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ABSTRACT

We are interested in the numerical simulation of elastic and poroelastic waves

in three dimensions on polyhedral domains. First we tackle the frequency-domain

case for elasticity, proving that our HDG+ method’s solution converges at O(hk+2)

to the exact displacement solution and O(hk+1) to the exact stress solution, where

k is the polynomial degree used in the approximation and h is the maximum length

of an edge of our tetrahedra. Next we show numerical experiments to verify these

results. We then extend our results to the time-domain, proving that the system

is conservative and showing numerical results that match our predictions. Then we

introduce an extended method by adding a third variable corresponding to the strain,

and show numerical results that match our predictions. We next go on to explore

HDG+ for Biot’s poroelastic system in 3D, proving dissipativity of our method and

showing numerical results of the same convergence rates as well as O(hk+2) for pressure

and O(hk+1) for pressure flux in both the frequency domain and the time-domain.
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Chapter 1

INTRODUCTION

This dissertation is the culmination of three years of the intensive study of the

numerical approximation of linear elastic and poro/thermoelastic waves using the Hy-

bridizable Discontinuous Galerkin method, by Bernardo Cockburn, Jay Gopalakrish-

nan, and Raytcho Lazarov [9], and extended to what we will call HDG+ by Christophe

Lehrenfeld and Joachim Schöberl [31]. Here, the “+” in HDG+ represents the enrich-

ment of the approximating displacement space by one polynomial degree. We will get

to the rest of the acronym presently.

Mainly we extend previous work on steady-state elasticity to the frequency

domain by mixing the work of Qiu, Shi, and Shen [41] on HDG for steady-state elasticity

with that of Griesmaier and Monk [24] on HDG for time-harmonic acoustic waves.

Thereupon, we continue our work into the time domain using a time-discretization

method called Convolution Quadrature (CQ) developed by Christian Lubich [34] using

a MATLAB implementation by Hassell and Sayas [25]. We then briefly analyze and

apply our HDG+/CQ framework to the Biot system of poroelasticity equations in three

dimensions in both the frequency domain and the time domain.

Throughout this dissertation, we will study four basic models:

1. Time-harmonic elasticity:

Aσ − (∇u + (∇u)>)/2 = 0,

ρs2u + div σ = f ,

1



2. Fully dynamic elasticity:

Aσ(t)− (∇u(t) + (∇u(t))>)/2 = 0,

ρü(t) + div σ(t) = f(t),

3. Time-harmonic poroelasticity:

Aσ − (∇u + (∇u)>)/2 = 0,

ρs2u + div σ − β∇p = fu,

β∇ · su + csp−∇ · (κ∇p) = fp,

4. Fully dynamic poroelasticity:

Aσ(t)− (∇u(t) + (∇u(t))>)/2 = 0,

ρü(t) + div σ(t)− β∇p(t) = fu(t),

β∇ · u̇(t) + cṗ(t)−∇ · (κ∇p(t)) = fp(t).

all with mixed boundary conditions. Note that many papers deal with the so-called

quasistatic model of poroelasticity, which is identical to #4, but eliminating the kinetic

term ρü. The resulting model is purely parabolic and doesn’t produce any waves.

So HDG – What is it? Discontinuous Galerkin (DG) methods have evolved from

that first introduced by Reed and Hill [42] in 1973, in the context of the neutron trans-

port equation, into a large class of finite element methods designed to find polynomial

approximations to solutions of partial differential equations locally, and in particular

discontinuously, across each element of a particular triangulation/tetrahedrization of a

given domain. Reed and Hill’s method was first analyzed by Lesaint and Raviart [33]

in 1974, who showed it is strongly A-stable of order 2k + 1 at mesh points, where k is

the polynomial degree used in the approximation. DG methods are in contrast to the

more traditional Continuous Galerkin (CG) methods, which provide continuity of the

polynomial approximations across element boundaries automatically, but at the cost

of flexibility and adaptibility to different meshes.

2



DG methods and their analyses are now abundant in mathematical and en-

gineering literature. The “Hybridizable” part represents the ability to transfer local

information onto a so-called hybrid variable that lives on the “skeleton,” i.e. the union

of the faces, of a tetrahedral mesh of the domain, and then solve a (presumably) smaller

global system for just that variable, before inverting the local systems to solve, in paral-

lel, for the variables of interest. As is shown below, this process leads to massive static

condensation in the global linear system needed to solve for an approximation. In ad-

dition, the parallelization of the second part of the method is extremely advantageous

computationally, and keeping track of the degrees of freedom is quite easy.

This HDG methodology is applied to the problem of static linear elasticity by

Cockburn, Soon, and Stolarski in [13] with numerical results that show both displace-

ment and stress converging at O(hk+1) for any k ≥ 0 where h is the maximum length of

an edge of an element and k is the degree of the approximating polynomials. Moreover,

they show O(hk+2) error in the displacement after using an element-by-element post-

processing technique whenever k ≥ 2. Then Fu, Cockburn and Stolarski [17] prove

convergence in displacement on the order of hk+1 and stress on the order of hk+1/2.

The topic (for weakly symmetric stress) is revisited by Cockburn and Shi [12], who

achieve a proof of O(hk+2) convergence for the displacement and O(hk+1) for the stress

for any polynomial degree k. Then Qiu, Shi, and Shen [41] proved the same results for

an HDG method which preserves the strong symmetry of the stress tensor.

New challenges arise when we move into the time-harmonic regime. We begin,

after this short introduction, by reviewing the basics of linear elasticity–namely, a

quick introduction to our notation, a (terse) review of Sobolev spaces, and then some

information about the key quantities involved in linear elasticity. Next we move on

to explain the frequency-domain case, and then the transient case. We then have an

introduction to our time-discretization method, Convolution Quadrature, developed

by Christian Lubich [34] for parabolic problems and extended in [35] to hyperbolic

problems.
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The third chapter consists of a detailed description of the HDG+ discretiza-

tion for the frequency domain case and a fully rigorous analysis of the convergence

of the HDG+ solution to the weak solution of the (frequency domain) elastic system.

We prove, under certain specific conditions and full regularity of the exact solution,

that the displacement error converges at O(hk+2) and that the error in the stress con-

verges at O(hk+1), where h is identified with the maximum length of an edge of our

tetrahedrization Th and k is the polynomial degree used in the approximation.

The fourth chapter is about HDG+ for transient elasticity. The theory has been

developed by Shukai Du [16]. He uses a new HDG+ projection that simplifies the static

and time-harmonic analysis and makes the transient analysis quite doable. This leaves

us to simply making sure that the method we use is conservative, and then performing

some numerical experiments to show that our method is optimally convergent. We then

say a word or two about “extended HDG+,” which is a method designed to circumvent

the need to invert the elastic law and to calculate the strain directly.

The fifth chapter is devoted to HDG+ for poro/thermoelasticity. We note that

the equations for poroelasticity and thermoelasticity are mathematically identical, so

we do not distinguish between them. Just read temperature whenever you see pressure

and temperature flux whenever you see pressure flux to convert to thermoelasticity.

This chapter contains a brief analysis of the diffusive nature of the problem and of the

HDG formulation, and numerical experiments to verify our convergence rates.

4



Chapter 2

FUNDAMENTALS OF LINEAR ELASTICITY

Before we get to the nitty-gritty of theorem and proof, we need to start with

a bit of notation. Then we continue with recalling some information about Sobolev

spaces: refer to [1] for more on Sobolev spaces and [22] for more on H(div) spaces.

Next we will move on to explain some key quantities involved in linear elasticity, and

then to a recap of the different versions of linear elasticity that are in the literature–

transient, quasi-static, time-harmonic, and Laplace transformed. Finally, we give an

introduction to the time-discretization method, Convolution Quadrature, first in an

abstract framework, and then as applied to the problem of transient linear elasticity.

2.1 Notation

Let Ω ⊂ Rd be a Lipschitz polyhedron with boundary Γ. We will write

(u, v)Ω :=

∫
Ω

u v, (u,v)Ω :=

∫
Ω

u · v, (ξ,χ)Ω :=

∫
Ω

ξ : χ :=

∫
Ω

trace(χ>ξ),

for real square-integrable scalar, vector-valued, and matrix-valued functions. The three

norms induced by the considered inner products will be denoted by ‖ · ‖Ω. Further, we

will assume Γ is divided into two pieces ΓD and ΓN such that

ΓD ∪ ΓN = Γ and ΓD ∩ ΓN = ∅,

where we will respectively impose Dirichlet (displacement) and Neumann (normal stress

or traction) conditions. For L2 products on the boundaries, we will write

〈u, v〉Γ∗ :=

∫
Γ∗

u v, 〈u,v〉Γ∗ :=

∫
Γ∗

u · v, 〈ξ,χ〉Γ∗ :=

∫
Γ∗

ξ : χ =

∫
Γ∗

trace(χ>ξ),

where ∗ runs over D and N .

5



The symbol > will be used for real transposition of matrices. When used for

complex-valued fields, all brackets will still be defined in the same way, and will there-

fore be bilinear and not sesquilinear. In the same spirit, > will denote transposition

(not conjugation and transposition) and the colon will be defined as above, even when

applied to complex matrices. The set of symmetric real d× d matrices will be denoted

Rd×d
sym and the set of symmetric (not Hermitian) complex d×d matrices will be denoted

Cd×d
sym. Similarly, the set of skewsymmetric real d × d matrices will be denoted Rd×d

skw

and the set of skewsymmetric (not Hermitian) complex d× d matrices will be denoted

Cd×d
skw .

We will consider the spaces

H1(Ω;Rd) := {u ∈ L2(Ω;Rd) : ∇u ∈ L2(Ω;Rd×d)},

H(Ω, div;Rd×d) := {σ ∈ L2(Ω;Rd×d) : ‖div σ‖Ω <∞},

H1/2(Γ̂;Rd) := {g ∈ L2(Γ̂;Rd) : ∃u ∈ H1(Ω;Rd) s.t. g = γ|Γ̂u},

where the divergence of σ is taken by rows and γ|Γ̂ is the trace operator on some piece

of the boundary Γ̂ (which will usually be the Dirichlet portion ΓD of the boundary).

We equip these spaces with their natural norms

‖u‖1,Ω :=
√
‖u‖2

Ω + ‖∇u‖2
Ω, (2.1.1)

‖σ‖div,Ω :=
√
‖σ‖2

Ω + ‖div σ‖2
Ω, (2.1.2)

‖g‖1/2,Γ̂ := inf{‖u‖1,Ω : u ∈ H1(Ω,Rd) s.t. γ|Γ̂u = g}. (2.1.3)

Since we will be working in the Laplace and frequency domains, we will also need the

complexifications of these spaces,

H1(Ω;Cd) := {u ∈ L2(Ω;Cd) : ∇u ∈ L2(Ω,Cd×d)},

H(Ω, div;Cd×d) := {σ ∈ L2(Ω;Cd×d) : ‖div σ‖Ω <∞},

H1/2(Γ̂;Cd) := {g ∈ L2(Γ̂;Cd) : ∃u ∈ H1(Ω;Cd) s.t. g = γ|Γ̂u},

equipped with their natural norms defined as in (2.1.1),(2.1.2), and (2.1.3).
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2.2 Key quantities in transient linear elasticity

We will be looking for a displacement field u : [0,∞)→ H1(Ω;Rd) and for the

associated stress tensor σ : [0,∞) → H(div,Ω;Rd×d
sym). The stress field is given by a

general linear non-homogeneous anisotropic law:

σ = Cε(u), ε(u) := 1
2
(∇u + (∇u)>),

where for almost every x ∈ Ω, the linear operator C(x) transforms real symmetric

matrices into real symmetric matrices, satisfies the symmetry condition

(C(x)ξ) : χ = ξ : (C(x)χ) ∀ξ,χ ∈ Rd×d
sym,

and the positivity condition

(C(x)ξ) : ξ ≥ C0 ξ : ξ ∀ξ ∈ Rd×d
sym,

for some C0 > 0. Moreover, we assume that the components of the tensor C with

respect to the canonical basis of Rd×d
sym are L∞(Ω) functions.

The other physical parameter in the equations to follow is the strictly positive

bounded density ρ : Ω → R, so that the ρ-weighted norm is equivalent to the L2(Ω)

norm, i.e., there exist two constants C1 and C2 such that

C1‖u‖2
Ω ≤ ‖u‖2

ρ := (ρu,u)Ω ≤ C2‖u‖2
Ω ∀u ∈ L2(Ω,Rd).

For the HDG formulation, we will first need to invert the elastic law C. With the

hypothesis given for C, we can assert that for almost every x ∈ Ω, there exists a linear

operator A(x) = C(x)−1, transforming real symmetric matrices into real symmetric

matrices. The tensor A is often referred to as the compliance tensor for the elastic

material. From the given hypotheses on C, we know that the A-weighted norm satisfies

equivalence to the L2 norm, i.e., there exist two constants C1 and C2 such that

C1‖ξ‖2
Ω ≤ ‖ξ‖2

A := (Aξ, ξ)Ω = (Aξre + ıAξim, ξ)Ω ≤ C2‖ξ‖2
Ω ∀ξ ∈ L2(Ω,Cd×d

sym).
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There is a natural mapping Rd×d
sym → R

d(d+1)
2 that takes advantage of the symmetry to

transform matrices into vectors. It is typically performed by mapping


σ1,1 σ1,2 . . . σ1,d

σ2,1 σ2,2 . . . σ2,d

...
...

. . .
...

σd,1 σd,2 . . . σd,d

 7−→


σ1

σ2

...

σ d(d+1)
2

 =



σ1,1

σ2,2

...

σd,d

σ1,2

...

σd−1,d

σ1,3

...

σ1,d



.

In 3 dimensions for easier visualization, the transformation is


σ1,1 σ1,2 σ1,3

σ2,1 σ2,2 σ2,3

σ3,1 σ3,2 σ3,3

 7−→



σ1

σ2

σ3

σ4

σ5

σ6


=



σ1,1

σ2,2

σ3,3

σ1,2

σ2,3

σ1,3


.

This mapping does not preserve the scalar invariance of the matrix, but there are

adjustments we can make. One such adjustment is to use Voigt notation, so that

σ : ε = σ : ε̃.

ε =



ε1,1

ε2,2

ε3,3

ε1,2

ε1,3

ε2,3


7−→ ε̃ =



ε1,1

ε2,2

ε3,3

2ε1,2

2ε1,3

2ε2,3


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2.3 Transient linear elasticity

The time-dependent case for linear elasticity, which is discussed in Chapter 4,

consists of the search for

σ : [0,∞)→ H(div,Ω;Rd×d
sym) and u : [0,∞)→ H1(Ω;Rd)

such that for all t ≥ 0,

Aσ(t)− ε(u(t)) = 0 in Ω, (2.3.1a)

−div σ(t) + ρü(t) = f(t) in Ω, (2.3.1b)

u(t) = gD(t) on ΓD, (2.3.1c)

σ(t)n = gN(t) on ΓN . (2.3.1d)

u(0) = u0 in Ω, (2.3.1e)

u̇(0) = v0 in Ω, (2.3.1f)

for u0 ∈ H1(Ω;Rd),v0 ∈ L2(Ω;Rd), where

f : [0,∞)→ L2(Ω;Rd),

gD : [0,∞)→ H1/2(ΓD;Rd),

and gN : [0,∞)→ L2(ΓN ;Rd).

2.4 Quasi-static linear elasticity

The quasi-static model is found by dropping the momentum term ρü in (2.3.1):

Aσ − ε(u) = 0 in Ω, (2.4.1a)

−div σ = f in Ω, (2.4.1b)

u = gD on ΓD, (2.4.1c)

σ n = gN on ΓN . (2.4.1d)

It is an elliptic problem that we will not be dealing with in this thesis.
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2.5 Time-harmonic linear elasticity

In Chapter 3, we will restrict ourselves to the time-harmonic case, namely look-

ing for û ∈ H1(Ω;Cd) and σ̂ ∈ H(Ω, div;Cd×d
sym) such that

Aσ̂ − ε(û) = 0 in Ω, (2.5.1a)

−div σ̂ − ρ κ2û = f̂ in Ω, (2.5.1b)

û = ĝD on ΓD, (2.5.1c)

σ̂ n = ĝN on ΓN , (2.5.1d)

where the parameter κ is the angular frequency of the solution û.

We will assume that κ2 is not an eigenvalue for the associated Navier-Lamé

operator u 7→ −ρ−1div (Cε(u)) with homogenous boundary conditions and forcing

data, i.e., we assume that the only solution of (2.5.1) with zero right-hand side is the

trivial solution.

Following [24], we will work on a first order (in space and frequency) reformu-

lation of (2.5.1). We introduce the new unknown and data

σ :=
ı

κ
σ̂ =

ı

κ
Cε(û), f :=

ı

κ
f̂ , gN :=

ı

κ
ĝN , u := û,

and write (2.5.1) as the equivalent first order system

ıκAσ + ε(u) = 0 in Ω, (2.5.2a)

div σ + ıκ ρu = f in Ω, (2.5.2b)

u = gD on ΓD, (2.5.2c)

σn = gN on ΓN . (2.5.2d)

Note that for the frequency domain (time-harmonic) equations the physical magnitudes

will have a hat, while the computational ones will not.
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2.6 Laplace domain formulation

Let us now consider the Laplace transforms of the quantities in (2.3.1),

f(t) 7−→
∫ ∞

0

fe−stdt =: GF (s) ≡ L(f(t)),

gD(t) 7−→
∫ ∞

0

gDe
−stdt =: GD(s) ≡ L(gD(t)),

gN(t) 7−→
∫ ∞

0

gNe
−stdt =: GN(s) ≡ L(gN(t)),

u(t) 7−→
∫ ∞

0

ue−stdt =: U(s) ≡ L(u(t)),

σ(t) 7−→
∫ ∞

0

σe−stdt =: Σ(s) ≡ L(σ(t)).

Taking the Laplace transform of (2.3.1), and assuming u(0) = u̇(0) = 0, we have

AΣ− ε(U) = 0 in Ω, (2.6.2a)

−div Σ + ρ s2U = GF in Ω, (2.6.2b)

U = GD on ΓD, (2.6.2c)

Σn = GN on ΓN . (2.6.2d)

These equations will be considered for s ∈ C+ := {s ∈ C : Re s > 0}, so they will

not display resonance (eigenvalue) phenomena. We will use these Laplace domain (or

resolvent) equations for the CQ treatment of the transient problem.

2.7 Convolution Quadrature

We turn our attention now to a particular time-discretization method called

CQ (convolution quadrature) developed by Christian Lubich [34] in the late 1980’s for

discretizing convolutions of causal (vanishing on the negative real line) distributions.

Suppose we have two Banach spaces X and Y , and two functions

g : [0,∞)→ X and f : [0,∞)→ B(X, Y ),

and we want a numerical solution to

u(t) = f ∗ g(t) :=

∫ ∞
0

f(t− s)g(s)ds : [0,∞)→ Y. (2.7.1)

11



For a uniform timestep grid with timestep δt,

tn = nδt, for n = 0, . . . , N,

and sampled data

gn := g(tn),

we want approximations

un ≈ u(tn).

A Laplace transform of (2.7.1) yields

U(s) = F (s)G(s). (2.7.2)

We consider δ : U ⊂ C → C (here U is a neighborhood of the origin), depending on

some multistep time-stepping method (δ is the characteristic function of the multistep

method). In particular, we will consider

δ(s) =


1− s Backward Euler,

3
2
− 2s+ 1

2
s2 BDF2,

21−s
1+s

Trapezoidal Rule.

In practice we will only use the trapezoidal rule for numerical tests. We then consider

Fκ(ζ) = F

(
1

κ
δ(ζ)

)
=
∞∑
n=0

ωFn (κ)ζn, (2.7.3)

and the discrete counterpart to (2.7.2) written in terms of the ζ-transform (we use the

same symbol for the time-discretized unknown). Note that ωFn (κ) ∈ B(X, Y ) are the

Taylor coefficients of Fκ(ζ), and

U(ζ) =
∞∑
n=0

unζ
n and G(ζ) =

∞∑
n=0

gnζ
n,

so

U(ζ) = Fκ(ζ)G(ζ).
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Then

U(ζ) =
∞∑
n=0

unζ
n =

(
∞∑
n=0

ωFn (κ)ζn

)(
∞∑
n=0

gnζ
n

)

=
∞∑
n=0

n∑
m=0

ωFn−m(κ)ζn−mgmζ
m

=
∞∑
n=0

(
n∑

m=0

ωFn−m(κ)gm

)
ζn.

Pairing up values of n, we have

un =
n∑

m=0

ωFn−m(κ)gm.

Notice that we have the time-sampled data gm (taken directly from g) in discrete

convolution with the Taylor coefficients of Fκ, which are derived from F , the Laplace

domain solver.

To calculate ωFn (κ) ∈ B(X, Y ), we take a contour integral around a circle CR of

radius R around the origin, and then approximate the integral with a trapezoidal sum

of N + 1 terms:

ωFn (κ) =
1

2πı

∮
CR

ξn−1F

(
1

κ
δ(ξ)

)
dξ

= R−n
∫ 1

0

e2πnıθF

(
1

κ
δ
(
Reıπθ

))
dθ

≈ R−n

N + 1

N∑
`=0

e
2πın`
N+1 F

(
1

κ
δ
(
Re

−2πı`
N+1

))
.

