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Abstract

This paper is concerned with a boundary-field equation approach to a class of
boundary value problems exterior to a thin domain. A prototype of this kind of prob-
lems is the interaction problem with a thin elastic structure. We are interested in the
asymptotic behavior of the solution when the thickness of the elastic structure ap-
proaches to zero. In particular, formal asymptotic expansions will be developed, and
their rigorous justification will be considered. As will be seen, the construction of these
formal expansions hinges on the solutions of a sequence of exterior Dirichlet problems,
which can be treated by employing boundary element methods. On the other hand,
the justification of the corresponding formal procedure requires an independence on
the thickness of the thin domain for the constant in the Korn inequality. It is shown
that in spite of the reduction of the dimensionality of the domain under consideration,
this class of problems are in general not singular perturbation problems, because of
appropriate interface conditions.
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1 Introduction

In this paper we consider a linear model elastic transmission problem posed in the exterior
of a thin domain. The thin domain under consideration is an annular region in R

2 with
smooth boundaries occupied by a linear isotropic elastic material. The exterior region which
imbeds this annular domain is also comprised of an elastic material with different (linear
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and isotropic) elastic properties. The outer boundary is fixed, and the inner boundary is
allowed to move as the thickness of the annular region decreases (see 1). We are interested
in the asymptotic behavior of the elastic displacement fields both in the interior and exterior
of this annular region. In this study the material parameters are fixed, making this analysis
different from similar studies in the engineering literature where the contrast between the
materials is allowed to vary with the thickness.

In Section 2, we will first study the transmission problem in the case of fixed thickness,
and employ boundary integral equations to reduce the (infinite) computational domain to a
finite one. A weak formulation is then derived for the resulting nonlocal boundary problem,
and the existence and uniqueness of solutions to this formulation are discussed. A key
invertibility result is derived here which will be, along with Korn’s inequality in a thin
domain, very useful for the justification of the subsequent asymptotics.

We present an illustrative example which will motivate our asymptotic study. This
example reveals that in this specific situation the displacement fields can be expanded in
regular asymptotic series. With these insights, we will then present the general (formal)
asymptotic procedure for studying the solutions of the transmission problem in the case of
vanishing thickness. Finally, the asymptotic procedure is rigorously justified. It is interesting
that the asymptotic procedure, which is applied to a coupled system of equations, actually
results in a decoupling of these equations at any given order.

2 The case of fixed thickness, ǫ > 0.

We begin with the transmission problem in the case where the thickness ǫ > 0 of the
annular region is fixed. We first describe the transmission problem of interest, and the
associated classical uniqueness result. We then truncate the infinite computational domain
by means of two integral equations, and introduce a weak formulation for the resulting
nonlocal boundary value problem. This weak formulation will be advantageous both for
proving existence of solutions, and for leading naturally to a coupled finite element - boundary
element scheme. Using Korn’s inequality, we establish existence and uniqueness results for
our weak formulation; this yields an important invertibility result which will be the key
ingredient in the justification of our asymptotic procedure in subsequent sections.

2.1 Formulation of the transmission problem

Let us describe the elastic transmission problem of interest. In what follows, let Ωǫ be a thin
annular region in the plane bounded by smooth curves Γ0 and Γǫ, with elastic properties
determined by the Lamé coefficients λ1, µ1. These coefficients do not change with changing
thickness. The unbounded complement of Ωǫ is denoted by Ω∞ := R

2 \ Int(Γ0), and is
composed of a linear elastic material with the Lamé parameters λ2, µ2. A schematic figure
is shown in Figure (1).

We are interested in the 2-dimensional elastic displacement fields uǫ ∈ H1(Ωǫ) and Uǫ ∈
H1

loc(Ω∞). We are using the simplified notation u ∈ V to mean that each component of the
vector-valued function u belongs to function space V .
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Figure 1: The configuration of the thin domain for fixed thickness. The trace of u from inside
Ωǫ on Γ0 is denoted u−. All normals are taken to point into the infinite exterior region.

The associated stress fields σ1(uǫ) and σ2(Uǫ) are related to the (symmetric) strains

E(uǫ) and E(Uǫ) via the linear constitutive relationships

σk(uǫ) = λk(div(uǫ))I + 2µkE(uǫ), E(uǫ)ij :=
1

2
(
∂ui

∂xj

+
∂ui

∂xj

), k = 1, 2,

where trM denotes the trace of a matrix M . Also note that

div σk(uǫ) = µk∆u + (λk + µk)∇div u, k = 1, 2.

Let f ∈ L2(Ωǫ) be the density of a volume force on Ωǫ. The equilibrium equation in the
annular region then becomes

div σ1(uǫ) = −f in Ωǫ. (1a)

We assume that the inner boundary Γǫ is clamped so that

uǫ = 0 on Γǫ (1b)

In the exterior, we assume there is no volume force; the balance of forces gives

div σ2(Uǫ) = 0 in Ω∞. (1c)

Across the interface Γ0 we have the transmission conditions

uǫ = Uǫ + p0, T1(uǫ) = T2(Uǫ) + q0, on Γ0 (1d)

for given data p0 ∈ H1/2(Γ0),q0 ∈ H−1/2(Γ0) (the usual trace spaces). The tractions are
defined by

Ti(u) := n · σi(u) = 2µi
∂

∂n
u + λi (div u)n + µin ×∇× u.
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In the transmission conditions (1d), the data p0 describes a possible jump between the dis-
placement fields (non-continuous behavior, disclocations) whereas q0 characterizes a possible
jump between the traction fields, which can appear due to the different material parame-
ters. In order to ensure uniqueness of solutions, we require that Uǫ be a generalized regular

function in the sense that

(Uǫ − w) = O(1/|x|), ∇(Uǫ − w) = O(1/|x|2) (1e)

where w is a constant rigid motion. See, for example, [6, 7, 1].

2.2 Reduction to bounded domain

We next use the Betti representation formula for elastic displacements to rewrite the exterior
problem (1c,1e) in terms of an integral equation on Γ0. The solution Uǫ of (1c) satisfies the
modified Betti formula for all x ∈ Ω∞:

Uǫ(x) = −
∫

Γ0

G(x, y)T2(Uǫ)(y) − T(x, y)Uǫ(y) dsy + a. (2)

Here, a is a constant vector, and G is the fundamental tensor:

G(x, y) :=
λ2 + 3µ2

4π(λ2 + 2µ2)

{

− ln |x − y|I +
λ2 + µ2

(λ2 + 3µ2)

1

|x − y|2 (x − y)(x − y)T

}

and
T(x, y) = (T2y(G(x, y)))T .

