## CHARACTERIZATION AND CLONING OF THE HUMAN PERLECAN PROMOTER REGION

by

Matthew T. Richards

A thesis submitted to the Faculty of the University of Delaware in partial fulfillment of the requirements for the degree of Honors Bachelor of Science in Biological Sciences with Distinction.

Spring 2009

© Copyright 2009 Matthew T. Richards All Rights Reserved

## CHARACTERIZATION AND CLONING OF THE HUMAN PERLECAN PROMOTER REGION

by

Matthew T. Richards

Approved:

Mary C. Farach-Carson, Ph.D. Professor in charge of thesis on behalf of the Advisory Committee

Approved:

Daniel D. Carson, Ph.D. Committee member from the Department of Biological Sciences

Approved:

Sharon Rozovsky, Ph.D. Committee member from the Board of Senior Thesis Readers

Approved:

Alan Fox, Ph.D. Director, University Honors Program

## ACKNOWLEDGMENTS

I would like to thank Benjamin Rohe for teaching me for the past two years. Your patience helped me persevere and your knowledge motivated me to study the science behind the protocols. Thank you.

I would also like to thank Dr. Mary C. Farach-Carson. Your support and optimism inspired me to keep looking for answers. Thank you for inspiring me to continue working towards the solution.

Thank you to Dr. Daniel D. Carson, for continued support during the difficult search for answers

Thank you to Lynn Opdenaker for beginning my education in the laboratory

Mark Sausen: thank you for finding the key to the reaction.

Thank you to everyone in the Carson Lab who was helped me over the past two years

This research was supported by the P01 CA098912 grant to Dr. Mary C. Farach-Carson and in part by The Howard Hughes Medical Institute.

# TABLE OF CONTENTS

| LIST OF TABLES |        |                                                              |     |  |  |
|----------------|--------|--------------------------------------------------------------|-----|--|--|
| LIST           | Г ОF F | 'IGURES                                                      | vii |  |  |
| LIST           | Г OF A | BBREVIATIONS                                                 | ix  |  |  |
| ABS            | TRAC   | Т                                                            | xi  |  |  |
| 1              | INT    | RODUCTION                                                    | 1   |  |  |
|                | 11     | Biology of Prostate Cancer                                   | 1   |  |  |
|                | 1.2    | Prostate cancer cells in Bone                                |     |  |  |
|                | 1.3    | Perlecan                                                     | 7   |  |  |
| 2              | MA     | TERIALS AND METHODS                                          | 11  |  |  |
|                | 2.1    | Promoter analysis                                            | 11  |  |  |
|                | 2.2    | Genomic DNA extraction                                       | 12  |  |  |
|                | 2.3    | Polymerase Chain Reaction                                    | 12  |  |  |
|                |        | 2.3.1 Primer Design                                          | 13  |  |  |
|                |        | 2.3.2 GoTaq <sup>®</sup> Green Master Mix                    | 15  |  |  |
|                |        | 2.3.3 Platinum <sup>®</sup> Taq DNA Polymerase               | 17  |  |  |
|                |        | 2.3.4 Gradient PCR                                           | 17  |  |  |
|                |        | 2.3.5 HotStarTaq PCR                                         | 18  |  |  |
|                |        | 2.3.6 HotStarTaq kit and Restriction Enzyme Digest           | 20  |  |  |
|                |        | 2.3.7 Dual Restriction Enzyme Digest and PCR                 | 21  |  |  |
|                |        | 2.3.8 Dimethyl Sulfoxide as a PCR Additive                   | 22  |  |  |
|                | 2.4    | TOPO TA Cloning <sup>®</sup> Reactions                       | 24  |  |  |
|                | 2.5    | Cell culture                                                 | 25  |  |  |
|                | 2.6    | Ribonucleic acid extraction and complementary DNA reaction   | 26  |  |  |
|                | 2.7    | Quantitative PCR                                             | 27  |  |  |
| 3              | CO     | MPUTATIONAL ANALYSIS OF THE HUMAN PERLECAN                   |     |  |  |
|                | PRO    | OMOTER: Results and Discussion                               | 28  |  |  |
|                | 3.1    | The Human Pln promoter region is located on the minus strand | 28  |  |  |

|     | 3.2               | Pln promoter region contains many highly conserved transcription factor response elements           | 29 |
|-----|-------------------|-----------------------------------------------------------------------------------------------------|----|
| 4   | CLO<br>THI<br>DIS | ONING AND PRELIMINARY FUNCTIONAL ANALYSIS OF<br>E HUMAN PLN PROMOTER REGION: RESULTS AND<br>CUSSION | 32 |
|     | 4.1               | Extracting the promoter region from genomic DNA using PCR:                                          |    |
|     |                   | optimization of reaction conditions                                                                 | 32 |
|     |                   | 4.1.1 Primer design                                                                                 |    |
|     |                   | 4.1.2 GoTag <sup>®</sup> Green Master Mix and primer set A                                          |    |
|     |                   | 4.1.3 Platinum <sup>®</sup> Tag PCR with primer set A                                               | 35 |
|     |                   | 4.1.4 PCR with the HotStarTag Kit and protocol                                                      | 37 |
|     |                   | 4.1.5 PCR using various primer sets                                                                 | 42 |
|     |                   | 4.1.6 DMSO aided the successful copying and cloning of the                                          |    |
|     |                   | human Pln promoter region                                                                           | 47 |
|     | 4.2               | Cell culture treatments                                                                             | 47 |
|     | 4.3               | Conclusions                                                                                         | 49 |
| REF | EREN              | CES                                                                                                 | 51 |
| APP | ENDIX             | ζ                                                                                                   | 54 |
|     |                   |                                                                                                     |    |

# LIST OF TABLES

| Table 2.1 | Primer Sets                                                                                  | 14 |
|-----------|----------------------------------------------------------------------------------------------|----|
| Table A.1 | Genomatix Analysis of the Mouse Perlecan Promoter Region                                     | 54 |
| Table A.2 | Genomatix Analysis of the Human Perlecan Promoter Region<br>Published By Renato Iozzo (1997) | 67 |
| Table A.3 | Genomatix Analysis of the Human Perlecan Promoter Region from online Databases               | 79 |
| Table A.4 | Transcription Factor Response Elements in the Pln Promoter<br>Sequence.                      | 92 |

# LIST OF FIGURES

| Figure 1   | Upregulation of Pln in reactive stroma in prostate cancer.                | 9 |
|------------|---------------------------------------------------------------------------|---|
| Figure 2.1 | Thermocycling and electrophoresis conditions for GoTaq <sup>®</sup> Green |   |
|            | PCR reactions1                                                            | 6 |
| Figure 3.1 | Human and Mouse Pln promoter region maps                                  | 0 |
| Figure 3.2 | Schematic drawing of signaling pathways of interest                       | 1 |
| Figure 4.1 | Map of the primer targets within the human Pln promoter region            | 3 |
| Figure 4.2 | Gel electrophoresis of PCR products using GoTaq <sup>®</sup> Green kit    | 4 |
| Figure 4.3 | Gel electrophoresis of PCR products using Platinum® Taq                   | 6 |
| Figure 4.4 | Gel electrophoresis results of gradient PCR using HotStarTaq kit 3        | 8 |
| Figure 4.5 | PCR and double RE digest of genomic DNA4                                  | 2 |
| Figure 4.6 | Gel electrophoresis of PCR products using primer sets 1, 5, 9 and         |   |
|            | 114                                                                       | 3 |

| Figure 4.7 | Gel electrophoresis results of PCR with mixed primer sets and     |    |  |
|------------|-------------------------------------------------------------------|----|--|
|            | DMSO.                                                             | 45 |  |
| Figure 4.8 | Human Pln promoter region with transcription factor binding sites |    |  |
|            | and experimental sequences identified                             | 46 |  |
| Figure 4.9 | Cobblestone growth of HS27a cells                                 | 48 |  |

# LIST OF ABBREVIATIONS

| Вр      | base pair                                                       |
|---------|-----------------------------------------------------------------|
| BSA     | bovine serum albumin                                            |
| C4-2B   | bone metastatic, androgen independent prostate cancer cell line |
| cDNA    | complementary deoxyribonucleic acid                             |
| CREB    | cAMP response element binding                                   |
| DMEM    | Dulbecco's Modified Eagle's Medium                              |
| DMSO    | dimethyl sulfoxide                                              |
| DNA     | deoxyribonucleic acid                                           |
| E. coli | Escherichia coli                                                |
| ECM     | extracellular matrix                                            |
| EDTA    | ethylenediaminetetraacetic acid                                 |
| EMT     | epithelial- mesenchymal transition                              |
| FBS     | fetal bovine serum                                              |
| FGF-2   | fibroblast growth factor 2                                      |
| HS      | heparan sulfate                                                 |
| HSPG    | heparan sulfate proteoglycan                                    |
| HS27A   | immortalized normal human bone marrow stromal cell line         |
| IFN-γ   | interferon gamma                                                |

| NF-κB  | nuclear factor kappa b                     |
|--------|--------------------------------------------|
| PCR    | polymerase chain reaction                  |
| Pln    | perlecan                                   |
| QPCR   | quantitative polymerase chain reaction     |
| RE     | restriction enzyme                         |
| RNA    | ribonucleic acid                           |
| RT-PCR | real-time polymerase chain reaction        |
| SHH    | Sonic Hedgehog signal pathway              |
| SMAD   | similar to mothers against decapentaplegic |
| TAE    | tris-acetate-EDTA                          |
| TGF-β  | transforming growth factor beta            |
| TNF-α  | tumor necrosis factor alpha                |
| UTR    | untranslated region                        |
| WIDR   | colon adenocarcinoma-derived cell line     |

## ABSTRACT

Prostate cancer metastasizes preferentially to bone. The bone microenvironment presents the invading cells with a rich supply of growth and angiogenic factors. Because trabecular bone is in a state of resorption and deposition, the mineralized matrix is degraded and reformed constantly. This process also releases important growth factors, such as TGF- $\beta$ , which may aid the survival of metastatic prostate cancer cells. Unpublished data from members of this lab group shows a large upregulation of a heparan sulfate proteoglycan, called perlecan, in the reactive stroma surrounding prostate epithelial cells. Perlecan is a structural protein located in the basement membranes and the matrix surrounding endothelial, mesenchymal and stromal cells. Among other properties, perlecan, through the heparan sulfate side chains, can bind growth factors. This property of perlecan identifies it as a protein that may help promote prostate cancer metastasis by providing the mobile cells with a scaffold to store growth and angiogenic factors in close proximity to their receptors. My project was concerned with the large upregulation of perlecan in the reactive stroma. I began my project by characterizing the promoter region for perlecan and identifying conserved transcription factor binding sites that could participate in transcriptionally regulating perlecan in prostate cancer. I identified several transcription factor binding sites of interest for further study, including NFkB [-2410 to -2398], CREB ([-1797 to -1777] and [-709 to -689]), Smad3 ([-1301 to -1293] and [-187 to -179]), Elk-1 [-1699 to -1679], c-Jun ([-2453 to -2441] and [-2496

to -2476]) and TCF/LEF-1 ([-1521 to -1505] and [-1247 to -1231]). I then attempted to clone the promoter region from genomic DNA using polymerase chain reaction, and encountered several issues. I attempted to alter the reaction conditions and to try different kits to correct the problems. I found that addition of dimethyl sulfoxide to the reaction increased the specificity of the reaction and allowed for the successful cloning of the perlecan promoter region into a plasmid vector. Following the cloning of the vector, I began testing the effects of two growth factors, TGF- $\beta$  and TNF- $\alpha$ , on perlecan transcription. Following treatment for 24 hours, RNA was extracted from HS27a bone marrow stromal cells and used to conduct quantitative PCR in order to test the levels of perlecan transcript. Although the data have not yet been analyzed, the cell cultures showed growth changes, namely the formation of a cobblestone growth pattern, which indicated that the growth factors affected some cellular processes. Further research needs to be conducted in order to determine if this effect indicates a change in perlecan transcription in order to determine whether perlecan could be a viable target for new therapies.

### Chapter 1

## **INTRODUCTION**

### **1.1 Biology of Prostate Cancer**

Excluding skin cancers, prostate cancer is the most commonly diagnosed cancer in men in the United States. The American Cancer Society estimates that about 186,320 new cases of prostate cancer will be diagnosed and that about 28,660 men will die from it in 2008. On a larger scale, the American Cancer Society estimates that about one man in thirty five in the United States will die from prostate cancer (American Cancer Society, 2009). It is the most commonly diagnosed non-skin cancer in the U.S. and is also one of the leading causes of cancer-related deaths in American men, second only to lung cancer. Overall, prostate cancer in the seventh leading cause of death in the United States (Porth and Kunert, 2002).

