.                                                                    

The total benefit to the downstream users of abatement below the producers’ 

maximum production at the unregulated optimum is: 

𝑇𝐵(𝑋) = 𝑇𝐷(𝑋𝑚𝑎𝑥) − 𝑇𝐷(𝑋) (7) 

The corresponding marginal benefit of abatement is     

𝑀𝐵(𝑋) = −𝛽1 − 2𝛽2𝑋 (8) 

 

We assume the regulator is risk neutral and wants to maximize net social welfare 

by equating marginal costs and benefits, which leads to optimal total production across 

all six firms. 

𝑋∗ =
𝛾1𝛾2 − 𝛽1 2⁄

𝛾1 + 𝛽1
    (9) 
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Each individual producer’s share of production is:  

𝑥𝑖
∗ =  𝑋∗

𝑁⁄  (10) 

Under this form on the instrument, 𝑋∗ is an equilibrium if producers believe that 

total production will be less than or equal to the subsidy, however  𝑋𝑚𝑎𝑥 will be the 

equilibrium if producers think that 𝑋∗ is unobtainable.  

3.2 Treatments 

Through this experiment we ran six treatments that vary weather variability and 

type of subsidy (Table 3). This experiment only looks at subsidies there are no tax 

policies tested. We will define weather variability based on the probability of weather 

conditions.  There are four levels of weather variability: 1) no weather variation 2) 

standard, 3) high, and 4) very high. Each level of variability is associated with probability 

of three types of weather conditions: a) normal, b) severe, and c) extreme. The amount of 

damage that reaches the downstream user differs depending on weather condition 

Damage functions were created for each type of weather condition. These functions were 

created based off models depicting costs to DWUs under various weather conditions 

(AMWA-NACWA 2009).  In addition, to simplify the design we made the marginal 

damage at the target equal across treatments. The parameters for these functions are 

shown in Table 4. The Downstream damage functions are quadratic functions of total 

production and the impact of total production on damage is shown in Figure 1. As 

production increases past the social optimal additional production significantly increases 

downstream damage.  

Extreme Weather Damage Function: 

𝑇𝐷 =  𝛿 ∗ (𝛽0𝐻 + 𝛽1𝐻 ∗ 𝑇𝑜𝑡𝑎𝑙 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 + 𝛽2𝐻 ∗ 𝑇𝑜𝑡𝑎𝑙 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛2) (11) 
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Severe Weather Damage Function: 

𝑇𝐷 =  𝛿 ∗ (𝛽0𝑀 +  𝛽1𝑀 ∗ 𝑇𝑜𝑡𝑎𝑙 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 + 𝛽2𝑀 ∗ 𝑇𝑜𝑡𝑎𝑙 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛2) (12) 

 

Normal Weather Damage Function: 

𝑇𝐷 =  𝛿 ∗ (𝛽0𝐿 + 𝛽1𝐿 ∗ 𝑇𝑜𝑡𝑎𝑙 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 + 𝛽2𝐿 ∗ 𝑇𝑜𝑡𝑎𝑙 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛2) (13) 

Standard weather variability has an 80% chance of normal weather, 10% chance 

of more severe weather, and 10% chance of extreme weather. High weather variability is 

associated with a 50% chance of normal weather, 40% chance of severe weather, and 

10% chance of extreme weather. Very high weather variability is associated with a 50% 

chance of normal weather, 10% chance of severe weather, and 40% chance of extreme 

weather. The weather variabilities are depicted in Figure 2. 

 

Ambient subsidies are calculated using the total downstream damage from all 

users. With an ambient subsidy everyone in the same group receives the same payment. If 

the measured damage level is greater than or equal to the target, there will be no payment. 

The target damages  𝑇𝐷𝑗
∗  are calculated for total group production, 𝑋∗ =144. This total 

group production target is derived from equating MD with MC across weather conditions 

(j) shown in Figure 3. For instance, under normal weather conditions, if total group 

production is 120 which results in damage of $44.35 which is less than the target damage 

of $53.54, then everyone will receive a subsidy of $22.55.  

Below is the calculation used to determine the ambient subsidy parameters for the 

equation can be found in Table 4.  

From Spraggon (2002), an ambient subsidy for each individual takes the form of: 
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𝑆(𝑋) =  {
0                                                          𝑖𝑓 𝑇𝐷 > 𝑇𝐷𝑗

∗

𝑀𝐷(𝑇𝐷) ∗ (𝑇𝐷 −  𝑇𝐷𝑗
∗ ) + 𝑏𝑗     𝑖𝑓 𝑇𝐷 ≤ 𝑇𝐷𝑗

∗  
   

Where MD is marginal damage, TD is total damage and b is a bonus. Following, 

Spraggon (2002) a bonus is included to induce compliance to produce at the target instead 

of at the maximum.  
  

(14) 

3.2.1 Calculating Targeted Input-based Subsidies 

Targeted input-based subsidies are calculated based on the amount of individual 

production levels. Individual production is known by a regulator due to a sensor next to 

each parcel. The payment could be different for different members of the group. If 

individual production is greater than or equal to the target, there will be no payment. The 

individual target production is  𝑥∗ = 24. The individual target production is calculated 

from the total group production target,  𝑋∗ =144. This is derived from equating MD with 

MC across weather conditions as shown in Figure 3. 

Below is the calculation used to determine the targeted subsidy. Parameters for 

the equation can be found in Table 4: 

 𝑆𝑖(𝑋) =  { 0                                             𝑖𝑓 𝑥 >  𝑥∗

𝑀𝐷(𝑇𝐷) ∗  (𝑥 − 𝑥∗) + 𝑏𝑖     𝑖𝑓 𝑥 ≤  𝑥∗   
(15) 

Where MD is marginal damage x is individual production and b is a bonus. 