Setting ξN+1 := e
2πı
N+1 and F̂`(κ) := F

(
1
κ
δ
(
Re

−2πı`
N+1

))
= F

(
1
κ
δ
(
Rξ−`N+1

))
,

un =
N∑
m=0

ωFn−m(κ)gm ≈
N∑
m=0

(
R−(n−m)

N + 1

N∑
`=0

e
2πı(n−m)`

N+1 F̂`(κ)

)
gm

=
N∑
m=0

(
R(m−n)

N + 1

N∑
`=0

ξ
(n−m)`
N+1 F̂`(κ)

)
gm,

=
N∑
`=0

N∑
m=0

R−nRm

N + 1
ξn`N+1ξ

−m`
N+1F̂`(κ)gm

=
N∑
`=0

1

N + 1
ξn`N+1R

−nF̂`(κ)

(
N∑
m=0

ξ−m`N+1R
mgm

)
.
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More work on convolution quadrature for BEM/FEM problems can be found in [25]

and [46].

2.8 CQ and elasticity

Regarding the practical implementation of CQ for elasticity, we use a black box

method that can be found in [3]. We take the spaces,

X = L2(Ω;Cd)×H1/2(ΓD;Cd)× L2(ΓN ;Cd) and Y = H1(Ω;Cd)×H(div,Ω;Cd×d
sym)

and a bounded linear function F(s) : X→ Y that takes the Laplace transforms of our

data

(GF ,GD,GN) ∈ X,

and outputs (U(s),Σ(s)) ∈ Y, with U(s),Σ(s) solving equations (2.6.2).

Our goal is to produce U = [Un]Nn=0 where Un = [un.σn] ≈ [u(tn),σ(tn)]. We

begin by sampling the time-domain data

dn = [f(tn),gD(tn),gN(tn)] for n = 0, . . . , N

and considering the Taylor expansion of

Fκ(ζ) := F

(
1

κ
δ(ζ)

)
=
∞∑
n=0

ωF
n (κ)ζn.

The CQ approximation of (2.3.1) with vanishing initial conditions is then given by the

discrete convolution

Un =
N∑
m=0

ωF
n−m(κ)dm.

These convolutions will be computed with the parallelizable all-timesteps-at-once method

explained in Section 2.7. As is made clear in [25], this requires about N/2 solves of the

Laplace domain equations for different values of s.
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Chapter 3

HDG FOR THE TIME-HARMONIC PROBLEM

This chapter proposes and analyzes an HDG method with strongly symmetric

stresses for the time-harmonic elastic wave equations. The chapter is contained in

the paper HDG Methods for Elastodynamics [26] co-authored with D. Prada and F.-J.

Sayas.

3.1 Introduction

We are concerned with numerical methods for the evolution of elastic waves on

general (non-homogeneous anisotropic) linearly elastic solids. It is well known that

elastodynamics, in the time and frequency domains, has multiple applications in the

fields of geophysics, material science, structural engineering, oil exploration, aerospace,

etc. This chapter is a first contribution on the use of the Hybridizable Discontinuous

Galerkin (HDG) method to the three-dimensional linear elastic and poroelastic wave

equations in the time-harmonic regime.

Mathematical literature contains a plethora of numerical methods for dealing

with the elastic wave equation, each with its own virtue and applications: spectral

elements [14], particle-based methods such as the Hamiltonian Particle method (HPM)

[48], as well as the more finite element styled Continuous Galerkin (CG) methods [28]

and Discontinuous Galerkin (DG) methods [39]. CG is well-known for its accuracy and

reliability with smoother data and simpler meshes. The DG framework is praised for

its capacity to handle all sorts of complicated meshes and discontinuous data, but also

disdained for the large number of degrees of freedom required to make a calculation

when compared to CG.
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Certain DG methods, however, including the ones we shall explore here, have

the key property of being hybridizable, i.e., the global system can be recast in terms of

(statically condensed onto) a single “hybrid” variable defined on the skeleton formed

by the union of the boundaries of the elements. These form a family of methods

that are naturally called the Hybridizable Discontinuous Galerkin (HDG) methods [9].

The main idea is that unknowns are solved elementwise, in parallel, in terms of the

hybrid variable. This creates a global linear system for only the hybrid variable, which

is inverted, after which the unknowns are recovered locally, again in parallel. This

is similar to the hybridized implementation of mixed methods such as the Raviart-

Thomas elements (see [9], [37] and [45] for more on this), except that the HDG method

uses a stabilization function instead of a stable mixed finite element pair. In certain

cases, namely for polynomial expansions above approximately degree 4 [10], the hybrid

space is smaller than that of the displacement/stress spaces, and this computational

advantage over traditional CG methods has resulted in renewed interest in HDG.

The HDG methodology was successfully applied to time-harmonic acoustic waves

by Roland Griesmaier and Peter Monk [24]. Their analysis involves first rephrasing

the classical system as first order in frequency before moving to the weak formulation.

Testing the equations with the projected errors leads to a G̊arding-type identity, and,

combined with the dual equations to the classical system, the projected errors of both

amplitude and its gradient can be bounded. This last bound requires a rather involved

bootstrapping argument which is indispensable within our argument here.

Hybridizable DG methods have lately enjoyed further exposure in time-domain

wave problems. For example, Cockburn and Quenneville-Bélair’s work on HDG for

the acoustic wave equation [11] provides much of the framework for the insights on

the time-domain elastic problem in the next chapter of this work. Nguyen, Peraire,

and Cockburn implement an implicit HDG numerical scheme for both time-dependent

acoustic and elastic equations [39], and more recently, Stanglmeier, Nguyen, Peraire,

and Cockburn explore an explicit HDG scheme for the acoustic case [47].
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The vector field formulation of elasticity introduces several distinct complica-

tions in both the analysis and the implementation of HDG. Cockburn, Soon, and

Stolarski give a numerical implementation of HDG for planar elasticity, along with a

proof of existence and uniqueness of a solution to their particular HDG formulation

[13]. Fu, Cockburn, and Stolarski go on to analyze the convergence of this last method,

which uses degree k polynomial bases for displacement, stress, and hybrid spaces. They

prove convergence at an order of k+ 1 for displacement and k+ 1/2 for the stress [17],

which is suboptimal; this has prompted the exploration of optimally convergent HDG

methods.

One issue is that the tailored HDG projections often used in the analysis may

not play well with the symmetry of the approximate stress tensor. Another is that using

bases of the same polynomial degree for displacement, stress, and hybrid spaces leads

to a suboptimal method. One method for addressing both of these issues is to introduce

special divergence-free symmetric “bubble matrices” as in [8], providing an extra control

on the stress-associated approximation space. This yields a weakly-enforced symmetry

of the approximate stress as well as optimal convergence of a postprocessed solution.

Another approach entirely is that of Weifeng Qiu, Jiguang Shen, and Ke Shi

for the steady-state elasticity problem [41]. The special tailored HDG projections are

left behind for simpler L2 projections, and the displacement-associated approximation

space is expanded by one polynomial degree (hence the “+” in “HDG+”). While this

does then require some extra terms to be bounded in the analysis, the net result is

shown to achieve optimal convergence directly. An important feature of this approach

is the strong symmetry of the approximate stress. See the introduction of [41] for

more on this. Expanding the polynomial degree of the primal unknown by one is an

idea that can be traced back to Lehrenfeld and Schöberl [31], but Qiu, Shen and Shi

compensate by adjusting the order of the primal unknown piece of the stabilization

function to O(h−1) as well as a projection operator from primal approximation space

onto hybrid space.

Our choice of polynomial approximating spaces and projections is that of Qiu,
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Shen, and Shi [41] in order to be able to work on the most general polyhedral mesh

possible. However, the frequency-domain problem, unlike the steady-state problem, is

not coercive, so we wind up with a G̊arding-type identity similar to that of Griesmaier

and Monk’s [24], after following their example and first phrasing the classical system

as first order in both frequency and space. The two analytical recipes from [41] and

[24] are here carefully blended to approach the time-harmonic elasticity case, which has

implications on the choice of numerical flux and its dependence on the wavenumber.

The following treatment of HDG+ for time-harmonic elasticity, however, comes

with its own complications, not only with regard to the hybridization of the DG scheme,

but also in consideration of the dependence on wavenumber. We have also developed a

simplified system for dealing with the double-bootstrapping process, which is now even

messier considering the use of L2 projections rather than tailored HDG projections. By

varying the numerical flux, we wind up with several different HDG+ methods for the

time-harmonic linear elastic problem. We proceed to show how some of these methods

can be used to produce semi-discretizations in the time domain and that one of them

is actually conservative.

What follows is a rigorous treatment of the error analysis and well-posedness of

HDG+ methodology as applied to the problem of three-dimensional time-harmonic

elasticity on a polyhedron with mixed boundary conditions and strong symmetric

stresses. We explore how this analysis can shape the stability mechanism for a method

of numerically integrating the time-dependent system, in particular for the 2nd-order-

in-frequency case. Numerical experiments are carried out to demonstrate convergence

of both the first-order method and a second-order variant. We then compare, using

various polynomial degrees and tetrahedrizations, the sizes of the global linear systems

involved in HDG+ and classical Lagrange element CG, demonstrating an advantage of

HDG+ at large polynomial degrees.
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3.2 HDG+ discretization

We now introduce the HDG+ discretization of (2.5.2), the first-order-in-space-

and-frequency reformulation of the frequency-domain system of elasticity:

ıκAσ + ε(u) = 0 in Ω, (3.2.1a)

div σ + ıκ ρu = f in Ω, (3.2.1b)

u = gD on ΓD, (3.2.1c)

σn = gN on ΓN . (3.2.1d)

Since the method we use is Qiu, Shen, and Shi’s [41], we will not repeat the derivation.

We start with a shape-regular conforming tetrahedrization Th of the domain Ω. The

set of all faces of elements of Th is denoted Eh, and we will sometimes understand that

Eh is the geometric skeleton of the triangulation, i.e., the union of all the faces of all

elements. The method involves three discrete spaces

Vh := {ξ : Ω→ C3×3
sym : ξ|K ∈ Pk(K;C3×3

sym) ∀K ∈ Th}, (3.2.2a)

Wh := {u : Ω→ C3 : u|K ∈ Pk+1(K;C3) ∀K ∈ Th}, (3.2.2b)

Mh := {µ : Eh → C3 : µ|F ∈ Pk(F ;C3) ∀F ∈ Eh}. (3.2.2c)

In (3.2.2), Pr(K;S) is the set of polynomials of total degree up to r defined on K and

with values in S ∈ {C3×3
sym,C3}, while Pk(F ;C3) are vector valued polynomials on the

tangential coordinates defined on the face F and of degree not greater than k. We will

also use the orthogonal projector

PM :
∏
K∈Th

L2(∂K) −→
∏
K∈Th

∏
F∈E(K)

Pk(F ;C3), (3.2.3)

where E(K) is the set of faces of ∂K. Note that Mh can be identified with the subspace

of the set of the right-hand side of (3.2.3) consisting of functions that are single-valued

on internal faces.

Stabilization is carried out through a function τ defined as follows: for each

element K ∈ Th, a function τK : ∂K → R3×3
sym satisfying (a) τK |F is constant on each
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F ∈ E(K) for a given tetrahedrization Th; (b) there exist two positive constants C1

and C2 such that

C1h
−1
K ‖µ‖

2
∂K ≤ 〈τKµ,µ〉∂K ≤ C2h

−1
K ‖µ‖

2
∂K ∀µ ∈ L2(∂K), ∀K ∈ Th, (3.2.4)

where hK is the diameter of K. The symbol τ will be used to denote the function

defined on the set of boundaries of all elements as above, understanding that τ can

be double-valued on interior faces. The numerical fluxes follow the pattern of HDG

methods: the one corresponding to the displacement will be an unknown ûh ∈ Mh,

while the one related to the (normal) stress is given elementwise with a formula in

terms of all the unknowns

σ̂hn := σhn + τK(PMuh − ûh) : ∂K → C3. (3.2.5)

Here the unit normal vector field n : ∂K → R3 points to the exterior of K. At this

time, we can write the HDG discrete equations for (2.5.2). We look for (σh,uh, ûh) ∈

Vh ×Wh ×Mh satisfying

ıκ(Aσh, ξ)Th − (uh, div ξ)Th + 〈ûh, ξn〉∂Th = 0 ∀ξ ∈ Vh, (3.2.6a)

−(σh,∇w)Th + 〈σ̂hn,w〉∂Th + ıκ(ρuh,w)Th = (f ,w)Th ∀w ∈Wh, (3.2.6b)

〈σ̂hn,µ〉∂Th\ΓD = 〈gN ,µ〉ΓN ∀µ ∈Mh, (3.2.6c)

〈ûh,µ〉ΓD = 〈gD,µ〉ΓD ∀µ ∈Mh, (3.2.6d)

with (3.2.5) as the definition of σ̂hn and brackets defined as follows:

(u,v)Th :=
∑
K∈Th

(u,v)K , 〈u,v〉∂Th :=
∑
K∈Th

〈u,v〉∂K :=
∑
K∈Th

∫
∂K

u · v,

and

〈u,v〉∂Th\ΓD :=
∑
K∈Th

〈u,v〉∂K\ΓD .

Equations (3.2.6c) and (3.2.6d) can be added together as a single equation tested

against Mh, which shows that (3.2.6) is a square system of linear equations. The

discrete momentum equation (3.2.6b) can be equivalently written as

(div σh,w)Th + 〈τ (PMuh − ûh),PMw〉∂Th + ıκ(ρuh,w)Th = (f ,w)Th ∀w ∈Wh.

(3.2.7)
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We note that the degree of the polynomial space used for uh is one higher than the

one used for the other unknowns and the fact that PM has been introduced in the

definition of the flux (3.2.5) so that σ̂hn ∈
∏

F∈E(K)Pk(F ;C3).

3.3 Main results

Regularity assumptions. From now on we will assume that ρ and the coefficients

of C are in W 1,∞(Th). Let us now consider the coercive problem

∇ · (Cε(w))− ρw = r in Ω, (3.3.1a)

w = 0 on ΓD, (3.3.1b)

(Cε(w)) n = 0 on ΓN . (3.3.1c)

We will also assume that the solution of (3.3.1) for arbitrary r ∈ L2(Ω;R3) is in

H2(Ω;R3) and that there exists a constant C > 0 such that

‖w‖2,Ω ≤ C‖r‖Ω. (3.3.2)

For the time-harmonic problem, we will denote by Cκ > 0 the constant such that the

solution of

∇ · (Cε(w)) + κ2ρw = r in Ω, (3.3.3a)

w = 0 on ΓD, (3.3.3b)

(Cε(w)) n = 0 on ΓN . (3.3.3c)

can be bounded by

‖w‖1,Ω ≤ Cκ‖r‖Ω. (3.3.4)

Note that we have assumed the unique solvability of (3.3.3).

Error quantities. The error analysis will be carried out by comparing numerical so-

lutions and orthogonal projections. Let ΠV : L2(Ω;C3×3
sym)→ Vh and ΠW : L2(Ω;C3)→

Wh be the orthogonal projections onto the discrete spaces. Consider the errors

eσh := ΠVσ − σh, euh := ΠWu− uh, êuh := PMu− ûh,
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and the best approximation errors

εσh := ΠVσ − σ, εuh := ΠWu− u.

For convenience, we introduce the skeleton norm

‖µ‖τ := 〈τµ,µ〉1/2∂Th .

For the error analysis we will allow constants to depend on the density ρ and on the

coefficients of A. While the influence of these physical coefficients in the inequalities

can be tracked with careful arguments, the results seem to be too involved to obtain

precise conclusions on how h and κ interact with them. However, we will pay attention

to the maximum spectral value of the inverse compliance tensor, i.e., to the positive

bounded function such that for almost every x ∈ Ω

(A(x)ξ) : ξ ≤ cA(x) ξ : ξ ∀ξ ∈ R3×3
sym. (3.3.5)

Theorem 3.3.1. There exist C1, C2 > 0, dependent only on the shape-regularity of

Th, the density ρ and the coefficients of the inverse compliance tensor A such that if

h(1 + κ)3/2(1 + κCκ + Cκ) is small enough, then the errors can be bounded by

‖eσh‖A + κ−1/2‖PMeuh − êuh‖τ ≤ C1(1 + κ−1/2)
(
ht|σ|t,Ω + hs−1|u|s,Ω

)
and

‖euh‖Ω ≤ C2(1 + κCκ)κ
−1/2(1 + κ)2

(
ht+1|σ|t,Ω + hs|u|s,Ω

)
,

if k ≥ 1, u ∈ Hs(Ω;C3) with 1 ≤ s ≤ k + 2, and σ ∈ H t(Ω;C3×3) with 1 ≤ t ≤ k + 1.

Optimal error estimates are

‖σ − σh‖Ω = O(hk+1), ‖u− uh‖Ω = O(hk+2).

With some additional scaling inequalities, keeping in mind that τ scales like h−1
K ele-

mentwise, it is possible to show that

‖u− ûh‖τ = O(hk+1).
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The estimates of Theorem 3.3.1 can also be written in terms of the original physical

variables. If we denote σ̃h := −ıκσh, then

‖ΠV σ̃ − σ̃h‖Ω + κ1/2‖PMeuh − êuh‖τ ≤ C1(1 + κ−1/2)
(
ht|σ̃|t,Ω + hs−1κ|u|s,Ω

)
,

‖euh‖Ω ≤ C2(1 + κCκ)κ
−3/2(1 + κ)2

(
ht+1|σ̃|t,Ω + hsκ|u|s,Ω

)
.

Unique solvability. Theorem 3.3.1 can be used to prove existence and uniqueness

of solution of (3.2.6) for h small enough (depending on the wave number κ). The

argument is as follows. Consider the system (3.2.6) with homogenous data: f = 0,

gN = 0, and gD = 0. Let (σh,uh, ûh) be any solution of this homogenous set of linear

equations. Theorem 3.3.1 applied to this solution and the exact zero solution shows

that (σh,uh, ûh) has to vanish. Therefore, the linear system (3.2.6) (with as many

equations as unknowns) is uniquely solvable for any right-hand side. The logic of the

use of Theorem 3.3.1 is slightly roundabout: it assumes the existence of a discrete

solution, which we know to happen at least for the homogenous case, and then it uses

the error estimates to show that the system is actually uniquely solvable.

3.4 Local solvability and energy identity

Lemma 3.4.1. There exists C > 0, depending only on the shape regularity of the grid,

such that

‖v‖K ≤ ChK‖ε(v)‖K

for all v ∈ H1(K;C3) satisfying

〈v,µ〉∂K = 0 ∀µ ∈
∏

F∈E(K)

P0(F ;C3). (3.4.1)

Proof. A scaling argument, using only that
∫
∂K

v = 0 and a Poincaré inequality on

the reference element prove that

‖v‖K ≤ ChK‖∇v‖K .
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On the other hand, by a straightforward extension of [41, Lemma 4.1] to our complex-

valued fields, we have the local Korn inequality

inf
ξ∈C3×3

skw

‖∇v + ξ‖K ≤ C‖ε(v)‖K ∀v ∈ H1(K;C3). (3.4.2)

The constant in (3.4.2) depends only on the shape-regularity constant of the mesh.

Finally, if ξ ∈ C3×3, then

(∇v, ξ)K = 〈v, ξn〉∂K = 0,

since v satisfies (3.4.1). Therefore

inf
ξ∈C3×3

skw

‖∇v + ξ‖K = ‖∇v‖K

and the proof is finished.

The following result shows that the local equations associated to (3.2.6a)-(3.2.6b)

are uniquely solvable, i.e., given the data functions and ûh, we can compute σh and uh

element by element. This is the key ingredient to show that the HDG method (3.2.6)

is actually hybridizable, that is, it can be recast as a linear system where ûh ∈Mh is

the only variable. To simplify the proof, we introduce the weighted norms

‖ξ‖2
A,K := (Aξ, ξ)K , ‖v‖2

ρ,K := (ρv,v)K .

Proposition 3.4.2 (Local solvers). If C > 0 is the constant of Lemma 3.4.1 and

κhK <
1

C ‖cA‖1/2
L∞(K)‖ρ‖

1/2
L∞(K)

, (3.4.3)

then the local solver associated to the element K ∈ Th is well defined. In other words,

if (σ,u) ∈ Pk(K;C3×3
sym)× Pk+1(K;C3) satisfies

ıκ(Aσ, ξ)K − (u,∇ · ξ)K = 0 ∀ξ ∈ Pk(K;C3×3
sym), (3.4.4a)

(∇ · σ,w)K + 〈τPMu,w〉∂K + ıκ(ρu,w)K = 0 ∀w ∈ Pk+1(K;C3), (3.4.4b)

then (σ,u) = (0,0).
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Proof. Note that we only need to prove that u = 0. Testing (3.4.4a) with σ, conju-

gating (3.4.4b) and testing it with u, and adding the result of these two equations, it

follows that

ıκ
(
‖σ‖2

A,K − ‖u‖2
ρ,K

)
+ 〈τPMu,PMu〉∂K = 0.

By (3.2.4) it follows that PMu = 0 and ‖σ‖A,K = ‖u‖ρ,K . Going back to (3.4.4a),

integrating by parts, and using that PMu = 0, it follows that

ıκ(Aσ, ξ)K + (∇u, ξ)K = 0 ∀ξ ∈ Pk(K;C3×3
sym). (3.4.5)

Testing (3.4.5) with ξ = ε(u), it follows that

‖ε(u)‖2
K = (∇u, ε(u))K = κ|(Aσ, ε(u))K | ≤ κ‖cA‖1/2

L∞(K)‖σ‖A,K‖ε(u)‖K ,

where we have used (3.3.5). Note that u satisfies (3.4.1), given the fact that PMu = 0.

Therefore, by Lemma 3.4.1, if ε(u) = 0, then u = 0 and the proof is finished. Otherwise

u 6= 0 and, by Lemma 3.4.1 and the equality ‖σ‖A,K = ‖u‖ρ,K , we can bound

‖u‖K ≤ ChK‖ε(u)‖K ≤ CκhK‖cA‖1/2
L∞(K)‖σ‖A,K = CκhK‖cA‖1/2

L∞(K)‖u‖ρ,K

≤ CκhK‖cA‖1/2
L∞(K)‖ρ‖

1/2
L∞(K)‖u‖K

and we arrive at a contradiction if the conditions for proposition (3.4.2) hold.