Prostate cancer is described clinically by using stages. There are four general stages that are the result of scores in two common staging systems. The first system is the Gleason score, which describes the organization of the cancerous tissue and how similar it appears to normal tissue (American Cancer Society 2009). The second system is based on clinical and surgical exams. It is called the TNM system and it serves as a descriptor of tumor size and the extent of close or distant metastasis to lymph nodes or other tissues (Porth and Kunert, 2002). The scores assigned in each system are then grouped into stages, with stage I representing a prostate-confined tumor in the early stages of development and stage IV representing a more aggressive,

less-differentiated tumor with metastasis to surrounding tissue or to distant sites in the body. The first three stages can be treated utilizing standard options, including a prostatectomy, radiation therapy, and hormone therapy. However, stage IV prostate cancer with metastases to surrounding or distant tissues is not considered curable and current treatments are limited to managing the symptoms (Buijs and van der Pluijm, 2009; Keller and Brown, 2004; Msaouel et al., 2008; Ye et al., 2007).

Initial treatments of prostate cancer tumors generally include androgendeprivation. Prostate cancer cells are initially hormone-sensitive and respond to androgen withdrawal by initiation of apoptosis (Dorkin and Neal, 1997). Androgendeprivation therapy may slow progression, but many tumors, especially at metastatic sites, will develop an androgen-independent phenotype following androgen-ablation therapy (Dorkin and Neal, 1997; Msaouel et al., 2008). The mechanisms of this switch to a hormone-refractory disease are not fully understood, but the difficulties associated with treatment underscore the importance of prostate cancer screens to identify the tumor earlier since early stage prostate cancer is generally asymptomatic. The manifestation of more obvious symptoms is generally indicative of cancer metastasis (Porth and Kunert, 2002). Additionally, many men diagnosed with cancer that seemingly localized to the prostate will relapse with metastases following a prostatectomy, suggesting that many metastases initially go undetected. These metastases will be susceptible to hormone therapy at first, but will eventually transform to incurable androgen-independent secondary tumors (Gopalkrishnan et al., 2001).

The struggle associated with stage IV prostate cancer is that prostate cancer cells preferentially metastasize to the axial skeleton and other bones. Various

studies have reported that up to 90% of patients dying from prostate carcinoma have skeletal metastases (Buijs and van der Pluijm, 2009; Bussard et al., 2008; Gopalkrishnan et al., 2001; Keller and Brown, 2004; Msaouel et al., 2008; Porth and Kunert, 2002). Despite of the high prevalence of skeletal metastases, the process of metastasis is very dangerous for the individual prostate cancer cells. After invading the stroma and escaping into the blood stream by intravasation, most cells will die. It has been estimated that fewer than 0.1% of cells will successfully metastasize following intravasation (Gopalkrishnan et al., 2001). Should the cell survive, it theoretically has access to most tissues in the body. However, prostate cancer cells show a clear preference for trabecular bone. The exact mechanism behind this preference is not clearly understood, but a commonly accepted hypothesis (Bussard et al., 2008; Msaouel et al., 2008).

The seed and soil hypothesis states that the circulating prostate cancer cells, the seeds, will prefer a host tissue, the soil, with specific factors that aid in survival and growth. This hypothesis is generally combined with another hypothesis related to blood flow because vasculature of the prostate is connected to the network of veins that drains the pelvic girdle. This network, Baston's plexus, is directly connected to the marrow spaces of the lower vertebral column, providing a direct route from the prostate to the marrow of the axial skeleton (Msaouel et al., 2008). In reality, both hypotheses may work in concert to explain the preferential metastasis of prostate cancer cells. The vasculature of the bone marrow spaces consists of sinusoids, which act as a series of lakes in a line of faster flowing rivers. The circulating prostate cancer cells have more time to settle, bind and extravasate into the bone environment due to

slowed blood flow. At the same time, factors both in the cancer cells and the bone microenvironment allow for more efficient binding and extravasation in bone than in other tissues (Buijs and van der Pluijm, 2009; Bussard et al., 2008; Msaouel et al., 2008).

Although it is very important to study and understand the mechanisms behind this preferential metastasis, the proposed molecular mechanisms are beyond the scope of this report. Following metastasis to bone, the bone microenvironment presents surviving prostate cancer cells a fertile soil to establish secondary tumors. Once established, these tumors will inevitably become hormone refractory and create tumors resistant to standard treatment options. Ultimately, the prostate cancer cells and bone will interact to drastically change the homeostasis to create a bone microenvironment that is even more favorable to prostate cancer cell growth and survival.

#### **1.2** Prostate cancer cells in Bone

As previously discussed, the bone environment serves as a fertile 'soil' containing many factors that aid in cancer cell growth and proliferation. Healthy bone is a mineralized collagen network containing many growth factors. In healthy bone, degradation of old bone (osteolysis) and formation of new bone (osteogenesis) is in a dynamic state of homeostasis. Due to this constant remodeling, the mineralized bone is broken down and growth factors are released, creating the fertile soil needed for metastasis (Buijs and van der Pluijm, 2009; Ye et al., 2007). Interestingly, trabecular bone, the preferred site of metastasis for prostate cancer cells, exhibits a higher rate of turnover than cortical bone (Bussard et al., 2008). The more metabolically active bone

will have a higher rate of osteolysis and therefore may have more growth factors available to the prostate cancer cells.

Osteolysis is widely considered to be necessary for prostate cancer metastasis (Buijs and van der Pluijm, 2009; Keller and Brown, 2004; Ye et al., 2007). Osteoclasts, the cells responsible for osteolysis, are stimulated by factors released by prostate cancer cells. However, bone production eventually increases and bone remodeling is increased. Most cancers that metastasize to bone will usually shift this homeostasis to favor bone resorption. In these osteolytic lesions, the result is weakened bone due to net bone loss, as in osteoporosis (Bussard et al., 2008). Prostate cancer cells in bone are different. Initially, prostate cancer cells will induce osteoclastmediated bone resorption which results in the release of factors stored in the bone (Msaouel et al., 2008). This initial osteolytic phase, in terms of the seed and soil analogy, basically stirs up soil and releases nutrients to help the seed grow. Once established, the prostate cancer metastases will begin to produce and release their own factors into the bone. These factors and the factors released from bone create a crosstalk that shifts the homeostatic environment to favor osteoblastic bone deposition. This new bone, however, is not organized in the same manner as the bone it replaces. Bone in non-diseased state, lamellar bone, is characterized by a much more organized, layered structure that lends more strength to adult bone. The bone deposited by the osteoblastic lesions, called woven bone, is characterized by random orientation of fibers. This type of bone, generally seen at growth plates and the fetal skeleton, is weaker than lamellar bone and therefore more prone to fractures (Vela et al., 2007).

There is still some osteoclastic activity in the bone environment, but the osteoblasts and prostate cancer cells create a 'vicious cycle' interaction that supports

both bone deposition and tumor survival. (Msaouel et al., 2008; Sato et al., 2008; Ye et al., 2007). The factors released by osteoblasts, including transforming growth factor beta (TGF- $\beta$ ), support growth and survival of prostate cancer cells, which, in turn, secrete factors that activate osteoblasts and inhibit function of osteoclasts (Buijs and van der Pluijm, 2009; Vela et al., 2007). This situation results in an environment rich in growth and angiogenic factors that aids in the growth and survival of prostate cancer cells in bone.

It has been reported that the metastatic cells are affected by, and affect, the bone microenvironment (Festuccia et al., 1999; Sung et al., 2008). Specifically, cytokines, such as tumor necrosis factor alpha (TNF- $\alpha$ ), are produced by various cells in bone as part of an inflammatory immune response. TNF- $\alpha$ , in turn, can activate osteoclasts and therefore increase bone resorption, resulting in the release of TGF- $\beta$  from bone. These factors can stimulate signaling cascades in the prostate cancer cells that result in increased growth and proliferation (Bussard et al., 2008). Initially, TGF- $\beta$  is an inducer of epithelial-mesenchymal transition, or EMT. In bone, it can promote osteoblast activity and prostate cancer cell survival (Buijs and van der Pluijm, 2009). Additional studies have shown that in prostate cancer, overexpression of TGF- $\beta$  actually promotes tumor survival (Bierie and Moses, 2006; Padua and Massague, 2009). As part of the 'seed and soil' hypothesis, these factors that are very prevalent in bone act like fertilizers for the metastatic cancer cells, and it is thought that these factors act to transcriptionally control various genes in the invading cancer cells.

Of interest is also  $\beta$ 2-Microglobulin signaling because it is released by prostate cancer, prostate and bone stromal cells. In the prostate cancer cells, it is responsible for altering gene expression so that the prostate cells mimic the expression

profiles of bone cells (Huang et al., 2008). One study has shown that inhibition of this signal pathway results in greatly increased apoptosis while not affecting normal prostate cells (Huang et al., 2008). Many of these signaling pathways may be identified as potential therapeutic targets to regulate the production of key factors aiding prostate cancer cell survival and growth.

### 1.3 Perlecan

One factor that may promote prostate cancer survival and growth is Pln is a heparan sulfate proteoglycan expressed in nearly all perlecan (Pln). vascularized tissues in the body and it can also be found in the matrix surrounding epithelial, mesenchymal and stromal cells. In normal tissue, Pln is primarily restricted to the basement membranes. The protein is very large, with an estimated size of 400-470 kDa without the heparan sulfate (HS) side chains (Iozzo, 2005). This core is comprised of 5 domains, 4 of which show homology to other proteins, including the Ig superfamily and the low density lipoprotein receptor. Each domain carries a set of proposed functions. For example, it is believed that domain I, the only domain unique to Pln, contains glycosylation sites for attachment of the HS side chains (Cohen et al., 1993; Iozzo et al., 1994). In addition to the wide distribution of Pln within the body, its biological importance can be seen by a very high degree of conservation of each of the five domains and the observation that mutations in the gene cause abnormal development (Cohen et al., 1993; Iozzo, 2005). Its distribution also indicates that Pln may be important for development of bone marrow (Iozzo et al., 1997).

The function of Pln has been studied, but it is still not fully understood. Besides forming dimeric or multimeric forms, Pln is capable of binding various growth and angiogenic factors, including TGF-β and fibroblast growth factor (FGF-2), and depends on the presence of HS side chains. This binding capacity is important in cancer because these factors can aid in angiogenesis and also trigger survival pathways (Iozzo et al., 1994; Smith et al., 2007). In conjunction with the pro-angiogenic functions of Pln, the protein is important as a scaffolding for metastatic cells on which the neovasculature can develop (Savore et al., 2005). Additionally, when the protein is digested, a functional 85 kDa fragment of domain V is produced. This fragment, called endorepellin, has anti-angiogenic properties which can activate the cAMP-response element binding protein (CREB) via protein kinase A (Datta et al., 2006b; Iozzo, 2005). Pln also has been implicated in increased Sonic Hedgehog (SHH) pathway, which is important in prostate cancer metastasis, and may be important in response to other growth factors, such as FGF-2 (Datta et al., 2006b). In fact, this regulation may be important in prostate cancer metastasis to bone.

Because Pln is prevalent in bone and important to prostate cancer metastasis, it may represent a possible therapeutic target that can be used in conjunction with current prostate cancer treatments (Datta et al., 2006a). It is adhesive for fibroblasts, endothelial cells and chondrocytes (Iozzo et al., 1997). Additionally, Pln has been shown to be greatly upregulated in the reactive stroma of the prostate (figure 1). This large increase in Pln levels outside of the basement membranes and surrounding neovasculature further supports the thought that Pln is important to tumor growth, survival and metastasis because of its interaction with growth and angiogenic factors.



Figure 1 Upregulation of Pln in reactive stroma in prostate cancer. (a) Normal prostate tissue stained to show Pln in green (b). Pln is generally confined to the basement membranes (arrow) surrounding the lumen. In prostate where the tumor begins to invade the stroma (c), Pln is found to be greatly upregulated in the stroma and around new blood vessels (arrows, d).