The traction T2y operator contains derivatives with respect to the variable y. We note that
the radiation condition (1e) will only be satisfied by this representation if the additional
compatibility condition holds:

∫

Γ0

T2(Uǫ) ds = 0. (3)

To incorporate this compatibility condition in what follows, we define

H
−1/2
0 (Γ0) :=

{

χ = (χ1, χ2) ∈ H−1/2(Γ0)|〈χ1, 1〉 = 〈χ2, 1〉 = 0
}

,

where 〈·, ·〉 denotes duality pairing between H1/2(Γ0) × H−1/2(Γ0). Taking limits in (2) as
Ω∞ ∋ x → Γ0, we obtain the integral equation

(
1

2
I − K)U+

ǫ + Vτ = 0 on Γ0, (4a)

where the fields U+
ǫ and τ = T2U

+
ǫ need to be interpreted as the appropriate traces on Γ0

coming from Ω∞. We have used the classical jump relations to arrive at this result. Here,
K,V are the double and single layer integral operators respectively, (see below).

We could also take the normal derivative of equation (2), and then take limits, to arrive
at the integral equation

(
1

2
I + K′)τ + WU+

ǫ = 0, on Γ0. (4b)
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The integral operator W is the familiar hypersingular integral operator, while K′ is the
adjoint of the double layer operator. We recall some of the main properties of the linear
integral operators K,K′,V and W below:

1. V : H−1/2(Γ0) → H−1/2(Γ0), where Vµ(x) := 〈G(x, ·), µ〉.

2. K : H1/2(Γ0) → H1/2(Γ0), defined by Kµ(x) := 〈T(x, ·), µ〉.

3. W : H1/2(Γ0) → H−1/2(Γ0), defined by Wµ(x) := −T2,x〈T(x, ·), µ〉.

4. For all σ ∈ H
−1/2
0 (Γ0), the operator V is positive definite, that is, there exists a constant

γv independent of σ such that

〈σ,Vσ〉 ≥ γv‖σ‖2
H−1/2(Γ0), ∀σ ∈ H

−1/2
0 (Γ0). (5)

Note that since the curve Γ0 is independent of ǫ, so is the constant γv.

5. W is positive semi-definite, that is, for all v ∈ H1/2(Γ0),

〈Wv,v〉 ≥ 0. (6)

The following well-known result, relating the solutions of these integral equations to the
solutions of the exterior problem, is stated here for completeness:

Theorem 2.1 For any µ ∈ H1/2(Γ0), χ ∈ H
−1/2
0 (Γ0), there exists a unique solution u ∈

H1
loc(Ω∞) satisfying (1c) and (1e) iff (4a, b ) holds with µ = u+

ǫ and χ = τǫ

(see, for example, [2, 3])
With these integral equations, we are able to reduce the exterior problem for Uǫ to

boundary integral equations of U+
ǫ or τ on the interface Γ0. Once these Cauchy data have

been obtained, one can use the Betti representation formula to reconstruct the solution Uǫ

in the exterior domain.
Since we have transmission conditions relating U+

ǫ and τǫ = T2(Uǫ) to uǫ and T1(uǫ)
respectively, we can write the following equivalent coupled system in terms of the unknowns
uǫ, τǫ:

div σ1(uǫ) = −f in Ωǫ, (7a)

uǫ = 0 on Γǫ, (7b)

T1uǫ = τǫ + q0 on Γ0, (7c)

(
1

2
I − K)(u−

ǫ − p0) + Vτǫ = 0 on Γ0, (7d)

(
1

2
I + K′)τǫ + W(u−

ǫ − p0) = 0 on Γ0. (7e)

We have included both integral equations; clearly they are not independent and one is
sufficient. However, it will prove advantageous from the point of view of analysis to use
both. We note here that to obtain τǫ at one point on Γ0, we need the values of u−

ǫ all around
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Γ0. Conversely, in order to obtain u−
ǫ , we need the values of τǫ around Γ0. The integral

equations are thus non-local in nature, and hence the coupled system above is a non-local

boundary value problem. We solve this new problem simultaneously for uǫ and τǫ, and use the
transmission condition to obtain U+

ǫ on Γ0. This then enables us to use the Betti formula,
and finally provides a full solution to the original transmission problem.

2.3 Weak formulation

We now seek weak solutions of the nonlocal boundary value problem derived in the pre-
vious subsection. To be more precise, let us first introduce the function space H1

0 (Ωǫ) :=

{v ∈ H1(Ωǫ)|v = 0 on Γǫ}, and recall that H
−1/2
0 (Γ0) :=

{

χ ∈ H−1/2(Γ0)|〈χ1, 1〉 = 〈χ2, 1〉 = 0
}

.
We now consider the product space

Hǫ :=
{

(v, χ) ∈ H1
0 (Ωǫ) × H

−1/2
0 (Γ0)

}

equipped with the associated product norm

‖(v, χ)‖Hǫ := (‖v‖2
H1(Ωǫ)

+ ||χ‖2
H−1/2(Γ0))

1/2.

Multiplying equations (7a) and (7e) by the test function v ∈ H1
0 (Ωǫ) and its trace on Γ0,

and equation (7d) by χ ∈ H
−1/2
0 (Γ0), integration by parts of the products over Ωǫ and Γ0

respectively then lead to the variational equations
∫

Ωǫ

σ1(uǫ) : E(v) dΩǫ − 〈T1uǫ,v〉 =

∫

Ωǫ

f · v dΩǫ, (8a)

〈v, (
1

2
I + K′)τǫ〉 + 〈v,W(uǫ − p0)〉 = 0, (8b)

〈(1
2
I − K)(uǫ − p0) + V(τǫ), χ〉 = 0. (8c)

Now, using the transmission conditions (7c) for τǫ, −〈T1(uǫ),v〉 = −〈τǫ +q0,v〉, we can add
the equation (8b) to this relationship to obtain

−〈T1(uǫ),v〉 + 0 = −〈τǫ + q0,v〉 + 〈v, (
1

2
I + K′)τǫ〉 + 〈v,W(uǫ − p0)〉

= 〈v, (−1

2
I + K′)τǫ〉 + 〈v,W(uǫ)〉 − 〈v−,q0〉 − 〈v−,Wp0〉.

We reformulate the problem (8) as one for finding a displacement uǫ and a traction τǫ. More
precisely, the variational formulation of our transmission problem for fixed thickness reads

Definition 2.1 (Problem Pǫ) Find (uǫ, τǫ) ∈ Hǫ such that







∫

Ωǫ
σ1(uǫ) : E(v) dV + 〈v−,Wu−

ǫ + (−1
2
I + K′)τǫ〉 =

∫

Ωǫ
f · v dV + 〈v−,Wp0 + q0〉

〈(1
2
I − K)uǫ + Vτǫ, χ〉 = 〈(1

2
I − K)p0, χ〉

(9)
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for all (v, χ) ∈ Hǫ, under the assumption that the given data (f ,q0) ∈ L2(Ωǫ) × H−1/2(Γ0)
satisfy the compatibility condition

∫

Ωǫ

f dV +

∫

Γ0

q0 ds = 0. (10)

We note that the assumption on the data is one of the consequences of seeking τǫ ∈ H
−1/2
0 (Γ0),

that is, from the transmission condition (7c), requiring T1(uǫ) − q0 = τǫ ∈ H
−1/2
0 (Γ0).