Following, Spraggon (2002) a bonus is included to induce compliance to produce at the 

target instead of at the maximum.  

Profits will be calculated as individual income plus the subsidy 

𝑃𝑖(𝑥𝑖) =  𝛾0 − 𝛾1(𝛾2 − 𝑥𝑖)2 +  𝑆𝑖(𝑋) 
(16) 

Participants choose a level of production between 0 and 50. Based on the 

parameters in Table 4, this would correspond to income ranging from $16.25 to $35. 



 15 

 

3.3 Experiment Protocol 

Six sessions of the experiment were run using 120 participants at the University 

of Delaware Center for Experimental and Applied Economics. Undergraduate students 

were recruited to participate in the experiment through an email announcement. The 

experiment was run on computers using the computer interface Willow, and a python 

framework. Earnings were made as experimental dollars, then converted into US dollars. 

Experimental dollars were converted into actual US dollars at a rate of one US dollar per 

40 experimental dollars. Session length was between 1.5 to 2 hours. Communication was 

not allowed in these experiments. 

Each participant sat a desk with dividers in groups of six around the room. The 

dividers ensured that participants’ decisions were confidential. The room was set up with 

24 desks, separated in four groups of six desks.  Participants were randomly assigned to a 

computer by drawing a number out of a bag before entering the laboratory.  

Each session had 12-24 participants randomly organized into independent stream 

groups composed of six participants. Participants were unaware of who were the 

members of their stream group. In each treatment, each individual participant was 

assigned to one of the six parcels. Parcel locations and stream groups were randomly 

mixed between treatments. However, all the parcels are homogeneous and damages do 

not vary by spatial location. We controlled for potential order effects by varying the 

treatment orders in each session. Each treatment consisted of five decision rounds. In 

each round, participants make a confidential production decision and learn the subsidy 

they face, the weather condition and their total profit from the round. Rounds are 

independent, meaning that production decisions and downstream damage during one 

round do not affect future rounds. The session begins with participants reading and 

signing the consent form and then spending approximately 15 minutes reading the 
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instructions that explain how production decisions impact their profit, the types of 

subsidies, and the different weather variation scenarios (see Appendix A). To help 

participants understand how the subsidies vary dependent on weather scenario they are 

given time to use a special calculator on the computer which allows them to enter 

hypothetical production decisions for each parcel and then see potential subsidies under 

each weather scenario. The calculations change with each treatment. The written 

instructions include a training on the use of the calculator and require that participants use 

the calculator to identify the possible subsidies for different levels of production. The 

experiment administrators make sure that participants know how to correctly operate and 

understand the calculator. There are two sets of practice rounds which follow the no 

weather variation treatment. The first three practice rounds have the ambient subsidy 

treatment and the last three practice rounds have the targeted subsidy treatment. 

Additional written instructions and an oral presentation are provided to the participants 

before each new treatment to explain the weather variation and policy type.  
 

3.4 Testable Hypotheses 

The series of hypotheses tested in this research are summarized in Table 2. The 

first hypothesis is that climate variability does not impact the effectiveness of the subsidy 

mechanism. Effectiveness is measured as the mechanism’s ability to result in socially 

optimal damage levels. As mentioned above, the weather conditions affect the damage 

functions. We want to see if the mechanisms work differently under varying weather 

conditions. 

The second hypothesis is that changes in risk do not impact production under 

targeted subsidies. As weather variation increases, the firm takes on added risk in the case 

of an ambient output-based policy; however, with a targeted input-based policy the 

regulator takes on this risk. Under a targeted policy, there is perfect information. The 
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regulator knows how much the firm is producing from a sensor near the parcel, and the 

firm knows the target production. We expect to see only ambient interactions with 

weather significantly impacting damage production and welfare.  

The third hypothesis is that ambient output-based and targeted input-based 

policies have the same impact on total downstream damage. We want to test to see which 

mechanism is more effective in reducing total damage to the social optimal level.  

The fourth hypothesis is that total production from a stream group does not 

change in response to normal weather, severe weather events, and extreme weather 

events. Extreme weather events are long lasting droughts or floods, while severe weather 

events are more short term impacts. Each weather condition has a different damage 

equation based off of real weather data. We are testing to see if participant’s behavior is 

influenced by these varying damage functions. We want to see if severe and extreme 

weather have a different impact on total production then normal weather.   

The fifth hypothesis is that ambient output-based and targeted input-based 

policies have the same impact on total production. We want to test to see which 

mechanism is more effective in reducing total production to the social optimal level.  

The sixth hypothesis is that ambient and targeted subsidies have the same impact 

on social welfare. We want to test to see which mechanism is more effective in increasing 

social welfare close to the social optimal level. Social welfare is measured as total 

income of all firms minus downstream damage.  
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Chapter 4 

RESULTS 

We find that well-designed policy can dramatically improve water quality and 

increase social welfare levels closer to the optimal level.   Our first hypothesis asks if the 

effectiveness of the subsidy mechanism changes under different weather conditions.  To 

test this hypothesis, we estimate the equation below: 

