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ABSTRACT

Compressive Spectral Imaging (CSI) systems sense 3D spatio-spectral data cu-

bes through just few two dimensional (2D) projections by using a coded aperture, a

dispersive element, and an FPA. The coded apertures in these systems, whose main

function is the modulation of the data cube, are often implemented through photomasks

attached to piezoelectric devices. The optimization of such coded aperture patterns is

an actual area of research. Two remarkable improvements on this configuration have

been recently proposed. First, the replacement of the photomask by digital micro-

mirror devices (DMD) for block-unblock coding in order to facilitate the capture of

multiple projections/snapshots or the capture of multiple shots at video rates without

the displacement of the optical elements on the system. Secondly, the replacement of

block-unblock coded apertures by patterned optical filter arrays, referred as colored co-

ded apertures, which not only allow spatial modulation but spectral modulation as well.

Despite the improvements, the design of the coded aperture patterns is still constrai-

ned by hardware considerations. This dissertation aims to overcome these hardware

considerations by developing different coded aperture design strategies.

When using the DMD for coding the data cube, the DMD resolution and the

possibility to use multiple shots have to be considered. Usually, the pitch size of the

DMD mirrors is different than the pitch size of the pixels in the detector. The mismatch

of the DMD mirrors and the detector pixels is such that pixel-to-pixel correspondence

is not achieved. The first proposed strategy is a mismatching coded aperture design to

exploit the maximum resolution of the coding element and the detector. Additionally,

the capture of multiple snapshots could be highly exploited to extract prior-information

of the scenes, here a second strategy is proposed, the use of side information in CSI

xvi



not only to improve the reconstructions but to design scenes-adaptive coded aperture

patterns.

On the other hand, when using colored coded apertures, its real implementation

in terms of cost and complexity, directly depends on the number of filters to be used

as well as the number of shots. A shifting color coded aperture optimization featuring

these observations is proposed as the third strategy with the aim to improve the quality

reconstruction and to generate an achievable optical implementation.

The mathematical models of the different strategies of computational imaging

to overcome the limitations of actual CSI systems will be presented along with testbed

implementations. Simulations as well as experimental results will prove the accuracy

and performance of the three proposed coding strategies.

xvii



Chapter 1

INTRODUCTION

Spectral images can be described as images with spatial information across a

large number of wavelengths. Despite the many applications of spectral information

such as quality control in food and industrial agriculture [1, 2], medical imaging [3, 4,

5, 6], remote sensing [7, 8, 9], art conservation [10, 11, 12, 13], gas identification [14,

15], security applications [14, 15], between others [16], the implementation of spectral

sensing systems and the subsequent acquisition and processing of data pose significant

challenges.

Spectral imagers measures the intensity of light at different wavelengths for each

spatial location in a scene. The resulting three-dimensional (3D) dataset is known as

spatio-spectral data cube. Different spectral imagers have been developed to capture

one dimensional and two dimensional subsets of the data cube. To obtain the complete

data cube, a scanning of the remaining dimensions is required. Push-broom spectral

imaging sensors, for instance, measure the spectrum at each spatial point in the scene

through a slit spectrometer. In these sensors, there is a spatial motion of the slit or

the object in order to acquire the whole data cube [17]. A limitation of these sensing

techniques is that the number of zones to scan grows linearly in proportion to the

desired spatial and spectral resolution. These instruments are adequate to capture

static scenes, but their use in capturing non-static scenes is challenging. Furthermore,

the amount of data captured, stored, or transmitted is directly related to the amount

of sensed data, thus leading to the manipulation of large datasets.

In contrast, compressive spectral imaging (CSI) senses 2D coded projections

of the underlying scene such that the number of measurements is far less than that

used in scanning-type instruments [18]. Coded aperture compressive spectral imagers

1



Figure 1.1: Coded aperture snapshot spectral imager (CASSI) architecture. The
main components are the coded aperture, the dispersive element, and
the detector.

capture two-dimensional projections by multiplexing the spatio-spectral information of

a scene by means of a modulation and dispersion process. These imagers systems often

rely on focal plane arrays (FPAs), spatial light modulators (SLMs), digital micromirror

devices (DMDs), and dispersive elements. The coded aperture snapshot spectral imager

(CASSI) is an example of a CSI architecture whose main components are a coded

aperture, usually implemented by use of photomask, and a dispersive element such as

a prism [19]. Figure 1.1 illustrates the CASSI architecture. It captures multiplexed

(2D) projections of the spatio-spectral datacube using a snapshot. The data cube

is denoted as Fijk where i and j index the spatial coordinates, and k determines

the kth spectral plane. The multiplexed projections in CASSI are given by gmn =∑L−1
k=0 Tm(nk)Fm(nk)k + ωmn, where T represents the coded aperture and ω the noise of

the system [19].

The spectral signal F ∈ RN×N×L, where N ×N is its spatial resolution, and L

is the number of resolvable bands, or its vector representation f ∈ RN ·N ·L is S-sparse

on some basis ΨΨΨ, such that f = ΨΨΨθθθ can be approximated by a linear combination of

S vectors from ΨΨΨ with S � (N ·N · L). Alternatively, the CASSI projections can be

expressed as g = HΨΨΨθθθ = Aθθθ where the H is a matrix whose structure is determined by

2



the coded aperture entries and the dispersive element effect, and the matrix A = HΨΨΨ

is the sensing matrix. An estimation of the spatio-spectral data cube can be attained

by solving the regularization problem

f̃ = ΨΨΨ{argminθθθ||g −HΨΨΨθθθ||2 + τ ||θθθ||1}, (1.1)

where θθθ is an S-sparse representation of f , and τ is a regularization constant

[20]. Different algorithms have been proposed to solve the optimization problem in Eq.

3.11, including the two-step iterative shrinkage/thresholding (TwIST) [21], the gradient

projection for sparse reconstruction (GPSR) [22], Gaussian mixture models (GMM)

[23], and the compressive imaging reconstruction algorithm based on the approximate

message passing (AMP) framework [24].

1.1 Motivation

The increasing interest of compressive sensing theory in spectral imaging has

generated the development of many compressive spectral imaging systems. These sy-

stems measure spatio-spectral information in such a way that the data cube is sensed

(modulated and dispersed), and compressed at the same time. In fact, this data cube

is acquired in the form of two-dimensional projections or measurements at the detec-

tor. Despite the differences in each implementation, these methods share the attempt

to perform a direct 2D measurement, where each point from the scene is mapped to

a single point in the optical sensor. The main components of these architectures are

focal plane arrays, spatial light modulators, digital micromirror devices, and dispersive

elements. The coded apertures, whose main function is the modulation of the data

cube, are often implemented through photomasks attached to piezoelectric devices.

The optimization of such coded aperture patterns is an actual area of research.

Two remarkable improvements in the coding devices for compressive spectral

imaging have been recently proposed. The replacement of the photomask by digital

micromirror devices, and the replacement of block-unblock coded apertures by patter-

ned optical filter arrays or colored coded apertures, which allow the spatial and spectral
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modulation at the same time. This dissertation focuses in different strategies of coded

aperture design in compressive spectral imaging, with the main purpose to overcome

the forthcoming hardware constraints of the coding improvements, as well as to take

advantage of the opportunities that they offer. The proposed coded aperture design

strategies are developed and modeled, simulated, and experimentally implemented re-

sulting in improved projections, and furthermore enhanced reconstructions of spectral

images.

1.2 Dissertation Organization

The organization of this dissertation is as follows:

Chapter 2 covers a first hardware consideration usually faced by compressive

spectral imagers, the pixel mismatch between coded aperture elements and detector

pixels. A model for the CASSI with pixel mismatch is presented having as a motivation

the full use of the coding and detector elements in the system. The model exploits the

resolution of these devices and accounts two different cases of mismatching. First, a

super-resolution model is presented to exploit the coded aperture resolution. This met-

hod, follows the same rationale than super-resolution approaches, where the idea is to

translate high-resolution scenes into low-resolution detectors. Secondly, the creation of

a synthetic coded aperture is proposed in order to reconstruct the spectral data cubes,

at the detector resolution. Extensive simulations, as well as a testbed implementation

illustrate the spatial and spectral improvement achieved with the proposed model in

comparison with traditional approaches.

Chapter 3 presents a second hardware consideration in compressive spectral

imaging, the fully DMD utilization. It is proposed a method to use side information

from an RGB sensor to design the coded aperture patterns of a CSI. These adaptive

coded apertures take advantage of the DMD capability to implement coded apertures

with elaborately designed structure. The use of side information and specifically the

estimation of the borders of the scene allows the coded aperture design, promoting a

high quality reconstruction, specially of the high frequency components in the scene.
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Moreover, the side information is also exploited for the reconstruction algorithm to

improve the quality of the reconstructions, and even more, it is also used to achieve

super-resolution by the use of a fusion algorithm taking advantage of the high resolution

of the RGB image. Then, the side information is exploited twice, for both sensing

and reconstruction processes. Simulations are used to illustrate the benefits of this

approach. In addition, testbed reconstructions are also presented to verify the proposed

coded aperture method based on the side information in a coded aperture compressive

spectral imaging system.

In chapter 4, a color coded aperture optimization is presented. The optimization

is constrained by a third hardware consideration, the achievable optical implementa-

tion in terms of costs and complexity. The optimization promotes the variability in the

columns and rows of the coded aperture, the uniformity aimed at reducing the spatial,

spectral and shot correlation of the samples in the acquisition process, and the filters

limitation in terms of fabrication cost. A shifting color coded aperture, such that only

one mask is required for several shots in a real implementation with a limited number

of filters is proposed. The design can be implemented as a moving colored lithographic

mask using a micro-piezo electric device, achieving a low space-time multishot com-

pressive measurement acquisition. Several simulations and real reconstructions show

the improvement achieved with the proposed optimization in comparison with random

and optimized coded apertures from literature.

1.3 Research Contributions

The research work in this dissertation have been published in the following

journals and conferences:

1. L.V. Galvis, E. Mojica, H. Arguello, and G.R. Arce. ”Shifting colored coded
aperture design for spectral Imaging”, Journal in preparation to be submitted
(2018).

2. L.V. Galvis, E. Mojica, H. Arguello, and G.R. Arce. ”Colored coded aper-
ture optimization: Experimental validation”, Conference in preparation to be
submitted (2018).
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3. L.V Galvis, H. Arguello, D. Lau, and G. R. Arce. ”Side information in coded
aperture compressive spectral imaging”, in Proc. SPIE 10117, Emerging Digital
Micromirror Device Based Systems and Applications IX, 101170H, February 20,
2017.

4. L.V Galvis, D. Lau, X. Ma, H. Arguello, and G. R. Arce. ”Coded aperture
design in compressive spectral imaging based on side information”, in Applied
Optics, vol. 56, no. 22, pp. 6332-6340, 2017.

5. L.V Galvis, H .Arguello, and G. R. Arce. ”Coded aperture design in mismatched
compressive spectral imaging”. Applied Optics, USA. Vol. 54, No. 33, pp. 9875-
9882, 2015.

6. L.V Galvis, H. Arguello, and G. R. Arce. ”Synthetic coded apertures in com-
pressive spectral imaging: Experimental validation”, in IEEE Global Conference
on Signal and Information Processing (GlobalSIP), Orlando, FL, December 2015.

7. L.V Galvis, H. Arguello, and G. R. Arce. ”Synthetic coded apertures in com-
pressive spectral imaging”, in IEEE ICASSP, Florence, Italy, May 2014.
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Chapter 2

CODED APERTURE DESIGN IN MISMATCHED COMPRESSIVE
SPECTRAL IMAGING

Compressive spectral imaging (CSI) senses a scene by using 2D coded pro-

jections such that the number of measurements is far less than that used in spectral

scanning-type instruments. An architecture that efficiently implements CSI is the co-

ded aperture snapshot spectral (CASSI) imager. A physical limitation of the CASSI

is the system resolution, which is determined by the lower resolution element used in

the the detector and the coded aperture. Although the final resolution of the system

is usually given by the detector, in the CASSI for instance, the use of a low resolution

coded aperture implemented using a digital micromirror device (DMD), which induces

the grouping of pixels in super-pixels in the detector, is decisive to the final resolution.

The mismatch occurs by the differences in the pitch size of the DMD mirrors and focal

plane array (FPA) pixels. A traditional solution to this mismatch consists on grouping

several pixels in square features which sub-utilizes the DMD and the detector reso-

lution and, therefore reduces the spatial and spectral resolution of the reconstructed

spectral images. This chapter presents a model for CASSI which admits the mismatch

and permits to exploit the maximum resolution of the coding element and the FPA

sensor. A super-resolution algorithm and a synthetic coded aperture are developed

in order to solve the mismatch. The mathematical models are verified using a real

implementation of CASSI. The results of the experiments show a significant gain in

spatial and spectral imaging quality over the traditional grouping pixel technique.
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2.1 Introduction

Spectral imaging systems acquire large amounts of data, by sequentially scan-

ning either the spatial or spectral coordinates. The resulting signals are merged to

construct a spectral data cube or three-dimensional (3D) data set, known as spatio-

spectral data cube. Push-broom spectral imaging sensors, for instance, measure the

spectrum at each spatial point in the scene through a slit spectrometer. In these sen-

sors, there is a spatial motion of the slit or the object in order to acquire the whole

data cube [25]. A limitation of these sensing techniques is that the number of zones to

scan grows linearly in proportion to the desired spatial and spectral resolution. In con-

trast, compressive spectral imaging (CSI) systems sense the 3D data cube through just

few two dimensional (2D) measurements of the coded and spectrally dispersed source

field. These systems have gained popularity since they require fewer measurements

than those attained with traditional hyperspectral imaging sensors [26, 19, 27].