2.4 The main a priori result

The existence and uniqueness of solutions to the problem (Pǫ) will be established easily via
the Lax-Milgram lemma. To this end, define the bounded, continuous bilinear form Aǫ from
Hǫ ×Hǫ → R as

Aǫ ((u, σ), (v, χ)) :=

∫

Ωǫ

σ1(u) : E(v) dΩǫ + 〈v,Wu+(−1

2
I+K′)σ〉+ 〈(1

2
I−K)u+V(σ), χ〉

(11)
We note that this corresponds to adding both equations in (Pǫ). Let

Fǫ(v, χ) :=

∫

Ωǫ

f · v dV + 〈v−,Wp0 + q0〉 + 〈(1
2
I − K)p0, χ〉.

It is not hard to see that Fǫ is a continuous linear functional on Hǫ. The problem Pǫ can
then be rewritten as: Find (uǫ, τǫ) ∈ Hǫ such that for all (v, χ) ∈ Hǫ,

Aǫ ((uǫ, τ), (v, χ)) = Fǫ(v, χ).

Theorem 2.2 The bilinear form Aǫ is Hǫ-elliptic; in particular, there is a thickness ǫ0 > 0
such that for all ǫ ∈ (0, ǫ0) there exists a constant α independent of ǫ such that

α‖(u, σ)‖2
Hǫ

≤ Aǫ ((u, σ), (u, σ)) ∀(u, σ) ∈ Hǫ. (12)

Proof. Setting (v, χ) = (u, σ) in the definition of Aǫ. we obtain

Aǫ ((u, σ), (u, σ)) =

∫

Ωǫ

σ1(u) : E(u) dΩǫ + 〈u,Wu〉 + 〈Vσ, σ〉

≥ C1‖E(u)‖2
L2(Ωǫ)

+ γ1‖σ‖2

H
−1/2

0
(Γ0)

,

where we have used the ellipticity of the strain-stress relation. At this stage, we invoke
Korn’s inequality, which states that

∫

Ωǫ

E(u) : E(u) dΩǫ ≥ C‖u‖2
H1(Ωǫ)

, (13)

where the constant C is independent of ǫ as can be seen as follows. We consider an arbitrary
element u ∈ H1

0 (Ωǫ) and its zero-extension ũ on Ω0. The domain Ω0 is a fixed annular region
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Figure 2: Geometry for proof of Korn’s inequality

with the boundary ∂Ω0 = Γ0 ∪ {x ∈ R
2 : |x − x0| = r0}, which contains all Ωǫ, ǫ ≤ ǫ0, in

its interior and x0 ∈ Ω0 \ Ωǫ0 is a fixed point (see Figure (2). Then in [12], it is proved that
there is a constant C = C(Ω0) such that

∫

Ω0

E(ũ) : E(ũ)dx ≥ C‖ũ‖2
H1(Ω0)

for the set of zero-extensions ũ of elements u ∈ H1
0 (Ωǫ). Now

∫

Ωǫ

E(u) : E(u) dΩǫ =

∫

Ωǫ

E(ũ) : E(ũ)dΩǫ =

∫

Ω0

E(ũ) : E(ũ)dx ≥ C‖ũ‖2
H1(Ω0) = C‖ũ‖2

H1(Ωǫ)
,

which is desired inequality (13). The Hǫ-ellipticity of Aǫ, i.e., (12), then follows with α :=
min{C1C, γ1)} independent of ǫ.

This ellipticity result, the continuity of Fǫ and the Lax-Milgram lemma guarantees the
existence of a unique solution to the problem (Pǫ). We note here again the use of Korn’s
inequality in a thin region which enabled us to determine a coercivity constant C independent
of ǫ.

We end this section with a brief summary of results thus far. We have derived a weak
formulation for the elastic-elastic transmission problem in the case when the thickness of
the annular region, ǫ, is fixed. We have proved existence and uniqueness of solutions to this
variational problem; in particular, we have shown that the norm of the inverse is bounded.

We shall now investigate the asymptotic behavior of the solutions as ǫ → 0+. However,
a simple, tractable example where the details can be explicitly computed can provide much
insight into asymptotic behavior, and will motivate our choice of asymptotic expansion. We
therefore digress to present such an example.

3 An illustrative example

In this section, we consider the elastic transmission problem in the case of a special geometry:
that of concentric circles. We also make the assumption of a constant body force density
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Figure 3: The configuration of the thin domain for the model problem

f ; this assumption can be relaxed to include smooth forces, but the consequent analysis
even for the simple geometry is complicated. The simple annular geometry will allow us to
explicitly compute the solution of the classical transmission problem using Fourier series.
We will notice that the coefficients of the series will contain the thickness parameter ǫ > 0.

3.1 A model problem

In this section, let Γ0 denote a circle centered at the origin, with radius R > 0. Let Γǫ be
a circle centered at the origin with radius R − ǫ, where 0 < ǫ << R. The annular region
between Γǫ and Γ0 is called Ωǫ. This geometry is illustrated in Figure (3). We recall that
the classical transmission problem is to find uǫ and Uǫ such that

div σ1(uǫ) = f in Ωǫ, (14a)

uǫ = 0 on Γǫ, (14b)

div σ2(Uǫ) = 0 in Ω∞, (14c)

where
div σi(u) = µi∆u + (λi + µi)∇div u

and where f = constant describes the body force density. Across the interface Γ0 we have
the transmission conditions

uǫ = Uǫ + p, T1(uǫ) = T2(Uǫ) + q on Γǫ (14d)

for given data p ∈ H1/2(Γ0),q ∈ H−1/2(Γ0). We also have the behavior at infinity given by

(u − w) = O(1/|x|), ∇(u − w) = O(1/|x|2), (14e)

where w is a constant rigid motion. Recall that the material properties λi, µi are independent
of ǫ > 0. We note that for a planar strain problem the components of the (symmetric) stress

9



tensor can be written in terms of the Airy stress function φ (in polar coordinates) (see, e.g.,
[9, 5]).

