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The isospectrality of a well-known pair of shapes constructed from two 

arrangements of seven congruent right isosceles triangles with the Neumann boundary 

condition is verified numerically to high precision. Equally strong numerical evidence 

for isospectrality is presented for the eigenvalues of the pair in new boundary 

configurations with alternating Dirichlet and Neumann boundary conditions along 

successive edges. Good agreement with theory is obtained for the corresponding 

spectral staircase functions. Some possible confirmatory experiments involving fluids 

are suggested. 
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 Introduction.  As the most accessible realization of the negative answer to 

Kac's [1] question "Can one hear the shape of a drum?", the pair of isospectral shapes 

discovered by Gordon et al. [2] (termed respectively "Bilby" and "Hawk" in Figure 

1), have subsequently been investigated from a variety of mathematical, numerical, 

and experimental viewpoints. Chapman [3] showed how domain eigenfunctions can 

be mapped from the constituent triangles of one shape to the second to prove 

isospectrality by transplantation, and described a proof by paper-folding. More 

recently, Okada and Shudo [4] have investigated isospectrality through a technique of 

successive unfolding of fundamental building block shapes and transplantation of 

eigenfunctions. Wu et al. [5] achieved a proof by an explicit mode matching method. 

 The numerical problem concerning the eigenvalues corresponds to solving an 

eigenvalue problem for the two-dimensional Helmholtz equation subject to the 

Dirichlet boundary condition (Dbc). Wu et al. [5] verified isospectrality numerically 

by an extrapolated mode-matching method, apparently to about 8 significant figures, 

tabulated for the first 25 modes. The "analytical" 9th and 21st modes there, 

corresponding to known simple modes of the underlying triangles, were not computed 

but were taken at their exact values. Subsequently, Driscoll [6], using a much more 

accurate modified domain-decomposition method, verified isospectrality numerically 

to 12 significant figures for the first 25 modes, including the two "analytical" modes 

for which the computation was more or less exact. This work showed that the 

computed results in Ref. [5] were actually accurate to about 4-5 significant figures.

 On the experimental side, Sridhar and Kudrolli [7] performed measurements 

on thin microwave cavities of the appropriate shapes, utilizing the correspondence 

with a 2-dimensional Helmholtz equation in the electromagnetic formulation. Then 
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Even and Pieranski [8] constructed actual shaped small "drums" - membranes made 

from liquid crystal smectic films - and measured their vibrations.  

 In this paper, we investigate theoretical and numerical aspects of the 

isospectrality of the two standard Bilby and Hawk shapes when Neumann boundary 

conditions (Nbc) are present, and make suggestions for possible experimental 

verification. 

 Neumann boundary conditions.  The most commonly encountered boundary 

condition is the Dirichlet bc ψ=0 on the boundary. This corresponds to the standard 

"drum" condition for a vibrating membrane with fixed edges, as well as to the 

boundary condition for quantum billiards [9]. The Neumann bc ∂ψ/∂n = 0 also has 

important manifestations [9], especially in acoustics where the pressure satisfies the 

Helmholtz equation with Nbc at a rigid boundary and for water surface waves. In 

electromagnetism also, the magnetic field of the transverse electric (TE) mode in a 

cavity has Nbc. The Nbc corresponds to the vibrational modes of a drum with stress-

free edges, as discussed by Hobiki et al. [10], who numerically investigated such a 

situation for fractal boundary shapes. Russ et al. [11] also considered fractal 

resonators with Nbc numerically, remarking that this situation could represent 

transverse acoustical phonons of a 2D irregular crystallite. In the field of quantum 

billiards, Gremaud and Jain [12] considered rational and irrational rhombus billiards 

with Nbc. Kohler and Blumel [13] considered ray-splitting billiards including Nbc. 

Wiersig [14] has used the fact that, for barrier billiards, the Nbc pertains on part of the 

boundary of a symmetry reduced polygon for the even states of the full shape. 