A CSI architecture that efficiently attains coded measurements is the Coded

Aperture Snapshot Spectral Imager (CASSI). It captures 2D coded aperture projecti-

ons of the spatio-spectral data cube by using a coded aperture and a dispersive element.

An inverse problem is solved to reconstruct the spectral images by using a linear pro-

gram or a greedy pursuit in a basis where the under sampled signals admit sparse

representations.

The coded apertures in CASSI are often implemented through photomasks at-

tached to piezoelectric devices [28]. An improvement on this configuration has been

proposed in order to facilitate the capture of multiple projections or snapshots, each

admitting a different coded aperture pattern [29, 30, 28]. The replacement of the pho-

tomask by digital micromirror devices (DMD) allows the multicoding or the capture

of multiple shots at video rates without the displacement of the optical elements on

the system. Further, the DMD transmission efficiency is comparable to that offered by

the photomask. Despite the selection of the coding element, the resolution has to be

considered. Usually, the resolution or number of pixels of the DMD, is different than

the exhibited by the detector. The mismatch of the DMD mirrors and the detector

8



pixels is such that pixel-to-pixel correspondence is not achieved. This issue also occurs

in detectors at γ- and x-ray wavelengths [31]. The traditional approach to match the

resolution of the CASSI elements consists on grouping several pixels in square featu-

res. The maximum resolution of the system is then given by the element with lower

resolution, sub-utilizing the resolution of the other element [32].

More formally, let N1×N1 be the resolution of the coded aperture and N2×N2

the resolution of the FPA. Two possible cases of mismatching can take place, which

are analyzed by defining the relation between the resolutions of the detector and co-

ded aperture as N1/p1 = N2/p2, where p1 and p2 are integers. The first case occurs

when P = p1
p2

> 1, which means that N1 > N2, and the second case occurs when

P ′ = p2
p1
> 1, meaning that N1 < N2. To alleviate this mismatch, several pixels can be

grouped such that the resulting spatial resolution of the CASSI system is determined

by min {N1, N2}, which sub-utilizes the DMD or FPA resolutions. This work develops

two methods to fully utilize the maximum resolution of the coded aperture and the

detector. The first case P > 1, follows the same rationale than super-resolution approa-

ches, where the idea is to translate high-resolution scenes into low-resolution detectors.

A super-resolution technique is applied in this case to exploit the high resolution of

the coded aperture in the CASSI system. In the second case P ′ > 1, the design of a

synthetic coded aperture that allows to fully utilize the detector resolution is proposed.

The main contribution of this work is the development of a mathematical model

for the CASSI with pixel pitch mismatch between the coded aperture and the detector.

Two cases of mismatch are analyzed and modeled allowing the reconstruction of a high-

resolution spatio-spectral data cube. The mathematical models developed are verified

by using a real implementation of CASSI. Finally, the real reconstructions demonstrate

the improvement obtained by using this approach instead of the traditional grouping

of pixels.
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2.2 CASSI Model With Pixels Grouping

The CASSI architecture is composed by a coded aperture, a dispersive element

and a FPA as illustrated in Fig. 2.1. It captures multiplexed (2D) projections of a

spatio-spectral data cube using a snapshot. The spatio-spectral power source density

is defined as f0(x, y, λ), where (x, y) index the spatial dimensions and λ indexes the

wavelength. The source is first coded by a coded aperture T (x, y) where the black pixels

block the impinging light and the white pixels permit light to pass through, resulting

in the coded field f1(x, y, λ). The resulting coded field is then spectrally dispersed by a

dispersive element. The impulse response of this component is h(x′−S(λ)−x, y′− y),

where S(λ) = α(λ)(λ− λc) accounts for the dispersion induced by the prism along the

x-axis and λc is the central wavelength, which is not dispersed by the prism.

Figure 2.1: The CASSI architecture is illustrated. The data cube is coded, spectrally
dispersed and integrated on the FPA.

Before the integration on the detector, the output can be expressed as

f2(x, y, λ)=

∫∫
T (x′, y′)f0(x

′, y′, λ)h(x′ − S(λ)− x, y′ − y)dx′dy′. (2.1)

The compressive measurement at the focal plane array results from the integra-

tion of the coded and dispersed data field f2(x, y, λ) over the detector’s spectral range

sensitivity (Λ). The compressive measurement is represented as g(x, y) =
∫

Λ
f2(x, y, λ)dλ.

When several FPA measurements are captured each one using a different coded

aperture T `(x, y), the energy in front of the 2D FPA can be expressed as

g`(x, y) =

∫
Λ

T `(x− S(λ), y)f0(x− S(λ), y, λ)dλ, (2.2)
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for ` = 0, 1, . . . , K − 1 where K is the number of snapshots. The discretized

compressive measurement at the respective pixel of the detector is given by

g`mn =

∫∫
p(m,n;x, y)g`(x, y)dxdy, (2.3)

where p(m,n;x, y) = rect
(

x
∆d
−m, y

∆d
− n

)
accounts for the detector pixelation

in the detector, ∆d = D2/N2 is the pitch of the detector pixels and D2 is the size of

the detector. Replacing Eq. 2.2 in Eq. 2.3 leads to

g`mn =

∫∫∫
rect

(
x

∆d

−m, y
∆d

− n
)
T `(x− S(λ), y)f0(x− S(λ), y, λ)dxdydλ. (2.4)

The transmittance function of the coded aperture is given by

T `(x, y) =
∑
m′,n′

t`m′n′rect

(
x

∆c

−m′, y
∆c

− n′
)
, (2.5)

where ∆c = D1/N1 is the pitch of the coded aperture, D1 is the size of the coded

aperture, and t`m′n′ is the discretized version of the coded aperture T `(x, y).

Traditionally, the optical system can be designed such that D1 = D2 = D. This

can be established through the prescription of the lens in the system to obtain an ade-

quate magnification [19]. When N1 6= N2, such that there is a pixel pitch mismatch

∆c = D1/N1 6= ∆d = D2/N2, it is usual to artificially match the DMD and FPA resolu-

tions. A common strategy consists on grouping several pixels in square features. This

grouping reduces the resolution of the system which is given by N = min{N1, N2}.

This strategy implicates a significant reduction of the spatial and spectral resolution

of the measurements and therefore of the reconstructions [33, 34].

When the pixels are grouped into square features such that N = N1/p1 = N2/p2,

the integration of the continuous field g(x, y) in a single (m,n)th detector pixel in Eq.

2.4 can be expressed as,
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g`mn =
∑
m′,n′

t`m′n′

∫∫∫
rect

(
x− S(λ)

∆
−m′, y

∆
− n′

)
rect

( x
∆
−m, y

∆
− n

)
f0(x− S(λ), y, λ)dxdydλ, (2.6)

where ∆ = D/N . Eq. 2.6 is the forward model of CASSI, which has been

recently extended to account for the non-linearity of the dispersive element [29]. In

this new model, the energy from a single voxel is mapped onto three detector pixels,

such that each source voxel can be split into three regions R0, R1 and R2. Figure 2.2

illustrates a zoomed version of the regions of the source voxel affecting one pixel on

the detector. The corresponding energy of each region that impinges in the (m,n)th

detector pixel is represented by the weights wmnku, where m,n index the spatial coor-

dinates, k the spectral dimension and u accounts for the region R0, R1 and R2 of the

source voxel. More specifically, wmnku = (
∫∫∫

Ru
dxdydλ)(

∫∫∫
R1∪R2∪R3

dxdydλ)−1. The

following discrete notation is used to reformulate the FPA measurement. The source

f0(x, y, λ) can be written as Fmnk, where m and n index the spatial coordinates and k

determines the kth spectral band. The discretized coded aperture is t`m′n′ as indicated

in Eq. 2.5. Using this notation, the FPA measurement in Eq. 2.6 can be written as

g`mn =
L−1∑
k=0

2∑
u=0

wmnkut
`
m(n−k−u)Fm(n−k−u)k, (2.7)

where m,n = 0, 1, . . . , N−1, k = 0, 1, . . . , L−1, u = 0, 1, 2 and ` = 0, 1, . . . , K−

1. The number of resolvable bands L is determined by the detector resolution ∆. The

spatial resolution N is determined for both, the FPA and coded aperture resolutions.

The analysis of the physical sensing phenomena in the CASSI system when

N1 6= N2 allows to develop different strategies to overcome the mismatch. Figure 2.3

illustrates an example of a mismatch, where more than one row of detector pixels

receives the coded and dispersed light; in this particular case, it occurs given the high

resolution of the detector.
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Figure 2.2: Spatio-spectral data flow in the CASSI architecture. The source is coded
by the coded aperture and dispersed by a prism. A source voxel is zoomed
to identify the regions R0, R1 and R2.

2.3 CASSI with pixel mismatch

The CASSI with pixel mismatch is developed with the aim to solve the mis-

matching problem when N1 > N2 and N1 < N2. More formally, let N1 × N1 be the

resolution of the coded aperture and N2×N2 the resolution of the FPA. Two possible

cases of mismatching can take place, which are analyzed by defining the relation bet-

ween the resolutions of the detector and coded aperture as N1/p1 = N2/p2, where p1

and p2 are integers. The first case occurs when P = p1
p2
> 1, which means that N1 > N2,

and the second case occurs when P ′ = p2
p1
> 1, meaning that N1 < N2. To alleviate this

mismatch, several pixels can be grouped such that the resulting spatial resolution of

the CASSI system is determined by min {N1, N2}, which sub-utilizes the DMD or FPA

resolutions. This work develops two methods to fully utilize the maximum resolution of

the coded aperture and the detector. The first case P > 1, follows the same rationale

than super-resolution approaches, where the idea is to translate high-resolution scenes

into low-resolution detectors. A super-resolution technique is applied in this case to

exploit the high resolution of the coded aperture in the CASSI system. In the second
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Figure 2.3: Physical sensing phenomena in CASSI, L spectral bands of the data cube
F are coded spatially by a coded aperture T and dispersed by the prism.
The detector captures the intensity g by integrating the coded light.
The pixel pitch mismatch is depicted and zoomed, the FPA detector
receives the coded and dispersed light but it is missing a pixel-to-pixel
correspondence. The high resolution of the detector is therefore sub-
utilized.

case P ′ > 1, the design of a synthetic coded aperture that allows to fully utilize the

detector resolution is proposed.

2.3.1 Mismatching by Super-resolution

This case of mismatching occurs when the coded aperture resolution is higher

than the FPA resolution. The approach to overcome this mismatching is to apply

super-resolution to the model in Eq. 2.7. This is possible if the detector element

pitch is greater than the Nyquist sample-limited resolution given by the wavelength of

the light imaged [35, 36]. The energy impinging one detector pixel is divided in the

number of coded aperture pixels that match that detector pixel. This sub-pixel division
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is included in the model in Eq. 2.7. The number of sub-pixels in a detector pixel P

or the super-resolution factor respectively in the x and y dimensions depends on the

number of coded aperture pixels matching one detector pixel following N = N1 = PN2.

A decimation of the (m,n)th detector pixel is defined as,

g`mn =
P−1∑
q=0

P−1∑
r=0

ĝ`iP−q,jP−r, (2.8)

where ĝ`ij is the measurement at the sub-pixel level and i, j = 0, 1, . . . , N2(P −

1). In addition, the dispersion effect must be modeled at the sub-pixel level in the

horizontal dimension in both, the coded aperture and the source. Equation 2.7 is then

rewritten including the sub-pixel decimation and the dispersion effect as,

G`
mn =

P−1∑
q=0

P−1∑
r=0

L−1∑
k=0

2∑
u=0

w(mP−q)(nP−r)kuT
`
((mP−q−k)−k−u)(nP−r)(Fk)((mP−q−k)−k−u)(nP−r),

(2.9)

where F ∈ RN2L, T` ∈ RN2
, and G ∈ RN/P (N/P+L/P−1). Notice the lower reso-

lution of the detector compared with the coded aperture.

The forward model in Eq. 2.9 allows to use the full coded aperture resolution

instead of the resolution exhibited by the detector, and as a result it is possible to

obtain a high spatial resolution reconstruction. Figure 2.4 (Left) shows a traditional

approach example, where 2× 2 pixels are grouped at the coded aperture to match the

resolutions. The SR-CASSI on Fig. 2.4 (Right) instead, take advantage of the full

resolution of the coded aperture and proposes a solution with P = 2 to emulate a

detector with the resolution of the coded aperture.

2.3.2 Mismatching by Synthetic Coded Apertures

The opposite case occurs when the FPA resolution is higher than that of the

coded aperture. Since a pixel in the coded aperture is mapped into several pixels on

the detector, the proportion of the coded aperture pixel as they are projected onto the
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Figure 2.4: (Left) Grouping of pixels at the coded aperture in traditional-CASSI.
(Right) Matching of the coded aperture and detector resolutions - SR-
CASSI.

detector pixels, defines a synthetic gray-scale, higher resolution coded aperture. Thus,

the projections attained by the system could be realized by a coded aperture matching

the detector pixel size, with the exception that the coded aperture values needed to

realize the projection are in this case, gray-scale, which model the proportion that is

mapped from the coded aperture pixel into each of the detector pixels. It should be

noted, that a higher resolution gray-scale coded is not used in the projection. It is only

a model used to describe the physical phenomena of the pixel mismatch, and is then

used into the reconstruction of the data cube. The FPA resolution replaces ∆ in Eq.