Proposition 3.4.3. The following discrete G̊arding inequality holds:

ıκ(‖eσh‖2
A − ‖euh‖2

ρ) + ‖PMeuh − êuh‖2
τ

= ıκ
(
(Aεσh, eσh)Th − (ρεuh, e

u
h)Th

)
+ 〈εσhn, e

u
h − êuh〉∂Th + 〈τ εuh,PMeuh − êuh〉∂Th .

Proof. Substituting (ΠVσ,ΠWu,PMu), where (σ,u) is the exact solution of (2.5.2) in

the left-hand side of discrete equations, and subtracting the actual discrete equations
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(3.2.6) (with (3.2.6b) better written in the form (3.2.7)), it is simple to prove that the

errors (eσh, e
u
h, ê

u
h) ∈ Vh ×Wh ×Mh satisfy

ıκ(Aeσh, ξ)Th − (euh,∇ · ξ)Th + 〈êuh, ξn〉∂Th = ıκ(Aεσh, ξ)Th , (3.4.6a)

(∇ · eσh,w)Th + ıκ(ρeuh,w)Th

+〈τ (PMeuh − êuh),PMw〉∂Th = ıκ(ρεuh,w)Th (3.4.6b)

+ 〈εσhn,w〉∂Th + 〈τεuh,PMw〉∂Th ,

〈eσhn + τ (PMeuh − êuh),µ〉∂Th\ΓD = 〈εσhn,µ〉∂Th\ΓD + 〈τPMε
u
h,µ〉∂Th\ΓD

(3.4.6c)

〈êuh,µ〉ΓD = 0, (3.4.6d)

for all (ξ,w,µ) ∈ Vh ×Wh ×Mh. Clearly (3.4.6d) is equivalent to êuh = 0 on ΓD.

We now (i) test (3.4.6a) with ξ = eσh, (ii) conjugate (3.4.6b) and test the result with

w = euh, (iii) conjugate (3.4.6c) and test the result with µ = −êuh. The results of

these three steps are added and reorganized ((3.4.6d) is used for this) to prove the

proposition.

We next bound the last two terms in the right-hand side of the identity in

Proposition 3.4.3. From this moment on, we will frequently use, without additional

warning, approximation properties of the L2 projections onto the space of piecewise

polynomial functions.

Proposition 3.4.4. If k ≥ 1,∣∣〈εσhn, euh − êuh〉∂Th + 〈τ εuh,PMeuh − êuh〉∂Th
∣∣ ≤ C1

(
ht|σ|t,Ω + hs−1|u|s,Ω

)
‖PMeuh − êuh‖τ

+ C2κh
t|σ|t,Ω

(
ht|σ|t,Ω + ‖eσh‖A

)
,

if σ ∈ H t(Ω;C3×3) for 1 ≤ t ≤ k + 1 and u ∈ Hs(Ω;C3) for 1 ≤ s ≤ k + 2.

Proof. Following [41, Lemma 4.3], it is possible to show that∣∣〈εσhn, euh − êuh〉∂Th
∣∣ ≤ Cht|σ|t,Ω (‖PMeuh − êuh‖τ + ‖ε(euh)‖Th) (3.4.7a)∣∣〈τ εuh,PMeuh − êuh〉∂Th
∣∣ ≤ Chs−1|u|s,Ω‖PMeuh − êuh‖τ . (3.4.7b)
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We recall that the argument leading to the proof of (3.4.7b) needs the traces of rigid

motions to be in Mh, which is where the additional hypothesis k ≥ 1 is used.

We next test the first error equation (3.4.6a) with ξ = ε(euh) restricted to K to

obtain

‖ε(euh)‖2
K = (∇euh, ε(e

u
h))K = ıκ(A(εσh−eσh), ε(euh))K + 〈PMeuh− êuh, ε(e

u
h)n〉∂K . (3.4.8)

The scaling hypothesis on τ given in (3.2.4) and a scaling argument using the fact that

ε(euh) is a polynomial on K show then∣∣〈PMeuh − êuh, ε(e
u
h)n〉∂K

∣∣ ≤ ‖PMeuh − êuh‖∂K‖ε(euh)‖∂K

≤ C‖τ 1/2
K (PMeuh − êuh)‖∂Kh

1/2
K ‖ε(e

u
h)‖∂K

≤ C ′‖τ 1/2
K (PMeuh − êuh)‖∂K‖ε(euh)‖K .

Substituting these bounds in the right-hand side of (3.4.8), and adding over all ele-

ments, using (3.3.5) (the spectral bounds on the inverse compliance tensor) it follows

that

‖ε(euh)‖Th ≤ Cκ (‖εσh‖A + ‖eσh‖A) + C‖PMeuh − êuh‖τ . (3.4.9)

Plugging (3.4.9) in (3.4.7), the proposition is proved.

3.5 Dual problem and bootstrapping process

We consider the adjoint system to (3.2.1):

−ıκAψ − ε(φ) = 0 in Ω, (3.5.1a)

−∇ ·ψ − ıκ ρφ = euh in Ω, (3.5.1b)

φ = 0 on ΓD, (3.5.1c)

ψn = 0 on ΓN . (3.5.1d)

This problem is uniquely solvable if (3.3.3), or equivalently, (2.5.1), is. If we assume

regularity for the coercive problem (3.3.1), expressed in the bound (3.3.2), and assume

the local smoothness of the coefficients given at the beginning of Section 3.3, then it

is easy to see that φ ∈ H2(Ω;C3) and ψ ∈ H1(Ω;C3×3).
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Lemma 3.5.1. We can bound

‖φ‖1,Ω + ‖ρφ‖1,Th + ‖Aψ‖1,Ω + ‖ψ‖1,Th + κ−1‖φ‖2,Ω ≤ Dκ‖euh‖Ω, (3.5.2)

where Dκ := C (κ2Cκ +κCκ +Cκ + 1), Cκ being the constant in (3.3.4) and C being al-

lowed to depend on the regularity constant (3.3.2) as well as on the physical coefficients.

Here the norm ‖ · ‖1,Th is the natural norm of the broken Sobolev space
∏

K∈Th H
1(K).

Remark 3.5.2. We note that, while the regularity requirement can be somewhat re-

laxed, the analysis in this paper (see also [41] and [24]) needs a certain amount of

regularity for the solution of the dual problem (which can be translated to regularity of

the solution of (3.3.1)) due to the need of having square integrable normal traces of ψ

on the faces of the elements.

Proof. First, we begin by bounding ‖φ‖1,Ω in terms of κ and euh. Using the bound

from (3.3.4), and plugging in w = ıκeuh we see that

div (Cε(φ)) + κ2ρφ = ıκeuh (3.5.3)

implies a bound

‖φ‖1,Ω ≤ Cκκ‖euh‖Ω (3.5.4)

and that, assuming the broken norm ‖ · ‖1,Th ≤ E‖ · ‖1,Ω where C is allowed to depend

on the elliptic regularity coefficient as well as the coefficients of A and ρ,

‖ρφ‖1,Th ≤ CCκκ‖euh‖Ω (3.5.5)

Next we bound Aψ and ψ in terms of φ and κ. Consider that through (3.5.1)

we know that

‖ıκAψ‖1,Ω = ‖ε(φ)‖1,Ω

and therefore

‖Aψ‖1,Ω =
1

κ
‖ε(φ)‖1,Ω≤

1

κ
‖φ‖2,Ω. (3.5.6)

28



and we also have

‖ψ‖1,Th ≤
C

κ
‖φ‖2,Ω (3.5.7)

We note now that we can rewrite the elliptic regularity requirement (3.3.2) as

‖w‖2,Ω ≤ C‖r‖Ω = C‖div (Cε(w))− ρw‖Ω ∀w ∈ H2
0 (Ω;C3) (3.5.8)

where H2
0 (Ω;C3) is the space of functions from Ω to C3 which are twice differentiable

and have homogenous boundary conditions, whether on ΓD or ΓN where applicable.

Since φ ∈ H2
0 (Ω;C3), considering (3.5.5), we have

‖φ‖2,Ω ≤ C(‖div Cε(φ)− ρφ‖Th)

≤ C(‖div Cε(φ)‖Ω + ‖ρφ‖Th)

= C(‖κ2ρφ− ıκeuh‖Ω + ‖ρφ‖Th)

≤ C(κ2‖ρφ‖Th + κ‖euh‖Ω + ‖ρφ‖Th)

≤ C(Cκκ
3 + κ+ Cκκ)‖euh‖Ω

and therefore we may write

1

κ
‖φ‖2,Ω ≤ C(Cκκ

2 + Cκ + 1)‖euh‖Ω (3.5.9)

and therefore

‖φ‖1,Ω + ‖ρφ‖1,Th + ‖Aψ‖1,Ω + ‖ψ‖1,Th + κ−1‖φ‖2,Ω ≤ Dκ‖euh‖Ω, (3.5.10)

which was the statement of the lemma.

Proposition 3.5.3 (Duality identity).

‖euh‖2
Ω = ıκ

(
(Aeσh,ψ − ΠVψ)Th + (Aεσh,ΠVψ)Th

)
+ıκ

(
(ρ euh,φ− ΠWφ)Th + (ρ εuh,ΠWφ)Th

)
+〈euh − êuh, (ψ − ΠVψ)n〉∂Th

+〈τ (PMeuh − êuh)− τPMε
u
h,φ− ΠWφ〉∂Th + 〈εσhn,ΠWφ−PMφ〉∂Th .
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Proof. The proof is similar to duality arguments in [41] (and related references). We

give here a very systematic approach to help understand the logic of the argument. We

first conjugate equations (3.5.1) and then test them with the discrete errors (eσh, e
u
h, ê

u
h):

ıκ(Aeσh,ψ)Th + (∇ · eσh,ΠWφ)Th − 〈eσhn,φ〉∂Th = 0, (3.5.11a)

−(euh,∇ · ΠVψ)Th + 〈euh, (ΠVψ −ψ)n〉∂Th + ıκ(ρ euh,φ)Th = ‖euh‖2
Ω, (3.5.11b)

〈êuh,ψn〉∂Th = 0. (3.5.11c)

Note that to reach (3.5.11a) and (3.5.11b) we need to integrate by parts and introduce

projections wherever possible. Also, (3.5.11c) reflects the fact that ψ does not jump

across interelement faces as well as the equality êuh = 0 on ΓD. The second ingredient

for the proof is the set of error equations (3.4.6) tested with (ΠVψ,ΠWφ,PMφ), to

yield

ıκ(Aeσh,ψ)Th − (euh,∇ · ΠVψ)Th + 〈êuh,ψn〉∂Th = `1(ψ), (3.5.12a)

(∇ · eσh,ΠWφ)Th + ıκ(ρeuh,φ)Th = `2(φ), (3.5.12b)

−〈eσhn,φ〉∂Th = `3(φ), (3.5.12c)

where

`1(ψ) := ıκ
(
(Aeσh,ψ − ΠVψ)Th + (Aεσh,ΠVψ)Th

)
+ 〈êuh, (ψ − ΠVψ)n〉∂Th ,

`2(φ) := ıκ
(
(ρeuh,φ− ΠWφ)Th + (ρεuh,ΠWφ)Th

)
+〈εσhn,ΠWφ〉∂Th + 〈τPMε

u
h,ΠWφ〉∂Th − 〈τ (PMeuh − êuh),ΠWφ〉∂Th

`3(φ) := −〈εσhn,PMφ〉∂Th − 〈τPMε
u
h,φ〉∂Th + 〈τ (PMeuh − êuh),φ〉∂Th .

Note that in (3.5.12) we have kept in the left-hand side of the error equations only

those terms that appear in the left-hand side of (3.5.11). We have also eliminated

some redundant projections and applied that φ = 0 on ΓD. The proof of the result is

now straightforward: add equations (3.5.11) and substitute equations (3.5.12) in the

result.
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The next step in the proof of the error estimates is a bound for ‖euh‖Ω obtained

by carefully working on the right-hand side of the duality identity in Proposition 3.5.3.

To alleviate the proof from an excess of constants, we will use the convention that

a . b, whenever there exists a positive constant C independent of h and κ such that

a ≤ C b.

Proposition 3.5.4. If hκDκ is small enough, if σ ∈ H t(Ω;C3×3) for 1 ≤ t ≤ k + 1,

and if u ∈ Hs(Ω;C3) for 1 ≤ s ≤ k + 2, then

‖euh‖Ω . h(κ+ 1)Dκ

(
‖eσh‖A + ‖PMeuh − êuh‖τ + ht|σ|t,Ω + hs−1|u|s,Ω

)
.

Proof. As already mentioned, we first estimate the right-hand side of the equality in

Proposition 3.5.3. Let [f ]h be the best L2(Ω) projection of f on the space of piecewise

constant functions, i.e., [f ]h = 1
|K|

∫
K
f in K for every K.

Notice that

(Aeσh,ψ −ΠVψ)Th + (Aεσh,ΠVψ)Th = (A(σ −σh),ψ −ΠVψ)Th + (εσh,Aψ − [Aψ]h)Th ,

and then we can bound

|(Aeσh,ψ−ΠVψ)Th + (Aεσh,ΠVψ)Th| . h‖σ−σh‖A|ψ|1,Th + h‖εσh‖Ω|Aψ|1,Ω. (3.5.13)

Similarly, the equality

(ρ euh,φ− ΠWφ)Th + (ρ εuh,ΠWφ)Th = (ρ(u− uh),φ− ΠWφ)Th + (εuh, ρφ− [ρφ]h)Th

can be used to estimate

|(ρ euh,φ− ΠWφ)Th + (ρ εuh,ΠWφ)Th | . h‖u− uh‖Ω|φ|1,Ω + h‖εuh‖Ω|ρφ|1,Th (3.5.14)

Using (3.4.7a) with ψ in place of σ and t = 1 and (3.4.9), we can estimate

|〈euh − êuh, (ψ − ΠVψ)n〉∂Th| . h (‖εσh‖A + ‖eσh‖A + ‖PMeuh − êuh‖τ ) |ψ|1,Th . (3.5.15)

Using (3.4.7b) with φ in place of u and s = 2, we bound

|〈τ (PMeuh − êuh),φ− ΠWφ〉∂Th| . h‖PMeuh − êuh‖τ |φ|2,Ω. (3.5.16)
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With a scaling argument and the bound (3.2.4) (stating the size of the stabilization

parameter), we can bound on every K

|〈τPM(u− ΠWu),φ− ΠWφ〉∂K | . h−1
K ‖u− ΠWu‖∂K‖φ− ΠWφ‖∂K

. hsK |u|s,K |φ|2,K

and therefore

|〈τPMε
u
h,φ− ΠWφ〉∂Th| . hs|u|s,Ω|φ|2,Ω. (3.5.17)

Similarly

|〈εσhn,PMφ− ΠWφ〉∂Th| . ht+1|σ|t,Ω|φ|2,Ω. (3.5.18)

Collecting the estimates (3.5.13)-(3.5.18) to bound the right-hand side of the identity

in Proposition 3.5.3, and using the regularity bound (3.3.2), we can bound

‖euh‖2
Ω .hκDκ‖euh‖Ω (‖euh‖Ω + ‖eσh‖A + ‖PMeuh − êuh‖τ )

+ h(1 + κ)Dκ

(
ht|σ|t,Ω + hs−1|u|s,Ω

)
The proposition is now a simple consequence of the latter inequality.

The proof of Theorem 3.3.1 follows from the energy identity (Proposition 3.4.3)

and the estimates of Propositions 3.4.4 and 3.5.4 by a careful bootstrapping process.

Proof of Theorem 3.3.1. To simplify the algebra involved in this final step, let us give

symbols for the quantities we want to bound

Σ := ‖eσh‖A, T := κ−1/2‖PMeuh − êuh‖τ , U := ‖euh‖Ω,

and for the approximation terms

Σh := ht|σ|t,Ω, Uh := hs−1|u|s,Ω.

With this shorthand, Propositions 3.4.3 and 3.4.4 yield

|Σ2 − ıT2| . Σ Σh + U Uh + κ−1/2(Σh + Uh)T + Σ2
h + U2. (3.5.19)
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If α := h(1 + κ)(κ + κCκ + κ2Cκ + Cκ) = Dκh(1 + κ), Proposition 3.5.4 can then be

rephrased as

U . α(Σ + Σh + Uh + κ1/2T). (3.5.20)

Substituting (3.5.20) in the right-hand side of (3.5.19), and reordering terms, we have

Σ2 + T2 . α2Σ2 + Σ(Σh + αUh)

+α2κT2 + T(κ−1/2Uh + ακ1/2Uh + κ−1/2Σh) (3.5.21)

+(1 + α2)Σ2
h + (α + α2)U2

h.

Let now C be the constant that is hidden in the symbol ., and let us assume that

Cα2 ≤ 1
4

and Cα2κ ≤ 1
4
. (3.5.22)

We now use Young’s inequality ab ≤ 1
4
a2 + b2 in (3.5.21) to get

Σ2 + T2 ≤ 1
2
Σ2 + 1

2
T2

+C2(Σh + αUh)
2 + C2(κ−1/2Uh + ακ1/2Uh + κ−1/2Σh)

2

+C(1 + α2)Σ2
h + C(α + α2)U2

h.

We can now simplify this expression using (3.5.22) to obtain Σ2 + T2 . (1 +κ−1)(Σ2
h +

U2
h), or equivalently

Σ + T . (1 + κ−1/2)(Σh + Uh). (3.5.23)

Using (3.5.23) in (3.5.20), we can finally prove that

U . α(1 + κ1/2 + κ−1/2)(Σh + Uh). (3.5.24)

This finishes the proof.

3.6 Variants and insights

Matrix form. We first give a matrix representation of the method of Section 3.3.

Equations (3.2.6c) and (3.2.6d) suggest the following orthogonal decomposition Mh =

MnD
h ⊕MD

h , where MnD
h = {µ : µ|ΓD = 0} ≡ {µ|∂Th\ΓD : µ ∈ Mh}. We now take
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real-valued bases for the spaces Vh, Wh, MnD
h , and MD

h and identify the unknowns

σh ∈ Vh, uh ∈ Wh, ûh|∂Th\ΓD ∈ MnD
h , and ûh|ΓD ∈ MD

h , with respective complex

column vectors σ, u, ûnD, and ûD. We then consider real matrices associated to the

following bilinear forms that are understood as functionals acting on the unknowns:

(Aσh, ξ)Th ξ ∈ Vh Aσ,

(∇ · σh,w)Th w ∈Wh Dσ,

〈σhn,µ〉∂Th\ΓD µ ∈MnD
h Nσ,

〈σhn,µ〉ΓD µ ∈MD
h NDσ,

(ρuh,w)Th w ∈Wh Mu,

〈τPMuh,PMw〉Th w ∈Wh T11u,

〈τ ûh,wh〉∂Th\ΓD w ∈Wh T12u
nD,

〈τ ûh,wh〉ΓD w ∈Wh TDu
D,

〈τ ûh,µ〉∂Th\ΓD µ ∈MnD
h T22u

nD,

〈ûh,µ〉ΓD µ ∈MD
h MDû

D.

Note that the matrices A, M, and T22 are symmetric and positive definite, while T11

is symmetric and positive semidefinite. The method given by equations (3.2.6) is then

equivalent to the linear system
ıκA −D> N> N>D

D ıκM + T11 −T12 −TD

−N −T>12 T22 O

O O O MD




σ

u

ûnD

ûD

 =


0

f

−g
N

g
D

 , (3.6.1)

where the definition of the vectors f , g
N

and g
D

is self-evident. Equations (3.6.1) are

equivalent to the following system
A D> −N> −N>D

−D −κ2M− ıκT11 ıκT12 ıκTD

N −ıκT>12 ıκT22 O

O O O MD




σ̃

u

ûnD

ûD

 =


0

f̃

g̃
N

g
D

 , (3.6.2)
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where σ̃ = −ıκσ, f̃ = −ıκf , and g̃
N

= −ıκg
N

. This change of variables in the

first unknown and in the right-hand side reverts the system to the original physical

variables (the ones with a tilde in Section 2.2) so that the equations are second-order-

in-frequency. It is clear how the stabilization terms are the only complex-valued ones

in the system.

Hybridization. The four matrices in the upper left 2 × 2 block of the matrix of

(3.6.1) are elementwise block diagonal. The hybridization process consists of solving

the system[ N T>12

]
C−1

 N>

−T12

+ T22

 ûnD =− g
N

+
[

N T>12

]
C−1

 0

f


−
[

N T>12

]
C−1

 N>D

−TD

M−1
D g

D
,

where the invertibility of

C :=

 ıκA −D>

D ıκM + T11


was the object of Proposition 3.4.2.

Variant # 1: time reversal. While we are not making any claims about the behavior

of the method for high frequency problems, we have kept κ visible everywhere. We

next explore some variants of the method that can be obtained by changing to second-

order-in-frequency form and exploring different choices of the stabilization parameter.

The energy identity of Proposition 3.4.3 is the trigger for the analysis of the method.

It is there clear that the sign of the boundary term is not relevant and a method based

on the numerical flux

σ̂hn := σhn− τK(PMuh − ûh) : ∂K → C3

has the same convergence properties as the method presented in Section 2.2. As we

will see later in this section, this method corresponds to time reversal.
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Variant # 2: κ-scaled stabilization. The factor κ−1/2 in the error estimate of

Theorem 3.3.1 suggests the following variant of the numerical method: we still use

equations (3.2.6) by changing the definition of the numerical flux to be

σ̂hn := σhn + κτK(PMuh − ûh) : ∂K → C3. (3.6.3)

(Note that, as shown in [23] for the acoustic wave equation, making the stabilization

parameter depend on κ is a must when we want to deal with complex frequencies. This

dependence has also some desirable properties.) The proof of Theorem 3.3.1 can be

easily adapted to deal with the method whose stabilization term is given by (3.6.3).