Due to this large and unexamined upregulation of Pln in prostate cancer, I decided to study potential signaling pathways that control transcription of Pln. Previous studies involving Pln have focused largely on the protein core or the modifications of the side chains. However, one study focused on the promoter region for Pln. This study noted that the promoter region is a GC rich region, with areas of up to 80% GC pairs (Iozzo et al., 1997). Based on deletion analyses with a 2500 bp region at the 5' end of the gene as the standard, functional activity is largely located in

the region proximal to the start site of transcription, although activity is decreased without the 5' end of the promoter region (Iozzo et al., 1997). TGF- $\beta$  was found to increase transcription of Pln, but this effect also could be blocked by addition of interferon- $\gamma$  (IFN- $\gamma$ ). This effect was found to be entirely reversible and the result was a growth suppression without cell death (Sharma and Iozzo, 1998). The functional TGF- $\beta$  response element was found to be located in the region of -461 and -285 bp (Iozzo et al., 1997). This result is significant because a different study indicates that bone-derived TGF- $\beta$  can increase prostate cancer cell proliferation while simultaneously activating osteoclast activity. As previously mentioned, this releases additional growth factors, feeding into a 'vicious cycle' of tumor growth in bone (Sato et al., 2008).

Based on the prevalence of Pln in the reactive stroma of the prostate tumor and the functional activity of the promoter region in response to TGF- $\beta$ , I believe that Pln could potentially be used as a therapeutic target. When the metastatic prostate cancer cells reach bone, they find an environment rich in growth and angiogenic factors. It is clear that the cancer cells and bone stromal cells exert effects on each other to create an ideal environment for the growth of a secondary tumor. It is possible that controlling specific signaling pathways to decrease or halt production of Pln in the metastatic prostate tumor cells could slow tumor growth or allow current therapies to be more effective. I propose to study the transcriptional control of Pln to identify pathways that could be targeted by further studies. Understanding of the control of Pln regulation would allow future studies to examine the importance of this protein to tumor growth and metastasis.

### Chapter 2

## MATERIALS AND METHODS

#### 2.1 **Promoter analysis**

Mouse and human gene sequences for the Pln promoter region (labeled HSPG2 in the online databases) were identified using online databases including NCBI (www.ncbi.nih.gov), MGI (www.informatics.jax.org) **OMIM** and (www.ncbi.nlm.nih.gov/sites/entrez?db=omim). Once the location was determined, GeneCards the human sequence was cross-checked on (www.genecards.org/index.shtml). The sequences for the mouse and the human promoter regions were located and exported from the Ensembl database (www.ensembl.org). Based on the previously published sequence, the 2570 bp DNA sequence 5' of the start site was exported for each sequence and stored online at the SDSC Biology Workbench (workbench.sdsc.edu). The published Iozzo sequence was transcribed manually and checked against the Ensembl sequence for accuracy. The exported genomic regions were analyzed to determine the locations of potential transcription factor response elements using the online MatInspector program (www.genomatix.de/cgi-bin/matinspector/matinspector.pl). The data, provided in the Appendix, were manually compared. Transcription factor response elements that were not present in both mouse and human sequences were eliminated first. In order to further reduce the number of results, the remaining factors were researched and evaluated based on their relevance to bone or prostate cancer.

### 2.2 Genomic DNA extraction

The first extraction was performed on C4-2B cells on passage 18 (p18) provided by Lynn Opdenaker (University of Delaware, Biological Sciences) at about 80% confluence in a petri dish. The second extraction was performed on a different culture of C4-2B cells provided by Lynn Opdenaker at 80% confluence. Both extractions were performed using the Qiagen DNeasy Blood & Tissue kit and protocol. The elutions were performed twice using 200 µL Barnstead deionized water each time. Each elution was collected in a separate tube. The results were quantified by finding the absorbance at a wavelength of 260 nm using a BioRad SmartSpec<sup>™</sup> 3000 spectrophotometer. The final extraction used WIDR colon adenocarcinoma cells provided by Benjamin Rohe (University of Delaware, Biological Sciences). This cell line was chosen because they produce high levels of Pln, and therefore the genome should be open and unsilenced in the Pln promoter region. This extraction was also performed using the Qiagen DNeasy Blood & Tissue Kit, but both elutions were collected in the same tube and the second elution was completed using 100 µL Barnstead deionized water.

#### 2.3 Polymerase Chain Reaction

Unless otherwise stated, all thermocycling reactions were performed using either the PTC-100<sup>™</sup> Programmable Thermal Controller (MJ Research, Inc.; Waltham, MA) or the GeneAmp® PCR system 9700 (Applied Biosystems; Foster City, CA). All imaging was completed using a MultiImage<sup>™</sup> Light Cabinet (Alpha Innotech Corporation; San Leandro, CA) and the images were manipulated using AlphaImager software v.5.5. The results of all extractions were quantified by spectrophotometry (wavelength = 260nm) on a BioRad SmartSpec<sup>TM</sup> 3000 spectrophotometer.

### 2.3.1 Primer Design

Primers initially were made manually by examining the Pln promoter sequence and checking the stability of the primer sequence online using the IDT OligoAnalyzer 3.1 (http://www.idtdna.com/analyzer/Applications/OligoAnalyzer/).

Sets A and B were designed manually and the reverse complement set (set C) was made using the REVCOMP feature on SDSC Biology Workbench. The remaining primer sequences were designed using Primer3 on SDSC Biology Workbench. All sequences were checked with the OligoAnalyzer 3.1 program and also by using BLAST to confirm sequence specificity. All primer sequences referenced in this paper can be found in table 2.1. Note: primer set C is the reverse complement of primer set A.

**Table 2.1Primer Sets.** This table lists sequences and information for every primer<br/>set ordered for promoter analysis.

| Set<br>Designation | Product<br>location | Sequences                                 | Product<br>size (bp) | T <sub>M</sub> (°C) |
|--------------------|---------------------|-------------------------------------------|----------------------|---------------------|
| Δ                  | -2565 to 0          | F: 5'- CATGGACAGGCAAGGCCT -3'             | 2500                 | 58.1                |
| 23                 | -2505 10 0          | <b>R:</b> 5'- AGCTCGGGACAGCGCGGC -3'      | 2300                 | 66.6                |
| B                  | -1500 to 0          | <b>F:</b> 5'- CCTCTCCACCCATCAGCCTCGGG -3' | 1492                 | 65.4                |
| <u>в</u>           | 1500 10 0           | <b>R:</b> 5'- AGCTCGGGACAGCGCGGC -3'      | 1172                 | 66.6                |
| C                  | -2565 to 0          | <b>F:</b> 5'- GCCGCGCTGTCCCGAGCT -3'      | N/A                  | 66.6                |
| e                  | 2000 10 0           | <b>R:</b> 5'- AGGCCTTGCCTGTCCATG -3'      | 10/11                | 58.1                |
| 1                  | -800 to -167        | <b>F:</b> 5'- GCATGTAGGCAATGATGTGG -3'    | 633                  | 54.2                |
| 1                  | 000 10 107          | <b>R:</b> 5'- TACTAGGCCTTTGTCTGGGC -3'    | 055                  | 56.6                |
| 2                  | -715 to -167        | <b>F:</b> 5'-CTTGTTGGGATGTATGCGTG -3'     | 548                  | 54.1                |
|                    | /15 to 10/          | <b>R:</b> 5'- TACTAGGCCTTTGTCTGGGC -3'    | 510                  | 56.6                |
| 3                  | -2390 to -          | F: 5'- TGTGGAGGCTGCTCCTCTAT -3'           | 1307                 | 57.7                |
| 5                  | 1083                | <b>R:</b> 5'- ATTACAGGCATTGAGCCACC -3'    | 1507                 | 55.4                |
| 4                  | -2432 to -          | F: 5'- CCTGGTGTACTCTCCCCTCA -3'           | 1349                 | 57.9                |
| -                  | 1083                | R: 5'- ATTACAGGCATTGAGCCACC -3'           | 1549                 | 55.4                |
| 5                  | -2300 to-880        | F: 5'- TGTGGAGGCTGCTCCTCTAT -3'           | 1510                 | 57.7                |
| 5                  | 2390 10 000         | <b>R:</b> 5'- ATCTTGGCTCACTGCAACCT -3'    | 1310                 | 56.9                |
| 6                  | -1495 to -          | <b>F:</b> 5'- TTTTCCTCTCCACCCATCAG -3'    | 412                  | 54.3                |
| 0                  | 1083                | <b>R:</b> 5'- ATTACAGGCATTGAGCCACC -3'    | 412                  | 55.4                |
| 7                  | -1613 to -          | F: 5'- AACCCAGCCATGAGTTTCTG -3'           | 530                  | 55.3                |
| /                  | 1083                | R: 5'- ATTACAGGCATTGAGCCACC -3'           | 550                  | 55.4                |
| 8                  | -1495 to -880       | <b>F:</b> 5'- TTTTCCTCTCCACCCATCAG -3'    | 615                  | 54.3                |
| 0                  |                     | R: 5'- ATCTTGGCTCACTGCAACCT -3'           | 015                  | 56.9                |
| 0                  | 1613 to 880         | F: 5'- AACCCAGCCATGAGTTTCTG -3'           | 733                  | 55.3                |
| 9                  | -1015 10 -880       | R: 5'- ATCTTGGCTCACTGCAACCT -3'           | 133                  | 56.9                |
| 10                 | -2466 to -          | F: 5'- CTTTCTCATCGGACAGGGAG -3'           | 816                  | 54.8                |
| 10                 | 1620                | R: 5'- CAGGAGTGAGGTGAGCTGTG -3'           | 840                  | 57.5                |
| 11                 | -2474 to -          | F: 5'- TTTGAAGCCTTTCTCATCGG -3'           | 851                  | 52.9                |
| 11                 | 1620                | R: 5'- CAGGAGTGAGGTGAGCTGTG -3'           | 034                  | 57.5                |
| OPCP               | Pln domain V        | F: 5'-ACCATCGAGCTGGAGGTTC -3'             | 102                  | 56.9                |
| QPCR               |                     | <b>R:</b> 5'- GAGGCTGATGAAGTCCTTGC -3'    | 102                  | 55.9                |

# 2.3.2 GoTaq<sup>®</sup> Green Master Mix

Polymerase chain reaction (PCR) was performed using a GoTaq<sup>®</sup> Green Master Mix kit and protocol (Promega; Madison, WI). Primer set A was used with each primer at a final concentration of 0.8  $\mu$ M in a 25  $\mu$ L reaction. Two hundred and two nanograms of C4-2B genomic DNA from the first extraction were used in the reactions. The same reaction was conducted using various thermocycling conditions, which can be found in figure 3.1. PCR products were electrophoresed through a 2.0% (w/v) agarose/TAE gel containing 2  $\mu$ L ethidium bromide. The voltage and duration of electrophoresis also varied and the data are included in figure 2.1. The correctly sized products from trials 3 and 4 were extracted from the gel using the QIAquick Gel Extraction Kit and protocol (QIAGEN; Valencia, CA). The extracted products then were inserted into a TOPO 2.1 vector using One Shot<sup>®</sup> Mach1<sup>TM</sup>-T1R chemically competent *Escherichia coli* (*E. coli*) cells and the protocol as described in section 2.4 (Invitrogen; Carlsbad, CA).



| Cyc | es | Va | ry* |
|-----|----|----|-----|
|     |    |    |     |

| Trial  | Annealing        | Number of | Gel Voltage | Duration of electrophoresis |
|--------|------------------|-----------|-------------|-----------------------------|
| number | temperature (°C) | Cycles    | (V)         | (minutes)                   |
| 1      | 53               | 35        | 150         | 20                          |
| 2      | 56               | 33        | 117         | 30                          |
| 3      | 59               | 35        | 80          | 60                          |
| 4      | 56               | 35        | 130         | 30                          |

**Figure 2.1** Thermocycling and electrophoresis conditions for GoTaq<sup>®</sup> Green PCR reactions. The diagram above the table details the thermocycling conditions for the GoTaq<sup>®</sup> Green PCR reactions using C4-2B genomic DNA from extraction 1. The annealing temperature and the cycle numbers were varied in order to determine the optimal conditions for this PCR reaction. The gel electrophoresis conditions were varied based on desired separation.

# 2.3.3 Platinum<sup>®</sup> Taq DNA Polymerase

PCR also was performed using the Platinum<sup>®</sup> Taq DNA Polymerase and protocol (Invitrogen). Two hundred and two nanograms of C4-2B genomic DNA from the first extraction were used for these reactions with primer set A at a final concentration of 0.2  $\mu$ M each, as directed in the protocol. The thermocycling conditions consisted of 2 minutes at 94°C followed by 35 cycles (trial 1) or 42 cycles (trial 2) of 30 seconds at 94°C, 30 seconds at 55°C and 2 minutes and 30 seconds at 72°C, followed by 10 minutes at 72°C and ending with a hold at 4°C. PCR products were electrophoresed through a 1.5% (w/v) agarose/TAE gel containing 2  $\mu$ L ethidium bromide at 117 V for about 1 hour. The correctly sized products were extracted from the gel using the QIAquick Gel Extraction Kit and protocol (QIAGEN).

