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A B S T R A C T

The water sector accounts for a significant proportion of the total energy consumption in urban areas; therefore,
that sector can contribute to energy transition in urban areas. Seoul, South Korea has promoted the use of
renewable energy and sewer heat as part of city-wide energy transition efforts. This study built energy con-
sumption inventories for the urban water cycle in Seoul for 2012 and 2015 and investigated changes in net
energy intensity and corresponding net carbon intensity during that period. It found that Seoul’s energy tran-
sition efforts reduced net energy intensity in the water sector from 5.83MJ/m3 in 2012 to 5.42MJ/m3 in 2015,
even with the increased use of energy-intensive advanced water treatment technology. In addition, this study
estimated that about 8.52% of the water sector’s current energy consumption could be saved in 2020 if 18.4
million m3/year of water were reused and 2.40 million m3/year of rainwater were harvested. This study showed
a way to extend energy transition efforts into the urban water sector by reducing energy demand through
reducing water demand.

1. Introduction

Climate change, population growth, and aspiration for a better
life have increased pressure on water availability (Hubacek, Guan,
Barrett, & Wiedmann, 2009; IEA, 2012, 2016; Sahin, Siems,
Richards, Helfer, & Stewart, 2017; Smith, Liu, Liu, Liu, & Wu,
2017). Furthermore, water shortages could be exacerbated in the
absence of coordination between water and energy policies
(Sovacool & Sovacool, 2009). Therefore, perspective on the water-
energy nexus is needed.

Half of the world’s population already lives in urban areas, and
about 60 percent of it is expected to reside in urban areas by 2030
(UN, 2016). Significant demands for resources will be concentrated
in these areas; therefore, urban areas will be influenced by the
availability of resources (Artioli, Acuto, & McArthur, 2017). Ac-
tivities in urban areas, in turn, greatly affect resource supply.

Seoul is a megacity, home to some 10 million people and a large
consumer of resources. In 2015, Seoul consumed 636 million GJ
(Gigajoules) of energy (on the basis of Total Final Energy Consumption
(TFEC)) (KEEI, 2016) and used 1,130 billion liters of water (excluding
leakage), which equates to 335.2 liters of water per capita per day
(MOE, 2016b).

To reduce its effects on climate change and increase energy self-
sufficiency, the Seoul Metropolitan Government (SMG) initiated the
One Less Nuclear Power Plant (OLNPP) initiative on April 26, 2012.
The OLNPP aimed to reduce energy consumption by 83.7 million
GJ, equivalent to the annual amount of energy generated by a nu-
clear power plant, by the end of 2014 (SMG, 2014). By mobilizing
stakeholders and citizens while shaping and implementing this
policy (Kim, 2016, 2017a; T. Lee, Lee, & Lee, 2014), the SMG
achieved its target six months earlier than planned. Since then, the
SMG has increased its target to 167 million GJ (SMG, 2014). As a
part of the OLNPP, the SMG is trying to increase the use of re-
newable energy and recover sewer heat from the water sector. In
2017, 15.5 MW of solar PVs have been installed at water utilities
(SMG, 2018). In addition, 340,000 Gcal of sewer heat was re-
covered from two wastewater treatment facilities (SMG, 2017d). In
2015, the energy generated in water facilities comprised 0.523% of
Seoul’s TFEC (authors’ calculation).

These efforts to increase energy self-sufficiency affect net energy
consumption and energy intensity in the water sector. However,
these changes have not been investigated using empirical observa-
tions. Furthermore, Seoul’s energy-water nexus has rarely or never
been studied.1 Studies of the water-energy nexus in urban areas and
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of energy transition in the water sector have generally concentrated
on the wastewater treatment stage (Gikas, 2017; Kollmann et al.,
2017; Nowak, Enderle, & Varbanov, 2015; Stokes & Horvath, 2010).

To fill these gaps in knowledge, this study examines the effects
of energy transition efforts on net energy consumption and on en-
ergy and carbon intensities in the water sector. It draws implica-
tions for more comprehensive approaches to energy transition in
the water sector from the perspective of the water-energy nexus.