2.6 using N = P ′N1 = N2. The resulting g`mn measurement includes the intensity of

the corresponding P ′2 detector pixels. Traditionally, the measurement fails to exploit

the sub-pixel information, the Synthetic-CASSI seeks to reach the level of resolution

of the sub-pixels. More specifically, Eq. 2.6 should be reformulated as

g(1)`
mn + g(2)`

mn + . . .+ g(P ′2)`
mn =

∑
m′,n′

t`m′n′

∫∫∫
rect

(
x−S(λ)

P ′∆c

−m′, y

P ′∆c

−n′
)

rect

(
x

P ′∆c

−m, y

P ′∆c

− n
)
f0(x− S(λ), y, λ)dxdydλ. (2.10)
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A synthetic coded aperture with higher resolution is defined, in order to take

into account the intensity on each g
(th)`
mn of the left side on Eq. 2.10. Hence, the

translation of the coded aperture t`m′n′ into one with higher resolution directly related

with N2 accounts for the mismatching effect produced by the resolution differences on

the coded aperture and detector. This matching is done through the creation of a

synthetic coded aperture. The synthetic coded aperture defined as t̂m′n′ is tuned in,

and the FPA measurement at the N resolution is expressed as

g(i)`
mn=

∑
m′n′

t̂`m′n′

∫∫∫
rect

(
x−S(λ)

∆
−m′, y

∆
−n′
)

rect
(x
∆
−m, y

∆
−n
)
f0(x−S(λ), y, λ)dxdydλ,

(2.11)

where ∆ = D/N2 and i index each of the pixels at the detector. The synthetic

coded aperture t̂m′n′ in Eq. 2.11 can be succinctly expressed as

t̂m′n′ = α (β tm′,n′ + (1−β) tm′,n′+1) +

(1−α) (β tm′+1,n′ + (1−β) tm′+1,n′+1). (2.12)

The synthetic coded aperture is defined in terms of α and β, accounting for the

horizontal and vertical fraction of a pixel at the coded aperture that is reflected in the

synthetic pixel of t̂m′n′ , and the evaluation of the neighbours of the pixel (i, j) in the

original discrete version of the coded aperture tm′n′ . These neighbours are denoted as

tm′,n′ , tm′,n′+1, tm′+1,n′ , tm′+1,n′+1. The α and β fractions can be expressed as,

α =

B, B > 0

1, B = 0

, β =

C, C > 0

1, C = 0

, (2.13)

where B and C are defined in terms of the ratio between the coded aperture

and the FPA pixel pitch P ′ =
p2

p1

as

B =

⌊
(n+ 1)

P ′

⌋
P ′ − n, (2.14)
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Figure 2.5: (Left) Translation from a coded aperture into its synthetic version.
(Right) Matching of the coded aperture and detector resolutions through
the use of a synthetic coded aperture.

C =

⌊
(m+ 1− k − u)

P ′

⌋
P ′ − (m− k − u). (2.15)

Figure 2.5 (Left) shows the translation from a small set of pixels of a coded

aperture into its respective synthetic coded aperture. Figure 2.5 (Right) shows the

matching of the resolutions through the creation of a synthetic coded aperture to fully

utilize the detector resolution. It is noticeable the higher resolution of the synthetic

coded aperture and detector in the Synthetic-CASSI.

The discretized Synthetic-CASSI model is then expressed as

G`
mn =

(L−1)P ′∑
k=0

2∑
u=0

wmnkuT̂
`
m(n−k−u)(Fk)m(n−k−u), (2.16)

where the spatial and spectral resolutions of this measurements are dictated by

P ′ such that m,n = 0, 1, . . . , (N − 1)P ′ and k = 0, 1, . . . , (L− 1)P ′.
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2.3.3 Reconstruction Algorithm

The hyperspectral signal F ∈ RN×N×L, or its vector representation f ∈ RN ·N ·L

is S-sparse on some basis ΨΨΨ, such that f = ΨΨΨθθθ can be approximated by a linear

combination of S vectors from ΨΨΨ with S � (N · N · L). Alternatively, the CASSI

projections in Eq. 2.9 and Eq. 2.16 can be expressed as g = HΨΨΨθθθ = Aθθθ where

the H is a matrix whose structure is determined by the coded aperture entries and

the dispersive element effect, and the matrix A = HΨΨΨ is the sensing matrix. This

algorithm solves the optimization problem

f̃ = ΨΨΨ{argminθθθ||g −HΨΨΨθθθ||2 + τ ||θθθ||1}, (2.17)

where θθθ is an S-sparse representation of f , and τ is a regularization constant [20].

The basis representation ΨΨΨ is set as the kronecker product of two basis ΨΨΨ = ΨΨΨ1

⊗
ΨΨΨ2,

where ΨΨΨ1 is a 2D-Wavelet Symmlet 8 basis and ΨΨΨ2 is the 1D-Discrete Cosine Transform.

The compressive sensing GPSR algorithm is used to obtain the reconstructions

of the data cube [22]. The methods proposed, in essence, increase the resolution of

the reconstructed data cubes, and consequently the inverse problem deals with large

sets of pixels to be reconstructed. As such, the computational complexity of the re-

construction increases in proportion to the added spatial and spectral resolution. The

computational complexity is determined by the particular reconstruction algorithm. In

this case, the GPSR complexity is O(KN4L) per iteration, where K is the number of

snapshots, N2 is the spatial resolution, and L is the number of spectral bands. Hence,

the complexity in the two approaches described is determined also by the P > 1 and

P ′ > 1 factors. The computational complexity is then O(KN4P 4L) for the mismat-

ching by super-resolution andO(KN4P ′4L) in the case of the mismatching by synthetic

coded apertures.
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2.4 Experimental results

The CASSI system was experimentally realized to demonstrate the CASSI with

pixel mismatch performance. The coded apertures were implemented in a Texas Instru-

ments D1100 DMD (DLP), a custom double Amici prism (Shangai Optics) was used

as a dispersive element and a FPA detector (Stingray F-033B) captured the measure-

ments. The non-linear dispersion curve of the prism was determined experimentally

by using a monochromator. The DMD used to implement the coded apertures has a

resolution of 1024× 768 and a mirror pitch size of ∆c = 13.68µm. The FPA detector

used in this experimental setup has a resolution of 656× 492 pixels and a pitch size of

∆d = 9.9µm.

Three set of compressive measurements were acquired by using the CASSI op-

tical setup. The sets correspond to the traditional CASSI, the SR-CASSI and the

Synthetic-CASSI measurements respectively. In the traditional CASSI, the pixels are

grouped into square features to match the resolutions on the coded aperture and the

detector using the relation N = N1/p1 = N2/p2, where p1 = 2, p2 = 3, N1 = 318

and N2 = 477. In this traditional case, the reconstructed images have a low spatial

resolution of 159×159 pixels due to the grouping process. Also, this grouping approach

limits the number of spectral bands to 8. For the three cases a sensing ratio of 50%

was used and the GPSR algorithm was used to recover the spatio-spectral data cube

[22]. Table 2.1 shows the specifications of the three set of measurements.

A visual comparison of the coded apertures and measurements is presented in

Figure 2.6 top and Bottom respectively. 318×318 DMD mirrors were used to implement

the coded apertures for the three sets. The traditional approach however, requires the

grouping of pixels, which reduces the actual resolution of the coded aperture designed

(Top-Left), compared with the high resolution of the coded apertures implemented

in the CASSI with pixel mismatch (Top-Right). On the other hand, the traditional

CASSI measurements in Fig. 2.6 (Bottom-Left) have low resolution; the measurements

resolution for the first case of mismatching (SR-CASSI) is the same as in the traditional

case, but the codification using a high-resolution coded aperture produces a more
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Figure 2.6: Coded apertures and measurements for (Left) Traditional CASSI and
(Right) CASSI with pixel mismatch. The projections attained with the
CASSI with pixel mismatch model have a high resolution compared with
those obtained with the traditional CASSI.
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Table 2.1: Comparison of the traditional CASSI and CASSI with pixel mismatch
specifications. The number of resolvable bands is determined by ∆d.

Cases (# of pixels)
Mirrors and pixels Resolution (Pixels)

pitch sizes (µµµm) Coded Spatial Spectral

∆c∆c∆c ∆d∆d∆d Aperture Recons. Recons.

Traditional CASSI

159 = 318/2 = 477/3 ∆c = 27.36* ∆d = 29.7** 159× 159 159× 159 8
SR-CASSI

318 = 318 = (2)159 ∆c = 13.68 ∆d = 29.7** 318× 318 318× 318 8
Synthetic-CASSI

477 = (3/2)318 = 477 ∆c = 13.68 ∆d = 9.9 318× 318 477× 477 24

* 2× 2 grouping of pixels.
** 3× 3 grouping of pixels.

detailed 2D projection. The Synthetic-CASSI measurements have a high-resolution as

well as a codification with a high-resolution coded aperture.

2.4.1 SR-CASSI Reconstructions

The measurements for the SR-CASSI were acquired implementing a coded aper-

ture with a resolution N1 = 318 pixels. To emulate a low-resolution detector, its

pixels were grouped into 3 × 3 square features representing one low-detector pixel for

a N2 = 159 such that P = 2. After the application of the SR-CASSI model in Eq. 2.9

and applying the GPSR algorithm that solves the optimization problem in Eq. 2.17,

the measurements and the reconstructions have the coded aperture resolution, this is

318×318 pixels. Therefore, the coded aperture resolution is fully utilized. In this case,

the number of resolvable bands is 8.

The traditional CASSI reconstructions were interpolated to the resolution of the

SR-CASSI approach 318 × 318 × 8 to compare the results. Figure 2.7 illustrates five

spectral bands for the traditional CASSI and the SR-CASSI respectively. It can be ob-

served that the SR-CASSI results outperforms the results attained with the traditional

approach.
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Figure 2.7: Experimental reconstructions of five spectral bands. (Top) Traditional
CASSI, (Bottom) SR-CASSI. The improvement in the spatial quality
achieved with the SR-CASSI can be easily noticed.

Figure 2.8 shows a RGB profile of the traditional and SR-CASSI. The details in

the SR-CASSI reconstruction can be easily noticed. The spectral signatures for three

points randomly chosen are shown in Fig. 2.9. The points are indicated in the original

RGB image as P1, P2 and P3. The original signature, obtained using a commercially

available spectrometer (Ocean Optics USB2000+) is compared with the traditional

CASSI and the SR-CASSI signatures. The curves obtained by using the SR-CASSI

are closer to the original.

2.4.2 Synthetic-CASSI Reconstructions

In the third set of measurements, the Synthetic-CASSI is tested using a reso-

lution N1 = 318 pixels to implement the coded aperture and as a result, the FPA

measurement has a resolution N2 = 477 pixels such that P ′ = 3/2. Applying the

Synthetic-CASSI model in Eq. 2.16, a synthetic coded aperture with the same used re-

solution of the detector is created to reconstruct the spatio-spectral data cube. Fig 2.10

shows a coded aperture and its equivalent synthetic coded aperture such as the used

to reconstruct the data-cube. Then, the final spatial resolution of the reconstructed

images is 477× 477 pixels. As a result, the detector resolution is fully utilized. In this
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Figure 2.8: RGB profile of the (Left) traditional and (Right) SR-CASSI reconstructi-
ons. The SR-CASSI achieves a smoothed reconstruction compared with
the traditional result.

Figure 2.9: Spectral signatures of three different spatial points. Traditional CASSI
and SR-CASSI signatures are compared with the original spectral re-
sponses. The spectral curves obtained with the SR-CASSI are closer to
the originals.
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Figure 2.10: A synthetic coded aperture with the resolution of the detector is created.
This synthetic coded aperture is used in the reconstruction process.

case, the high-resolution of the FPA permits to achieve 24 spectral bands.

In order to compare the results, the traditional CASSI reconstructions were in-

terpolated to the resolution of the Synthetic-CASSI approach 477×477×24. The RGB

profiles of the traditional and Synthetic-CASSI are depicted in Fig. 2.11. The impro-

vement in the spatial quality can be easily noticed. Figure 2.14 shows five spectral

bands for the traditional CASSI, and the Synthetic-CASSI respectively. The impro-

vement in the spatial quality can be observed.

The spectral signatures of three randomly selected points are compared with

the signatures obtained using a spectrometer in Fig. 2.13. The points are indicated as

P1, P2 and P3. Again, it can be seen how the curves using the Synthetic-CASSI are

closer to the originals, which demonstrate the improvement of the model.

2.5 Conclusions

A mathematical model for the CASSI with pixel mismatch has been developed.

The model exploits the resolution of the DMD and FPA which therefore determines
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Figure 2.11: RGB profile of the (Left) traditional and (Right) Synthetic-CASSI re-
constructions. Synthetic-CASSI yields a smoothed image, retaining the
details of the scene.

Figure 2.12: Experimental reconstructions of five spectral bands. (Up) Traditional
CASSI, (Down) Synthetic-CASSI. It can be seen that Synthetic-CASSI
results outperforms the results achieved by the traditional CASSI.