#### 2.3.4 Gradient PCR

A Gradient PCR reaction was performed using the HotStarTaq DNA Polymerase kit (QIAGEN). Two reaction sets of four samples each were performed simultaneously. One set used the kit's special buffer (buffer Q: intended to increase specificity and affinity of primers) included in the HotStarTaq kit while the other set used MgCl<sub>2</sub> instead. Four hundred and five nanograms of C4-2B genomic DNA were used in each sample with primer set A added to a final concentration of 0.4  $\mu$ M each. The thermocycling conditions included an initial 10 minutes at 94°C followed by 40 cycles of 1 minute at 94°C, 1 minute at the varied temperature and 3 minutes at 72°C, followed by 10 minutes at 72°C and ending with a 4°C hold. The four annealing temperatures were 49.0°C, 53.8°C, 61.0°C and 65.0°C. This reaction was conducted using an MG-96G MyGene<sup>TM</sup> Series Peltier Thermal Cycler (LongGene Scientific

Instruments Co., Ltd.). PCR products were electrophoresed through a 1.25% (w/v) agarose/TAE gel with 2  $\mu$ L ethidium bromide at 117V for about 1 hour. Products of the correct size were extracted from the gel using the QIAquick Gel Extraction Kit and protocol (QIAGEN). The extracted products then were inserted into a TOPO 2.1 vector using DH5- $\alpha$  T1R chemically competent *E. coli* cells (Invitrogen) and the protocol as described in section 2.4.

#### 2.3.5 HotStarTaq PCR

PCR with the HotStarTaq kit was conducted using set C to a final concentration of 0.4  $\mu$ M each with MgCl<sub>2</sub> instead of buffer Q. Three different DNA templates were used in three different reaction sets: Four hundred and five nanograms of C4-2B genomic DNA, and two separate 2500 bp products (inside a TOPO 2.1 vector) from the Gradient PCR reaction at about 350 nanograms each. The thermocycling conditions included a 10 minute heating period at 94°C followed by the 40 cycles of 1 minute at 94°C, 1 minute at 61°C and 3 minutes at 72°C, followed by 10 minutes at 72°C and ending with a hold period at 4°C. The products were electrophoresed through a 1.5% (w/v) agarose/TAE gel with 2  $\mu$ L ethidium bromide at 130V for 40 minutes. The same thermocycling conditions and DNA template samples were used for a separate PCR using primer set B at a final concentration of 0.4  $\mu$ M each. These samples were electrophoresed through a 1.5% (w/v) agarose/TAE gel with 2  $\mu$ L ethidium bromide at 100 V for 1 hour.

PCR was also conducted using WIDR genomic DNA as template for all three sets of primers: the A set, B set and C set. In each reaction, each primer was added to a final concentration of 0.4  $\mu$ M. The samples were electrophoresed through a 1.5% agarose/TAE gel with 3  $\mu$ L ethidium bromide at about 90V for 1 hour. Products of the correct size were extracted from the gel using the QIAquick Gel Extraction Kit and protocol (QIAGEN). The extracted products then were inserted into a TOPO 2.1 vector using DH5- $\alpha$  T1R chemically competent *E. coli* cells and the protocol as described in section 2.4 (Invitrogen).

PCR using the HotStarTaq kit also was used to test primer sets 1, 5, 9 and 11. In each reaction, primers were added to a final concentration of 0.4  $\mu$ M each. Four master mixes, one for each primer set, were made according to the HotStarTag protocol, and each set was tested against both WIDR genomic DNA and C4-2B genomic DNA. For WIDR, 600 nanograms of DNA were added to the samples. For C4-2B, 220 nanograms of DNA template were added to each sample. The thermocycling conditions were chosen based on the highest and lowest melting temperature (T<sub>M</sub>) for all primers used. The program included 15 minutes at 95°C followed by 35 cycles of 94°C for 1 minute, 50°C for 1 minute and 72°C for 2 minutes. The set of cycles was followed by 10 minutes at 72°C and a final hold at 4°C. The products were electrophoresed through a 1.25% (w/v) agarose/TAE gel containing 2 µL ethidium bromide for 75 minutes at 80V. Products of the correct sizes derived from WIDR genomic DNA for sets 1 and 11 were extracted from the gel using a QIAquick Gel Extraction Kit and protocol (QIAGEN), eluting with 30 µL Barnstead The same protocol was repeated, including the gel extraction, using only water. primer sets 1 and 11 and increasing the number of cycles from 35 to 38. The gel extractions from the repeat trial were ligated into a TOPO 2.1 vector (Invitrogen) using DH5-a T1R chemically competent E. coli cells as described in section 2.4

#### 2.3.6 HotStarTaq kit and Restriction Enzyme Digest

The Pln promoter sequence was analyzed on SDSC Biology Workbench to identify restriction enzyme (RE) cut sites within and around the region. Enzymes that cut within the promoter region were eliminated, leaving a list of enzymes that cut near the region. An area  $\pm$  1000 bp of each end of the promoter region was examined to find any RE that cut a small segment of DNA around the promoter region. A sample of C4-2B genomic DNA and a sample of WIDR genomic DNA were then treated with XhoI using 1 µL of RE, 1 µL RE buffer and 10 µL Barnstead water. 1.2 µg of WIDR genomic DNA was added to one reaction while 0.8 µg of C4-2B genomic DNA was added to the other reaction. Both RE digests were incubated at 37°C in a water bath for 1 hour and stored overnight at -20°C. The samples were electrophoresed through a 1.5% (w/v) agarose/TAE gel with 2 µL ethidium bromide at 80V for 75 minutes. DNA fragments matching the predicted fragment size were then extracted from the gel using a QIAquick Gel Extraction Kit and protocol (QIAGEN).

The XhoI digest was repeated using 3.0  $\mu$ g of WIDR genomic DNA and 3.2  $\mu$ g of C4-2B genomic DNA using the following mix: 4  $\mu$ L RE 10x buffer, 29.1  $\mu$ L Barnstead water, 0.4  $\mu$ L acetylated bovine serum albumin (BSA) and 1.5  $\mu$ L RE. Two additional digests were run using FspI and either 4.8  $\mu$ g WIDR genomic DNA or 3.2  $\mu$ g C4-2B genomic DNA. The mix for FspI included 4  $\mu$ L RE buffer, 3 $\mu$ L RE (WIDR samples) or 2  $\mu$ L RE (C4-2B samples) and Barnstead water to make a final reaction volume of 40  $\mu$ L. Both RE digest sets were allowed to incubate in a 37°C water bath overnight for about 24 hours. Following the incubation, all four samples (one sample of each RE digest for both sets of genomic DNA) were electrophoresed through a 0.5% (w/v) agarose/TAE gel with 3  $\mu$ L ethidium bromide at 80V for 1 hour. Negative controls used WIDR genomic DNA without either RE added. The bands of DNA at

the correct size for the XhoI digest then were extracted using the QIAEX II Agarose Gel Extraction Kit and protocol (QIAGEN) while the FspI digest product from C4-2B genomic DNA was extracted using the QIAquick Gel Extraction Kit and protocol (QIAGEN).

PCR was conducted using the HotStarTaq kit with primer set A, with each primer having a final concentration of 0.4  $\mu$ M each. Three different templates were tested: Both XhoI digest gel extraction products and the FspI digest gel extraction product. About 600 nanograms of XhoI digested WIDR DNA was used, while 450 nanograms each of the XhoI C4-2B DNA digest and the FspI C4-2B extract were used. The thermocycling conditions are the same as described in the other HotStarTaq kit reactions. The products were electrophoresed through a 1.25% (w/v) agarose/TAE gel with 2.5  $\mu$ L ethidium bromide at 80V for 90 minutes.

### 2.3.7 Dual Restriction Enzyme Digest and PCR

Genomic DNA was digested by XhoI and FspI simultaneously. One sample of 4.8  $\mu$ g of WIDR genomic DNA was digested with 3  $\mu$ L each of XhoI and FspI and 4  $\mu$ L of the FspI reaction buffer. Barnstead water was added to a final reaction volume of 40  $\mu$ L. Another sample of 3.2  $\mu$ g C4-2B genomic DNA was digested with 2  $\mu$ L each of XhoI and FspI in 4 $\mu$ L of the FspI reaction buffer with Barnstead water to a final reaction volume of 40  $\mu$ L. Both samples were allowed to incubate overnight in a 37°C water bath. Following incubation, the samples were rapidly heated to about 95°C and allowed to cool slowly to room temperature in order to deactivate both enzymes. This was performed by heating a flask of water to 95°C, floating the samples in the bath and allowing the entire setup cool down to room temperature.

PCR was conducted for each digest sample using the HotStarTaq kit and protocol with primer set A. For each reaction,  $10 \,\mu\text{L}$  of one of the deactivated digest reactions was added to the mixture to make a final reaction volume of 50  $\mu$ L. The thermocycling conditions for the reactions included an initial 95°C hot start for 10 minutes followed by 35 cycles of 94°C for 1 minute, 61°C for one minute and 72°C for 2 minutes and 40 seconds. The program ended with 10 minutes at 72°C followed by a hold at 4°C. The products were electrophoresed through a 1.25% (w/v) agarose/TAE gel containing 2 µL ethidium bromide at 80V for about 90 minutes. The DNA area of the gel that represents the location of 2500bp products was extracted using the QIAquick Gel Extraction Kit and protocol (QIAGEN), skipping the optional wash. Next, 25  $\mu$ L of each products from this extraction was run in a PCR using the HotStarTaq kit and protocol and primer set A. The thermocycling conditions were set the same as the previous reaction. The products were electrophoresed through a 1.25% (w/v) agarose/TAE gel containing 2 µL ethidium bromide for about 110 minutes at 80V. Products were extracted from the gel using the QIAquick Gel Extraction Kit and protocol (QIAGEN). The extracted products then were inserted into a TOPO 2.1 vector using DH5- $\alpha$  T1R chemically competent *E. coli* cells and the protocol as described in section 2.4 (Invitrogen).

### 2.3.8 Dimethyl Sulfoxide as a PCR Additive

5% (v/v) final concentration dimethyl sulfoxide (DMSO) was used in PCR with the GoTaq<sup>®</sup> Green Master mix kit and protocol and primer set 1. Each primer was added to a final concentration of 0.4  $\mu$ M in the 50  $\mu$ L reaction. Only C4-2B genomic DNA was used: 160 nanograms of template were added to each sample. Several control samples also were set up in addition to the 5% DMSO sample: a water

blank without genomic DNA or DMSO, DNA water instead of DMSO, water with a very low concentration of DMSO (0.25% (v/v) final concentration) and DNA with the low concentration of DMSO. The thermocycling conditions included a 2 minute initial heating at 94°C followed by 30 cycles of 1 minute at 94°C, 1 minute at 53°C and 1 minute 30 seconds at 68°C. The program was ended with a final 10 minutes at 68°C followed by a 4°C hold. The products were electrophoresed through a 1.25% (w/v) agarose/TAE gel containing 2  $\mu$ L ethidium bromide at 80V for about 90 minutes. Products of the correct size were extracted using the QIAquick Gel Extraction Kit and protocol (QIAGEN).

PCR using the GoTaq<sup>®</sup> Green Master Kit and protocol with DMSO added to a final concentration of 5% (v/v) also was conducted using primer set A with 160 nanograms of C4-2B genomic DNA. The thermocycling conditions included a 2 minute initial heating at 94°C followed by 30 cycles of 1 minute at 94°C, 1 minute at 58°C and 2 minutes 45 seconds at 72°C. The program was ended with a final 10 minutes at 72°C followed by a 4°C hold. The products were electrophoresed through a 1.25% (w/v) agarose/TAE gel containing 2  $\mu$ L ethidium bromide at 80V for about 90 minutes. Any product of the correct size was extracted using the QIAquick Gel Extraction Kit and protocol (QIAGEN). The extracted product then was inserted into a TOPO 2.1 vector using DH5- $\alpha$  T1R chemically competent *E. coli* cells and the protocol as described in section 2.4 (Invitrogen).

A final trial PCR was executed using two mixed sets of primers with the  $GoTaq^{\ensuremath{\mathbb{R}}}$  Green Master Kit and protocol with DMSO added to a final concentration of 5% (v/v). The first set included primer 1R with primer 11F, while the second included 1R with 4F. Each primer was added to a final concentration of 0.4  $\mu$ M in the 50  $\mu$ L

reaction. The thermocycling conditions included a 2 minute initial heating at 94°C followed by 30 cycles of 1 minute at 94°C, 1 minute at 53°C and 2 minutes 45 seconds at 68°C. The program was ended with a final 10 minutes at 68°C followed by a 4°C hold. The reaction products were electrophoresed through a 1.25% (w/v) agarose/TAE gel containing 2  $\mu$ L ethidium bromide at 80V for about 90 minutes. The raw PCR product was ligated into a TOPO 2.1 vector (Invitrogen) using One Shot<sup>®</sup> TOP10 chemically competent *E. coli* cells as described in section 2.4.