σ =

(

τrr τrθ

τrθ τθθ

)

, τrr = r−2∂2φ

∂θ2
+ r−1∂φ

∂r
, τrθ = − ∂

∂r

(

1

r

∂φ

∂θ

)

, τθ,θ =
∂2φ

∂r2
.

The static equilibrium equations for the stress then reduce to the following equation for the
Airy stress function :

∇4φ = C ∇ · f (15)

with C = 2ν−1
1−ν

in the case of plane strain, and C = ν − 1 for plane stress problems. Here ν
denotes the Poession ratio.

Returning to our model problem, suppose the stresses in Ωǫ are written in terms of the
Airy stress function φ, and the stresses in the exterior region Ω∞ are written in terms of the
Airy stress function ψ. We then have

∇4φ = 0 in Ωǫ, ∇4ψ = 0 in Ω∞. (16)

That is, both φ and ψ satisfy the biharmonic equation, since we have constant force density
in Ωǫ. We also need to rewrite the boundary condition on Γǫ and the interface conditions on
Γ0 in terms of the Airy stress functions.

We seek a solution of the biharmonic equation exterior to a circle such that the stresses
at infinity are bounded and the displacement is a generalized regular displacement in the
sense of (1e). We also require that the displacements and stresses are single-valued (see [11]).
A solution of the biharmonic equation satisfying these requirements is given by the so-called
Michell solution ([10]):

ψ(r, θ) = bo ln r + A0θ + (b1r ln r +
c1

r
+ A1rθ) exp(iθ)

+
∞

∑

n=2

(cnr
−n + dnr

2−n) exp(inθ).

Here, the constants b0, c0, A0, b1, c1, A1, cn, dn need to be located by matching the interface
conditions on Γ0. In particular, we note that b1 and A1 must be related in order to insure
the single-valuedness of displacements, via the relation

b1 = −1 − ν2

2
iA1,

where ν2 is determined via the elastic properties in the exterior region.
On the other hand, the solution of the biharmonic equation in an annular region is given

by

φ(r, θ) = α0 + β0 ln r + γ0r
2 + η0θ +

(

α1r +
γ1

r
+ δ1r

3 + β1r ln r + η1rθ
)

exp(iθ)

+
∞

∑

n=2

(

αnr
n + βnrn+2 + γnr

−n + δnr
2−n

)

exp(inθ).
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Here again β1, η1 are related in order to obtain single-value displacements, and

β1 = −1 − ν1

2
iη1.

We assume that the data p,q are sufficiently smooth, and in fact

p =
∞

∑

n=0

pn exp inθ, q =
∞

∑

n=0

qn exp inθ.

Since we are primarily interested in displacements and tractions, it is worth noting that
with the Michell solution, the displacement uǫ = urêr + uθêθ in the annular region is given
by

ur =
1

E1

[

−β0

r
(1 + ν1) + 2γ0(1 − ν1)r

]

+
1

E1

[

β1(1 − ν1) ln(r) +
γ1

r2
(1 + ν1) + δ1r

2(1 − ν1) − 2δ1ν1r
2 + 2iη1 ln(r)

]

exp iθ

+
1

E1

∞
∑

n=2

[

αnn(1 + ν1)r
n−1 + βn (n − 2 + nν1 + 2ν1) rn+1

−γnn(1 + ν1)r
−n−1 − δn (n + 2 + ν1n − 2ν1) r1−n

]

exp(inθ),

uθ =
1

E1

[

β1(1 − ν1)(1 − ln r) + γ1
1 + ν1

r2
+ δ1(5 + ν1)r

2 + 2iη1(ln r + ν1)

]

i exp(iθ)

+
1

E1

∞
∑

n=2

[

αnn(1 + ν1)r
n−1 + βn (n(1 + ν1) + 4) rn+1

−γnn(1 + ν1)r
−n−1 − δn (n(1 + ν1) − 4) r1−n

]

i exp(inθ).

while the traction T1 is given by

T1 =
β0

r2
+ 2γ0 +

(

β1

r
− 2γ1

r3
+ 2δ1r + i

2η1

r

)

expiθ

−
∞

∑

n=2

[

αnn(n − 1)rn−2 + βn(n + 1)(n − 2)rn

+γnn(n + 1)r−n−2 + δn(n − 1)(n + 2)r−n
]

exp(inθ).

Similarly, the displacement in the exterior, Uǫ = Urêr + Uθêθ is given by

Ur =
1

E2

[

−b0

r
(1 + ν2)

]

+
1

E2

[c1

r2
(1 + ν2)

]

exp iθ

+
1

E2

∞
∑

n=2

[

−cnn(1 + ν2)r
−n−1 − dn (n + 2 + ν2n − 2ν2) r1−n

]

exp(inθ),

Uθ =
1

E2

[

b1(1 − ν2)(1 − ln r) + c1
1 + ν2

r2
+ 2iA1(ln r + ν2)

]

i exp(iθ)

+
1

E2

∞
∑

n=2

[

−cnn(1 + ν2)r
−n−1 − dn (n(1 + ν2) − 4) r1−n

]

i exp(inθ).
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with the traction being given by

T2 =
b0

r2
− 2

c1

r3
exp(iθ) −

∞
∑

n=2

(

cnn(n + 1)r−n−2 + dn(n − 1)(n + 2)r−n
)

exp(inθ)

By matching ur(R−ǫ, θ) = 0, uθ(R−ǫ, θ) = 0, ur(R, θ) = Ur(R, θ)+pr, uθ(R, θ) = Uθ(R, θ)+
pθ, T1(R) = T2(R) + qr, we can locate the coefficients β0, γ0, β1, γ1, etc.

We then write r = R+ǫξ, ξ ∈ (−1, 0) and examine the behavior for small ǫ of ur(R−ǫξ, θ),
uθ(R − ǫξ, θ) (we used the symbolic software MAPLE for this computation). Since the
calculation leads to fairly messy expressions, we present here only the expansion for ur up
to O(ǫ).

ur(R − ǫξ, θ) = 0+

ǫ

[

(−1 + xi)

R

(E2pr0 + q0R + q0Rν2)

(1 + ν2)
(−1 + ν2

1) + (coeff1) exp(iθ) +
∞

∑

n=2

(coeffn) exp(inθ)

]

uθ(R − ǫξ, θ) = 0 + ǫ(coeff2)1 + ǫ2(coeff2)2 + ...

where the value of (coeff1) is computed by MAPLE. Despite its apparent algebraic complex-
ity, it can be verified that (coeff1) is a bounded term independent of ǫ. Similar computations
for coefficients up to and including second order were performed; in each case, the resultant
terms, though messy, are bounded, and independent of ǫ. These detailed calculations are
not presented here in the interests of brevity. The most important observation is that at
leading order u0 = 0, and uǫ can be expanded in a regular asymptotic series in ǫ.