𝐷𝑎𝑚𝑎𝑔𝑒 = 𝑐 + 𝜕1𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 + 𝜕2𝐻𝑖𝑔ℎ + 𝜕3𝑉𝑒𝑟𝑦 𝐻𝑖𝑔ℎ + 𝜕4𝐴𝑚𝑏𝑖𝑒𝑛𝑡 + 𝜕5𝐴𝑚𝑏𝑖𝑒𝑛𝑡
∗ 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 + 𝜕6𝐴𝑚𝑏𝑖𝑒𝑛𝑡 ∗ 𝐻𝑖𝑔ℎ + 𝜕7𝐴𝑚𝑏𝑖𝑒𝑛𝑡 ∗ 𝑉𝑒𝑟𝑦 𝐻𝑖𝑔ℎ 𝜕8𝑇𝑎𝑟𝑔𝑒𝑡𝑒𝑑
+ 𝜕9𝑇𝑎𝑟𝑔𝑒𝑡𝑒𝑑 ∗ 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 + 𝜕10𝑇𝑎𝑟𝑔𝑒𝑡𝑒𝑑 ∗ 𝐻𝑖𝑔ℎ + 𝜕11𝑇𝑎𝑟𝑔𝑒𝑡𝑒𝑑
∗ 𝑉𝑒𝑟𝑦 𝐻𝑖𝑔ℎ +∈    

(17) 

We are testing the null hypothesis: 

𝐻0: 𝜕4 = 𝜕5 =  𝜕6 =   𝜕7 = 𝜕8 = 𝜕9 = 𝜕10=𝜕11 

In equation 17, standard, high, and very high refer to the weather variability. We 

expect both ambient and targeted policies to decrease damage compared to the baseline 

of no policy and no weather variation. We are interested in seeing if the effectiveness of 

the policy changes under different weather variations. Therefore, we include in our 

equation the interacting terms of policy and weather variation.  

Results show that either policy works to decrease damage compared to no policy 

in place. Table 5 shows that with a targeted policy, average damage across all weather 

variations was $35.89, and with an ambient policy, the average damage was $49.21. 

Having no policy in place results in an average damage of $123.84. With a policy in 

place, either ambient or targeted, downstream damage decreased as weather variation 
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increased. In Table 6, data is pooled from both policies, ambient and targeted, to examine 

downstream damage when a policy is in place. Table 6 shows how damage under very 

high weather variation is $29.88 which is 41% lower than if there is no weather variation 

where damage is $50.67. The average subsidy for very high weather variation was $23.90 

while the average subsidy for no weather variation was $16.37. 

Supporting our first hypothesis we find that as weather variation increases, 

subsidy policies, either ambient or targeted, become more effective at decreasing damage. 

Figure 4 shows how downstream damage is 33% less when we have very high weather 

variation versus standard weather variation under a policy regime. Remember, very high 

weather variability is associated with 40% chance of extreme weather. To clarify under a 

policy regime means there was either a targeted or ambient subsidy policy. Since we have 

many observations from the same individuals a random-effects models was appropriate to 

analyze damage, production, and welfare. Table 7 shows three log-linear models we 

estimated all of which have a baseline of no policy and no weather variation. Log-linear 

models were used so as to be able to compare the impacts by percentage amounts. Model 

A1 has the dependent variable log(damage), explaining how the independent variables 

impact the log of the amount of measured downstream damage. We look at the 

independent variables: standard weather variation, higher weather variation, policy, and 

the interactions of policy with different weather variations. The independent variable 

policy represents if there was a policy in place either ambient or targeted, and the variable 

higher weather variation represents if there was high weather variation or very high 

weather variation.  In Model A1 we see that having a policy (either ambient or targeted) 

in place significantly reduces downstream damage by approximately 63%. We also see 

that when we have the interaction of policy and higher weather variation the amount of 

downstream damage, which is a function of production, decreases significantly. 

Table 8 shows three additional models that include targeted and ambient policies 

as independent variables and their interaction with weather variations. All three models 



 20 

have a baseline of no policy and no weather variation.  Model A2 has the dependent 

variable log(damage), explaining how the independent variables impact the log of the 

amount of measured downstream damage. In Model A2 we see that both ambient and 

targeted policies significantly reduce damage compared to the baseline of no policy and 

no weather variation. Model A2 also shows that downstream damage decreases with an 

increase in the likelihood of extreme events. High weather variation significantly reduces 

damage compared to no weather variation. In addition, results show that when we have 

the interaction of targeted subsidies and increased weather variation, the subsidy becomes 

more effective in decreasing downstream damage.  

Our second hypothesis is that changes in risk due to increase in extreme weather 

does not impact downstream damage under targeted policies. As weather variation 

increases with an ambient policy, the firm takes on the added risk of more damage due to 

extreme weather events; however, with a targeted policy the regulator takes on this risk. 

We expect to see only ambient interactions with weather significantly impacting damage. 

However, we reject this null hypothesis and see significant interactions with weather 

impacting damage for both targeted and ambient policies (See Table 8 Model A2).  

Our third hypothesis is that ambient and targeted subsidies have the same impact 

on reducing downstream damage. To test this, we use equation 17 and focus on the null 

hypothesis:  

𝐻0: 𝜕4 = 𝜕5 

We reject the null hypothesis and find that there is a significant difference between the 

impact of the two policies. The average damage from targeted policies is $35.89 while 

the average downstream damage when there is an ambient policy is $49.21. We 

performed a two-tailed paired t-test and found significant differences between targeted 

and ambient policies mean damage (p=0.000). In addition, we performed a chi-squared 
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test and found that the coefficients for targeted and ambient in Table 8 Model A2 are 

significantly different. Both policies work to decrease downstream damage, however 

targeted input-based policies are more effective at decreasing pollution compared to 

ambient output-based policies. Targeted policies are probably more effective because 

firms know how much they are producing and the possible subsidies offered to them for 

that level of production for various weather scenarios. In addition, firms know the 

regulator has exact information on their production due to a sensor near their parcel. This 

knowledge that the regulator can pin-point pollution directly to them influences the firms 

to reduce production resulting in less downstream damage.  