To achieve this goal, this study poses the following questions: 1)
In Seoul’s water sector, which stages account for the most total
energy consumption? 2) How much has the energy transition in-
itiative contributed to reductions in the energy and carbon in-
tensities of Seoul’s water sector? 3) If water consumption in Seoul
decreases thanks to various countermeasures, how much energy and
carbon could be saved or reduced?

To answer these questions, this study constructed inventories of
energy consumption at each stage of the urban water cycle for 2012
and 2015, and then calculated and compared the energy and carbon
intensities for 2012 and 2015. In addition, this study estimated the
energy saving and CO2 reduction potential from water reuse and
rainwater harvest. This study thus contributes to building a more
coordinated approach for energy transition in the water sector.

The findings of this study will provide meaningful implications for
energy transition in urban areas by emphasizing the role of the water-
energy nexus and coordination between energy and water policies.
Furthermore, the study’s findings will fill a gap in the distribution of
urban water-energy nexus literature in the Asia region, as literature has
concentrated on cities in China (Duan & Chen, 2017; Li, Li, & Qiu, 2017;
Wang & Chen, 2016).

2. Background

Fig. 1 illustrates the urban water cycle and possible opportunities
for energy transition in the urban water sector. Water is supplied to
people through a series of steps: raw water abstraction, treatment,
distribution, end-use, collection, and treatment. Raw/untreated water
is withdrawn from various sources, including groundwater, surface
water, and seawater. The withdrawn water is distributed after being
treated as needed. Energy is used for end-use purposes, such as heating
or pumping water. Then, used water is collected and treated, and finally
discharged into a lake or river (M. Lee et al., 2017; Wakeel & Chen,
2016).

Previous attempts to estimate energy intensities for each stage of

the urban water cycle revealed that the values are site-specific be-
cause they are influenced by factors such as climate, topography,
operational efficiencies, and treatment levels (Chini & Stillwell,
2018; Chini, Konar, & Stillwell, 2017; Lam, Kenway, & Lant, 2017;
Lee et al., 2017; Sowby & Burian, 2017). Even with a great deal of
effort to estimate energy consumption or production at the pur-
ification and wastewater treatment stages, the identified inter-
linkage has been rarely used to identify ways to promote the tran-
sition of this sector to low-carbon sources and thereby curb CO2

emissions.
Note: The end-use stage was not included in this study due to un-

availability of data on hot water consumption and energy consumption
for heating water.2

Transforming the energy system is one of the most important
challenges in urban areas. Options for energy transition in the
water sector can be divided into energy-driven approaches and
water-driven approaches. Energy-driven approaches are activities
that reduce energy consumption through energy efficiency en-
hancement or produce energy using alternative resources in water
facilities. These activities are applicable at every stage of the urban
water cycle, and directly reduce energy consumption. Water-driven
approaches are activities that indirectly reduce energy consump-
tion in the urban water cycle by decreasing water demand through
interventions such as rainwater harvest and reducing water
pollution.

Various ways to increase energy self-sufficiency or reduce carbon
emissions at wastewater treatment plants have been investigated. These
include obtaining and using biosolids as fuel for electricity generation
(Gikas, 2017), reducing the energy demand at wastewater treatment
facilities by using discharged industrial cooling water or wastewater,
and producing more energy by adding organic matter such as food
waste to the digester (Nowak et al., 2015).

In addition to directly reducing net energy consumption in the
water sector by enhancing energy efficiency, producing renewable
energy, and recovering waste heat, it is possible to reduce energy
consumption by reducing water consumption. Many studies have
estimated the potential of specific water-saving interventions

Fig. 1. Opportunities for Energy Transition in the Urban Water Cycle.
Source: This figure was constructed by modifying the flowcharts for the urban water cycle presented in M. Lee et al. (2017); Wakeel and Chen (2016). The ranges of
energy intensities were attained from M. Lee et al. (2017).