Similarly, if we examine the traction T2(R), we obtain a regular asymptotic series of the
form,

T2(R) = 2
E2pr0E1R

2E1R2 + 2E1R2nu2

+ O(ǫ),

where the subsequent terms again yield a regular asymptotic sequence. Again, it was verified
that the coefficients do not depend on ǫ, and are bounded.

4 An asymptotic procedure for solutions of (Pǫ)

In this section we use the insights gained from the model problem to analyze the asymptotic
behavior of solutions to problem (Pǫ) in the limit as ǫ → 0. Recall that the variational
problem under consideration is : Find (uǫ, τ) ∈ Hǫ such that

{
∫

Ωǫ
σ1(uǫ) : E(v) dV + 〈v−,Wu−

ǫ + (−1
2
I + K′)τ〉 =

∫

Ωǫ
f · v dV + 〈v−,Wp0 + q0〉,

〈(1
2
I − K)uǫ + Vτ, χ〉 = 〈(1

2
I − K)p0, χ〉.

(17)
for all (v, χ) ∈ Hǫ. We have established existence and uniqueness of solutions to this problem
in the case of ǫ fixed, by using the variational equation

Aǫ((uǫ, τ), (v, χ)) = Fǫ(v, χ) ∀(v, χ) ∈ Hǫ.
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At this stage, the most convenient coordinate system to be working in is a polar one –
x = x(r, θ) ∈ Ωǫ. We now need to scale the annular region to make the dependence on ǫ
explicit. In what follows, we assume that the thickness ǫ > 0 and the outer boundary is a
fixed, smooth and rectifiable curve Γ0. If we denote by Ω′ the domain enclosed in Γ0, then
the thin domain and the inner boundary are defined precisely as

Ωǫ :=

{

x ∈ Ω′| inf
y∈Γ0

‖x − y‖ < ǫ

}

, Γǫ :=

{

x ∈ Ω′| inf
y∈Γ0

‖x − y‖ = ǫ

}

.

In particular, if we consider distances measured along the direction of the outer normal on
Γ0 as positive, we can scale the Euclidean distance d(x, Γ0) by

0 ≤ t =
−d(x, Γ0) + ǫ

ǫ
≤ 1.

Thus, when d(x, Γ0) = 0, the thickness parameter t = 1 and x ∈ Γ0, whereas d(x, Γ0) = ǫ,
the thickness parameter is now t = 0, and the point under consideration is on Γǫ. Provided
ǫ is small, we can now use a parameterization of Ωǫ by the manifold Ω := [0, 2π] × (0, 1)
through the mapping

{

Ω −→ Ωǫ,
(t, θ) → x = X(θ) + ǫ(t − 1)n(θ) =: r(θ, t).

(18)

Here n(θ) is the unit outward normal to Γ0 with the polar angle θ,X(θ) ∈ Γ0 is the tail
of n(θ), t is the scaled length of the annular defined previously. In this way the points
x = x(t, θ) = X(θ) + ǫ(t − 1)n(θ) ∈ Ωǫ are uniquely described. Note that X(θ) is the
projection of x ∈ Ωǫ onto Γ0.

We assume that the mapping (18) is a diffeomorphism from Ω onto Ωǫ, that is, the
Jacobian is

J = det

∣

∣

∣

∣

∂x1

∂t
∂x1

∂θ
∂x2

∂t
∂x2

∂θ

∣

∣

∣

∣

=

∣

∣

∣

∣

ǫn1(θ) Ẋ1(θ) + ǫ(t − 1)ṅ1(θ)

ǫn2(θ) Ẋ2(θ) + ǫ(t − 1)ṅ2(θ)

∣

∣

∣

∣

= ǫ n(θ) ·
(

Ẋ2(θ) + ǫ(t − 1)ṅ2

−Ẋ1(θ) − ǫ(t − 1)ṅ1

)

> 0. (19)

We have used the notion a · b = a1b1 + a2b2.
If φ is a scalar function in the original coordinate system x = x(r, θ), we have the following

relationships between derivatives of φ̂(t, θ) := φ(x) and those of φ:

∂φ̂

∂t
= ∇φ · ∂x

∂t
= ∇φ · (ǫn(θ)),

∂φ̂

∂θ
= ∇φ · ∂x

∂θ
= ∇φ · ( ˙X(θ) + ǫ(t − 1)ṅ(θ)),

where the dot means a derivative in the θ variable. These derivatives are well defined since
the curve Γ0 is smooth. The gradient is taken in the original coordinates,

∇φ :=
∂φ

∂r
êr +

1

r

∂φ

∂θ
êθ.
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Here êr =

(

cosθ
sinθ

)

and êθ =

(

−sinθ
cosθ

)

are the orthogonal curvilinear basis vectors.

We have êr = n(θ), êθ = ṅ(θ) and Ẋ(θ) · (X − x(t, θ)) = 0. Therefore, Ẋ(θ)⊥n(θ) and
Ẋ(θ) = C(Ẋ)êθ, where C(Ẋ) is a scalar which characterizes the shape of the curve Γ0. We
obtain

∂φ̂

∂t
= ǫ

∂φ

∂r
= ǫ∇φ · n(θ) (20a)

∂φ̂

∂θ
= [C(Ẋ) + ǫ(t − 1)]

1

r

∂φ

∂θ
=

m

r

∂φ

∂θ
= m∇φ · ṅ(θ) (20b)

J = ǫm, (20c)

where m = C(Ẋ) + ǫ(t− 1). We assume m is bounded, that is |m| < c for all (t, θ) ∈ Ω. We
are now in a position to define function spaces on Ω which are independent of ǫ, and show
that these have norms which can be related to those of analogous function spaces on Ωǫ. We
introduce the function space

H1
0 (Ω) :=

{

u(t, θ) ∈ L2(Ω)| ∂u

∂t
,
∂u

∂θ
∈ L2(Ω),u(t, θ) = u(t, θ + 2π),u|t=0 = 0

}

with norm

‖u‖2
H1

0
(Ω) :=

∫

Ω

(

|u|2 +

∣

∣

∣

∣

∂u

∂θ

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∂u

∂t

∣

∣

∣

∣

2
)

dΩ

and the associated product space

H0 :=
{

(u, σ) |u ∈ H1
0 (Ω), σ ∈ H

−1/2
0 (Γ0).

