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∂ln(k1)
. Colors indicate

the number of events used for microscale averaging. . . . . . . . . . 30

3.1 Ratio of the variance of the estimate of the mean of a property and
the variance of the property itself (i.e., the left hand side of Equation
3.6) as a function of the length of the interval used for averaging (t̃)
and the number of replicate trajectories (ntraj). Data points show the
variances of reaction rates. Simulation details are in Section B.2.1 . 37

3.2 Flow chart of the iterative algorithm, detailed in Section 3.3. . . . . 44

xii



3.3 Estimates of the mean rate versus batch length in the A→B model.
The dashed line is the analytical value obtained from solving the
chemical master equation (CME). The points are labeled with the
iteration number of the algorithm. . . . . . . . . . . . . . . . . . . 47

3.4 Computed values for the autocorrelation as a function of batch length
in the A→B model. The blue line is the exponential decay for the
characteristic time scale obtained from eigenvalue analysis of the
chemical master equation. The vertical black line indicates the
exponential autocorrelation time. The green line is a decay function
that accounts for batch averaging, and is derived in Section B.1.3 . 48

3.5 Rate-constant rescaling factors used in the A→B model. Adsorption
of A is the only fast reaction. Once adsorption of A has been rescaled
enough to remove stiffness, no more rescaling is done. The points are
labeled with the iteration number of the algorithm. . . . . . . . . . 48

3.6 Sensitivity analysis for the A→B model. The degree of rate control as
a measure of sensitivity is defined in Equation 3.24. Estimates are
computed using the centered likelihood ratio (CLR) (blue) and
centered ergodic likelihood ratio (CELR) (red) methods. Analytical
values derived from the chemical master equation (CME) (black) are
used as a benchmark. . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.7 Estimates of the mean rate versus batch length in the WGS model.
The dashed, horizontal line indicates the final, most accurate
estimate. The points are labeled with the iteration number. . . . . 51

3.8 Computed values for the autocorrelation as a function of batch length
in the WGS model. . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.9 Rate constant rescaling factors used in the WGS model. . . . . . . 52

3.10 Sensitivity analysis data for the WGS model. Only the slow reactions
with non-negligible sensitivities are shown. Likelihood ratio estimates
are benchmarked against the finite difference (FD) estimates. . . . 53

3.11 CPU speedup factors for the A→B, A→B (#), and WGS models, as
defined in Section 3.4.3. . . . . . . . . . . . . . . . . . . . . . . . . 55

xiii



4.1 Volcano map for ORR activities on Pt and Au. Current i is as
defined in Equation 4.1. The GCN of the optimal site is 5.75 and 8.29
for Au and Pt, respectively. The vertical dashed lines at GCN = 6.67
and GCN = 7.5 show the GCNs of the (111) and (100) planes for
reference. Clearly, ideal facets are suboptimal; for Au and Pt one
needs under and over coordinated sites to enhance activity. . . . . 62

4.2 Strcutures of defected crystals. p(30×30) structure of Pt(111)
(top left), Pt(100) (top right), Au(111) (bottom left) and Au(100)
(right) slabs with defects in the top layer 1 (light colored atoms).
Atoms in layer 1 are added and removed during optimization. Atoms
in layers 2, 3, and 4 are held fixed. The structures shown were the
highest activity structures for each surface achieved after the
quenching step. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3 Current density and surface energy of numerous defected
Pt(111)-based crystals containing different active sites and/or density
of active sites. Current densities (Equation 4.2) and surface energies
(Equation 4.3) from optimization are plotted against the
activity-weight ω. Red points show values following the
multi-objective optimization. Blue points show data after the
energy-only minimization is also applied. . . . . . . . . . . . . . . . 66

4.4 Top-down views of the active sites for each surface. Only the
top and next layers, when its site is exposed, are shown. (a)-(c) are
Pt(111) sites. (d) is a Pt(100) site. (e) and (f) are Au(111) sites. (g)
shows Au(100) sites. Red atoms indicate the most active sites, which
occur in the second layer for Pt and the top layer for Au. Blue atoms
are Pt and gold atoms are Au. Darker colored atoms indicate atoms
in the bottom layers. Numbers in the bottom left of each panel
indicate the generalized coordination number (GCN) of the active
site. Each surface has an optimal GCN that differs from the ideal one
(peak of volcano) and is determined from symmetry and the metal
itself. Maximum activity requires random packing of sites to
maximize the number of sites per unit area and the optimal active
site may change with increasing packing of sites and thus with
catalyst activity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

xiv



4.5 Current density j (Equation 4.2) vs. surface energy γ (Equation 4.3)
of defected surfaces. The black lines trace the data of the optimal
structures indicating the Pareto tradeoff between stability and
activity. Straight lines indicate that activity increases due to an
increase in the density of the same active site; kinks in linearity are
indicative of creation of more than one active site. The most active
structures have the highest surface free energy and are thus less
stable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.6 Activity of defected, metastable structures compared to ideal
crystals. Numbers above the bars indicate the ratio of activities
between the perfect, non-defected (blue bars) and most active,
defected metastable surfaces (red bars). Circles and error bars are
90% confidence intervals around the median of activities of annealed
structures (average of blue points in the high activity regime of 4.3
and Figure C.4), which are more realistic than the top activity of the
bars. As a reference, Pt and Au peaks correspond to the optimal site
of the volcano curve assuming a density of such sites to be that of the
(111) facet; such densities are not geometrically possible. Defect
engineering can profoundly increase activity over ideal crystal facets
but site geometry, density, stability should carefully be considered. . 73

5.1 (a) An example catalyst structure. The occupancies of Ni (green)
atoms on the Pt (grey) substrate are specified by a vector σ. (b) The
corresponding KMC lattice with terrace (blue) and edge (red) sites. 80

5.2 Diagram of the surrogate model. . . . . . . . . . . . . . . . . . . . 84

5.3 Flowchart of the online machine learning (OML) algorithm. . . . . 86

5.4 Classification error for the decision tree when trained to the initial
database using different maximum depths. . . . . . . . . . . . . . . 87

5.5 Parity plot of site rates (rA,1(σ)), in units of molecules of B produced
per second. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.6 Parity plots of total structure rates (r(σ)) at the beginning (top left)
and end (bottom right) of the online learning process. Green points
are predicted by simulated annealing optimization using a surrogate
model regressed to the data in the blue points. . . . . . . . . . . . . 88

xv



5.7 Surrogate model predictions (rsurr(σ)) and KMC evaluations
(rKMC(σ)) of the most active structure given by simulated annealing
optimization, versus the number of structures in the KMC database.
The red star indicates the most active structure in the initial KMC
database as a point of comparison. . . . . . . . . . . . . . . . . . . 89

5.8 Fraction of Ni sites that are edge and terrace sites for all 114
structures encountered during optimization. Site fractions are
normalized by the total number of Ni sites (n = 144). Because many
Ni sites are not identified as either type of site, the fractions do not
sum to 1. Markers are colored on a blue (least active) to red (most
active) scale to qualitatively indicate the activity of each structure. 90

5.9 (a) Molecular picture of the catalyst structure with an optimal
arrangement of a defected Ni adlayer (green) and a Pt substrate
(grey). (b) The corresponding KMC lattice with terrace (blue) and
edge (red) sites. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.10 CPU comparison of the brute force approach (projected cost of using
KMC directly in optimization) versus our online machine learning
(OML) approach. Relative to brute force, OML requires significantly
fewer KMC simulations, but introduces the additional costs of
training (train NN) and evaluating the neural network (NN eval.). . 92

A.1 Results of two time scale simulation of the model chemical reaction
network. Sensitivities are normalized as in Equation 2.32 and are
partioned into contributions from the fast and slow time scales.
Derivative can be obtained by adding the contributions from the two
time scales. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

B.1 Reaction frequency diagrams for each iteration of the WGS reaction
simulation. As the iterations progress, H2O adsorption and CO
adsorption are scaled-down so that the reactions are less frequent.
The simulation then samples on longer time scales so that the slower
reactions are sampled. . . . . . . . . . . . . . . . . . . . . . . . . . 138

C.1 Parity plot of surface energies (γ) computed with the tight-binding
model (TBT) (Equations 4.3 and 4.4) vs. DFT. The data set includes
structures of defected (111) (circles) and (100) (square) planes of Pt
(blue) and Au (red). . . . . . . . . . . . . . . . . . . . . . . . . . . 142

xvi



C.2 Convergence of excess vacancy formation energies for pairs of defects.
Excess energy on the y-axis is defined as the vacancy formation
energy of a pair of defects, minus twice the vacancy formation energy
of a single point defect. The x-axis is the distance between the
defects, i.e., the atoms removed to create the vacancies. Points are
labeled as 1st through 5th nearest neighbors in the fcc (111) lattice. 144

C.3 Active site structures used for DFT validation. Slabs with adsorbed
*OH are shown on the left, while slabs with *OOH adsorbed are
shown on the right. The rows show active sites a-g, ordered top to
bottom. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

C.4 (left) Graphical depiction of the data in Table C.5. Points indicate
DFT computed *OH and *OOH binding energies for each active site.
Triangles and circles denote *OOH and *OH binding energies,
respectively. Lines indicate predictions based on the GCN, using
Equations C.5 and C.6. (right) Points indicate activities predicted for
each active site, using Equation 4.1 and DFT energies. Lines indicate
activity predictions based on the GCN, which use Equations
C.5-C.11, as well as Equation 4.1. Sites a-e are approximately within
an order of magnitude of their predicted activity. Sites (f) and (g) are
predicted to be less active due to weaker binding of *OOH. . . . . . 146

C.5 Example of an optimization of a Pt(111) surface using an
activity-weight of ω = 0.7. Current density (Equation 4.2) increases
while surface energy (Equation 4.3) decreases during the
multiobjective optimization (left of the vertical dashed line). During
the subsequent energy-only minimization (right of the vertical dashed
line), the surface energy decreases, typically along with a decrease in
activity (no uphill moves are accepted in this second level resulting in
lack of noise). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

C.6 The concept of Pareto optimality demonstrated using Pt(111) data.
Data points correspond to structures resulting from the
multiobjective optimization followed by subsequent energy
minimization for various weights (ω). ω near 1 maximizes primarily
activity and ω near 0 chiefly minimizes energy. The red points
connected with the solid black line are the Pareto optimal points. A
point p1 is Pareto optimal if there is no other point p2 for which
γ (p2) < γ (p1) and j (p2) > j (p1). . . . . . . . . . . . . . . . . . . . 152

xvii



C.7 Results of the optimization parameter sweep for Pt(100), Au(111),
Au(100). Current densities (Equation 4.2) and surface energies
(Equation 4.3) are plotted against activity-weight ω. Red points show
values resulting from multiobjective optimization only. Blue points
show data after the energy-only minimization step is also applied. . 153

C.8 Comparison of experimental activities with those computed through
optimization. The red line marks the activity of the most active
defected Pt(111) structure achieved from optimization. The blue and
black lines show experimental data from Calle-Vallejo et al.[28] for
Pt(111) with and without defects, respectively. The fluctuating green
curve shows a trajectory for a Monte Carlo simulation in which a
surface is initialized with a random half-monolayer of vacancies and
allowed to reconstruct at finite temperature, which is gradually
decreased. Surface energy is used as the objective function in a
Metropolis Monte Carlo simulation. . . . . . . . . . . . . . . . . . . 154

C.9 Example of a Pt(111) surface in which the presence of defects
decreases activity. Vacancies are present, but do not expose active
sites in the second layer. The vacancies also decrease the GCNs of
active sites on the top layer, decreasing their activity. As a result, the
current density is about two orders of magnitude less than that of
Pt(111). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

D.1 All 12 translational and rotational symmetries of a p(2× 2) fcc(111)
lattice. Numbers indicate the indices of the Ni sites of the original
lattice. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

xviii



ABSTRACT

Multiscale modeling, a key tool in probing the fundamentals of catalytic reac-

tions, has seen increased usage enabled by advances in computational hardware. Within

the multiscale modeling paradigm, kinetic Monte Carlo (KMC) is employed to simulate

chemical reaction networks, as mean-field models often fail to provide a meaningful de-

scription of the complex phenomena involved. Due to KMC’s high computational cost

and stochastic noise, quantifying uncertainty for the purposes of refining the model

and assessing predictive reliability is difficult. Uncertainty arises from errors in input

parameters (parametric uncertainty) and assumptions made about the physical system

(model form uncertainty).

In this thesis, we develop tools to quantify errors from each of the aforementioned

sources and make recommendations for model refinement. We address parametric

uncertainty by developing efficient sensitivity analysis techniques, which identify the

most influential parameters. Likelihood ratio sensitivity analysis (LRSA) computes

all sensitivities without the need for additional runs, as required by finite difference

methods, but encounters tremendous variance in systems with disparate time scales. To

overcome this limitation of LRSA, we derive mathematical theory that enables its use in

well-mixed multiscale KMC and implement the method in original software. The new

multiscale technique accurately computes sensitivities in a model system for which the

traditional LRSA performs poorly. To address spatial KMC, we develop acceleration

techniques and statistical criteria that ensure sufficient sampling for LRSA. As a result,

LRSA can be applied to real chemistry. We apply our methodology to the water-gas

shift reaction on Pt, an important component of hydrogen production from biomass.

We address model form uncertainty by revisiting two common assumptions: the

structure of the catalyst surface is uniform and the identity of the active site is known.
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A framework for optimizing catalyst structure based on local descriptors is developed,

allowing for atom-by-atom design of defected surfaces and consequent improvements

in activity. In order to restrict our search to physically relevant structures, surface

energy is also computed. Activity is maximized and surface energy is minimized

simultaneously using multi-objective simulated annealing. A set of Pareto optimal

structures is found, offering targets for synthesis. We apply our approach to oxygen

reduction on Pt, the key reaction in automotive fuel cells. Our approach resolves

discrepancy between experiment and theory regarding the extent to which defects can

improve activity. We extend the approach to chemistries involving coupled active

sites, for which KMC simulation is needed. KMC simulation data from many different

structures is used to train a neural network for use as a surrogate model in the

optimization. The neural network is updated as the optimization progresses in an

online machine learning approach. In doing so, geometric effects such as diffusion

limitations and bifunctional site coupling are accurately captured within the structure

optimization. The impact on the optimal structure is analyzed, yielding new insights

into catalyst structure/activity relationships.
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Chapter 1

INTRODUCTION

In this chapter, we motivate the thesis work and provide relevant background

material. Section 1.1 discusses the need for developing new catalytic materials based on

a fundamental understanding of catalytic phenomena. We contend that computational

multiscale modeling is crucial to this objective and describe the approach. Section

1.2 provides an overview of the kinetic Monte Carlo method, a key component of

the multiscale modeling methodology. Section 1.3 discusses the role of uncertainty

quantification in multiscale modeling and the aspects that are lacking for kinetic Monte

Carlo. Section 1.4 defines the objectives and scope of the thesis.

1.1 Multiscale Modeling of Catalytic Reactions

Catalyzed chemical transformations have made possible many of the modern

comforts we enjoy today. The inventions of nylon clothing, petrochemical derived

plastics, synthetic rubber, transportation fuels, and many other everyday commodities

all featured technological advances in catalytic processes[13]. Nevertheless, rapidly

increasing global demand for energy[2] and materials will strain existing processes in the

near future. Meeting this demand in an economically and environmentally sustainable

manner will require further advances in catalytic technology[1]. Three areas ripe for

improvement are as follows. First, the production of ammonia for fertilizer via the

Haber-Bosch process consumes 2% of our global energy[54]. A catalyst requiring lower

temperatures and pressures would drastically reduce the energy demand of this process.

Second, many of the environmental and geopolitical disadvantages of petroleum could

be avoided by switching to natural gas[194] and biomass[90, 24] as a feedstock for

fuels and chemicals. However, new catalytic processes will be required, as the chemical
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compositions of these alternative feedstocks differ from petroleum. Third, a cheap,

stable catalyst able to efficiently reduce oxygen to water in the cathode of automotive

fuel cells[91, 92] would enable cars to have quick refueling, long driving range, and no

tailpipe emissions. In summary, the array of chemistries and applications involved is so

extensive that no single technological breakthrough will address them all. Rather, an

improved fundamental understanding of catalytic reactions is necessary for the design

of new catalysts.

Historically, catalysts have been developed in a largely empirical fashion[124,

232, 12]. Future advances will require a more fundamental and robust approach.

Analytical techniques such as spectroscopy[39], microscopy, gas chromatography, BET

surface area measurement[25], etc. are now staples of modern catalysis[43] and have

helped gain useful insights. However, experimental techniques have limitations in their

spatial and temporal resolutions. Furthermore, they cannot always study the catalyst

under reaction conditions[84]. A promising complementary technique is first principles

(computational) modeling[150, 27, 107, 176], which describes a catalytic system based

on fundamental, physics-based equations. It can, for example, test the feasibility

of reaction mechanisms proposed by experimental studies based on the electronic

structures of the molecules involved. The computational approach circumvents the

issue of spatial and temporal resolutions by using the multiscale modeling approach

discussed below. In addition, computational modeling benefits from the consistent

increases in computer power following Moore’s law[127], resulting in ever increasing

system sizes that can be studied. Computations typically allow for studies at much

lower financial cost than what would be required for comparable experiments.

The multiscale modeling methodology[183, 224] leverages computational hard-

ware in an efficient manner towards the inherently multiscale problems in catalysis.

The brilliance of the multiscale modeling methodology is that it employs different

tools to study the different length and time scales. Information is exchanged between

the disparate scales to couple them. In doing so, macroscopic observables are predicted

using fundamental information about molecular properties and behaviors. A schematic
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Figure 1.1: Overview of the multiscale modeling paradigm. Information is passed up
and down scales to link macroscopic observables to fundamental molecular properties.

of multiscale modeling is shown in Figure 1.1.

At the quantum scale (angstroms), the electronic structure of atoms and

molecules is probed with ab initio methods such as density functional theory

(DFT)[110]. DFT solves the Kohn-Sham equations, which are derived using approx-

imations to the Schrödinger equation. The Hohenberg-Kohn theorems state that

all properties of the system, such as energy, can be expressed as a functional of the

electron density. In essence, the Kohn-Sham equations reduce the complexity of the

many-electron problem by solving the single electron problem in an effective potential

determined by the electron density. The electron density and effective potential must

be computed by solving a self consistent set of equations. The origin of this method

from a fundamental equation describing the behavior of the electrons qualifies it as

a first principles method. DFT describes the electronic behavior to the extent that

it obtains numerical accuracy in solving the Kohn-Sham equations and that the

exchange-correlation functional captures interactions between the electrons. Within

the DFT framework, there is a hierarchy (termed after the Biblical ”Jacob’s ladder”)

of exchange-correlation functionals with tradeoffs between accuracy and cost[197].
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This thesis focuses specifically on extended transition metal surfaces, for which the

generalized gradient approximation (GGA) functionals offer a suitable tradeoff[161].

There is extensive ongoing work to improve the accuracy of DFT. A few approaches are

constraining the functional to theoretical limits[209], benchmarking to experimental

data[231], and using machine learning[23].

Given a molecular configuration, DFT software (e.g. VASP) optimizes the

coordinates of the nuclei of the atoms to minimize the total electronic energy of the

system, allowing the calculation of thermodynamic parameters such as binding energies.

Transition states of chemical reactions can be obtained using several methods such as

the climbing image nudged elastic band method[83]. Vibrational frequencies contribute

to the entropy of the system at finite temperatures and are found by perturbing atomic

coordinates from the optimal configuration.

The CPU requirements of DFT depend on many numerical parameters and

system specifications, but a typical calculation with a few dozen atoms takes several

hours. For large chemical reaction networks where many thermodynamic and kinetic

parameters must be computed, this cost becomes prohibitive. As an alternative,

DFT data can be substituted by estimates obtained from semi-empirical methods

regressed to DFT data. Group additivity[182, 69] and linear scaling relations[3]

estimate thermodynamic properties. Brønsted-Evans-Polanyi (BEP) relations[16] and

transition state scaling relations[229] estimate reaction barriers.

The macroscopic scale of multiscale modeling uses chemical reactor models. The

field of chemical reactor engineering has been a core subject of the chemical engineering

discipline since it was established as an official academic subject by the Massachusetts

Institute of Technology in 1888[21]. Reactor models describe the macroscopic behavior

of a reactant/product mixture as affected by the catalyzed reactions (uncatalyzed

reactions may also occur). The phase of the feed may be gaseous or aqueous. The

reactor model used should match the experimental system as closely as possible. In

the simplest case, a 1-dimensional plug flow reactor model suffices. When necessary,

more complex computational fluid dynamics models[80] are used and are coupled with
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the surface chemistry. The system in inherently multiphysics, as heat transfer, mass

transfer, and chemical reactions are all present. Solving the coupled problem allows for

the computation of conversions, selectivities, reaction orders, and apparent activation

energies under realistic conditions. These quantities are suitable for direct comparison

to experimental results[17].

The quantum and macroscopic scales must be coupled for electronic information

to affect predictions of macroscopic observables. The reaction network scale (center

of Figure 1.1) accomplishes this task. Here, electronic information is used, along with

statistical mechanics, to parameterize the rate constants of elementary chemical reac-

tions. Information is fed back down to the quantum level when the reaction network

simulation informs the DFT of what are the relevant molecular configurations to com-

pute. Reaction rates computed by the chemical reaction network simulation are fed up

to the macroscopic reactor model and are incorporated into the multiphysics simula-

tion. Macroscopic reactor conditions such as temperature and partial pressures are fed

back down, as they affect the rates of elementary reactions. Networks of elementary

chemical reactions are simulated using either mean field microkinetic modeling (MKM)

or kinetic Monte Carlo (KMC). This thesis develops methods for kinetic Monte Carlo,

as discussed in the next section.

1.2 Kinetic Monte Carlo (KMC)

Mean-field modeling is used extensively to model surface catalyzed reactions,

but it relies on approximations that frequently break down for systems of interest[183].

It assumes that the spatial distribution of adsorbates on the surface is uniform.

However, lateral interactions, spatial correlations, and finite diffusion rates affect

the availability of neighboring reactant pairs in bimolecular reactions[213, 94, 5].

Furthermore, the continuum approximation made by mean-field models is only valid

for large numbers of particles, which is not the case on small nanoclusters[202]. KMC

avoids these issues by tracking each species on the surface individually, thus obtaining

atomistic resolution and accurate statistical averaging. For these reasons, KMC has
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Figure 1.2: Diagram of a 1-dimensional potential energy surface. The currently
occupied state is indicated by the orange ball. The state space (S) enumerates all
local minima on the potential energy surface.

been applied to a wide range of surface chemistries[175, 206, 200]. In this section, we

provide a brief overview of the KMC method as applied to surface catalyzed chemical

reaction networks.

1.2.1 Theory

For a given chemical system where the positions of all atoms are known, the

(high dimensional) potential energy surface (PES) describes the potential energy

of the system as a function of the x, y, and z coordinates of each atom. The

PES can be computed through ab initio methods such as DFT or an appropriate

interatomic potential. A stable chemical configuration is a local minimum on the

PES. Energy wells describe the area near a local minimum and are separated by

barriers. Thermal fluctuations cause the system to move around the PES, sometimes

crossing a barrier to an adjacent energy well (neighborhood of a local minimum).

The crossing of a barrier defines a chemical reaction (e.g. bond breaking/formation,

diffusion, adsorption/desorption). Transitions between wells of the PES occur much

less frequently than fluctuations within the well. In contrast to molecular dynamics

(MD) simulation, KMC coarse-grains the potential energy surface by tracking only

the local minima. Figure 1.2 shows a cartoon of a 1-dimensional PES where the local

minima are labeled as discrete state.
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Crossing between local minima requires traversing a transition state (TS), i.e. a

saddle point on the PES. A transition state is a local minimum in all but one dimension

(after a suitable change of coordinates), in which it is a local maximum. Transition

states are not explicitly included in KMC simulation, but are used to compute reac-

tion propensities, or rates of transition between discrete states. Mathematically, the

propensity is the inverse of the expected waiting time until the reaction spontaneously

occurs. The propensity of the reaction transitioning between an initial state (IS) and

final state (FS) is calculated using statistical mechanics and transition state theory as

aIS→FS =
kBT

h

QTS

QIS
exp

(
ETS − EIS

kBT

)
. (1.1)

Q denotes the partition function taking into account translations, vibrations, and

rotations. E denotes the electronic energy. kB and T denote Boltzmann’s constant

and temperature respectively. Further details are available in a review by Stamatakis

and Vlachos[206].

Chemical reaction networks have many states arising from the combinatorial

arrangement of molecules in a system. The system occupies one state at a time. Let

pi(t) be the probability that the system is in state i at time t. The time evolution of the

system is governed by a continuous time Markov chain (CTMC) called the Chemical

Master Equation (CME)[64].

dpi(t)

dt
=
∑
j 6=i

[aj→ipj(t)− ai→jpi(t)] (1.2)

Equation 1.2 defines a linear set of ordinary differential equations (ODE). In

principle, it can be solved analytically (see Section B.1) using a matrix exponential or

numerically using linear multistep methods. However, for most practical problems, the

cardinality of the state space (nstates) is too large for either of these approaches to be

feasible. In fact, even enumerating the entire state space is often impractical. For the

relatively simple case of adsorption of a single species (e.g. CO) on the top sites of a

p(10 × 10) Pt(111) surface, each site can either be occupied or vacant. Already there

are 210×10 = 2100 states of the lattice. Solving such a large number of equations would
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be infeasible even with modern computers. Rather than fully solving Equation 1.2 for

every state, we statistically sample the probability distribution function (PDF) using

kinetic Monte Carlo simulation, discussed next.