26



Figure 2.13: Spectral signatures of three different spatial points. Traditional CASSI
and Synthetic-CASSI signatures are compared with the original spectral
responses. The improved results can be noticed in the spectral signatu-
res achieved by the Synthetic-CASSI.
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Figure 2.14: Experimental reconstructions of five spectral bands. (Up) Traditional
CASSI, (Down) Synthetic-CASSI. It can be seen that Synthetic-CASSI
results outperforms the results achieved by the traditional CASSI.

the resolution of the reconstructions. The model accounts two different cases of mis-

matching. In the first case, a super-resolution model is proposed to exploit the coded

aperture resolution. In the second case, the creation of a synthetic coded aperture is

proposed in order to reconstruct the spectral images, at the detector resolution. Real

reconstructions show the spatial and spectral improvement achieved with the proposed

model in comparison with traditional approaches of grouping pixels.
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Chapter 3

CODED APERTURE DESIGN IN COMPRESSIVE SPECTRAL
IMAGING BASED ON SIDE INFORMATION

Coded aperture compressive spectral imagers (CSI) sense a three-dimensional

data cube by using two-dimensional projections of the coded and spectrally dispersed

input image. Recently, it has been shown that combining spectral images acquired

from a CSI sensor and a complementary sensor leads to substantial improvement in

the quality of the fused image. To maximally exploit the benefits of the complementary

information, the spatial structure of the coded apertures must be optimized inasmuch

as these structures determine the sensing matrix properties and accordingly the quality

of the reconstructed images. It is proposed a method to use side information from

an RGB sensor to design the coded aperture patterns of a CSI imager, such that

more detailed spatial images and wavelength profiles can be reconstructed. The side

information is used as input of an edge detection algorithm to approximate a version of

the edges of the spectral images. The coded apertures are designed to follow the spatial

structure determined by the estimated spectral edges such that the high frequencies

are promoted, leading to more detailed reconstructed spectral images. Simulations

and experimental results indicate that when compared with random coded aperture

structures, the designed coded apertures based on side information obtain up to 3dB

improvement in the quality of the reconstructed images.

3.1 Introduction

Coded aperture compressive spectral imagers sense a three-dimensional data

set, known as spatio-spectral data cube, by capturing two-dimensional projections of

the spatio-spectral information modulated and multiplexed by a coded aperture and
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a dispersive element [19, 27]. These imager systems often rely on Focal Plane Arrays

(FPA), Spatial Light Modulators (SLM), Digital Micromirror Devices (DMD), and

dispersive elements. The use of DMDs to implement the coded apertures facilitates

the capture of multiple projections, each admitting a different coded aperture pattern.

Furthermore, the DMD allows to collect the sufficient number of measurements for

spectrally rich scenes or very detailed spatial scenes, as well as it implement the coded

apertures with elaborately designed structure to maximize the information content on

the compressive measurements. The snapshots are measured by an FPA, the pixel pitch

of which determines the spatial and spectral resolutions of the reconstructed images

[26]. An optimization formulation resulting from the ill-conditioned linear system of

equations at the detector is then used to reconstruct the data cube, using representation

basis where the undersampled signals admit sparse representations. Several numerical

algorithms are available to solve the resulting inverse compressive sensing problem,

seeking to minimize the error with respect to the compressed measurements by means

of the `2−norm, and penalizing the objective function by the `1−norm forcing the

solution to be sparse.

The use of a-prior information has been extensively studied to improve the

reconstruction of those undersampled signals [37, 38, 39, 40, 41]. For instance, the

work in [42] takes advantage of the information about the support of the signal at the

decoder for its reconstruction. In work [43], a side information (SI)-aided compressed

sensing reconstruction was considered. It used a noisy version of the underlying signal,

to reconstruct the original signal through a SI-aided approximate message passing (SI-

AMP) algorithm. In [44], it is provided a theoretical analysis of the sufficient number

of measurements for reliable recovery with high probability in the presence of prior

information for both `1/`1 and mixed `1/`2 reconstruction strategies; however, the use

of prior information as an additional measurement has only been recently considered.

It is known as side information and is used to aid the reconstruction of signals.

In tomography, previous scans of a subject can be used as side information

enabling accurate reconstruction of dynamic CT images [45]. The works in [46] and
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[47] reconstructed images using a side information snapshot. Both of the methods

used `1-norm based minimization for image recovery, by adding an additional term

that accounts for the distance between the recovered image and the side information

snapshot. Some of the works in [48, 49, 50, 51, 52] developed hybrid cameras to acquire

simultaneously side RGB information in addition to multispectral imaging with low

spatial resolution. In [51] for instance, the sampling patterns are generated according

to the scene content in such a way that the captured hyperspectral video provides

nonredundant spectrum information over frames. In terms of adaptability, in [53], it

is developed a low-resolution tracking method utilizing low-resolution images captured

by a traditional (i.e., non-compressive) camera as side information, which was then

applied to background subtraction for video sequences.

A new approach is presented that optimally designs the set of coded apertures

patterns to use in the acquisition of the compressive spectral imaging projections. In

essence, the side RGB image provides a-priori information to design the coded aperture

in order to sense the scene, in a structured format, such that high spatial frequency

components of the spectral image are better reconstructed. The proposed method

achieves superior reconstruction performance over the traditional results using random

coded aperture patterns. More specifically, the edges in the scene are used to calculate

new coded aperture patterns in order to better reconstruct those spatial frequencies.

In addition, the side RGB information is used to improve the reconstruction quality

by its use during the reconstruction process. Even more, the RGB information is used

to achieve super-resolution by the use of a fusion algorithm taking advantage of the

high resolution of the RGB image. So, the side RGB information is exploited twice,

for both sensing and reconstruction processes. Simulations are used to illustrate the

benefits of this approach. In addition, testbed reconstructions are also presented to

verify the proposed coded aperture method based on the side information in a coded

aperture compressive spectral imaging system.

The reminder of this chapter is organized as follows. Section 3.2 introduces

the mathematical model of a known coded aperture compressive spectral imager to be

31



used for the acquisition of compressive projections. Section 3.3 develops the spectral

imaging with the side information approach. The coded aperture design method and

the reconstruction process based on side information are also described in Section 3.3.

Simulations as well as experimental results are presented in Section 3.4, and Section

3.5 summarizes the work.

3.2 CASSI model for spectral imaging

The coded aperture snapshot spectral imager (CASSI) captures multiplexed 2D

projections of the spatio-spectral scene using a snapshot. The optical CASSI architec-

ture consists of a coded aperture, a dispersive element, and a FPA. Figure 4.1 depicts

the structure of CASSI system. The compressive spectral imager is located along the

main arm. An additional arm is included in order to acquire an RGB image of the

scene simultaneously; a beam splitter is used to divide the incident light into the two

optical paths, the CASSI and the RGB arms. The input, a spatio-spectral data cube,

is defined as (Fk)mn, where (m,n) indicates the spatial coordinates and k determines

the kth spectral band of an N × N × L data cube with m,n = 0, 1, . . . , N − 1 and

k = 0, 1, . . . , L − 1. The spatio-spectral images are modulated by a discretized coded

aperture T`
mn, where ` = 0, 1, ...K−1 indexes the number of snapshots to be captured.

Notice that each snapshot uses a different coded aperture T`. Using this notation, the

`th FPA measurement, referred to as G`
mn can be written as

G`
mn =

L−1∑
k=0

T`
m(n−k) (Fk)m(n−k) . (3.1)

The dispersion effect is modeled at the pixel level in the horizontal dimension

in both the coded aperture and the source. Alternatively, the spectral signal can be

expressed as F ∈ RN×N×L, or its vector representation f ∈ RN ·N ·L, which is S-sparse

on a basis ΨΨΨ, such that f = ΨΨΨθθθ can be approximated by a linear combination of S basis

functions chosen from ΨΨΨ with S � (N · N · L). Following this notation, the CASSI
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projections in Eq. 3.1 can be rewritten in the standard form of an under-determined

system of linear equations

g` = A`θθθ = H`ΨΨΨθθθ +ωωω, (3.2)

where the matrix A` = H`ΨΨΨ is the CASSI sensing matrix, θθθ is a S-sparse representation

of the data cube in a 3-dimensional basis ΨΨΨ, and ωωω represents the noise in the system.

H` is the system transfer function defined as H` = PT`, its structure is determined

by the coded aperture entries T` and the dispersive function of the prism P, which

remains constant for all the snapshots. Hence, the size of H` is U × Q, where U =

N(N + L− 1) is the number of FPA pixels and Q = N2L is the total number of data

cube voxels. The set of K snapshots in Eq. 3.2 can be assembled into a single vector

by concatenating the y` vectors, in order to create an overall measurement vector

with dimension KU × 1, which is denoted as g =
[
(g0)T , . . . , (gK−1)T

]T
, such that

g = Hf , where H =
[
(H0)T , . . . , (HK−1)T

]T
is a KU ×Q matrix. Figure 3.1 shows a

sketch of the H matrix for an N × N = 4 × 4 spectral data cube with L bands, and

K = 2 snapshots. The diagonals correspond to the coded aperture pattern applied to

each waveband, white entries correspond to unblock elements, while black entries are

blocking elements. In the sketch, 2 snapshots are vertically stacked, and the dispersion

function is modeled by the shifting of the diagonal N pixels as the wavelength increases

from left to right.

3.3 Spectral Imaging with Side Information

In spectral imaging, an RGB image of the same target can be captured in two

distinct ways. One is to use different cameras in the same path of the spectral image

and another is to split the light in two phats by using a beam splitter. The two different

implementation methods are suited for different applications. For instance, in satellite

or airborne imaging, the use of the same path with different cameras is suitable given

that the scene is very far from the cameras and the disparity can be ignored. In

contrast, if the scene is near to the camera, the disparity should be taken into account
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Figure 3.1: H Transfer function sketch for a 4×4×L data cube, and for 2 snapshots.

and a second arm using a beam splitter will be preferable [54]. An example of the

latter schematic architecture is presented in Fig. 3.2. This architecture combines a

hyperspectral system and a traditional RGB imaging system by a beam splitter, which

divides the incident light into two paths. After the registration of the images, the

RGB image could be used as side information to aid the reconstruction of the spectral

images. We propose to use the RGB information to design edge-based structured coded

apertures to improve the quality of the reconstructions. The RGB information is used

to adaptively configure the DMD coded aperture patterns according to different content

in the scene. This is, the coded apertures implemented by the DMD can carefully sense

the borders of the object, and preserve the high-frequency details in the reconstructed

images.

3.3.1 Coded aperture design based on side information

Hadamard matrices, S matrices and Bernoulli random matrices are often used as

coded apertures patterns for CASSI. The use of these coded apertures was motivated

since they are well conditioned when used in least square estimation [55]. However,
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Figure 3.2: Schematic architecture of CASSI with RGB side information. A beam
splitter is utilized to divide the incident light into two different directions.

these code designs do not exploit the a-priori information of the scene, even when it

is available, and the properly designed coded aperture ensembles could improve the

quality of the reconstruction.

In this work, the following observations are taken into account for the design

of the coded aperture patterns. First, consider a traditional random coded aperture,

whose entries are realizations of a Bernoulli random variable. The element values of

this coded aperture are usually non-uniform distributed. This is, some areas contain

more dense zero-valued pixels than other areas. In these areas, poor reconstruction of

the spatial scene is expected. What is more important, if the coded aperture area with

dense zero-valued pixels coincides with the high frequency components of the scene,

such as the edges, then the detailed structures in the reconstructed image will be distor-

ted or even lost. As an example, Fig. 3.3 shows the spatial reconstruction of an spectral

band through simulation of the CASSI system using a random coded aperture pattern

and focusing on an specific area where the scene presents high frequency components.

The coded apertures using these random patterns try to sense in an unstructured way

regardless the specific shapes of the underlying objects; however, the scenes of objects
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or images are not usually uniform. Instead, they contain intensity variations, intensity

discontinuities in some directions and uniform/non-uniform patches.

The spatial quality of the reconstructed spectral image is affected mainly in the

sections containing numerous details. More specifically, the edges of the objects in the

scene are poorly reconstructed using traditional coded apertures, such as random and

hadamard coded apertures. One reconstructed band is presented in Fig. 3.3 (a). For

the simulation, the data cube is sensed by the CASSI system using a random coded

aperture with a transmittance of 50%. The toy chest highlights the poor reconstruction

of the edges. The corresponding original section is presented in a green square in order

to visually compare the quality. In order to evaluate the reconstruction performance

at the edges of the object in the scene, the edges are first estimated from an RGB

image of the data cube through the widely known Canny edge detector method [56],

which will be described afterwards. The estimated edges can be seen in Fig. 3.3 (b).

In order to evaluate the error localized at the edges, for the 484 nm spectral band, the

absolute value of the reconstruction error is calculated and overlapped with the edges

estimated before. The yellow pixels in Fig. 3.3 (b) correspond to errors localized on

the edges. The ratio of error on edges over the overall energy of the original image is

19.84% for the 484 nm spectral band.