}

.

Lemma 4.1 The norms in H0 and Hǫ are equivalent in the sense that there is constant c
independent of ǫ such that

c
√

ǫ||(u, σ)||Hǫ ≤ ||(u, σ||H0
≤ c√

ǫ
||(u, σ)||Hǫ . (21)

Proof. (a) Let û ∈ H1
0 (Ω). Then from (20a), (20b), (20c), we obtain

||û||2H1(Ω) =

∫

Ω

(|û|2 + |∂û

∂t
|2 + |∂û

∂θ
|2)dtdθ

=

∫

Ωǫ

(|u|2 + ǫ2|∇u · n(θ)|2 + m2|∇u · ṅ(θ)|2) 1

ǫm
dx1dx2

≤
∫

Ωǫ

(|u|2 + (ǫ2 + m2)|∇u|2) 1

ǫ m
dx1dx2

≤ c

ǫ

∫

Ωǫ

(|u|2 + |∇u|2)dx1dx2

for ǫ < ǫ0. The right-hand side inequality of (21) then follows, since ||σ||H−1/2(Γ0) is indepen-
dent of ǫ.
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(b) Now let u ∈ H1
0 (Ωǫ). Introducing the polar coordinates (r, θ) and using (20a), (20b),

(20c), we see that

∫

Ωǫ

(|u|2 + | ∂u

∂x1

|2 + | ∂u

∂x2

|2)dx1dx2 =

∫

Ω̃ǫ

(|ũ|2 + |∂ũ

∂r
|2 +

1

r2
|∂ũ

∂θ
|2)rdrdθ

=

∫

Ω

(|û|2 +
1

ǫ2
|∂û

∂θ
|2 +

1

m2
|∂û

∂θ
|2)ǫ mdtdθ

=

∫

Ω

(ǫ m|û|2 +
m

ǫ
|∂û

∂t
|2 +

ǫ

m
|∂û

∂θ
|2)dtdθ

≤ c

ǫ

∫

Ω

(|û|2 + |∂û

∂t
|2 + |∂û

∂θ

2

)dtdθ.

This leads to the assertion (21).
Finally, if u ∈ H1

0 (Ωǫ), we associate with it the function û(t, θ) ∈ H1
0 (Ω) through the

change of variable
û(t, θ) → u(x).

We drop the û in what follows when there is no confusion, and use u instead, in the scaled
domain.

In the original coordinates, if u(x) = u(r, θ) = urêr + uθêθ then

E(u) =
1

2

(

2ur,r
1
r
ur,θ − uθ

r
+ uθ,r

1
r
ur,θ − uθ

r
+ uθ,r

2
r
uθ,θ + ur

r

)

.

Therefore, the strain tensor can be written in the new t, θ coordinates. After re-scaling the
element of volume and collecting like powers of ǫ, the variational problem becomes (after some
straightforward but tedious calculation): Find (uǫ, τǫ) ∈ Hǫ such that for all (v, χ) ∈ Hǫ,







1
ǫ
a0(uǫ,v) + a1(uǫ,v) + 〈v−,Wu−

ǫ + (−1
2
I + K′)τǫ〉

+ǫa2(uǫ,v) + ...ǫn−1an(uǫ,v) + Qn(uǫ,v) = Fǫ(v, χ),
〈(1

2
I − K)uǫ + Vτ, χ〉 = G(v, χ),

(22)

with right - hand sides

Fǫ(v, χ) :=

∫ 2π

0

∫ 1

0

f · vǫ m dtdθ + 〈v−,Wp0 + q0〉, G(v, χ) := 〈(1
2
I − K)p0, χ〉 (23)

for all (v, χ) ∈ Hǫ. Note that since the boundary integral operators on Γ0 are not affected by
changing ǫ, the data term G(·, ·) is not subscripted by ǫ. In the expansion (22), the bilinear
operators a0, a1, ..., an are defined in terms of their action on vector fields u = utêr+uθêθ,v =
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vtêr + vθêθ via

a0(u,v) :=

∫ 2π

0

∫ 1

0

b0(u,v) C(Ẋ)dθdt, b0(u,v) := [(λ1 + 2µ1)ut,tvt,t + µ1uθ,tvθ,t] ,

a1(u,v) :=

∫ 2π

0

∫ 1

0

(t − 1)b0(u,v) + b1(u,v) dtdθ,

b1(u,v) := λ1 (ut,tvθ,θ + vt,tuθ,θ + ut,tvt + vt,tut) + µ1 (uθ,tvt,θ + vθ,tut,θ − uθ,tvθ − vθ,tuθ) ,

a2(u,v) :=

∫ 2π

0

∫ 1

0

1

C(Ẋ)
b2(u,v) dtdθ,

b2(u,v) := (λ1 + 2µ1)(uθ,θ + ut)(vθ,θ + vt) + µ1(ut,θ − uθ)(vt,θ − vθ),

an(u,v) :=

∫ 2π

0

∫ 1

0

1

C(Ẋ)
b2(u,v)(1 − t)n−2(

1

C(Ẋ)
)n−2 dθdt.

The remainder term Qn is defined via

Qn(u,v) :=

∫ 2π

0

∫ 1

0

ǫb2(u,v)

(

1

C(Ẋ) + ǫ(t − 1)
− 1

C(Ẋ)

n−2
∑

j=0

ǫj(1 − t)j(
1

C(Ẋ)
)j

)

dθdt

=

∫ 2π

0

∫ 1

0

b2(u,v)(1 − t)n−1(
1

C(Ẋ)
)n−1 ǫn

C(Ẋ) + ǫ(t − 1)
dθ dt

For ǫ small enough and fixed u,v ∈ H1
0 (Ω), it can be seen that Qn(u,v) = O(ǫn). We thus

write
Qn(u,v) = ǫnQn(u,v).

At this stage we have developed the operators in the variational formulation in powers of ǫ.
The boundary integral operators remain unchanged since the boundary Γ0 does not move
with changing ǫ. The formal asymptotic procedure will now consist of assuming a regular
asymptotic series for the displacement uǫ and traction τǫ, inserting into the development
above, and collecting like powers in ǫ, to arrive at a sequence of simpler problems for (uj, τj).