## 2.4 TOPO TA Cloning<sup>®</sup> Reactions

All TOPO<sup>®</sup> cloning reactions were carried out using the pCR<sup>®</sup>2.1-TOPO<sup>®</sup> vector (Invitrogen) and chemically competent E. coli cells (either DH5-a T1R cells, One Shot<sup>®</sup> TOP10 cells or One Shot<sup>®</sup> Mach1<sup>TM</sup>-T1R cells). The kit protocol was used, and the cells were streaked on LB agar plates containing either ampicillin or kanamycin. Plates were incubated for 12 to 16 hours at 37°C. Overnight cultures were grown from colonies on the agar plates. These cultures consisted of 5 ml liquid LB media containing 50 µg/ml of the same antibiotic that was used on the agar plates. The cultures were incubated overnight at 37°C while being shaken at 200 rpm. The plasmids were extracted using the QIAprep Spin Miniprep Kit protocol using a The results of all plasmid extractions were quantified by microcentrifuge. spectrophotometry on a BioRad SmartSpec<sup>™</sup> 3000 spectrophotometer. A sample of the extracted plasmid then was digested with EcoRI in a 37°C water bath for about 1 hour. The product from the RE digest was electrophoresed through a 1-2% agarose/TAE gel containing 2 µL ethidium bromide. The voltage and the duration of electrophoresis varied depending on the size of the gel and the extent of separation desired. Any plasmids containing an insert of the correct size were sequenced using
the Pre-Mixed DNA Sequencing protocol from Genewiz, Inc. (South Plainfield, NJ) and the results were checked with the Ensembl sequence online using tools available via the SDSC Biology Workbench. Glycerol stocks were made of all cultures that were sequenced. The glycerol stocks included 750  $\mu$ L of the overnight culture in liquid LB media mixed with 750  $\mu$ L 80% (v/v) glycerol in an Eppendorf tube. This mixture was then frozen rapidly in 100% (v/v) ethanol mixed with dry ice. The samples then were stored in the -80°C freezer.

### 2.5 Cell culture

An HS27a cell line, p8, was cultured from a freeze-down stock stored in liquid nitrogen. This cell line was selected to model the prostate cancer stromal cells showing the large upregulation of Pln (figure 1). The cells were grown in high glucose Dulbecco's modified Eagle's medium (DMEM) with no sodium pyruvate (Gibco) and 10% fetal bovine serum (FBS). At p14, the media was switched to low glucose DMEM with GlutaMAX<sup>™</sup> (Gibco) plus 10% fetal bovine serum (FBS) and 1% penicillin-streptomycin. Cells were passaged at about 80% confluency, by visual inspection, and cultured in T75 flasks. Flasks were trypsinized for 5 minutes, incubated at 37°C and pelleted. The cell pellet was resuspended in 5ml media and 1ml of the suspension was added to 11ml of media in each flask. For the individual treatments, cells were plated in each well of a six-well plate. They were grown in low glucose DMEM with GlutaMAX<sup>™</sup> with 10% FBS and 1% penicillin-streptomycin until they reached 70-80% confluency. Once the cells reached 70-80% confluency, the media was replaced with serum free low glucose DMEM with GlutaMAX<sup>™</sup> containing 1% penicillin-streptomycin and grown for 24 hours. After serum-starving for 24 hours, the media was replaced with glucose DMEM with GlutaMAX<sup>™</sup> containing 1% penicillin-streptomycin and either TGF- $\beta$  [at 0, 1, 5 or 10 ng/ml] or TNF- $\alpha$  [at 0, 0.5, 1, 5 ng/ml] (Sigma-Aldrich; Saint Louis, MO) and grown for an additional 24 hours.

#### 2.6 Ribonucleic acid extraction and complementary DNA reaction

Total ribonucleic acid (RNA) was extracted from the HS27a cells following a 24 hour treatment with either TNF- $\alpha$  or TGF- $\beta$ . The cells were lysed directly on the plate and the RNA was collected and purified using the RNeasy<sup>®</sup> Mini Kit and protocol (QIAGEN). Following lysis, the suspension was homogenized using the QIAshredder<sup>TM</sup> microcentrifuge tubes (QIAGEN). Once the RNA was eluted from the kit, the eluate was treated with DNase to eliminate possible DNA contamination. This step was completed using the DNA-*free*<sup>TM</sup> DNase Treatment & Removal kit (Ambion Inc; Austin, TX), incubating for 30 minutes at 37°C. The RNA was then quantified by spectrophotometry at wavelength 260 nm, as described for the DNA extraction.

After quantifying the RNA samples, a reverse-transcription PCR (RT-PCR) was conducted to make complementary DNA (cDNA). All RT-PCR reactions were conducted using the Omniscript<sup>®</sup> RT Kit (QIAGEN) and 0.5-1  $\mu$ g RNA in a final volume of 20  $\mu$ L. Each reaction set consisted of the cDNA reactions and control reactions lacking the reverse transcriptase, in order to ensure that the RNA samples were not contaminated with DNA. The samples were incubated at 37°C for 1 hour, followed by heat-inactivation of the reverse transcriptase by heating the samples to 93°C for 3 minutes. The cDNA were stored at -20°C.

## 2.7 Quantitative PCR

Quantitative PCR (QPCR) was used to quantify the effects of signaling pathways on Pln transcription. Reactions were mixed using the SYBR<sup>®</sup> Green PCR Master Mix (Applied Biosystems) to a final reaction volume of 25  $\mu$ L. The samples were then analyzed using an ABI Prism 7000 Sequence Detection System (Applied Biosystems). The thermocycling conditions consisted of 10 minutes at 95°C followed by 45 cycles of 15 seconds at 95°C and 1 minute at 58°C.

#### Chapter 3

## COMPUTATIONAL ANALYSIS OF THE HUMAN PERLECAN PROMOTER: RESULTS AND DISCUSSION

#### 3.1 The Human Pln promoter region is located on the minus strand

The Pln gene in mouse DNA was found to be located on chromosome 4 on the plus strand from 136,740,845 – 136,842,706 bp. In order to obtain the promoter region, 2565 bp of DNA sequence 5' of the start of the gene region (136,738,280 – 136,842,706) was downloaded from Ensembl and saved online. The human Pln gene, however, is located on chromosome 1 from bp 22,021,325 to bp 22,136,377 on the minus strand. Therefore, two regions of DNA were tested. The first region that was tested was the 2565 bp segment before the start of the gene region (starting at 22,018,760). This was found to be the incorrect promoter sequence when it was aligned with the previously published sequence (Iozzo et al., 1997). I confirmed this by including exon 1 at the end of the downloaded sequence. When I ran analysis on this sequence on SDSC Biology Workbench, the amino acid sequence generated by what was thought to be exon 1 did not match the known Pln protein code.

However, when Pln exon 1 was downloaded from Ensembl, I found that the reverse complement of the downloaded sequence generated an amino acid sequence that matched the known Pln protein sequence. Interestingly, the generated sequence matched a fragment of the protein sequence from Pln domain V at the 3' end of the gene. Therefore, the promoter region was downloaded from Ensembl from bp 22,136,377 to bp 22,138,942, saved to the Biology Workbench and converted to the reverse complement sequence using a program available through the Biology Workbench. This sequence was aligned with the previously published sequence (Iozzo et al., 1997) and the two sequences differed only slightly (data not shown). Therefore, I determined that the correct sequence is on the minus strand of DNA, as noted on Ensemble, but that the sequence that is provided is the plus strand.

When the human and mouse promoter sequences were aligned, there was significantly less agreement than between the two human sequences. The human Pln promoter sequence was further examined and found to have a 56.6% GC content. Also noted was a region of 23 adenosine nucleotide repeats located about 800 bp before the 5' UTR. Finally, alignment information indicated that due to gaps and disagreements between the published promoter sequence and the Ensembl sequence, the lengths of the promoters were slightly different. In order for the 5' ends to match, the Ensembl sequence had 16 bp clipped from the 5' end, making it only 2549 bp long. Because of these differences, I expected that there would be minor discrepancies in presence or location of some transcription factor binding sites.

As a result of the difficulties with the human Pln promoter sequence, the mouse promoter was checked by extracting the exon 1 sequence and comparing the theoretical amino acid sequence to the known sequence. This analysis confirmed the downloaded mouse Pln sequence was the correct region of DNA.

# **3.2** Pln promoter region contains many highly conserved transcription factor response elements

Despite the low level of agreement in nucleotide sequence between mouse and human sequences, the transcription factor response element analysis was completed using the online MatInspector (Genomatix) program. The raw results from the program were sorted manually and are provided in tables A1 – A3 (appendix). A short list of 22 transcription factors was created from highly conserved elements across all three promoter sequences (table A4 in the appendix). While many factors were ruled out simply because they were not found to be conserved between human and mouse, other factors had to be researched to determine their relevance to prostate cancer cell metastasis to bone. From the short list, four transcription factors were chosen for further study: NF $\kappa$ B, Smad3, Elk-1 and CREB. The locations of these four factors were determined within each promoter region. The results can be found in figure 3.1.



**Figure 3.1 Human and Mouse Pln promoter region maps** Aligned map that depicts the conservation of the four transcription factor response elements of interest in the Pln promoter region. The response elements were aligned to match the results for the human Pln sequence from Ensembl (top line) in order to demonstrate conservation. The middle line represents the promoter region sequence as published by Iozzo (1997), and the bottom line represents the mouse sequence from Ensembl. Bar colors: red = NF $\kappa$ B; green = Elk 1; blue = CREB; and orange = Smad3.

The response elements were found to be spread all throughout the 2565 bp region of the Pln promoter. Although the mouse sequence showed higher numbers of potential binding sites, the conserved sites were highly conserved in position as well (data available in table A4) suggesting an evolutionary importance for these sites. In addition to the high degree of conservation, all four of these transcription factors have been implicated in disease states, either through inflammatory response or through aberrant signaling in cancer, as discussed in the introduction. For these reasons, it was decided to attempt to extract the entire 2565 bp from genomic DNA. Figure 3.2 shows the signal pathways that I propose to study. All of the pathways pictured are simplified, and they may overlap through crosstalk mechanisms.



**Figure 3.2** Schematic drawing of signaling pathways of interest. The figure illustrates the four signaling pathways of interest. Each pathway is more complicated than drawn and there is greater crosstalk between them.

#### Chapter 4

### CLONING AND PRELIMINARY FUNCTIONAL ANALYSIS OF THE HUMAN PLN PROMOTER REGION: RESULTS AND DISCUSSION

# 4.1 Extracting the promoter region from genomic DNA using PCR: optimization of reaction conditions

#### 4.1.1 Primer design

Because the transcription factor response elements were spread throughout the Pln promoter region, I designed PCR primers that target the entire promoter region. The first primer set I designed was primer set A (see table 2.1). Eventually the reverse complement set A was tested (set C), followed by a truncated set that utilized the same reverse primer as set A but had a new forward primer to target only 1500 bp of the promoter region. As will be discussed, these primers were not optimal, and therefore new sets of primers were designed. The online Biology Workbench could not produce any primer sets based on the full 2549 bp of the Pln promoter region. Because of this, I had to split the promoter into three pieces, with the 3' segment expanded to include the 5' UTR. This generated several small segments of the promoter that could be spliced together to build the full promoter region. The target regions of each primer set can be found in figure 4.1.



**Figure 4.1** Map of the primer targets within the human Pln promoter region. Detailed information about each primer set can be found in table 2.1. This map shows the location and relative length of each primer product within the promoter region

# 4.1.2 GoTaq<sup>®</sup> Green Master Mix and primer set A

The results of each gel electrophoresis can be seen below in figure 4.2.



**Figure 4.2** Gel electrophoresis of PCR products using GoTaq<sup>®</sup> Green kit. Trials 1 and 3 demonstrate the problem with smearing. All four trials show the extent of non-specific binding. Red arrows indicate the location I thought the ladder identified as 2500 bp. White arrows indicate actual site of 2500 bp product.