The error estimate is given in the following theorem.

Theorem 3.6.1. There exist C1, C2 > 0, dependent only on the shape-regularity of

Th, the density ρ and the coefficients of the inverse compliance tensor A such that if

h(1 + κ)3/2(1 + κCκ) is small enough, then the errors can be bounded by

‖eσh‖A + ‖PMeuh − êuh‖τ ≤ C1

(
(1 + κ−1)ht|σ|t,Ω + hs−1|u|s,Ω

)
and

‖euh‖Ω ≤ C2(1 + κCκ)(1 + κ)
(
(κ+ κ−1)ht+1|σ|t,Ω + hs(1 + κ)|u|s,Ω

)
,

if k ≥ 1, u ∈ Hs(Ω;C3) with 1 ≤ s ≤ k + 2, and σ ∈ H t(Ω;C3×3) with 1 ≤ t ≤ k + 1.

Second-order-in-frequency formulations. Since all methods presented above are

based in a first-order-in-frequency formulation, defining σ := (ı/κ)σ̃, where σ̃ is the

physical stress for the displacement field u. Consider now the following family of HDG

schemes based on a second-order-in-frequency formulation: the spaces are unchanged

and ακ is a fixed parameter that is allowed to depend on the frequency:

(Aσ̃h, ξ)Th + (uh,∇ · ξ)Th − 〈ûh, ξn〉∂Th = 0 ∀ξ ∈ Vh, (3.6.4a)

(σ̃h,∇w)Th − 〈σ̂hn,w〉τ − κ2(ρuh,w)Th = −(f̃ ,w)Th ∀w ∈Wh, (3.6.4b)

〈σ̂hn,µ〉∂Th\ΓD = 〈g̃N ,µ〉ΓN ∀µ ∈Mh, (3.6.4c)

〈ûh,µ〉ΓD = 〈gD,µ〉ΓD ∀µ ∈Mh, (3.6.4d)
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where

σ̂hn := σ̃hn− ακτ (PMuh − ûh). (3.6.4e)

Note that the equations are written in terms of the original data in (2.5.1). The

choice ακ = 1 is the direct application of the method in [41] to the equation ∇ ·

σ̃ + κ2ρu = f̃ . This choice of the parameter ακ yields a method that transitions

smoothly (analytically) to the zero-frequency limit. Methods based on the first-order-

in-frequency formulation can be rewritten in the form (3.6.4) with the relation σ̃h =

−ıκσh and the parameter ακ := ıκ (for the method of Section 3.3, ακ := −ıκ (time

reversed method) or ακ = ıκ2 (for the method with the flux defined in (3.6.3).

Variant # 3: conservative method. The error estimate for the method in (3.6.4)

with the choice ακ = 1 is given in the next theorem. Not surprisingly the estimates

hold as κ→ 0, since we end up with a smooth perturbation of the discretization of the

steady-state equations. Note that when κ → 0 and we are not dealing with the pure

Neumann problem, the quantity Cκ converges to a finite value. Later in this section

we will see that this choice corresponds to a conservative method in the time domain.

Theorem 3.6.2. There exist D1, D2 > 0, dependent only on the shape-regularity of

Th, the density ρ and the coefficients of the inverse compliance tensor A such that if

h(1 + κ)Eκ is small enough, then the errors can be bounded by

‖ΠV σ̃ − σ̃h‖A + ‖PMeuh − êuh‖τ ≤ D1

(
ht|σ̃|t,Ω + (1 + κ)hs−1|u|s,Ω

)
and

‖euh‖Ω ≤ D2Eκ(1 + κ)
(
ht+1|σ̃|t,Ω + hs(1 + κ)|u|s,Ω

)
,

if k ≥ 1, u ∈ Hs(Ω;C3) with 1 ≤ s ≤ k + 2, and σ̃ ∈ H t(Ω;C3×3) with 1 ≤ t ≤ k + 1.

Here Eκ ≤ C(1 + κCκ + Cκ + κC
1/2
κ ).

Proof. See Section 3.8.
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3.7 Numerical experiments

For the following experiments, consider the unit cube Ω = [0, 1]3. We imbue

the domain with Lamé parameters λ(x) and µ(x) as well as mass density ρ(x) given,

respectively, by

λ = 2 + 0.2x2 + 0.3y2 + 0.04z2 µ = 3 + 0.5y2 + 0.03z2 ρ = 1 + x2

and then subject Ω to a time-invariant displacement vector field of

u(x, y, z) =


cos(πx) sin(πx) cos(πz)

5x2yz + 4xyz + 3xyz2 + 17

cos(2x) cos(3y) cos(z)


attached to a fixed wavenumber κ = 1.

Dirichlet conditions (u itself) are applied to the top and bottom faces of the

cube, which are those that, undisturbed, lie on the planes z = 1 and z = 0, respec-

tively. The side faces (those parallel to the xz and yz planes) are subject to Neumann

conditions consistent with u. The forcing function, which is either f or f̃ , depending

on the method variant, is adjusted accordingly to match the exact solution.

Each trial consists of dividing each edge of Ω into n = 1, 2, 3, . . . , 7 segments,

yielding n3 subcubes; each subcube is then split into six elements (three different pairs

of respectively isometrically reflected tetrahedra), and so we have seven tetrahedriza-

tions {Thn}7
n=1 of Ω, each with 6n3 elements, respectively.

We program the first-order method that we have analyzed in full as well as the

second-order variant corresponding to the conservative method in MATLAB. Here we

use Dubiner bases of Jacobi polynomials in three dimensions for Vh and Wh and two

dimensions for Mh. Note that the Dubiner basis is hierarchical, hence the basis needs

only to be evaluated once at each point to be tested at degree k + 1 for Wh, then

truncated to a basis of degree k for Vh. In all cases τ = nI3×3

Functions are tested via a Stroud quadrature rule, using the function ccdqf.m

by John Burkhardt (open source) in order to generate Gauss-Jacobi quadrature rules in
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the interval [−1, 1], and then applying this twice on a transformation from the reference

face to the square [−1, 1]2. The code is built from the work of Fu, Gatica, and Sayas

[18] for working with HDG in three dimensions, and adjusted to match the dimensions

of the time-harmonic elasticity problem.
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Figure 3.1: First-order-in-frequency method. Mixed boundary conditions. κ = 1.

Expected order of convergence: O(hk+2) for u and O(hk+1) for σ. (k = 1

top-left, k = 2 top-right, k = 3 mid-left, k = 4 mid-right, k = 5 bottom

left, k = 6 bottom right)
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Figure 3.2: Second-order-in-frequency method. Mixed boundary conditions. κ = 1.

Expected order of convergence: O(hk+2) for u and O(hk+1) for σ.(k = 1

top-left, k = 2 top-right, k = 3 mid-left, k = 4 mid-right, k = 5 bottom-

left, k = 6 bottom-right
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Comparison of the dimensions of the global solution spaces. We now compare

the dimension of the Lagrange element displacement approximation space for a CG

trial to that of the hybrid Mh in the HDG framework at different polynomial degrees.

Note that this dimension corresponds to the size of the global linear system that must

be inverted in order to achieve optimal (O(hk+2)) convergence of ‖u− uh‖L2(Ω). Note

also that all variants of the HDG method use precisely the same space Mh (whether

over the complex or real fields), whose elementwise polynomials have maximum degree

one less than that of those of the displacement space.

We observe that for this particular family of seven tetrahedrizations of the unit

cube, it is when k ≥ 6 that the global HDG system is smaller than that of the

corresponding CG system. The reason behind this is clear: Lagrange element CG

methods require much higher numbers of internal (volume) nodes, which increase at

O
((
k+3

3

)
Nelt

)
. The hybridization of the HDG system transfers global information onto

only the skeleton Eh; the number of degrees of freedom corresponding to Mh only grows

at O
((
k+2

2

)
Nelt

)
. Thus, as the polynomial degree k increases, the HDG method tends

to have a smaller global system than that of the corresponding CG system. For more

on this, see [10].
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Dim(FEMh) Dim(Mh)

(k = 1) (k = 0)

24 54

81 360

192 1134

375 2592

648 4950

1029 8424

1536 13230

Dim(FEMh) Dim(Mh)

(k = 2) (k = 1)

81 162

375 1080

1029 3402

2187 7776

3993 14850

6591 25272

10125 39690

Dim(FEMh) Dim(Mh)

(k = 3) (k = 2)

192 324

1029 2160

3000 6804

6591 15552

12288 29700

20577 50544

31944 79380

Dim(FEMh) Dim(Mh)

(k = 4) (k = 3)

375 540

2187 3600

6591 11340

14739 25920

27783 49500

46875 84240

73167 132300

Dim(FEMh) Dim(Mh)

(k = 5) (k = 4)

648 810

3993 5400

12288 17010

27783 38880

52728 74250

89373 126360

139968 198450

Dim(FEMh) Dim(Mh)

(k = 6) (k = 5)

1029 1134

6591 7560

20577 23814

46875 54432

89373 103950

151959 176904

238521 277830

Dim(FEMh) Dim(Mh)

(k = 7) (k = 6)

1536 1512

10125 10080

31944 31752

73167 72576

139968 138600

238521 235872

375000 370440

Dim(FEMh) Dim(Mh)

(k = 8) (k = 7)

2187 1944

14739 12960

46875 40824

107811 93312

206763 178200

352947 303264

555579 476280

Dim(FEMh) Dim(Mh)

(k = 9) (k = 8)

3000 2430

20577 16200

65856 51030

151959 116640

292008 222750

499125 379080

786432 595350

Dim(FEMh) Dim(Mh)

(k = 10) (k = 9)

3993 2970

27783 19800

89373 62370

206763 142560

397953 272250

680943 463320

1073733 727650

Dim(FEMh) Dim(Mh)

(k = 11) (k = 10)

5184 3564

36501 23760

117912 74844

273375 171072

526848 326700

902289 555984

1423656 873180

Dim(FEMh) Dim(Mh)

(k = 12) (k = 11)

6591 4212

46875 28080

151959 88452

352947 202176

680943 386100

1167051 657072

1842375 1031940

Table 3.1: Comparison of dimensions of global solution spaces
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3.8 Some additional proof

Sketch of the proof of Theorem 3.6.2. The first order in space, second order in fre-

quency system is

Aσ̃ − ε(u) = 0 in Ω,

div σ̃ + κ2 ρu = f̃ in Ω,

u = gD on ΓD,

σ̃n = g̃N on ΓN .

From this moment on, we will drop all tildes in the formulas. It has to be understood

though that the stress that we are computing with this method is the physical stress

and not the one scaled by ı/κ. The error equations are

(Aeσh, ξ)Th + (euh, div ξ)Th − 〈êuh, ξn〉∂Th = (Aεσh, ξ)Th , (3.8.2a)

−(div eσh,w)Th − κ2(ρeuh,w)Th

+〈τ (PMeuh − êuh),PMw〉∂Th = −κ2(ρεuh,w)Th (3.8.2b)

− 〈εσhn,w〉∂Th + 〈τεuh,PMw〉∂Th ,

〈eσhn− τ (PMeuh − êuh),µ〉∂Th\ΓD = 〈εσhn,µ〉∂Th\ΓD − 〈τPMε
u
h,µ〉∂Th\ΓD

(3.8.2c)

〈êuh,µ〉ΓD = 0, (3.8.2d)

and a simple argument shows the new energy identity

‖eσh‖2
A − κ2‖euh‖2

ρ + ‖PMeuh − êuh‖2
τ (3.8.3)

= (Aεσh, eσh)Th − κ2(ρεuh, e
u
h)Th − 〈εσhn, e

u
h − êuh〉∂Th + 〈τ εuh,PMeuh − êuh〉∂Th .

The adjoint problem has to be written as

Aψ + ε(φ) = 0 in Ω, (3.8.4a)

−∇ ·ψ + κ2 ρφ = −euh in Ω, (3.8.4b)

φ = 0 on ΓD, (3.8.4c)

ψn = 0 on ΓN , (3.8.4d)
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where the negative sign in the right hand side is added for convenience. With the usual

regularity hypotheses, the scaled regularity inequalities for the solution of this problem

are:

κ(‖φ‖1,Ω + ‖ρφ‖1,Th) + ‖Aψ‖1,Ω + ‖ψ‖1,Th + ‖φ‖2,Ω ≤ Eκ‖euh‖Ω,

with Eκ bounded as in the statement of the theorem. The proof of this inequality is

very similar to the proof of (3.5.1) above. After integration by parts and introduction of

projections it can be shown that the solution of (3.8.4) satisfies the following identities

(Aeσh,ψ)Th − (div eσh,ΠWφ)Th + 〈eσhn,φ〉∂Th = 0, (3.8.5a)

(euh,∇ · ΠVψ)Th + 〈euh, (ΠVψ −ψ)n〉∂Th − κ2(ρ euh,φ)Th = ‖euh‖2
Ω, (3.8.5b)

〈êuh,ψn〉∂Th = 0. (3.8.5c)

Testing the error equations (3.8.2) with the conjugates of the projections of the adjoint

problem and rearranging terms, we prove

(Aeσh,ψ)Th + (euh,∇ · ΠVψ)Th − 〈êuh,ψn〉∂Th = `1(ψ), (3.8.6a)

−(div eσh,ΠWφ)Th − κ2(ρeuh,φ)Th = `2(φ), (3.8.6b)

〈eσhn,φ〉∂Th = `3(φ), (3.8.6c)

where

`1(ψ) := (Aeσh,ψ − ΠVψ)Th + (Aεσh,ΠVψ)Th − 〈êuh, (ψ − ΠVψ)n〉∂Th ,

`2(φ) := −κ2
(
(ρeuh,φ− ΠWφ)Th + (ρεuh,ΠWφ)Th

)
−〈εσhn,ΠWφ〉∂Th + 〈τPMε

u
h,ΠWφ〉∂Th − 〈τ (PMeuh − êuh),ΠWφ〉∂Th

`3(φ) := 〈εσhn,PMφ〉∂Th − 〈τPMε
u
h,φ〉∂Th + 〈τ (PMeuh − êuh),φ〉∂Th .
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The sum of equations (3.8.5) can then be compared with the sum of equations (3.8.6)

to prove the duality identity:

‖euh‖2
Ω = ((Aeσh,ψ − ΠVψ)Th + (Aεσh,ΠVψ)Th (3.8.7)

−κ2
(
(ρ euh,φ− ΠWφ)Th + (ρ εuh,ΠWφ)Th

)
+〈euh − êuh, (ψ − ΠVψ)n〉∂Th

+〈τ (PMeuh − êuh)− τPMε
u
h,φ− ΠWφ〉∂Th − 〈εσhn,ΠWφ−PMφ〉∂Th .

What is left now is the proof of bounds for the right-hand sides of (3.8.3) and (3.8.7).

This process requires just going carefully over the proofs of Proposition (3.4.4) and

(3.5.4). Nothing essential is changed. We can write the results with our shorthand

notation for errors Σ := ‖eσh‖A, T := ‖PMeuh − êuh‖τ , U := ‖euh‖Ω, and approximation

terms Σh := ht|σ|t,Ω, Uh := hs−1|u|s,Ω. The bounds we obtain are:

Σ2 + T2 . Σ Σh + κ2U Uh + (Σh + Uh)T + Σ2
h + κ2U2,

U . α2(Σ + Σh + Uh + T),

where α := Eκh(1 + κ). The condition that allows us to bootstrap is C(ακ)2 ≤ 1/4,

where C is a constant related to the constants hidden in the symbols . above. After

simplification, we prove

Σ + T . Σh + (1 + κ)Uh U . α(Σh + (1 + κ)Uh),

which is the statement of the theorem.
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Chapter 4

HDG+ AND EXTENDED HDG+ FOR TRANSIENT LINEAR
ELASTICITY

We now prepare and numerically test an HDG discretization in time (and an

extended version thereof) for the transient elastic wave equation. The analysis of this

method is being done by Shukai Du and F.-J. Sayas [16], so we do not go too deeply

into it. We write the equations, and then the HDG+ semidiscretized equations, provide

numerical evidence of convergence to the exact weak solution, and then do the same for

the extended version. We will use the trapezoid rule in the time variable, implemented

through a convolution quadrature strategy.

4.1 Transient Waves

Let us now write some HDG+ semidiscrete methods for the transient elastic

wave equation. The data functions are f : [0,∞) → L2(Ω;R3), gD : [0,∞) →

H1/2(ΓD;R3), and gN : [0,∞) → L2(ΓN ;R3). We are looking for u : [0,∞) →

H1(Ω;R3) and σ : [0,∞)→ H(div,Ω;R3×3
sym) satisfying

Aσ(t)− ε(u)(t) = 0 in Ω, ∀t ≥ 0, (4.1.1a)

−div σ(t) + ρ ü(t) = f(t) in Ω, ∀t ≥ 0, (4.1.1b)

u(t) = gD(t) on ΓD, ∀t ≥ 0, (4.1.1c)

σ(t) n = gN(t) on ΓN , ∀t ≥ 0, (4.1.1d)

and initial conditions u(0) = u0, u̇(0) = v0.
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The HDG+ semidiscretization uses three spaces

Vh := {ξ : Ω→ R3×3
sym : ξ|K ∈ Pk(K;R3×3

sym) ∀K ∈ Th}, (4.1.2a)

Wh := {u : Ω→ R3 : u|K ∈ Pk+1(K;R3) ∀K ∈ Th}, (4.1.2b)

Mh := {µ : Eh → R3 : µ|F ∈ Pk(F ;R3) ∀K ∈ Eh}, (4.1.2c)

for some polynomial degree k. A priori all the methods can be written for k = 0, but

the convergence theory [16] only works for k ≥ 1. We will show that the method does

not converge for k = 0. We look for

σh : [0,∞)→ Vh, uh : [0,∞)→Wh, and ûh : [0,∞)→Mh,

satisfying

(Aσh(t), ξ)Th + (uh(t),∇ · ξ)Th − 〈ûh(t), ξn〉∂Th = 0, (4.1.3a)

(σh(t),∇w)Th − 〈σ̂h(t)n,w〉∂Th + (ρ üh(t),w)Th = (f(t),w)Th , (4.1.3b)

〈σ̂h(t)n,µ〉∂Th\ΓD = 〈gN(t),µ〉ΓN , (4.1.3c)

〈ûh(t),µ〉ΓD = 〈gD(t),µ〉ΓD , (4.1.3d)

for all (ξ,w,µ) ∈ Vh ×Wh ×Mh and t ≥ 0. The numerical flux σ̂h can be defined

in different ways which influence the choice of initial conditions. If we take the inverse

Fourier transform of equations (3.6.4) with ακ = ±ıκ, we obtain the following proposals

for the numerical flux

σ̂h(t)n := σh(t)n± τ (PM u̇h(t)− ˙̂uh(t)). (4.1.4)

Note the positive sign corresponds to the method of Section 3.3 while the negative sign

is the one obtained by time reversal. (It is clear from this why the sign change in the

parameter ακ corresponded to time reversal.) For equations (3.6.4) with ακ = 1 we

obtain the flux

σ̂h(t)n := σh(t)n− τ (PMuh(t)− ûh(t)), (4.1.5)

which is the method used by Qiu, Shi, and Shen [41] for quasi-static elasticity.
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The following result shows that the method with flux given by (4.1.4) with

positive sign accumulates energy over time, the method with flux (4.1.4) with negative

sign is dissipative, and the method with flux (4.1.5) is conservative. The build-up or

dissipation of energy happens at the interfaces, while the conservative method needs

to add a potential energy term in the interfaces.

Proposition 4.1.1. Assume that the problem is unforced (f = 0 and gN = 0) and

the Dirichlet boundary conditions are static (ġD = 0). Then the solution to the HDG-

semidiscrete equations (4.1.3) with flux defined by (4.1.4) satisfies

d

dt

(
1

2
‖σh(t)‖2

A +
1

2
‖u̇h(t)‖2

ρ

)
= ±‖PM u̇h(t)− ˙̂uh(t)‖2

τ ∀t ≥ 0.

The solution to the HDG equations (4.1.3) with flux defined by (4.1.5) satisfy

d

dt

(
1

2
‖σh(t)‖2

A +
1

2
‖u̇h(t)‖2

ρ +
1

2
‖PMuh(t)− ûh(t)‖2

τ

)
= 0 ∀t ≥ 0.

Proof. It follows from a simple argument: (a) differentiate (4.1.3a) and test with σh(t),

(b) test (4.1.3b) with u̇h(t), (c) test (4.1.3c) with ˙̂uh(t); finally add the result of (a)-(c)

using the fact that ûh(t) is constant in time on the Dirichlet faces.

Therefore, only the HDG semidiscretization with the flux given by (4.1.5) con-

serves energy. This is the one that we will use for all the numerical experiments.

4.2 Numerical Experiments

We take the unit cube Ω = [0, 1]3 as our domain. After subdividing Ω into

N×N×N cubes and each of those cubes into 6 tetrahedra, we have a tetrahedrization

Th of Ω with 6N3 elements. For mixed boundary conditions, we take the sides of the

cube parallel to the yz plane to be Dirichlet and the rest of the faces Neumann. We

take a variable mass density and Lamé parameters,

ρ = 1 + x2 + y2 + z2, λ = 1 + 0.5(x2 + y2 + z2), µ = 8 + 0.5(x3 + y2 + z2).
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We use as an exact solution the displacement field

u(t) = sin 4t


cos(πx) sin(πy) cos(πz)

5x2yz + 4xy2z + 3xyz2 + 17

cos(2x) cos(3y) cos(z)

 for t ≥ 0,

with a corresponding forcing function

f(t) = −div (λ∇u(t) + 2µε(u(t))) + ρü(t).