3.3.1.1 Edge estimation based on the RGB image

The previous observations motivate us to design coded apertures based on the

side information to enhance the reconstruction quality of the spectral data cube. More

formally, the kth spectral bands of the spatio-spectral image (Fk)mn, can be compactly

rewritten as Fk = (Fk)mn. In order to take advantage of the a-priori information,

an RGB image FC is used to design edge-based coded aperture patterns. Each RGB

image channel can be written as,

FR =
L−1∑
k=0

wR
k Fk, FG =

L−1∑
k=0

wG
k Fk, FB =

L−1∑
k=0

wB
k Fk, (3.3)
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(a)

(b)

Figure 3.3: (a) A spectral band is reconstructed through simulation of the CASSI
system using a random coded aperture pattern. Zoomed sections of the
original and reconstructed band are presented in green and red squares.
(b) Edge estimation using the Canny method and correlation between
the reconstruction error and the estimated edges for the spectral band
reconstructed in (a).
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where wR
k ,w

G
k ,w

B
k > 0, are the spectral responses of the CCD sensor for the R,G,B

channels, respectively. The RGB image is composed by the three channels, such that

FC = FR + FG + FB.

Given FC , an edge detection process is carefully applied to establish the key spa-

tial frequencies on the image to improve its reconstruction. The edge detection process

is then performed using the Canny edge detector method [56], based on optimizing the

trade-off between the following two performance criteria: good edge detection, which

means low probabilities to loose the real edges or generate artificial edges in the flat

area, and good edge localization, which means the positions of edge points marked by

the edge detector should be as close to real edges as possible.

A noise reduction is first implemented by convolving the RGB image FC with a

Gaussian mask G(σ) ∈ Rr×r, where σ is the spread of the Gaussian filter and controls

the degree of smoothing, and the ideal value for r is the smallest odd integer greater

than 6σ [57]. The smoothed RGB image is calculated as F̂C = G(σ) ∗ FC . Where ∗

represents the convolution operation. The size of the resulting image is fixed to be the

same as the original image size.

The partial derivatives ∂F̂C/∂x and ∂F̂C/∂y at every pixel location in the RGB

image are calculated to compute the intensity gradient of the image. These derivatives

can be implemented by filtering the smoothed image F̂C with a gradient operator S,

such as the Prewitt or Sobel 2D masks of size 3 × 3, in order to obtain the intensity

gradient image SC ,

SC = S ∗ F̂C = S ∗ F̂R + S ∗ F̂G + S ∗ F̂B

SC = S ∗
L−1∑
k=0

wR
k F̂k + S ∗

L−1∑
k=0

wG
k F̂k + S ∗

L−1∑
k=0

wB
k F̂k

SC =
L−1∑
k=0

wR
k

(
S∗ F̂k

)
+
L−1∑
k=0

wG
k

(
S∗ F̂k

)
+
L−1∑
k=0

wB
k

(
S∗ F̂k

)
, (3.4)

where F̂R, F̂G, and F̂B are the smoothed versions of the RGB image channels in Eq.

3.3.
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The intuition behind the use of the edges is that it is possible to approximate

the edges of the spectral data cube from the RGB image, and that information could be

used to design the coded apertures. In order to verify that insight, the edge detection

process is also applied to the complete spectral data cube. First, the noise reduction

for the complete spectral scene is calculated as F̂k = G(σ) ∗ Fk, and the intensity

gradient image ST for the complete data cube is given by,

ST = S ∗ F̂k = S ∗
L−1∑
k=0

wkF̂k =
L−1∑
k=0

wk

(
S∗ F̂k

)
. (3.5)

From Eq. 3.4, it can be seen that SC contains a weighted sum of the edges of

the spectral bands. Thus, SC ≈ ST . Then, the edges estimated from the RGB image

could be seen as an approximation of the edges of the complete spectral scene.

3.3.1.2 Coded aperture calculation

The coded apertures are designed as the Hadamard product of two components.

The first component is a blue noise pattern generated by using a blue noise mask. The

second component is the edge component. The blue noise patterns are selected since

they exhibit the high-frequency component that suppresses low-frequency components

of white noise, producing patterns of pixels distributed as homogeneously as possible

[58, 59, 60]. This feature helps to achieve a more uniform sensing than that obtained

with random patterns as verified in several works [61, 62]. The coded aperture T is

then calculated as,

T = Tb1 ·Te + Tb2 · (1−Te), (3.6)

where Tb1 and Tb2 are two blue noise patterns with different transmittance. The

transmittance is defined as the percentage of light intensity passing through the coded

aperture among the overall intensity. Te is the edge component. (1−Te) guarantees

that each pixel in the edge component is classified as part of the edges or the back-

ground, defined as the scene complement of the edges. The pre-calculated image SC
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in Eq. 3.4 is used as the edge component, thus Te = SC . Then the coded aperture in

Eq. 3.6 can be re-written as,

T = Tb1 · SC + Tb2 · (1− SC). (3.7)

The transmittance of the blue noise patterns Tb1 and Tb2 must be different,

otherwise, the coded aperture will be a blue noise pattern sensing the whole scene.

In order to improve the reconstruction of the edges, the coded aperture in Eq.

3.1 is replaced by coded in Eq. 3.7, the FPA measurement for one snapshot can be

seen as,

Gmn=
L−1∑
k=0

(
(Tb1)m(n−k)(SC)m(n−k) + (Tb2)m(n−k)(1− SC)m(n−k)

)
(Fk)m(n−k) . (3.8)

Expanding Eq. 3.8, the measurements can be seen as the sum of the sensed

edges and the sensed background:

Gmn=
L−1∑
k=0

(Tb1)m(n−k)(SC)m(n−k)(Fk)m(n−k)︸ ︷︷ ︸
a

+
L−1∑
k=0

(Tb2)m(n−k)(1− SC)m(n−k)(Fk)m(n−k)︸ ︷︷ ︸
b

.

(3.9)

Figure 3.4 presents a comparison between the edge estimation SC obtained

from F̂C and the real edges ST . Figure 3.4 shows that 87% (yellow pixels) of the edges

are correctly estimated from the RGB image. The coded aperture T then tries to

emphasizes the edges of the spectral bands thus is more beneficial to preserve the high

frequency details in the reconstructed spectral images.

3.3.2 Reconstruction process

The CASSI with side information approach results in two measurements shots:

the RGB image FC acquired by the RGB detector, and the CASSI measurements
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Figure 3.4: Edge Calculation for the Fk spatio-spectral image for k = 8. The edge
estimation SC using the RGB image is compared with the real edges
ST . Edges of each band are calculated and then summed for both the
complete data cube and the RGB image. An error image is created to
show that pixels in yellow (87%) are correctly estimated from the RGB
image FC .
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captured using the designed coded aperture, corresponding to Eq. 3.9. In order to

reconstruct the spatio-spectral data cube, the two measurements are stacked together

such that the final measurements are given by g̃ = H̃f + ω̃̃ω̃ω, where

g̃ =

g′

g

 , H̃ =

H′

H

 , ω̃̃ω̃ω =

ω′ω′ω′
ωωω

 , (3.10)

where g′ = H′f +ωωω′ corresponds to the linear representation of the RGB measurement,

the matrix H′ is the system forward response of the RGB camera, and y represents the

CASSI shot. ω̃̃ω̃ω accounts for the additive noise of the two detectors, generally modeled

as white Gaussian noise.

An estimation of the spatio-spectral data cube can be attained by solving the

regularization problem,

f̂ = ΨΨΨ{argminθ‖g̃ − H̃ΨΨΨθθθ‖2 + τ‖θθθ‖1}, (3.11)

where θθθ represents an S-sparse representation of f , and τ is a regularization con-

stant. The basis representation ΨΨΨ is formulated as the Kronecker product of two bases

ΨΨΨ = ΨΨΨ1

⊗
ΨΨΨ2, where ΨΨΨ1 is a 2D wavelet Symmlet 8 basis and ΨΨΨ2 playing the role

of spectral sparsifier is a the 1D discrete cosine transform. Different algorithms have

been proposed to solve the optimization problem in Eq. 3.11, including the two-step

iterative shrinkage/thresholding (TwIST) [21], the gradient projection for sparse re-

construction (GPSR) [22], Gaussian mixture models (GMM) [23], and the compressive

imaging reconstruction algorithm based on the approximate message passing (AMP)

framework [24]. The GPSR algorithm was used, although any of the other algorithms

could be used as well.

With the aim to enhance the reconstructed spatio-spectral data cube f̂ , a data

fusion algorithm is applied after reconstruction taking advantage of the acquired RGB
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Figure 3.5: Fusion of the spatio-spectral image f̂ and RGB image FC with the GF-
PCA framework.

image FC . More specifically to the fact that high resolution RGB detectors are che-

aper than FPAs, it is lower-cost to acquire high resolution side information images

than spectral measurements. Hence, the guided filter principal component analysis

(GFPCA) algorithm is used. The goal of the data fusion algorithm is to enhance

the resolution of the reconstructed spectral data cube as well as its spatial quality.

The general idea of the GFPCA is to calculate the principal components of f̂ using

PCA. Then, apply a guided filter [63] over the first i principal components of the data

cube, given that those contain the most useful information. For the other components,

a denoising process and a cubic upsampling is performed first. Then both resulting

principal components are stacked again, and an inverse PCA is applied to obtain the

enhanced spatio-spectral image f . Figure 3.5 shows the GFPCA framework that uses

the FC image to guide the filtering process aiming at obtaining super-resolution.

Within this framework, the guided filtering applied to the ui principal compo-

nents to calculate ûi, can be represented as an affine transformation of the guidance

image FC in a local and sliding window wj as,

ûi = ajFC + bj, ∀i ∈ wj, (3.12)

where aj and bj are some linear coefficients assumed to be constant in the window wj.

Eq. 3.12 ensures that the output ûi has an edge only if the guided image FC has an
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edge, since O(ûi) = aOFC . The cost function to determine the coefficients aj and bj is

given by,

E(aj, bj) =
∑
i∈wj

[
(ajFC + bj − ui)

2 + εa2
j

]
, (3.13)

where ε is a regularization parameter to determine the degree of blurring for the guided

filter. The cost function in Eq. 3.13 leads the term ajFC + bj to be as close to ui as

possible, such that it is ensured the preservation of the spectral information. The

solution to the cost function in Eq. 3.13 is given by a linear regression that gives

the aj and bj coefficients in terms of the mean and variance of the guiding image, the

number of pixels |w| and the mean of the principal components in the window wj. This

linear model is applied to all the local windows in the principal components. After the

filtering process, all the principal components are stacked into û, and the inverse PCA

transformation is applied to obtain the enhanced spatio-spectral image f .

3.4 Simulations and Results

3.4.1 Simulations

In order to verify the CASSI with side information approach, two sets of com-

pressive measurements are simulated using the forward model in Eqs. 3.2 and 3.9,

adding Gaussian noise with zero mean to the measurements Y. The sets correspond

to the CASSI with side information, but the first set is modulated by a random coded

aperture and the second by the designed coded aperture. For the simulations, a test

spectral data cube F, acquired using a monochromator in the spectral range between

450 nm and 650 nm with 128 × 128 pixels of spatial resolution and L = 8 spectral

bands is used. A CCD camera AVT Marlin F0033B, with 656× 492 pixels and a pixel

pitch size of 9.9 µm is used. The spatial resolution of the coded apertures T,Tb1 and

Tb2 is 128 × 128 pixels, and the transmittances of T, Tb1 and Tb2 are 0.25, 0.22 and

0.26, respectively. The coded aperture designed using the CASSI with side information

approach has a final transmittance of T = 0.25 and it is presented in fig. 3.6 (left), the
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Figure 3.6: (Left) Designed coded aperture with transmittance T = 0.25. (Right)
Estimated edges overlapping the designed coded aperture to visualize
edge component.

estimated edges are overlapped with the coded aperture in fig. 3.6 (right) to facilitate

the visualization of the edge component.

The compressive sensing gradient projection for sparse reconstruction (GPSR)

algorithm is used to obtain the reconstructions of the data cube [22]. Figure 3.7 illus-

trates four spectral bands of the original data cube and the respective reconstructions.

The left column presents the original bands. The second column shows the recon-

struction of the set of measurements simulated using model in Eq. 3.2, and a random

coded aperture. The third column shows the reconstruction of the set of measurements

simulated using model in Eq. 3.9 with the designed coded aperture in Fig. 3.6. The

compressive reconstruction algorithm for both sets of measurements takes into account

the RGB information, and a SNR level of 8 dB of noise is also added in the measure-

ments. The spatial quality is improved when the designed coded aperture is used, and

it can be easily noticed. Observe that the spatial quality of the borders is specially

enhanced.

Figure 3.8 shows the mean spectral PSNR for the reconstructed eight bands.

The improvement reached by using the designed coded aperture is superior than the

improvement achieved using a random coded aperture for all the bands. Moreover,

the spectral signature for two spatial points, indicated as P1 and P2 in Fig. 3.8, are
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Figure 3.7: Reconstruction of four spectral bands using the CASSI with side infor-
mation. Left column depicts the original bands, second column shows
the reconstruction using a random coded aperture and the third column
shows the reconstruction using the designed coded aperture in Fig. 3.6.
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Figure 3.8: Mean spectral PSNR for the eight reconstructed bands and spectral sig-
natures for two representative spatial points, indicated as P1 and P2.

evaluated and compared with the original profile. As can be noticed, the use of designed

coded apertures provides more accurate reconstructed profiles than the use of random

coded apertures.
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3.4.2 Experimental Results

The CASSI system was experimentally realized to demonstrate the proposed

design method of the coded aperture based on side information. The coded apertu-

res were implemented in a Texas Instruments D1100 DMD (DLP), a custom double

Amici prism (Shangai Optics) was used as a dispersive element, and an FPA detector

(Stingray F-033B) captured the measurements. The nonlinear dispersion curve of the

prism was determined experimentally by using a monochromator. The DMD used to

implement the coded apertures has a resolution of 1024× 768 and a mirror pitch size

of 13.68 µm. The FPA detector used in this experimental setup has a resolution of

1280× 960 pixels and a pitch size of 6.45 µm. A Pike F-145 RGB camera with a Sony

ICX285 sensor was used to acquire the RGB side image. The camera has a resolution

of 1388× 1038 pixels and a pitch size of 6.45 µm. The resulting resolution of the RGB

images is 512× 512 pixels.