Our fourth hypothesis looks to see if total production decisions change in 

response to different weather conditions. To test this, we estimate the equation below: 

𝑇𝑜𝑡𝑎𝑙 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 =  𝑐 + 𝜕0𝑁𝑜𝑛𝑒 + 𝜕1𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 + 𝜕2𝐻𝑖𝑔ℎ + 𝜕3𝑉𝑒𝑟𝑦 𝐻𝑖𝑔ℎ+ ∈   (18) 

We are testing the null hypothesis: 

𝐻0: 𝜕0 = 𝜕1 = 𝜕2 = 𝜕3 = 0 

In Table 7 model B1 we see that having a policy in place either ambient or 

targeted significantly reduces total production. On average, having an ambient or targeted 

subsidy policy reduces total production approximately 52% compared to the baseline of 

no policy and no weather variation. Model B1 has the dependent variable log(total 

production) explaining how the independent variables impact the log of the amount of 

total production from all six parcels. 

In Table 8 model B2, we see that both ambient and targeted policies significantly 

reduce total production compared to the baseline of no policy and no weather variation. 

Model B2 has the dependent variable log(total production) explaining how the 

independent variables impact the log of the amount of total production. Model B2 shows 

how both policies are effective in reducing total production.  
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Supporting our fourth hypothesis we find that weather does not impact total 

production.  Generally, we find that total production levels decrease as weather 

variability increase but it is not significant. As shown in model B2 standard, high and 

very high weather variations are not significant in reducing production compared to the 

baseline of no weather variation. 

We reject our fifth hypothesis that targeted and ambient policies have the same 

impact on total production. We find that targeted policies that focus on inputs are more 

effective than ambient policies that are output-based. Ambient policies result in 

individuals on average producing 23 and an average total production of 143.28, while 

targeted policies result in an average individual production of 19 and an average total 

production of 114.  Recall that the social optimal level is reached when total production 

equals 144. We performed a two-tailed paired t-test and found that the results showed 

statistically significant differences in average total production between having an ambient 

policy and a targeted policy (p=0.000). Targeted policies are able to be implemented by 

having a sensor near each parcel. Targeted policies work better because there is no 

asymmetric information.  

Table 9 shows that when using a subsidy mechanism (either targeted or ambient) 

average welfare is 38% higher than if there is no policy in place. Welfare is measured as 

income minus downstream damage. Figure 5 shows how with a policy in place the 

regulator can get much closer to the social optimal level of welfare under various weather 

variations. We performed a two-tailed paired t-test for differences in the mean welfare 

with and without policy interventions. The results showed statistically significant 

differences between having a policy in place and no policy (p=0.000). Model C1 in Table 

7 has the dependent variable log(welfare) explaining how the independent variables 

impact the log of the amount of total social welfare. In Model C1 we see that both 

ambient and targeted policies significantly increase social welfare compared to the 

baseline of no policy and no weather variation.  
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We reject our sixth hypothesis that ambient and targeted policies have the same 

impact on social welfare and find that targeted policies are more effective at increasing 

social welfare. We ran a chi-squared test comparing the coefficients for ambient (.546) 

and targeted (.577) and find a significant difference between the two (p=.05). We also see 

the similar trend where high weather variation results in significantly better outcomes.  



 24 

Chapter 5 

CONCLUSION 

 

In this paper, we use an economic experiment to test participants’ behavioral 

responses towards various incentives to reduce nonpoint source pollution. We 

specifically investigate the effectiveness of ambient (output-based) and targeted (input-

based) subsidies under various weather scenarios. The results from our experiment show 

that both ambient and targeted policies work to reduce pollution and improve social 

welfare. We also find that when there is a greater likelihood of extreme weather events, 

targeted policies become more effective in reducing pollution.  As the probability of 

extreme and severe weather increases, the risk of not receiving a subsidy due to high 

levels of pollution increases. We find that under high weather variability situations, 

participants are risk-averse. Participants react to this additional weather risk by reducing 

production in order increase the amount of subsidy rewarded.  

 Drinking water utilities can subsidize upstream users to improve water quality. 

The results suggest that DWUs may prefer to implement targeted (input-based) policies 

to reduce pollution. Our research found that targeted subsidies are more effective than 

ambient subsidies at reducing production, reducing pollution, and increasing social 

welfare compared to ambient subsidies. Under ambient policies the risk of getting no 

subsidy is shared with the entire group while targeted policies involve individual risk. 

Currently targeted subsidies are difficult to implement. To measure individual 

contribution to total pollution, one would need advanced sensor technology.  Targeted 

subsides make NPS pollution more similar to point-source pollution. Our research shows 

it will be easier to reach pollution targets with more advanced sensors that predict 
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individual activity. There is a political need for more research and development to be 

done to achieve real time sensing at a micro level. 

  

In addition, the results offer the regulator insight that both types of subsidies work 

to reduce pollution, reduce production, and increase social welfare especially under 

extreme weather conditions. To enhance our ability to reach general conclusions related 

to the relationship between policy type and water quality improvements, several of our 

assumptions could be modified in future research. For instance, future research could add 

a dimension where there are spatial differences in the relationship between production 

and ambient damage. Further research could also be done with farmers as participants. In 

addition, research could be done to examine subsidies on a watershed scale by increasing 

the number of firms and amount of land. In our study, we assume all firms are 

homogenous. Future research can relax this assumption and study heterogeneous agents 

by differentiating the size and capacity of firms. Another element that could be examined 

is to include communication between participants.  
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TABLES  

Table 1. Drinking Water Utility Game Experimental Design 

Participants  120 student participants 
Session Setup 12-24 participants split into groups of 6 
Participant Decision  Production level on their parcel (within a given range).  
Key Behavioral Measures i. Individual production by treatment relative to a 

baseline 
Policies i. Ambient Subsidy  

ii. Targeted Subsidy (perfect information) 
Time Structure 7 Parts, 5 Rounds/Part 
Average Time 2-hours 
Average Earnings $30  
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Table 2. Hypotheses 

Hypotheses Result 

1) Climate variability does not impact the 
effectiveness of the subsidy. 