In addition to nonspecific primer binding (indicated by multiple bands), there was smearing in trials 1 and 3, which may be indicative of problems with the thermocycling conditions. At first it was thought that the thermocycling conditions were not ideal, which was causing the primers to release from the template early. Because there was product present where I had expected to see it (red arrows in figure 4.2), I performed a gel extraction on trials 3 and 4. After extracting the band of DNA at the red arrows, I ligated the products into a TOPO 2.1 vector. Inserting the product into this vector would allow me to make a glycerol stock of the *E. coli* containing the

promoter region. In addition to lending more stability to the stock, it could facilitate cloning the product into a reporter plasmid. When the vectors were sequenced, it was discovered that the inserted products did not align to the human Pln promoter sequences saved on Biology Workbench. The sequences were shortened and the reverse complements were generated in order to test possible sequencing errors. However, these manipulations did not show any positive results and when the product sequences were run through BLAST, the program was able to match the sequences to over 100 genes or coding regions. This, in addition to the fact that the sequences were shorter than expected forced me to the conclusion that they were not the correct products.

It was later discovered that the wrong ladder key was being used and that the site that was thought to signify a 2500 bp product actually only represented an 850 bp product, which is consistent with the length of the product that was sequenced. Seen in figure 4.2, the white arrow indicates the correct location of the Pln promoter region in the gel. Of note is that there is little to no DNA present at the correct size. For this reason, I believed that the GoTaq<sup>®</sup> Green taq polymerase may be releasing from the DNA before the full product could be produced. As a result, I decided to try to use the Platinum<sup>®</sup> Taq kit, which was designed for use with longer PCR products.

# 4.1.3 Platinum<sup>®</sup> Taq PCR with primer set A

The Platinum<sup>®</sup> Taq (Invitrogen) kit is designed for use with large products. Because I had been seeing multiple bands with the GoTaq<sup>®</sup> Green Master mix, I thought that the Taq polymerase may have been releasing the DNA template before the product was completed. The results of the PCR trials using the Platinum<sup>®</sup> Taq kit can be seen in figure 4.3



**Figure 4.3** Gel electrophoresis of PCR products using Platinum® Taq. Both images show PCR products using Platinum® Taq kit (Invitrogen) electrophoresed through 1.5% (w/v) agarose/TAE gel. Both images are 8/30 exposures, showing that very little product is present. Arrows represent the correct location for the human Pln promoter (about 2500 bp).

The largest product present in the gel was extracted and analyzed by spectrophotometric analysis. I found that very little product was present, so the product could not be ligated into the TOPO 2.1 vector. When the reaction was repeated, the same results were seen. The bands in the gel were very faint both in the pictures and when the gel was inspected visually. Because the product was barely present in the first trial, the number of cycles was increased from 35 (figure 4.3 panel 2) to 42 (figure 4.3 panel 1) in order to try to increase the amount of product. As seen in figure 4.3, there was no increase in product.

Because there was not enough product present to extract and the product size was slightly smaller than expected, I did not ligate the product into TOPO 2.1 vector. Also of note is that the PCR was not specific. There were smaller products present in both trials, indicating that the problems encountered with the GoTaq® Green Master Mix were probably due to non-specific primer binding than issues with the taq polymerase. As a result of the difficulties with the Platinum® Taq kit, I tried a different PCR kit that was designed for increased specificity.

#### 4.1.4 PCR with the HotStarTaq Kit and protocol

The gradient PCR was set up using primer set A and the HotStarTaq kit and protocol (Invitrogen) in order to try to optimize the annealing temperature for the primer set. The results, shown in figure 4.4, demonstrated the same problems seen with the other PCR kits. Primarily, there was nonspecific binding of the primers when MgCl<sub>2</sub> was used in place of the special buffer, Buffer Q, included in the HotStarTaq kit. This can be seen in figure 4.4, lanes 5-7, in the multiple bands present and the smearing in lanes 5 and 6. Because these problems were far more severe in lanes 5 and 6, these two lanes were disregarded. However, lane 7 showed a band at the correct size. This product was created at an annealing temperature of 61°C, which also showed the most specificity. The product band at the correct size was extracted and ligated into the TOPO 2.1 vector. The plasmids that showed a product of a correct size following RE digest were sent to Genewiz, Inc. for sequencing. The returned sequences were aligned against the Ensembl sequence on the Biology Workbench. Although I broke the experimental sequences into smaller sections and tried the reverse complement of the sequence, they did not match the Ensembl sequence.



**Figure 4.4** Gel electrophoresis results of gradient PCR using HotStarTaq kit. The figure shows the results of the HotStarTaq gradient PCR. Lanes 1-4 and lane 8 showed no product formation, while lanes 5, 6 and 7 showed multiple products and smearing. There were no products at the correct size (arrow) in either lane 5 or 6. The product band at the 2500 bp location was extracted (box). Additionally, one of the sequences was degraded and did not sequence. When the fragments of the experimental sequences were tested using BLAST, over 100 results with at least 84% specificity were returned, none of which were located in the human Pln promoter region. This indicated that the experimental sequences were not correct. This information, in addition to the gel results, indicated that the problem may have been with the primers. Since the buffer that is designed to increase the specificity of the primers showed absolutely no product formation and the one product of the correct size did not match the Ensemble sequence, I tried new primers.

The first primer set I decided to try was set C. It was thought that the orientation of the gene within the region may be different than what was seen online. The orientation found online was not very clear, and not all of the databases agreed. Therefore, primer set B was used with HotStarTaq kit and protocol. There was no product formed with genomic C4-2B DNA used as template, and two of the reactions using the extracted gradient PCR product as template created products that were twice as large as expected. One product formed from this template showed two bands, while another showed a product of the correct size (results not pictured). This sample was not sequenced because it was concluded that it was either the same product or a fragment of the TOPO 2.1 vector plasmid. This conclusion was based on the reasoning that the old product was used as template and no products were seen in the genomic DNA lanes. The same protocol was attempted using WIDR genomic DNA as template. No products were found in the lane using buffer Q. While product was found in the lane using MgCl<sub>2</sub>, it showed the same problems encountered before. Primarily, there were multiple, nonspecific products. There was one product around

the 3000 bp marker in the gel. However, since the product was barely visible and too large, it was not sequenced.

Based on the difficulties encountered with trying to copy the full 2549 bp of the promoter region, I opted to study the shorter 1500 bp proximal to the start of transcription, as shown in figure 4.1. This primer set was run with the HotStarTaq kit using genomic C4-2B DNA as a template as well as two old 2500 bp experimental products that did not match the promoter region. None of the three templates showed a product of the correct size. Because of this disappointing result, I tried using WIDR genomic DNA as template. The reason for this was because WIDR has been shown to produce large amounts of Pln. Because the gene is so active in WIDR cells, this region of the genome should be open so that the transcription proteins have access. A PCR reaction was carried out using this new genomic DNA template with both primer set A and primer set B, the 1500 bp product set. Products were found and extracted for both sets of primers. However, there was also contamination and non-specific primer binding (results not pictured). Nevertheless, the products obtained when using C4-2B genomic DNA as template.

In order to try to increase the specificity of the primers, I tried to digest the genomic DNA, separate the fragments and use the fragment containing the promoter region as template for PCR with the HotStarTaq kit and primer set A. In addition to reducing the number of sequences that the primers could bind to, this procedure may also open up the DNA in the area of the Pln promoter region. I found that FspI cut a fragment of DNA of about 9700 bp that included the promoter region and XhoI cut a fragment of about 16,300 bp. Because of the size of the XhoI fragment, I had to use a

different kit to extract the fragment from the gel. In the first trial, DNA was digested and the fragments were separated using gel electrophoresis. Once the desired fragments were removed from the gel, they were used as templates in a second PCR using the HotStarTaq kit and protocol and primer set A. However, this method did not generate any product. In the next trial, I decided to combine both XhoI and FspI in a single RE digest. This should generate a fragment of DNA of about 9400bp around the Pln promoter region. Instead of separating fragments through a gel, I decided to use the DNA directly from the RE digest so that I did not lose any template during the extraction. This did not generate any results.

I tried the above technique a second time. The results can be found in figure 4.5. This time I repeated the PCR and then ran the products through a 1.25% (w/v) agarose/TAE gel. This time, I extracted any DNA in the region of the gel around the 2500 bp region. I then used this as template in a second PCR using the HotStarTaq kit. No difference was seen between WIDR and C4-2B genomic DNA as starting material. The results from the second PCR showed that a small product was targeted by the primers and no product was seen in the 2500 bp region of the gel. I extracted the small product and ligated into a TOPO 2.1 vector, but the protocol did not work and the *E. coli* did not grow after the first night. Because this protocol, designed to create a template that is highly specific to the Pln promoter region, did not work, I decided to design a new set of primers.



**Figure 4.5 PCR and double RE digest of genomic DNA.** Image 1 shows the gel results of the first PCR using DNA that had been digested with FspI and XhoI. The box indicates the region of DNA that was extracted from the gel. Image 2 shows the results of the PCR using the gel extraction products as template. C = C4-2B genomic DNA starting material; W = WIDR genomic DNA starting material.

### 4.1.5 PCR using various primer sets

Following the RE digest and PCR protocol detailed in section 4.1.4, I designed new primers using the primer3 application available on Biology Workbench. This program did not find any possible primer sets when I used the full 2549 bp promoter region, so I divided the region into three pieces. I also expanded the region beyond the 5' end of the region and into the 5' UTR. The results of this analysis can be found in table 2.1. I found 11 potential sets, many with common primers and I tried to select primer sets that overlapped. Overall, the sets span the entire promoter region (figure 4.1).

I first set up four simultaneous reactions to test primer sets 1, 5, 9 and 11. I used the HotStarTaq kit and protocol with samples both C4-2B and WIDR genomic used for each primer set, although no difference was seen between the two templates. The results, shown in figure 4.6, varied by primer set. Primer sets 5 and 9 showed less specificity and more smearing, indicating that the thermocycling conditions were not optimal for these sets. Because I had set the thermocycling conditions according to the four sets of primers together, I may have set the annealing temperature too low for sets 5 and 9. However, because I saw distinct bands at the correct sizes for sets 1 and 11, I repeated the previous reaction with sets 1 and 11 only.



Figure 4.6 Gel electrophoresis of PCR products using primer sets 1, 5, 9 and 11. The boxes indicate the location of the desired product for each primer set. Sets 1 and 11 showed distinct bands in the expected regions

The bands in the repeated reaction were much more distinct, and they were extracted and ligated into the TOPO 2.1 vector and prepared for sequencing. However, I noted that the gel extraction had a very low yield, and that I likely had lost most of the product. After the TOPO plasmid preparation, there were no plasmids that showed a product insert of the correct size, so set 11 was not sequenced. The sequencing results for set 1 did not match the Pln promoter region. Because of the low yield from the gel extraction and the difficulties with ligating the product into the TOPO 2.1 vector, I proposed that I was losing the promoter sequence in the gel extraction process.

In order to bypass the gel extraction, I needed to increase the specificity of the PCR so that I could ligate the product directly into the TOPO 2.1 vector. Fortunately, a member of the laboratory sent me a protocol that used DMSO to increase the specificity of PCR for difficult products, such as GC rich regions (Frackman 1998). This additive, which functions by interfering with hydrogen bonds in the DNA helix, thereby facilitating strand separation, was added to a final concentration of 5% (v/v) in a PCR mix using the GoTaq<sup>®</sup> Green Master Mix kit and protocol.

I tested this protocol first with primer set 1 and found that it eliminated all products other than the target product. Following these results, I tried the protocol with primer set A, but no product was seen. I extracted the product from primer set 1 and the DMSO protocol to check that it was the correct fragment of the promoter region. Although the extraction resulted in a low yield again, the sequencing confirmed that it was the correct product. After confirming that the DMSO protocol did help increase specificity, I mixed primers in order to copy the full 2549 bp of the Pln promoter region. I initially tried two sets: 1 REV and 11 FOR; and 1 REV and 4 FOR. These sets were used in amplification using the GoTaq<sup>®</sup> Green Master Mix with DMSO added to a final concentration of 5% (v/v). The results were checked using gel electrophoresis (figure 4.7). The product was ligated into the TOPO 2.1 vector using raw PCR product instead of gel-extracted product. This was sent for sequencing.



Figure 4.7 Gel electrophoresis results of PCR with mixed primer sets and DMSO. Lane 1 shows a distinct band in the area of the gel representing a 2500 bp product (arrow). No other product was seen in this lane. Lane 2 shows a very slight product, more visible to the naked eye, but also showed evidence of primer dimer formation (not shown).

Genewiz, Inc. reported that the template provided could not be sequenced using the standard protocol. Therefore, I sent the same samples a second time to be sequenced using the GC-rich protocol. The results from this sequencing protocol were aligned with the Ensembl sequence on Biology Workbench, and the experimental products were found to match. The results of this sequencing can be found in figure 4.8. Because the product was so long, the middle portion was not sequenced.