Two sets of compressive measurements were acquired by using the CASSI optical

setup for two different targets. Figure 3.9 shows the real scenes used in the experiments.

The first set of compressive measurements was modulated by a random coded aperture,

and the second, by the proposed designed coded aperture. In order to design the coded

apertures, a re-sized version of the RGB image with 128 × 128 pixels was used to

estimate the borders of the scene according to Eq. 3.4. Then, two blue noise patterns

with transmittances Tb1,Tb2 ∈ [0.40, 0.80] were used to calculate the designed coded

aperture T with a final transmittance of 0.25. The designed coded apertures for the

two scenes are presented in the bottom row of Fig. 3.9. The spatial resolution of

the scenes, coded apertures, and respective reconstructions is 128 × 128 pixels. The

number of resolvable bands was k = 10. The GPSR algorithm was used to recover the

spatio-spectral data cube using the RGB side information as formulated in Eq. 3.10.

The spatial reconstructions for the scenes are shown in Fig. 3.10 and 3.11.

Figure 3.10 illustrates three reconstructed bands of Target 1, for both random and

designed coded apertures. The quality on the borders of the reconstructed bands using

the designed coded apertures clearly outperforms the results attained with the random
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Figure 3.9: (Top) Two real scenes used to show the performance of the approach.
(Bottom) Designed coded apertures using the side information for the
two targets.

coded aperture. Figure 3.11 shows three reconstructed bands of Target 2. Notice the

quality improvement achieved at the borders of the object in the scene.

Figure 3.12 shows the spectral signatures for two points randomly chosen from

reconstruction of target 2. The points are indicated as P1 and P2. The original signa-

ture, obtained using a commercially available spectrometer (Ocean Optics USB2000+)

is compared with the spectral reconstruction based on side information using the

random and the designed coded apertures. The curves obtained by using the CASSI

with side information and coded aperture design are closer to the original signatures.

A zoomed version of the toy chest is also shown to highlight the quality at the borders.

3.4.3 Reconstruction Enhancement

The GFPCA data fusion algorithm was applied in order to enhance the recon-

structed spatio-spectral data cube f̂ . The full 512 × 512 RGB image is used as the

guided image. The first four principal components were used to apply the guided fil-

ter, the local sliding window for the filtering is 25, and the regularization parameter
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Figure 3.10: Reconstruction of 3 bands for Target 1 (Top) Using random coded
aperture. (Bottom) Using designed coded aperture.

is ε = 10−5. Figure 3.13 presents the high resolution reconstruction of simulations

scene and Target 2. The RGB mapping of the recovered spectral data cubes can be

compared to the original scenes in Figs. 3.8 and 3.9 respectively. Four reconstructed

and enhanced spectral bands are also presented to visualize the quality improvement.

The final resolution of the enhanced versions is 256 × 256 × 8 and 512 × 512 × 10

respectively. The improvements of the resolution and image quality for the spectral

bands and entire data cube can be easily noticed.

3.5 Conclusions

A coded aperture design method based on side information has been developed.

The method and designs were experimentally demonstrated in a compressive spectral

imaging architecture. The use of side information and specifically the estimation of

the borders of the scene allows the coded aperture design and promotes a high quality

reconstruction, specially the high frequency components in the scene. The quality

achieved is given by the coded aperture design in the sensing process and the use of

the side information during the reconstruction process. After reconstruction, a super-

resolution algorithm takes advantage of the high spatial resolution of the RGB image.

50



D
es

ig
ne

d 
 

C
od

ed
 A

pe
rtu

re
 

R
an

do
m

 
C

od
ed

 A
pe

rtu
re

 

Figure 3.11: Reconstruction of 3 bands for Target 2 (Top) Using random coded
aperture. (Bottom) Using designed coded aperture.

Simulations and experimental results demonstrate the performance of the proposed

method as well as the super-resolution results.
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Figure 3.12: Spectral reconstruction of a red (P1) and purple (P2) spatial points.
The spectral profiles for CASSI with side information using random
coded aperture and CASSI with side information using designed coded
aperture are depicted to compare the spectral reconstruction. A zoomed
version of the toy chest is shown to highlight the quality at the borders.

Figure 3.13: High resolution reconstruction of simulations scene and Target 2. The
spatial resolution of the reconstructions is 256 × 256 and 512 × 512
respectively. The RGB image is fused with the low resolution recon-
struction to increase the spatial resolution of the enhanced final version.
An RGB profile is also shown for the two scenes.
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Chapter 4

SHIFTING COLORED CODED APERTURE DESIGN FOR SPECTRAL
IMAGING

4.1 Introduction

Spectral images can be described as images with spatial information across

a large number of wavelengths. Despite the many applications of spectral informa-

tion such as quality control in food and industrial agriculture [1, 2], medical imaging

[3, 4, 5, 6], remote sensing [7, 8, 9], art conservation [10, 11, 12, 13], gas identifica-

tion [14, 15], security applications [14, 15], between others [16], the implementation of

spectral sensing systems and the subsequent acquisition and processing of data pose

significant challenges. Most common spectral imaging (SI) systems generally exploit

a full sampling scheme, which effectively sense a full spatio-spectral data cube at the

expense of a time-consuming acquisition. As a result, a full sampling scheme can only

be usefully applied to static scenes or scenes with slow movement [64]. Compressive

sensing (CS) handles these challenges effectively, and it has been a powerful framework

to acquire large amount of data with fewer measurements than those required by the

well known Shannon-Nyquist sampling theorem [16].

The increasing interest of CS theory in spectral imaging has generated the deve-

lopment of many compressive spectral imaging (CSI) systems [65, 64] such as the multi-

aperture filtered camera (MAFC), coded aperture snapshot spectral imager (CASSI),

and snapshot hyperspectral imaging Fourier transform (SHIFT). CSI measures spatio-

spectral information in such a way that the data cube is sensed and compressed at

the same time. In fact, this spatio-spectral information is acquired in the form of

two-dimensional (2D) projections at the detector [66]. Despite the differences in each

implementation, these methods share the attempt to perform direct 2D measurements,
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where each point from the scene is mapped to a single point in the optical sensor [65].

The main components of these architectures are Focal Plane Arrays (FPA), Spatial

Light Modulators (SLM), Digital Micromirror Devices (DMD), and dispersive elements

[64].

The acquisition of 2D projections is realized by coded aperture compressive

spectral imagers, which sense the data cube by means of the spatio-spectral information

modulation by a coded aperture (CA) and multiplexing by a dispersive element [16].

The CA can be implemented by a photomask with a permeability to block or let pass the

light in a single narrow or a wide spectral band or with the use of DMDs. In particular,

the CASSI attracts the interest due to its capability to capture the 2D measurements

using a single exposure or snapshot, turning the 3D incoming information into a 2D

distribution [16]. However, the reconstruction of spectral scenes with very detailed

spatial information requires more than a single-shot CASSI measurement since it does

not provide enough information, as a response, the multi-frame CASSI takes multiple

shots of the same scene with different CAs [62].

Traditionally, the coded apertures are proposed as matrices, whose entries are

realizations of a Bernoulli random variable, Hadamard matrices, S-matrices and cyclic

S matrices obtained by cyclic permutations of a codeword, and these distributions

have shown to obtain good reconstructions, and have been widely used [19, 55, 67].

These results have been improved by replacing the traditional block-unblock CA by

multi-patterned arrays of selectable optical flters or colored coded apertures (CCA)

allowing to modulate the data cubes both spatially and spectrally [68]. Even more,

some recent works have been reported in which the authors attempt to find an optimal

structure for the coded aperture in an explicit or implicit way, with the aim to increase

the reconstruction quality and/or in order to take fewer measurements, revealing the

benefits of optimal sampling applied in conjunction with CS [69, 68, 70, 71, 72]. A

major trend however, focuses on the mutual coherence, where the sensing matrix is

desired to be as incoherent as possible with the sparsifying matrix. Singular value

decomposition [69, 73], genetic algorithms [68], adaptive schemes [74, 75], shrinkage
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methods [69], among others approaches [76, 77] have been proposed.

More computational-based approaches to optimize the measurement matrix

have been also proposed. For instance, in Ref. [78], a gradient-based method is used

to design the measurement matrix by changing the location and distribution of the

blocking elements, having into account the coherence of the sensing matrix. In Ref.

[79], it is proposed an algorithm that iteratively constructs the sparsifying dictionary

and the projection matrix. Another work is found in Ref. [80], where the optimal solu-

tion of the optimization function that minimizes the Frobenius norm of the difference

between the Gram matrix and the identity matrix is calculated.

In this work, a colored coded aperture design is proposed through a minimiza-

tion problem of the Frobenius norm to enhance the orthogonal criteria by rows and

columns, allowing the possibility to vary the distribution while an uniform sensing

through the shots is realized. The spatial distribution and the uniformity of sensed

information in each spectral band is likewise reduced in their norms. It is noteworthy

that the gradient descent algorithm proposed to solve the optimization problem, offers

a non-binary matrix response, for this reason, it is included a thresholding operator to

binarize the response that minimizes the problem. A compensating trade-off strategy

between the uniformity by shots, wavelength uniformity, spatial distribution features

and reconstruction improvement is established using the proposed approach to calcu-

late the coded aperture distribution. In addition, a remarkable difference between the

actual designs and the one proposed is that the proposed design can be implemented

as a moving colored lithographic mask using a micro-piezo electric device, achieving a

low space-time multishot compressive measurement acquisition. The proposed coded

aperture design allows to recover spatio-spectral scenes with up to 3 dB of PSNR in

comparison with random CA, and achieves similar results to low-high colored coded

apertures designed in [68]. The problem lets to set up as input parameters in the design

process, the transmittance and number of shots, as well as the set of filters to be used

in the design.

The remainder of this chapter is organized as follows. Section 4.2 introduces the
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mathematical model of the CASSI system, which is used to model the acquisition of the

compressive projections. Section 4.3 develops the colored coded aperture optimization.

The colored coded aperture design as well as the shifting model are also described in

Section 4.5. Simulations as well as experimental results are presented in section 4.6,

and Section 4.7 summarizes the work.

4.2 CASSI System for Spectral Imaging

The coded aperture snapshot spectral imager (CASSI) captures multiplexed 2D

projections of the spatiospectral scene. The optical CASSI architecture consists of a

coded aperture, a dispersive element, and an FPA. The input, a spectral datacube Fmnk

with m,n spatial coordinates, and k spectral bands determines a data cube resolution of

N×N×L, withm,n = 0, 1, . . . , N−1 and k = 0, 1, . . . , L−1. The spatiospectral images

are modulated by a discretized binary coded aperture T`
mn, where ` = 0, 1, . . . , K − 1

indexes the number of snapshots to be captured. These coded apertures have been to

date fabricated in materials such as chrome-on-quarts [19], where each coded element

is either opaque or transparent to the whole wavelenghts of interest. Recent advances

in micro-lithography and coating technology allows the fabrication of multi-patterned

arrays of different optical filters, enabling its use on multispectral sensors, electro-

mechanical devices, and gratings. The incorporation of this technology in spectral

imaging, and specifically in the CASSI system in the form of colored coded apertures

allows not only the spatial but the spectral modulation as well. When the binary coded

aperture is replaced by a colored coded aperture, it can be seen as T`
mnk. Using this

notation, the `th FPA measurement, referred to as G`
mn, can be written as

G`
mn =

L−1∑
k=0

T`
m(n−k)k Fm(n−k)k + ωmn, (4.1)

where ωmn is the white noise of the sensing system. The dispersion induced by

the prism is modeled in the horizontal dimension in both the coded aperture and the

source. Alternatively, the spatiospectral data cube can be expressed as F ∈ RN×N×L,

or its vector representation f ∈ RN2L, such that f = Ψθ, where θ is a S-sparse
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representation on the basis Ψ, and can be approximated by a linear combination of

S basis functions chosen from the basis, with S � (N ·N · L). Following this matrix

notation, the CASSI projections in Eq. 4.1 can be rewritten in the standard form of

an under-determined system of linear equations:

g` = A`θ = H`Ψθ + ω, (4.2)

where the matrix A` = H`Ψ is the CASSI sensing matrix, H` is the system

transfer function that represents the effects of the coded aperture and the dispersive ele-

ment, and ω represent the noise in the system. The matrix H` is defined as H` = PT`,

where P represents the dispersive function of the prism and remains constant for all

the snapshots, and T` is determined by the coded aperture. Hence, the CASSI measu-

rement vector g =
[
(g0)ᵀ, . . . , (gK−1)ᵀ

]ᵀ
is the concatenation of the set of K snapshots

in Eq. 4.2 such that the vector dimension is given by KU×1, where U = N(N+L−1)

is the number of pixels in the detector. The matrix H =
[
(H0)ᵀ, . . . , (HK−1)ᵀ

]ᵀ
is a

U ×Q matrix, where Q = N2L is the total number of data cube voxels. The compres-

sion ratio achieved with the projection is then calculated as the size of the vector of

measurements g over the total number of data cube voxels KU/N2L, where K matrices

are stacked, one per each shot. Figure 4.1 depicts the physical sensing phenomenon

in the colored CASSI. The data cube is modulated by a colored coded aperture, then

dispersed, and integrated in the FPA. Each coded aperture pixel has a color, represen-

ting the cut-off wavelength, and is marked with a low or high pass filter. A low pass

filter element permits the wavelengths under the cut-off to pass through, and a high

pass filter element permits the wavelengths over the cut-off to be transmitted.