2 In South Korea, water sometimes is heated by boilers in individual houses, but often
hot water is collectively supplied to households through a district heating service. The
energy demand for heating water is difficult to separate from the energy demand for
heating spaces.
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(Engström et al., 2017; Malinowski, Stillwell, Wu, & Schwarz,
2015; Smith et al., 2017). For example, deploying low-flow toilets
in New York City could cut 5,000–8,000 tCO2 (Engström et al.,
2017) each year; changing the way water is pumped in high-rise
buildings could cut 8600 tCO2 in a city in China (Smith et al.,
2017). Energy transition in the water sector should incorporate
both energy-driven and water-driven approaches across all stages
of the urban water cycle, from water abstraction to wastewater
treatment.

3. Seoul’s Water cycle and energy transition efforts in Seoul’s
Water Sector

3.1. Water supply and wastewater treatment in Seoul

In South Korea, 161 local waterworks enterprises and one multi-
regional waterworks enterprise (Korea Water Resources
Corporation, K-Water3) supply water to about 98.8% of its 2015
national population of 52.7 million people (MOE, 2016b). All of
Seoul’s citizens are supplied with water by the SMG Office of Wa-
terworks (MOE, 2016b).

Fig. 2 describes the location of water facilities in Seoul; Fig. 3
presents how water is supplied to households in Seoul, along with
statistics for 2015. Raw/untreated water is taken from the upper
reaches of the Han River at four water abstraction stations operated
by the SMG. In 2015, 1.09 billion m3 of raw water was withdrawn
by these facilities. The 81.7 million m3 of raw water withdrawn by
K-Water was sent to Gwangam station (MOE, 2016b).

In 2015, 1.17 billion m3 of withdrawn and imported raw water
was delivered to six purification facilities where raw water goes
through a treatment and purification process to remove floating
material, other elements, and odor. Advanced treatment technol-

ogies were used to purify 74.6% of the water4; 15.2 million m3 of
water was used to dilute wastewater during these processes. Of the
1.16 billion m3 of treated water, 26.6 million m3 is exported to
other water service providers. The treated or purified water is de-
livered to 102 water reservoirs,5 where the water is stored for
emergencies or distributed to households. In 2015, 1.13 billion m3

of treated water was supplied to Seoul citizens, which was
equivalent to about 301 L per capita per day. Excluding the water
lost through leakage (56.2 million m3), Seoul citizens consumed
about 286 L per person per day in 2015 (MOE, 2016b).

About 1.10 billion m3 of sewage was generated in Seoul in 2015
(MOE, 2016a). In addition, about 4.16 million m3 of human wastes
were created in Seoul in 2015. A small proportion of the human
waste generated (0.374%) was collected by trucks; the rest of the
waste, along with leachate and other sewage (0.912 million m3) was
collected and transported by a network of pipes to three wastewater
treatment facilities. Human and foul waste is first physically or
biologically treated in the plants, then it is mixed with sewage and
treated again.6 In 2015, 1.45 billion m3 of sewage was purified at
four municipal treatment plants7. In 2015, about 90.3 percent of
sewage was treated using advanced technology.

The treated water is discharged into the Han River. In 2015, 121

Fig. 2. Map of Water Facilities in Seoul.
Note: Some purification facilities (Amsa and Gangbuk) abstract raw water as well.

3 K-Water is a state-owned corporation and its main business contribution is con-
struction, operation, and management of water resource facilities, multi-regional water-
works, local waterworks, and sewage. In addition, it is involved in the development of
urban waterfront and industrial complexes and the installation and operation of renew-
able energy facilities.