For the jth refinement we will identify hj = 1/j with the maximum length of an edge

of a tetrahedron, since they are asymptotically equivalent. Our spatial discretization is

given by the discrete equations,

(Aσh(t), ξ)Th + (uh(t),∇ · ξ)Th − 〈ûh(t), ξn〉∂Th = 0,

−(div σh(t),∇w)Th + 〈τ (PMuh − ûh),w〉∂Th + (ρüh(t),w)∂Th = (f(t),w)Th ,

along with boundary and interelement balancing equations,

〈σh(t)n− τ(PMuh(t)− ûh(t)),µ〉∂Th\ΓD = 〈gN(t),µ〉ΓN ,

〈ûh(t),µ〉ΓD = 〈gD(t),µ〉ΓD .

Note that the negative sign we use in the numerical flux still corresponds to the con-

servative case.

We use the convolution quadrature based on the trapezoid rule for the time

discretization. The HDG implementation is built from the work of Fu, Gatica, and

Sayas, HDG Tools for MATLAB [18], for working with HDG in three dimensions, and

from the work of Hassell and Sayas [25] on convolution quadrature in MATLAB.

We will take a fixed value of ct = 100 and the final time T = 5. We use a

timestep

δt =

⌈
T

ct
h
k+2
2

j

⌉
.

We do this type of refinement in time because if we want to see the maximum conver-

gence of O(hk+2
j ) knowing that the trapezoid rule gives O(δ2

t ),

O(hk+2
j ) = hk+2

j + δ2
t ,
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we naturally set the timestep δt ≈ T
ct

√
hk+2
j .

In the tables below we compare hj (with j = 1, . . . , Nref and Nref being the

maximum refinement level) to the relative errors

eju =
‖u(T )− ujh(T )‖Ω

‖u(T )‖Ω

, ejσ =
‖σ(T )− σjh(T )‖Ω

‖σ(T )‖Ω

,

where ujh(T ) and σjh(T ) are the computed solutions from the jth refinement. In the

pictures below we compare log hj to

`ju = log eju and `jσ = log ejσ,

to observe the orders of convergence for Dirichlet, Neumann, and mixed boundary

conditions at polynomial degrees k ∈ {1, 2, 3, 4}, respectively. We also compute

Lju =
`ju − `j−1

u

log hj − log hj−1

for j = 2, . . . , N

and

Ljσ =
`jσ − `j−1

σ

log hj − log hj−1

for j = 1, . . . , N

in the tables below to approximate the order of convergence.

We see that we achieve the optimal order (O(hk+2
j ) for eju and O(hk+1

j ) for ejσ).
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Figure 4.1: Dirichlet conditions, Time-Dependent Case: Expected order of conver-

gence: O(hk+2) for uh and O(hk+1) for σh (top-left k = 1, top-right

k = 2, bottom-left k = 3, bottom-right k = 4)
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Figure 4.2: Neumann conditions, Time-Dependent Case: Expected order of conver-

gence: O(hk+2) for uh and O(hk+1) for σh (top-left k = 1, top-right

k = 2,, bottom-left k = 3, bottom-right k = 4)
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Figure 4.3: Mixed conditions, Time-Dependent Case: Expected order of convergence:

O(hk+2) for uh and O(hk+1) for σh (top-left k = 1, top-right k = 2,

bottom-left k = 3, bottom-right k = 4)
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hj eju ejσ Lju Ljσ

h1 2.73e-01 2.08e-01

h2 1.42e-02 7.07e-02 4.26 1.56

h3 2.88e-03 3.38e-02 3.94 1.82

h4 9.62e-04 1.94e-02 3.81 1.93

h5 4.23e-04 1.25e-02 3.68 1.99

h6 2.20e-04 8.61e-03 3.58 2.02

h7 1.28e-04 6.29e-03 3.53 2.04

h8 8.02e-05 4.78e-03 3.5 2.05

h9 5.32e-05 3.75e-03 3.48 2.06

h10 3.69e-05 3.02e-03 3.48 2.06

Table 4.1: Time-Dependent Elasticity: Dirichlet Conditions at k = 1

hj eju ejσ Lju Ljσ

h1 1.35e-01 9.23e-02

h2 3.30e-03 1.58e-02 5.35 2.54

h3 4.46e-04 5.09e-03 4.94 2.8

h4 1.08e-04 2.20e-03 4.94 2.91

h5 3.61e-05 1.13e-03 4.9 2.97

h6 1.49e-05 6.55e-04 4.87 3.01

h7 7.05e-06 4.11e-04 4.84 3.03

Table 4.2: Time-Dependent Elasticity: Dirichlet Conditions at k = 2
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hj eju ejσ Lju Ljσ

h1 5.22e-02 4.28e-02

h2 6.88e-04 3.50e-03 6.24 3.61

h3 6.28e-05 7.42e-04 5.9 3.82

h4 1.13e-05 2.39e-04 5.95 3.93

h5 3.00e-06 9.86e-05 5.96 3.98

h6 1.01e-06 4.76e-05 5.97 4.0

Table 4.3: Time-Dependent Elasticity: Dirichlet Conditions at k = 3

hj eju ejσ Lju Ljσ

h1 1.92e-02 4.51e-02

h2 1.29e-04 8.54e-04 7.22 5.72

h3 8.27e-06 1.05e-04 6.78 5.18

h4 1.18e-06 2.39e-05 6.77 5.14

h5 2.62e-07 7.73e-06 6.74 5.05

Table 4.4: Time-Dependent Elasticity: Dirichlet Conditions at k = 4
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hj eju ejσ Lju Ljσ

h1 7.68e-01 3.83e-01

h2 5.81e-02 1.28e-01 3.72 1.59

h3 6.95e-03 4.26e-02 5.24 2.7

h4 1.82e-03 2.18e-02 4.66 2.32

h5 7.47e-04 1.35e-02 3.99 2.17

h6 3.67e-04 9.11e-03 3.9 2.14

h7 2.03e-04 6.56e-03 3.85 2.12

h8 1.22e-04 4.95e-03 3.83 2.11

h9 7.77e-05 3.87e-03 3.81 2.1

h10 5.21e-05 3.10e-03 3.79 2.09

Table 4.5: Time-Dependent Elasticity: Neumann Conditions at k = 1

hj eju ejσ Lju Ljσ

h1 1.89e-01 1.68e-01

h2 3.82e-03 1.86e-02 5.63 3.17

h3 5.29e-04 5.57e-03 4.88 2.98

h4 1.33e-04 2.32e-03 4.8 3.05

h5 4.60e-05 1.17e-03 4.76 3.07

h6 1.94e-05 6.68e-04 4.73 3.07

h7 9.42e-06 4.16e-04 4.69 3.07

h8 5.06e-06 2.76e-04 4.65 3.06

Table 4.6: Time-Dependent Elasticity: Neumann Conditions at k = 2
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hj eju ejσ Lju Ljσ

h1 6.60e-02 6.64e-02

h2 9.34e-04 3.88e-03 6.14 4.1

h3 1.03e-04 7.85e-04 5.45 3.94

h4 2.22e-05 2.48e-04 5.32 4.0

h5 6.94e-06 1.01e-04 5.21 4.02

h6 2.75e-06 4.85e-05 5.07 4.04

Table 4.7: Time-Dependent Elasticity: Neumann Conditions at k = 3

hj eju ejσ Lju Ljσ

h1 3.69e-02 2.60e-02

h2 5.37e-04 7.08e-04 6.1 5.2

h3 4.65e-05 9.62e-05 6.03 4.92

h4 8.31e-06 2.29e-05 5.99 4.98

h5 2.22e-06 7.55e-06 5.92 4.98

Table 4.8: Time-Dependent Elasticity: Neumann Conditions at k = 4
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hj eju ejσ Lju Ljσ

h1 5.04e-01 5.08e-01

h2 2.05e-02 9.66e-02 4.62 2.4

h3 4.04e-03 3.94e-02 4.01 2.21

h4 1.37e-03 2.14e-02 3.76 2.13

h5 5.96e-04 1.33e-02 3.72 2.12

h6 3.04e-04 9.04e-03 3.69 2.11

h7 1.72e-04 6.53e-03 3.68 2.11

h8 1.06e-04 4.94e-03 3.67 2.1

h9 6.86e-05 3.86e-03 3.66 2.1

h10 4.67e-05 3.09e-03 3.65 2.09

Table 4.9: Time-Dependent Elasticity: Mixed Conditions at k = 1

hj eju ejσ Lju Ljσ

h1 1.48e-01 1.41e-01

h2 3.51e-03 1.78e-02 5.4 2.98

h3 4.83e-04 5.43e-03 4.89 2.93

h4 1.19e-04 2.29e-03 4.85 3.0

h5 4.09e-05 1.16e-03 4.8 3.04

h6 1.72e-05 6.67e-04 4.76 3.05

h7 8.30e-06 4.16e-04 4.73 3.06

h8 4.44e-06 2.76e-04 4.69 3.06

Table 4.10: Time-Dependent Elasticity: Mixed Conditions at k = 2

59



hj eju ejσ Lju Ljσ

h1 5.91e-02 6.15e-02

h2 8.40e-04 4.51e-03 6.14 3.77

h3 8.74e-05 8.38e-04 5.58 4.15

h4 1.82e-05 2.58e-04 5.46 4.1

h5 5.51e-06 1.04e-04 5.35 4.08

h6 2.10e-06 4.93e-05 5.29 4.08

Table 4.11: Time-Dependent Elasticity: Mixed Conditions at k = 3

hj eju ejσ Lju Ljσ

h1 2.27e-02 5.30e-02

h2 4.16e-04 2.31e-03 5.77 4.52

h3 3.50e-05 2.13e-04 6.1 5.88

h4 6.15e-06 4.08e-05 6.05 5.75

h5 1.60e-06 1.16e-05 6.04 5.64

Table 4.12: Time-Dependent Elasticity: Mixed Conditions at k = 4
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We can generate a wave by “lifting” one side of the box [0, 1]× [0, 4]× [0, 1] with the

Dirichlet condition u(x, t)|ΓD = (0, 0, sin4 t) for 0 ≤ t ≤ π and 0 for t ≥ π, and the rest

σn = 0 on ΓN . Areas under high stress are plotted lighter.

Figure 4.4: Elastic wave, part I
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Figure 4.5: Elastic wave, part II
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Figure 4.6: Elastic wave, part III
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Figure 4.7: Elastic wave, part IV
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Below, the head and body of a hippo, the surface of which comprise ΓD, are lifted

with a Dirichlet condition, u(x, t)|ΓD = (0, 0, 0.25 sin4 t) for 0 ≤ t ≤ π and 0 for t ≥ π,

and the legs (ΓN) are subject to σ(x, t)n = 0 for all t ≥ 0, hence they are free to

move. The hippo mesh can be found at [44].

Figure 4.8: Elastic hippo
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4.3 Extended HDG+ for Linear Elasticity

The following method is a simple extension of the HDG+ method using an

additional variable. This method is coded as a preparation of the HDG+ method for

nonlinear problems, as a way of calculating the strain directly, and as a way of dealing

with the problem of anisotropy more flexibly. We consider the following differential-

algebraic system, where we have introduced η : [0,∞)→ L2(Ω,R3×3
sym) as an additional

unknown into the mix:

Cη(t)− σ(t) = 0,

η(t)− ε(u(t)) = 0,

−∇ · σ(t) + ρü(t) = f(t),

γu(t) = gD(t),

σ(t)n = gN(t).

Note that the actual material law C and not the compliance tensor A = C−1 is used in

this formulation.

The HDG+ semidiscretization corresponding to these equations uses the same

spaces as in Section 4.1:

Vh = ΠK∈ThPk(K;R3×3
sym),

Wh = ΠK∈ThPk+1(K;R3),

Mh = {µ : Eh → R3 : µ|F ∈ Pk(F ;R3), ∀F ∈ Eh},

and looks for (σh,ηh,uh, ûh) : [0,∞)→ Vh × Vh ×Wh ×Mh such that

(Cηh(t),ρh)Th − (σh(t),ρh)Th = 0 ∀ρh ∈ V(Th),

(ηh(t), ξh)Th + (uh(t),∇ · ξh)Th − 〈ûh(t), ξhn〉∂Th = 0 ∀ξh ∈ V(Th),

−〈σ̂h(t)n,wh〉∂Th + (σh,∇wh)Th + (ρüh(t),wh)Th = (f(t),wh)Th ∀wh ∈W(Th),

〈ûh(t),µh〉ΓD = 〈gD(t),µh〉ΓD ∀µh ∈M(Th),

〈σ̂h(t)n,µh〉∂Th\ΓD = 〈gN(t),µh〉ΓN ∀µh ∈M(Th).
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The equilibrium equations and the equations associated to boundary conditions are

exactly the same as those of the previous HDG+ method, with the flux function

σ̂h(t)n = σh(t)n− τ (PMuh(t)− ûh(t)) τ ≡ 1/hK .

Proposition 4.3.1. The method considered above is conservative, i.e.

d

dt

(
‖ηh(t)‖2

C + ‖u̇h(t)‖2
ρ + ‖PMuh(t)− ûh(t)‖2

∂Th,τ
)

= 0.

Proof. To see that this method is conservative, suppose f(t), ġD(t), and gN(t) vanish

for all time,

(Cηh(t),ρh)Th − (σh(t),ρh)Th = 0 ∀ρh ∈ V(Th),

(ηh(t), ξh)Th + (uh(t), div ξh)Th − 〈ûh(t), ξhn〉∂Th = 0 ∀ξh ∈ V(Th),

−(div σh,wh)Th + (ρüh(t),wh)Th + 〈τ (PMuh − ûh,wh〉∂Th = 0 ∀wh ∈W(Th),

〈ûh(t),µh〉ΓD = 0 ∀µh ∈M(Th),

〈σ̂h(t)n,µh〉∂Th\ΓD = 0 ∀µh ∈M(Th).

Now test the first equation with η̇h(t), differentiate and test the second with σh(t),

and test the third with u̇h(t):

(Cηh(t), η̇h(t))Th − (σh(t), η̇h(t))Th = 0,

(η̇h(t),σh(t))Th + (u̇h(t), div σh(t))Th − 〈 ˙̂uh(t),σh(t)n〉∂Th = 0,

−(div σh(t), u̇h(t))Th + (ρüh(t), u̇h(t))Th + 〈τ(PMuh(t)− ûh(t)), u̇h(t)〉∂Th = 0,

and sum to obtain

d

dt

(
‖ηh(t)‖2

C + ‖u̇h(t)‖2
ρ + ‖PMuh(t)− ûh(t)‖2

∂Th,τ
)

= 0.

4.4 Numerical Experiments

We take the unit cube Ω = [0, 1]3 as our domain and subdivide as in (4.2). We

take the same variable parameters

ρ = 1 + x2 + y2 + z2, λ = 1 + 0.5(x2 + y2 + z2), µ = 8 + 0.5(x3 + y2 + z2),
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and use as an exact solution the same causal displacement field

u(t, x, y, z) = sin 4t


cos(πx) sin(πy) cos(πz)

5x2yz + 4xy2z + 3xyz2 + 17

cos(2x) cos(3y) cos(z)

 for t ≥ 0

with the corresponding forcing function

f(t) = −div (λ∇u(t) + 2µε(u(t))) + ρü(t).

Our spatial discretization is given by the discrete equations,

(Aηh(t), ξ)Th − (σh, ξ)Th = 0,

(ηh(t), ξ)Th + (uh(t),∇ · ξ)Th − 〈ûh(t), ξn〉∂Th = 0,

(σh(t),∇w)Th − 〈σh(t)n− τ(PMuh(t)− ûh(t)),µ〉∂Th + (ρüh(t),w)∂Th = (f(t),w)Th ,

along with boundary and interelement balancing equations,

〈σh(t)n− τ(PMuh(t)− ûh(t)),µ〉∂Th\ΓD = 〈gN(t),µ〉ΓN ,

〈ûh(t),µ〉ΓD = 〈gD(t),µ〉ΓD .

Note that the negative sign we use in the numerical flux still corresponds to the con-

servative case.

We again use a convolution quadrature based on the trapezoid rule for the time

discretization.

In the figures below, we have hj = 1/j for j = 1, . . . , N , as these are asymptoti-

cally identical to taking hj to be the longest edge of a tetrahedron. We will take a fixed

value of ct = 100 and the final time T = 5. We again use a timestep

δt =

⌈
T

ct
h
k+2
2

j

⌉
.

To see why, refer to Section 4.2.

In the tables below we compare hj to the relative errors

eju =
‖u(T )− ujh(T )‖Ω

‖u(T )‖Ω

, ejη =
‖η(T )− ηjh(T )‖Ω

‖η(T )‖Ω

, ejσ =
‖σ(T )− σjh(T )‖Ω

‖σ(T )‖Ω

,
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where ujh(T ) is the computed solution on the jth refinement. In the pictures below we

compare log hj to

log eju, log ejη, log ejσ,

to observe the orders of convergence for Dirichlet, Neumann, and mixed boundary

conditions at polynomial degrees k ∈ {1, 2, 3, 4}, respectively. We also compute

Lju =
log eju − log ej−1

u

log hj − log hj−1

for j = 2, . . . , N,

Ljη =
log ejη − log ej−1

η

log hj − log hj−1

for j = 2, . . . , N,

and

Ljσ =
log ejσ − log ej−1

σ

log hj − log hj−1

for j = 2, . . . , N,

in the tables below to approximate the order of convergence.

We see that we achieve the optimal order (O(hk+2
j ) for eju and O(hk+1

j ) for ejσ

and ejη). Moreover, we see that ejσ converges at almost exactly the same rate as ejη.
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Figure 4.9: Dirichlet Conditions for the Extended Elastic Problem, Time-Dependent

Case: Expected order of convergence: O(hk+2) for uh and O(hk+1) for

ηh and σh. β = 0.75, c = 2, κ/γ = 2 (top-left k = 1, top-right k = 2,

bottom-left k = 3, bottom-right k = 4)
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Figure 4.10: Neumann Conditions for the Extended Elastic Problem, Time-

Dependent Case: Expected order of convergence: O(hk+2) for uh and

O(hk+1) for ηh and σh. β = 0.75, c = 2, κ/γ = 2, (top-left k = 1,

top-right k = 2, bottom-left k = 3,bottom-right k = 4)
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Figure 4.11: Mixed Conditions for the Extended Elastic Problem, Time-Dependent

Case: Expected order of convergence: O(hk+2) for uh and O(hk+1) for

ηh and σh. β = 0.75, c = 2, κ/γ = 2, (top-left k = 1, top-right k = 2,

bottom-left k = 3, bottom-right k = 4))
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hj eju ejη ejσ Lju Ljη Ljσ

h1 2.73e-01 3.99e+00 2.08e-01

h2 1.42e-02 1.35e+00 7.07e-02 4.261878 1.55746 1.557461

h3 2.88e-03 6.48e-01 3.38e-02 3.939888 1.820257 1.820257

h4 9.62e-04 3.72e-01 1.94e-02 3.811022 1.928366 1.928366

h5 4.23e-04 2.39e-01 1.25e-02 3.681268 1.986603 1.986603

h6 2.20e-04 1.65e-01 8.61e-03 3.583031 2.021315 2.021315

h7 1.28e-04 1.21e-01 6.29e-03 3.525734 2.041471 2.04147

h8 8.02e-05 9.17e-02 4.78e-03 3.497459 2.052127 2.052127

Table 4.13: Time-Dependent Extended Elasticity: Dirichlet Conditions at k = 1

hj eju ejη ejσ Lju Ljη Ljσ

h1 1.35e-01 1.76e+00 9.18e-02

h2 3.30e-03 3.04e-01 1.58e-02 5.351179 2.534917 2.534904

h3 4.46e-04 9.76e-02 5.09e-03 4.936426 2.799807 2.799807

h4 1.08e-04 4.22e-02 2.20e-03 4.937881 2.912835 2.912834

h5 3.61e-05 2.17e-02 1.13e-03 4.903187 2.974129 2.974129

h6 1.49e-05 1.26e-02 6.55e-04 4.867171 3.009933 3.00993

h7 7.05e-06 7.87e-03 4.11e-04 4.842112 3.02971 3.02971

Table 4.14: Time-Dependent Extended Elasticity: Dirichlet Conditions at k = 2
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hj eju ejη ejσ Lju Ljη Ljσ

h1 5.22e-02 8.24e-01 4.30e-02

h2 6.88e-04 6.70e-02 3.50e-03 6.244437 3.619299 3.619302

h3 6.28e-05 1.42e-02 7.42e-04 5.904398 3.822293 3.822295

h4 1.13e-05 4.59e-03 2.39e-04 5.950438 3.932753 3.932745

h5 3.00e-06 1.89e-03 9.86e-05 5.96314 3.975373 3.975365

h6 1.01e-06 9.12e-04 4.76e-05 5.965622 3.999397 3.999441

Table 4.15: Time-Dependent Extended Elasticity: Dirichlet Conditions at k = 3

hj eju ejη ejσ Lju Ljη Ljσ

h1 1.92e-02 8.64e-01 4.51e-02

h2 1.29e-04 1.64e-02 8.54e-04 7.215736 5.721963 5.721962

h3 8.27e-06 2.01e-03 1.05e-04 6.777515 5.178033 5.17803

h4 1.18e-06 4.58e-04 2.39e-05 6.771252 5.137197 5.137255

h5 2.61e-07 1.48e-04 7.72e-06 6.75754 5.058696 5.058458

Table 4.16: Time-Dependent Extended Elasticity: Dirichlet Conditions at k = 4
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hj eju ejη ejσ Lju Ljη Ljσ