4.1 Formal asymptotic procedure

The illustrative example in Section (3) showed that uǫ could be expressed in a regular
asymptotic series in powers of ǫ. We shall therefore use this ansatz to develop a formal
asymptotic procedure for the general transmission problem. To this end, let

uǫ =
n

∑

j=0

ǫjuj + Rn, τǫ =
n

∑

j=0

ǫjτj + Sn, n > 2, (24)

where (uj, τj) ∈ Hǫ for all j = 0, 1, ...n. When we substitute (24) into the variational problem
(22), and collect like powers of ǫ, we get the following sequence of problems: At leading order,
find (u0, τ0) ∈ H0 such that for all (v, χ) ∈ H0







a0(u0,v) = 0,

〈Vτ0, χ〉 = −〈(1
2
I − K)u0, χ〉 =: G0(χ).

(25a)
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At the next order, find (u1, τ1) ∈ H0 such that










a0(u1,v) = −a1(u0,v) − 〈v−,Wu0 + (−1
2
I + K′)τ0〉 + 〈v−,Wp0 + q0〉

=: F1(u0; τ0;v),

〈Vτ1, χ〉 = −〈(−1
2
I − K)u1, χ〉 =: G1(χ).

(25b)

The body force density f affects the asymptotic development beginning only at the next
order: find (u2, τ2) ∈ H0 such that for all (v, χ) ∈ H0














a0(u2,v) = −a1(u1,v) − 〈v−,Wu1 + (−1
2
I + K′)τ1〉 +

∫ 2π

0

∫ 1

0
f · vC(Ẋ) dt dθ

=: F2(u0,u1; τ1;v),

〈Vτ2, χ〉 = −〈(1
2
I − K)u2, χ〉 = G2(χ).

(25c)

This means that we require at least two terms in the asymptotic expansion to capture the
effects of the body force density.

Subsequently,






















a0(u3,v) = −a1(u2,v) − 〈v−,Wu2 + (−1
2
I + K′)τ2〉 − a2(u0,v)

+
∫ 2π

0

∫ 1

0
f · v(t − 1)κ dt dθ

=: F3(u0,u1,u2; τ2;v),

〈Vτ3, χ〉 = −〈(1
2
I − K)u3, χ〉 = G3(χ).

(25d)

The general term (uj, τj) for j > 3 in the asymptotic development of (uǫ, τǫ) solves the
coupled system















a0(uj,v) = −
∑j−1

k=1 ak(uj−k,v) − 〈v−,Wuj−1 + (−1
2
I + K′)τj−1〉

=: Fj(u0,u1, ...uj−1; τj−1; (v))

〈Vτj, χ〉 = −〈(1
2
I − K)uj, χ〉 =: Gj(χ).

(25e)

At this stage it is worth drawing attention to some convenient facts. In this formal procedure
each of the subproblems for (uj, τj) appears to be a coupled system. A closer look at any
order reveals that one first obtains uj by solving a problem of form

a0(uj,v) = Fj(u0,u1, ...uj−1; τj−1,v)

and then solving the variational problem

〈Vτj, χ〉 = −〈(1
2
I − K)uj, χ〉 = Gj(χ)

for τj. We thus obtain a staggered asymptotic scheme, where the initially coupled system of
equations for the pair (uǫ, τǫ) decouples for each pair (uj, τj) in the asymptotic development.

A second convenient observation concerns the solution of the variational problem

a0(uj,v) =

∫ 2π

0

∫ 1

0

(λ1 + 2µ1)u
j
t,tvt,t + µ1u

j
θ,tvθ,t C(Ẋ) dt dθ

= Fj(u0,u1, ...uj−1; τj−1,v).

This variational problem can be analytically solved, and we provide an explicit representation
formula for it. This result is the main content of the next subsection.
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4.2 Existence and uniqueness results

We recall that the variational formulation for the typical term (uj, τj) in the asymptotic
sequence reads: Find (uj, τj) ∈ H0 such that for all (v, χ) ∈ H0,

{

a0(uj,v) = Fj(u0,u1, ...,uj−1; τj−1;v)
〈(1

2
I − K)uj + Vτj, χ〉 = Gj(χ).

, (26)

where Fj, Gj are defined as in the previous subsection. We need to establish existence and
uniqueness of solutions for this system of uncoupled equations. We begin with the uniqueness
result:

Theorem 4.2 There is at most one solution (uj, τj) ∈ H0 of (26).

Proof. Suppose (uj, τj) and (Uj, ζj) both satisfy (26). Then if w = uj −Uj, w = wtêt +wθêθ

solves

a0(w,v) =

∫ 2π

0

∫ 1

0

(λ1 + µ1)wt,tvt,t + µ1wθ,tvθ,t) C(Ẋ) dtdθ = 0.

This implies that ∂wt

∂t
= ∂wθ

∂t
= 0 and hence wt, wθ are both functions of θ alone. However,

since w ∈ H1
0 (Ω), it has vanishing trace on the curve t = 0. Therefore, wt = wθ ≡ 0.

Moreover, τj, ζj satisfy

〈(1
2
I − K)uj + Vτj, χ〉 = 〈(1

2
I − K)uj + Vζj, χ〉 = Gj(χ)

for all χ ∈ H
−1/2
0 (Γ0). Using the linearity of the single layer operator we get

〈V(τj − ζj), χ〉 = 0, ∀χ ∈ H
−1/2
0 (Γ0).

However, V is H
−1/2
0 (Γ0) − elliptic, and therefore ζj = τj, proving the assertion.

Note, here the strong use of the zero displacement condition on the inner boundary is
necessary, without which the uniqueness assertion fails.

We demonstrate existence of solutions to the variational problem

a0(uj,v) = Fj(u0,u1, ...,uj−1; τj−1,v)

by invoking the following result ([8])

Theorem 4.3 Let F1, F2, P1, P2, Q1, Q2, R be scalar functions such that for i = 1, 2,

1. Fi ∈ H1(Ω) and Fi(·, t), ∂Fi

∂θ
, ∂2Fi

∂θ2 ∈ L2(Γ0) for fixed t ∈ (0, 1). That is, Fi are more

regular in the θ variable than in the t variable.

2. Pi ∈ H1(Ω) and ∂2Pi

∂t2
∈ L2(0, 1) for all fixed θ.