1.2.2 Simulation

In KMC simulation, a trajectory is a randomly generated time series of states

occupied by the system, with probability governed by the CME. The transition between

states at a given time defines a KMC step, or reaction event. At any given step, the

simulation must determine which state to visit next and at what time, according to

an algorithm. For simplicity, we discuss the Gillespie algorithm[61]. Other algorithms

achieve a mathematically equivalent PDF, but have different tradeoffs in terms of

memory and CPU resources, as discussed in by Chatterjee and Vlachos[41]. All possible

reaction events (i.e. events for which the propensity is nonzero) are enumerated in a

reaction event catalogue and their propensities are calculated. Two random numbers

are generated per step. The first random number is used to choose the time step (∆t)

according to the exponential distribution as follows.

E[∆t] =

(∑
k 6=i

ai→k

)−1

(1.3)

P (∆t ≤ t′) = 1− exp

(
− t′

E[∆t]

)
(1.4)

E[∆t] denotes the expectation value of the time step. P (∆t ≤ t′) denotes the

probability that the time step is less than t′, thus defining a cumulative probability

distribution. The second random number chooses the reaction to fire. P (i→ j) denotes

the probability that j is the next state visited after i.

P (i→ j) =
ai→j∑
k 6=i ai→k

(1.5)

After a reaction fires, the reaction event catalogue is updated. In practice, not all

propensities need to be recalculated. There may be processes which transition between

different states, but represent the same physical process and therefore have the same
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propensity. For example, adsorption of a molecule onto a lattice site is unaffected by

reaction events occurring at a distant lattice site. For any reaction events which can no

longer occur, they are removed from the reaction event catalogue. Then, new reactions

that can now occur but were not available before are identified. The propensities of the

newly identified reactions are computed and are added to the reaction event catalogue.

A pseudocode of the KMC algorithm is as follows.

1. Enumerate all possible reactions in a reaction event catalogue.

2. Compute the propensity of all reactions in the reaction event catalogue.

3. Choose a time step ∆t according to Equations 1.3 and 1.4.

4. Choose a reaction according to Equation 1.5.

5. Fire the reaction, updating the system state.

6. Increment the time clock by ∆t.

7. Remove reaction events that can no longer occur from the reaction event cata-
logue.

8. Identify new reaction events that can occur and compute their propensities. Add
them to the reaction event catalogue.

9. Iterate until the termination time (tf ) has been surpassed.

1.2.3 Lattice KMC

Well-mixed KMC uses mass action kinetics in a similar way to mean-field

modeling, with the exception that a discrete number of particles is used. This version

of stochastic simulation is popular in the biology community[11]. In heterogeneous

catalysis, reactions occur on surfaces, where the spatial distribution of adsorbates is

important. Therefore, lattice KMC[20] is used extensively. The state of the system

is defined by the occupancies of adsorbates on discrete lattice sites. Due to the

crystallinity of metals and oxides, lattice sites can be straightforwardly defined. By

distinguishing between different site types (e.g. top, hollow, step, etc.), KMC is able

to describe heterogeneous surfaces while preserving the full spatial resolution.
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Figure 1.3 shows how for a Pt(111) surface, the continuous x, y, and z co-

ordinates of all the atoms are coarse grained to discrete, well defined lattice posi-

tions. This makes it possible to identify patterns on the surface with graph theory.

The energies of different configurations are computed through a cluster expansion

Hamiltonian[239, 190, 234]. The lattice state is defined by a vector of lattice occu-

pancies. In our example, we order the sites in a dictionary fashion with the 9 top

sites preceding the 9 fcc hollow sites. We indicate the occupancies as being a vacancy

(0), H2O* (1), OH* (2), or H* (3). Following our definition, the change in lattice

occupancies due to the reaction in Figure 1.3 is as follows.[
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

]
↓[

0 0 0 0 2 0 0 0 0 0 0 0 0 3 0 0 0 0
]

The ability of lattice KMC to change the types, quantities, and spatial ar-

rangement of surface sites makes it an integral tool for studying structure sensitivity.

Terraces, steps, 3D nanoparticles, and defects can all be modeled. Throughout this

thesis, we use the Zacros[204, 148] graph-theoretical code for lattice KMC, which has

been employed in several such studies[201, 202, 130, 73, 164, 149, 75, 203, 165].

1.3 Uncertainty Quantification (UQ)

Because multiscale modeling is such an intricate, multifaceted paradigm, näıve

utilization of the most accurate methods on every scale would be computationally pro-

hibitive. To manage this complexity in practice, a hierarchical refinement approach[183]

is used. Initial attempts to model a system begin with a crude model, employing many

approximations. Then, uncertainty quantification (UQ) identifies the most influential

aspects of the model. Once identified, the influential aspects of the model are refined by

using higher levels of theory or by gathering additional data, either through additional

calculations or experiments. In doing so, the model is iteratively improved until it is

a satisfactory representation of the true system (i.e. it achieves reliable predictions)
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Figure 1.3: Molecular (top row) versus lattice (bottom row) representations of a
catalyst surface. In the molecular picture, all atoms have continuous x, y, and z
coordinates. Colors indicate Pt(blue), O(red), and H(white) atoms. The lattice is a
discretization of the full molecular picture. The reaction shown is H2O* dissociation
into OH* and H* on a Pt(111) surface. In the KMC lattice, blue circles are top sites
and green triangles are fcc hollow sites.
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is achieved. This approach allows for an efficient allocation of effort in constructing a

multiscale model.

UQ is a crucial element in the process of hierarchical refinement. There have

been many developments with applications to catalysis. The errors of DFT have been

explored extensively[120, 119]. The Bayesian error estimation functional (BEEF) has

built-in error estimates and currently sees wide use[134, 231, 44, 88, 220]. Sutton et

al. quantified the effects of errors in semi-empirical methods on activity/selectivity

maps[211, 212]. Likewise, the effect of lateral interactions on materials predictions has

been investigated[219]. Many applications of UQ to reaction networks aim to reduce

the reaction mechanism with minimal impact on predictions[163, 222, 193]. On the

reactor scale, UQ has been successfully applied to fluid dynamics[59].

For the purposes of this thesis, the UQ task is divided into two pieces.

1. Parametric UQ: Quantifying how errors in the input parameters of a model
propagate to the model predictions.

2. Model form UQ: Understanding how assumptions made about the physical sys-
tem being modeled affect the results.

Parametric UQ is performed using sensitivity analysis (SA). Given a model f

with input parameters θ1, θ2, ... and observables y1, y2, ..., sensitivity analysis quantifies

the effect of the input parameters on the observables. SA can be local or global. Local

sensitivities are computed as partial derivatives. The sensitivity (Si,j) of observable i

to parameter j is given by

Si,j =

(
∂yi
∂θj

)
θk 6=j

. (1.6)

Global sensitivity analysis extends local sensitivity analysis by fitting a response sur-

face to f , which accounts for nonlinearities in parameter dependencies and interactions

between parameters. Rather than using fixed values for the parameters, global sensi-

tivity analysis chooses their values from a probability distribution. We focus on local

sensitivity analysis in this thesis.
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SA provides physical insights by identifying the rate-determining steps of a

reaction network. In addition, it also allows for the identification of sensitive parameters

that may be refined by fitting experimental data or through more precise methods.

For example, sensitive parameters estimated using semi-empirical methods can be

replaced with those from more accurate DFT calculations. SA has also been used

to identify which parts of the reaction network might be missing[210]. Given the

complexity of reaction network models, the numerical computation of Equation 1.6 is

often not straightforward and requires sophisticated mathematical approaches. While

this approach has been successfully demonstrated for mean field models, the lack of

efficient SA tools has hindered the extension of hierarchical parameterization to KMC

models. A more extensive review of SA methods and their limitations for KMC is

given in Sections 2.2 and 3.2.

Model form uncertainty is mathematically less well-defined than parametric UQ

and often more challenging. Even if accurate parameters are used, a model will be

incorrect if it does not model the correct physical process. There are many physical

processes that occur in catalytic systems, but are often excluded from models. Mass

transfer limitations in the reactor, solvent effects, and catalyst reconstruction are a few

examples. In this thesis, we address uncertainty arising from incomplete knowledge of

the catalyst structure and the identity of the active site. Pidko[166] provides excellent

discussion of the tradeoff between model simplicity and accuracy regarding the active

site.

1.4 Dissertation Scope and Structure

The objective of this thesis is to enable uncertainty quantification for KMC. We

develop parametric UQ methods in Chapters 2 and 3. Chapters 4 and 5 explore model

form uncertainty by assessing assumptions made about the catalyst structure and the

identity of the active site.

In Chapter 2 we derive and implement a two time scale approach to performing
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sensitivity analysis in stiff systems. The previously developed likelihood ratio sensi-

tivity analysis method is shown to encounter insurmountable statistical noise in single

time scale systems with disparate reaction time scales. To resolve the issue, we explic-

itly identify fast and slow reactions in order to partition the simulation into fast and

slow scales. Derivatives are computed accurately in each scale and combined. As a

result, the two time scale method accurately predicts sensitivities for a stiff reaction

network without the need to perturb reaction parameters and repeat simulations. The

method is demonstrated in an analytically solvable linear system.

Chapter 3 takes an alternative approach towards sensitivity analysis. Whereas

the method developed in Chapter 2 is only applicable to well-mixed KMC, practical

systems of interest are on-lattice. We address the challenges of efficiently conducting

KMC simulations and performing accurate sensitivity analysis in systems with un-

known time scales by employing two acceleration techniques: rate constant rescaling

and parallel processing. We develop statistical criteria that ensure sufficient sampling

of non-equilibrium steady state conditions. Our approach provides the twofold benefit

of accelerating the simulation itself and enabling likelihood ratio sensitivity analysis,

which provides further speedup relative to finite difference sensitivity analysis. As a

result, the likelihood ratio method can be applied to real chemistry. We apply our

methodology to the water-gas shift reaction on Pt(111), a key reaction in hydrogen

production from biomass.

In Chapter 4 we quantify uncertainty in catalyst activity due to unknown cat-

alyst structure by solving an inverse problem. Given a structure sensitive chemistry,

we optimize the structure within constraints imposed by the thermodynamic stability

of the surface. We identify active sites using coordination-dependent binding ener-

gies, as well as the density and spatial arrangement of such sites. Simultaneously,

surface energy is minimized in a multiobjective optimization approach. We apply this

methodology to the oxygen reduction reaction on defected Pt(111), Pt(100), Au(111),

and Au(100) surfaces.

In Chapter 5 we extend the structure optimization approach of Chapter 4 to
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chemistries where KMC is needed to accurately compute the reaction rate for a given

catalyst structure. KMC accounts not only the presence of active sites, but also

geometric effects such as diffusion limitations and bifunctional site coupling. However,

running a KMC simulation at each step of an optimization is infeasible. To reduce

the computational burden to an acceptable level, we use a neural network surrogate

model trained on KMC data for the optimization. The neural network captures the

complex geometric dependencies of the KMC simulation at comparably negligible

computational cost. We apply our method is to a model chemistry analogous to the

ammonia decomposition reaction on NiPt.

Chapter 6 summarizes the findings of this thesis and proposes future directions.
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Chapter 2

EFFICIENT SENSITIVITY ANALYSIS IN MULTISCALE KINETIC
MONTE CARLO

2.1 Abstract

Kinetic Monte Carlo simulation is an integral tool in the study of complex

physical phenomena present in applications ranging from heterogeneous catalysis to

biological systems to crystal growth and atmospheric sciences. Sensitivity analysis is

useful for identifying important parameters and rate-determining steps but the finite-

difference application of sensitivity analysis is computationally demanding. Techniques

based on the likelihood ratio method reduce the computational cost of sensitivity

analysis by obtaining all gradient information in a single run. However, we show

that disparity in time scales of microscopic events, which is ubiquitous in real systems,

introduces drastic statistical noise into derivative estimates for parameters affecting

the fast events. In this work, the likelihood ratio sensitivity analysis is extended to

singularly perturbed systems by invoking partial equilibration for fast reactions, that

is, by working on the fast and slow manifolds of the chemistry. Derivatives on each time

scale are computed independently and combined to the desired sensitivity coefficients

to considerably reduce the noise in derivative estimates for stiff systems. The approach

is demonstrated in an analytically solvable linear system.

2.2 Introduction

Kinetic Monte Carlo (KMC) simulation has been successfully applied in sev-

eral complex systems, ranging from crystal growth to surface reactions to biological

networks to atmospheric sciences and to spatially homogeneous (known also as the

stochastic simulation algorithm (SSA) or Gillespie algorithm[63]) as well as spatially
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distributed systems[20]. Various KMC algorithms and accelerated methods were re-

cently discussed in Chatterjee and Vlachos[41]. With advances in ab initio methods, a

burst of scientific activity is seen in catalysis in what is termed as ab initio KMC sim-

ulations with examples including the study of ethylene conversion to ethylidyne on Pd

and Pt[4], the contribution of surface defects to methanol decomposition on Pd[123],

structure sensitivity of the water gas-shift reaction on Pt[201], oxygen coverage effects

on NO oxidation on Pt[234], and the influence on Ni island structure on Pt for the

decomposition of ammonia[73] as reviewed in Stamatakis and Vlachos[206]. Similar

activity is seen on biological networks[174].

Error analysis is a vital part of stochastic modeling, and has been addressed for

certain approximations such as coarse-graining[102, 9, 100]. In particular, parametric

sensitivity analysis (SA) provides physical insights by identifying the rate-determining

steps of a reaction network that can be interrogated with experimental studies or guide

development of better catalysts[168]. In addition, it also allows for the identification

of sensitive parameters that may be refined by fitting experimental data or through

more precise methods. For example, sensitive parameters estimated using semi-

empirical methods can be replaced with those from more accurate density functional

theory (DFT) calculations. In this manner, SA allows for appropriate allocation

of computational effort within the hierarchical refinement approach to multiscale

modeling[183, 224]. While this approach has been successfully demonstrated for mean

field models, the lack of efficient SA tools has hindered the extension of hierarchical

parameterization of KMC models.

Various techniques have recently been developed for SA of stochastic kinetic sys-

tems, such as polynomial chaos expansion (PCE)[103, 104, 105] and Fisher information

matrix (FIM)[158, 159, 71]. The traditional finite differencing SA approach is simple

to implement, as it does not necessitate any changes to the underlying simulation

algorithm[169]. Its variations such as the common random number (CRN)[66, 172],

common reaction path (CRP)[172], and coupled finite difference (CFD)[6, 7] methods
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reduce the noise in stochastic differences[199]. However, since finite differencing calcu-

lates derivatives through multiple runs in which parameters are perturbed individually,

the computational burden scales linearly with the number or parameters. Increasing

the order of approximation of the derivative estimates requires additional runs for each

parameter. Furthermore, finite differencing introduces bias due to the perturbation

size, which must be sufficiently large to obtain statistically significant differences but

small enough to minimize local truncation error[133]. Therefore, the computational

cost for expensive KMC simulations with many parameters is prohibitively large.

The likelihood ratio (LRSA) method[66, 67, 147] based on the Girsanov measure

transformation[167] has recently been introduced for KMC simulations[133] because it

is independent of the number of parameters and is the method of choice for short,

transient calculations. However, statistics are taken over many replicate trajectories,

typically thousands. Furthermore, statistical noise accumulates over longer simulation

runs making it unusable for steady-state simulations that are ubiquitous in kinetic

studies. Recently, the likelihood ratio has been adapted to steady-state calculations,

alleviating both issues[230].

Real systems often exhibit separation of time scales which plagues KMC

implementation[41, 202] and introduces noise for derivatives computed with the likeli-

hood ratio method, as will be shown in Section 2.5.3. Several hybrid stochastic methods

have been developed to accelerate KMC simulations[35, 33, 170, 68, 186, 81, 62, 185].

Among these, singular perturbation identifies the time scales on which each reaction

occurs and properly slaves the rates (propensities) of fast reactions on the manifold

of the slow reactions[52] Gupta and Khammash show that sensitivities obtained

from a model in which the time scales are separated can be used to approximate

the sensitivities of an exact, stiff model[76]. In this paper, we combine the singular

perturbation methodology with the LRSA method. We show that this allows us to

overcome the limitations of the standard LRSA methodology and obtain accurate

sensitivity coefficients in stiff systems.
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2.3 Likelihood ratio sensitivity analysis (LRSA)

In this section, we review the details of the LRSA relevant to our work. Given an

initial state for a KMC simulation and a stopping time t, it is of interest to compute

the expectation of a system property f(t) at time t. f can be any property of the

system state, such as a species population. Computation of 〈f(t)〉 requires averaging

over multiple simulations to sample Ω, the space of all possible trajectories between

times 0 and t which start at the given initial state. Glynn[67] expresses the expectation

as

〈f(t)〉 =

∫
Ω

Pω(t)fω(t)dΩ (2.1)

where Pω(t) is a probability measure on the space Ω and ω ∈ Ω is a trajectory.

Now suppose we want to know the sensitivity of 〈f(t)〉 to parameter θ. Typical

examples for θ include a rate constant or an activation energy. From Equation 2.1, we

compute the derivative of the expectation as

∂ 〈f(t)〉
∂θ

=

∫
Ω

[
∂Pω(t)

∂θ
fω(t) + Pω(t)

∂fω(t)

∂θ

]
dΩ (2.2)

=

∫
Ω

Pω(t)
∂lnPω(t)

∂θ
fω(t)dΩ +

∫
Ω

Pω(t)
∂fω(t)

∂θ
dΩ (2.3)

=

〈
∂lnPω(t)

∂θ
fω(t)

〉
+

〈
∂fω(t)

∂θ

〉
(2.4)

= cov

(
∂lnPω(t)

∂θ
fω(t)

)
+

〈
∂fω(t)

∂θ

〉
(2.5)

The last line takes advantage of the fact that
〈
∂lnPω(t)

∂θ

〉
= 0 as a consequence of∫

Ω
Pω(t) = 1. It is numerically convenient to use covariance rather than expectation, as

there is some cancellation of errors. The second term of Equation 2.5 can be sampled

directly, but we assume it to be zero.

We estimate the trajectory probability by defining a statistic we term the

trajectory derivative (Wθ) to track alongside the simulation

Wθ(t) =
∂lnPω(t)

∂θ
(2.6)
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and therefore compute

∂ 〈f(t)〉
∂θ

= cov (Wθ(t), f(t)) . (2.7)

The statistic W (t) can be computed from simualtion, allowing the right hand

side of Equation 2.7 to be computed as an ensemble average. For each trajectory, we

may compute W (t) from the reaction propensities a at each KMC step. This is the

only modification needed to the standard KMC algorithm in order to perform LRSA.

Let n index the steps in the KMC trajectory. in indicates the state after n events have

occurred. N events occur before time t. i(t) indicates the state of the system at time

t and tn is the time at which the nth event occurs. ai→j denotes the propensity of the

reaction transitioning from state i to state j. We develop the expression[230]

Wθ(t) =
N−1∑
n=0

∂lnain→in+1

∂θ
−
∫ t

0

∂
∑

j 6=i(t′) ai(t′)→j

∂θ
dt′ (2.8)

=
N−1∑
i=0

[
∂lnain→in+1

∂θ
−
∂
∑

j 6=in ain→j

∂θ
(tn+1 − tn)

]
−
∂
∑

j 6=i(t) ai(t)→j

∂θ
(t− tN)

(2.9)

2.3.1 Equilibrium likelihood ratio

A special case of LRSA method occurs in systems that have a thermodynamic

equilibrium. For example, this idea applies to adsorption and desorption of a single

species described by an equilibrium isotherm. This approach to computing derivatives

has been used widely throughout the Monte Carlo literature, as no kinetic information

is needed[146]. In this case, the steady-state probability distribution is described by

the Boltzmann distribution and the trajectory derivative Wθ(t) is not needed. If E is

a states dimensionless energy and Q is the partition function, then

Q =
∑
i

e−Ei (2.10)

Pi =
e−Ei

Q
(2.11)
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Therefore, Equation 2.7 is replaced by

∂f

∂θ
= cov

(
−∂E
∂θ

, f

)
. (2.12)

Time dependencies have been dropped under the assumption of steady-state, i.e. it

reaches a stationary distribution. We can evaluate the energies during simulation as

follows. Take the first state’s energy to be zero. Then, each reaction event takes

transitions from state i to state j. We start with the equilibrium assumption

Piai→j = Pjaj→i (2.13)

Pi
Pj

=
aj→i
ai→j

(2.14)

e−Ei

e−Ej
=
aj→i
ai→j

(2.15)

∆Ei→j = Ej − Ei = ln

(
aj→i
ai→j

)
(2.16)

The propensities are computed during simulation and are used to compute the

energies. The advantage of this formaulation is that Metropolis simulation rather than

KMC can be used to simulate the equilibrated microscale, because dynamics are not

needed and ∆Ei→j is known.

2.4 Singularly Perturbed KMC Simulations

Singular perturbation is an approximate method for handling large separations

of time scales and is widely applied in ordinary differential equations (ODEs)[48]. A

system can be reduced at short time scales to the fast eigenmodes by slaving the fast

dynamics to the slow ones. The system of slow modes can then be solved at long time

scales by taking large timesteps on the macroscale without sacrificing the fast dynamics.

Because KMC is governed by a system of linear ordinary differential equations, singular

perturbation can be applied there as well.

2.4.1 Theory

The singular perturbation methodology can be applied to the chemical master

equation and extended to stochastic systems[205]. Let s(t) be a vector defining the
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Figure 2.1: Partitioning of the state space. Groups of states which can be linked by
fast reactions (low barriers) belong to the same fast class, denoted with Greek letters.
Slow reactions (high barriers) separate the fast classes.

state of the system at time t. In well-mixed systems, s lists species populations, whereas

in spatial systems, s lists lattice site occupancies. The state space S is the set of all

possible states the system can visit. By labeling each reaction as either fast or slow,

based on its frequency (for automation of computational singular perturbation method

to large networks, see Samant and Vlachos[188]) the state space S is partitioned into

disjoint subspaces as follows. States i and j are defined to be members of the same fast

class if and only if there exists a sequence of fast reactions which transitions between

them (see Figure 2.1). The state space is partitioned as S as S = ∪α∈ΩSα, where Ω

is an indexing set and Sα ∩ Sβ = ∅ for α 6= β. We use the notation ai→j to denote

the propensity of the reaction which transitions the system from i to j. The chemical

master equation[205, 65] is written as

dpi(t)

dt
=
∑
j∈S

[aj→ipj(t)− ai→jpi(t)] (2.17)

and governs the time evolution of a stochastic system. pi(t) is the probability that

the system is in the state i at time t. ai→j is the propensity of the reaction transi-

tioning from state i to state j. If i ∈ Sα, then state partitioning[205] allows for the
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decomposition of Equation 2.17 into

dps(t)

dt
=

1

ε

∑
j∈Sα

[aj→ipj(t)− ai→jpi(t)] +
∑
j /∈Sα

[aj→ipj(t)− ai→jpi(t)] . (2.18)

The variable ε << 1 captures the time scale separation. At any given time, a

fast reaction is much more likely to fire than a slow reaction. It is not always apparent

from the propensities where the time scale separation occurs. Samant and Vlachos

discuss how to partition the system into the fast and slow modes based on network

analysis[187]. The fast time scale can be accessed by taking ε → 0 in Equation 2.18,

thus eliminating the time dependence on the left hand side and leaving

0 =
∑
j∈α

[aj→ipj(t)− ai→jpi(t)] . (2.19)

The solution to Equation 2.19 gives the time-invariant probability distribution

function (PDF) for the states within Sα. In simulation, an estimate is obtained by

firing only fast reactions, which we will refer to as microscopic integration. We also

define

pα(t) =
∑
i∈Sα

pi(t) (2.20)

to be the total probability of the fast class. The value of pα(t) is time dependent, but

the ratio pi
pα

is time independent.

The slow time scales can be accessed by substituting the solution of Equation

2.19 into Equation 2.18, giving the time evolution along the slow time scale as

dpα(t)

dt
=
∑
α∈Ω

[aβ→αpβ(t)− aα→βpα(t)] (2.21)

aα→β =
∑
i∈α

∑
j∈β

ai→j
pi
pα

(2.22)

In Equation 2.21, state probabilities pi(t) and transition propensities ai→j are replaced

with microscopically averaged fast class probabilities pα(t) (Equation 2.22) and tran-

sition propensities aα→β. We use the term microscopic averaging to refer to taking

averages during the firing of fast reactions only. Macroscopic averaging refers to time-

averages over the slow jumps in the system.
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2.4.2 Implementation

We present a simplified version of the algorithm used by Samant and

Vlachos[187]. Two nested loops are used. The outer loop executes the macroscopic

time steps and the inner loop performs the microscopic averaging. At the beginning

of each macroscopic time step, the microscopic loop is run until convergence of the

fast class PDF is reached. Convergence is typically measured with either a partial

equilibrium criterion[187] or t-test criterion[188]. In this work, for simplicity, we use

a fixed number of events for microscale averaging. We treat this as an adjustable

parameter, which we tune until good statistics are achieved. Although only fast events

fire, slow propensities are also tracked. Subsequently, a slow reaction is chosen to

fire. The probability of choosing the slow reaction to fire from state i to state j in a

different fast class is

p(i→ j) =
piai→j∑

k∈Sα pk
∑

m/∈Sα ak→m
. (2.23)

The macroscopic time clock is advanced by an increment chosen from the exponential

distribution with expectation

E[∆t] =

(∑
k∈Sα

pk
∑
m/∈Sα

ak→m

)−1

. (2.24)

2.5 LRSA applied to singularly perturbed KMC simulations

In this section, we discuss how the LRSA appraoch is applied to systems in which

disparate time scales have been separated with singular perturbation. An analogous

formulation for deterministic simulations is outlined in Section A.1.