h1 7.68e-01 7.34e+00 3.83e-01

h2 5.81e-02 2.44e+00 1.28e-01 3.723071 1.586973 1.586975

h3 6.95e-03 8.16e-01 4.26e-02 5.238639 2.704935 2.704935

h4 1.82e-03 4.18e-01 2.18e-02 4.657562 2.323551 2.323551

h5 7.47e-04 2.58e-01 1.35e-02 3.988641 2.166766 2.166766

h6 3.67e-04 1.75e-01 9.11e-03 3.897815 2.14255 2.14255

h7 2.03e-04 1.26e-01 6.56e-03 3.851873 2.124354 2.124354

h8 1.22e-04 9.49e-02 4.95e-03 3.828342 2.110857 2.110857

Table 4.17: Time-Dependent Extended Elasticity: Neumann Conditions at k = 1

hj eju ejη ejσ Lju Ljη Ljσ

h1 1.89e-01 3.22e+00 1.68e-01

h2 3.82e-03 3.57e-01 1.86e-02 5.630543 3.172554 3.17254

h3 5.29e-04 1.07e-01 5.57e-03 4.87588 2.979006 2.979006

h4 1.33e-04 4.44e-02 2.32e-03 4.795174 3.048021 3.048021

h5 4.60e-05 2.24e-02 1.17e-03 4.76159 3.06876 3.068759

h6 1.94e-05 1.28e-02 6.68e-04 4.729865 3.069998 3.069996

h7 9.44e-06 7.98e-03 4.16e-04 4.677826 3.067232 3.067244

Table 4.18: Time-Dependent Extended Elasticity: Neumann Conditions at k = 2
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hj eju ejη ejσ Lju Ljη Ljσ

h1 6.60e-02 1.27e+00 6.65e-02

h2 9.34e-04 7.45e-02 3.88e-03 6.142158 4.09763 4.097633

h3 1.03e-04 1.51e-02 7.85e-04 5.447686 3.942565 3.942566

h4 2.22e-05 4.76e-03 2.48e-04 5.317838 4.000281 4.000287

h5 6.96e-06 1.94e-03 1.01e-04 5.204629 4.023673 4.023668

h6 2.76e-06 9.30e-04 4.85e-05 5.066835 4.035251 4.035289

Table 4.19: Time-Dependent Extended Elasticity: Neumann Conditions at k = 3

hj eju ejη ejσ Lju Ljη Ljσ

h1 3.69e-02 4.97e-01 2.59e-02

h2 5.37e-04 1.36e-02 7.08e-04 6.099786 5.194337 5.194336

h3 4.65e-05 1.84e-03 9.62e-05 6.033961 4.922191 4.922183

h4 8.34e-06 4.39e-04 2.29e-05 5.975795 4.986759 4.986828

h5 2.21e-06 1.45e-04 7.55e-06 5.944076 4.977906 4.977838

Table 4.20: Time-Dependent Extended Elasticity: Neumann Conditions at k = 4
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hj eju ejη ejσ Lju Ljη Ljσ

h1 5.04e-01 9.75e+00 5.08e-01

h2 2.05e-02 1.85e+00 9.66e-02 4.621784 2.396045 2.396047

h3 4.04e-03 7.55e-01 3.94e-02 4.00516 2.213567 2.213567

h4 1.37e-03 4.09e-01 2.14e-02 3.76347 2.125643 2.125643

h5 5.96e-04 2.55e-01 1.33e-02 3.723121 2.123439 2.123439

h6 3.04e-04 1.73e-01 9.04e-03 3.688181 2.114427 2.114426

h7 1.72e-04 1.25e-01 6.53e-03 3.678222 2.108226 2.108227

h8 1.06e-04 9.46e-02 4.94e-03 3.670764 2.102266 2.102266

Table 4.21: Time-Dependent Extended Elasticity: Mixed Conditions at k = 1

hj eju ejη ejσ Lju Ljη Ljσ

h1 1.48e-01 2.69e+00 1.40e-01

h2 3.51e-03 3.42e-01 1.78e-02 5.401077 2.979149 2.979136

h3 4.83e-04 1.04e-01 5.43e-03 4.893206 2.929426 2.929426

h4 1.19e-04 4.39e-02 2.29e-03 4.854499 3.00046 3.00046

h5 4.09e-05 2.23e-02 1.16e-03 4.800682 3.036323 3.036323

h6 1.72e-05 1.28e-02 6.67e-04 4.756778 3.053525 3.05352

h7 8.30e-06 7.98e-03 4.16e-04 4.726598 3.060548 3.060554

Table 4.22: Time-Dependent Extended Elasticity: Mixed Conditions at k = 2
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hj eju ejη ejσ Lju Ljη Ljσ

h1 5.91e-02 1.18e+00 6.16e-02

h2 8.40e-04 8.65e-02 4.51e-03 6.137195 3.771344 3.771348

h3 8.74e-05 1.61e-02 8.38e-04 5.579726 4.150368 4.150368

h4 1.82e-05 4.94e-03 2.58e-04 5.461183 4.099686 4.099688

h5 5.51e-06 1.99e-03 1.04e-04 5.34963 4.081853 4.08184

h6 2.11e-06 9.46e-04 4.93e-05 5.267956 4.074936 4.074983

Table 4.23: Time-Dependent Extended Elasticity: Mixed Conditions at k = 3

hj eju ejη ejσ Lju Ljη Ljσ

h1 2.27e-02 1.02e+00 5.30e-02

h2 4.16e-04 4.44e-02 2.31e-03 5.767827 4.517999 4.517999

h3 3.50e-05 4.08e-03 2.13e-04 6.101702 5.881931 5.881934

h4 6.16e-06 7.83e-04 4.08e-05 6.040875 5.742611 5.742644

h5 1.60e-06 2.22e-04 1.16e-05 6.044811 5.638637 5.638696

Table 4.24: Time-Dependent Extended Elasticity: Mixed Conditions at k = 4
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Chapter 5

HDG+ FOR BIOT’S MODEL OF LINEAR POROELASTICITY

We first give an overview of progress made on modeling Biot’s poroelasticity

equations in 3D, and then propose and briefly analyze an HDG+ scheme to give both

frequency-domain and time-domain approximations to the solutions of the equations.

5.1 Introduction

We turn our attention now to Biot’s model of linear poroelasticity in 3D. Many

people have explored this topic in various levels of detail. Linear poroelasticity as a

field was created by Karl Terzaghi in 1923 to describe the 1D consolidation of clay

soils [49], but the 3-dimensional model is attributed to Maurice Biot. Biot published

his first work on poroelasticity in 1941 [7]. This culminated in his work, “Theory of

propagation of elastic waves in a fluid-saturated porous solid, part I: low frequency

range” and “part II: higher frequency range” [6]. Rice and Cleary [43] recast the

problem as compressible in both fluid and solid phases, and in terms of new material

parameters, such as the Poisson ratio and the bulk modulus evaluated in both drained

and undrained states. An excellent overview of the history of poroelasticity, as well as

the analogy between thermoelasticity and poroelasticity, can be found in Chapter 1 of

[50].

More recently, Gaspar, Lisbona, and Vabishchevich present a finite difference

analysis of the quasi-static version of Biot’s consolidation model in 1D [20]. Yder

Masson and Steven Pride model Biot’s poroelastic equations across all frequencies via

the finite difference approach [36]. They present an explicit time-stepping staggered-

grid finite-difference scheme for solving Biot’s equations in the low-frequency limit,

79



and present numerical experiments that confirm their accuracy by comparison to exact

analytical solutions for both fast compressional waves and slow waves.

Anna Naumovich writes about the quasi-static Biot poroelasticity system in her

Ph.D. thesis [38]. She solves the system with a finite volume discretization that yields

second-order convergence. A stabilized element-based finite volume formulation for 3D

poroelastic problems can be found in [27]. Lemoine, Ou, and LeVeque [32] present

an explicit time-stepping approach to modeling wave propagation with low memory

overhead and wave limiters to reduce numerical artifacts in the solution.

For the more finite-element styled literature, Phillip Joseph Phillips and his ad-

visor, Mary F. Wheeler, discuss theoretical and computational results in linear poroe-

lasticity [40]. They use a continuous Galerkin scheme for the displacement and mixed

finite elements for the pressure/pressure flux. Then, because of a locking phenomenon,

they turn to discontinuous Galerkin for the displacement and mixed finite elements for

the flow, and then they show that they can combine CG and mixed finite elements with

an adaptive grid for the same results. Then Kolesov, Vabishchevich, and Vasilyeve [2]

consider FEM approximation in space with a splitting scheme in time with an additive

representation of the differentiation operator for the quasi-stationary problem (steady

for motion and unsteady for temperature/pressure). In his 2015 doctoral thesis, Lorenz

Berger presents a low-order FEM for poroelasticity with applications to lung model-

ing [4], using P0 elements for pressure and P1 for displacement. Berger, Bordas, and

Kay [5] come up with a stabilized FEM for finite-strain three-field poroelasticity using

Berger’s low-order elements and a splitting scheme in time. Uwe Köcher and Markus

Bause use DG and CG for their time discretization and mixed FEM in space for the

flow problem and CG for the mechanics [29].

As for discontinuous Galerkin methods, we can consider the work of Ward,

Lähivaara and Eveson. They model wave propagation in the two-dimensional case,

deriving the upwind numerical flux as an exact solution for the Riemann problem

including the poroelastic-elastic interface [51]. De la Puente, Dumbser, Käser and Igel

build a scheme able to successfully model wave propagation in fluid-saturated porous
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media where anisotropy of the pore structure is allowed [15]. Ge and Ma develop and

analyze a multiphysics DG method for a (fully dynamic) poroelasticity model [21], and

prove that their multiphysics DG method is absolutely stable for all positive mesh sizes

h. To the author’s knowledge at the time of writing this, however, this is the first work

on using a hybridized DG scheme, in particular combined with convolution quadrature,

to model the fully dynamic Biot’s system of poroelasticity in 3D.

5.2 Model Equations

The bounded domain is still denoted Ω, but now it has two different partitionings

of the boundary Γ into ΓD ∪ ΓN and Γ̃D ∪ Γ̃N . The former will still be used for

displacement/stress boundary conditions, while the latter will now be used for pressure

and pressure flux boundary conditions.

We will admit a compliance tensor A as in (3.2.2), a strongly positive density ρ :

R3 → R, a strongly positive storativity parameter c : R3 → R, a constant, symmetric

and uniformly positive definite matrix κ ∈ R3×3
sym representing the hydraulic conductivity

normalized by the specific weight of the fluid. In addition we will specify a Biot’s

constant β ∈ [0, 1]. We will also have forcing functions fu : [0,∞) → L2(Ω,R3) and

fp : [0,∞)→ L2(Ω,R), Dirichlet boundary conditions gD : [0,∞)→ H1/2(ΓD,R3) and

gd : [0,∞) → H1/2(Γ̃D,R), and Neumann conditions gN : [0,∞) → L2(ΓN ,R3) and

gn : [0,∞)→ L2(Γ̃N ,R).

We seek the transient displacement field u : [0,∞) → H1(Ω,R3), its accom-

panying elastic stress field σ : [0,∞) → H(div,Ω;R3×3
sym), and the pressure function

p : [0,∞)→ H1(Ω,R) that satisfy the following equations:
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Aσ(t) = ε(u(t)) in Ω, (5.2.1)

ρü(t) = div σ(t)− β∇p(t) + fu(t) in Ω, (5.2.2)

β∇ · u̇(t) + cṗ(t) = ∇ · (κ∇p(t)) + fp(t) in Ω, (5.2.3)

u(t) = gD(t) on ΓD, (5.2.4)

σ(t)n− βp(t)n = gN(t) on ΓN , (5.2.5)

p(t) = gd(t) on Γ̃D, (5.2.6)

κ∇p(t) · n = gn(t) on Γ̃N , (5.2.7)

u(0) = u0 in Ω, (5.2.8)

u̇(0) = v0 in Ω, (5.2.9)

p(0) = p0 in Ω. (5.2.10)

Proposition 5.2.1. Assume that there are no forcing terms (fu = 0, fp = 0 in Ω),

the boundary displacement is constant in time (ġD = 0 on ΓD), Biot stress is zero

(gN = 0) on ΓN , boundary pressure is zero (gd = 0) on Γ̃D and there is no pressure

flux (gn = 0) across Γ̃N . Then the system itself is dissipative, i.e., that

d

dt

(
‖σ(t)‖2

A + ‖u̇(t)‖2
ρ + ‖p(t)‖2

c

)
≤ 0.

Proof. We begin by differentiating and then testing equation (5.2.1) with σ(t),

(Aσ̇(t),σ(t))Ω = (ε(u̇h),σ(t))Ω = (∇u̇(t),σ(t))Ω,

Next we test (5.2.2) with u̇(t),

(ρü(t), u̇(t))Ω = (div σ(t), u̇(t))Ω − (β∇p(t), u̇(t))Ω,

or, after integrating by parts,

(ρü(t), u̇(t))Ω = 〈σ(t)n, u̇(t)〉Γ − (σ(t),∇u̇(t))Ω − (β∇p(t), u̇(t))Ω.
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Then we test (5.2.3) with p(t),

β(∇ · u̇(t), p(t))Ω + (cṗ(t), p(t))Ω = (∇ · κ∇p(t), p(t))Ω.

After integrating by parts and dropping the boundary term due to (5.2.6) and (5.2.7),

we have

β〈u̇(t), p(t)n〉Γ − β(u̇(t),∇p(t))Ω + (cṗ(t), p(t))Ω = −(κ∇p(t),∇p(t))Ω.

Rearranging, we have

1

2

d

dt
‖σ(t)‖2

A − (∇u̇(t),σ(t))Ω = 0,

1

2

d

dt
‖u̇(t)‖2

ρ − 〈σ(t)n, u̇(t)〉Γ + (σ(t),∇u̇(t))Ω + (β∇p(t), u̇(t))Ω = 0,

〈u̇(t), βp(t)n〉Γ − (u̇(t), β∇p(t))Ω +
1

2

d

dt
‖p(t)‖2

c + ‖∇p(t)‖2
κ = 0.

Summing, we have

1

2

d

dt
‖σ(t)‖2

A +
1

2

d

dt
‖u̇(t)‖2

ρ − 〈σ(t)n− βp(t)n, u̇(t)〉Γ +
1

2

d

dt
‖p(t)‖2

c + ‖∇p(t)‖2
κ = 0,

or, equivalently, by dropping the boundary term due to (5.2.4) and (5.2.5),

d

dt

(
‖σ(t)‖2

A + ‖u̇(t)‖2
ρ + ‖p(t)‖2

c

)
= −2‖∇p(t)‖2

κ ≤ 0.

We now take a moment to introduce the pressure flux variable q = κ∇p, to

form the equivalent system,

Aσ(t)− ε(u(t)) = 0 in Ω, (5.2.11)

−div σ(t) + ρü(t) + β∇p(t) = fu(t) in Ω, (5.2.12)

κ−1q−∇p = 0 in Ω (5.2.13)

β∇ · u̇(t)−∇ · q(t) + cṗ(t) = fp(t) in Ω, (5.2.14)

u(t) = gD(t) on ΓD, (5.2.15)

σ(t)n− βp(t)n = gN(t) on ΓN , (5.2.16)

p(t) = gd(t) on Γ̃D, (5.2.17)

q(t) · n = gn(t) on Γ̃N , (5.2.18)
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Going through an equivalent process of differentiating and testing (5.2.11) with σ(t),testing

(5.2.12) with u̇, testing (5.2.13) with q, and testing (5.2.14) with p, integrating by parts

and summing, we get

d

dt

(
‖σ(t)‖2

A + ‖u̇(t)‖2
ρ + ‖p(t)‖2

c

)
= −2‖q(t)‖2

κ−1 ≤ 0.

5.3 HDG+ semidiscretization

Next we introduce the HDG+ semidiscretization of the above system. The

method involves six discrete spaces

Vh := {ξ : Ω→ R3×3
sym : ∀K ∈ Th, ξ|K ∈ Pk(K;R3×3

sym)}, (5.3.1)

Wh := {v : Ω→ R3 : ∀K ∈ Th,v|K ∈ Pk+1(K;R3}, (5.3.2)

Qh := {r : Ω→ R3 : ∀K ∈ Th, r|K ∈ Pk(K;R3}, (5.3.3)

Ph := {s : Ω→ R : ∀K ∈ Th, s|K ∈ Pk+1(K;R}, (5.3.4)

Mh := {µ : Eh → R3 : ∀F ∈ Eh,µ|F ∈ Pk(F,R3), (5.3.5)

Mh := {µ : Eh → R : ∀F ∈ Eh, µ|F ∈ Pk(F,R), (5.3.6)

just as in (3.2.2), where Pr(K;S) is the set of polynomials of total degree up to r

defined on K and with values in S ∈ {R3×3
sym,R3,R}, while Pk(F ;Rq) are either vector

or scalar (dependent on q) polynomials on the tangential coordinates defined on the

face F and of degree not greater than k. We will also use the orthogonal projectors

PM :
∏
K∈Th

L2(∂K,R3)→
∏
K∈Th

∏
F∈E(K)

Pk(F ;R3)

and

PM :
∏
K∈Th

L2(∂K,R)→
∏
K∈Th

∏
F∈E(K)

Pk(F ;R).

Note that Mh and Mh can be identified with subspaces of the sets of the right-hand

sides. We take a shape-regular conforming tetrahedrization Th of Ω and make stabi-

lization functions

τK,u : ∂K → R3×3
sym and τK,p : ∂K → R
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such that (a) τK,u and τK,p are constant on each face and (b) there exist four positive

constants C1, C2, C3, and C4 such that

C1h
−1
K ‖µ‖

2
∂K ≤ 〈τK,uµ,µ〉∂K ≤ C2h

−1
K ‖µ‖

2
∂K ∀µ ∈ L2(∂K), ∀K ∈ Th

C3h
−1
K ‖µ‖

2
∂K ≤ 〈τK,pµ, µ〉∂K ≤ C4h

−1
K ‖µ‖

2
∂K ∀µ ∈ L2(∂K), ∀K ∈ Th

where hK is the diameter of K. The symbols τu and τp will be used to denote the

functions defined on the set of boundaries of all elements K above, understanding that

τu and τp may be double-valued on interior faces.

We will now look for variables

σh : [0,∞)→ Vh,

uh : [0,∞)→Wh,

qh : [0,∞)→ Qh,

ph : [0,∞)→ Ph,

and numerical traces

ûh : [0,∞)→Mh,

p̂h : [0,∞)→Mh.

such that for all (ξh,vh, rh, sh) ∈ Vh ×Wh ×Qh × Ph and for all K ∈ Th,

(Aσh(t), ξh)K + (uh(t), div ξh)K − 〈ûh(t)), ξhn〉∂K = 0, (5.3.7)

−(div σh(t),vh)K + (ρüh(t),vh)K

+〈τu(PMuh(t)− ûh(t)),PMvh〉∂K + β(∇ph(t),vh)K = (fu(t),vh)K ,

(5.3.8)

(κ−1qh(t), rh)K + (ph(t),∇ · rh)K − 〈p̂h(t), rh · n〉∂K = 0, (5.3.9)

−β(u̇h(t),∇sh)K + β〈 ˙̂uh(t), PMshn〉∂K

−(∇ · qh(t), sh)K + (cṗh(t), sh)K + 〈τp(PMph(t)− p̂h(t)), PMsh〉∂K = (fp(t), sh)K .

(5.3.10)
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Summing these over the various elements K, we have

(Aσh(t), ξh)Th + (uh(t), div ξh)Th − 〈ûh(t)), ξhn〉∂Th = 0, (5.3.11)

−(div σh(t),vh)Th + (ρüh(t),vh)Th + β(∇ph(t),vh)Th

+〈τu(PMuh(t)− ûh(t)),PMvh〉∂Th = (fu(t),vh)Th ,
(5.3.12)

(κ−1qh(t), rh)Th + (ph(t),∇ · rh)Th − 〈p̂h(t), rh · n〉∂Th = 0, (5.3.13)

−β(u̇h(t),∇sh)Th + β〈 ˙̂uh(t), PMshn〉∂Th

−(∇ · qh(t), sh)Th + (cṗh(t), sh)Th

+〈τp(PMph(t)− p̂h(t)), PMsh〉∂Th = (fp(t), sh)Th .

(5.3.14)

We now introduce boundary and equilibrium conditions as well as initial conditions:

〈ûh(t), v̂h〉ΓD = 〈gD(t), v̂h〉ΓD , (5.3.15)

〈p̂h(t), v̂h〉Γ̃D = 〈gd(t), v̂h〉Γ̃D , (5.3.16)

〈σh(t)n− τu(PMuh(t)− ûh(t))− βPMph(t)n, v̂h〉∂Th\ΓD = 〈gN(t), v̂h〉ΓN , (5.3.17)

〈qh(t) · n− τp(PMph(t)− p̂h(t)), v̂h〉∂Th\Γ̃D = 〈gn(t), v̂h〉Γ̃N , (5.3.18)

uh(0) = uh,0, vh(0) = vh,0, p(0) = ph,0. (5.3.19)

Proposition 5.3.1. This method is also dissipative, i.e.

d

dt

(
‖σh(t)‖2

A + ‖u̇h(t)‖2
ρ + ‖ph(t)‖2

c + ‖(PMuh(t)− ûh(t))‖2
τu

)
≤ 0.