4 While physical treatment and biological treatment is defined according to its ap-
proach, advanced water treatment is defined as “a process designed to remove nitrogen
and phosphorus,” followed by a secondary treatment to produce effluent clean enough to
discharge (MOE, 2016a). In other words, regardless of the kind of treatment technology,
any treatment that aims to remove residual N and P and achieve clean effluent falls into
the advanced category.
5 Water reservoirs are generally located on hills in order to deliver water to households

at a stable water pressure. However, pumps are required to send water to the hilltops.
Some treated water is sent to pumping stations. There are 205 pumping stations in Seoul
(MOE, 2016b).
6 According to Article 2 of Sewerage Act (Act No. 14839), sewage is differentiated from

foul waste, and the statistics are collected separately. Sewage refers to “water con-
taminated by a mixture of liquids or solids created from human living and economic
activities and rainwater and ground water that flow from the premises of buildings, roads,
and other facilities into sewerage systems.” Foul waste means “liquid or solid con-
taminants collected from collecting type toilets (including sludge created in the course of
cleaning private sewage treatment facilities).”
7 The difference between the amount of sewage generated and the amount of sewage

treated can be attributed to inflow of groundwater, runoff, and other factors.
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million m3 of water (8.34% of the total wastewater treated) was
reused to clean, wash, and cool municipal treatment facilities and to
dilute wastewater for more effective treatment. Some treated water
was also reused outside these facilities for agricultural or industrial
purposes (Table 1) (MOE, 2016a).

3.2. Energy transition efforts in Seoul’s Water Sector

3.2.1. Energy-driven approaches
The SMG has tried to increase energy production at water fa-

cilities. These activities did not begin with the recognition of the
water-energy nexus. Rather, the SMG saw available vacant lots at

water facilities and the potential of using renewable and unutilized
energy to achieve the OLNPP target. However, the pursuit of in-
creasing energy self-sufficiency at water facilities is closely related
to the water-energy nexus.

In 2010, the MOE (2010) established its “Basic Plan for Energy
Self-sufficiency in Wastewater Treatment Facilities,” which aimed
to increase energy self-sufficiency at wastewater treatment facilities
by 50% by 2030. Although electricity consumption at those facil-
ities accounted for only 0.5% of the national total, the energy self-
sufficiency of the wastewater treatment facilities was as low as
0.8% (MOE, 2010).

In addition to this statewide plan, the SMG has installed various
renewable technologies at water abstraction and purification cen-
ters and wastewater treatment facilities in Seoul as part of the
OLNPP.8 In 2015, the SMG aimed to increase renewable energy use,
recover unutilized energy, and enhance the energy efficiency of the
processes in order to achieve energy self-sufficiency in the water
sector by 2030 (SMG, 2017c). As of 2017, 842 kW of geothermal
facilities have been installed at two purification centers, and
15.5 MW of solar PVs have been installed at purification centers and
wastewater treatment facilities. A sewer heat recovery system was
installed at the Tancheon Wastewater Treatment Center at the end
of 2014: 190,000 Gcal of energy is annually recovered and deliv-
ered to about 20,000 nearby households. In addition, biogas pro-
duced in the wastewater treatment process, which previously had
been incinerated, is now used as fuel for 3.1 MW of combined heat
and power (CHP) at the Nanji Wastewater Treatment Center. Biogas
(26,000 m3 per day) is also provided to Korea District Heating
Corporation, which uses it to produce 20,000 MW h of electricity
and 24,000 Gcal of heat yearly (SMG, 2014).

Fig. 3. Water Service Supply in Seoul.
Note: SMG stands for Seoul Metropolitan Government. R and P stand for reservoirs and pumping stations, respectively.
Source: The author built this flowchart based on MOE (2016b).

Table 1
The Amount of Sewage Treated and Reused in 2015.
Source: The author built this table based on MOE (2016a).

Feces and
Urine
(million m3)

Sewage (million m3) Sewage
Reuse
(million
m3)

Biological
Process

Advanced
Process

Total

Jungnang 1.58E+00 8.39E+01 3.66E+02 4.50E+02 8.65E+01
Nanji 2.19E+00 1.91E+02 1.91E+02 8.39E+00
Tancheon 2.68E+02 2.68E+02 1.84E+01
Seonam 1.30E+00 5.75E+01 4.86E+02 5.43E+02 7.95E+00
Total 5.08E+00 1.41E+02 1.31E+03 1.45E+03 1.21E+02

Note: All the sewage goes through a biological process after the physical pro-
cess.