Neumann boundary conditions are therefore important, and the problem of isospectral 

shapes with these conditions will now be addressed. 
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The spectra under consideration are the eigenvalues obtained from the two-

dimensional Helmholtz equation (∇2 + E)ψ = 0 together with the Nbc on the edges. In 

an earlier proof of the existence of isospectral domains in dimensions greater than or 

equal to 4, Urakawa [15] already showed isospectrality for Dirichlet and for Neumann 

boundary conditions. In their announcement of Dbc isospectral two-dimensional 

domains, Gordon et al [16] also stated that the same shapes with Nbc were 

isospectral; Okada and Shudo [4] noted that their procedures, suitably modified, prove 

isospectrality for Nbc. Chapman [3] proved isospectrality for the bilby/hawk and 

other pairs having the Nbc. 

 Gottlieb and McManus [17] produced explicit eigenfunctions and 

corresponding exact eigenvalues for some Nbc modes of the two isospectral shapes. 

From the nodal patterns of these analytical expressions and numerical solutions for 

low modes, they were able to identify the first five analytical Neumann modes as the 

5th, 9th, 15th, 20th and 29th non-zero sequential modes. The finite element 

computations mentioned there, whilst sufficient for identifying patterns, only verified 

isospectrality to about three significant figures. The exact modes mentioned above, 

however, serve as benchmarks in any investigation of Nbc isospectrality for these 

shapes. 

 A numerical verification of isospectrality of the two standard shapes of Figure 

1 for Nbc, such as has been done previously for Dbc [5], [6] does not seem to have 

been carried out before. For this paper, the earlier work of Driscoll [6] has been 

adapted to the Nbc  case.  In [6] a candidate eigenfunction near a corner with interior 

angle απ /  is expanded in local polar coordinates as ( ) ( αθα nErJc n

M

n
n sin

1
∑
=

).  Then 

one finds an eigenvalue E by matching different expansions along the interfaces of a 
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domain decomposition; numerically, this becomes minimization of the result of a 

matrix eigenvalue problem.  For Nbc we replace the sine by a cosine and start the 

summation at . 0=n

We have verified isospectrality in the Nbc configuration for the first 30 (non-

zero) modes to 12 significant figures. The results for both shapes are given in Table I. 

With fundamental length unit 2, the analytical modes described above have 

eigenvalues given by Em,n = (π2/4)(m2+n2) ; m≤n=0,1,2,... The cases (m,n) = (0,1), 

(1,1), (0,2), (1,2), (2,2) corresponding to the five analytical modes described above, 

together with their readily identifiable nodal patterns [17], are essentially recovered 

exactly. 

 It may be noted that many of the investigations concerned with quantum 

chaotic spectral statistics [9] deal with very large numbers of very high levels. The 

accuracy on these typically was 10-2 of the mean level spacing for earlier works, and 

more recently of the order of 10-4. By contrast, we are here concerned with the first 

few dozen eigenvalues, computed to very high accuracy, of the order of 10-12 of the 

mean level spacing or better. 

 The spectral staircase (number-counting) function for these systems is N(E) = 

Σi=1..∞Θ(E-Ei), where Θ is the Heaviside unit step function. This is related to the 

spectral or trace function Φ(t) = Σn=1..∞exp(-Ent) via a Laplace transform. Based on the 

work of several authors [18]-[21], with earlier work discussed extensively in Baltes 

and Hilf [22], the (smoothed) spectral staircase function (corresponding to the trace 

function appearing in [17]) for polygons is given by  

N(E) ~ [A/(4π)] E  +  [(LN - LD)/(4π)] E(1/2)  +  (ΣDD,NN - ΣDN,ND) [(π2 - θ2)/(24πθ)] (1) 

where A is the area, LD (LN) is the length of that part of the perimeter having Dirichlet 

(Neumann) boundary condition, and the sums are over corner angles θ subtended by 
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pairs of sides with boundary conditions as indicated. For basic unit length 2 for the 

two isospectral shapes of Figure 1 (which have the same area, perimeter lengths and 

corner angles), this reads, for the Nbc case, NN(E)  =  1.1141E + 1.6302√E + 0.4167. 

We plotted N(E) for the first 31 modes for Nbc (including the zero mode). The 

agreement with this graph was good, demonstrating the need for inclusion of the zero 

mode and the plus sign for the second term in the case of Nbc compared with the 

minus sign for the Dbc case as was plotted in [6].  