Reject - As weather variation increases 
subsidies become more effective 
 

(Table 7 Model A1; Table 8 Model A2) 

2) Changes in risk do not impact damage 
under targeted policies. 

Reject- Downstream damage decreases when 
there is interaction between weather variability 
and targeted policies  
 
(Table 8 Model A2) 

3) Ambient and targeted subsidies have 
the same impact downstream damage. 

Reject- Downstream damage is higher on 
average if there is a ambient policy instead of 
an targeted policy 
 
(Table 8 Model A2) 

4) Total production does not change in 
response to different weather conditions. 

Unable to Reject - Production decreases as 
weather variability increases but it is not 
statistically significant. 
 
(Table 7 Model B1; Table 8 Model B2) 

5) Ambient and targeted subsidies have 
the same impact on total production. 

Reject- Production decreases more on 
average from ambient policies instead of a 
targeted policy 
 
(Table 8 Model B2) 

6) Ambient and targeted subsidies have 
the same impact on social welfare. 

Reject- Social Welfare is higher on average if 
there is a targeted policy instead of an ambient 
policy 
 
(Table 8 Model C2) 
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Table 3. Treatment Conditions 

Treatment Policy Weather Variation 
P Ambient  None 
P Targeted None 
A Ambient Standard 
B Targeted Standard 
C Ambient High 
D Targeted High 
E Ambient Very High 
F Targeted Very High 
G Ambient None 
H Targeted None 
   
Treatment Order PPABCDEFGH 

PPBADCFEHG 
PPHGFEDCBA 
PPGHEFCDAB 
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Table 4.  Parameters for Equations  

Parameters    
Weather 
Condition  

𝛽1𝐿 -.1  
𝛽2𝐿 0.0018  

𝛽0𝐿 30  

  
 

𝛽1𝑀 -.5  

𝛽2𝑀 0.0032  
𝛽0𝑀 40  

  
 

𝛽1𝐻 -1  
𝛽2𝐻  0.0051  
𝛽0𝐻 50  

  
 

𝛿 1  
    
Ambient 
Subsidies  

𝑏𝑁 Normal 18.52 
𝑏𝑆 Severe 24.85 
𝑏𝐸 Extreme 32.76 

𝑀𝐷(𝑇𝐷∗)  -.44 
𝑇𝐷∗

𝑁 Normal 53.54 
𝑇𝐷∗

𝑆 Severe 35.99 
𝑇𝐷∗

𝐸 Extreme 11.56 
    
Targeted 
Subsidies 

𝑏𝑁 Normal 18.52 
𝑏𝑆 Severe 24.85 
𝑏𝐸 Extreme 32.76 

𝑀𝐷(𝑇𝐷∗)  -.44 
𝑥∗  24 

    
Income  𝛾0 35  

𝛾1 .0075  
𝛾2 50  
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Table 5. Mean Production, Damage, and Welfare 

 
 
No Policy 

 
Targeted   

 
Ambient  

Average Damage $123.84 $35.89 $49.21 

Average Total Production 
 
253.11 

 
114.00 

 
143.28 

Average Welfare 
 
78.75 

 
130.44 

 
124.10 
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Table 6.  Mean Production and Damage and Subsidy under Policy Regimes 

Weather Variation 
 
None 

 
Standard  

 
High  

 
Very High  

Average  Individual Production 22.15 21.91 21.27 20.69 

Average  Total Production 
 
131.08 

 
131.48 

 
127.65   

 
124.14 

Average Damage 
 
$50.67 

 
$45.33 

 
$39.21 

 
$29.88 

Average Subsidy Payment 
 
$16.37 

 
$18.73 

 
$20.97 

 
$23.90 
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Table 7. Random Effects Models on Downstream Damage, Total Production, and Social  
Welfare   

 Model A1 Model B1 Model C1 
Dependent Variable Log(Damage) Log(Total Production) Log(Welfare) 
Standard Weather Variation  -.139 

(.088) 
-.084* 
(.050) 

.152 
(.081) 

Higher  Weather  Variation -.106 
(.072) 

-.062 
(.041) 

.141 
(.100) 

Policy -1.00*** 
(.070) 

-.728*** 
(.048) 

.561*** 
(.081) 

Policy X Standard  Weather Variation -1.64 
(.134) 

.081 
(.068) 

-.129 
(.117) 

Policy X Higher Weather Variation -.699*** 
(.128) 

.011 
(.003) 

-.047 
(.094) 

Treatment Round .006 
(4.87) 

.011*** 
(.003) 

-.013*** 
(.004) 

Constant 4.87*** 
(.083) 

5.55*** 
(.040) 

4.26*** 
(.082) 

Number of Observations 794 794 794 
R2 .3331 .6441 .5923 
**Shows significance at p<0.05 level ***Shows significance at p<0.01,  Standard errors in 
parenthesis 
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Table 8.  Extended Random Effects Models on Downstream Damage, Total Production, 
and Social Welfare  

 Model A2 Model B2 Model C2 
Dependent Variable Log(Damage) Log(Total Production) Log(Welfare) 
Standard Weather Variation  -.140 

(.088) 
-.085 
(.050) 
 

.152 
(.115) 

High  Weather  Variation -.154** 
(.077) 

-.082 
(.043) 

.197** 
(.100) 

Very High  Weather  Variation -.060 
(.077) 

-.043 
(.043) 

.087 
(.103) 

Ambient Policy -.905*** 
(.078) 

-.627*** 
(.054) 

.546*** 
(.082) 

Targeted Policy  -1.11*** 
(.067) 

-.828*** 
(.048) 

.577*** 
(.082) 