8 Prior to the OLNPP, the SMG also tried to deploy new and renewable energy facilities
to realize the new and renewable energy target of 10% in Seoul, 20% for the public sector,
by 2020 (Lee, 2017).
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3.2.2. Water-driven approaches
The SMG aims to increase the water reuse rate to 14.4% of total

water use, which is an aggressive target given the 2010 water reuse rate
of 3.86%. The SMG aims to increase rainwater use from 393 thousand
m3/year in 2010 to 2400 thousand m3/year in 2020. To achieve this
target, the SMG financially supports 90% of the installation costs of
rainwater tanks, such as those shown in Fig. 4 (Seoul Solution
(Producer) (2017)). Rainwater use is actively being adopted as part of
urban regeneration projects (SMG, 2017b). The water collected is used
for gardening, cleaning, and other household purposes. The SMG also
aims to increase water reclamation and reuse from 2.84 million m3/
year in 2010 to 18.4 million m3/year in 2020, and plans to increase
water reuse at wastewater treatment facilities from 47.3 million m3/
year in 2010 to 188 million m3/year in 2020 (SMG, 2013).

4. Energy transition in Seoul’s Water Sector

4.1. Energy consumption and production in Seoul’s Water Sector

Table 2 presents the amount of energy used at each stage of the
urban water cycle in 2012 and 2015.9 The electricity consumption data
is obtained from MOE (2013a, 2013b, 2016a, 2016b), and the in-
formation on consumption and production from other energy sources is
obtained from the SMG. Energy units are converted from physical units
(e.g. kWh for electricity, liters for diesel) to GJ to calculate total energy
consumption, total energy production, and the ratio of energy self-
sufficiency. The Energy Conversion Factor that is regularly updated
according to Article 5.1 of Enforcement Rules of the Energy Law in
South Korea was used. The factors are provided in Table A1.

The total energy consumption of the water sector accounted for
about 23.7% of the TFEC of public and other sectors in 2015 (41.9
million GJ).10 The total energy consumption of water sector increased
about 27.5% from 2012 levels even though per capita water con-
sumption decreased slightly from 302 (MOE, 2013b) to 301 liters per
capita per day from 2012 to 2015 (MOE, 2016b). In 2015, the waste-
water treatment process accounted for the most significant proportion
(53.5%) of total energy consumption in Seoul’s water sector, followed
by raw water purification (24.1%) and raw water abstraction (12.5%).
The distribution step consumed the smallest share of energy.

Electricity’s proportion of the total energy consumed is relatively
low at wastewater treatment facilities, ranging from 70.8% to 84.5% in
2015, while other stages depended almost entirely on electricity. In
addition to using a lower proportion of electricity, the energy con-
sumption patterns of wastewater treatment facilities are completely
different from those of other stages. About 62.5% of the energy con-
sumed at these facilities was offset by the energy produced. 1.28 million
GJ of energy was internally produced and consumed at the facilities,
while 2.04 million GJ of energy was produced at the facilities and ex-
ternally distributed. Biogas contributed the most to the amount of en-
ergy produced (42.6%); followed by dried sludge (16.2%), which is sold
as fuel; and waste heat recovered from incineration facilities, CHPs,
biogas power plants, sludge dryer, and biogas boilers (14.7%).

4.2. Changes in energy and carbon intensities in Water Sector in Seoul

The energy intensity of individual stages of the water cycle is de-
rived by dividing energy consumption by the amount of water pro-
cessed at each stage. By multiplying energy consumption by the emis-
sion factor (see Table A1), CO2 emissions are estimated; this does not
incorporate other greenhouse gas (GHG) emissions and is confined to
direct emissions. CO2 intensities are estimated by dividing emissions by
the amount of water processed.