2.5.1 Theory

Gupta and Khammash[76] have shown that for two time scale Markov chains

we have

lim
ε→0

∂ 〈f〉
∂θ

=
∂

∂θ
lim
ε→0
〈f〉 . (2.25)
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In Equation 2.25, the left hand side is the derivative in the single time scale stiff system,

while the right hand side is the derivative in the two time scale system. The right hand

side can be computed much more reliably than the left hand side, as we will show.

In a two time-scale system, we write the macroscopic average of a property f

and take the derivative. Hereafter, an overbar denotes microscopic averaging whereas

brackets denote macroscopic averaging.

〈f(t)〉 =
∑
α∈Ω

pα(t)f̄α(t) (2.26)

∂ 〈f(t)〉
∂θ

=
∑
α∈Ω

[
∂pα(t)

∂θ
f̄α(t) + pα(t)

∂f̄α(t)

∂θ

]
(2.27)

=
∑
α∈Ω

pα(t)
∂lnpα(t)

∂θ
f̄α(t) +

∑
α∈Ω

pα(t)
∂f̄α(t)

∂θ
(2.28)

= cov
(
f̄(t),WM

θ (t)
)

+

〈
∂f̄α(t)

∂θ

〉
(2.29)

The first term on the right hand side of Equation 2.28 involves a derivative of the

macroscale trajectory probability and can be written analogously to Equation 2.7.

The second term is a simple macroscale average.

Equation 2.29 effectively separates the derivative into contributions from the

two time scales. In the first term, the parameter θ enters only in how it affects the

macroscale trajectory. In the second, it enters only in how it affects the microscale

averages. Thus, the first and second terms capture the effect of θ on the macroscopic

and microscopic averaging, respectively. Each one represents a derivative at a specific

time scale where stiffness is not present, so a standard method for computing each

derivative can be used. Specifically, Equation 2.7 is used for the slow scale contribution

and Equation 2.12 is used for the fast scale contribution.

We consider how parameters affecting the slow and fast reactions behave on

different time scales. For slow reactions, the computation of the first term does not

encounter any problems as far as the time window, over which averages are taken, is

appropriate. For fast reactions, the application of Equation 2.7 for computing the first

term must be changed. We must measure how fast rate constants affect the macroscopic
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trajectory. Although fast rate constants do not affect the instantaneous propensities

of slow reactions, they affect the microscopic PDF over which the slow propensities

are averaged. Therefore, we define a new statistic we term the multiscale trajectory

derivative, analogous to Equation 2.9. n indexes slow events only.

WM
θ (t) =

∂lnpω,M(t)

∂θ
(2.30)

WM
θ (t) =

N−1∑
n=0

[
∂aαn→αn+1

∂θ
−
∂
∑

β 6=αn aαn→β

∂θ
(tn+1 − tn)

]
+
∂
∑

β 6=α(t) aα(t)→β

∂θ
(t− tN)

(2.31)

Using this additional macroscopic statistic, we can compute the derivative in

the same way as we do for the slow rate constants, but using WM
θ (t) in place of

Wθ(t). In computing the second term of Equation 2.29, slow reactions have no influence

over microscopic averaging, and therefore, ∂f̄
∂θslow

= 0. We term the above method as

multiscale likelihood ratio sensitivity analysis (MLRSA).

2.5.2 Pseudocode

We summarize the proposed method as follows.

1. Initialize the system at t = 0.

2. Label all reactions as either fast or slow.

Microscopic Averaging

3. Carry out Metropolis algorithm allowing only fast reactions to fire. Stop when
the state PDF, pα, is converged.

4. Compute microscopic property averages f̄ as well as slow propensity averages
aα→β.

Macroscopic Advancement

5. Select a slow reaction to fire according to Equation 2.23. Update species popu-
lations.

6. Update ∆t by selecting a time step from exponential distribution according to
Equation 2.24.

7. Update WM
θ (t) according to Equation 2.31
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Table 2.1: Reaction network for the A↔B→C model. Rate constants (r.c.) are in
units of inverse seconds. An initial population of ∗ = 100 is used.

Reaction r.c. name r.c. value Propensity Classification
A→B k1 2ε−1 k1NA Fast
B→A k2 3ε−1 k2NB Fast
B→C k3 2.0 k3NB Slow

8. Terminate the simulation if maximum simulation time has been reached. Other-
wise, return to Step 3.

Post-processing

9. Compute simulation property averages using Equation 2.26.

10. Compute sensitivity coefficients using Equation 2.29.

2.5.3 Numerical example

We test our method on a linear system, for which sensitivity coefficients can

be computed analytically using formulae from Section A.2. We simulate the system

using an open source C++ software we have developed, which is available at https:

//github.com/VlachosGroup/Multiscale-KMC. Table 2.1 shows the details of the

reaction network. Reactant species A rapidly interconverts with the intermediate

species B, which then forms the product species C. The parameter ε is varied to set

the stiffness of the system. Notice that the equilibrium constant K = k1
k2

for the

A↔B reaction is constant. Table 2.2 shows the time scales for each level of stiffness

as computed through eigenvalue analysis of the chemical master equation (see Section

B.1.1). As ε decreases, the time scale for the fast reactions also decreases and many

more fast reactions fire in between slow reactions. The time scale for the slow reactions

is mostly unaffected, so all simulations are run to a termination time of tf = 10s. In

this specific example, we set the interconversion of species A and B to be in partial

equilibrium as ε decreases.

We define our sensitivities as

Sensitivity =
1

A(0)

∂ 〈f〉
∂lnk

. (2.32)
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Figure 2.2: Sensitivity analysis results for different levels of time scale separation.
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The property of interest f is taken to be the species populations of A, B, or C. Figure

2.2 shows the results of sensitivity analysis on the model for each level of stiffness. In

all cases, 10,000 trajectories are used for averaging. 10 repeated calculations are used

to draw error regions of 90% confidence. Using the single time scale LRSA method,

the derivative estimates with respect to the rate constants of the slow reactions are

accurate for all values of stiffness because slow reactions do not fire often, and thus, they

do not accumulate significant noise in the trajectory derivative (Wk(t)). However, the

derivative estimates with respect to the rate constants for the fast reactions encounter

noise larger than the range of physical values as stiffness increases. For very stiff

systems (ε = 0.001), the sensitivity of species A with respect to k2 is negative in some

of our calculations, whereas it should be positive (Figure 2.2c).This example indicates

that the noise in stiff systems may lead to physically wrong conclusions.

This issue is alleviated through the use of the MLRSA approach. Figure 2.2d

shows that these estimates are much less noisy than that of the single time scale LRSA

approach. Microscopic averaging was performed using 1000 events of equilibration,

which was manually adjusted until suitable derivative estimates were achieved. Figure

2.3 shows a parity plot for the calculation of ∂ā3
∂lnk1

during microscale equilbiration

during a single trajectory. The exercise is repeated using 3000 and 10000 microscale

events for equilibration, showing that the estimates are mostly converged. Propagation

of the error in the microscale sensitivity estimates through Equations 2.31 and 2.29

to estimate the sensitivity is not well understood, but is a possible avenue for future

work. For the most part, the noise averages out on the macroscale and is able to

provide accurate sensitivity coefficients.

2.6 Conclusions

In this chapter, the likelihood ratio method for efficiently performing sensitiv-

ity analysis in stochastic simulations was extended to singularly perturbed systems.

Parameter sensitivities were computed separately on the microscopic and macroscopic

scales and then summed. The key novelty to this approach is that it accounts for how
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Table 2.2: Time scales for the A↔B→C model. Time scales are computed using
eigenvalue analysis of the chemical master equation. Total fast events is the average
number of fast events that fire in a simulation and is used as a measure of computational
cost.

ε τfast τslow Total fast events
100 1.57 ∗ 10−1 1.593 401.311

10−1 1.95 ∗ 10−2 1.280 3085.18
10−2 2.00 ∗ 10−3 1.253 30731.2
10−3 2.00 ∗ 10−4 1.250 296008

TTS - 1000 → 0 1.250 105

TTS - 3000 → 0 1.250 3 ∗ 105

TTS - 10000 → 0 1.250 106
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Figure 2.3: Parity plot of microscale derviative estimates computed during a single
trajectory. Quantities shown here are ∂ā3

∂ln(k1)
. Colors indicate the number of events

used for microscale averaging.
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reactions on the fast time scale influence the probability distribution of slow reaction

propensities. Parameter influences on fast dynamics can therefore be propagated to

the slow time scale. The influence of fast and slow reactions on their respective scales is

computed using previously established methods. The proposed technique was applied

to an analytical system exhibiting disparate reaction time scales. It was found that

the likelihood ratio technique fails at high levels of stiffness due to statistical noise.

In contrast, the multiscale likelihood ratio technique computes sensitivities correctly

and with little noise. Although in this work, a stochastic simulation algorithm is used

for microscopic averaging, the MLRSA technique is generalizable to other multiscale

algorithms. For instance, other works have used a deterministic model[81] or the chem-

ical Langevin equation[186] to approximate the microscopic dynamics. As long as the

computation of the derivatives in 2.31 can be obtained, sensitivity coefficients can be

computed in an analogous way. Thus, MLRSA can be applied to a broad range of

problems and approximate methods dealing with stiffness.
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Chapter 3

ACCELERATION AND SENSITIVITY ANALYSIS OF LATTICE
KINETIC MONTE CARLO SIMULATIONS USING PARALLEL

PROCESSING AND RATE CONSTANT RESCALING

3.1 Abstract

Kinetic Monte Carlo (KMC) simulation provides insights into catalytic reactions

unobtainable with either experiments or mean field microkinetic models. Sensitivity

analysis of KMC models assesses the robustness of the predictions to parametric

perturbations and identifies rate-determining steps in a chemical reaction network.

Stiffness in the chemical reaction network, a ubiquitous feature, demands lengthy run

times for KMC models and renders efficient sensitivity analysis based on the likelihood

ratio method unusable. We address the challenge of efficiently conducting KMC

simulations and performing accurate sensitivity analysis in systems with unknown

time scales by employing two acceleration techniques: rate constant rescaling and

parallel processing. We develop statistical criteria that ensure sufficient sampling of

non-equilibrium steady state conditions. Our approach provides the twofold benefit

of accelerating the simulation itself and enabling likelihood ratio sensitivity analysis,

which provides further speedup relative to finite difference sensitivity analysis. As a

result, the likelihood ratio method can be applied to real chemistry. We apply our

methodology to the water-gas shift reaction on Pt(111).

3.2 Introduction

Operando spatiotemporal understanding at the nanoscale becomes increasingly

important but is currently difficult to acquire experimentally. Kinetic Monte Carlo

(KMC) is ideal for filling this gap in diverse areas including catalysis, materials growth,
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and biological processes. In catalysis, KMC simulations has been applied to many

chemistries, such as CO oxidation[164, 202], NO oxidation[234], water gas-shift[201,

237], NH3 decomposition[73, 75], and methanol decomposition[123] on nanoclusters

and heterogeneous surfaces and is suitable for structure sensitive reactions, something

for which mean-field microkinetic models are inadequate[205, 206, 213]. Insights gained

from KMC models, such as the rate determining step (RDS), dominant reaction path-

ways, surface coverages, and active sites, can eventually aid catalyst design[183]. De-

spite the importance of KMC simulation, its widespread application to real chemistries

is limited due to a number of challenges discussed next.

Identification of the RDS is particularly important, and requires parametric

sensitivity analysis on the rate constants of elementary steps. While sensitivity anal-

ysis is routine for mean-field systems[207, 210], the computational burden of KMC

simulation prevents sensitivity analysis from becoming common practice in stochastic

systems, except for very small networks with a few species and reactions. In larger

systems, such as those encountered in heterogeneous catalysis, sensitivity analysis is

either performed with an expensive finite difference scheme[75] or not at all. Finite

difference techniques require the user to choose an appropriate perturbation size to

manage the variance and the bias[133]. The variance can be reduced by using coupled

finite difference (CFD)[6, 199], but this approach requires changes to the simulation

algorithm, especially for lattice simulations. Furthermore, the number of simulations

required still scales linearly with the number of reactions. Likelihood ratio sensitivity

analysis (LRSA)[66, 67, 147, 167] is a promising technique for minimizing the compu-

tational burden of sensitivity analysis of stochastic systems. Unlike finite difference

techniques, it requires only a single (the nominal) run and does not require changes to

the underlying simulation algorithm. Due to the challenge of obtaining quality statis-

tical sampling in systems with multiple reaction time scales[155], LRSA has seen only

limited application in realistic catalytic systems[87].

Disparate reaction time scales (known also as stiffness) are ubiquitous in real

chemistries, plague KMC simulation[41, 206] and introduce enormous noise into LRSA
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estimates[155, 230]. Significant work has addressed the issue of stiffness in stochastic

systems. One class of multiscale techniques explicitly separates the time scales by

treating the fast scales separately and evolves the slow scales on the stochastic manifold

of the fast ones[36, 35, 52, 62, 68, 81, 170, 185, 186]. Subsequent work has demonstrated

how to apply the LRSA to such systems[76, 82, 155]. Separating a system into fast

and slow modes is difficult to do a priori, and the implementation can be burdensome,

especially for spatially distributed systems. Single time-scale acceleration techniques

include tau leaping[34, 40, 171], net-event algorithms[195, 198], and rescaling the

reaction rate constants[42, 47, 51, 57]. Although theoretical advances in this area

have been significant, there are few easily usable algorithms for practical systems.

Recent work by Hoffman et al. uses a combination of Fisher information matrix,

linear response, and coupled finite difference techniques to obtain accurate sensitivity

estimates for a CO oxidation model[87]. However, their algorithm requires simulating a

lengthy trajectory on a single processor, which would result in significant computational

time for stiff systems.

In this chapter, we address the challenges of conducting KMC simulation of

real chemistries with multiple time scales and performing accurate sensitivity analysis

in systems with unknown time scales by employing two acceleration techniques: rate

constant rescaling and parallel processing. Rescaling adjusts the rate constants of fast

reactions to considerably reduce the CPU requirement of a KMC trajectory. Parallel

processing simulates multiple trajectories simultaneously, so that time and trajectory

averaging are combined to enable maximal sampling for a given simulation time. An

automated criterion for detecting steady state ensures that sufficient data is sampled

to obtain accurate, unsupervised sensitivity estimates using LRSA. The rescaling and

steady state detection procedures inform the sensitivity analysis. Rescaled reactions

are known to be insensitive, so they are excluded from the LRSA, as their sensitivity

estimates would have large variances due to frequent reaction events[230]. Steady

state detection identifies the relaxation time scale of the system that is needed for

LRSA. The LRSA estimates identify the slow reaction(s) that is(are) RDS. Our analysis
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complements existing literature, and is demonstrated for the water-gas shift chemistry.

Our use of the LRSA method in real chemistry bridges the gap between mathematical

theory and application. Additionally, we provide an open source Python library

(available at https://github.com/VlachosGroup/Zacros-Wrapper) which interacts

with the Zacros[148, 204] commercial KMC package, and executes the statistical

algorithms discussed herein.

3.3 Methods

Our methodology consists of three tasks. First, a robust criterion for detecting

steady state is used to ensure that the slow time scale of the system is adequately

sampled. Second, the rate constants of equilibrated (fast) reactions are decreased

to reduce the CPU without affecting the slow dynamics of the system. Third, the

information of Tasks 1 and 2 is used to perform LRSA and identify the RDS.

3.3.1 Steady state identification using combined time and multi-trajectory

sampling

The dynamics of a KMC simulation is governed by a continuous-time Markov

chain (CTMC) among numerous possible states. At each point in time, there is a finite

probability that the system is in any given state. Solving the probability distribution

function (PDF) analytically requires enumerating the state space and computing

matrix exponentials[93] (see Section B.1), which is infeasible for most practical systems.

In practice, the PDF is estimated through statistical sampling, by simulating replicate

trajectories. The expected value of a property f at a given time is estimated via

E [f (t)] ≈ 〈f (t)〉ntraj
=

1

ntraj

ntraj∑
i=1

fi (t) (3.1)

where fi (t) is the value of f at time t for trajectory i. In this work, f can be, for

example, the instantaneous reaction rate or coverage of a species. Brackets denote an

average taken across ntraj independent trajectories generated using different random

seeds. Under the assumption that a steady state exists, which is the case for lattice
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simulations in which the lattice size imposes a finite number of states (see Section B.1),

steady state properties are computed by exploiting the ergodic property. That is,

fss = lim
t→∞

E [f (t)] = lim
tf→∞

1

tf − tcut

∫ tf

tcut

f (t) dt (3.2)

where tcut ≥ 0 is the cutoff time before steady state is reached (for which data is

omitted) and tf is the termination time. For ease of notation, we denote time averages

as

[f ]t1,t2 =
1

t2 − t1

∫ t2

t1

f (t) dt. (3.3)

Under steady state conditions, the time average in Equation 3.3 functionally depends

only on t2 − t1, so we equivalently write [f ]t1,t2 = [f ]t2−t1 .

We obtain efficient sampling of fss by using not only the ergodic property of

KMC, but also replicate trajectories, so that fss is estimated as

fss ≈
〈

[f ]tcut,tf

〉
ntraj

. (3.4)

All trajectories are simulated simultaneously on ntraj processors to reduce real execution

time. When ntraj = 1, averaging is purely based on time averaging on a single

processor, as is common practice for steady state simulations. When ntraj is large,

each trajectory needs only to exceed the relaxation time to reach steady state, and

statistics is computed by averaging across trajectories.

Convergence to steady state and adequate sampling need to be evaluated.

Toward this goal, first the autocorrelation function is approximated as an exponential

decay

ĉ (∆t) =
cov (f (t) , f (t+ ∆t))

var (f)
≈ exp

(
− ∆t

τexp

)
(3.5)

where τexp is the exponential relaxation time obtained from eigenvalue analysis of the

generator of the chemical master equation (see Section B.1.1). The variance of the

estimator in Equation 3.4 under steady state is (see Section B.1.2)

var

(〈
[f ]tcut,tf

〉
ntraj

)
var (f)

≈ 1

ntraj

∗
2
(
t̃+ e−t̃ − 1

)
t̃2

. (3.6)
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Figure 3.1: Ratio of the variance of the estimate of the mean of a property and the
variance of the property itself (i.e., the left hand side of Equation 3.6) as a function of
the length of the interval used for averaging (t̃) and the number of replicate trajectories
(ntraj). Data points show the variances of reaction rates. Simulation details are in
Section B.2.1

Time is normalized as t̃ = tf−tcut
τexp

. The significance of Equation 3.6 is that sampling is

improved by either increasing the length of each trajectory (i.e., t̃) or increasing the

number of replicate trajectories (i.e., ntraj) as computational resources allow. Figure

3.1 visualizes Equation 3.6 for several values of ntraj. We numerically validate Equation

3.6 by computing average reaction rates for a simple model (see Section 3.4.1) using

several values of t̃ and ntraj, and then computing the variance of those estimates. Figure

3.1 shows, for example, that the variance of an estimate with 10 trajectories is about

the same as that of an estimate using a single trajectory that is 10 times as long.

Throughout the rest of this paper, we adopt the strategy of using as many processors

as are available to simulate replicate trajectories and gradually increasing the time

interval until the variance in Equation 3.6 decays to an acceptable level.

For a simulation, the values of tcut and tf must be chosen. The value of tcut should

exceed the decorrelation time of the system. In this work, suitable values of tcut and tf

are chosen by gradually increasing the trajectory length (tf) and determining whether
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steady state has been achieved using a batch means test[82, 129]. tf is increased using

an iterative approach wherein sets of KMC trajectories are run and data is appended

between iterations. Data analysis for an iteration uses the cumulative data from all

previous iterations. The final states of the trajectories from the previous iteration are

used as the initial states of the trajectories in the next iteration. The final time (tf )

of the cumulative trajectories is increased as

tf =

niter∑
i=1

tif (3.7)

tif = s ∗ ti−1
f . (3.8)

where tif is the length of the trajectories in iteration i.

In each successive iteration, the trajectory length is scaled by a factor s; here we

use a value of s = 3. A fixed number of time points are recorded for each iteration on

evenly spaced time intervals, as the time resolution ultimately desired is unknown and

intermediate analysis must be performed. As a result, the data storage requirement

for the iterative procedure scales with the number of iterations. Smaller values of s

require more iterations and therefore record more data on disk. Large values of s risk

overshooting suitable values of tf and simulating longer than necessary. Therefore, s

is an adjustable numerical parameter that gives a tradeoff between memory and CPU

requirements.

An appropriate value of t1f cannot be determined because the time scales of

the system are not known a priori. Therefore, a 1000 event cutoff is used for each

trajectory in the first iteration only. The event cutoff must be large enough to estimate

the fast time scale, as determined by the time horizon reached within 1000 events,

and determine whether rescaling reaction rates in necessary using the event counting

method outlined in Section B.2.2. The performance of the algorithm is otherwise

insensitive to the event cutoff for the first iteration.

The batch means stopping criterion determines the value of niters, and therefore

tf , at which the iterative process terminates. Following each iteration, each trajectory

is partitioned into a fixed number (nbpt) of batches each of length ∆tbatch = tf
nbpt

,
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where batch j spans from tj−1 to tj, and tj = j ∗∆tbatch. The batch length increases

proportionally with the trajectory length. When the batch length is sufficiently large,

the averages of data in adjacent batches are uncorrelated, that is

cov
(

[f ]tj−1,tj
, [f ]tj ,tj+1

)
� var

(
[f ]∆tbatch

)
. (3.9)

Section B.1.3 derives an analytical expression of how the left hand side of Equation 3.9

should decay. When the batch length is long enough so that Equation 3.9 is satisfied,

the average of the second batch, [f ]t1,t2 , does not depend on the initial state of the

trajectory. Therefore, for the evaluation of Equation 3.2, we use tcut = ∆tbatch = t1,

so that data in the first batch contains the transient regime that is excluded from

statistics.

The batch means approach is modified to account for multiple trajectories. The

number of batches per trajectory (nbpt) is chosen so that nbpt ≥ 3 and

nbatches = ntraj ∗ (nbpt − 1) (3.10)

exceeds a predetermined number. nbatches estimates the number of independent and

identically distributed data points obtained at steady state. The batch mean for the

jth batch of the ith trajectory (fi,j) is defined by fi,j = [fi]tj−1,tj
. The resulting batch

means are tabulated in a ntraj × nbpt matrix. Steady state is tested by computing the

autocorrelation function (ACF), which is small when the batch length ∆tbatch exceeds

the decorrelation time. The autocorrelation between adjacent batch means is computed

by generating two overlapping subsets of the batch means (B1 and B2), each offset by

the length of a single batch. The autocorrelation function is computed as follows, with

Equation 3.13 being the decorrelation criterion.

B1 =

ntraj⋃
i=1

nbpt−1⋃
j=2

fi,j (3.11)

B2 =

ntraj⋃
i=1

nbpt⋃
j=3

fi,j (3.12)

|ACF (∆tbatch)| =
∣∣∣∣ cov (B1, B2)

var (B1 ∪B2)

∣∣∣∣ < 0.05 (3.13)
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The ACF is normalized by an estimator of the steady state value of var (f) and can

have an error as it is estimated in a region that may not be at steady state. Therefore,

Equation 3.13 is a necessary but not sufficient determination of steady state.

In order to make the steady state convergence more robust, an additional

criterion is used. Specifically, fss should be known to within 5% certainty. The usual

t-test statistic is used to construct a confidence interval around the mean. The criterion

is

t (0.05, nbatches − 1 )
√

var (mean (B1 ∪B2))

mean (B1 ∪B2)
< 0.05. (3.14)

Here, t (0.05, nbatches − 1 ) is the t-test statistic for a 95% confidence interval with

nbatches−1 degrees of freedom. The term var (mean (B1 ∪B2)) accounts for correlations

between the batch means as detailed in Section B.1.4. Together, Equations 13 and 14

give the criteria for having achieved steady state.

3.3.2 Rescaling of rate constants

Separation of time scales challenges practical simulation, as most of the CPU

time is spent on fast, equilibrated elementary steps, which do not advance the slow

dynamics of the system. To accelerate simulation, we apply a rate constant rescaling

technique following each iteration of the algorithm (for simplicity in this section, we

drop off the index indicating an iteration). Rate constants are adjusted with error

control on the slow dynamics, as discussed by Yin and Zhang[238], so that the evolution

of the system on large time scales and its steady state properties are accurately

estimated.

Each elementary step i has a forward rate constant ki, a reverse rate constant

k−i, and an equilibrium constant Ki = ki
k−i

. At each iteration of the algorithm, the rate

constant of each fast, equilibrated elementary step is scaled down by a factor αi ≥ 1.

knew
i =

kold
i

αi
(3.15)

knew
−i =

kold
−i

αi
(3.16)
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The forward and reverse rate constants are rescaled proportionally so that the equi-

librium constants, and thus the thermodynamic properties, are preserved[138]. In

essence, this rescaling implies that transition states rather than thermodynamic states

change, and thus, the thermochemistry of the entire network is preserved. αi varies

with iteration and is determined based on the frequency of elementary step-firings, as

elaborated below.