Ambient Policy X Standard  Weather 
Variation 

-.052 
(.151) 

.083 
(.085) 

-.162 
(.122) 

Ambient Policy X High Weather 
Variation 

-.228 
(.159) 

.040 
(.085) 

-.139 
(.105) 

Ambient Policy X Very High Weather 
Variation  

-.830*** 
(.251) 

.001 
(.077) 

.023 
(.112) 

Targeted Policy X Standard  Weather 
Variation 

-.273 
(.164) 

.080 
(.060) 

-.096 
(.116) 

Targeted Policy X High Weather 
Variation 

-.329** 
(.144) 

.054 
(.058) 

-.124 
(.101) 

Targeted Policy X Very High Weather 
Variation 

-1.40*** 
(.167) 

-.048 
(.072) 

.049 
(.105)  

Treatment Round .006 
(4.87) 

.012 
(.003) 

-.013** 
(.004) 

Constant 4.87*** 
(.083) 

5.55*** 
(.040) 

4.26*** 
(.082) 

Number of Observations 794 794 794 
R2 .4181 .7201 .6122 
**Shows significance at p<0.05 level ***Shows significance at p<0.01,  Standard errors in 
parenthesis 
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Table 9. Average Social Welfare 

 
 
 

Average Social Welfare 

 Social 
Optimal 

With Policy  No Policy 

Average Welfare 134.97 127.29 78.75 
No Weather Variation 126.04 119.77 99.52 
Standard Weather Variation 131.99 123.81  101.57 
High   Weather Variation 137.26 128.66  104.02 

Very High  Weather Variation 144.59 137.00 108.06 
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FIGURES  

Figure 1.  Downstream Damage vs. Group Production under Different Weather 
Conditions 
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Figure 2:  Weather Variations
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Figure 3.  Marginal Benefit vs. Marginal Cost 
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Figure 4.  Downstream Damage under various Weather Variations under a Policy 
Regime 
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Figure 5:  Average Social Welfare under different Weather Variations  
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Appendix A 

INSTRUCTIONS 

Welcome to an experiment in decision-making. In the course of the experiment, you will 
have several opportunities to earn cash. Throughout the experiment, your earnings will be 
recorded as experimental dollars. At the end of this experiment, we will convert your 
experimental dollars into actual US dollars at a rate of one US dollar per 40 experimental 
dollars. This money will be given to you as you leave and it is yours to keep. The more 
experimental dollars you earn the more US dollars you will receive at the end of the 
experiment.  
 
Please read these instructions carefully and do not communicate with any other 
participants during the experiment.  
 
What you need to know to make decisions: 
There are a number of parts in today’s experiment. Each part will have five rounds. Each 
round is independent, meaning that decisions during one round do not affect future 
rounds. The only value that gets carried across rounds is your cumulative profit, which 
will be used to calculate your cash earnings at the end of the experiment.  
 

In each part, you will be assigned to a group 
with five other people.  

Each member of your group will be playing 
the role of a business owner who operates on 
a parcel of land along a river. The parcels are 
labeled Parcel 1 through 6, as displayed on 
the map in Figure 1. 

Parcel 1 is the furthest upstream and Parcel 6 
is the furthest downstream in the group. The 
parcel that you operate during each part will 
be indicated to you on your computer screen.  

Your parcel and group will remain the same 
for each part of the experiment, but may 
change for different parts.  

 

How to make decisions: 
Each round, you must choose how much you 
want to produce on your parcel. This 
production level must be between 0 and 50 
units. The more you produce the more revenue 
your business makes. Revenue can be as low 

Figure 1. Stream Flow 
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as $16.25 and as high as $35.00, as shown in Figure 2 to the right.   
 
At the same time, the more you produce on 
your parcel the more byproduct you create. 
This byproduct does not affect you or others in your group, however, too much byproduct 
causes damage to the downstream user. The amount of downstream damage depends on 
the byproduct released by all six parcels, and varies between $0.91 and $208.2. 
 
The amount of damage that reaches the downstream user also depends on the weather 
condition as shown in Figure 3.  
 

 
    Figure 3. Production and Downstream Damage 
 
 
There are three weather types: normal, severe, or extreme.  

x The downstream damage depends on the weather type and total group production 
as shown in figure 3. 

x In each part, you will be told the weather variation. This weather variation 
explains the likelihood of experiencing each weather type. 

 
There are Four Weather Variations: 

x With no weather variation you will experience normal weather. 
x With standard weather variation you will likely experience normal weather. 

Figure 2. Production and Revenue 
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x With high weather variation you have a higher chance of experiencing severe 
weather. 

x With very high weather variation you have a higher chance of experiencing 
extreme weather. 

 
Other than location, all business owners are identical, meaning that each individual faces 
the same decisions. In some parts of today’s experiment, your profit will be equal to your 
revenue plus a subsidy. This subsidy will be paid to you by the downstream user who is 
willing to pay you to decrease production and, therefore, downstream damage.  This 
subsidy is determined based on either the group damage created from all business owners 
relative to a target or the damage created from your parcel alone relative to a target.  
 
Group Damage: 

x Group damage is the average amount of damage that reaches the downstream user 
from all six parcels.  

x If the group damage is greater than or equal to the target, there will be no subsidy. 
x The target for group damage is achieved when total group production is 144.  

 
Example 1: If total group production is greater than 144. There will be no subsidy 
because group damage is equal to the target. 
 
Example 2: If total group production adds up less than 144.  In this case a subsidy will be 
paid to everyone in the group. The size of the subsidy depends on the weather condition.  
 
 
Your Individual Production: 

x Your individual production is how much you produce on your parcel.  
x If your individual production is greater than or equal to the target, there will be no 

subsidy. 
x The target for individual production is 24.  