An estimate of the spatiospectral data cube from the KU measurement pixels

can be attained by solving the regularization problem,

f̂ = Ψ

{
arg min

θ
‖g −HΨθ‖2 + τ‖θ‖1

}
, (4.3)
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Figure 4.1: Physical sensing phenomena in colored CASSI; L spectral bands of the
data cube F are coded spatially and spectrally by a colored coded aper-
ture, and dispersed by the prism. The detector captures the intensity g
by integrating the coded and dispersed light.

where τ is a regularization constant. The basis representation Ψ is formulated as

the Kronecker product of two bases Ψ = Ψ1

⊗
Ψ2, where Ψ1 is a 2D wavelet Symmlet

8 basis, and Ψ2, playing the role of spectral sparsifier, is the one-dimensional discrete

cosine transform. Different algorithms have been proposed to solve the optimization

problem in Eq. 4.3, including the two-step iterative shrinkage/thresholding (TwIST)

[21], the gradient projection for sparse reconstruction (GPSR) [22], Gaussian mixture

models (GMM) [23], and the compressive imaging reconstruction algorithm based on

the AMP framework [24]. In this work, the GPSR algorithm was used, although any

of the other algorithms could be used as well.

4.3 Colored Coded Aperture Optimization

A single shot may not be enough to reach reconstructed scenes with certain

quality. In a CASSI multi-shot system, several captures are allowed for a given scene,

changing the coded aperture used in each snapshot. A convenient matrix arrangement

of the colored coded apertures in binary representation is proposed with the aim of

reduce the complexity of the design. Let us define Xi ∈ RN×N ·L as a matrix that
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Figure 4.2: Proposed X matrix arrangement of a colored coded aperture in binary
representation with a dimension of 16 × 16 × 3, and for 2 snapshots. A
random pattern is used for the sketch.

contains the colored CA pattern for the ith snapshot. The multi-shot CASSI CCA is

represented by simply concatenating the corresponding CCA binary matrix of the K

shots as X = [(X1)ᵀ, . . . , (Xi)ᵀ, . . . , (XK)ᵀ]ᵀ such that X ∈ RKN×NL. Figure 4.2 shows

a sketch of the X matrix arrangement for a modulation coded aperture with 16 × 16

spatial pixels, 3 spectral bands, and K = 2 snapshots.

The main intuition behind the optimization of the colored coded aperture pro-

posed in this work can be summarized as a variability and uniformity promotion. The

variability is referred as the low correlation between the rows and columns of X. On

the other hand, the uniformity is referred as the even sensing process through the

spatial dimensions and spectral bands, as well as through the number of snapshots to

be acquired. Since the sampling process is directly affected by the CA, therefore by

X, then the matrix X allows us to define the design of the blockages by finding the

solution to the following minimization problem:

X∗ = arg min
X

(J(X) +Q(X)) , (4.4)

where X∗ is the optimized coded aperture matrix arrangement, and the terms
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J(·) and Q(·) account for the variability and uniformity constraints over X, respecti-

vely.

The variability term J(X) and the uniformity term Q(X) in (4.4) are presented

in the following subsections. An iterative solution using a gradient descent algorithm

to solve Eq. (4.4) is presented in section 4.4.

4.3.1 Variability constraint in Colored Coded Aperture Optimization

The variability constraint begin with the generation of patterns having ortho-

normal rows and columns. The Gram matrix of the X matrix is used in the design

optimization problem as the constraint inducing the low correlation between the rows

and columns of X. The row-wise correlation is formulated in the problem as,

arg min
X

‖I1 −XXᵀ‖2
F , (4.5)

where I1 is an identity matrix of size KN ×KN , and X is the optimization va-

riable matrix. The solution of (4.5) yields to a coded aperture ensemble with improved

row-wise coherence by maximizing the linear independence of its rows. However, this

can result in a high number of column repetitions, so we turn to reduce also the column

correlation of X. Therefore, the column-wise correlation is minimized by solving the

problem,

arg min
X

‖I2 −XᵀX‖2
F , (4.6)

where I2 is an identity matrix of size LN ×LN . Considering both, the row-wise

coherence in (4.5) and column-wise coherence in (4.6), the variability cost function of

(4.4) is defined as,

J(X) = φ1‖I1 −XXᵀ‖2
F + φ2‖I2 −XᵀX‖2

F , (4.7)

Where the step control variables are φ1 and φ2.
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4.3.2 Uniformity constraint in Colored Coded Aperture Optimization

The uniformity constraint is aimed at reducing the spatial, spectral and shot

correlation of the samples in the acquisition process. In particular, when multiple shots

are acquired, the coded aperture elements, should allow to transmit ideally uniform

and non-redundant information of the scene, meaning that the repetition of sensed

voxels across shots should be avoided. The number of times a voxel is sensed across

shots given a coded aperture arrangement X, can be calculated as the product RX,

where R = [I1, . . . , Ik]
ᵀ, and Ii is an identity matrix of size N × N . The number of

repeated sensed voxels in the measurements when multiple shots are acquired can be

minimized by solving

arg min
X

‖U−RX‖2
F , (4.8)

where U is a selectable matrix with constant values, which define the number

of sensed voxels by each pixel at the FPA detector. Figure 4.3 shows the constraint in

Eq. 4.8. Hence, the coded apertures are designed such that the number of times each

spectral voxel is sensed remain constant. In the figure, the times each pixel is sensed

for each of the bands is calculated. Red and blue squares show voxels of second and

third bands, sensed twice in the 2 shots. Notice, that blue pixels are voxels not sensed

at all.

Regarding the spectral uniformity constraint, the desired number of times a

voxel is sensed should be also constant. As the dispersion affects the spatial position of

the integrated voxels in the detector, this dispersion should be considered. Therefore,

to guarantee the spectral uniformity, the number of times a voxel is sensed is calculated

as XD, where D is a matrix defined as D = [IᵀN 0ᵀ
N×(L−1), . . . ,0

ᵀ
N×(L−i) IᵀN 0ᵀ

N×(L−i), . . . ,

0ᵀ
N×(L−1) IᵀN ]ᵀ, where 0N×L−1 is a 0−valued N × (L− 1) matrix, and IN is an identity

N × N matrix. Then, the number of times a voxel is measured can be minimized by
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Figure 4.3: Illustration of the uniformity constraint aimed to reduce the total number
of times a voxel is sensed through the shots. Red and blue squares in
figure show voxels sensed twice for the 2 shots.

adding the constraint,

arg min
X

‖V −XD‖2
F , (4.9)

where V is a matrix with expected constant values, defining the utilization of

the detector pixels. Figure 4.4 presents visually this constraint. Observe the red areas

in X, although these three pixel areas are in different spatial positions (shifted one

pixel to the right), after the horizontal dispersion and integration of the second shot,

they reach the same spatial pixels in the detector. The measurements at the detector,

are represented as the resulting matrix XD, where the two measurements shots are

stacked one over the other. The yellow pixels in the detector, represent then, detector

pixels integrating information of all the three bands, while blue pixels are under-utilized

detector pixels. Notice that XD can be multiplied by R, to calculate how many voxels

are integrated in a detector pixel through all the shots. This is presented in Figure

4.5, and it is basically the union of the constraints in Eqs. 4.8 and 4.9. The red and
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Figure 4.4: Sketch of the spectral uniformity constraint. Red areas show pixels re-
aching the same spatial pixels in the detector.Yellow pixels represent
detector pixels integrating information of all the bands. Blue pixels are
under-utilized detector pixels.

blue squares in the resulting matrix in figure 4.5, show two detector pixels sensing six

voxels through 2 shots, or the sum of three spectral voxels per shot. That is a clear

example of redundant sensing. These two constraints are considered separately as Eqs.

4.8 and 4.9, such that a different weight can be assigned to each of the constraints.

In order to guarantee the spatial uniformity, two additional constraints are in-

cluded. The main idea of these constraints is to avoid the clusters of one-valued entries

both in the columns and the rows of the coded aperture pattern. To constraint the

spatial uniformity two Toeplitz matrices are defined such that they find the columns

and row clusters to be reduced through an iterative algorithm. Let W and Z be posi-

tive definite Toeplitz matrices of size LN × LN and KN ×KN . The spatial column

and row uniformity constraints are defined as,

arg min
X

‖B−XW‖2
F , (4.10)
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Figure 4.5: Sketch of the spectral and shot uniformity constraint. Red and blue
squares show pixels sensed through all the bands and through all the
shots.

arg min
X

‖C− ZX‖2
F , (4.11)

where B and C are matrices defining the number of adjacent pixels or sensed

neighbors of each pixel, B for vertical adjacency, and C for horizontal adjacency.

This matrices are intended to have constant values, such that no clusters of sensed

voxels are allowed. Figures 4.6 and 4.7 illustrate the common columns/rows clusters

that can be found using two different Toeplitz matrices, the first matrix having d

constant diagonals each one using a different weight, and the second having d constant

1-valued diagonals. The selection of the d number of diagonals and its respective

values determine the neighbor ratio to analyze and the weight assigned to each of the

surrounded pixel positions, this respectively for each column or row. The expected

behavior of the matrix multiplication XW and ZX as in the previous constraints is to

have a resultant matrix with constant values and therefore a more uniform sensing.

Considering the four uniformity constraints presented before, the uniformity

cost function in Eq. 4.4 is expressed as,

Q(X)=φ3‖U−RX‖2
F + φ4‖V−XD‖2

F

+ φ5‖B−XW‖2
F + φ6‖C−ZX‖2

F .
(4.12)
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Figure 4.6: Column uniformity constraint illustration: XW. Several clusters as the
two presented in the figure within red squares should be avoided.

Figure 4.7: Row uniformity constraint illustration: ZX. Clusters as the two presen-
ted in the figure within red areas should be avoided.
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In the following section, we propose an alternating minimization algorithm,

which iteratively minimizes 4.4 with the variability promoter J(X) as in Eq. 4.7 and

the uniformity promoter Q(X) as in Eq. 4.12 to find an optimized coded aperture

arrangement X∗.

4.4 Gradient Descent Approach to find Optimized Colored Coded Aper-

ture

A gradient descent method is applied to minimize Eq. 4.4, starting with a

realization of a random coded aperture arrangement X. The minimization method

can be described as an iterative process where the coded aperture ensemble at the ith

iteration is given by,

Xi = Xi−1 + η (∇XJ(X) +∇XQ(X)) , (4.13)

where ∇ is the gradient operator, and η > 0 is the iteration step size. In order

to apply the proposed method, we need to compute the gradient of J with respect to

X,

∇J =
∂J

∂X
=

∂

∂X

(
‖I1 −XXᵀ‖2

F + ‖I2 −XᵀX‖2
F

)
=

∂

∂X
Tr{(I1−XXᵀ)ᵀ(I1−XXᵀ)+(I2−XᵀX)ᵀ(I2−XᵀX)}

= 4(XXᵀ − I1)X + 4X(XᵀX− I2),

(4.14)

where the derivative is expanded using the Tr {·} operator, which denotes the

matrix trace operation. On the other hand, the gradient of Q with respect to X,

∇Q =
∂Q

∂X
=

∂

∂X
(‖U−RX‖2

F + ‖V −XD‖2
F

+ ‖B−XW‖2
F + ‖C− ZX‖2

F ),

(4.15)
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can be calculated also using the trace operator as,

∂Q

∂X
=

∂

∂X
Tr {(U−RX)ᵀ(U−RX)+(V−XD)ᵀ(V−XD)

+ (B−XW)ᵀ(B−XW)+(C−ZX)ᵀ(C−ZX)}

= 2Rᵀ(RX−U) + 2(XD−V)Dᵀ

+ 2(XW −B)W + 2Z(ZX−C),

(4.16)

where Wᵀ = W, and Zᵀ = Z.

4.5 Shifting Colored Coded Aperture

In practice, the spectral response of the colored coded apertures can be con-

strained by cost and fabrication limitations. These limitations are given by the type

of filters used in the fabrication. Additionally, the cost of the coded aperture increases

when a multi-shot system is required, as the number of colored coded apertures also

increases. And besides, experimentally, one of the main challenges is the design of

compact and portable systems. Following these requirements, two additional specifi-

cations design are included in this work. Firstly, since the cost limitation is given by

the type of colored filters used in the fabrication of the coded apertures, the spectral

response of the filters in the coded aperture is limited to be either low or high pass

filters. Secondly, the CCA patterns optimized in the previous section are organized

in such a way that only one mask is required for the implementation. This is called

”shifting color coded aperture”, since the mask should be shifted between shots and

several pixels of the coded aperture are shared between them.

4.5.1 LH-Colored Coded Aperture Design

The spectral response of the colored coded apertures is constrained to low/high

(L/H) pass colored coded filters. The cut-off wavelengths of the filters are assumed

to be selected from the subset λ0, . . . , λL−1. Thus, there are 2λL colored filters to be
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selected for each coded aperture pixel. More specifically, the spectral response of a

λLowj low pass colored coded aperture pixel is given by

(
x`K
)

=

1 if k < λLowi

0 otherwhise,

(4.17)

for K = 0, . . . , L − 1, i ∈ 0, . . . , N2 − 1, and ` ∈ 0, . . . , K − 1. Similarly, the

spectral response of a λHighj high pass colored coded aperture pixel is given by

(
x`K
)

=

1 if k ≥ λHighi

0 otherwhise.