We determine whether an elementary step is in quasi-equilibrium using the

partial equilibrium (PE) index[128, 140, 187]

PEi =
Fi,fwd

Fi,fwd + Fi,bwd

. (3.17)

Here Fi,fwd and Fi,bwd are the number of times the forward and backwards reactions

are fired, respectively, in an iteration of the algorithm. A value of PEi = 0.5 indicates

an equilibrated elementary step, whereas 0 or 1 indicates an irreversible elementary

step. If Fi,fwd = Fi,bwd = 0, i.e., the elementary step is considered irreversible. For

simulation, an elementary step is classified as partially equilibrated if |PEi − 0.5| < 0.05

and irreversible otherwise. A tolerance of 0.05 has been found to be adequate to account

for imperfect equilibration and stochastic fluctuations in prior work[187].

We define a slow scale frequency, Fslow, to be the fastest irreversible step, defined

by

Fslow = maxi=irrev. (1, Fi,fwd, Fi,bwd) . (3.18)

Then for each equilibrated elementary step, we compute the rescaling factor αi in each

iteration according to

Ni =
1
2

(Fi,fwd + Fi,bwd)

Fslow

(3.19)

Ni

Nmin

≥ αi. (3.20)

Here Ni is the average number of firings of elementary step i per slow event. Nmin places

an upper bound on how much a rate constant can be rescaled without affecting the

slow dynamics. A value Nmin = 50 was chosen to balance accuracy and computational

cost, as detailed in Section B.2.2.

41



3.3.3 Likelihood ratio sensitivity analysis (LRSA)

Sensitivity analysis is key for complex systems and is typically carried out using

finite difference. For our application, f is the rate of a catalytic reaction, as computed

from reaction frequencies and stoichiometry. Other quantities of interest may also be

estimated using the same approach. The net gas-phase reaction can be written in

stoichiometric form. For example, the water-gas shift reaction is written as

CO + H2O↔ CO2 + H2. (3.21)

To compute the rate, we pick a product species P and take its stoichiometric

coefficient νP . In the water-gas shift reaction, P is CO2 and νP = 1. The reaction rate

r (t) at any given time is the rate of change of the product species population P (t)

normalized by its stoichiometric coefficient and the number of lattice sites (nsites).

r (t) =
1

nsitesνP

dE [P (t)]

dt
(3.22)

In simulation, dE[P (t)]
dt

is equal in expectation to the sum of the propensities of all

reactions that produce P , so

r (t) =
1

nsitesνP

∑
i

νi,PE[ai(t)] (3.23)

where υi,P is the stoichiometric coefficient of P in elementary step i and ai (t) is the

propensity (reaction rate) of reaction i. The steady state value of the rate, rss, is

computed using Equation 3.4.

The degree of rate control (DRC)[32, 137, 207, 233] for each elementary reaction

is defined as

DRCi =

(
∂lnrss
∂lnki

)
Ki,kj 6=i

. (3.24)

Sensitivity analysis is performed as post-processing (see Figure 3.2). For reac-

tions that are partially equilibrated (see Equation 3.17), the overall rate is insensitive

to these rate constants and the DRC is set to zero. This simple approach employing

partial equilibrium information can save significant computational time when a finite
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difference approach is employed. For non-equilibrated reactions, LRSA is used. An

essential component to the LRSA is the trajectory derivative (W ) for each parameter.

Trajectory derivatives are computed through post-processing according to the equation

derived in Warren and Allen[230].

Wlnki (t) = Fi (t)−
∫ t

0

ai(t
′)dt′ (3.25)

Fi (t) is the number of times the elementary step i has fired up to time t. The

integral on the right hand side is the cumulative propensity, which is the expected

number of times that reaction i fires between time 0 and time t. An intuitive

interpretation of Wlnki (t) is that it quantifies the difference between the observed and

expected number of firings. Wlnki (t) has expectation zero at all times and is only

nonzero due to stochastic noise. Sensitivities are computed as the covariance between

the trajectory derivative and the rate. A positive covariance indicates that more

frequent firings of the elementary step result in a higher observed rate. Sensitivities

are estimated by either the centered likelihood ratio (CLR) or the centered ergodic

likelihood ratio (CELR) methods, shown respectively in the following two equations.

DRCCLR
i = cov

(
Wlnki (t)−Wlnki (t−∆t) ,

r (t)

rss

)
+
υi,Pai,ss
rss

(3.26)

DRCCELR
i = cov

(
Wlnki (t)−Wlnki (t−∆t) ,

[r]t−∆t,t

rss

)
+
υi,Pai,ss
rss

(3.27)

ai,ss is the steady state value of the propensity of elementary step i, as estimated

by Equation 3.4.
υi,P ai,ss
rss

is the fractional contribution of reaction i to the steady state

rate in Equation 3.23. Covariance statistics is computed by combining trajectory and

time averaging as

cov (x, y) =
〈

[xy]t1,t2

〉
−
〈

[x]t1,t2

〉〈
[y]t1,t2

〉
. (3.28)

CLR and CELR require a time window ∆t. We take advantage of the time

scale information gained from the steady state convergence and rate constant rescaling

to determine an appropriate value of ∆t, the choice of which heavily impacts the
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Figure 3.2: Flow chart of the iterative algorithm, detailed in Section 3.3.

performance of these methods. The decorrelation time is estimated as the batch

length ∆tbatch determined in the steady state convergence task. The steady state

LRSA technique[230] also requires that ∆t exceeds the decorrelation time, so we use

∆t = ∆tbatch.

The performances of the CLR and CELR methods have been compared in other

works[8, 82]. CLR results in noisy estimates (high variance) of the rate. CELR averages

the rate over the batch length, resulting in a lower variance but larger bias. A larger

minimum batch length must be used to eliminate the bias, but beyond this minimum,

the estimate is insensitive to the batch length.

3.3.4 Pseudocode

We show pseudocode for the methods outlined in Section 3.3.1 through 3.3.3.

1. Define the reactions, species, and energetics in Zacros input files. Compute rate
constants from ab initio data.

2. Choose nbpt to fit the desired sampling and ntraj depending on the number of
processors available.

3. Set the maximum number of events equal to 1000.

4. Run ntraj trajectories in parallel with different random seeds.

5. Average the event frequencies from all trajectories.
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6. Compute αi for each reaction and rescale rate constants according to Equations
3.15-3.20.

7. Record the average termination time (t1f ) for the trajectories.

8. While Equations 3.13 and 3.14 are not satisfied

a. Set tif using Equation 3.8.

b. Set up ntraj trajectories in parallel. Use the final states of previous iteration’s
trajectories 1, 2, . . . , ntraj as the initial states of the new trajectories
1, 2, . . . , ntraj respectively.

c. Run the new trajectories for a length of tif .

d. Average the event frequencies from all new trajectories.

e. Compute αi for each reaction and rescale rate constants according to Equa-
tions 3.15-3.20.

f. Increment the time indices of the new trajectories by the sum of all previous
tif . Append the time series data from the new trajectories 1, 2, . . . , ntraj onto
the time series data of the cumulative trajectories 1, 2, . . . , ntraj respectively.

9. Perform sensitivity analysis using Equations 3.26 and 3.27.

3.4 Results

The methods developed in the previous section are implemented in a Python

interface for the Zacros graph theoretical KMC software[148, 204] and are applied to

two examples. First, a prototype model is benchmarked against its analytical solution.

Second, the water-gas shift system[201], which is a much more complex system, is

simulated, and the results of the sensitivity analysis are physically interpreted.

3.4.1 A prototype A → B model

Here we use the simple model, used in previous work[82, 155], of a catalytic

reaction with two time scales. The reactant species A adsorbs onto the catalyst surface,

isomerizes to species B, and then desorbs to form B in the gas phase. The reactions and

rate constants are shown in Table 3.1. That lattice consists of nsites = 100 decoupled

sites. Adsorption of A has a significantly faster time scale than the other two reactions.

The system is sufficiently simple so that the chemical master equation (CME) can be

solved directly, as detailed Section B.2.1.
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Table 3.1: A→B model. PA = 1 atm and PB = 0 atm. K = kfwd

krev
. The surface species

are A*, B*, and empty sites (*).

Reaction Forward rate constant, kfwd Equilibrium constant K
* + A(g) ↔ A* k1 = 105 atm−1s−1 K1 = 0.67 atm−1

A* ↔ B* k2 = 2 s−1 K2 = 2
B* ↔ B(g) + * k3 = 0.4 s−1 K3 = 40 atm

For numerical simulation, Ntraj = 96 replicate trajectories are run, each on its

own processor. For each trajectory in the first iteration, an empty lattice is used

as the initial state. Nbpt = 12 batches per trajectory are used for data analysis,

so that nbatches = 1152 according to Equation 3.10, offering a satisfactory number

of statistically independent steady state observations. The convergence of the rate

estimate with increasing batch length is shown in Figure 3.3. The iteration number is

labeled for each point, demonstrating how the batch length (∆tbatch) increases between

successive iterations. As the batch length increases, the first batch includes more of the

transient period and thus removes more of this bias from the steady state rate estimate.

At early times, the lattice is bare, the overall rate is low, and the steady state rate is

underestimated. The variance in the rate is small, so the confidence interval on the

rate is small for every iteration.

The decay of the autocorrelation between adjacent batches is displayed in Figure

3.4 and compared to an exponential decay function with time scale τexp = 0.4624 s, as

computed from the chemical master equation. The autocorrelation between batches is

larger than the autocorrelation of instantaneous rates. To account for the difference

between batch averages and instantaneous values, we derive an analytical expression

for the autocorrelation between batches (see Section B.1.3) shown in the green curve.

It more closely matches the simulation data for large batch lengths near steady state.

The autocorrelation of the batches converges near zero at iteration 9, so data up to and

including iteration 9 is used for sensitivity analysis. The batch length at iteration 9 is

∆tbatch = 8.01 s, which is 17 times larger than τexp. Although this batch length greatly

exceeds the decorrelation time, which should only be a 3-5 times τexp, overestimating
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Figure 3.3: Estimates of the mean rate versus batch length in the A→B model. The
dashed line is the analytical value obtained from solving the chemical master equation
(CME). The points are labeled with the iteration number of the algorithm.

the batch length is advantageous for CELR sensitivity analysis, because a batch length

larger than the decorrelation time eliminates bias.

Rate constants are rescaled at each iteration of the algorithm, as shown in Figure

3.5. Adsorption of A is the only reaction that is fast and equilibrated, and therefore

rescaled. CELR and CLR sensitivity analyses are performed and the results are shown

in Figure 3.6. Both methods predict the sensitivities accurately. The isomerization

reaction and desorption of B are kinetically relevant, with the latter being the key

rate-determining step. The CLR estimate has high variance due to the batch length

being larger than the decorrelation time. In contrast, the CELR estimate is both

accurate and of low variance.

3.4.2 Water-gas shift (WGS) reaction

The model for the WGS reaction on Pt(111) developed by Stamatakis et al.[201]

has also been evaluated. The WGS reaction network contains 19 elementary reactions

and 8 surface species. The Pt(111) lattice consists of 200 top sites, 600 bridge sites, 200
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Figure 3.4: Computed values for the autocorrelation as a function of batch length in
the A→B model. The blue line is the exponential decay for the characteristic time
scale obtained from eigenvalue analysis of the chemical master equation. The vertical
black line indicates the exponential autocorrelation time. The green line is a decay
function that accounts for batch averaging, and is derived in Section B.1.3
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Figure 3.5: Rate-constant rescaling factors used in the A→B model. Adsorption of A
is the only fast reaction. Once adsorption of A has been rescaled enough to remove
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of the algorithm.
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Figure 3.6: Sensitivity analysis for the A→B model. The degree of rate control as a
measure of sensitivity is defined in Equation 3.24. Estimates are computed using the
centered likelihood ratio (CLR) (blue) and centered ergodic likelihood ratio (CELR)
(red) methods. Analytical values derived from the chemical master equation (CME)
(black) are used as a benchmark.
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fcc hollow sites, and 200 hcp hollow sites. Consistent with convention, we normalize

the reaction rate by the number of top sites, so that nsites = 200. We initialize the

simulation with the rate constants as evaluated in the original work, which used density

functional theory calculations. Values of Ntraj = 96 and Nbpt = 12 are used for the

steady state convergence. The convergence of the rate estimates and autocorrelation

are shown in Figure 3.7 and Figure 3.8, respectively. In contrast to the A→B model,

the variance of the rate is very large due to short-lived states with high propensities

contributing to the rate in Equation 3.23. The error bar on the rate estimate only

decays below the allowable threshold at iteration 7. The autocorrelation estimates are

at first noisy and decrease after iteration 5, but are low enough to rule out correlations

between batches. Therefore, data up to and including iteration 7 (excluding the

transient region) is used for the sensitivity analysis. In Stamatakis et al.[201], the

authors manually decreased the rate constants of CO and H2O adsorption by two orders

of magnitude. We use the nominal (unadjusted) rate constants and allow the rescaling

algorithm to adjust the rate constants in an unsupervised manner. The results of this

process are shown in Figure 3.9. The rate constant for H2O adsorption is decreased

by over three orders of magnitude without affecting the slow dynamics. Section B.3

shows how elementary step frequencies are affected by the rescaling.

The sensitivities of the rate to each of the rate constants, as estimated by the

finite difference and CELR methods, are shown in Figure 3.10. Only H2O* dissociation

and CO*+OH* disproportionation have significant sensitivities, with H2O* dissociation

being the primary RDS. The variance of the CLR estimates is so large that it yields

unphysical values of the DRC and is not shown. Finite difference sensitivity analysis

uses a 5% perturbation size and no coupling. The finite difference and CELR methods

agree within statistical error, thus validating performance of the CELR. The variance

of the CELR estimates, as estimated with statistical bootstrapping, is relatively small

for the rate determining steps. The rate determining steps occur infrequently during

simulation, thus avoiding high variance. The variance of the finite difference method

would be expected to be much lower if coupling were used, but is small enough to show
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Figure 3.7: Estimates of the mean rate versus batch length in the WGS model. The
dashed, horizontal line indicates the final, most accurate estimate. The points are
labeled with the iteration number.

10-7 10-6 10-5 10-4 10-3 10-2 10-1

Batch length (s)

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

A
u
to
co

rr
e
la
ti
o
n

3 4

5

6
7

8

9 10

Figure 3.8: Computed values for the autocorrelation as a function of batch length in
the WGS model.
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Figure 3.9: Rate constant rescaling factors used in the WGS model.

that the rate determining steps are correctly identified.

For the purposes of uncertainty quantification, the RDS should be investigated

in more detail. Specifically, experimental evidence in the literature suggests that H2O*

dissociation may occur on the support material rather than the metal[38, 99, 191].

Refinement of the model hierarchically[183] could revise the entire water-gas shift

mechanism to include the support and possibly the metal/support interface. To this

end, progress in modeling the metal support interface could be leveraged[10, 26, 135].

These topics are outside the scope of this computationally-focused paper.

3.4.3 Quantification of acceleration

To quantify the acceleration of the three strategies, we define speedup factors

for parallel processing (Spp), rate constant rescaling (Srcr), and LRSA (SLRSA). To

decouple the effects of each strategy, we define each speedup factor as the ratio of the

CPU time required for the nominal simulation method and the CPU time required if

only that one strategy were used. The nominal simulation method, in which all three

strategies are absent, would be running one trajectory on a single processor with no
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Figure 3.10: Sensitivity analysis data for the WGS model. Only the slow reactions
with non-negligible sensitivities are shown. Likelihood ratio estimates are benchmarked
against the finite difference (FD) estimates.

rate constant rescaling using finite difference sensitivity analysis. In practice, synergies

between the strategies would occur.

For parallel processing, the length of the cumulative trajectory (tf) is compared

to the length of a single trajectory that would be required to achieve the same level

of sampling, i.e., the sum of the lengths of all steady state batches. Equation 3.10

relates the length of trajectories to the level of sampling (Nbatches) and the number of

trajectories (ntraj). Spp is always less than ntraj because for each trajectory, the first

batch of every trajectory is discarded from the data. In the extreme limit of a large

number of processors, the speedup is limited by the requirement that Nbpt ≥ 3. Given

our definitions, Equation 3.10 is reformulated as

Spp =
Nbatches + 1

Nbpt

≤ ntraj. (3.29)

For rate constant rescaling, the CPU requirements of simulating the trajectories

are compared to what they would be if the trajectories were simulated without rescal-

ing. Reaction rate rescaling has little effect on the CPU time per KMC event, but it
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significantly reduces the number of events needed to advance a given time interval. We

compute the speedup factor from simulation data as

Srcr =

∑niters

i=1 tif

(
CPU1

t1f

)
∑niters

i=1 CPUi ≤ max
i
αi . (3.30)

CPUi is the CPU time required for iteration i. The numerator extrapolates

the CPU requirements of the first iteration, where no rate constant rescaling has

been implemented, to the other iterations. The denominator quantifies the CPU

requirements of the simulation with rescaling. We also note in Equation 3.30 that Srcr

is limited to the degree by which rescaling of the rate constants occurs, and therefore,

it heavily depends on the level of stiffness in the original system.

We define the speedup factor for LRSA to be the ratio of the total simulation

times required for a hypothetical finite difference scheme and the likelihood ratio

method. Central finite difference sensitivity analysis requires the nominal run as well

as two additional runs for each of nslow slow reactions. We do not perform finite

difference on fast, equilibrated reactions because they are known to be insensitive. The

simulation length required to achieve a desired level of confidence in the sensitivity

estimates depends on the variance of the sensitivity method. For a fixed number of

trajectories and batch length, the variance the finite difference and LRSA methods

scale inversely with simulation time. Whereas previous formulations of LRSA using

ergodic averaging showed variance that remained constant with simulation time[8, 82],

our use of batches and steady state averaging[230] in Equation 3.27 achieves an inverse

relation. We define VR as the ratio of the variance of LRSA to that of finite difference.

We expect LRSA to have low variance for the slow reactions, as observed for our

water-gas shift network. Arampatzis et al.[8] conducted extensive benchmarking of the

variances of different sensitivity analysis methods. Based on their findings at short

simulation times, we choose VR = 10 to be an appropriate value.

The speedup factor (SLRSA) is then

SLRSA =
(1 + 2nslow)

VR
. (3.31)
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Figure 3.11: CPU speedup factors for the A→B, A→B (#), and WGS models, as
defined in Section 3.4.3.

The functional form of Equation 3.31 suggests that if VR > 3, then SLRSA < 1 when

nslow is small and SLRSA > 1 when nslow is large. Therefore, the sensitivity analysis

method should be chosen depending on the size of the reaction network. For the A→B

and WGS models, the speedup factors are shown in Figure 3.11. To emphasize that the

speedup factors depend on the number of trajectories used as well as the initial level of

stiffness, the A→B model is run with different parameters than before ( ntraj = 192 and

k1 = 103 atm−1s−1; model denoted as (#)). For both the A→B and WGS models,

rate constant rescaling has the largest speedup due to the severe stiffness of the original

system. For the A→B (#) model, the increase in the number of trajectories combined

with the reduced stiffness in the initial system causes the speedup factor for parallel

processing to become the largest. The speedup factor LRSA is the smallest for all

three models. Given our assumptions, LRSA is worthwhile for the WGS system, but

not for the A→B model, as the water-gas shift reaction contains a greater number of

slow reactions.
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3.5 Conclusions

A three-pronged strategy for accelerating KMC simulation, while obtaining re-

liable statistics, was developed and implemented in a Python interface for Zacros,

the commercial KMC software package. Steady state is achieved through an iterative

process, in which the trajectory length is increased in successive iterations and con-

vergence criteria are checked after each iteration. A batch means strategy is used to

ensure that the variance of the estimate of the rate is sufficiently low and that adjacent

batches are uncorrelated. Our specific strategy allows for multiple trajectories to be

simulated in parallel, thus decreasing the sampling needed from a single trajectory

and reducing real clock computational time. Rate constants are rescaled in successive

iterations with error control to drastically accelerate simulation. After convergence

is achieved, the batch length is identified as the decorrelation time, a key numerical

parameter that informs the likelihood ratio sensitivity analysis method for identifying

the rate-determining step. Additionally, the reaction rate rescaling procedure identifies

partially equilibrated reactions for which the sensitivities are set to zero.

We tested our approach on a model system and a water-gas shift model on

Pt(111), for which the reaction rates exhibit small and large variances, respectively. We

find that simultaneously requiring a small confidence interval on the rate and negligible

autocorrelation between batches are necessary to reliably guarantee convergence. Due

to high variance in real chemistries, such as the water-gas shift reaction, large batch

lengths are needed to manage the variance in the estimate of the mean of the rate. The

CELR sensitivity analysis is also needed for practical application of the WGS model

due to high variance in the rate.

All three acceleration strategies provide significant speedup, although the degree

and relative importance depends on the number of trajectories (and thus processors)

used as well as the parameters in the model. Savings of several orders of magnitude are

typical for rate constant rescaling and parallel processing. Likelihood ratio sensitivity

analysis achieves modest speedup relative to what would have been required with

finite difference for the water-gas shift system, but not for the much smaller A → B
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model, as this speedup scales linearly with the reaction network size. Given the high

computational cost of KMC simulation, these strategies are essential for conducting

real chemistry studies.
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Chapter 4

OPTIMIZATION OF TRANSITION METAL CATALYST FACET
STRUCTURE: APPLICATION TO THE OXYGEN REDUCTION

REACTION

4.1 Abstract

Predicting the optimal catalyst structure has been a long-standing goal but

typically, an active site on a uniform surface is a priori assumed. This assumption fails

for structure sensitive chemistries, such as the oxygen reduction reaction (ORR). Here

we develop an approach to predict the optimal catalyst structure by identifying the

active site and the density and spatial arrangement of such sites while minimizing the

surface energy. Peak performance is unattainable due to lack of suitable active sites

on low index planes, as well as geometric and stability constraints. A random array

of vacancies results in modest performance enhancement compared to ideal facets; in

contrast, engineering defect sites of suitable geometric motif with maximum density

in disordered structures significantly increases catalyst performance. We apply this

methodology to the ORR on defected Pt(111), Pt(100), Au(111), and Au(100) surfaces

and provide insights into structure optimization.

4.2 Introduction

Highly dispersed metal nanoparticles are used ubiquitously as catalysts.

Substantial effort has been devoted over the past two decades to determine how

reactions are affected by the size and shape of nanoparticles and how best to maximize

catalyst activity[37, 111, 223]. Techniques for synthesis of shape selecting nanopar-

ticles have been developed[178, 196] and applied to various chemistries including

formic acid oxidation[235], acetylene hydrogenation[106], NO reduction[173], benzene

58



hydrogenation[22], trans-to-cis isomerization[117], and 2-propenol oxidation[144] to

mention a few. Despite these advances, engineering the nanoparticle size and shape

from first principles has remained elusive. In recent, exciting studies on ORR on

Pt(111)[28] and PtNi/C nanoparticles[50], it was shown that surface defects can

enhance activity. Similarly, a multiscale computational study demonstrated that

patched bimetallic surfaces with vacancies on the top layer can deliver unprecedented

boost in activity for the ammonia decomposition reaction[75]; size and shape of defects

were obviously important but how to predict optimal structures remains elusive. These

early studies underscore a rather novel and unexplored means of enhancing catalyst

activity whereby one purposely engineers defects on catalyst surfaces. Arbitrary

defects, by contrast, may lead to a decrease in activity[30].

The vast structure-activity design space, where surfaces are purposely engi-

neered with atomistic detail and their catalytic properties are computed on the fly,

imposes a major computational challenge but promises to unlock unexplored struc-

tures with improved performance. Due to the computational cost of first-principles

methods, such as density functional theory (DFT), direct evaluation of the activity

of numerous structures is beyond current supercomputer power. Instead, a surrogate

microstructure-energy model is necessary. A recent breakthrough in correlating the

binding energy with microstructure entails the work of Sautet and co-workers who re-

lated the binding energies of ORR intermediates to the generalized coordination num-

ber (GCN) of a binding site[29, 28, 31]. An earlier study describing adsorption of CO

on Au clusters with the coordination number of the binding site (a geometric descrip-

tor) provides further evidence that activity and microgeometry can be correlated[145].

These structure-scaling relations enable high throughput screening of microstructures

by computing GCNs simply through counting of first and second nearest neighbors. By

constructing volcano curves vs. the GCN, Sautet and co-workers showed that an opti-

mal site on Pt(111) crystal exists and demonstrated experimentally that defects indeed

increase the catalyst activity, compared to the ideal surface. However, the experimental
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activity enhancement was modest compared to a structural model consisting of iden-

tical, single active sites corresponding to the volcano peak. This raises fundamental

questions of the predictive ability of models and whether microstructures consisting of

closely packed optimal active sites were experimentally made and stable, given that

highly defected structures should possess higher surface free energies than ideal low

Miller index planes. Despite these exciting developments, the maximum density of de-

fects one can geometrically arrange in a structure, the effect of spatial organization of

defects, and the maximum activity achieved in an experiment remain unclear. Address-

ing these questions requires further conceptual advances beyond the structure-based

volcano curve. Hanselman et al.[78] proposed active sites given a descriptor but did

not consider stability requirements, which are critical, given that previous studies have

related active site stability to activity, and in some cases, found a tradeoff[179, 240].