 To our knowledge, no experiments involving isospectral shapes with 

Neumann boundary conditions have been performed, in contrast to reported 

experiments for the Dbc case [7], [8]. Some such Nbc experiments could be 

envisaged, however, based on acoustics and wave propagation in liquids [9, sect. 2.1], 

where Nbcs are involved. For instance, Blumel et al [23] reported on the nodal 

patterns of surface waves formed by agitating a tank with circular or stadium-shaped 

cylindrical walls. Chinnery et al. [24], [25] used a schlieren technique to visualize 

resonances in insonified water cavities with stadium and circular cross-sections. 

Hebert et al [26] made an experimental study of resonances of a fractal acoustic 

cavity. 

 It seems likely that these experimental techniques could be applied to cross-

sectional shapes as in Figure 1 to investigate their isopectrality. Independent checks 

on the accuracy of such experiments would be available through the nodal patterns of 

the analytical modes pictured in [17] together with their sequential mode numbers and 

eigenvalue ratios listed in [17]. 

 Alternating boundary conditions.  There has been some work done on 2D 

systems with a mixture of Dirichlet and Neumann bcs on different parts of the 

boundary. Baltes and Hilf [22, p.47] show the appearance of a minus sign in the third 
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(constant, corner-angle) term of the spectral number counting function for a rectangle 

whose sides successively alternate Dbc and Nbc (c.f. equation (1) above). In quantum 

billiards, there has been recent work where parts of a rectangular boundary have Dbc 

and parts have Nbc, for ray-splitting [13] and barrier [14] billiards.  Thus it is 

important and timely to consider systems with both types of boundary conditions in 

detail. 

 Having verified above the accuracy of our modified domain-decomposition 

method for computationally handling Dirichlet or Neumann bcs in the case of the two 

standard shapes whose isospectrality has been proved elsewhere mathematically as 

described above, we turn to the case of the standard shapes with "alternating boundary 

conditions" (abcs) in which each side is successively Dbc or Nbc as one moves 

around the perimeter.  

The isospectrality in this configuration has not been proved mathematically so 

far, and does not seem immediately amenable to the standard forms of proof. For 

instance, the transplantation method for unfolded domains described by Okada and 

Shudo [4] does not work here because a Dbc edge, upon folding, would yield a Dbc 

rather than an Nbc external edge as desired. Our aim here is to present strong 

numerical evidence for isopectrality in this new abc configuration. It can be seen that 

A, LD, LN and the θs in equation (1) are the same for both shapes, so the coefficients 

of the three terms in (1) are equal for both, a necessary condition for isospectrality. In 

fact, there are two distinct such isospectral pair configurations. We denote by aDNbc 

(aNDbc) the situation for which the longest side in the alternating boundary condition 

configuration in each shape is chosen to have Dbc (Nbc). 

 Our numerical method now uses ( )[ ]αθ2/1sin +n  or ( )[ ]αθ2/1cos +n  in the 

Fourier-Bessel corner expansions, whichever conforms to the local bc. The computed 
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eigenvalues for the first 30 modes of the two shapes in the two abc configurations are 

given in Tables IIa and IIb. In either case, the results for both shapes in the same 

configuration agree to at least 12 significant figures. Unlike the cases of pure Dbc [5], 

[17] or pure Nbc [17], we have been unable to construct any  

exact "analytical" modes or to identify particularly simple nodal patterns in the 

computed eigenfunction plots. Thus independent checks as for the pure Dbc and Nbc 

cases do not seem to be available here.  

 As was noted in [6] for Dbc, the computational abc eigenvalues for the  

regions are identical when certain decompositions are used. The matrices  

that play a central role (see (2.6) in [6]) are apparently similar for  

the two regions. We speculate that if this could be shown formally, a  

proof of abc isospectrality might follow. (For Tables IIa and IIb these  

special decompositions were avoided.) 