Fig. 5 presents the net and actual energy and CO2 intensities at each
stage of Seoul’s water cycle for 2012 and 2015. The total energy in-
tensity (the sum of energy intensities across individual stages) increased
from 5.83MJ/m3 in 2012 to 7.71MJ/m3 in 2015. The energy intensity
of the wastewater treatment stage greatly increased, which can be at-
tributed to the increased use of advanced treatment technologies. In
2012, 23.7% of wastewater was treated using advanced treatment
technologies (MOE, 2013a); this increased to 90.3% in 2015 (MOE,
2016a). The energy intensity of raw water purification also increased,
from 1.60 to 2.04MJ/m3. As of 2012, advanced purification technology
accounted for only 10.3% of the total capacity of purification facilities;
rapid filtration technology was generally used to purify abstracted raw
water (MOE, 2013b). In 2015, the capacity of advanced purification
technology increased to 74.6%; advanced purification was generally
used along with rapid filtration (MOE, 2016b).

Even with increased energy consumption at waste treatment facil-
ities, the total net energy intensity of the water sector, which subtracts
the amount of energy produced from the amount of energy consumed,
was lower in 2015 (5.42MJ/m3) than in 2012. This can be mostly at-
tributed to the significant amount of energy produced and recovered at
the four wastewater treatment facilities.

Over the same period, the carbon intensity of the water sector

Fig. 4. Installed Small-scale Rainwater Tanks in Seoul.
Source: (SMG, 2016)

9 Although the author constructed a more specific inventory, the specific data cannot
be presented because these facilities are controlled by the Korea Emission Trading
Scheme.
10 Calculated using the sectoral TFEC in Seoul in 2015, as found in the Yearbook of

Regional Energy Statistics (KEEI, 2016).
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increased from 0.293 to 0.325 kg CO2/m3. This increase can be pri-
marily attributed to increased electricity consumption. Specifically,
20.9 thousand tons of CO2 emissions from increased electricity con-
sumption offset the 2.42 thousand tons of CO2 emissions from de-
creased use of petroleum products and LNG (see details of CO2 emis-
sions by fuel in Table A2).

The net CO2 intensity for 2015 could be estimated after taking into
consideration the energy produced using renewables or waste heat that
substituted for energy that would otherwise have been supplied ex-
ternally. This study estimates net CO2 emissions and net CO2 intensities.
Renewable electricity is assumed to replace the electricity produced
externally, and heat energy, e.g., biogas, is assumed to replace LNG and
diesel consumption. In 2015, the net CO2 intensity (0.198 kg CO2/m3)
was lower than that in 2012 due to CO2 emissions reduction in the
waste treatment process.

4.3. Energy saving and CO2 reduction potentials of Water consumption
reduction

In addition to these energy production efforts, attempts to reduce
water demand through water reclamation, recycling, and rainwater
harvest indirectly influence energy consumption in the water sector.
Based on the assumption of constant energy intensities at each in-
dividual stage of the water cycle,11 energy savings and CO2 reductions
once the SMG achieves its targets for water reuse and rainwater harvest
(SMG, 2013) are estimated and compared to business-as-usual energy
consumption.

Table 3 presents the potential savings: In 2020, 846 thousand GJ of
energy could be saved and CO2 emissions could be reduced by 40.2
thousand tons. This would be a relatively small proportion (8.52%) of
the energy consumption by the water sector in 2015. However, greater
achievement could be attained through various water saving interven-
tions.

5. Discussion

Other studies estimating the energy intensity of the water sector
have focused on electricity consumption. This study collected actual
energy consumption data including non-electric energy in an urban
water infrastructure and estimated changes in the energy intensity of
individual stages of the urban water cycle.

The energy intensities of individual stages of Seoul’s water cycle
were consistent with the findings of M. Lee et al. (2017) and Loubet,
Roux, Loiseau, and Bellon-Maurel (2014). In Seoul, the wastewater
treatment stage was the most energy intensive. While the most energy
intensive stage of water use is generally the end-use stage, such as hot
water use in buildings, (Kenway, Lant, Priestley, & Daniels, 2011; Lee
et al., 2017), this was not included in the analysis due to the unavail-
ability of data.