  
 

Example 3: If your individual production is 24, There will be no subsidy because 
individual production is equal to the target. 
 
Example 4: If your individual production is less than 24, There will be a subsidy 
regardless of what everyone else in your group produces. 
 
Summary 

x Each Round you will make a production decision between 0 and 50.  
x The more you produce the more revenue you will generate. 
x The more you produce the more byproduct you will create. 
x Byproduct impacts downstream users negatively and varies depending on the 

weather conditions. 
x Downstream users may pay you a subsidy to reduce the byproduct. 
x The subsidy will either be determined by group damage or individual production. 
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x In each round, Profit = Revenue + Subsidy. 
x Your cash earnings at the end of the experiments equal the combination of profits 

from each round. 
 
 
Practice 
 
A calculator is provided on your computer that will allow you to determine the average 
subsidy for any set of production decisions for the six parcels. Subsidies will defer 
depending on the weather type.  
 
The calculator will be available to you throughout the experiment and will update 
throughout the parts so that you can try out different strategies. You can enter production 
decisions for each parcel by typing it directly into the column labeled “Production”, you 
can also change production by using the slider for each parcel, or the one slider for all of 
the parcels.  
 
Please use the calculator to fill out the table below.  
  Subsidy 

Example If every parcel 
produces:  

Normal  
Weather  

Severe  
Weather  

Extreme 
Weather  

A 0 $ $ $ 
B 15 $ $ $ 
C 35 $ $ $ 
D 50 $ $ $ 
 
There are six practice rounds that will give you an opportunity to familiarize yourself 
with the software. These first six rounds are for practice only and will not result in 
any earnings.  
 
In the first three practice rounds, there is a subsidy that 
will be offered based on the average amount of damage 
that reaches the downstream user from all six parcels. 
Everyone in your group will receive the same subsidy. 
There will be a large subsidy for minimal damage, but the 
subsidy gets smaller as average group damage increases. 
If the group damage level is greater than the target, there 
will be no subsidy.  
 
Your group of six parcels is experiencing no weather 
variation. With no weather variation, you have a 100% 
experiencing normal weather.  
 
Example 1: If everyone produces 20 then your normal 
weather subsidy will be $22.55.   
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Example 2: If five parcels produce 20 and one parcel produces 50, your normal weather 
subsidy is $0.   
 
Note how, in this part, your production decision 
will influence the profits of everyone in your 
group and the production decisions of others 
affect your profit. 
 
Practice 
 
There are three practice rounds that will give you an opportunity to familiarize yourself 
with the software. These next three rounds are for practice only and will not result in 
any earnings.  
 
In these practice rounds, there is a subsidy that will be offered based on individual 
production. The subsidy may be different for different members of your group. If your 
production is greater than the target production for individuals, there will be no subsidy. 
The target for individual production is 24.  
 
 
Your group of six parcels is no weather variation. 
With very no variation, you have a 100% chance 
of experiencing normal weather.  
 
Example 1: If everyone else produces 35, but you 
produce 15 then your normal weather subsidy will 
be $22.47. Everyone else will have a normal 
weather subsidy of $0. Your subsidy is more than 
everyone else because you produced less. 
 
Example 2: If everyone else produces 20, but you 
produce 35 then your normal weather subsidy will 
be $0. Everyone else will have a normal weather 
subsidy of $20.28. Your subsidy is less than 
everyone else because you produced more.   

 
 
 
  
You can test these scenarios on the calculator. Note how, in this part, others’ production 
does not influence your profit. Your subsidy is more than everyone else because you 
produced less.  
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In this part, there is a subsidy that will be offered based on the average amount of 
damage that reaches the downstream user from all six parcels. Everyone in your group 
will receive the same subsidy. There will be a large subsidy for minimal damage, but the 
subsidy gets smaller as average group damage increases. If the measured group damage 
level is greater than the target, there will be no subsidy. The target for group damage is 
achieved when total group production is 144.  
 
 
Your group of six parcels is experiencing standard 
weather variation. With standard weather 
variation, you have a 10% chance of experiencing 
extreme weather, a 10% chance of experiencing 
severe weather, and an 80% chance of 
experiencing normal weather. 
 
Example 1: If everyone produces 20 then your 
normal weather subsidy will be $22.55.   
 
Example 2: If five parcels produce 20 and one 
parcel produces 50, your normal weather subsidy 
is $0.   
 
 
 
 
 
 
You can test these scenarios on the calculator.  Note how, in this part, your production 
decision will influence the profits of everyone in your group and the production decisions 
of others affect your profit.      
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In this part, the subsidy will be based on individual production. The subsidy may be 
different for different members of your group. If your production is greater than the 
target production for individuals, there will be no subsidy. The target for individual 
production is 24.  
 
 
 
Your group of six parcels is experiencing standard 
weather variation. With standard weather 
variation, you have a 10% chance of experiencing 
extreme weather, a 10% chance of experiencing 
severe weather, and an 80% chance of 
experiencing normal weather.  
 
 
Example 1: If everyone else produces 35, but you 
produce 15 then your normal weather subsidy will 
be $22.47. Everyone else will have a normal 
weather subsidy of $0. Your subsidy is more than 
everyone else because you produced less. 
 
 
Example 2: If everyone else produces 20, but you 
produce 35 then your normal weather subsidy will 

be $0. Everyone else will have a normal weather 
subsidy of $20.28. Your subsidy is less than 
everyone else because you produced more.   
 
 
You can test these scenarios on the calculator. Note how, in this part, others’ production 
does not influence your subsidy.  
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In this part, there is a subsidy that will be offered based on the average amount of 
damage that reaches the downstream user from all six parcels. Everyone in your group 
will receive the same subsidy. There will be a large subsidy for minimal damage, but the 
subsidy gets smaller as average group damage increases. If the measured group damage 
level is greater than the target, there will be no subsidy. The target for group damage is 
achieved when total group production is 144.  
 