Here, we introduce a framework that can predict the microstructure resulting

in maximum activity of a catalyst surface along with its stability using a multi-

objective optimization approach. To the best of our knowledge, this is the first study

to design atomistic structure dynamically in terms of both optimal site-activity and

surface stability and address fundamental questions that may close the gap of models

and experiments. We demonstrate the approach on Pt(111), Pt(100), Au(111), and

Au(100) facets for the ORR. ORR at the cathode of proton-exchange membrane (PEM)

fuel cells is an important structure sensitive chemistry[70, 118, 131, 162]. Currently,

widespread commercialization using Pt/C catalysts is hindered because of slow kinetics

(a high overpotential), the high cost of Pt, and catalyst degradation under harsh acidic

conditions[58, 98, 226]. Consequently, there remains ample room for catalyst design

to advance the PEM fuel cell technology[208, 236]. We report a rather unexpected

result: the optimal active site changes among metals and facets of a single metal and

with the density of active sites but only a small number of geometrically distinct sites

contributes to activity. Disordered structures of such (highly packed) active sites deliver

best performance. Expectedly, creation of defects increases the surface free energy.

However, numerous metastable structures, which possess lower activity than that of
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the peak of the volcano curve, exist. Combined, the lack of sites on low index planes

that match the peak of the volcano curve, packing constraints, and surface stability

rationalize that (geometric, volcano-based) peak activity is unattainable. Importantly,

metastable structures are still an order of magnitude (or more) superior to ideal facets.

In contrast, vacancies in the top layer at the same density as those of our optimal

structures provide only modest performance enhancement. Making the right geometric

motif of defects and close packing such defects are essential and key to materializing the

benefits of defect engineering of crystal surfaces and provide a potential explanation of

the modest activity seen experimentally.

4.3 Methods

The ORR mechanism is modeled as a series of four sequential elementary steps,

each of which reduces an oxygen species, such as *OH and *OOH, with the addition of

an electron and hydrogen ion. It is well known that the binding energies of the *OH and

*OOH intermediates vary among facets[122, 215, 216]. Based on the structure-scaling

relations, the activity of a site depends on its coordination environment. Section C.1

describes how a site’s activity is computed based on structure-scaling relations using

the GCN and experimental data. Structure dependent volcano plots for Pt and Au vs.

the GCN are shown in Figure 4.1. *OH removal is rate determining on the left leg of

the volcano while *OOH formation is rate determining on the right leg. Au is a weak

binding metal and has an optimal GCN of 5.75, which is smaller compared to the GCN

of the (100) and (111) planes. In contrast, Pt binds oxygen species strongly and its

activity peaks at a GCN of 8.29, which is higher than the value on either perfect facet.

Clearly, ideal facets are suboptimal and creating defects can be beneficial. Figure 4.1

indicates that potentially different strategies of crystal imperfection may be necessary

for maximizing activity of weak and strongly binding metals that lie on either side of

the volcano curve. We elaborate on this point below.

The structure of defected Pt(111), Pt(100), Au(111), and Au(100) facets, which

maximizes current density while minimizing surface energy, is predicted using a two
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Figure 4.1: Volcano map for ORR activities on Pt and Au. Current i is as defined in
Equation 4.1. The GCN of the optimal site is 5.75 and 8.29 for Au and Pt, respectively.
The vertical dashed lines at GCN = 6.67 and GCN = 7.5 show the GCNs of the (111)
and (100) planes for reference. Clearly, ideal facets are suboptimal; for Au and Pt one
needs under and over coordinated sites to enhance activity.
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level optimization procedure. First, simultaneous optimization of activity and stability

is carried out (by weighing activity vs. stability through a weight, ω), as detailed in

the Methods section. Following this optimization, the surface is quenched to a local

energy minimum on the coarse-grained potential energy surface.

4.3.1 Coordination numbers as a descriptor of activity and stability

We compute the current i of a site as

i = ic ∗ exp

(
−∆GORR

kBT

)
(4.1)

The constant ic = 3.68 ∗ 1011 kA/mol is used to match the experimental value of the

Pt(111) current density at a cell potential of U = 0.9 V and temperature T = 298 K

reported by Calle-Vallejo et al[28]. The current density j of a microstructure is then

computed from the activities of all surface sites normalized by the exposed surface area

Asurf .

j =
1

Asurf

∑
k

ik (4.2)

Equations C.5 and C.6 in conjunction with Equation 4.1 describe the structure sensi-

tivity of current density.

The stability of an extended surface is approximated by its surface energy (γ),

which is computed by dividing the formation energy (Eform) of a slab by the exposed

surface area.

γ =
Eform

Asurf

(4.3)

Formation energy is rapidly calculated using a surrogate model derived from tight-

binding theory (TBT)[53, 214].

Eform = Ecoh

∑
k

(
1−

√
CNk

CNmax

)
(4.4)

The summation is taken over all atoms k, each with coordination number CNi.

CNmax = 12 is the maximum coordination number in an fcc lattice. Ecoh is the cohesive

energy of the metal. In order to validate Equation 4.4, DFT calculations are performed

as detailed in C.2.

63



Figure 4.2: Strcutures of defected crystals. p(30×30) structure of Pt(111) (top
left), Pt(100) (top right), Au(111) (bottom left) and Au(100) (right) slabs with defects
in the top layer 1 (light colored atoms). Atoms in layer 1 are added and removed
during optimization. Atoms in layers 2, 3, and 4 are held fixed. The structures shown
were the highest activity structures for each surface achieved after the quenching step.

4.3.2 Catalyst structure and optimization

The catalyst surface is modeled as a four-layer (111) or (100) slab, shown in

Figure 4.2, of a p(30×30) unit cell size and with periodicity in the x-y directions. The

layers in the slab are indexed from top to bottom. The top layer 1 may include atoms or

vacancies, i.e., it is a defected layer, whereas deeper layers contain no defects (vacancies

in deeper layers can easily be considered in our model but their geometric accessibility

should also be taken into account). Each microstructure is uniquely described by a

column vector
⇀
c which lists the occupancies (0 if metal atom is absent or 1 if present)

of the metal atoms at each lattice position. Each exposed binding site contributes to

the overall activity dependent on the atom’s GCN.

For each microstructure, the GCNs for all atoms in the slab are computed rapidly

using graph theory. Furthermore, we exploit the sparsity of the adjacency matrix

describing the nearest neighbors to significantly accelerate computations. Details are
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described in C.3. Given the GCN of a site, the binding energies of OH* and OOH* are

computed according to Equations C.5 and C.6, respectively, and are used to estimate

the site specific activity (Equation 4.1). The activity of the structure is computed by

summing over each active site (Equation 4.2). The structure’s surface energy and total

activity are non-dimensionalized to E and I, respectively for numerical convenience,

as detailed in C.3.

We perform a two level optimization. First, we simultaneously minimize the

surface energy and maximize activity using a weighted sum for the objective function,

as is standard in multiobjective optimization[46, 132].

F = ω ∗ I + (1− ω) ∗ E (4.5)

0 ≤ ω ≤ 1 is a ”weighting” factor that emphasizes surface energy minimization (ω = 0)

or activity maximization (ω = 1). A simulated annealing Metropolis Monte Carlo

algorithm is applied and at each event, a position in the top layer of the slab is chosen,

and a move, which changes the occupancy, is attempted (an occupied site becomes

empty and vice versa) according to the Metropolis algorithm using the change in

the objective function ∆F (see details in C.4). Inverting the sign for activity in

the objective function causes our algorithm to create structures with activity lower

than that of an ideal surface, demonstrating how specific types of defects, rather than

arbitrary ones, are needed to achieve higher activity. An example is shown in Section

C.7.

Given that the multi-objective optimization strikes a balance between competing

factors, the resulting structures can be unstable to small perturbations, especially when

a large weight on activity is placed. For this reason, following the multi-objective

optimization, relaxation is performed to locally minimize the surface energy whereby

atoms in the top layer are allowed to diffuse using a downhill energy minimization

approach. The structure converges to the nearest local minimum on the coarse-grained

potential energy surface, typically, at the expense of some loss in activity. Similar to

the multi-objective optimization, we take advantage of the sparsity of the adjacency
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Figure 4.3: Current density and surface energy of numerous defected Pt(111)-based
crystals containing different active sites and/or density of active sites. Current densities
(Equation 4.2) and surface energies (Equation 4.3) from optimization are plotted
against the activity-weight ω. Red points show values following the multi-objective
optimization. Blue points show data after the energy-only minimization is also applied.

matrix to speed up the algorithm (see C.3). The entire algorithm is summarized in a

pseudocode in C.4.

For a given metal-facet, simulations are run for ω values using a random initial

structure and random seed for each one. The inherent randomness of the optimization

results in some structures having superior properties to others (see fluctuations in blue

points in Figure 4.3). Structures of high current density and low surface energy are

most interesting. C.5 describes how a Pareto optimality criterion is used to select these

structures.

4.4 Results

4.4.1 Active Site and Optimal Structures

Surface energies and current densities for Pt(111)-based metastable structures

resulting from the first optimization are shown in Figure 4.3 (red points). The other

surfaces follow similar trends and are included in the supplemental information (Figure
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C.7). A nearly continuous set of solutions between the ideal facet (ω = 0) and the most

active (but not necessarily stable; ω = 1) structures is obtained. For ω (>∼ 0.4), the

activity and surface energy vary only slightly with ω; primarily activity is optimized.

In contrast, for low values of ω (<∼ 0.2), the stability of the structure dominates

optimization. The transition between the two regimes is fairly abrupt. Subsequent

quenching to a local minimum energy lowers the surface energy at the expense of

activity, typically by a factor of 50-75% (Figure 4.3; blue points). Diffusion of surface

atoms eliminates some active sites created during the multiobjective optimization.

Error bars on the activities in Figure 4.6 quantify the variability in how much activity

is lost by destroying active sites.

The results indicate a profound effect of introducing defects to a structure

whereby the catalyst activity can increase by nearly two orders of magnitude compared

to the stable, low index plane. At the same time, they indicate that stability and details

of the microstructure matter. We elaborate on these topics below.

The highest activity structures following the quenching step are shown in Figure

4.2. Analysis of the structures identifies the active sites, shown in Figure 4.4. For

Pt(111), several types of cavities are active. Figure 4.4a shows a 5-atom vacancy which

exposes two adjacent active sites with GCN of 8.25, which is near the Pt peak of 8.29.

Structures at intermediate values of ω have this cavity as the predominant active site.

A 4-atom vacancy, shown in Figure 4.4b, has a slightly higher GCN of 8.33 and is more

active, but contributes less to overall activity because there is only one active site in

the cavity, i.e., due to a lower density of such defects. Structures at low ω consist of

disjoint cavities (Figures Figure 4.4a and Figure 4.4b). At higher activities, denser

packing of active sites is required, resulting in a predominant cavity shown in Figure

4.4c. It includes vacancies, which branch out into other cavities, allowing for a dense

network of active sites. The most active structures consist of a disordered ensemble of

these active sites, as can be seen in Figure 4.2.

Calle-Vallejo et al. proposed that the active site on defected Pt(111) was either

a six-atom or five-atom vacancy exposing a second-layer atom with a GCN of 8.00 or
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Figure 4.4: Top-down views of the active sites for each surface. Only the top
and next layers, when its site is exposed, are shown. (a)-(c) are Pt(111) sites. (d) is a
Pt(100) site. (e) and (f) are Au(111) sites. (g) shows Au(100) sites. Red atoms indicate
the most active sites, which occur in the second layer for Pt and the top layer for Au.
Blue atoms are Pt and gold atoms are Au. Darker colored atoms indicate atoms in
the bottom layers. Numbers in the bottom left of each panel indicate the generalized
coordination number (GCN) of the active site. Each surface has an optimal GCN that
differs from the ideal one (peak of volcano) and is determined from symmetry and
the metal itself. Maximum activity requires random packing of sites to maximize the
number of sites per unit area and the optimal active site may change with increasing
packing of sites and thus with catalyst activity.
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8.17, respectively. The 5-atom vacancy is similar to the structure in Figure 4.4a and

can be packed similarly on the surface. A maximal ordered packing of this site would

result in activity 14 times higher than Pt(111). By comparison, our best structure is

46 times more active than Pt(111) (see below). We attribute the better performance

of our best structure to the slightly higher (about a factor of 2) activity of our optimal

active sites and the disordered packing of various types of active sites. Our exhaustive

and systematic approach predicts more active sites than intuitive choices (i.e., closer

to the volcano peak) that can be packed densely on the surface. Additionally, our

approach is general to other metals and structures.

The Pt(100)-based surfaces show more order. A four-atom vacancy exposing a

single active site in the second layer is the only active site found (Figure 4.4d). The

differing activities of Pt(100) surfaces are attributed only to the differing densities of

this active site. The GCN of the active site is only 7.33, which falls short of the Pt

peak. The (100) geometry is unable to possess a site with a higher GCN by introducing

vacancies in the top layer.

Similar to Pt(111), Au(111) has multiple types of active sites. For the less active

structures, large cavities shown in Figure 4.4e are present. The active sites reside

on the top layer edge sites along the cavity. All atoms have coordination numbers

of 7 or higher and therefore, surface stability is relatively maintained. The most

active structures contain a more active but less stable configuration of sites, shown

in Figure 4.4f. Channels of vacancies expose edge sites on the top layer in high density.

Defected Au(100) has a periodic pattern of vacancies shown in Figure 4.4g. Because

the optimal GCN is not very different from the ideal (100) surface, only a few vacancies

are needed. For each of the active sites shown in Figure 4.4, the predictive accuracy

of our model is assessed with DFT, as detailed in C.2 of the supplement. Validation

of the active sites allows for model refinement in an efficient hierarchical refinement

approach[184, 210, 220].

Current density and surface energy are plotted against each other for the Pareto

optimal points in Figure 4.5. These structures span from low activity/low-energy
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structures to highly active/high energy structures. All Pareto fronts have linear

portions, which are indicative of a single type of active site being added in higher

density as activity increases. The constant slope indicates proportional increases in

surface energy and activity. The Pt(100) and Au(100) curves are entirely linear,

indicating that only one type of active site is present, consistent with structural analysis

presented above (Figure 4.4). In contrast, the Pt(111) and Au(111) Pareto fronts

have kinks where the active site being added to the surface changes with increasing

activity, consistent with the structural analysis above. The Pareto front for Au(100)

has a large gap. Only two structures are relevant: the ideal facet as well as the

periodic structure shown in Figure 4.4g. Periodicity does not allow intermediate

structures with lower density of active sites. Overall, only a relatively small number of

distinct geometric motifs exists on each metal facet. Clearly, creation of defects giving

very active structures drives up significantly the surface energy (Figure 4.5). Yet,

Figure 4.3 indicates that even though the optimal structures possess higher surface

energy, numerous metastable structures of lower surface energy exhibit a nearly order

of magnitude increase in activity (blue points at large ω). This offers promise that

profound performance improvement is feasible via defect-engineering of experimental

structures.

4.4.2 Catalyst Activity and Stability

The increase in current density due to defects is summarized in Figure 4.6. For

Pt(111), our most active structure consists of 49% vacancies on the top layer and

is 46 times more active than an ideal Pt(111) surface. This is about an order of

magnitude less active compared to the peak of the volcano curve due to the inability

to create such an active site on Pt(111) and geometric constraints, i.e., inability of

having each site being the most active. By comparison, Calle-Vallejo et al. observed

experimentally a 3.5-fold increase in activity due to defects[31]. Our best structure

is about an order of magnitude more active than the experimentally measured one.

We attribute this difference either to an experimentally lower density of defects or
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Figure 4.5: Current density j (Equation 4.2) vs. surface energy γ (Equation 4.3) of
defected surfaces. The black lines trace the data of the optimal structures indicating
the Pareto tradeoff between stability and activity. Straight lines indicate that activity
increases due to an increase in the density of the same active site; kinks in linearity
are indicative of creation of more than one active site. The most active structures have
the highest surface free energy and are thus less stable.
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defects of lower activity; we cannot infer the precise reason without detailed microscopic

characterization of the experimental structures. However, we provide further insights

by creating a random structure of defected Pt(111) with the same number of (49%)

vacancies in the top layer as in our optimal structure. Then we subject the structure

to annealing (by gradually decreasing the temperature in a Monte Carlo simulation)

with constant Pt loading of adatoms (Figure C.5). This situation could relatively

easily be realized in a real experiment, where a certain number of adatoms is added

on Pt(111), for example via atomic layer deposition (ALD), and the structure is

then slightly annealed. The resulting average activity of the annealed structure is

surprisingly comparable (slightly lower than) to the experimental value and double

of that of the perfect Pt(111) (Figure C.5). Our results underscore that the total

density of vacancies or adatoms on the top layer is an important but not sufficient

factor for improving activity. Furthermore, we hypothesize that the experiments had

probably a suboptimal distribution of defects. Microscopic engineering of the right

microgeometry of active sites and maximizing the density of such defects are crucial

to materialize fully the benefit of crystal imperfection. Randomly created structures

with the correct density of vacancies or adatoms give only a modest boost in activity.

The other surfaces experience differing degrees of improvements when defects

are introduced. Defects in Pt(100) increase the activity by up to a factor of 15, which

is threefold less than the enhancement on Pt(111) because the active site does not

reach the volcano peak and therefore gains in current density are modest. Au(111)’s

activity can be enhanced by almost 3 orders of magnitude due to how densely the

active sites are packed along edges in the optimal structure. Au(100)’s activity, by

contrast, benefits less from defects because it is already reasonably active relative to

the volcano peak. It is clear that the higher symmetry of the 111 plane enables a higher

degree of engineering, by introducing defects, and activity-improvement, compared to

the 100 facet. For Pt, even the best structures fall short (by an order of magnitude)

of reaching the peak activity of this catalyst. Pt cuboctahedral particles with surface

defects are highly desirable. In contrast, defected cubic particles of Au approach closely
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Figure 4.6: Activity of defected, metastable structures compared to ideal
crystals. Numbers above the bars indicate the ratio of activities between the perfect,
non-defected (blue bars) and most active, defected metastable surfaces (red bars).
Circles and error bars are 90% confidence intervals around the median of activities of
annealed structures (average of blue points in the high activity regime of 4.3 and Figure
C.4), which are more realistic than the top activity of the bars. As a reference, Pt and
Au peaks correspond to the optimal site of the volcano curve assuming a density of
such sites to be that of the (111) facet; such densities are not geometrically possible.
Defect engineering can profoundly increase activity over ideal crystal facets but site
geometry, density, stability should carefully be considered.
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the optimal performance of this metal. Yet, Au is significantly less active than Pt even

with introduction of defects.

The proposed approach can be combined with “activity maps”[79, 150, 183] to

predict the structure of bimetallic catalysts, and can easily be extended to multiple low

Miller index planes of nanoparticles[55, 56, 85, 96] or entire nanoparticles via the Wulff

construction[15, 215, 216] and eventually discrete descriptions of the surface modeled

with kinetic Monte Carlo simulations[75, 123, 204, 237] and selectivity problems[45].

4.5 Conclusions

We have introduced a framework to enable atomistic level materials engineer-

ing. The framework predicts optimal catalyst performance by simultaneously identi-

fying both the optimal active site of a surface facet of a catalyst and the geometric

arrangement of such sites that maximizes their density, while accounting for catalyst

stability. Our approach offers insights unobtainable by intuition alone. We have ap-

plied this framework to predict optimal defects on Pt(111), Pt(100), Au(111), and

Au(100) surfaces in catalyzing the ORR chemistry of significance to fuel cells.

The results are rather revealing. Each material and facet has a different optimal

active site whose geometric structure is not intuitive. This is unlike volcano curves

constructed in the past assuming the same active site for all materials. For materials

on the left of the structure-based volcano curve (activity vs. generalized coordination

number), over coordinated sites (vacancies) are needed, whereas on the right of the

volcano curve, under coordinated sites along edges are needed. The active site on

Pt(111) and Au(111) changes with increasing defect density due to packing constraints.

Interestingly, optimal facet structures contain a disordered ensemble of a small number

of distinct sites. Our results indicate that optimal structures are significantly inferior

to the peak of the volcano due to lack of ideal active sites, packing constraints on low

index planes and higher surface energy compared to the ideal facets. Yet, metastable,

defected structures can still be significantly better than perfect crystals. In contrast,

randomly put structures give marginal activity improvements. Defect engineering,
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whereby active sites of the right geometric motif are created and stabilized, is thus

imperative to materialize significant performance enhancements.

For the studied ORR catalysts, the activity is ranked Pt(100) < Au(100) <

Pt(111) < Au(111). Geometrically, all surfaces other than Pt(100) are able to produce

nearly optimal sites but the density of these sites limits activity. The activity of Au

improves much more than Pt because the low-coordinated active sites on Au are easier

to produce in abundance than the high-coordinated active sites on Pt. Similarly, the

(111) facets exhibit higher degree of engineering than the (100) facets because the

hexagonal symmetry offers greater flexibility compared to the square symmetry.

The proposed structure optimization allows for the first time identification of

the active site and of optimal arrangement of such sites and comparison of different

materials and facets. This capability can be extended to any chemistry to enable

significant improvements of catalysts.
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Chapter 5

AN ONLINE MACHINE LEARNING APPROACH TO OPTIMIZING
ACTIVE SITE COUPLING

5.1 Abstract

Computational prediction of optimal catalyst structure is an important goal

in catalyst design. A major challenge is that active sites on the catalyst surface are

coupled due to complex phenomena such as bifunctionality, adsorbate interactions, and

diffusion. Modeling these effects requires computationally demanding kinetic Monte

Carlo (KMC) simulation, making it infeasible to carry out optimization. To overcome

this challenge, we develop a surrogate model using machine learning tools regressed

to KMC data. The surrogate model captures the complex structural dependencies

among sites typically modeled via KMC at comparably negligible computational cost.

However, inadequacy in the training data used to regress the surrogate model may

lead the optimization to predict false optima. Utilizing an online machine learning

approach, we refine the surrogate model with additional data obtained by evaluating

the predicted optima with KMC. The optimization is repeated and the surrogate model

is refined iteratively. In doing so, the true global optimum is eventually identified and

predicted accurately by the surrogate model. We apply our method to a prototype

chemistry exhibiting bifunctionality similar to that of the ammonia decomposition

reaction on defected NiPt. Catalyst activity is improved by a factor of 5 relative to a

set of randomly generated structures, while the computational cost of optimization is

reduced by 3 orders of magnitude relative to a brute force approach.

76



5.2 Introduction

Highly dispersed metal nanoparticle catalysts are inherently heterogeneous, con-

sisting of different sites where adsorbates can bind and react. The various sites often

exhibit dramatically different activities and their relative abundance changes with cat-

alyst size and shape, resulting in structure sensitivity. This principle has been exploited

to engineer catalyst activity and selectivity. Techniques for synthesis of shape selected

nanoparticles have been developed[196, 178] and applied to various chemistries includ-

ing formic acid oxidation[235], acetylene hydrogenation[106], NO reduction[173], ben-

zene hydrogenation[22], trans-to-cis isomerization[117], and 2-propenol oxidation[144]

to mention a few. Defects have been purposefully engineered for the oxygen reduc-

tion reaction [31]. Extensive work has been done to understand structure sensitivity

computationally[223, 111, 37] with the eventual goals of optimizing catalyst structure

and providing synthesis targets for experimental studies. This approach requires con-

sideration of the identities of the active sites as well as their spatial arrangement.

The activity of a surface site is predicted by computing properties (e.g., binding

energies) that affect reactivity. Density functional theory (DFT) is currently the best

tool for this task, but its computational expense makes it a poor choice for exhaus-

tive screening to identify the most promising active site geometries. Instead, DFT

data can be used to build geometry-property relationships based on a site’s coordi-

nation number[145, 156, 29, 28, 31, 126], Hamiltonians[74], or machine learning[221].

Brønsted-Evans-Polanyi (BEP) relationships[89, 151] extend binding energies predicted

by screening methods to kinetic parameters for a reaction network of interest.

Current methods for screening active sites are limited to evaluating them one

at a time, i.e., in isolation. In real systems, active sites are coupled through several

phenomena, to which we collectively refer as active-site coupling. As shown in Chapter

4 and Hanselman et al.[78], the stability and geometric requirements of an active site

affect the properties of nearby sites, excluding the possibility of every site having

optimal properties. Bifunctional catalysts, in which different parts of a reaction

mechanism occur on different sites[60, 157, 228, 136, 143], also challenge the existing
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paradigm of evaluating active sites one at a time. Furthermore, diffusion[5] and

adsorbate-adsorbate interactions couple the coverages and activities of nearby sites.

Combined, these effects cause not only the density but also the spatial arrangement[49]

of active sites to matter.

The effect of active-site coupling on catalyst activity can only be accurately

evaluated using KMC simulation, whose application to structure sensitive chemistries

is detailed in several review papers[183, 206, 200]. The NH3 decomposition reaction is a

quintessential example[101]. Although Ni and Pt are inactive for NH3 decomposition,

NiPt is the most active known single crystal. Previously, the high activity of NiPt

was rationalized by well-established volcano plots[225] and the N binding energy on

an ideal NiPt monolayer[79]. However, molecular dynamics[227], EXAFS[217], and

other experimental methods[108] have shown that substantial defects are present in

the NiPt structure. KMC simulations rationalized the high activity of NiPt based on

an interplay between terrace and step sites[73, 75]. NH3* dissociation on terrace sites

and N* association on step sites are competing rate determining steps whose relative

importance depends on reaction conditions. Lateral interactions were also shown to

play a role[139, 219, 72].

Although the KMC studies mentioned above map catalyst structure to activity,

there is currently no way to solve the inverse problem. An approach to optimizing

activity with respect to catalyst structure in the presence of active-site coupling is still

lacking because the computational cost of KMC simulation prohibits its direct use in

optimization. Therefore, a surrogate model that captures active-site coupling at low

computational cost is needed.