Proof. Let fu(t) = 0,fp(t) = 0, ġD(t) = 0, gd(t) = 0,gN(t) = 0, and gn(t) = 0. Then

differentiate equation (5.3.11) and test with ξh = σh(t), yielding

(Aσ̇h(t),σh(t))Th + (u̇h(t), div σh(t))Th − 〈 ˙̂uh(t),σh(t)n〉∂Th = 0, (5.3.20)

which, using boundary conditions (5.3.15) and (5.3.17), and the fact that ġD = 0 on

ΓD to replace the term

〈 ˙̂uh(t),σh(t)n〉∂Th

= 〈 ˙̂uh(t),σh(t)n〉∂Th\ΓD

= 〈 ˙̂uh(t), τu(PMuh(t)− ûh(t)) + βPMph(t)n〉∂Th\ΓD

= 〈 ˙̂uh(t), τu(PMuh(t)− ûh(t)) + βPMph(t)n〉∂Th ,
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becomes

(Aσ̇h(t),σh(t))Th + (u̇h(t), div σh(t))Th

−〈 ˙̂uh(t), τu(PMuh(t)− ûh(t)) + βPMph(t)n〉∂Th = 0.
(5.3.21)

Then we test (5.3.12) with vh = u̇h(t),

−(div σh(t), u̇h(t))Th + (ρüh(t), u̇h(t))Th + β(∇ph(t), u̇h(t))Th

+〈τu(PMuh(t)− ûh(t)),PM u̇h(t)〉∂Th = 0,
(5.3.22)

and test (5.3.13) with rh = qh(t),

(κ−1qh(t),qh(t))Th + (ph(t),∇ · qh(t))Th − 〈p̂h(t),qh(t) · n〉∂Th = 0. (5.3.23)

Next we use the boundary conditions (5.3.16) and (5.3.18) and the fact that gd = 0 on

Γ̃D to replace

〈p̂h(t),qh(t) · n〉∂Th

= 〈p̂h(t),qh(t) · n〉∂Th\Γ̃D
= 〈p̂h(t), τp(PMph − p̂h)〉∂Th\Γ̃D
= 〈p̂h(t), τp(PMph − p̂h)〉∂Th ,

creating

(κ−1qh(t),qh(t))Th + (ph(t),∇ · qh(t))Th − 〈p̂h(t), τp(PMph − p̂h)〉∂Th = 0. (5.3.24)

Now we test (5.3.14) with sh = ph(t),

−β(u̇h(t),∇ph(t))Th + β〈 ˙̂uh(t), PMph(t)n〉∂Th + (cṗh(t), ph(t))Th

−(∇ · qh(t), ph(t))Th + 〈τp(PMph(t)− p̂h(t)), PMph(t)〉∂Th = 0.
(5.3.25)

Summing (5.3.21), (5.3.22), (5.3.24), and (5.3.25), we get

1

2

d

dt
‖σh(t)‖2

A +
1

2

d

dt
‖u̇h(t)‖2

ρ + ‖qh(t)‖2
κ−1 +

1

2

d

dt
‖ph(t)‖2

c

+〈PMph(t)− p̂h(t), τp(PMph(t)− p̂h(t))〉∂Th

+〈τu(PMuh(t)− ûh(t)),PM u̇h(t)− ˙̂uh(t)〉∂Th = 0.
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Combining terms, we get

1

2

d

dt
‖σh(t)‖2

A +
1

2

d

dt
‖u̇h(t)‖2

ρ + ‖qh(t)‖2
κ−1 +

1

2

d

dt
‖ph(t)‖2

c

+‖PMph(t)− p̂h(t)‖2
τp +

1

2

d

dt
‖(PMuh(t)− ûh(t))‖2

τu = 0,

or, better yet,

d

dt

(
‖σh(t)‖2

A + ‖u̇h(t)‖2
ρ + ‖ph(t)‖2

c + ‖(PMuh(t)− ûh(t))‖2
τu

)
= −2

(
‖qh(t)‖2

κ−1 + ‖PMph(t)− p̂h(t)‖2
τp

)
≤ 0.

5.4 Numerical Experiments in the Frequency Domain

We have prepared numerical experiments in the resolvent frequency domain to

determine the viability of our method: these tests were done with a Vh,Wh,Qh, Ph

hybridizable discontinuous Galerkin scheme (see [30], [26])

First we perform frequency domain tests against the exact solution

uexact =


cos(πx) sin(πy) cos(πz)

5ıx2yz + 4xy2z + 3xyz2 + 17

cos(2x) cos(3y) cos(z)

 and pexact = sin(πx) cos(πy) sin(πz)

on Ω = [0, 1]3 divided as in (4.2). These tests use variable Lamé parameters and mass

densities

µ =
1

2
(x3 + y2 + z2) and λ = 1 +

1

2
(x2 + y2 + z2),

ρb = x2 + y2 + z2 + 1 and ρf = x3 + y4 + z5 + 2

along with accompanying forcing functions

fu = (−div σ(uexact) + ρbs
2uexact + β∇pexact)/ρb and

fp = (β∇ · (suexact) + cspexact −∇ · (κ∇pexact))/(κρf )
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for a wavenumber s ∈ C, where κ = 2 is kept a scalar, the storativity c = 2 and

Biot’s constant β = 0.75. We use a complex wavenumber s = .5 + .25ı, with a spatial

discretization given by

(Aσh, ξh)Th + (uh, div ξh)Th − 〈ûh, ξhn〉∂Th = 0, (5.4.1)

−(div σh,vh)Th + (ρbs
2uh,vh)Th + β(∇ph,vh)Th

+〈τu(PMuh − ûh),PMvh〉∂Th = (fu,vh)Th ,
(5.4.2)

(κ−1qh, rh)Th + (ph,∇ · rh)Th − 〈p̂h, rh · n〉∂Th = 0, (5.4.3)

−β(suh,∇sh)Th + β〈sûh, PMshn〉∂Th

−(∇ · qh, sh)Th + (cṗh, sh)Th

+〈τp(PMph − p̂h), PMsh〉∂Th = (fp, sh)Th .

(5.4.4)

〈ûh, v̂h〉ΓD = 〈gD, v̂h〉ΓD , (5.4.5)

〈p̂h, v̂h〉Γ̃D = 〈gd, v̂h〉Γ̃D , (5.4.6)

〈σhn− τu(PMuh − ûh)− βPMphn, v̂h〉∂Th\ΓD = 〈gN , v̂h〉ΓN , (5.4.7)

〈qh · n− τp(PMph − p̂h), v̂h〉∂Th\Γ̃D = 〈gn, v̂h〉Γ̃N . (5.4.8)

The first four pictures are results of experiments with Dirichlet conditions gD =

uexact and gD = pexact for k = 1, . . . , 4, and the second four use Neumann conditions,

specifically gN = σ(uexact)n − βpexactn and gn = ∇pexact · n for k = 1, . . . , 4. The

next four tests use mixed conditions, with only the sides of the cube parallel to the

xz-plane subject to Neumann conditions and the rest of the faces subject to Dirichlet

conditions for k = 1, . . . , 4. The expected order of convergence is O(hk+2) for uh and

ph and O(hk+1) for σh and qh.

The implementation is built from the work of Fu, Gatica, and Sayas, HDG Tools

for MATLAB [18], for working with HDG in three dimensions. In the figures below, we

will again identify hj = 1/j with the maximum length of an edge of any tetrahedron of

the jth tetrahedrization, since they are asymptotically equivalent.. To observe the orders

of convergence for Dirichlet, Neumann, and mixed boundary conditions at polynomial
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degrees k = 1, 2, 3, and 4, respectively, we compare hj for j = 1, . . . , N to the relative

errors

eju =
‖u− ujh‖Ω

‖u‖Ω

, ejσ =
‖σ − σjh‖Ω

‖σ‖Ω

, ejq =
‖q− qjh‖Ω

‖q‖Ω

, ejp =
‖p− pjh‖Ω

‖p‖Ω

,

where N indicates the maximum number of refinements of that particular tetrahedriza-

tion. In the figures that follow, we observe log hj compared to

log eju, log ejσ, log ejq, and log ejp.

In the tables that follow, we also observe

Lju =
log eju − log ej−1

u

log hj − log hj−1

, Ljσ =
log ejσ − log ej−1

σ

log hj − log hj−1

,

Ljp =
log ejp − log ej−1

p

log hj − log hj−1

and Ljq =
log ejq − log ej−1

q

log hj − log hj−1

for j = 2, . . . , N to track the approximate orders of convergence.

We expect an order of O(hk+2
j ) for eju and ejp, and an order of O(hk+1

j ) for ejσ

and ejq, and that is what we attain, besides for the fact that it appears that we may

get O(hk+3) for eju.
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Figure 5.1: Dirichlet Conditions for the Poroelastic Problem, Frequency Domain:

Expected order of convergence: O(hk+2) for uh and ph and O(hk+1) for

σh and qh. s = .5 + .25ı, β = 0.75, c = 2, κ/γ = 2 (top-left k = 1,

top-right k = 2, mid-left k = 3, mid-right k = 4)
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Figure 5.2: Neumann Conditions for the Poroelastic Problem, Frequency Domain:

Expected order of convergence: O(hk+2) for uh and ph and O(hk+1) for

σh and qh. s = .5 + .25ı, β = 0.75, c = 2, κ/γ = 2 (top-left k = 1,

top-right k = 2, bottom-left k = 3, bottom-right k = 4)
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Figure 5.3: Mixed Conditions for the Poroelastic Problem, Frequency Domain: Ex-

pected order of convergence: O(hk+2) for uh and ph and O(hk+1) for σh

and qh. s = .5 + .25ı, β = 0.75, c = 2, κ/γ = 2 (top-left k = 1, top-right

k = 2, bottom-left k = 3, bottom-right k = 4)
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hj eju ejσ ep ejq Lju Ljσ Ljp Ljq

h1 1.73e-01 2.24e-01 8.55e-01 5.30e-01

h2 1.42e-02 8.20e-02 6.46e-02 1.84e-01 3.61 1.45 3.73 1.53

h3 2.90e-03 3.94e-02 1.80e-02 8.64e-02 3.91 1.81 3.15 1.86

h4 9.66e-04 2.26e-02 7.76e-03 4.97e-02 3.83 1.93 2.93 1.92

h5 4.22e-04 1.45e-02 4.08e-03 3.23e-02 3.71 1.99 2.88 1.94

h6 2.19e-04 1.00e-02 2.41e-03 2.26e-02 3.61 2.02 2.88 1.95

h7 1.26e-04 7.34e-03 1.55e-03 1.68e-02 3.56 2.03 2.88 1.95

h8 7.86e-05 5.59e-03 1.05e-03 1.29e-02 3.55 2.04 2.89 1.95

h9 5.17e-05 4.40e-03 7.47e-04 1.03e-02 3.56 2.04 2.9 1.95

h10 3.55e-05 3.55e-03 5.50e-04 8.35e-03 3.57 2.04 2.9 1.95

Table 5.1: Frequency Domain for Poroelasticity: Dirichlet Conditions at k = 1

hj eju ejσ ep ejq Lju Ljσ Ljp Ljq

h1 8.08e-02 1.09e-01 3.08e-01 2.78e-01

h2 3.34e-03 2.13e-02 1.35e-02 4.82e-02 4.6 2.36 4.52 2.53

h3 4.58e-04 6.84e-03 2.44e-03 1.52e-02 4.9 2.8 4.22 2.85

h4 1.11e-04 2.96e-03 7.79e-04 6.56e-03 4.93 2.91 3.96 2.92

h5 3.71e-05 1.52e-03 3.29e-04 3.40e-03 4.9 2.97 3.87 2.94

h6 1.53e-05 8.80e-04 1.63e-04 1.99e-03 4.87 3.01 3.83 2.94

h7 7.24e-06 5.52e-04 9.07e-05 1.26e-03 4.85 3.03 3.83 2.94

h8 3.80e-06 3.68e-04 5.44e-05 8.54e-04 4.83 3.04 3.83 2.94

h9 2.15e-06 2.57e-04 3.46e-05 6.04e-04 4.82 3.04 3.83 2.93

Table 5.2: Frequency Domain for Poroelasticity: Dirichlet Conditions at k = 2
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hj eju ejσ ep ejq Lju Ljσ Ljp Ljq

h1 3.35e-02 4.54e-02 1.33e-01 1.27e-01

h2 6.89e-04 4.66e-03 2.63e-03 1.06e-02 5.6 3.28 5.66 3.58

h3 6.36e-05 9.95e-04 3.03e-04 2.22e-03 5.88 3.81 5.33 3.85

h4 1.15e-05 3.22e-04 7.09e-05 7.19e-04 5.95 3.92 5.06 3.92

h5 3.02e-06 1.33e-04 2.37e-05 2.98e-04 5.97 3.97 4.91 3.95

h6 1.02e-06 6.42e-05 9.78e-06 1.45e-04 5.98 4.0 4.85 3.95

h7 4.04e-07 3.46e-05 4.65e-06 7.90e-05 5.98 4.01 4.83 3.94

h8 1.82e-07 2.02e-05 2.44e-06 4.67e-05 5.97 4.02 4.81 3.94

Table 5.3: Frequency Domain for Poroelasticity: Dirichlet Conditions at k = 3

hj eju ejσ ep ejq Lju Ljσ Ljp Ljq

h1 1.23e-02 2.18e-02 3.26e-02 3.81e-02

h2 1.25e-04 8.71e-04 4.66e-04 2.01e-03 6.63 4.64 6.13 4.25

h3 7.67e-06 1.24e-04 3.41e-05 2.80e-04 6.87 4.82 6.45 4.86

h4 1.04e-06 3.00e-05 5.78e-06 6.78e-05 6.95 4.92 6.17 4.93

h5 2.19e-07 9.89e-06 1.52e-06 2.25e-05 6.98 4.97 5.98 4.96

h6 6.10e-08 3.98e-06 5.20e-07 9.09e-06 7.01 5.0 5.89 4.96

Table 5.4: Frequency Domain for Poroelasticity: Dirichlet Conditions at k = 4
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hj eju ejσ ep ejq Lju Ljσ Ljp Ljq

h1 4.03e-01 2.41e-01 1.66e+00 4.85e-01

h2 1.86e-02 9.23e-02 6.45e-02 1.84e-01 4.44 1.38 4.68 1.39

h3 3.52e-03 4.18e-02 1.86e-02 8.73e-02 4.11 1.95 3.06 1.84

h4 1.22e-03 2.35e-02 7.97e-03 5.02e-02 3.68 2.01 2.95 1.92

h5 5.60e-04 1.49e-02 4.17e-03 3.26e-02 3.49 2.03 2.91 1.94

h6 2.91e-04 1.03e-02 2.46e-03 2.28e-02 3.59 2.05 2.9 1.95

h7 1.65e-04 7.48e-03 1.57e-03 1.69e-02 3.68 2.05 2.9 1.95

h8 1.00e-04 5.69e-03 1.06e-03 1.30e-02 3.73 2.05 2.91 1.96

h9 6.45e-05 4.47e-03 7.56e-04 1.03e-02 3.76 2.05 2.91 1.96

h10 4.33e-05 3.60e-03 5.56e-04 8.40e-03 3.78 2.05 2.92 1.96

Table 5.5: Frequency Domain for Poroelasticity: Neumann Conditions at k = 1

hj eju ejσ ep ejq Lju Ljσ Ljp Ljq

h1 9.99e-02 1.47e-01 3.07e-01 2.84e-01

h2 3.73e-03 2.46e-02 1.36e-02 4.85e-02 4.74 2.58 4.49 2.55

h3 5.21e-04 7.45e-03 2.46e-03 1.52e-02 4.85 2.95 4.22 2.85

h4 1.29e-04 3.11e-03 7.86e-04 6.58e-03 4.85 3.04 3.97 2.92

h5 4.35e-05 1.57e-03 3.31e-04 3.41e-03 4.87 3.06 3.88 2.94

h6 1.78e-05 8.97e-04 1.64e-04 1.99e-03 4.89 3.07 3.84 2.95

h7 8.36e-06 5.59e-04 9.09e-05 1.27e-03 4.91 3.06 3.84 2.94

h8 4.34e-06 3.72e-04 5.44e-05 8.55e-04 4.91 3.06 3.83 2.94

h9 2.44e-06 2.59e-04 3.47e-05 6.05e-04 4.91 3.06 3.84 2.94

Table 5.6: Frequency Domain for Poroelasticity: Neumann Conditions at k = 2
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hj eju ejσ ep ejq Lju Ljσ Ljp Ljq

h1 3.68e-02 6.04e-02 1.32e-01 1.29e-01

h2 7.18e-04 5.20e-03 2.63e-03 1.06e-02 5.68 3.54 5.65 3.6

h3 6.59e-05 1.06e-03 3.04e-04 2.23e-03 5.89 3.93 5.32 3.85

h4 1.19e-05 3.36e-04 7.11e-05 7.20e-04 5.96 4.0 5.05 3.93

h5 3.13e-06 1.37e-04 2.37e-05 2.99e-04 5.98 4.02 4.92 3.95

h6 1.05e-06 6.55e-05 9.80e-06 1.45e-04 5.99 4.03 4.85 3.95

h7 4.17e-07 3.52e-05 4.66e-06 7.92e-05 5.99 4.04 4.83 3.94

h8 1.88e-07 2.05e-05 2.45e-06 4.68e-05 5.97 4.05 4.82 3.94

Table 5.7: Frequency Domain for Poroelasticity: Neumann Conditions at k = 3

hj eju ejσ ep ejq Lju Ljσ Ljp Ljq

h1 1.26e-02 2.59e-02 3.16e-02 3.90e-02

h2 1.27e-04 9.48e-04 4.65e-04 2.01e-03 6.63 4.77 6.09 4.28

h3 7.82e-06 1.30e-04 3.41e-05 2.81e-04 6.88 4.9 6.44 4.86

h4 1.06e-06 3.10e-05 5.79e-06 6.79e-05 6.95 4.98 6.17 4.93

h5 2.23e-07 1.01e-05 1.52e-06 2.25e-05 6.98 5.01 5.98 4.96

h6 6.20e-08 4.05e-06 5.20e-07 9.09e-06 7.02 5.03 5.89 4.96

Table 5.8: Frequency Domain for Poroelasticity: Neumann Conditions at k = 4
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hj eju ejσ ep ejq Lju Ljσ Ljp Ljq

h1 1.74e-01 2.50e-01 8.89e-01 5.51e-01

h2 1.46e-02 8.57e-02 6.58e-02 1.84e-01 3.58 1.54 3.76 1.58

h3 3.04e-03 4.00e-02 1.83e-02 8.67e-02 3.87 1.88 3.15 1.86

h4 1.02e-03 2.27e-02 7.85e-03 4.99e-02 3.79 1.96 2.94 1.92

h5 4.47e-04 1.46e-02 4.12e-03 3.24e-02 3.69 1.99 2.89 1.94

h6 2.31e-04 1.01e-02 2.43e-03 2.27e-02 3.62 2.01 2.89 1.95

h7 1.33e-04 7.39e-03 1.56e-03 1.68e-02 3.59 2.03 2.89 1.95

h8 8.22e-05 5.63e-03 1.06e-03 1.29e-02 3.59 2.03 2.9 1.95

h9 5.38e-05 4.43e-03 7.52e-04 1.03e-02 3.59 2.04 2.9 1.95

h10 3.68e-05 3.57e-03 5.53e-04 8.37e-03 3.6 2.04 2.91 1.96

Table 5.9: Frequency Domain for Poroelasticity: Mixed Conditions at k = 1

hj eju ejσ ep ejq Lju Ljσ Ljp Ljq

h1 8.18e-02 1.24e-01 3.08e-01 2.80e-01

h2 3.39e-03 2.23e-02 1.35e-02 4.83e-02 4.59 2.48 4.51 2.54

h3 4.64e-04 7.01e-03 2.45e-03 1.52e-02 4.9 2.85 4.22 2.85

h4 1.13e-04 3.01e-03 7.82e-04 6.56e-03 4.93 2.94 3.97 2.92

h5 3.77e-05 1.54e-03 3.30e-04 3.40e-03 4.9 2.99 3.87 2.94

h6 1.55e-05 8.88e-04 1.64e-04 1.99e-03 4.88 3.02 3.84 2.94

h7 7.33e-06 5.56e-04 9.07e-05 1.26e-03 4.86 3.04 3.83 2.94

h8 3.84e-06 3.70e-04 5.44e-05 8.54e-04 4.84 3.05 3.83 2.94

h9 2.17e-06 2.58e-04 3.46e-05 6.04e-04 4.83 3.05 3.83 2.93

Table 5.10: Frequency Domain for Poroelasticity: Mixed Conditions at k = 2
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hj eju ejσ ep ejq Lju Ljσ Ljp Ljq

h1 3.37e-02 5.04e-02 1.34e-01 1.27e-01

h2 6.94e-04 4.82e-03 2.64e-03 1.06e-02 5.6 3.39 5.66 3.58

h3 6.40e-05 1.02e-03 3.04e-04 2.23e-03 5.88 3.84 5.33 3.85

h4 1.15e-05 3.27e-04 7.10e-05 7.20e-04 5.95 3.94 5.06 3.93

h5 3.04e-06 1.34e-04 2.37e-05 2.98e-04 5.98 3.98 4.91 3.95

h6 1.02e-06 6.47e-05 9.79e-06 1.45e-04 5.98 4.01 4.85 3.95

h7 4.07e-07 3.48e-05 4.65e-06 7.91e-05 5.98 4.02 4.83 3.94

h8 1.83e-07 2.03e-05 2.44e-06 4.67e-05 5.99 4.03 4.82 3.94

Table 5.11: Frequency Domain for Poroelasticity: Mixed Conditions at k = 3

hj eju ejσ ep ejq Lju Ljσ Ljp Ljq

h1 1.24e-02 2.30e-02 3.25e-02 3.84e-02

h2 1.25e-04 8.94e-04 4.66e-04 2.01e-03 6.63 4.68 6.13 4.25

h3 7.70e-06 1.25e-04 3.41e-05 2.81e-04 6.87 4.84 6.45 4.86

h4 1.04e-06 3.03e-05 5.78e-06 6.79e-05 6.95 4.94 6.17 4.93

h5 2.20e-07 9.97e-06 1.52e-06 2.25e-05 6.97 4.98 5.98 4.96

h6 6.10e-08 4.00e-06 5.20e-07 9.09e-06 7.04 5.01 5.89 4.96

Table 5.12: Frequency Domain for Poroelasticity: Mixed Conditions at k = 4
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5.5 Numerical Experiments in the Time Domain

Next we perform time domain tests on Ω × [0, 5], where Ω = [0, 1]3. We use

the same variable parameters and mass densities as in the previous section, and test

against the exact solution

uexact(t) = sin4(t)


cos(πx) sin(πy) cos(πz)

5ıx2yz + 4xy2z + 3xyz2 + 17

cos(2x) cos(3y) cos(z)


and

pexact(t) = sin4(t) sin(πx) cos(πy) sin(πz)

using a convolution quadrature ([34]) based on the trapezoid rule. This requires sam-

pling the forcing and boundary data at times t0, . . . , tN and assembling a data matrix

G = [gn]Nn=0 given by: 

fxh (t0), . . . , fxh (tN)

fyh(t0), . . . , fyh(tN)

f zh(t0), . . . , f zh(tN)

fph(t0), . . . , fph(tN)

uxh,D(t0), . . . ,uxh,D(tN)

uyh,D(t0), . . . ,uyh,D(tN)

uzh,D(t0), . . . ,uzh,D(tN)

σ̃xxh,N(t0), . . . , σ̃xxh,N(tN)

σ̃yyh,N(t0), . . . , σ̃yyh,N(tN)

σ̃zzh,N(t0), . . . , σ̃zzh,N(tN)

σ̃xyh,N(t0), . . . , σ̃xyh,N(tN)

σ̃xzh,N(t0), . . . , σ̃xzh,N(tN)

σ̃yzh,N(t0), . . . , σ̃yzh,N(tN)

ph,D(t0), . . . ,ph,D(tN)

qxh,N(t0), . . . ,qxh,N(tN)

qyh,N(t0), . . . ,qyh,N(tN)

qzh,N(t0), . . . ,qzh,N(tN)


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to feed into our CQ algorithm.