**Figure 4.8** Human Pln promoter region with transcription factor binding sites and experimental sequences identified. The underlined regions of sequence indicate regions of the experimental promoter region that either were not sequenced, that were not copied or that did not match the Ensembl sequence. Black bold/italic regions indicate primer binding sites. Red = NF $\kappa$ B binding site; green = Elk-1 binding site; blue = CREB binding site; orange = Smad 3 binding site.

# 4.1.6 DMSO aided the successful copying and cloning of the human Pln promoter region

Although a portion of the product was not sequenced, the high degree of agreement in the sequenced areas indicated that this product was indeed the human Pln product. Therefore, I concluded that mixed primer set 1 REV/11 FOR used in conjunction with GoTaq® Green Master Mix with 5% DMSO was successful in extracting the Pln promoter region from genomic DNA. I have ligated this product successfully into a TOPO 2.1 vector and made glycerol stocks of the *E. coli* colonies containing the plasmid + product construct.

#### 4.2 Cell culture treatments

The HS27a cells grew slowly for the first few passages after they were grown out of the stock stored in liquid nitrogen. However, following the change in media from high glucose DMEM to low glucose DMEM, the doubling time appeared to decrease. Serum-starving the cells did not have visible effects after the first 48 hours. However, treatment with TGF- $\beta$  resulted in a change in culture formation. It is reported that the HS27a cell line can support a cobblestone growth pattern (Graf et al., 2002; Torok-Storb et al., 1999). I saw the cells begin to adopt this pattern of growth after 24 hours of treatment with TGF- $\beta$  (figure 4.9).



**Figure 4.9** Cobblestone growth of HS27a cells Following a 24 hour serumstarving and an addition 24 hours treatment with TGF- $\beta$ , these cells were found to organize into this cobblestone pattern, creating a lattice of cells

Interestingly, these results were only seen when the cells were treated after they reached 70% confluency. When a culture of HS27a cells was treated with TGF- $\beta$ before it reached 70% confluency, this patterning of cells was not observed. Additionally, there was slight cobblestone formation present in the cultures treated with TNF- $\alpha$ , but it was not as clearly organized as the TGF- $\beta$ -treated cultures.

Following treatment, the RNA from each sample was collected and analyzed by spectrophotometry. The RNA concentrations were fairly low, ranging from 25  $\mu$ g/ml to over 200  $\mu$ g/ml. Despite these results, I proceeded with the cDNA reaction and then utilized the cDNA in a QPCR reaction. The results from the QPCR were gathered but the data have not yet been fully analyzed.

Due to time constraints, I was only able to obtain preliminary results. However, based on the effects the treatments had on cell growth, it is clear that the treatments affect cell processes. The cobblestone growth response to TGF- $\beta$  seen indicates that the growth factor may have altered cell processes, including extracellular matrix (ECM) proteins. Although this effect is very pronounced when the cell concentration is high, there was significantly less response when the cells were treated at about 60% confluency. Finally, TNF- $\alpha$  showed no changes in growth of the cultures. It may have slowed cell proliferation and resulted in cell death, but these results were not quantified. As a future direction of this work, it would be recommended to test the CREB and the Elk-1 pathways as well and to attempt to quantify and categorize their effects on cell growth and proliferation.

#### 4.3 Conclusions

- The properties of the promoter region, including the high GC content, produced many difficulties in PCR
- DMSO stabilized the promoter region and allowed the primers to preferentially bind to that region of DNA
- The difficulties encountered in PCR do not necessarily translate to low biological activity of the promoter region. Various cell factors, such as histones, may stabilize this region and allow transcription factors to bind. The large upregulation seen in the prostate cancer stromal cells seems to indicate that some mechanism promotes this stabilization of the DNA.
- Preliminary observations of cell culture indicate that TGF- $\beta$  and TNF- $\alpha$  affect cell growth and proliferation *in vitro*. QPCR data

will be needed to show whether these effects manifest in changes in Pln transcription.

#### REFERENCES

- Bierie B, Moses HL. 2006. TGF-beta and cancer. Cytokine Growth Factor Rev 17(1-2):29-40.
- Buijs JT, van der Pluijm G. 2009. Osteotropic cancers: from primary tumor to bone. Cancer Lett 273(2):177-193.
- Bussard KM, Gay CV, Mastro AM. 2008. The bone microenvironment in metastasis; what is special about bone? Cancer Metastasis Rev 27(1):41-55.
- Cohen IR, Grassel S, Murdoch AD, Iozzo RV. 1993. Structural characterization of the complete human perlecan gene and its promoter. Proc Natl Acad Sci U S A 90(21):10404-10408.
- Datta MW, Hernandez AM, Schlicht MJ, Kahler AJ, DeGueme AM, Dhir R, Shah RB, Farach-Carson C, Barrett A, Datta S. 2006a. Perlecan, a candidate gene for the CAPB locus, regulates prostate cancer cell growth via the Sonic Hedgehog pathway. Mol Cancer 5:9.
- Datta S, Pierce M, Datta MW. 2006b. Perlecan signaling: helping hedgehog stimulate prostate cancer growth. Int J Biochem Cell Biol 38(11):1855-1861.
- Dorkin TJ, Neal DE. 1997. Basic science aspects of prostate cancer. Semin Cancer Biol 8(1):21-27.
- Festuccia C, Bologna M, Gravina GL, Guerra F, Angelucci A, Villanova I, Millimaggi D, Teti A. 1999. Osteoblast conditioned media contain TGF-beta1 and modulate the migration of prostate tumor cells and their interactions with extracellular matrix components. Int J Cancer 81(3):395-403.
- Gopalkrishnan RV, Kang DC, Fisher PB. 2001. Molecular markers and determinants of prostate cancer metastasis. J Cell Physiol 189(3):245-256.
- Graf L, Iwata M, Torok-Storb B. 2002. Gene expression profiling of the functionally distinct human bone marrow stromal cell lines HS-5 and HS-27a. Blood 100(4):1509-1511.

- Huang WC, Havel JJ, Zhau HE, Qian WP, Lue HW, Chu CY, Nomura T, Chung LW. 2008. Beta2-microglobulin signaling blockade inhibited androgen receptor axis and caused apoptosis in human prostate cancer cells. Clin Cancer Res 14(17):5341-5347.
- Iozzo RV. 2005. Basement membrane proteoglycans: from cellar to ceiling. Nat Rev Mol Cell Biol 6(8):646-656.
- Iozzo RV, Cohen IR, Grassel S, Murdoch AD. 1994. The biology of perlecan: the multifaceted heparan sulphate proteoglycan of basement membranes and pericellular matrices. Biochem J 302 (Pt 3):625-639.
- Iozzo RV, Pillarisetti J, Sharma B, Murdoch AD, Danielson KG, Uitto J, Mauviel A. 1997. Structural and functional characterization of the human perlecan gene promoter. Transcriptional activation by transforming growth factor-beta via a nuclear factor 1-binding element. J Biol Chem 272(8):5219-5228.
- Keller ET, Brown J. 2004. Prostate cancer bone metastases promote both osteolytic and osteoblastic activity. J Cell Biochem 91(4):718-729.
- Msaouel P, Pissimissis N, Halapas A, Koutsilieris M. 2008. Mechanisms of bone metastasis in prostate cancer: clinical implications. Best Pract Res Clin Endocrinol Metab 22(2):341-355.
- Padua D, Massague J. 2009. Roles of TGFbeta in metastasis. Cell Res 19(1):89-102.
- Porth CM, Kunert MP. 2002. Pathophysiology: concepts of altered health states. Philadelphia: Lippincott Williams & Wilkins. XXVI, 1525 s. p.
- Sato S, Futakuchi M, Ogawa K, Asamoto M, Nakao K, Asai K, Shirai T. 2008. Transforming growth factor beta derived from bone matrix promotes cell proliferation of prostate cancer and osteoclast activation-associated osteolysis in the bone microenvironment. Cancer Sci 99(2):316-323.
- Savore C, Zhang C, Muir C, Liu R, Wyrwa J, Shu J, Zhau HE, Chung LW, Carson DD, Farach-Carson MC. 2005. Perlecan knockdown in metastatic prostate cancer cells reduces heparin-binding growth factor responses in vitro and tumor growth in vivo. Clin Exp Metastasis 22(5):377-390.
- Sharma B, Iozzo RV. 1998. Transcriptional silencing of perlecan gene expression by interferon-gamma. J Biol Chem 273(8):4642-4646.

- Smith SM, West LA, Govindraj P, Zhang X, Ornitz DM, Hassell JR. 2007. Heparan and chondroitin sulfate on growth plate perlecan mediate binding and delivery of FGF-2 to FGF receptors. Matrix Biol 26(3):175-184.
- Sung SY, Hsieh CL, Law A, Zhau HE, Pathak S, Multani AS, Lim S, Coleman IM, Wu LC, Figg WD, Dahut WL, Nelson P, Lee JK, Amin MB, Lyles R, Johnstone PA, Marshall FF, Chung LW. 2008. Coevolution of prostate cancer and bone stroma in three-dimensional coculture: implications for cancer growth and metastasis. Cancer Res 68(23):9996-10003.
- Torok-Storb B, Iwata M, Graf L, Gianotti J, Horton H, Byrne MC. 1999. Dissecting the marrow microenvironment. Ann N Y Acad Sci 872:164-170.
- Vela I, Gregory L, Gardiner EM, Clements JA, Nicol DL. 2007. Bone and prostate cancer cell interactions in metastatic prostate cancer. BJU Int 99(4):735-742.
- Ye L, Kynaston HG, Jiang WG. 2007. Bone metastasis in prostate cancer: molecular and cellular mechanisms (Review). Int J Mol Med 20(1):103-111.

APPENDIX

 Table A.1
 Genomatix Analysis of the Mouse Perlecan Promoter Region

|                                                                        |             | ır tools, e.g.                                                                 |                                                |                   | ion Jun 11 20:06:51 2007     |                     |                                                                                                                      |
|------------------------------------------------------------------------|-------------|--------------------------------------------------------------------------------|------------------------------------------------|-------------------|------------------------------|---------------------|----------------------------------------------------------------------------------------------------------------------|
| ng sites                                                               |             | l sites can be carried out by our oth                                          |                                                |                   |                              |                     |                                                                                                                      |
| Search for <u>transcription factor bindi</u><br>SPG2_Ensembl (2566 bp) | : be aware: | ion. Functional assessment of binding                                          | <u>itix.de</u> citing the corresponding pape   | ts ( 440 matches) |                              |                     |                                                                                                                      |
| S Launcher Task: <i>MatInspector</i> : S<br>working on MouseHS         | Please      | ent to indicate transcriptional functi<br><u>BiblioSphere</u>                  | send an email to <u>support@qenoma</u>         | Search Result     |                              |                     | h 2007)<br>zed)                                                                                                      |
| GEMS                                                                   |             | ) sites in a promoter are NEVER sufficie<br>Comparative Genomics, FrameWorker, | oes <b>not</b> identify a known site, please : |                   | professional 7.4.8, May 2007 | s                   | MouseHSPG2 Ensembl (2566 bp)<br>yes<br>Matrix Family Library Version 6.3 (Marc<br>• ALL vertebrates.lib (0.75/Optimi |
|                                                                        |             | Individual binding<br><u>ModelInspector, C</u>                                 | If MatInspector do                             |                   | MatInspector Release         | Solution parameters | Sequence file:<br>Family matches:<br>MatInspector library: h<br>Selected groups<br>(core/matrix sim)                 |