As M. Lee et al. (2017) pointed out, the level of treatment and
technology is the major factor influencing energy intensity in the water
sector. The increased use of advanced treatment technology resulted in
increased energy consumption and energy intensity in Seoul’s water
sector over the period from 2012 to 2015. However, as the SMG utilized
or recovered waste heat and sewer heat and deployed new and re-
newable energy in the water sector, the net energy intensity of the
water sector actually decreased from 2012 to 2015. In a metropolis
surrounded by a built environment, renewable energy potential is re-
latively low and difficult to realize. However, Seoul’s case showed the
feasibility of using wastewater treatment facilities as an “unexpected
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11 If water is reused, it is not necessary to withdraw, purify, and distribute the amount
of water reused or reclaimed and rainwater that harvested. Therefore, to estimate the
potentials, this study multiplies the water reuse targets with the sum of energy and carbon
intensities, excluding the intensities of the wastewater treatment stage.
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and locally available renewable energy source” (Kollmann et al., 2017,
p. 119), based on the observation that energy recovered or produced at
wastewater treatment facilities is provided to residents of nearby areas.
In addition to wastewater treatment plants, a “hybrid energy system”
using fossil fuels and renewables could be pursued in the water supply
system (Vakilifard, Anda, A. Bahri, & Ho, 2018).

According to Seoul’s ambitious target of energy self-sufficient was-
tewater treatment plants by 2030, these facilities are expected to be
energy producers, like German wastewater treatment facilities (e.g., the
Köhlbrandhöft/Dradenau plant (Garleff, 2018)), not energy consumers.
Furthermore, the deployment of renewables along with the use of an
energy storage system could reduce dependence on external energy
supplies (Vakilifard et al., 2018). Although Seoul is at the very initial
stage (energy production using renewables was 0.131% at raw water
purification facilities and 51.6% in wastewater treatment facilities in
2015), its case shows a path for a city to pursue energy transition in the
water sector.

Curbing energy demand should be pursued along with producing
energy from renewable resources (Kim, 2018). Otherwise, energy

transition from fossil fuels to renewables is impossible. When it
comes to the water sector in urban areas, reducing water con-
sumption reduces energy consumption. The estimated potential
energy savings from water reuse and rainwater harvest was about
8.5% of the current energy consumption of Seoul’s water sector. The
energy saving potential of water reuse or recycling depends on the
system. Generally, decentralized water reuse is perceived as energy
saving measures while the energy saving effects of centralized
water reuse is controversial (Chang, Lee, & Yoon, 2017). This study
assumes that water is reused in a decentralized manner, which is
generally less energy intensive.

In addition to these measures, there are other ways to reduce
water demand and indirectly reduce energy consumption. The
water-energy nexus perspective should be embedded in urban
planning because the built environment affects resource consump-
tion patterns for a long time (Cotgrave & Riley, 2012). In addition
to technological approaches, behavioral modification could reduce
water consumption and related energy consumption (Jiang et al.,
2016). The various interventions studied imply that there is a great

Fig. 5. Net Energy and CO2 Intensities by Each Stage of Seoul’s Water Cycle.
Note: The left figure shows the net and actual energy intensities by stage of the urban water cycle in 2012 and 2015. The right figure presents the corresponding
changes in net and actual CO2 intensities over the period. The net intensity is equivalent to the actual intensity in 2012, since there was no energy produced.

Table 3
Energy Saving and CO2 Reduction Potential of Water Reuse and Rainwater Harvest by 2020.
Source: the author calculated the energy saving and CO2 reduction potential using the 2020 targets for water reuse (SMG, 2013).