Here it should be noted that σ̃∗◦h,N(t) above is the actual (Biot) stress felt on the

Neumann faces σ̃∗◦h,N(t) = σ∗◦h,N(t)− βph,N(t)δ∗◦ and:

• f∗h(tj) and fph(tj) are vertical length
(
k+3+1

3

)
×#elements vectors of coefficients of

the forcing terms f∗(tj) and fp(tj) projected onto our polynomial space Pk+1(Th)

• u∗h,D(tj) and ph,D(tj) are a vertical length
(
k+2

2

)
×#Dirichlet faces vectors of the

coefficients of the Dirichlet conditions projected onto Mdir
h :=

∏
F∈ΓD

Pk(F ) and

• σ̃∗◦h,N(tj) and q∗h,N(tj) are vertical length
(
k+2

2

)
×#Neumann faces vectors of the

coefficients of the Neumann conditions projected onto Mneu
h :=

∏
F∈ΓN

Pk(F ),

respectively, one timestep at a time, where ∗ and ◦ range over {x, y, z}. This uses a

black box method designed in MATLAB by Hassell and Sayas [25].

The time tested is the interval [0, T ] (here T = 5) divided into timesteps

δt =

⌈
T

ct
h
k+2
2

⌉
as in (4.2).

We will also use the physical parameters, storativity c, ratio of hydraulic con-

ductivity to unit weight of fluid κ
γ
, and Biot’s parameter β at

c = 2
κ

γ
= 2 β = 0.75.
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The spatial discretization is thus

(Aσh(t), ξh)Th + (uh(t), div ξh)Th − 〈ûh(t)), ξhn〉∂Th = 0,

−(div σh(t),vh)Th + (ρüh(t),vh)Th + β(∇ph(t),vh)Th

+〈τu(PMuh(t)− ûh(t)),PMvh〉∂Th = (ρfu(t),vh)Th ,

(κ−1qh(t), rh)Th + (ph(t),∇ · rh)Th − 〈p̂h(t), rh · n〉∂Th = 0,

−β(u̇h(t),∇sh)Th + β〈 ˙̂uh(t), PMshn〉∂Th

−
(
∇ · κ

γ
qh(t), sh

)
Th

+ (cṗh(t), sh)Th

+〈τp(PMph(t)− p̂h(t)), PMsh〉∂Th =

(
κ

γ
ρffp(t), sh

)
Th
.

〈ûh(t), v̂h〉ΓD = 〈gD(t), v̂h〉ΓD ,

〈p̂h(t), v̂h〉Γ̃D = 〈gd(t), v̂h〉Γ̃D ,

〈σh(t)n− τu(PMuh(t)− ûh(t))− βPMph(t)n, v̂h〉∂Th\ΓD = 〈gN(t), v̂h〉ΓN ,

〈qh(t) · n− τp(PMph(t)− p̂h(t)), v̂h〉∂Th\Γ̃D = 〈gn(t), v̂h〉Γ̃N ,

uh(0) = 0, u̇h(0) = 0, ph(0) = 0.

The implementation is built from the work of Fu, Gatica, and Sayas, HDG Tools for

MATLAB [18], for working with HDG in three dimensions, and from the work of Hassell

and Sayas [25] on convolution quadrature in MATLAB.

In the tables that follow, we compare hj = 1/j for j = 1, . . . , Nmax (with Nmax

the maximum number of refinements for that particular experiment) to the relative

errors

eju =
‖u(T )− ujh(T )‖Ω

‖u(T )‖Ω

, ejσ =
‖σ(T )− σjh(T )‖Ω

‖σ(T )‖Ω

,

ejq =
‖q(T )− qjh(T )‖Ω

‖q(T )‖Ω

, and ejp =
‖p(T )− pjh(T )‖Ω

‖p(T )‖Ω

,

where T is the final time T = 5
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In the figures below, we will again identify hj = 1/j with the maximum length

of an edge of a tetrahedrization Thj as they are asymptotically equivalent. We compare

log hj to

log eju, log ejσ, log ejq, and log ejp

in order to observe the orders of convergence for Dirichlet, Neumann, and mixed bound-

ary conditions at polynomial degrees k = 1, 2, 3, and 4, respectively.

We also observe, for j ≥ 2,

Lju =
log eju − log ej−1

u

log hj − log hj−1

, Ljσ =
log ejσ − log ej−1

σ

log hj − log hj−1

,

Ljp =
log ejp − log ej−1

p

log hj − log hj−1

, and Ljq =
log ejq − log ej−1

q

log hj − log hj−1

,

in order to track the approximate orders of convergence.

We expect O(hk+2
j ) convergence for eju and ejp, and expect O(hk+1

j ) convergence

for ejσ and ejq, and attain precisely these results.
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Figure 5.4: Dirichlet conditions for the Poroelastic Problem, Time-Dependent Case:

Expected order of convergence: O(hk+2) for uh and ph and O(hk+1) for

σh and qh. β = 0.75, c = 2, κ/γ = 2 (top-left k = 1, top-right k = 2,

bottom-left k = 3, bottom-right k = 4)
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Figure 5.5: Neumann conditions for the Poroelastic Problem, Time-Dependent Case:

Expected order of convergence: O(hk+2) for uh and ph and O(hk+1) for

σh and qh. β = 0.75, c = 2, κ/γ = 2, (top-left k = 1, top-right k = 2,

bottom-left k = 3,bottom-right k = 4)
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Figure 5.6: Mixed conditions for the Poroelastic Problem, Time-Dependent Case:

Expected order of convergence: O(hk+2) for uh and ph and O(hk+1) for

σh and qh. β = 0.75, c = 2, κ/γ = 2, (top-left k = 1, top-right k = 2,

bottom-left k = 3, bottom-right k = 4))
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hj eju ejσ ejp ejq Lju Ljσ Ljp Ljq

h1 2.56e-01 2.08e-01 1.26e+00 5.54e-01

h2 1.43e-02 7.07e-02 7.55e-02 1.86e-01 4.17 1.56 4.06 1.57

h3 2.88e-03 3.38e-02 1.87e-02 8.66e-02 3.94 1.82 3.44 1.89

h4 9.62e-04 1.94e-02 7.84e-03 4.97e-02 3.81 1.93 3.02 1.93

h5 4.23e-04 1.24e-02 4.09e-03 3.22e-02 3.68 1.99 2.91 1.94

h6 2.20e-04 8.61e-03 2.42e-03 2.26e-02 3.58 2.02 2.89 1.95

h7 1.28e-04 6.29e-03 1.55e-03 1.67e-02 3.53 2.04 2.89 1.95

h8 8.02e-05 4.78e-03 1.05e-03 1.29e-02 3.5 2.05 2.89 1.95

Table 5.13: Time-Dependent Poroelasticity: Dirichlet Conditions at k = 1

hj eju ejσ ejp ejq Lju Ljσ Ljp Ljq

h1 1.30e-01 9.13e-02 4.77e-01 3.00e-01

h2 3.31e-03 1.58e-02 1.60e-02 4.88e-02 5.29 2.53 4.9 2.62

h3 4.46e-04 5.09e-03 2.52e-03 1.52e-02 4.94 2.8 4.56 2.88

h4 1.08e-04 2.20e-03 7.85e-04 6.55e-03 4.94 2.91 4.05 2.93

h5 3.61e-05 1.13e-03 3.30e-04 3.40e-03 4.9 2.97 3.89 2.94

h6 1.49e-05 6.55e-04 1.64e-04 1.99e-03 4.87 3.01 3.84 2.95

h7 7.05e-06 4.10e-04 9.07e-05 1.26e-03 4.84 3.03 3.83 2.94

Table 5.14: Time-Dependent Poroelasticity: Dirichlet Conditions at k = 2
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hj eju ejσ ejp ejq Lju Ljσ Ljp Ljq

h1 5.08e-02 4.26e-02 2.76e-01 1.45e-01

h2 6.89e-04 3.50e-03 3.15e-03 1.07e-02 6.2 3.61 6.45 3.76

h3 6.28e-05 7.42e-04 3.16e-04 2.23e-03 5.91 3.82 5.67 3.88

h4 1.13e-05 2.39e-04 7.18e-05 7.19e-04 5.95 3.93 5.15 3.93

h5 3.00e-06 9.85e-05 2.38e-05 2.98e-04 5.96 3.98 4.94 3.95

h6 1.01e-06 4.75e-05 9.81e-06 1.45e-04 5.97 4.0 4.86 3.95

Table 5.15: Time-Dependent Poroelasticity: Dirichlet Conditions at k = 3

hj eju ejσ ejp ejq Lju Ljσ Ljp Ljq

h1 1.91e-02 4.47e-02 1.34e-01 6.24e-02

h2 1.29e-04 8.49e-04 5.64e-04 2.04e-03 7.21 5.72 7.9 4.94

h3 8.25e-06 1.04e-04 3.73e-05 2.82e-04 6.78 5.17 6.7 4.88

h4 1.17e-06 2.38e-05 6.22e-06 6.80e-05 6.78 5.13 6.23 4.94

h5 2.60e-07 7.75e-06 1.63e-06 2.25e-05 6.75 5.03 6.0 4.96

Table 5.16: Time-Dependent Poroelasticity: Dirichlet Conditions at k = 4
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hj eju ejσ ejp ejq Lju Ljσ Ljp Ljq

h1 6.18e-01 3.33e-01 3.49e+00 1.24e+00

h2 5.34e-02 1.22e-01 1.42e-01 2.25e-01 3.53 1.45 4.62 2.46

h3 6.86e-03 4.24e-02 2.18e-02 8.97e-02 5.06 2.61 4.62 2.27

h4 1.82e-03 2.18e-02 8.24e-03 5.04e-02 4.61 2.31 3.38 2.0

h5 7.48e-04 1.35e-02 4.22e-03 3.25e-02 3.99 2.17 3.0 1.96

h6 3.67e-04 9.10e-03 2.47e-03 2.28e-02 3.9 2.14 2.94 1.96

h7 2.03e-04 6.56e-03 1.57e-03 1.68e-02 3.85 2.12 2.92 1.96

h8 1.22e-04 4.95e-03 1.07e-03 1.30e-02 3.83 2.11 2.92 1.96

Table 5.17: Time-Dependent Poroelasticity: Neumann Conditions at k = 1

hj eju ejσ ejp ejq Lju Ljσ Ljp Ljq

h1 1.76e-01 1.61e-01 7.81e-01 4.00e-01

h2 3.83e-03 1.87e-02 1.65e-02 4.94e-02 5.52 3.11 5.57 3.02

h3 5.29e-04 5.57e-03 2.56e-03 1.53e-02 4.88 2.98 4.6 2.89

h4 1.33e-04 2.32e-03 7.94e-04 6.57e-03 4.8 3.05 4.06 2.93

h5 4.60e-05 1.17e-03 3.32e-04 3.41e-03 4.76 3.07 3.9 2.94

h6 1.94e-05 6.67e-04 1.65e-04 1.99e-03 4.73 3.07 3.85 2.95

h7 9.41e-06 4.16e-04 9.10e-05 1.26e-03 4.69 3.07 3.84 2.94

Table 5.18: Time-Dependent Poroelasticity: Neumann Conditions at k = 2
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hj eju ejσ ejp ejq Lju Ljσ Ljp Ljq

h1 6.42e-02 6.54e-02 2.95e-01 1.66e-01

h2 9.35e-04 3.88e-03 3.27e-03 1.08e-02 6.1 4.07 6.5 3.94

h3 1.03e-04 7.85e-04 3.34e-04 2.23e-03 5.45 3.94 5.62 3.89

h4 2.22e-05 2.48e-04 7.63e-05 7.20e-04 5.32 4.0 5.14 3.94

h5 6.97e-06 1.01e-04 2.52e-05 2.98e-04 5.2 4.02 4.96 3.95

h6 2.77e-06 4.85e-05 1.03e-05 1.45e-04 5.06 4.04 4.91 3.95

Table 5.19: Time-Dependent Poroelasticity: Neumann Conditions at k = 3

hj eju ejσ ejp ejq Lju Ljσ Ljp Ljq

h1 3.68e-02 2.60e-02 1.36e-01 6.28e-02

h2 5.38e-04 7.08e-04 8.77e-04 2.06e-03 6.1 5.2 7.28 4.93

h3 4.66e-05 9.62e-05 7.22e-05 2.82e-04 6.03 4.92 6.16 4.9

h4 8.32e-06 2.29e-05 1.28e-05 6.80e-05 5.98 4.98 6.02 4.95

h5 2.17e-06 7.63e-06 3.01e-06 2.25e-05 6.02 4.93 6.49 4.96

Table 5.20: Time-Dependent Poroelasticity: Neumann Conditions at k = 4
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hj eju ejσ ejp ejq Lju Ljσ Ljp Ljq

h1 4.25e-01 4.42e-01 2.95e+00 1.02e+00

h2 2.02e-02 9.62e-02 8.48e-02 1.91e-01 4.39 2.2 5.12 2.42

h3 4.05e-03 3.94e-02 1.99e-02 8.78e-02 3.97 2.2 3.57 1.92

h4 1.37e-03 2.14e-02 8.08e-03 5.01e-02 3.78 2.13 3.14 1.95

h5 5.96e-04 1.33e-02 4.17e-03 3.24e-02 3.72 2.12 2.97 1.95

h6 3.04e-04 9.04e-03 2.45e-03 2.27e-02 3.69 2.11 2.92 1.95

h7 1.72e-04 6.53e-03 1.56e-03 1.68e-02 3.68 2.11 2.91 1.96

h8 1.06e-04 4.93e-03 1.06e-03 1.29e-02 3.67 2.1 2.91 1.96

Table 5.21: Time-Dependent Poroelasticity: Mixed Conditions at k = 1

hj eju ejσ ejp ejq Lju Ljσ Ljp Ljq

h1 1.43e-01 1.40e-01 5.50e-01 3.27e-01

h2 3.52e-03 1.78e-02 1.61e-02 4.91e-02 5.35 2.97 5.1 2.73

h3 4.83e-04 5.43e-03 2.53e-03 1.52e-02 4.9 2.93 4.56 2.88

h4 1.19e-04 2.29e-03 7.90e-04 6.56e-03 4.86 3.0 4.05 2.93

h5 4.09e-05 1.16e-03 3.31e-04 3.40e-03 4.8 3.04 3.89 2.94

h6 1.72e-05 6.67e-04 1.64e-04 1.99e-03 4.76 3.05 3.85 2.95

h7 8.29e-06 4.16e-04 9.10e-05 1.26e-03 4.73 3.06 3.83 2.94

Table 5.22: Time-Dependent Poroelasticity: Mixed Conditions at k = 2
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hj eju ejσ ejp ejq Lju Ljσ Ljp Ljq

h1 5.73e-02 6.07e-02 2.79e-01 1.59e-01

h2 8.40e-04 4.51e-03 3.23e-03 1.08e-02 6.09 3.75 6.43 3.88

h3 8.74e-05 8.38e-04 3.32e-04 2.23e-03 5.58 4.15 5.62 3.89

h4 1.82e-05 2.58e-04 7.57e-05 7.20e-04 5.46 4.1 5.14 3.94

h5 5.50e-06 1.04e-04 2.51e-05 2.98e-04 5.35 4.08 4.95 3.95

h6 2.09e-06 4.93e-05 1.03e-05 1.45e-04 5.3 4.08 4.89 3.95

Table 5.23: Time-Dependent Poroelasticity: Mixed Conditions at k = 3

hj eju ejσ ejp ejq Lju Ljσ Ljp Ljq

h1 2.21e-02 5.27e-02 1.59e-01 8.11e-02

h2 4.15e-04 2.31e-03 8.59e-04 2.11e-03 5.74 4.51 7.53 5.26

h3 3.50e-05 2.13e-04 6.91e-05 2.86e-04 6.1 5.88 6.22 4.94

h4 6.15e-06 4.08e-05 1.20e-05 6.84e-05 6.04 5.74 6.08 4.97

h5 1.59e-06 1.16e-05 3.15e-06 2.26e-05 6.06 5.63 6.01 4.97

Table 5.24: Time-Dependent Poroelasticity: Mixed Conditions at k = 4
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We can again generate a wave by “lifting” one side of the box with a Dirichlet condition

on the xz plane at y = 0, for example u(x, t)|ΓD = (0, 0, sin4 t) for t ∈ [0, π) and 0 for

t ∈ [π, 4π], and the rest σn = 0 on ΓN . Here p = 0 on Γ̃D and q = 0 on Γ̃N . Areas

under higher pressure are plotted lighter.

Figure 5.7: Poroelastic wave, part I
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Figure 5.8: Poroelastic wave, part II
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The surfaces comprising the head, shoulders, and forearms of this hippo are sub-

ject to Dirichlet conditions, namely u(x, y, z, t)|ΓD = [0, 0, 0.1 sin4 t] and p(x, y, z, t)|ΓD =

0 for t ∈ [0, π] and 0 elsewhile, while the belly, legs and backside are subject to zero

Neumann conditions for all t ∈ [0, 4π]. The hippo mesh can be found at [44].

Figure 5.9: Poroelastic hippo, part I
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It should be noted that, while higher pressures correspond to lighter colors, we

are taking the average of the pressure at the vertices of tetrahedra to mark the colors,

hence the pressure on the Dirichlet boundary looks as though it is changing, but this

is just the effect of the inner vertex.

Figure 5.10: Poroelastic hippo, part II
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Figure 5.11: Poroelastic hippo, part III
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Figure 5.12: Poroelastic hippo, part IV

118



Chapter 6

CONCLUSIONS

We have reviewed the basics of Sobolev spaces with respect to key quantities

involved in linear elasticity. Next we moved on to explain the frequency-domain case,

and then the transient case. We then gave an introduction to our time-discretization

method, convolution quadrature, developed by Christian Lubich [34], analyzed by Ban-

jai and Sauter [3], and implemented in MATLAB by Hassell and Sayas [25]. The third

chapter consisted of a breakdown of the HDG+ discretization for the frequency do-

main case and a fully rigorous analysis of the convergence of the HDG+ solution to

the weak solution of the (frequency domain) elastic system. We proved that for h

small enough on a shape-regular polyhedral mesh Ω, and full regularity of the exact

solution, that the displacement error converges at O(hk+2) and that the error in the

stress converges at O(hk+1), where h is identified with the maximum length of an edge

of our tetrahedrization Th and k is the polynomial degree used in the approximation.

The fourth chapter was about HDG+ for transient elasticity. The theory has

been developed by Shukai Du who uses a new HDG+ projection that simplifies the

static and time-harmonic analysis and makes the transient analysis quite doable–look

to his coming papers for this. This left us to simply making sure that the method

we used is conservative, and then performing some numerical experiments to show

it is optimally convergent. We then mentioned extended HDG+ and the pros and

cons of using it, namely that it is optimally convergent in displacement, stress, and

strain but uses quite a bit of memory in its implementation. Fifth was HDG+ for

poro/thermoelasticity. This chapter contained a short history of work on the problem,

a brief analysis of the diffusive nature of the problem and of the HDG formulation, and

numerical experiments to verify our convergence rates.
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The projection-based analysis of HDG+ for both time-harmonic and transient

Maxwell’s equations and HDG+ for anisotropic and nonlinear elasticity as well remain

open problems.

In closing, I would like to sincerely thank Hasan Eruslu for the reviews of convo-

lution quadrature, and also thank Shukai Du for his support and his many insights into

the nature of convergence of numerical methods, as well as Hugo Diaz-Norambuena

for finding the hippo meshes. I would in particular like to thank Dr. Francisco-Javier

Sayas, for both his long mentorship and his keen wit throughout the years of this Ph.D.

program at the University of Delaware.
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