 The spectral staircase functions are plotted and compared with the graphs of 

equation (1) in Figure 2. For basic side length h, A = (7/2)h2, |LN-LD| = √2h, and the 

corner angle term has value -5/12. Thus, for h=2, (1) becomes NaDN(E) = 1.1141E - 

0.2251√E - 0.4167 , with a plus sign for the second term in NaND(E). The plots show 

good agreement and confirm the minus sign for the third term in these cases of 

alternating boundary conditions. 

 Conclusion.  The known isospectrality of the two standard shapes (Fig. 1) 

with Neumann boundary condition has been confirmed numerically to a high degree 

of accuracy, and good agreement with theory for the spectral staircase function has 

been obtained. 

 We have presented numerical evidence that is the first and indeed strong 

indication of the isospectrality of these two standard shapes in the new boundary 
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condition configurations with alternating Dirichlet and Neumann conditions on 

successive sides. 

 It is suggested that some experimental work involving fluids may illustrate the 

Nbc case, and that electromagnetic cavities might be relevant for the case of 

alternating boundary conditions. 

 One of us (HPWG) would like to thank Professor Y. Okada for illuminating e-

mail correspondence. 
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TABLE I. Eigenvalues of the first 30 non-zero modes, 

to 12 significant figures, for the two standard  

isospectral shapes of Fig. 1 (basic side 2 units), with 

Neumann boundary condition. (Mode number M = M'+1.) 

           
M'   E                               M'   E   
1     0.211150088843      16   9.87841180931 
2     0.809165742343      17   10.3253541128 
3     1.05781354844        18   11.5754753532 
4     1.86039671198        19   11.6665580661 
5     2.46740110027        20   12.3370055014 
6     2.72788980382        21   12.9096372668 
7     3.39124050892        22   13.7742157078 
8     4.40632478595        23   15.4610825657 
9     4.93480220054        24   15.9519127351 
10   5.66570714255        25   16.2660218054 
11   5.81846754996        26   16.9514271289 
12   6.98274727028        27   19.0892095926 
13   7.64059043694        28   19.1962817413 
14   9.04934361203        29   19.7392088022 
15   9.86960440109        30   20.5304462804 
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TABLE II. Eigenvalues of the first 30 modes, to 12 
  
significant figures, for the two standard isospectral 

shapes of Fig. 1 (basic side 2 units), with  

(a) alternating Dirichlet (longest side) / Neumann 

boundary conditions; 

(b) alternating Neumann (longest side) / Dirichlet 

boundary conditions.        

        
(a)   aDNbc                   (b)   aNDbc 
M    E                            M    E   
1     1.65141342709      1     0.715984505106 
2     1.90967315909      2     1.97361411622 
3     3.43870897236      3     2.77451509187 
4     4.17587478260      4     2.97462791606 
5     4.57209973453      5     3.88908349386 
6     5.62166889695      6     4.63290823432 
7     6.89161511324      7     6.02493079100 
8     7.74834106067      8     6.93817184169 
9     9.33008358225      9     7.77235813608 
10   9.80192274409      10   8.44522884854 
11   10.6260535933      11   9.39178897887 
12   11.5038125374      12   10.4460416956 
13   12.2664713847      13   10.9709402924 
14   12.8896196853      14   11.5756538487 
15   14.2405332523      15   12.8545214783 
16   15.5313799266      16   13.5117617705 
17   16.3655578572      17   15.0069728862 
18   17.3956907586      18   15.2660433735 
19   17.8925543463      19   15.9460361465 
20   19.2138859210      20   17.0144500638 
21   19.7290650856      21   17.8080832556 
22   20.3158331403      22   19.6769099441 
23   21.6332697571      23   20.2581964864 
24   22.2827868664      24   20.5724674001 
25   23.7501148857      25   21.8462979588 
26   24.2385971539      26   22.6047777014 
27   25.6971017156      27   23.5733311802 
28   26.2466652675      28   24.1261381785  
29   27.5323151203      29   24.6538070142 
30   28.0086952587      30   25.7410633370 
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FIG. 1. The two standard isospectral shapes, termed 

respectively "Bilby" and "Hawk". 
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FIG. 2. Spectral staircases (vertical lines) and smooth approximations (dashed curves) 

for both types of alternating boundary conditions. 

 
 