(4.18)

Let the available set of low pass filters be ΛLow =
{
λLow0 , . . . , λLowL

}
, and the

set of high pass filters ΛHigh =
{
λHigh0 , . . . , λHighL

}
. A thresholding operator is applied

with each iteration of the gradient descent algorithm, to reduce the resulting filters in

the entries of the coded aperture, to those belonging to the set Λ ∈
{

ΛLow ∪ ΛHigh
}

.

Figure 4.8 shows an example of the set of filters Λ for a specific case of L = 3

spectral bands λ1, λ2, λ3. In the left the set of filters is presented, in the right four of

the six filters spectral responses are shown. The remaining two filters are an all-pass

and block filters. A small black lower left or upper right triangle in the middle of a

pixel represents a low or a high pass filter respectively.

The equivalent representation of a colored coded aperture and its binary arran-

gement matrix X is presented in figure 4.9 for a coded aperture of 4× 4 spatial pixels,

L = 3 spectral bands, and K = 2 shots. The respective equivalence of two color coded

aperture pixels is shown for high pass filter in the upper side of the figure and a low

pass filter in the bottom side of the figure.

4.5.2 Shifting Color Coded Aperture Design

Multiple colored coded apertures can be implemented by coating a DMD or by

moving a colored lithographic mask using a micro-piezo electric device, a shifting colo-

red coded aperture design is proposed in order to reduce the cost of its implementation
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Figure 4.8: Set of filters for L = 3 spectral bands λ1, λ2, λ3. In the left the set of
filters is presented with its respective color pixel representation. In the
right the spectral response of four of the six filters is shown.

Figure 4.9: Equivalent representation of a colored coded aperture and its binary
arrangement matrix X. The colored coded aperture dimensions are 4×4
spatial pixels, L = 3 spectral bands, and K = 2 shots. A high pass and
a low pass filters representations are specified.
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as well as to improve the compactness of the compressive system. Figure 4.1 shows

how the colored coded aperture can be moved or shifted upwards in order to capture

a second shot.

Three shifting strategies can be considered for the coded aperture design, ver-

tical, horizontal, and diagonal. However, given that the dispersion induced by the

prism occurs in the horizontal dimension, and then the information from the diffe-

rent spectral bands is multiplexed, the horizontal and diagonal (involving vertical and

horizontal shifting) strategies are discarded.

One of the main constraints fulfilled by the optimized colored coded aperture

is that the filters have to be as complementary as possible among the shots such that

the sum of the filters contains all the spectral components. With the aim to preserve

the shots uniformity constraint in the design of the vertical shifting codes, a strategy

based on patch concatenation is proposed in this work. The strategy consists in the

concatenation of vertical complementary colored coded aperture patches of size S×N ,

where S is the shifting parameter, corresponding to the number of pixels the mask

should be moved between shots, and N is the number of spatial columns of the colored

coded aperture. This strategy only requires K complementary colored coded aperture

patches, which will be interleaved one after the other, such that all the shots maintain

the uniformity. Figure 4.10 illustrates the concatenation shifting strategy used to

reduce a color coded aperture for K = 2 shots. The parameter S = 2, and the final

spatial dimension of the shifting colored coded aperture is N + (S ∗ (K − 1)).

4.6 Simulations and Experimental Results

4.6.1 Simulations

The proposed model is verified using the forward model in Eq. 4.2. Three

sets of compressive measurements are simulated. The only difference between sets is

the modulation pattern. The first set is modulated by a random LH -colored coded

aperture, which entries are realizations of a Bernoulli random variable and restricted

to the corresponding set of LH filters defined in 4.5.1, the second set is modulated
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Figure 4.10: The colored coded aperture resulting from binary arrangement X in Fig.
4.9 is used to show the concatenation shifting strategy used to design
the shifting color coded apertures.

Figure 4.11: Four of the eight original spectral bands of the data cube used in simu-
lations.
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Figure 4.12: Reconstruction of four spectral bands using the CASSI with color co-
ded apertures and 2 measurements shots. For each spectral band, three
reconstructions from measurements modulated by LH -colored coded
apertures, with a random pattern (Random), an optimized coded aper-
ture in literature, designed by a genetic algorithm (GA optimized), and
the designed coded apertures (Designed) are shown.
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by an optimized LH -colored coded aperture in literature, designed by a genetic algo-

rithm (GA)[68], and the third set is modulated by the proposed shifting colored coded

aperture pattern. All the three coded apertures are designed to be shifted patterns

in order to make a fair comparison. A test spatio spectral data cube F is acquired

using a monochromator in the spectral range between 450 and 650nm with a spatial

resolution of 256× 256 pixels, and L = 8 spectral bands. The camera used to capture

the data cube is a CCD camera AVT Marlin F0033B, with 656×492 pixels and a pixel

pitch size of 9.9µm. The resolution of the colored coded apertures of the three sets is

256× 256 pixels, and they were acquired using the same 16 low-high color filter set, as

defined in section 4.5.1. The transmittance of all the coded apertures depends directly

on the number of shots, using the relation T = 1/K. The simulations were performed

for K = 2, 4 shots.

The sensing reconstruction (GPSR) algorithm is applied to reconstruct the data

cube [22], solving the inverse problem in Eq. 4.3. Figure 4.11 shows four of the eight

spectral bands of the original data cube used for the simulations. Figures 4.12 and 4.13

present the respective reconstructions for two and four measurements shots respectively,

and for a shifting value of S = 8 pixels. For each spectral band, the reconstructions

from the measurements acquired using the random, the GA optimized, and the designed

color coded aperture are presented. The spatial quality is improved when the designed

coded aperture is used, and it can be easily noticed in the PSNR values.

An analysis of the shifting parameter S is performed for K = 2 and K = 4

measurements shots, and for the three set of measurements. The performance achieved

by the designed coded apertures is for both number of shots, superior than the random

and the GA optimized coded apertures. The performance can be seen in Fig. 4.14 for

K = 2 shots, and in Fig. 4.15 for K = 4 shots. The results corresponds with results

in literature [68], where random colored coded apertures are shown to behave closely

as the optimized designs for K = 2. For greater number of shots K = 4, the designed

coded apertures beat random codes for all the shifting values.
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Figure 4.13: Reconstruction of four spectral bands using the CASSI with color co-
ded apertures and 4 measurements shots. For each spectral band, three
reconstructions from measurements modulated by LH -colored coded
apertures, with a random pattern (Random), an optimized coded aper-
ture in literature, designed by a genetic algorithm (GA optimized), and
the designed coded apertures (Designed) are shown.

Figure 4.14: Mean PSNR achieved with K = 2 measurements shots for different
vertical shifting value S from 1 to 32 pixels.
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Figure 4.15: Mean PSNR achieved with K = 4 measurements shots for different
vertical shifting value S from 1 to 32 pixels.

4.6.2 Experimental Results

The CASSI system was experimentally realized to demonstrate the proposed

design method of the shifting colored coded apertures. To emulate the colored coded

apertures, the equivalent binary codes were implemented in a Texas Instruments D1100

DMD (DLP), a custom double Amici prism (Shangai Optics) was used as a dispersive

element, and an FPA detector (Stingray F-033B) captured the measurements. The

nonlinear dispersion curve of the prism was determined experimentally by using a

monochromator. The DMD used to implement the coded apertures has a resolution

of 1024× 768 and a mirror pitch the size of 13.68µm. The FPA detector used in this

experimental setup has a resolution of 1280× 960 pixels and a pitch size of 6.45µm.

Three sets of compressive measurements were acquired by using the CASSI op-

tical setup for two different targets. Figure 4.16 shows the real scenes used in the ex-

periments. The first set of compressive measurements was modulated by a LH random

color coded aperture, the second was modulated by an optimized LH -colored coded
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Figure 4.16: Two real scenes used to show the performance of designed shifting color
coded apertures.

aperture in literature, designed by a genetic algorithm (GA), and the third was mo-

dulated by the the proposed LH shifting color coded aperture. The spatial resolution

of the scenes, coded apertures, and respective reconstructions is limited to 256 × 256

pixels. The number of resolvable bands was L = 8. The GPSR algorithm was used

to recover the spatio-spectral data cube using the model as formulated in Eq. 4.3.

K = 2, 4 shots where acquired and reconstructed. The spatial reconstructions for the

scenes are shown in Figs. 4.17,- 4.20. Figures 4.17 and 4.18 illustrate four reconstructed

spectral bands of target 1 using K = 2 and K = 2 shots respectively, and for the three

colored coded apertures.

The quality on the reconstructed bands using the designed coded apertures

outperforms the results attained with the random coded apertures. Figure 4.18 shows

the same four reconstructed bands of the target 1 but using K = 4 shots. Notice the

quality of improvement achieved at the objects in the scene.

Figures 4.19 and 4.20 present the same spatial bands for target 2, using K = 2

and K = 4 shots respectively. The quality of the reconstructions using the proposed

shifting color coded apertures is better in the borders details.

The RGB profiles of target 1 are show in figures 4.21 and 4.22, for K = 2 and

K = 4 measurements shots respectively. The visual improvement is noticeable, the

RGB obtained when using the optimized color coded apertures are high-fidelity with
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Figure 4.17: Reconstruction of four bands for Target 1 using LH random, genetic
algorithm optimized and designed shifting colored coded apertures, for
2 shots.
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Figure 4.18: Reconstruction of four bands for Target 1 using LH random, genetic
algorithm optimized and designed shifting colored coded apertures, for
4 shots.

78



Figure 4.19: Reconstruction of four bands for Target 2 using LH random, genetic
algorithm optimized and designed shifting colored coded apertures, for
2 shots.
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Figure 4.20: Reconstruction of four bands for Target 2 using LH random, genetic
algorithm optimized and designed shifting colored coded apertures, for
4 shots.
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Figure 4.21: RGB profiles of reconstructed target 1 using K = 2 measurements shots.
(Left) Random. (Center) GA Optimized. (Right) Designed.

Figure 4.22: RGB profiles of reconstructed target 1 using K = 4 measurements shots.
(Left) Random. (Center) GA Optimized. (Right) Designed color coded
apertures.

the real targets. The same results are shown in figures 4.23 and 4.24, for K = 2 and

K = 4 measurements shots, for target 2.

Figures 4.25-4.30 show the spectral signatures for three points randomly chosen

from the reconstructions of the two targets, and for two and four shots. The points

are indicated as P1, P2, and P3 in fig 4.16. The original signature, obtained using

a commercially available spectrometer (Ocean Optics USB2000+), is compared with

the spectral reconstruction using the LH random, genetic algorithm optimized and the

designed shifting color coded apertures. The curves obtained by using the CASSI and

the designed shifting color coded aperture are closer to the original signatures. It is

noticeable the improvement in the reconstructed spectral profile going from K = 2 to

K = 4 measurements shots when using the shifting color coded apertures.
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Figure 4.23: RGB profiles of reconstructed target 2 using K = 2 measurements shots.
(Left) Random. (Center) GA Optimized. (Right) Designed color coded
apertures.

Figure 4.24: RGB profiles of reconstructed target 2 using K = 4 measurements shots.
(Left) Random. (Center) GA Optimized. (Right) Designed color coded
apertures.

Figure 4.25: Spectral signatures for P1 (red) in target 1 when (Left) K = 2, and
(Right) K = 4 shots are used.
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Figure 4.26: Spectral signatures for P2 (yellow) in target 1 when (Left) K = 2, and
(Right) K = 4 shots are used.

Figure 4.27: Spectral signatures for P3 (blue) in target 1 when (Left) K = 2, and
(Right) K = 4 shots are used.
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Figure 4.28: Spectral signatures for P1 (green) in target 2 when (Left) K = 2, and
(Right) K = 4 shots are used.

Figure 4.29: Spectral signatures for P2 (red) in target 2 when (Left) K = 2, and
(Right) K = 4 shots are used.
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Figure 4.30: Spectral signatures for P3 (red-orange) in target 2 when (Left) K = 2,
and (Right) K = 4 shots are used.

4.7 Conclusions

A shifting color coded aperture optimization is proposed. The optimization

promotes the variability in the columns and rows of the coded aperture, and the uni-

formity constraint aimed at reducing the spatial, spectral and shot correlation of the

samples in the acquisition process. In addition, the optimization design includes cost

and fabrication constraints, for that reason, the set of filters is limited, and a shifting

feature of the mask is proposed, such that only one mask is required for several shots

in a real implementation. The shifting color coded apertures were experimentally de-

monstrated in a compressive spectral imaging architecture. Real reconstructions show

the spatial and spectral improvement achieved with the proposed optimization in com-

parison with random color coded apertures, and a genetic algorithm optimization from

the literature.
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Appendix B

DISCLAIMER

Some target objects used in this dissertation were not endorsed by the trademark

owners and they are used here as fair use to illustrate the quality of reconstruction of

compressive spectral image measurements. LEGO is a trademark of the LEGO Group,

which does not sponsor, authorize or endorse the images in this dissertation. The

LEGO Group. All Rights Reserved. http://aboutus.lego.com/en-us/legal-notice/fair-

play/.
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