3. R ∈ H1/2(Γ0).

4. Fi, Pi, R satisfy the periodicity requirement in the θ variable.
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Then the variational equation

∫ 2π

0

∫ 1

0

(

(λ + 2µ)∂ut

∂t
∂v̄1

∂t
+ µ∂uθ

∂t
∂v̄2

∂t

)

dtdθ

= −
2

∑

i=1

∫ 2π

0

∫ 1

0

[

∂Fi

∂θ
v̄i

∂θ
+ (t − 1)∂Pi

∂t
∂v̄i

∂t
+ Qivi

]

dtdθ +
∫ 2π

0
Rv2dθ,

(27)
for all v = v1êt + v2êθ ∈ H0 determines a unique u = utêt + uθêθ ∈ H0, given explicitly by

ut(θ, t) =

∫ t

0

∫ 1

τ

∂2F1

∂θ2
− Q1(θ, y)dydτ −

∫ 1

0

(τ − 1)
∂P1

∂τ
(θ, τ)dτ + tR(θ), (28a)

and

uθ(θ, t) =

∫ t

0

∫ 1

τ

∂2F2

∂θ2
− Q2(θ, y)dydτ −

∫ 1

0

(τ − 1)
∂P2

∂τ
(θ, τ)dτ. (28b)

The proof is straightforward, and follows by examining solutions of a suitable ordinary
differential equation in the t variable. A similar result was proved in [8].

Once uj is obtained, the existence of solutions τj in (26) is guaranteed by the Lax-Milgram

lemma, provided Gk is a continuous linear functional on H
−1/2
0 (Γ0). This is due to the fact

that the boundary integral operator V satisfies the coercivity property

〈χ,Vχ〉 ≥ α‖χ‖2
H−1/2(Γ0), ∀χ ∈ H

−1/2
0 (Γ0).

The continuity of Gk will be fulfilled, following the properties of the solution uj from Theo-
rem 4.2. However, in general, the asymptotic analysis requires σj to be more than merely
H−1/2(Γ0) regular. Thus one requires that the given data p0,q0 and f be smooth enough to
ensure that −(1

2
I − K)uj ∈ Hs+1(Γ0), s > −1

2
. With this regularity in uj, the solution τj of

the integral equation

Vτj = −(
1

2
I − K)uj,

will be in Hs(Γ0).
We note again the convenient staggered sequence process just developed. In order to

obtain the term (uj, τj) in the asymptotic sequence, we can use the explicit representation
formula given by (28) to compute uj in terms of previously computed (ui, τi), i = 0, 1, ...j−1).
We then use the boundary element formulation in (26) to compute τj. Indeed, for j > 0, we
are always solving a problem of the form

〈Vτj, χ〉 = −〈(1
2
I − K)uj, χ〉 ∀χ ∈ H

−1/2
0 (Γ0).

At the implementation level, this means that once we form the matrices for discretilized
version of this boundary element problem, we simply need to solve the same linear system
for different right hand sides.
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5 Justification of formal asymptotic procedure

In this section, we shall justify the use of the asymptotic expansion developed in the previous
section. We begin by determining the variational problem satisfied by the remainder terms
(Rn,Sn) in (24), and then use the estimates derived in Theorem 2.2 to show that

‖(Rn,Sn)‖ = O(ǫm)

in some appropriate norm, where m increases monotonically with n, and m > 0 for all
n > N0. For this problem, the scaled differential operator contains leading order terms of
O(ǫ−3/2), and therefore m = n − 3/2, n ≥ 2. This means that we need two terms in the
asymptotic expansion of uǫ, τǫ to capture the angular behavior of the solutions. This “lag’ in
the asymptotics does not present any problems since we already have a precise representation
formula for the uj.

5.1 Variational formulation for remainder terms

Using the weak formulation (Pǫ) for the non-local boundary value problem (7), and the
scaled problems developed in the previous section, we are able to derive a system for the
remainder terms (Rn,Sn): We have the equation for Rn,
∫

Ωǫ

σ1(Rn) : E(v) dΩǫ + 〈v−,W(Rn) + (−1

2
I + K

′)Sn〉

=

∫

Ωǫ

σ1



uǫ −
n

∑

j=0

ǫj
uj



 : E(v) +

〈

v
−,W(uǫ −

n
∑

j=0

ǫj
uj)

〉

+

〈

v
−, (−1

2
I + K

′)(τ −
n

∑

j=0

ǫjτj)

〉

= −ǫn





n
∑

j=1

aj(un+1−j ,v) + ǫ

n
∑

j=2

aj(un+2−j ,v) + ... + ǫn−1an(un,v)





−ǫnQn(
n

∑

j=0

ǫj
uj ,v) − ǫn〈v, (Wun + (−1

2
I + K

′)τn〉

=: Fn(v)

where the linear functional Fn(·) depends on the terms (u1, . . . ,un, τn) in the asymptotic
sequence. The equation for Sn is much simpler:

〈(1
2
I − K)Rn + VSn, χ〉 = 0.

Combining these results, we see that the remainder (Rn,Sn) satisfies the variational equation

Aǫ ((Rn,Sn), (v, χ)) = Fn(v)+ < 0, χ >=: ℓn(v, χ)

where Aǫ is the bilinear form defined in Section 2.4. It is not difficult to see that |ℓn(Rn,Sn)| =
O(ǫn), or more precisely we have

|ℓn((Rn,Sn))| ≤ cnǫ
n||(Rn,Sn)||Hǫ (29)
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while Theorem 2.2 implies that

α‖(Rn,Sn)‖2
Hǫ

≤ |Aǫ ((Rn,Sn), (Rn,Sn)) |.

Then using the norm relation between H0 and Hǫ from Lemma 4.1, we see that

‖(Rn,Sn)‖2
H0

≤ (c2/ǫ)α|(Aǫ ((Rn,Sn), (Rn,Sn)) | = (c2/ǫ)α|ℓn(Rn,Sn)| ≤ C ′

nǫ
n−3/2‖(Rn,Sn)‖H0

where the constant C ′
n depends on (u0,u1, · · · ,un−1) or on (f ,p0.q0) implicitly. We have

thus proved

Theorem 5.1 Under the hypotheses of theorem (2.2), and for small enough ǫ > 0, the

following estimates hold:

∥

∥

∥

∥

∥

(uǫ, τǫ) −
(

n
∑

j=0

ǫjuj,
n

∑

j=0

ǫjτj

)∥

∥

∥

∥

∥

H0

= O(ǫn−3/2), as ǫ → 0+ (30)

where the terms {(uj, τj)} are constructed by the formal asymptotic procedure.

We note that at least two terms in the asymptotic sequence are required; this agrees with our
observation that the body force density f enters into the scheme only at second order. Thus,
to obtain a solution which is asymptotically accurate to O(ǫn), one needs to compute n + 2
terms in the asymptotic sequence. Since the solution of the finite-element formulation is given
via an explicit representation formula, this lag does not adversely impact the asymptotic
strategy.
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