In this chapter, we develop a surrogate model consisting of a decision tree and

a neural network regressed to KMC data. Initially, a database is built by randomly

generating catalyst structures and evaluating their activity via KMC simulation. The

surrogate model is trained on the structures in the database and subsequently em-

ployed in simulated annealing optimization to maximize catalyst activity. Due to in-

adequacies in the training set, the surrogate model is unlikely to evaluate the optimum
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correctly. Therefore, an online machine learning approach is used wherein structures

predicted by the optimization are evaluated with KMC and added to the database to

refine the surrogate model. In doing so, computational effort is spent populating the

database primarily with highly active structures, i.e., using importance sampling[125].

KMC simulation, surrogate model training, and catalyst structure optimization are

performed in an iterative fashion. The iterative method converges when sufficient data

has been added so that the surrogate model and KMC simulations agree for the sim-

ulated annealing optimum. Our approach is demonstrated for a prototype version of

the ammonia decomposition reaction on defected NiPt catalysts.

5.3 Methods

In Section 5.3.1 we describe how catalyst structures are modeled and evaluated

with KMC. Section 5.3.2 details the construction of the surrogate model and its

regression to KMC data. Section 5.3.3 outlines the simulated annealing method used

to optimize the catalyst structure. Section 5.3.4 combines these techniques into an

online machine learning approach.

5.3.1 Kinetic Monte Carlo (KMC) simulation of defected monolayer cat-

alysts

A prototype version of the NH3 decomposition model of Guo and Vlachos[75]

is chosen to demonstrate our methodology. A catalyst structure consists of a defected

monolayer of Ni on a Pt substrate. The Atomic Simulation Environment (ASE)[86]

is used to create a 4-layer fcc(111) slab consisting of 3 bottom layers of Pt and a top

layer of Ni, periodic in two dimensions. The cell dimensions chosen for this study are

p(d× d) where d = 12. Defects are introduced through vacancies in the Ni layer. The

defected structure is represented numerically as a binary occupancy vector σ. Each of

the n = d2 = 144 Ni sites, indexed by i ∈ {1, 2, · · · , n}, is occupied (σi = 1) if a Ni

atom is present and unoccupied (σi = 0) if a vacancy is present instead. An example

structure is shown in the left hand panel of Figure 5.1.
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Figure 5.1: (a) An example catalyst structure. The occupancies of Ni (green) atoms
on the Pt (grey) substrate are specified by a vector σ. (b) The corresponding KMC
lattice with terrace (blue) and edge (red) sites.

The molecular structure is converted to a KMC lattice by identifying binding

sites and their properties. The KMC lattice for the example structure in Figure 5.1 is

shown in the right hand panel. Terrace and edge sites are identified in the Ni adlayer.

Terrace sites are Ni top sites with 6 neighboring Ni atoms, whereas edge sites are Ni top

sites with 4 neighboring Ni atoms and two neighboring vacancies adjacent to each other.

All other Ni sites do not participate in the chemistry. Terrace and edge sites are given

prespecified properties, as is the case when using DFT data[75]. For other chemistries,

predetermined site types and properties would not necessarily be required if they can

be computed on the fly based on a site’s local environment[145, 29, 28, 31, 74, 221].

The elementary steps and rate constants of the reaction network are shown

in Table 5.1. All rate constants are the same order of magnitude so that competing

rate determining steps are present. Adsorption of A occurs on terrace sites whereas

desorption of B occurs on edge sites. We emphasize that due to bifunctionality, the

presence of a terrace or step site does not necessarily mean that it participates in the

chemistry. Isolated terrace sites have no means of getting rid of adsorbed A except by

desorption. Likewise, edge sites without nearby terrace sites have no source of B via

diffusion.

Given a defected structure defined by σ, we define rKMC(σ) as the steady state
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Table 5.1: Elementary reactions in the A→B site-coupling model. The partial pressures
of gas species A(g) and B(g) are PA = 1 atm and PB = 0 atm. The surface species are
A, B, and empty sites (*). Subscripts indicate the site type as either terrace (t) or edge
(e). Reactions 1-5 are adsorption, diffusion, surface reaction, diffusion, and desorption
respectively. kfwd and krev indicate forward and reverse rate constants, respectively.

Index Reaction kfwd kfwd/krev

1 A(g) ↔ At 1.0 atm−1s−1 1.0 atm−1

2 At + *t ↔ *t + At 1.0 s−1 1.0
3 At + *e ↔ *t + Be 1.0 s−1 1.0
4 Be + *e ↔ *e + Be 1.0 s−1 1.0
5 Be ↔ B(g) + * 1.0 s−1 1.0 atm

rate of production of a gas phase species P during KMC simulation, normalized by its

stoichiometric coefficient in the net gas-phase reaction, as well as the size of the unit

cell (n). The goal of structure optimization is to maximize rKMC(σ) with respect to σ.

In theory, rKMC
P,i (σ) can be computed from the Chemical Master equation. Stochastic

noise in the evaluation of rKMC(σ) from KMC simulation is managed by time averaging

over sufficiently large time intervals. The Zacros[204, 148] graph theoretical software

is used to simulate the reaction network. To ensure steady state conditions, we use the

automated methods developed in Chapter 3.

For the purposes of extracting maximal data from each simulation, rates are

computed for each Ni site. Given the steady state expected propensities of each

elementary step, the rate of production of gas species P at site i is

rKMC
P,i (σ) =

1

νP

nrxns∑
j=1

νj,P
sj

E [ai,j]. (5.1)

νP is the stoichiometric coefficient of species P in the net gas phase reaction. j indexes

the elementary steps, of which there are nrxns. νj,P is the stoichiometric coefficient of

gas species P in elementary step j. sj is the number of sites involved in elementary

step j, which prevents double counting for reactions involving multiple sites. E [ai,j]

denotes the steady state expectation of the propensity of elementary step j at Ni site

i, as estimated from statistical sampling. If a Ni site i does not have a corresponding

lattice site in the KMC simulation, then rKMC
P,i (σ) = 0.
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The total rate is computed as

rKMC(σ) =
1

n

n∑
i=1

rKMC
P,i (σ). (5.2)

Steady state mass balances render the total rate rKMC(σ) independent of the choice

of P . For our prototype reaction network, we use P = B and νB = 1 to track the

production of B.

We exploit the symmetry of the (111) facet to maximize data usage from a

single KMC calculation. For Ni site i, we define the translation operator Ti(σ) as the

permutation of σ that translates the catalyst so that Ni site i is mapped to i = 1.

For θ ∈ {0, 120, 240}, we define the rotational operator Rθ(σ) as the permutation of σ

that rotates the catalyst by θ degrees counterclockwise about Ni site i = 1. For any

combination of i, θ, P , and σ, symmetry dictates that

rKMC
P,1 (Rθ (Ti (σ))) = rKMC

P,i (σ). (5.3)

The right hand side of Equation 5.3 is known from simulation. Using KMC data for

a single structure and all possible combinations of i and k gives 3n distinct mappings

of σ to rKMC
P,1 (σ). Further details on the Ni site indexing and symmetry operators are

provided in Section D.1 of the supplement.

5.3.2 Surrogate model

A surrogate model (rsurr(σ)) requiring low computational cost and sharing the

same global maximum as rKMC(σ) is needed for structure optimization. The surrogate

model is built using machine learning tools implemented in the scikit-learn Python

package[160]. The site rates (rKMC
P,i (σ)), rather than the total rate (rKMC(σ)), are used

as training data. Most Ni sites have zero rate, resulting in an unbalanced data set.

Therefore, a combination of classification and regression is used. Figure 5.2 shows a

diagram of the surrogate model.

First, a decision tree (fDT(σ)) classifies each site as either active or inactive.

That is, fDT(σ) = 1 if rsurr
P,1 (σ) > 0 and fDT(σ) = 0 if rsurr

P,1 (σ) = 0. The input features
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are the elements of the occupancy vector σ. The maximum depth of the tree is adjusted

to maximize predictive accuracy, based on splitting the initial KMC database into a

training and a test set.

A neural network is used to regress the rates of Ni sites with nonzero rate.

Neural networks are tolerant to noise in the training data and tend to ignore irrelevant

input features. This makes them suitable for our problem, given that the training data

is evaluated using stochastic simulation and the occupancies of distant Ni occupancies

tends not to affect the rate at a given Ni site. The structure of the neural network

(fNN(σ)) consists of an input layer with one node for each occupancy in σ, 1 hidden

layer, and an output node predicting rsurr
P,1 . The hidden layer nodes use a rectified linear

unit (RELU) activation function while the output layer uses the identity function. The

number of hidden nodes and the regularization parameter are chosen by minimizing

the prediction error when regressed to the initial KMC database.

The site rates and the total rate are computed using the surrogate model as

rsurr
P,i (σ) = fDT (Ti(σ)) ∗ fNN (Ti(σ)) (5.4)

rsurr(σ) =
1

n

n∑
i=1

rsurr
P,i (σ). (5.5)

Prediction of the total structure rate (rsurr(σ)), being a spatial average of the site

rates (rsurr
P,i (σ)), is less noisy than for the individual site rates. However, this effect

is counterbalanced by the larger noise in the KMC site rates (rKMC
P,i (σ)) used in the

training data relative to the KMC structure rates (rKMC(σ)).

5.3.3 Simulated annealing-based optimization

For optimization of rsurr(σ), simulated annealing is employed. Each Metropolis

step chooses an element of σ at random and attempts to flip it (1 to 0 or 0 to 1). The

objective function is evaluated at each step using the surrogate model (Equation 5.5).

The total number of steps (smax) and the cooling schedule are specified. An exponential
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Figure 5.2: Diagram of the surrogate model.

cooling schedule is used, as it offers a suitable tradeoff between ease of implementation

and performance[153]. The temperature T (s) at step s is

T (s) = T0 exp
(
−s
τ

)
. (5.6)

The parameter T0 is the initial temperature and is set to the highest site rate observed

in the training set, thus scaling the temperature by expected changes in the structure

rate. The number of steps is determined based on the number of Ni sites, as n is the

maximum number of Metropolis steps necessary to transition between any possible

structure and the optimal one. We find that smax = 100n = 14, 400 steps are sufficient

in all cases. τ is the relaxation time scale chosen to be τ = 1
5
smax. Judicious choices

of the simulated annealing parameters ensure convergence to the global maximum of

rsurr(σ). For computational efficiency, a full list of all translations of the catalyst is

maintained and updated to evaluate the summation in Equation 5.5.
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5.3.4 Online machine learning (OML)

Initially, 50 structures are randomly generated by choosing a fixed Ni coverage

and seeding Ni atoms at random locations, resulting in a variety of quantities and

spatial arrangements of terrace and edge sites. KMC simulations are performed for the

structures to create a KMC database of site and structure rates. Given that machine

learning tools are highly interpolative, the surrogate model will converge to a false

global optimum if the true optimum is dissimilar to the structures in the database[97].

To alleviate the issue of false convergence, optimization is performed iteratively

using an OML approach. The predicted optimal structures are evaluated with KMC

and added to the database, after which the surrogate model is retrained on the aug-

mented database. Incremental learning is not employed for the neural network, given

that catastrophic interference is likely to affect low activity sites of suboptimal struc-

tures. The refined surrogate model is used in subsequent simulated annealing opti-

mization, using the previous optimum as the initial structure. The process is repeated

until convergence, wherein the predicted optimal structure is evaluated correctly with

the surrogate model and does not change with the addition of new data to the KMC

database.

Parallelization is exploited to grow the database more rapidly. After evaluating

the initial structures and adding them to the database, each of 16 processors perform

the OML procedure independently. The processors communicate only by using data

from the same database to which they all add. Use of multiple processors also makes the

simulated annealing optimization more robust by increasing the probability of finding

the global optimum. The OML process is shown in the flowchart in Figure 5.3 and

summarized in the following pseudocode. Our software implementation is available at

https://github.com/VlachosGroup/Structure-Optimization.

1. Generate initial training structures.

2. Evaluate training structures with KMC. Record site rates in a database.

3. Train the surrogate model on the structures in the database.
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Figure 5.3: Flowchart of the online machine learning (OML) algorithm.

a. Train decision tree to classify each site as having a zero or nonzero rate.

b. Train neural network on all sites with nonzero rates.

4. Optimize catalyst structure using simulated annealing and the surrogate model
(rsurr(σ)) as the objective function.

5. Evaluate predicted optimal structures with KMC, i.e., compute rKMC(σ).

6. If the optima have been evaluated correctly with the surrogate model, i.e.,
rsurr(σ) ≈ rKMC(σ), and are the best historically, then terminate. Otherwise,
add them to the KMC database and return to (3).

5.4 Results

5.4.1 Online machine learning

The maximum depth of the decision tree was chosen to be 20, on the basis of

minimizing the prediction error when splitting the initial database into a 75% training

and 25% test set. Figure 5.4 shows how the classification error is minimized for the

test set when a maximum tree depth of 20 is used.

The parity plot for the neural network regression to individual site rates is

shown in Figure 5.5. 20 hidden nodes were sufficient to achieve a reasonable fit to the

training data. Variability in the site rates shows that they vary depending on the local

microstructure.
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Figure 5.4: Classification error for the decision tree when trained to the initial database
using different maximum depths.

Figure 5.5: Parity plot of site rates (rA,1(σ)), in units of molecules of B produced per
second.
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Figure 5.6: Parity plots of total structure rates (r(σ)) at the beginning (top left)
and end (bottom right) of the online learning process. Green points are predicted by
simulated annealing optimization using a surrogate model regressed to the data in the
blue points.

The performance of the surrogate model in predicting catalyst activity is shown

in Figure 5.6 for four iterations of the OML process, each of which add 16 structures to

the database. In all iterations, simulated annealing optimization using the surrogate

model finds the global maximum of rsurr(σ), resulting in the green points always being

higher than the blue points. In the first iteration, inaccuracies in the neural network

cause the surrogate model to converge to false optima. The green points appear to the

right of the blue points, but do not yet reach the global maximum of rKMC(σ). The

surrogate model predictions improve after more data has been added to the database.

By Iteration 4, in which 98 structures are used to regress the surrogate model, the

surrogate model estimates the activity of the optimal structures accurately.
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Figure 5.7: Surrogate model predictions (rsurr(σ)) and KMC evaluations (rKMC(σ)) of
the most active structure given by simulated annealing optimization, versus the number
of structures in the KMC database. The red star indicates the most active structure
in the initial KMC database as a point of comparison.

Figure 5.7 shows the convergence of the OML process with respect to the size

of the KMC database. The surrogate model predictions and KMC evaluations of the

most active structures predicted by simulated annealing are shown. As the size of the

KMC database increases, the surrogate model achieves better agreement with KMC

for the activity of the optimal structure. Eventually, the global optimum of rKMC(σ)

is achieved. Relative to the most active structure in the initial KMC database, the

global optimum has an activity higher by a factor of about 5. The OML process

successfully discovers new and better structures starting only with information about

random structures.

5.4.2 Physical insights from KMC simulation

The frequencies of terrace and edge sites in each structure are shown in Figure

5.8. Points are colored to indicate the activity of the corresponding structure, providing

insights into how bifunctionality affects the catalyst structure-activity relationship.
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Figure 5.8: Fraction of Ni sites that are edge and terrace sites for all 114 structures
encountered during optimization. Site fractions are normalized by the total number of
Ni sites (n = 144). Because many Ni sites are not identified as either type of site, the
fractions do not sum to 1. Markers are colored on a blue (least active) to red (most
active) scale to qualitatively indicate the activity of each structure.

Although the activities seem to be controlled primarily by the amount of step sites,

terrace sites are also necessary to achieve high activity.

Figure 5.9 shows the optimal structure, which exhibits several desirable proper-

ties. Not only does it have an abundance of both terrace and step sites, but it places

them in close proximity so that after species A adsorbs onto a terrace site, it rapidly

diffuses to an edge site where it desorbs as B.

5.4.3 CPU analysis

Figure 5.10 decomposes the central processing unit (CPU) requirements of the

OML approach as well as a hypothetical brute force approach in which KMC is used

at every step of optimization. The CPU cost of the brute force approach is purely

due to KMC simulation, which must be performed at each of the 14,400 steps in

the simulated annealing optimization. The OML approach requires 2000 times fewer

KMC evaluations, but introduces the additional costs of regressing and evaluating the
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Figure 5.9: (a) Molecular picture of the catalyst structure with an optimal arrangement
of a defected Ni adlayer (green) and a Pt substrate (grey). (b) The corresponding KMC
lattice with terrace (blue) and edge (red) sites.

neural network. These extra tasks require far less CPU time than KMC evaluation

does. The overall savings of the OML approach relative to brute force is a factor of

1600 for our example. Our CPU evaluations do not account for wall time reduction

due to parallelization, as several strategies are available to control this. For example,

a genetic algorithm would allow for parallel evaluation of the objective function for

every individual in the population. The KMC simulations in this study require only

30 seconds to run, which is atypically fast for KMC. Typical simulations for applied

problems usually require run times on the order of hours to days, in which case the

CPU savings of the OML approach would be even more significant.

5.5 Conclusions

An approach to computationally optimizing catalyst structure for chemistries

with coupled active sites was developed. A surrogate model consisting of a decision tree

and a neural network was regressed to data from KMC simulation of various structures.

The surrogate model identified active sites and predicted their activity with sufficient

accuracy to be used in simulated annealing optimization. An iterative approach was

used in which predicted optimal structures were evaluated with KMC and added to a

database to refine the surrogate model.
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Figure 5.10: CPU comparison of the brute force approach (projected cost of using KMC
directly in optimization) versus our online machine learning (OML) approach. Relative
to brute force, OML requires significantly fewer KMC simulations, but introduces the
additional costs of training (train NN) and evaluating the neural network (NN eval.).
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We applied our technique to a prototype chemistry exhibiting bifunctional

behavior between terrace and step sites of defected Ni adlayers on a Pt substrate.

The accuracy of the surrogate model improved as more structures were added to the

KMC database. Simulated annealing optimization predicted an optimal structure with

an abundance of terrace and step sites in close proximity to each other. Subsequent

KMC evaluation confirmed its activity to be 5 times greater than the best structure

in the initial set of randomly generated training structures. Use of a surrogate model

in optimization reduced the number of KMC evaluations necessary by a factor of 2000

relative to a hypothetical brute force scheme.

Our new methodology shows promise for designing more active catalysts for a

variety of structure sensitive chemistries. Core-shell catalysts as well as metals on oxide

supports are commonly used catalysts and expose a variety of different sites which affect

the chemistry differently. Computational methods for estimating binding properties at

different sites continue to be developed. Once optimal structures are predicted, exper-

imental efforts can be made to synthesize them, thus providing crucial benchmarking

for structure dependent kinetic models. Our optimization approach mapping catalyst

structure to activity can be used in tandem with experimental characterization of cata-

lyst structure using techniques such as X-ray absorption spectroscopy (XAS)[189] and

extended x-ray absorption fine-structure spectroscopy (EXAFS)[177].
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Chapter 6

SUMMARY AND OUTLOOK

In this chapter, we summarize the accomplishments of this thesis and outline

directions for future research.

6.1 Dissertation Conclusions

This thesis developed several uncertainty quantification methods for kinetic

Monte Carlo (KMC) simulation of catalytic reactions. Chapters 2 and 3 developed

sensitivity analysis methods for quantifying uncertainty due to errors in model param-

eters. Chapters 4 and 5 developed catalyst structure optimization methods to assess

the impact of catalyst structure and the identity of the active site.

Chapter 2 extended the likelihood ratio sensitivity analysis method, an efficient

alternative to finite differencing, to multiscale KMC simulations. For a prototype

chemical reaction network with reactions occurring on different time scales, the variance

of likelihood ratio sensitivity estimates for parameters affecting the fast events was

shown to be unmanageable. To circumvent this limitation of the likelihood ratio

method, the time scales of the reaction network were explicitly separated into fast

and slow modes. The fast time scale was equilibrated, whereas the slow scale was

simulated with KMC using propensities determined by averaging on the fast time scale.

Sensitivity contributions were computed separately for each time scale and combined

to achieve an overall sensitivity with drastically lower variance than the single time

scale version.

Chapter 3 developed statistical techniques to accelerate lattice KMC simula-

tion and enable likelihood ratio sensitivity analysis for realistic chemistry, for which

unknown time scales challenge statistical sampling. A prototype A→B model and
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the water-gas shift reaction on Pt(111) were used as test cases. A robust criterion

for determining non-equilibrium steady state conditions was developed based on batch

means. Parallel processing and rate constant rescaling significantly accelerated KMC

simulation without affecting the slow dynamics of the system, with the latter being es-

pecially significant. Likelihood ratio sensitivity analysis using time averaged properties

correctly identified the rate determining step in the water-gas shift model as dissoci-

ation of adsorbed water, as benchmarked against finite differencing. Likelihood ratio

sensitivity analysis was shown to be faster than finite differencing for the water-gas

shift system, but not for the A→B model, due to CPU dependence on the number of

reactions of a network.

Chapter 4 developed an optimization approach to maximizing catalyst activity

by identifying the active site and the density and spatial arrangement of such sites

while simultaneously minimizing surface energy. This methodology was applied to

the oxygen reduction reaction (ORR) on defected Pt(111), Pt(100), Au(111), and

Au(100) surfaces. The activity of each site was computed according to its generalized

coordination number, which describes the site’s local environment. We showed that not

all sites can have optimal properties due to geometric and stability constraints on the

low index planes. Our results rationalize why in contrast to optimistic theoretical

predictions, only modest activity increases are seen in experimental studies. The

optimal arrangements of active sites predicted by our new method are promising for

further increasing the activity of catalyst surfaces with purposefully engineered defects.

Chapter 5 enabled catalyst structure optimization to account for active-site cou-

pling originating from complex phenomena such as bifunctionality, adsorbate interac-

tions, and diffusion. We demonstrated our method for a prototype chemistry exhibiting

bifunctionality. Because the computational demands of KMC make it unsuitable for

direct use in optimization, we constructed a surrogate model using neural networks

regressed to KMC data. The neural networks captured the complex structural depen-

dencies of KMC at comparably negligible computational cost. Because inaccuracies

in the surrogate model caused the optimization to converge to false optima, an online
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machine learning (OML) approach was used. Structures predicted by the optimiza-

tion were evaluated using the KMC simulation and added to a database of structures.

The surrogate model was retrained and the optimization was repeated in an iterative

fashion. In doing so, the true global optimum was eventually identified and predicted

accurately by the surrogate model. The online machine learning approach reduced the

computational cost of optimization by a factor of 3 orders of magnitude relative to a

brute force approach. The optimal structure contained an abundance of the two types

of sites involved in the chemistry, located in close proximity to facilitate diffusion. Our

findings offer new insights for designing bifunctional catalysts.

6.2 Future Directions

To further facilitate progress towards the eventual goal of robust first principles

based catalyst design, we suggest directions for future research in each of the two major

areas of this thesis.

6.2.1 Sensitivity analysis for kinetic Monte Carlo simulation

As shown in Chapter 3, the appropriate choice of local sensitivity analysis

method depends on the system being simulated. Therefore, various methods should

still be developed along with guidelines for choosing the most suitable technique for

a given model. Recent advances have become increasingly focused on lattice KMC

simulation[7, 121], making them usable for catalysis models. In some cases, a hybrid

approach[87] will be the best choice. Given the advancements in this thesis and

elsewhere, local sensitivity analysis could become routine for KMC studies of catalytic

systems.

Global sensitivity analysis, described in Section 1.3, must also be investigated for

KMC simulation. Previous work in this area has focused on biological models[103, 181].

Stochastic coupling[6, 199, 7], a method currently used to reduce the variance of finite

differencing by introducing correlations between trajectories with different parameters,

may play a similar role in global sensitivity analysis. Correlated sensitivity analysis
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has been shown to affect interpretations of mean field models[210] and should also be

performed for KMC models.

An important input for KMC is the cluster expansion Hamiltonian, which is fit

to density functional theory (DFT) data for many different adsorbate configurations.

Although error analysis has been performed for cluster expansion predictions of config-

uration energies[239, 141, 190], it is unknown how this error propagates through KMC

simulation. An understanding of which DFT configurations affect the calculation of

KMC observables would allow cluster expansion training to be restricted to DFT data

that affects the KMC observables. Sensitivity analysis on cluster expansion coefficients

is difficult because these parameters affect both fast and slow reactions.

6.2.2 Catalyst structure optimization

Catalyst structure optimization relies heavily on the relationships used to esti-

mate active site properties as a function of their local geometry. These relationships

should be pursued further to improve their accuracy and extend their applicability. For

example, structure dependent linear scaling relationships[28] would enable the predic-

tion of binding energies on different metals and sites simultaneously. Similarly, lateral

interactions that scale across different structures would make structure dependent mod-

els more robust. In practice, this may take the form of a Hamiltonian cluster expansion

with coordination dependent terms. The development of these relationships will in-

volve a combination of fundamentals and DFT data. In the fundamental approach,

analysis of the effect of catalyst structure on binding energies through the metal d-

band[77, 142, 88, 29] would help derive physically motivated relationships. With a

DFT approach, machine learning[221, 19] could be employed.

Once optimal structures are predicted, experimental efforts should be made

to synthesize them. Experimental validation would provide crucial benchmarking for

structure dependent kinetic models. Given the results of Chapter 4 for the oxygen

reduction reaction, synthesis efforts should aim to maximize the quantity of cavities

on the Pt(111) surface.
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Several extensions of our machine learning approach to structure optimization

can be made. It can be generalized to three dimensional nanoparticles to more

closely resemble supported nanoparticles encountered in the laboratory. Running KMC

simulations at different temperatures and partial pressures and incorporating these

variables into to the neural network regression would enable optimization of catalyst

structure and reaction conditions simultaneously. Our machine learning approach to

mapping catalyst structure to activity would also enable simulations with a dynamic

catalyst surface for which the KMC lattice changes with time.