 
Your group of six parcels is experiencing high 
weather variation. With high weather variation, 
you have a 10% chance of experiencing extreme 
weather, a 40% chance of experiencing severe 
weather, and a 50% chance of experiencing 
normal weather.  
 
 
Example 1: If everyone produces 20 then your 
severe weather subsidy will be $28.70.   
 
Example 2: If five parcels produce 20 and one 
parcel produces 50, your severe weather subsidy 
is $0.   
 

 
 
 
You can test these scenarios on the calculator.  Note how, in this part, your production 
decision will influence the profits of everyone in your group and the production decisions 
of others affect your profit.    
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In this part, the subsidy will be based on individual production. The subsidy may be 
different for different members of your group. If your production is greater than the 
target production for individuals, there will be no subsidy. The target for individual 
production is 24.  
 
Your group of six parcels is experiencing high weather variation. With high weather 
variation, you have a 10% chance of experiencing extreme weather, a 40% chance of 
experiencing severe weather, and a 50% chance of experiencing normal weather. 
 
 
Example 1: If everyone else produces 35, but you 
produce 15 then your severe weather subsidy will 
be $28.80. Everyone else will have a severe 
weather subsidy of $0. Your subsidy is more than 
everyone else because you produced less.  
 
 
Example 2: If everyone else produces 20, but you 
produce 35 then your severe weather subsidy will 
be $0. Everyone else will have a severe weather 
subsidy of $26.61. Your subsidy is less than 
everyone else because you produced more.   
 
 
 
 
 
 
You can test these scenarios on the calculator. Note how, in this part, others’ production 
does not influence your profit.  
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In this part, there is a subsidy that will be offered based on the average amount of 
damage that reaches the downstream user from all six parcels. Everyone in your group 
will receive the same subsidy. There will be a large subsidy for minimal damage, but the 
subsidy gets smaller as average group damage increases. If the measured group damage 
level is greater than the target, there will be no subsidy. The target for group damage is 
achieved when total group production is 144.  
 
 
Your group of six parcels is experiencing very 
high weather variation. With very high weather 
variation, you have a 40% change of experiencing 
extreme weather, a 10% chance of experiencing 
severe weather, and a 50% chance of experiencing 
normal weather.  
 
Example 1: If everyone produces 20 then your 
extreme  weather subsidy will be $36.38.   
 
Example 2: If five parcels produce 20 and one 
parcel produces 50, your extreme weather subsidy 
is $0.   
 
 
 
 
 
 
You can test these scenarios on the calculator.  Note how, in this part, your production 
decision will influence the profits of everyone in your group and the production decisions 
of others affect your profit.   
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In this part, the subsidy will be based on individual production. The subsidy may be 
different for different members of your group. If your production is greater than the 
target production for individuals, there will be no subsidy. The target for individual 
production is 24.  
 
 
Your group of six parcels is experiencing very 
high weather variation. With very high weather 
variation, you have a 40% change of experiencing 
extreme weather, a 10% chance of experiencing 
severe weather, and a 50% chance of experiencing 
normal weather.  
 
Example 1: If everyone else produces 35, but you 
produce 15 then your extreme weather subsidy 
will be $36.71. Everyone else will have an 
extreme weather subsidy of $0. Your subsidy is 
more than everyone else because you produced 
less.  
 
Example 2: If everyone else produces 20, but you 
produce 35 then your extreme weather subsidy 
will be $0. Everyone else will have an extreme 
weather subsidy of $34.52. Your subsidy is less 
than everyone else because you produced more.   
 
 
You can test these scenarios on the calculator. Note how, in this part, others’ production 
does not influence your profit. Your subsidy is more than everyone else because you 
produced less.  
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In this part, there is a subsidy that will be offered based on the average amount of 
damage that reaches the downstream user from all six parcels. Everyone in your group 
will receive the same subsidy. There will be a large subsidy for minimal damage, but the 
subsidy gets smaller as average group damage increases. If the measured group damage 
level is greater than the target, there will be no subsidy. The target for group damage is 
achieved when total group production is 144.  
 
 
Your group of six parcels is experiencing no 
weather variation. With no weather variation, you 
have a 100% experiencing normal weather.  
 
Example 1: If everyone produces 20 then your 
normal weather subsidy will be $22.55.   
 
Example 2: If five parcels produce 20 and one 
parcel produces 50, your normal weather subsidy 
is $0.   
 
 
 
 
 
 
 
 
You can test these scenarios on the calculator.  Note how, in this part, your production 
decision will influence the profits of everyone in your group and the production decisions 
of others affect your profit.   
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In this part, the subsidy will be based on individual production. The subsidy may be 
different for different members of your group. If your production is greater than the 
target production for individuals, there will be no subsidy. The target for individual 
production is 24.  
 
 
Your group of six parcels is no weather variation. 
With very no variation, you have a 100% chance 
of experiencing normal weather.  
 
Example 1: If everyone else produces 35, but you 
produce 15 then your normal weather subsidy will 
be $22.47. Everyone else will have a normal 
weather subsidy of $0. Your subsidy is more than 
everyone else because you produced less. 
 
 
Example 2: If everyone else produces 20, but you 
produce 35 then your normal weather subsidy will 
be $0. Everyone else will have a normal weather 
subsidy of $20.28. Your subsidy is less than 
everyone else because you produced more.   
  

 
 
 
You can test these scenarios on the calculator. Note how, in this part, others’ production 
does not influence your profit. Your subsidy is more than everyone else because you 
produced less.  
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Appendix B 

IRB APPROVAL LETTER 
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