Category 2016 2017 2018 2019 2020

Energy Saving
(GJ)

Total Energy Saving 5.75E+05 6.53E+05 7.32E+05 7.89E+05 8.46E+05

Energy Saving from Wastewater Reuse 5.11E+05 5.85E+05 6.58E+05 7.10E+05 7.62E+05
Energy Saving from Water Reclamation 5.58E+04 6.01E+04 6.44E+04 6.94E+04 7.43E+04
Energy Saving from Rainwater Use 8.12E+03 8.56E+03 9.00E+03 9.36E+03 9.72E+03

CO2 Reduction (ton) Total CO2 Reduction 2.74E+04 3.11E+04 3.48E+04 3.75E+04 4.02E+04
CO2 Reduction from Wastewater Reuse 2.43E+04 2.78E+04 3.13E+04 3.38E+04 3.62E+04
CO2 Reduction from Water Reclamation 2.65E+03 2.86E+03 3.06E+03 3.30E+03 3.54E+03
CO2 Reduction from Rainwater Use 3.87E+02 4.08E+02 4.28E+02 4.45E+02 4.63E+02
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potential for reducing energy consumption and GHG emissions
through implementing water demand reductions.

Energy transition is a critical agenda item pursued by both the
South Korean government and the SMG. Their efforts are biased
towards increasing energy production (Kim, 2018); indirect energy
savings through reducing water demand is not recognized as part of
energy transition. Recently, the SMG announced the “City of the
Sun: Seoul,” a very aggressive plan to deploy 1 GW of solar PVs,
equivalent to the capacity of a nuclear power plant, by 2022 (SMG,
2017a). Along with transition to a low carbon-based energy system,
reducing energy demand through reducing water demand could
greatly contribute to energy transition in the water sector and in
Seoul.

6. Conclusion

Although the water-energy nexus in urban areas is an important
issue, it has rarely been studied for Korean cities due to lack of
data. Beyond building an energy consumption inventory for each
individual stage of Seoul’s water cycle, this study estimated
changes in net energy intensity and corresponding net carbon in-
tensity between 2012 and 2015 to investigate the effect of Seoul’s
energy transition initiative on the water sector. This study found
that Seoul’s energy transition efforts decreased net energy intensity
from 2012 to 2015, despite the increased use of advanced water
treatment technology.

In addition to efforts to increase energy self-sufficiency directly

at water facilities, this study explored the potential for indirect
energy saving and carbon emissions reduction through increased
water reuse and rainwater harvest. Currently, these interventions
are just seen as countermeasures for water issues. Given the energy
saving and CO2 reduction potential of various water saving inter-
ventions, water-driven approaches need to be incorporated into
energy-transition initiatives.

This study constructed a detailed inventory of energy con-
sumption at each stage of Seoul’s water cycle and found that Seoul’s
energy initiative reduced net energy and net carbon intensities. This
study also expanded the perspective of the water-energy nexus to
include energy transition in the water sector in urban areas. Finally,
this study filled a gap in the areas where the water-energy nexus has
been studied.

In future research, Seoul’s energy consumption at the end-use stage
of the urban water cycle should be investigated. In addition, the energy
intensity of each stage of Seoul’s water cycle needs to be compared with
other cities like Sowby and Burian (2017) and Chini and Stillwell
(2018)’ studies, taking into account the various factors that can influ-
ence it.
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Appendix A

.

Table A1
Energy Conversion Factors and CO2 Emission Factors.
Source: The total heating values of diesel, kerosene, propane, LNG, and electricity are obtained from Energy Conversion Factors that are announced and regularly
updated according to the Article 5.1 of the Enforcement Rules of the Energy Law in South Korea. CO2 emission factors of fuels (except electricity) are gathered from
the National GHG Emission Factors that are issued according to the same rule. The CO2 emission factors do not include other GHG emissions. In addition, the CO2

emission factor for electricity is obtained from Korean Power Exchange. The total heating values of biogas and dried sludge are provided by the wastewater treatment
facilities in Seoul.

Total heating value (kcal) CO2 emission factors (kg CO2/TJ or kg CO2/MWh)

Diesel (liter) 9.010E+03 7.410E+04
Kerosene (liter) 8.790E+03 7.190E+04
Propane (kg) 1.205E+04 6.450E+04
LNG (Nm3) 1.043E+04 5.610E+04
Electricity (kWh) 2.300E+03 4.585E+02
Biogas (Nm3) 5.200E+03
Dried Sludge (kg) 3.328E+03

Note: 1 kcal of energy is equivalent to 4.1868 J of energy.
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