6.3 Closing thoughts

As is the case for hurricane modeling and election forecasting, predictive models

for catalyst design require uncertainty quantification to assess the level of confidence

in model predictions. As theory and hardware improve, this confidence will gradually

increase. Quantum computing, for example, shows great promise for performing the

types of parallel calculations ubiquitous in scientific research. The construction of

robust models will require a highly collaborative, multidisciplinary effort in addressing

phenomena at different length and time scales. Data sharing and open-source software

will facilitate such collaboration. To this end, links to software implementations of the

methods developed in this thesis have been provided in the relevant chapters.
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sion to ethylidyne on Pd(1 1 1) and Pt(1 1 1): A first-principles-based kinetic
Monte Carlo study. Journal of Catalysis, 285(1):187–195, 2012.

[5] Mie Andersen, Craig P. Plaisance, and Karsten Reuter. Assessment of mean-field
microkinetic models for CO methanation on stepped metal surfaces using accel-
erated kinetic Monte Carlo. The Journal of Chemical Physics, 147(15):152705–
152718, oct 2017.

[6] David F Anderson. An efficient finite difference method for parameter sensitiv-
ities of continuous time Markov chains. SIAM Journal on Numerical Analysis,
50(5):2237–2258, 2012.

[7] Georgios Arampatzis and Markos A Katsoulakis. Goal-oriented sensitivity anal-
ysis for lattice kinetic Monte Carlo simulations. The Journal of chemical physics,
140(12):124108, 2014.

[8] Georgios Arampatzis, Markos A. Katsoulakis, and Luc Rey-Bellet. Efficient
estimators for likelihood ratio sensitivity indices of complex stochastic dynamics.
Journal of Chemical Physics, 144(10):104107, 2016.

[9] Giorgos Arampatzis, Markos A Katsoulakis, and Petr Plechac. Parallelization,
processor communication and error analysis in lattice kinetic Monte Carlo. SIAM
Journal on Numerical Analysis, 52(3):1156–1182, 2014.

99



[10] Sara Aranifard, Salai Cheettu Ammal, and Andreas Heyden. On the importance
of metal-oxide interface sites for the water-gas shift reaction over Pt/CeO2
catalysts. Journal of Catalysis, 309:314–324, 2014.

[11] Adam Arkin, John Ross, and Harley H McAdams. Stochastic kinetic analysis
of developmental pathway bifurcation in phage lambda-infected Escherichia coli
cells. Genetics, 149(4):1633–1648, 1998.

[12] John N. Armor. A history of industrial catalysis. Catalysis Today, 163(1):3–9,
apr 2011.

[13] Ashish Arora and Alfonso Gambardella. Implications for Energy Innovation from
the Chemical Industry. In Accelerating Energy Innovation: Insights from Multiple
Sectors, pages 87–111. University of Chicago Press, may 2011.

[14] Bernd A Berg. Markov Chain Monte Carlo Simulations and Their Statistical
Analysis. World Scientific, Singapore, oct 2004.

[15] D Wayne Blaylock, Yi-An Zhu, and William H Green. Computational investi-
gation of the thermochemistry and kinetics of steam methane reforming over a
multi-faceted nickel catalyst. Topics in Catalysis, 54(13-15):828–844, 2011.

[16] T Bligaard, Jens Kehlet Norskov, Soren Dahl, J Matthiesen, Claus H Christensen,
and J Sehested. The BrønstedEvansPolanyi relation and the volcano curve in
heterogeneous catalysis. Journal of Catalysis, 224(1):206–217, may 2004.

[17] Thomas Bligaard, R. Morris Bullock, Charles T. Campbell, Jingguang G. Chen,
Bruce C. Gates, Raymond J. Gorte, Christopher W. Jones, William D. Jones,
John R. Kitchin, and Susannah L. Scott. Toward Benchmarking in Catalysis Sci-
ence: Best Practices, Challenges, and Opportunities. ACS Catalysis, 6(4):2590–
2602, apr 2016.
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Appendix A

EFFICIENT SENSITIVITY ANALYSIS IN MULTISCALE KINETIC
MONTE CARLO - SUPPLEMENT

A.1 Sensitivity analysis in multiscale deterministic systems

In this section, we look at the time-evolution of a two time-scale kinetic problem.

It is solved in two ways. First, a stiff, single time-scale (STS) formulation is used.

Secondly, a two time-scale (TTS) formulation is used. Methods for performing on-line

sensitivity analysis are demonstrated for each. The TTS formalism converts the stiff

system of ODEs into a system of differential algebraic equations.

A.1.1 Single time scale (STS) Formulation

In a well mixed chemical system, the vector N of species populations completely

specifies the system. The rate of each of the elementary reactions is represented by the

column vector r(N) as a function of N . r(N) can have a non-linear dependence on

N when the network contains multimolecular reactions. The stoichiometric matrix S

allows us to compute differential changes in species populations due to the elementary

reactions. The changes in species populations can be written as a system of ordinary

differential equations (ODE) which can be integrated from time t = 0 to t = tfinal to

obtain N(tfinal).

N(0) = N0 (A.1)

dN

dt
= S · r(N) (A.2)

Consider that the calculation of r(N) involves model parameters kα and there-

fore r = r(N, kα). kα is typically either a rate constant or a thermodynamic parameter
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used to compute the rate constants. The resulting time dependent species popula-

tions N(t) also depend on the parameters kα. For each parameter kα of interest, we

are interested in the sensitivity coefficient Ckα(t) = ∂N(t)
∂kα

. By applying the chain rule,

derivatives of a system of ODEs are computed by solving an adjunct set of ODEs which

are integrated alongside the original system. Taking the derivatives of Equations A.1

and A.2 with respect to kα results in Equations A.3 and A.4 respectively.

Ckα(0) = 0M×1 (A.3)

dCkα
dt

= S ·
[
∂r(N, kα)

∂N
Ckα +

∂r(N, kα)

∂kα

]
(A.4)

The matrix ∂r(N,kα)
∂N

and the vector ∂r(N,kα)
∂kα

must be known analytical functions. How-

ever, usually the rate law r(N, kα) is a simple enough polynomial function that this is

not an issue.

A.1.2 Two time scale (TTS) Formulation

Separation of time scales is extremely common in kinetic systems. It is often

advantageous to separate the system into two time scales. Assumptions such as partial

equilibrium impose constraints on the fast time scale. Algebraic equations can be used

to determine the fast-changing variables as a result. The solution to these equations

can be fed into an ODE for the slowly evolving variables of the system. The TTS

formulation is both computationally and pedagogically advantageous.

We would like to have our system in the form

0 = g(ys, yf ) (A.5)

dys
dt

= f(yf , ys, θ) (A.6)

First a transformation of the system variables N to a set of variables y =

 yf

ys


must take place. The variables y are decoupled into variables yf which evolve on the

fast scale and variables ys which evolve only along the slow scale. Upon identifying
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which reactions are fast, the stoichiometric matrix can be decomposed into fast and

slow contributions.

S = Ss + Sf (A.7)

We seek a transformation T =

 Tf

Ts

 on N to produce

y = T ·N (A.8)

We use Gaussian elimination on Sf to find a transformation matrix T such that all of

the linearly dependent rows are replaced with 0s. T is a transformation matrix that is

a series of row operations and is therefore invertible. That is,

S ′f = T · Sf (A.9)

If a row i of S ′f contains all 0s, then the ith row of T belongs to Ts. These are slow

variables ys = Ts ·N which do not change on the fast scale. Nonzero rows correspond

to fast variables given by yf = Tf ·N .

There are mf fast modes and ms = M −mf slow modes. On the fast scale we

solve the system of equations for yf given ys, because yf is slaved to ys. We substitute

N = T−1 · y to eliminate the functional dependence of r on N .

0 = Tf · Sf · r

T−1 ·

 yf

ys

 (A.10)

Equation A.10 is a system of nf equations which encompass the equilibrium

constraint on the fast scale. On the slow scale we solve the system of ns differential

equations

ys(0) = Ts ·N0 (A.11)

dys
dt

= Ts · Ss · r

T−1 ·

 yf

ys

 (A.12)

At every macroscopic ODE step, we solve the fast scale to get yf , plug it into

the differential equation of Equation A.12 to advance ys, then use ys to solve for the
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new yf and repeat until we have reached tfinal. Upon solving the ODE, we can recover

the original system variables using N = T−1 · y.

The approach for sensitivity analysis is similar to that for STS, but derivatives

must be computed from a system of equations involving the fast time scale. For each

parameter kα of interest, taking the derivatives of Equations A.10, A.11, and A.12

results in the following system for Cy
kα

(t) = ∂y(t)
∂kα

, Cy
f,kα

(t) =
∂yf (t)

∂kα
, and Cy

s,kα
(t) = ∂ys(t)

∂kα
.

0 =Tf · Sf ·

∂r(N, kα)

∂N
· ∂N
∂y
·

 Cy
f,kα

Cy
s,kα

+
∂r(N, kα)

∂kα

 (A.13)

Cy
s,kα

(0) =0ms×1 (A.14)

dCy
s,kα

dt
=Ts · Ss ·

∂r(N, kα)

∂N
· ∂N
∂y
·

 Cy
f,kα

Cy
s,kα

+
∂r(N, kα)

∂kα

 (A.15)

At each step of the ODE, Equation A.13 solves for Cy
f,kα

given Cy
s,kα

. Then, Cy
f,kα

is used in Equation A.15 to compute the time evolution of Cy
s,kα

. In these equations, we

use dN
dy

= T−1, which we can easily get from Equation A.8. At the end of the procedure,

the derivatives of the original system variables can be obtained using Ckα = T−1 ·Cy
kα

.

A.1.3 Numerical example

We use the same model system and parameters as in Section 2.5.3. The system

contains M = 3 species and R = 3 reactions. Mathematically, we use the M × 1

column vector N to specify the species populations, where N1 = NA, N2 = NB, and

N3 = NC . In this example, there is only a linear dependence and the reaction rates

can be written as

r(N) =


k1N1

k2N2

k3N2

 . (A.16)
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The stoichiometric matrices are

S =


−1 1 0

1 −1 −1

0 0 1

 (A.17)

Ss =


0 0 0

0 0 −1

0 0 1

 (A.18)

Sf =


−1 1 0

1 −1 0

0 0 0

 (A.19)

A suitable transformation is

T =


1 0 0

1 1 0

0 0 1

 (A.20)

resulting in

S ′f =


−1 1 0

0 0 0

0 0 0

 . (A.21)

T can be decomposed into Tfast =
[

1 0 0
]

and Tslow =

 1 1 0

0 0 1

 by looking at

the 0 rows of S ′f . This gives us the transformed variables as

yfast =
[
N1

]
(A.22)

yslow =

 N1 +N2

N3

 (A.23)

In the context of our example problem, we can assign physical meaning to the

transformation. y1 = NA is affected by both slow and fast reactions. For a given set

of slow variables, we can solve for y1 to specify the equilibrium constraint of r1 = r2.
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y2 = NA +NB is the total amount of A and B, which is unaffected by the fast A↔ B

reaction, but is affected by the slow B → C reaction. y3 = NC is a second slow

variable which is unaffected by fast reactions, but evolves on the slow manifold. The

mode NA+NB+NC does not appear as a fast mode constraint. If Gaussian elimination

were done on the full matrix S, this mode would be identified. Likewise, it could appear

as a ”slow mode” according to our labeling. It is not a ”fast mode” in our terminology

because the mass conservation is not a consequence of the constraints imposed by

partial equilibrium, captured in the structure of Sf .

We use ODE15s in Matlab to solve the system of differential equations. For

the TTS, a mass matrix is used to convert the system to a differential algebraic one.

Results are shown in Figure A.1. Partitioning the sensitivities between the fast and

slow contributions offers several interesting physical insights. For species B in Figure

A.1c, the fast and slow contributions of k1 have competing effects on the population

of B. On the fast scale, higher k1 leads to a higher equilibrium quantity of species B.

However, on the slow scale, the greater amount of B relative to A causes faster loss of

species B to C. Therefore, the sensitivity of NB to k1 is positive on the fast scale, but

negative on the slow scale. In Figure A.1d, all sensitivity contributions to NC are zero

on the fast scale, as species C is only affected by slow reactions and evolves on the slow

manifold only.

A.2 Analytical solution for the A↔B→C System

We have derived analytical expressions for the transient species populations and

sensitivityies of our model system (see Section 2.5.3) in the two time scale limit. In all

equations, K = k1
k2

is the equilibrium constant of the A↔B reaction.
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Figure A.1: Results of two time scale simulation of the model chemical reaction
network. Sensitivities are normalized as in Equation 2.32 and are partioned into
contributions from the fast and slow time scales. Derivative can be obtained by adding
the contributions from the two time scales.
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A(t) = A(0) ∗ 1

K + 1
exp

(
− k3Kt

K + 1

)
(A.24)

B(t) = A(0) ∗ K

K + 1
exp

(
− k3Kt

K + 1

)
(A.25)

C(t) = A(0) ∗
(

1− exp

(
− k3Kt

K + 1

))
(A.26)

∂A(t)

∂k1

= A(0)

[
−k2

(k1 + k2)2
+

(
1

K + 1

)
k2

(k1 + k2)2 (−k3t)

]
exp

(
− k3Kt

K + 1

)
(A.27)

∂A(t)

∂k2

= A(0)

[
k1

(k1 + k2)2
+

(
1

K + 1

)
−k1

(k1 + k2)2 (−k3t)

]
exp

(
− k3Kt

K + 1

)
(A.28)

∂A(t)

∂k3

= −A(0)
K

(K + 1)2
t ∗ exp

(
− k3Kt

K + 1

)
(A.29)

∂B(t)

∂k1

= A(0)

[
k2

(k1 + k2)2
+

(
K

K + 1

)
k2

(k1 + k2)2 (−k3t)

]
exp

(
− k3Kt

K + 1

)
(A.30)

∂B(t)

∂k2

= A(0)

[
−k1

(k1 + k2)2
+

(
K

K + 1

)
−k1

(k1 + k2)2 (−k3t)

]
exp

(
− k3Kt

K + 1

)
(A.31)

∂B(t)

∂k3

= −A(0) ∗
(

K

K + 1

)2

texp

(
− k3Kt

K + 1

)
(A.32)

∂C(t)

∂k1

= A(0)k3t
k2

(k1 + k2)2
exp

(
− k3Kt

K + 1

)
(A.33)

∂C(t)

∂k2

= A(0)k3t
−k1

(k1 + k2)2
exp

(
− k3Kt

K + 1

)
(A.34)

∂C(t)

∂k3

= A(0)
K

K + 1
t ∗ exp

(
− k3Kt

K + 1

)
(A.35)

128



Appendix B

ACCELERATION AND SENSITIVITY ANALYSIS OF LATTICE
KINETIC MONTE CARLO SIMULATIONS USING PARALLEL

PROCESSING AND RATE CONSTANT RESCALING - SUPPLEMENT

B.1 Analytical solution of the Chemical Master Equation

For a continuous-time Markov chain (CTMC) with nstates states, let p (t) be the

nstates×1 column vector of probabilities of each state, such that pi (t) is the probability

that the system is in state i at time t, and for all t ≥ 0

nstates∑
i=1

pi (t)= 1. (B.1)

The Chemical Master Equation gives the time evolution of the system according to the

system of linear ordinary differential equations as

dp

dt
=Q · p. (B.2)

The initial condition specifies p (0). Q is the nstates × nstates matrix generator of the

Markov chain and consists of all information relating to the event propensities. The

time-dependent solution is

p (t) = exp (Qt) · p (0) . (B.3)

For a system with a finite number of states, the rank of Q is less than nstates

due to the conservation constraint of Equation B.1. Therefore, the nullity of Q is at

least 1 and there exists a non-trivial solution to the steady state equation

0 =Q · pss. (B.4)

pss is the vector of stationary probabilities for each of the states and is used to compute

steady state properties. If there is only one recurrent class in Q, then the steady state
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is unique. There will only be one recurrent class if any state can transition to any

other state through a sequence of available reactions. For applications in chemical

kinetics, this requires that the user specify a sufficient number of reaction types to

access all available states from an arbitrary initial state. Steady state properties of

Markov chains are discussed extensively in the mathematics literature[192].

Suppose there is a property f of each state of interest. Let f be a 1 × nstates

row vector for which fi is the value of f in state i. The expected value of f at time t

is given by

E [f (t)] = f · p (t) . (B.5)

The reaction propensities, and therefore the generator Q may depend on parameters

θ = [θ1, θ2, . . . ], so that

Q = Q (θ1, θ2, . . . ) . (B.6)

Time dependent sensitivities are computed by taking the derivative of Equation B.5,

where all parameters other than θj are held fixed.

∂E [f (t)]

∂θj
= f · ∂p (t)

∂θj
+
∂f

∂θj
· p (t) (B.7)

The second term on the right hand side is calculated as an expectation. The first term

is expressed in terms of the generator by taking the derivative of Equation B.3 and

differentiating the matrix exponential.

∂p (t, θ)

∂θj
=
∂exp (Qt)

∂θj
· p (0) (B.8)

∂p (t, θ)

∂θj
=

[∫ 1

0

exp (αQ (θ) t)
∂Q (θ) t

∂θj
exp ((1− α)Q (θ) t) dα

]
p (0) (B.9)

An analogous formula for the sensitivities of the steady state probabilities is derived

in Hashemi et al.[82]
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B.1.1 Autocorrelation and variance

Correlations between data at different time points (t1 ≤ t2) are expressed in

terms of the autocorrelation function.

ĉ (t1, t2) =
cov (f (t1) , f (t2))√

var (f (t1)) ∗var (f (t2))
(B.10)

We derive an analytical expression for the autocorrelation function in terms of the

generator. The numerator of Equation B.10 is expressed as

cov (f (t1) , f (t2)) =E [f (t1) f (t2)]−E [f (t1)]E [f (t2)] . (B.11)

Equation B.5 allows us to evaluate E [f (t)]. We evaluate the quantity E [f (t1) f (t2)]

by enumerating the possible states i at t1 and j at t2. We use the variable s (t) to

give us the index of the state the trajectory is in at time t. Similarly, we use si to be

a nstates × 1 column vector of 0s except for a 1 at entry i. Our notation is such that

pi (t) = sTi · p (t).

E [f (t1) f (t2)] =
nstates∑
i=1

nstates∑
j=1

fj [pj (t2) |s (t1) = i] fipi (t1) (B.12)

The probability pj (t2) is conditional on the system being in state i at time t1.

=
nstates∑
i=1

nstates∑
j=1

fj
[
sTj · exp (Q (t2−t1)) · si

]
fi
[
sTi · exp (Qt1) · p (0)

]
(B.13)

=
nstates∑
j=1

fjs
T
j · exp (Q (t2 − t1)) ·

nstates∑
i=1

fisi · sTi · exp (Qt1) · p (0) (B.14)

We remove the summations over states using

nstates∑
j=1

fjs
T
j = f (B.15)

and

nstates∑
i=1

fisi · sTi = diag (f) (B.16)

E [f (t1) f (t2)] = f · exp (Q (t2 − t1)) · diag (f) · exp (Qt1) · p (0) (B.17)
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In the case of t1 = t2, we have

E
[
f(t)2] = f · diag (f) · exp (Qt) · p (0) (B.18)

When the system is at steady state, var (f (t1)) = var (f (t2)) = var (f) and

E [f(t1)] = E [f (t2)] = fss. Plugging Equation B.17 into Equation B.10 and applying

the steady state condition gives

ĉ (t1, t2) = ĉ (∆t) =
f · exp (Q∆t) · diag (f) · pss − f 2

ss

var (f)
(B.19)

We express the matrix exponential using eigenvector decomposition as

exp (Q∆t) =
nstates∑
i=1

exp (λi∆t) vi · zi. (B.20)

λi is the ith largest eigenvalue, while vi and zi are the corresponding right and left

eigenvalues of Q respectively. Given the structure of the generator matrix, λ1 = 0.

Suitably normalized, v1 = pss and z1 = [1, 1, . . . 1], allowing the first term of the series

to be expressed as

f · exp (λ1∆t) v1 · z1 · diag (f) · pss = f · pss · [1, 1, . . . 1] · diag (f) · pss = f 2
ss, (B.21)

thus canceling the f 2
ss term in the numerator of Equation B.19.

The time scales of the system are defined by the opposite reciprocals of the

nonzero eigenvalues of Q. That is, τi = − 1
λi

. The exponential relaxation is defined as

τexp = − 1
λ2

. If ∆t is sufficiently larger than τ3, then the exponential terms in the third

term and beyond in Equation B.20 will be negligible, leaving only the second term. The

time dependence occurs only in the exponential term, leaving the asymptotic behavior

as

ĉ (t1, t2) =ĉ (∆t)≈ exp

(
− ∆t

τexp

)
. (B.22)

Data at t1 and t2 are decorrelated if ĉ (∆t)� 1. For practical use, it is typical to use

a decorrelation time of about ∆t ≈ 3τexp for which ĉ (3τexp) < 0.05. For additional

discussion of autocorrelation function approximations for Markov Chains, the reader

is referred to other text[14].
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B.1.2 Variance of time averages

Suppose that on a given time interval of length tb, N evenly spaced data

points are used to estimate the time-averaged mean of f . Without loss of generality,

assume that E [f (t)] = 0. The data f (t1) , f (t2) , . . . f (tN) are averaged, where

ti = t1 + tb ∗ i−1
N−1

. The time averaged mean estimate is

[f ]t1,t2 = lim
N→∞

1

N

N∑
i=1

f (ti) (B.23)

var
(

[f ]t1,t2

)
= E

( lim
N→∞

1

N

N∑
i=1

f (ti)

)2
 (B.24)

= E

[
lim
N→∞

1

N2

N∑
i=1

N∑
j=1

f (ti) f (tj)

]
(B.25)

= lim
N→∞

1

N

[
1

N

N∑
i=1

E
[
f(ti)

2]+
2

N

N∑
i=1

N∑
j<i

E [f (ti) f (tj)]

]
(B.26)

Divide by var (f) = E
[
f(t)2]

var
(

[f ]t1,t2

)
var (f)

= lim
N→∞

1

N

[
1 + 2

N−1∑
i=1

(
1− i

N

)
ĉ

(
tb
i

N

)]
(B.27)

We plug in Equation B.22 and take the limit N → ∞ by converting to an integral to

get

≈ 2

tb

∫ tb

0

(
1− t

tb

)
e
− t
tb dt (B.28)

The integral expression analytically evaluates to

var
(

[f ]t1,t2

)
var (f)

≈
2
(
t̃+ e−t̃ − 1

)
t̃2

(B.29)

where t̃ = tb
τexp

. Equation B.29 appears in Equation 3.6 and Figure 3.1 of the main

text.
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B.1.3 Autocorrelation of batch means

Here, we derive the autocorrelation of batch means of adjacent batches at steady

state. Without loss of generality, we assume that E [f (t)] = 0. The batch means are

defined as

f1 =
1

tb

∫ tb

0

f (t) dt (B.30)

f2 =
1

tb

∫ 2tb

tb

f (t) dt (B.31)

The covariance of f1 and f2 is

E [f1f2] =
1

t2b
E

[(∫ tb

0

f (t) dt

)(∫ 2tb

tb

f (t) dt

)]
(B.32)

=
1

t2b

∫ tb

0

∫ 2tb

tb

E [f (t1) f (t2)] dt1dt2 (B.33)

Now we use the autocorrelation function according to Equation B.22 to replace the

expectation in the integrand

≈ var (f)

t2b

∫ tb

0

∫ 2tb

tb

exp

(
−|t2 − t1|

τ

)
dt1dt2 (B.34)

≈ var (f)

t2b

∫ tb

0

∫ tb

0

exp

(
−s1 + s2

τ

)
ds1ds2 (B.35)

≈ var (f)

t2b

(∫ tb

0

exp
(
−s1

τ

)
ds1

)2

(B.36)

≈ var (f)

t2b

(∫ tb

0

exp
(
−s1

τ

)
ds1

)2

(B.37)

E [f1f2]

var (f)
≈
(

1

t̃

(
1− exp

(
−t̃
) ))2

(B.38)

Finally, we divide by Equation B.29 to get

E [f1f2]

var
(
[f ]tb

) ≈
(

1− e−t̃
)2

2
(
t̃+ e−t̃ − 1

) (B.39)

Equation B.39 appears as the green dashed line in Figure 3.4 of the main text.
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B.1.4 Variance of rate estimates

The time-averaged estimate the rate is computed as the mean of the batch

means. The confidence interval of this estimate depends on the correlations between

the batch means as follows.

var (mean (B1 ∪B2)) = var

(
1

ntraj

1

nbpt − 1

ntraj∑
i=1

nbpt∑
j=2

fi,j

)
(B.40)

Batches from different trajectories are uncorrelated, so we choose an arbitrary trajec-

tory i and compute

var (mean (B1 ∪B2)) =
1

ntraj

var

(
1

nbpt − 1

nbpt∑
j=2

fi,j

)
(B.41)

=
1

ntraj

1

(nbpt − 1)2

[
nbpt∑
j=2

var (fi,j) + 2

nbpt∑
j1=2

j1−1∑
j2=2

cov (fi,j1 , fi, j2)

]
(B.42)

We use the definition that cov (fi,j1 , fi, j2) = ACF (fi,j1 , fi, j2)∗var
(
[f ]∆tbatch

)
to simplify

=
var
(
[f ]∆tbatch

)
ntraj (nbpt − 1)

[
1 + 2

nbpt∑
j1=2

j1−1∑
j2=2

ACF (f1,j1 , f1, j2)

]
(B.43)

Assuming an exponential functional form for the autocorrelation, we substitute

ACF (f1,j1 , f1, j2) = ACF(∆tbatch)|j2−j1|, to obtain

=
var
(
[f ]∆tbatch

)
nbatches

[
1 + 2

nbpt−2∑
∆j=1

(
1− ∆j

nbpt − 1

)
ACF∆j

]
(B.44)

The term outside the brackets of Equation B.44 is the näıve estimate of the variance

of the mean. The term inside the brackets corrects for the effect of correlation between

batches.
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B.2 Analysis of A→B model

B.2.1 Analytical solution for A→B model

For a single site, there are nstates= 3 states: *, A*, and B*. The generator is

Q =


−(k1PA + k−3PB) k−1 k3

k1PA −(k−1 + k2) k−2

k−3PB k2 −(k−2 + k3)

 (B.45)

Eigenvalue analysis yields a value of τexp = 0.4624 s. The initial condition is a bare

lattice, so that

p (0) =


1

0

0

 (B.46)

The rate at each state is

f =
[
−k6 0 k5

]
(B.47)

Given these system specifications and the analytical formulas derived above, we obtain

the analytical results shown in Figures 3.3-3.6. We also find that fss = 0.1453 and

var (f) = 0.0370.

The numerical validation in Figure 3.1 in the main text was performed by

running 1000 trajectories of length tf = 60τexp = 27.744s. The first 10τexp of the

trajectories was discarded so that only steady state data remained. For ntraj = 1,

average rates were computed for each trajectory by time averaging the rate over

the first 1.0τexp, 5.0τexp, 10.0τexp, and 50.0τexp to create a data set for each value

of t̃ = 1.0, 5.0, 10, and 50. Data for ntraj = 10 was obtained by grouping the ntraj = 1

data in sets of 10 and taking the average. The variance of the data set for each

combination of ntraj and t̃ was computed. Confidence intervals were computed with

statistical bootstrapping.
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Table B.1: Convergence test for the rescaling pare. rss is the estimated steady state
rate for the A→B model. The CPU time accounts for all trajectories simulated to the
same termination time of tf = 96.12 s.

Nmin rss (site−1s−1) CPU time (s)
1 0.1337± 0.0002 532
10 0.1433± 0.0003 1020
50 0.1447± 0.0003 3289
100 0.1449± 0.0002 6562

Table B.2: Lattice size convergence calculations for the water-gas shift system. The
quantity of each type of site in the lattice as well as the computed turnover frequency
are shown.

Top Bridge Fcc hollow Hcp hollow Turnover Frequency (mol/site/sec)
200 600 200 200 76.0± 1.4
450 1350 450 450 77.9± 0.9
800 2400 800 800 78.9± 0.7

B.2.2 Determination of rate constant rescaling cutoff

Here we test the effect that different values of Nmin have on the rate predictions

and computational cost of the rate constant rescaling procedure. Results are shown in

Table B.2. The error scales inversely with Nmin, while the computational cost scales

linearly. We choose Nmin = 50 as a good tradeoff between accuracy and computational

cost.

B.3 Additional data for the WGS System

To assess the effect of lattice size on the computed turnover frequencies for

the water-gas shift system, simulations are performed with several different lattices

of increasing size. The results, shown in Table B.2, indicate that the lattice size

effect is small beyond 200 top sites, the lattice size used throughout this paper. They

therefore should not affect the performance of the rate constant rescaling procedure or

the physical interpretations made about the WGS system.

In Figure B.1, we plot the reaction frequencies at each iteration of the steady

state convergence for the WGS reaction.
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Figure B.1: Reaction frequency diagrams for each iteration of the WGS reaction
simulation. As the iterations progress, H2O adsorption and CO adsorption are scaled-
down so that the reactions are less frequent. The simulation then samples on longer
time scales so that the slower reactions are sampled.
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Appendix C

OPTIMIZATION OF TRANSITION METAL CATALYST FACET
STRUCTURE: APPLICATION TO THE OXYGEN REDUCTION

REACTION - SUPPLEMENT

C.1 Reactions and Gibbs Energies vs. Coordination Number

The ORR reaction network consists of four elementary steps, Equations C.1-C.4.

O2 (g) +H++e−→OOH∗ (C.1)

OOH∗+H++e−→H2O (l) +O∗ (C.2)

O∗+H++e−→OH∗ (C.3)

OH∗+H++e−→H2O(l) (C.4)

Two rate-determining steps have been identified: *OOH formation (Equation C.1)

and *OH removal (Equation C.4)[152, 180]. *OH and *OOH are the key surface

intermediates whose interactions with the catalyst determine its activity. Their binding

energies have been computed on a wide range of metals and structures by Calle-Vallejo

et al.[31, 28]

The number of evaluations of the objective function, which describes the catalyst

activity for each structure, during optimization can be on the order of millions or

more. The enormous computational burden of DFT precludes its use in optimization

and therefore surrogate models are employed. Here we outline how the GCNs of a

structure are used to achieve this. Using the data of Calle-Vallejo et al. for each

metal, we propose the structural relationship describing the binding energies of *OH

and *OOH vs. the GCN (Equations C.5 and C.6).

∆Eads
OH = aOH ·GCN + βOH (C.5)

∆Eads
OOH = aOOH ·GCN + βOOH (C.6)
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Table C.1: Structural parameters for *OH and *OOH binding energies on Pt and Au,
as used in Equations C.5 and C.6. All values are in units of eV.

Metal aOH βOH aOOH βOOH

Pt 0.19 -3.82 0.17 -2.34
Au 0.12 -3.09 0.12 -1.41

The estimated parameters for Pt and Au are shown in Table C.1. A large(small) value

of α indicates high(low) degree of structure sensitivity while more (less) negative values

of β indicate strong(weak) binding metals.

Knowledge of the *OH and *OOH binding energies allows us to approximate

the overall activity from the Gibbs free energies of the two rate-determining steps.

We use the standard approach taken in the electrochemistry literature, which uses the

reversible hydrogen electrode[27, 31, 152].

The Gibbs free energies for all species, except O2, are computed according to

G = EDFT + ZPE− TS + Esolv (C.7)

and the Gibbs energy of O2(g) is determined from the net thermodynamics according

to

GO2(g) = 2 ∗
(
GH2O(l) −GH2

)
−∆GORR (C.8)

where ∆GORR = −4.92 eV. The terms on the right hand side of Equation C.7 are the

DFT-calculated energy, the zero-point energy correction, the entropic contribution,

and the solvation energy, respectively. Their values are taken from Calle-Vallejo et al.

and are given in Table C.2. For a given cell voltage U , the Gibbs energies of reactions

in Equations C.1 and C.4 are

∆G1 (U) = G∗OOH −GO2(g) + Ue (C.9)

∆G4 (U) = GH2O(l)−G∗OH + Ue (C.10)
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Table C.2: Parameters used to compute species Gibbs free energies at a temperature
of T= 298.15 K. All energies are in eV. The DFT energy of an adsorbed specie is the
sum of the gas-phase energy and the binding energy. All values are taken from the
supplementary information of Calle-Vallejo et al.[28] except for the gas-phase energies
of OH and OOH, which are recalculated.

Species EDFT ZPE TS Esolv

H2(g) -6.76 0.27 0.404 0
H2O(l) -14.22 0.574 0.583 -0.087
OH* -7.53+∆EOH 0.332 0 -0.575

OOH* -13.26+∆EOOH 0.480 0 -0.480

The second and third elementary steps are never rate limiting and are not considered

further. The largest of the Gibbs free energies of reaction (Equations C.9 and C.10) is

taken to be the Gibbs free energy of activation for the ORR process.

∆GORR= max (∆G1(U),∆G4(U)) (C.11)

C.2 DFT Calculations

C.2.1 Validation of Surface Energy Model

In order to validate Equation 4.4, DFT calculations are performed. Formation

energy is referenced to the bulk metal.

Eform = Eslab − nslab ∗ Ebulk (C.12)

Eslab is the energy of the defected slab, nslab indicates the number of atoms in the slab,

and Ebulk is the energy per atom in the bulk.

DFT- and surrogate model-computed surface energies are compared in Figure

C.1. The performance of the surrogate model is excellent when the value of Ecoh is

adjusted to fit the DFT data. Deviation from the experimental value is expected given

the inherent errors in DFT and the approximate nature of Equation 4.4.

DFT calculations are implemented in the VASP software[112, 114, 113, 115].

Each surface is modeled as a six-layer slab with p(4x4) periodicity in the horizontal

dimensions and a 15 Å vacuum slab in the z dimension. The sixth layer may be
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Figure C.1: Parity plot of surface energies (γ) computed with the tight-binding model
(TBT) (Equations 4.3 and 4.4) vs. DFT. The data set includes structures of defected
(111) (circles) and (100) (square) planes of Pt (blue) and Au (red).

incomplete to describe defects. The bottom two layers are frozen while the top layers

relax. The Perdew, Burke, and Ernzerhod (PBE)[161] exchange correlation functional,

PAW pseudopotentials[18, 116], and a Monkhorst-Pack k-point mesh of 3x3x1 are used.

Ground state energies are calculated using a plane wave basis set with a kinetic energy

cutoff of 400 eV, a smearing width of 0.1 eV, an electronic energy threshold of 10−4 eV,

and a force tolerance of 0.04 eV/Å. Lattice constants of 3.97 Å and 4.16 Å are used

for Pt and Au, respectively, and are computed by relaxing the size of the fcc unit cell.

The formation energy of the bottom part of the slab, modeling the bulk, is taken into

account by subtracting half of the formation energy of the ideal 6-layer slab.

The experimental, DFT-computed, and fitted values of the cohesive energies

are shown in Table C.3. DFT values are computed by taking the difference between

the bulk energy and that of an isolated metal atom in the gas phase. DFT under

predicts the cohesive energies of Pt and Au, consistent with the findings of Janthon et

al.[95] The values of the cohesive energies resulting from a fit of Equation 4.4 to the

DFT data are even lower. Analysis of how DFT predicts surface energies rationalizes
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Table C.3: Comparison of cohesive energies obtained by experiments, DFT, and fits of
Equation 4.4 to DFT data. Experimental values are taken from Kittel[109].

Cohesive Energy, Ecoh (eV) Pt Au
Experimental[109] 5.84 3.81

DFT 5.56 3.04
Equation 4.4 fit 4.52 2.36

Table C.4: Comparison of surface energies from experiments and DFT. Experimental
values are taken from Tyson et al.[218] Systematic under prediction by DFT can be
observed, consistent with Janthon et al.[95]

Surface energy, γ (J/m2) Pt(111) Au(111)
Experimental[218] 2.489 1.506

DFT 1.458 0.744

these low fitted values. Table C.4 compares the experimental and DFT values of the

surface energies of Pt(111) and Au(111). DFT under predicts surface energies even

more severely than it under predicts cohesive energies. Janthon et al. tabulates similar

data for a variety of functionals and reached the same conclusion. Due to this under

prediction of surface energy, low fitted values of the cohesive energies relative to the

experimental values are needed to make Equation 4.4 consistent with the DFT values.

In order to assess the range of interactions between different sites, we consider

a simple case and compute the vacancy formation energies of point defects (i.e. a

single-atom vacancy) at varying distances in a 5-layer p(5 × 5) slab of Pt(111). For

each pair of defects, we compute the excess energy, which we define as the difference

in the formation energy of both defects and twice the vacancy formation energy for

a single point defect. The results of these calculations are shown in Figure C.2. We

find that the interactions of vacancies on each other are negligible beyond first nearest

neighbor. The short range of this interaction justifies the use of coordination number

for formation energies, as well as the lack of coupling between sites in our model for

activity. For large defects, the active site is typically beyond first nearest neighbor and

as a result, we do not expect significant interaction. Coupling between sites could be

included by performing DFT calculations on a set of training structures with multiple
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Figure C.2: Convergence of excess vacancy formation energies for pairs of defects.
Excess energy on the y-axis is defined as the vacancy formation energy of a pair of
defects, minus twice the vacancy formation energy of a single point defect. The x-axis
is the distance between the defects, i.e., the atoms removed to create the vacancies.
Points are labeled as 1st through 5th nearest neighbors in the fcc (111) lattice.

defects, and regressing a cluster expansion Hamiltonian, as has been done for oxygen

adlayers on metal surfaces[190, 234, 239].

C.2.2 Validation of Active Sites

In order to assess the accuracy of the GCN model, we have computed the *OH

and *OOH binding energies of the predicted defected sites using the same VASP

parameters as above. This approach provides an inexpensive method to refine the

predictions of the screening model, following recent advances in a hierarchical model

development[210, 220] (in brief, a screening model is used first, important parameters

or defects in our case are identified, and higher level theory is employed to refine the

results). The structures for DFT are shown in Figure C.3. The metal slabs consist of

four complete layers with additional adatoms for the defect layer. Site (e) is modeled

in DFT as a 12-layer (211) surface with an additional atom on the step (see Figure
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Figure C.3: Active site structures used for DFT validation. Slabs with adsorbed *OH
are shown on the left, while slabs with *OOH adsorbed are shown on the right. The
rows show active sites a-g, ordered top to bottom.

C.3). The binding energies are tabulated in Table C.5, while the predicted activities

are shown in Figure C.4.

DFT computed binding energies differ from those predicted using the generalized

coordination number by between 0.05 eV and 0.4 eV. Many are less than 0.1 eV and

most are within 0.3 eV, i.e., nearly within DFT error. The errors are only significant

for two out of the seven active sites. For sites (a) through (e), the activities predicted

using DFT versus the GCN still offer significant improvement relative to the ideal

surface. Site (c), for example, offers an improvement relative to a Pt(111) top site of

about 30. In contrast, the activities of sites (a) and (b) are actually underpredicted by

the GCN volcano. Given the disordered arrangement of sites in our Pt(111) defected

structure, errors for different sites likely compensate for each other. For sites (f) and

(g), DFT predicts the activity to be less than the volcano plots would predict due to

weaker binding of *OOH.
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Figure C.4: (left) Graphical depiction of the data in Table C.5. Points indicate DFT
computed *OH and *OOH binding energies for each active site. Triangles and circles
denote *OOH and *OH binding energies, respectively. Lines indicate predictions based
on the GCN, using Equations C.5 and C.6. (right) Points indicate activities predicted
for each active site, using Equation 4.1 and DFT energies. Lines indicate activity
predictions based on the GCN, which use Equations C.5-C.11, as well as Equation 4.1.
Sites a-e are approximately within an order of magnitude of their predicted activity.
Sites (f) and (g) are predicted to be less active due to weaker binding of *OOH.

Table C.5: Validation of binding energy predictions for the active sites encountered
in optimization. ∆Eads

OH, DFT is the binding energy of *OH (or *OOH) computed with
DFT. ∆Eads

OH, GCN is the binding energy predicted using Equation C.5 or Equation C.6.
All energies are in eV. Errors are expressed as ∆∆Eads

OH = ∆Eads
OH,DFT −∆Eads

OH,GCN and
similarly for *OOH.

Active Site Metal GCN ∆Eads
OH, DFT ∆∆Eads

OH ∆Eads
OOH,DFT ∆∆Eads

OOH

a Pt 8.35 -2.017 0.200 -0.982 -0.058
b Pt 8.33 -2.134 0.087 -0.979 -0.052
c Pt 8.33 -1.907 0.315 -0.870 0.058
d Pt 7.33 -2.349 0.064 -1.013 0.084
e Au 5.67 -2.138 0.295 -0.672 0.077
f Au 5.75 -2.019 0.405 -0.520 0.219
g Au 5.75 -2.131 0.293 -0.431 0.309
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C.3 Computational Acceleration

C.3.1 Structure modeling

A slab with dimensions p(d1×d2) has npos = 4×d1×d2 lattice positions. A

npos × npos adjacency matrix A is used, where Ai,j = 1 if the positions i and j are

nearest neighbors and 0 otherwise. Each row of A has at most CNmax = 12 nonzero

elements and therefore A is sparse, a trait that is exploited to accelerate computation.

The column vectors of coordination numbers
⇀

CN and generalized coordination numbers
⇀

GCN for each atom are computed according to

−→
CN = A · −→c (C.13)

⇀

GCN =
1

CNmax

A · diag(
⇀
c ) ·

⇀

CN (C.14)

diag(
⇀
c ) indicates a diagonal matrix whose diagonal elements are the elements of

⇀
c .

The coordination numbers and GCNs of the atoms in the bottommost layer are 12 to

account for the bulk metal.

C.3.2 Choosing adjacent sites for energy minimization

We efficiently list all available pairs of occupancies and adjacent vacancies as

follows. The matrices Avar and −→c var are taken as A and −→c with only the rows and

columns corresponding to the atoms in the top layer. Then, the matrix A′ is computed

as

A′ = diag(−→c var) · Avar · (Invar − diag(−→c var)) (C.15)

so that A′i,j = 1 if i is an occupied site and j is an adjacent unoccupied site. Otherwise,

A′i,j = 0. Invar denotes the nvar × nvar identity matrix and nvar is the number of atom

positions in the top layer. A random non-zero term of A′ is chosen so that the candidate

event is the transfer of an atom from site i to site j.
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C.3.3 Normalizing activity and stability

We non-dimensionalize surface energy and activity to achieve better numerical

behavior. Energy differences are scaled by the energy required to break a metal-metal

bond, while activity is normalized by the current density of an active site.

E =
Eform

Ecoh/CNmax

(C.16)

I = −
∑

k ik
s ∗ imax

(C.17)

The negative sign in Equation C.17 is employed because activity must be maximized

rather than minimized. imax is the value of i at the peak of the volcano curve for Pt

or Au. s is a scaling factor used to improve numerics (s = 0.5 is used here).

The energy of all the bonds a metal atom has in the bulk is the cohesive

energy of the solid, Ecoh. Given that it has CNmax bonds in this case, the quantity

Ecoh/CNmax is the average bond strength of metal-metal bonds. Metal-metal bonds are

broken and formed during optimization, so the average bond strength is an appropriate

normalization factor.

Similarly, for current density, an appropriate scaling factor approximates

changes during optimization. The movement of atoms may destroy or create an active

site, in which case the current density of an active site is desired. We use the value of

current density at the volcano peak, imax to approximate the activity of an active site.

However, the active site may not be quite as active as the volcano peak, and changes

in structure may not completely destroy or create an active site. Therefore, the factor

s = 0.5 scales down the normalization factor to changes in activity that would be more

common. Additionally, changes in dimensionless surface energy and current density

must be comparable, so that they can be subjected to the same cooling schedule and

be linearly mixed.
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C.4 Metropolis Algorithm

C.4.1 Algorithmic details

The multi-objective optimization uses a Metropolis approach with simulated

annealing. A candidate move would change the objective function by an amount ∆F .

If ∆F < 0, the move is accepted; if ∆F > 0, the move is accepted if

exp

(
− ∆F
Tmetro

)
> RN ([0, 1]) (C.18)

where RN ([0, 1]) is a random number taken from the uniform probability distribution

between 0 and 1 and Tmetro is the dimensionless Metropolis temperature. Tmetro is given

by a linear cooling schedule[153]

Tmetro (step) = Tmax

(
1− step

stepmax

)
(C.19)

Tmax = 0.7 is used. stepmax is the maximum number of optimization steps; a value of

450,000 is used.

During the energy minimization, a move consists of a top-layer atom in an

occupied site moving to an adjacent unoccupied site. The move is accepted if and only

if ∆E < 0 in a downhill energy-minimization approach. 45,000 steps are used. An

example of optimization, demonstrating how activity and surface energy change as the

simulation progresses through the multiobjective and subsequent energy-minimization,

is shown in Figure C.5.

C.4.2 Optimization pseudocode

Initialization

1. Read parameters from an input file.

2. Build catalyst structure, e.g., Pt(111), Pt(100), Au(111), or Au(100).

3. Build adjacency matrix A of nearest neighbors.

Multi-objective Optimization (maximize I and minimize E simultaneously)

4. Initialize the catalyst slab with random occupancies in the top layer.

149



Figure C.5: Example of an optimization of a Pt(111) surface using an activity-weight
of ω = 0.7. Current density (Equation 4.2) increases while surface energy (Equation
4.3) decreases during the multiobjective optimization (left of the vertical dashed line).
During the subsequent energy-only minimization (right of the vertical dashed line), the
surface energy decreases, typically along with a decrease in activity (no uphill moves
are accepted in this second level resulting in lack of noise).
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5. Set 0 < ω ≤ 1

6. Compute CNs and GCNs of all atoms using Equations C.13 and C.14 .

7. Compute I and E for the initial structure using Equations C.16 and C.17.

8. Compute F using Equation 4.5 .

9. Choose a random lattice position in the top layer and attempt to switch its
occupancy.

10. Perform steps 6-8 for the proposed structure.

11. Choose temperature Tmetro according to Equation C.19.

12. If Equation C.18 is satisfied, the new structure is accepted.

13. Repeat steps 9-12 for a stepmax steps.

14. Output data for the structure encountered with the smallest value of F .

Energy-only minimization (locally minimize E)

15. Initialize structure from the multi-objective optimization.

16. Choose a random pair of adjacent occupied and unoccupied sites in the top layer
using Equation C.15 and attempt to swamp them.

17. Compute E for the new structure.

18. If ∆E < 0, accept the new structure.

19. Repeat steps 16-18 for a stepmax steps.

C.5 Pareto Plots

For a given metal-facet, a number of simulations are run to achieve a variety

of optima. 250 simulations are found to be sufficient. Each simulation has a different

random initial structure, random seed, and ω value. The kth simulation uses a value of

ωk = k
250

, where k = 1, 2, . . . , 250. The collection of 250 optima from all simulations

forms a population of structures for which we compute the surface energies and current

densities. The inherent randomness of the optimization results in some structures

having superior properties to others. We identify the structures of interest to be those
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Figure C.6: The concept of Pareto optimality demonstrated using Pt(111) data. Data
points correspond to structures resulting from the multiobjective optimization followed
by subsequent energy minimization for various weights (ω). ω near 1 maximizes
primarily activity and ω near 0 chiefly minimizes energy. The red points connected
with the solid black line are the Pareto optimal points. A point p1 is Pareto optimal if
there is no other point p2 for which γ (p2) < γ (p1) and j (p2) > j (p1).

with high current density and low surface energy. Figure C.6 demonstrates how the

Pareto front is computed from a large number of calculations using different values of

the activity weight ω.

C.6 Activity Fluctuations

Figure C.8 shows results for the other surfaces, analogous to Figure 4.3 in the

main text. Figure C.5 shows the fluctuations of activity for a Pt(111) surface at a

constant loading of 49% vacancies.

C.7 Suboptimal defects

Figure C.9 shows a Pt(111) surface with suboptimal defects. It has a surface

energy of 1.80 J/m2 and a current density of 0.048 mA/cm2, and is therefore about
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Figure C.7: Results of the optimization parameter sweep for Pt(100), Au(111),
Au(100). Current densities (Equation 4.2) and surface energies (Equation 4.3) are
plotted against activity-weight ω. Red points show values resulting from multiobjec-
tive optimization only. Blue points show data after the energy-only minimization step
is also applied.

two orders of magnitude less active than Pt(111). This demonstrates conceptually that

surface roughening can reduce the activity of a pristine surface and deliberate design

of active sites is necessary to increase activity.
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Figure C.8: Comparison of experimental activities with those computed through
optimization. The red line marks the activity of the most active defected Pt(111)
structure achieved from optimization. The blue and black lines show experimental
data from Calle-Vallejo et al.[28] for Pt(111) with and without defects, respectively.
The fluctuating green curve shows a trajectory for a Monte Carlo simulation in which
a surface is initialized with a random half-monolayer of vacancies and allowed to
reconstruct at finite temperature, which is gradually decreased. Surface energy is
used as the objective function in a Metropolis Monte Carlo simulation.
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Figure C.9: Example of a Pt(111) surface in which the presence of defects decreases
activity. Vacancies are present, but do not expose active sites in the second layer.
The vacancies also decrease the GCNs of active sites on the top layer, decreasing their
activity. As a result, the current density is about two orders of magnitude less than
that of Pt(111).
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Appendix D

AN ONLINE MACHINE LEARNING APPROACH TO OPTIMIZING
ACTIVE SITE COUPLING - SUPPLEMENT

D.1 Site indexing and symmetry operators

We show mathematically how the rotational operator (Rθ(σ)) permutes the site

indices. Let the fractional coordinates of a Ni site be

f =

 f1

f2

 . (D.1)

The Cartesian coordinates of the fcc(111) unit cell is

c = dPt

 1 1
2

0
√

3
2

 (D.2)

where dPt is the nearest neighbor distance between Ni sites, as imposed by the lattice

constant of the Pt substrate. The rotation matrix is

R(θ) =

 cos(θ) − sin(θ)

sin(θ) cos(θ)

 . (D.3)

The fractional coordinates will then be transformed as

fnew = c−1 ·R · c · f. (D.4)

In our case, it becomes

c−1 ·R
(

2π

3

)
· c =

 −1 −1

1 0

 (D.5)

c−1 ·R
(

4π

3

)
· c =

 −1 1

−1 −1

 . (D.6)
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Figure D.1: All 12 translational and rotational symmetries of a p(2×2) fcc(111) lattice.
Numbers indicate the indices of the Ni sites of the original lattice.

The new Ni site indices after R (240◦) are

fnew
1 = (−f1 − f2) mod d (D.7)

fnew
2 = f1 mod d (D.8)

i = f2d+ f1 + 1. (D.9)

An example of how the rotational and translational operators permute the site indices

is shown in Figure D.1.
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