| Familv/matrix          | Further Information                                                                                                                                                                              | Opt. | Position  | Str.         | Core sim. | Matrix sim. | Sequence<br>(red: ci-value > 60          |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|--------------|-----------|-------------|------------------------------------------|
|                        |                                                                                                                                                                                                  |      | from - to |              |           |             | capitals: core sequence)                 |
| V\$GKLF/GKLF.01        | Gut-enriched Krueppel-like factor                                                                                                                                                                | 0.86 | 1 - 13    | -            | 1.000     | 0.934       | g <mark>aaga</mark> aaaAGGG              |
| <u>V\$EVI1/EVI1.06</u> | Ecotropic viral integration site 1 encoded factor, amino-terminal zinc finger domain                                                                                                             | 0.83 | 18 - 34   | ÷            | 1.000     | 0.847       | gagacaAGATcttaggt                        |
| V\$RXRF/RAR_RXR.03     | Retinoic acid receptor / retinoid X receptor heterodimer, DR5 sites                                                                                                                              | 0.81 | 20 - 44   | £            | 0.883     | 0.811       | gacaaGATCttaggt <mark>ag</mark> ttcaagct |
| V\$GATA/GATA3.02       | GATA-binding factor 3                                                                                                                                                                            | 0.91 | 21 - 33   | ŧ            | 1.000     | 0.955       | acaAGATcttagg                            |
| V\$NR2F/TR2.01         | Nuclear hormone receptor TR2, DR5 binding sites                                                                                                                                                  | 0.76 | 22 - 46   | ÷            | 0.829     | 0.802       | caagatcttaggtaGTTCaagctgg                |
| V\$RORA/RORA2.01       | RAR-related orphan receptor alpha2                                                                                                                                                               | 0.82 | 27 - 49   | £            | 0.750     | 0.831       | tcttaggtaGTTCaagctggttt                  |
| V\$GRHL/GRHL3.01       | Grainyhead-like 3 (sister-of-mammalian grainyhead - SOM)                                                                                                                                         | 0.82 | 39 - 51   | £            | 1.000     | 0.833       | caagctGGTTttg                            |
| V\$CHRF/CHR.01         | Cell cycle gene homology region (CDE/CHR tandem elements<br>regulate cell cycle dependent repression)                                                                                            | 0.92 | 45 - 57   | £            | 1.000     | 0.952       | ggttTTGAattta                            |
| <u>V\$SNAP/PSE.02</u>  | Proximal sequence element (PSE) of RNA polymerase III-transcribed genes                                                                                                                          | 0.73 | 46 - 64   | <u>.</u>     | 0.892     | 0.835       | attgcCATAaattcaaaac                      |
| V\$SORY/HMGA.01        | (HMGA family of architectural transcription factors (HMGA1, HMGA2)                                                                                                                               | 0.88 | 49 - 65   | ŧ            | 1.000     | 0.892       | ttgAATTtatggcaatc                        |
| V\$THAP/THAP1.01       | THAP domain containing, apoptosis associated protein                                                                                                                                             | 06.0 | 53 - 63   | £            | 1.000     | 0.902       | atttatGGCAa                              |
| V\$0CT1/0CT1.04        | Octamer-binding factor 1                                                                                                                                                                         | 0.80 | 54 - 68   | ÷            | 1.000     | 0.838       | ttTATGgcaatcctc                          |
| V\$RBPF/RBPJK.02       | Mammalian transcriptional repressor RBP-Jkappa/CBF1                                                                                                                                              | 0.94 | 74 - 88   | <u>.</u>     | 1.000     | 0.940       | aactTGGGaagctga                          |
| V\$ETSF/ELK1.02        | Elk-1                                                                                                                                                                                            | 0.91 | 78 - 98   | <u>.</u>     | 1.000     | 0.955       | agaatcccGGAActtgggaag                    |
| V\$NRSF/NRSE.01        | Neural-restrictive-silencer-element                                                                                                                                                              | 0.67 | 81 - 101  | <u>.</u>     | 1.000     | 0.674       | cctagaatccCGGAacttggg                    |
| V\$STAT/STAT1.01       | Signal transducer and activator of transcription 1                                                                                                                                               | 0.77 | 81 - 99   | <u>.</u>     | 1.000     | 0.807       | tagaatcccGGAActtggg                      |
| V\$STAT/STAT3.01       | Signal transducer and activator of transcription 3                                                                                                                                               | 0.75 | 83 - 101  | ŧ            | 1.000     | 0.750       | caagTTCCgggattctagg                      |
| V\$STAT/STAT5.01       | STAT5: signal transducer and activator of transcription 5                                                                                                                                        | 0.89 | 89 - 107  | ÷            | 0.945     | 0.945       | tactTTCCtagaatcccgg                      |
| V\$BCL6/BCL6.02        | POZ/zinc finger protein, transcriptional repressor, translocations<br>observed in diffuse large cell lymphoma                                                                                    | 0.77 | 90 - 106  | •            | 1.000     | 0.901       | actttccTAGAatcccg                        |
| V\$STAT/STAT5.01       | STATS: signal transducer and activator of transcription 5                                                                                                                                        | 0.89 | 91 - 109  | £            | 1.000     | 0.949       | gggaTTCTaggaaagtacc                      |
| V\$NFKB/NFKAPPAB.02    | NF-kappaB                                                                                                                                                                                        | 0.82 | 99 - 111  | :            | 0.750     | 0.862       | gtGGTActttcct                            |
| <u>V\$RU49/RU49.01</u> | Zinc finger transcription factor RU49 (zinc finger proliferation 1 -<br>Zipro 1). RU49 exhibits a strong preference for binding to tandem<br>repeats of the minimal RU49 consensus binding site. | 0.98 | 103 - 109 | ÷            | 1.000     | 1.000       | aAGTAcc                                  |
| V\$CLOX/CDPCR3.01      | Cut-like homeodomain protein                                                                                                                                                                     | 0.73 | 106 - 124 | ÷            | 1.000     | 0.896       | taccactcatttctATGGt                      |
| V\$PLZF/PLZF.01        | Promyelocytic leukemia zink finger (TF with nine Krueppel-like zink fingers)                                                                                                                     | 0.86 | 138 - 152 | •            | 1.000     | 0.913       | acaTACAgtcctggg                          |
| V\$TEAF/TEF1.01        | TEF-1 related muscle factor                                                                                                                                                                      | 0.84 | 138 - 150 | •            | 0.750     | 0.840       | ataCAGTcctggg                            |
| V\$GREF/ARE.01         | Androgene receptor binding site, IR3 sites                                                                                                                                                       | 0.80 | 139 - 157 | ÷            | 1.000     | 0.814       | ccaggactgtaTGTTatgc                      |
| V\$GREF/ARE.02         | Androgene receptor binding site, IR3 sites                                                                                                                                                       | 0.89 | 139 - 157 | -            | 0.956     | 0.902       | gcataacatacaGTCCtgg                      |
| V\$BRNF/BRN5.01        | Brn-5, POU-VI protein class (also known as emb and CNS-1)                                                                                                                                        | 0.74 | 142 - 160 | ŀ            | 1.000     | 0.778       | atagCATAacatacagtcc                      |
| V\$PARF/DBP.01         | Albumin D-box binding protein                                                                                                                                                                    | 0.84 | 147 - 163 | <del>(</del> | 1.000     | 0.902       | gtatgTTATgctatgca                        |
| V\$0CT1/0CT1.02        | Octamer-binding factor 1                                                                                                                                                                         | 0.85 | 156 - 170 | ÷            | 1.000     | 0.857       | gctATGCaagcactc                          |
| V\$RXRF/LXRE.02        | Highly conserved DR1 element selected by LXRbeta/RXR<br>heterodimers                                                                                                                             | 0.69 | 162 - 186 | Э            | 0.826     | 0.692       | atgtaGTTCaatggtagagtgcttg                |
| V\$RORA/RORA2.01       | RAR-related orphan receptor alpha2                                                                                                                                                               | 0.82 | 168 - 190 | -            | 0.750     | 0.847       | ggagatgtaGTTCaatggtagag                  |
| V\$BARB/BARBIE.01      | Barbiturate-inducible element                                                                                                                                                                    | 0.88 | 186 - 200 | <u>.</u>     | 1.000     | 0.919       | ttcaAAAGctggaga                          |
| V\$CHRF/CHR.01         | Cell cycle gene homology region (CDE/CHR tandem elements<br>regulate cell cycle dependent repression)                                                                                            | 0.92 | 192 - 204 | +            | 1.000     | 0.934       | gcttTTGAacttc                            |

| V\$FTSF/ELK1.01        |                                                                                                        | 0.81 | 193 - 213 | 1        | 1.000 | 0.810 | IttttaaaGGAAottcaaaao     |
|------------------------|--------------------------------------------------------------------------------------------------------|------|-----------|----------|-------|-------|---------------------------|
| V\$STAT/STAT.01        | Signal transducers and activators of transcription                                                     | 0.87 | 196 - 214 | 2        | 1.000 | 0.914 | attottaaaGGAAottoaa       |
| V\$GKLF/GKLF.02        | Gut-enriched Krueppel-like factor                                                                      | 0.96 | 199 - 211 | 13       | 1.000 | 0.971 | cttAAGgaagtt              |
| V\$HOXF/HOXB9.01       | Abd-B-like homeodomain protein Hoxb-9                                                                  | 0.88 | 200 - 216 | :        | 1.000 | 0.898 | atattctTAAAggaagt         |
| V\$FKHD/FHXB.01        | Fork head homologous X binds DNA with a dual sequence specificity (FHXA and FHXB)                      | 0.83 | 204 - 220 | £        | 0.818 | 0.849 | cctttaAGAAtatttat         |
| V\$OCTP/OCT1P.01       | Octamer-binding factor 1, POU-specific domain                                                          | 0.86 | 207 - 219 | 3        | 1.000 | 0.910 | taaATATtcttaa             |
| V\$FKHD/HNF3B.01       | Hepatocyte nuclear factor 3beta (FOXA2)                                                                | 0.94 | 209 - 225 | 3        | 1.000 | 0.986 | gtaaaataAATAttctt         |
| V\$NKXH/NKX31.01       | Prostate-specific homeodomain protein NKX3.1                                                           | 0.84 | 210 - 224 | 3        | 0.760 | 0.844 | taaatAATattct             |
| <u>V\$EVI1/EVI1.03</u> | Ecotropic viral integration site 1 encoded factor, amino-terminal zinc finger domain                   | 0.79 | 212 - 228 | 3        | 0.750 | 0.795 | aaggtAAAAtaaatatt         |
| V\$MYBL/VMYB.01        | dv-Myb                                                                                                 | 0.88 | 224 - 236 | 3        | 0.865 | 0.882 | cacAACTgaaggt             |
| V\$SREB/SREBP.02       | Sterol regulatory element binding protein                                                              | 0.80 | 239 - 253 | 3        | 0.750 | 0.884 | acaTCCCcccacata           |
| V\$MZF1/MZF1.01        | Myeloid zinc finger protein MZF1                                                                       | 0.99 | 244 - 252 | ÷        | 1.000 | 0.995 | ggGGGGatg                 |
| V\$TEAF/TEF1.01        | TEF-1 related muscle factor                                                                            | 0.84 | 255 - 267 | <u>.</u> | 0.750 | 0.840 | ctaCACTcctgtg             |
| V\$0AZF/R0AZ.01        | Rat C2H2 Zn finger protein involved in olfactory neuronal differentiation                              | 0.73 | 265 - 281 | ÷        | 1.000 | 0.764 | taGCACcctcagatgtg         |
| V\$AP1R/BACH2.01       | Bach2 bound TRE                                                                                        | 0.89 | 269 - 293 | Ŧ        | 0.813 | 0.916 | acctcagaTGTGtcatatccccca  |
| V\$RP58/RP58.01        | Zinc finger protein RP58 (ZNF238), associated preferentially with heterochromatin                      | 0.84 | 271 - 283 | 3        | 1.000 | 0.880 | gacaCATCtgagg             |
| V\$SRFF/SRF.02         | Serum response factor                                                                                  | 0.84 | 286 - 304 | 3        | 0.822 | 0.857 | aactcCAGAtctgggggat       |
| V\$SRFF/SRF.02         | Serum response factor                                                                                  | 0.84 | 287 - 305 | £        | 0.822 | 0.883 | tccccCAGAtctggagtta       |
| V\$RXRF/VDR_RXR.05     | Bipartite binding site of VDR/RXR heterodimers, DR4 sites                                              | 0.79 | 296 - 320 | £        | 0.952 | 0.808 | tctGGAGttacaggaggttgtgagc |
| V\$PARF/VBP.01         | PAR-type chicken vitellogenin promoter-binding protein                                                 | 0.86 | 299 - 315 | ÷        | 1.000 | 0.866 | caacctcctGTAActcc         |
| V\$NF1F/NF1.03         | Non-palindromic nuclear factor I binding sites                                                         | 0.92 | 309 - 329 | +        | 1.000 | 0.978 | gaggttgtgagctGCCAagta     |
| V\$SRFF/SRF.02         | Serum response factor                                                                                  | 0.84 | 318 - 336 | <u>.</u> | 1.000 | 0.898 | gcaccCATActtggcagct       |
| V\$ZBPF/ZNF219.01      | Kruppel-like zinc finger protein 219                                                                   | 0.91 | 327 - 349 | <u>.</u> | 1.000 | 0.918 | ggctttcCCCCcagcacccatac   |
| V\$NR2F/HPF1.01        | HepG2-specific P450 2C factor-1, DR1 sites                                                             | 0.78 | 333 - 357 | ÷        | 1.000 | 0.802 | gtgctggggggAAAGcccaggctcc |
| V\$INSM/INSM1.01       | Zinc finger protein insulinoma-associated 1 (IA-1) functions as a transcriptional repressor            | 06.0 | 334 - 346 | ÷        | 1.000 | 0.921 | tgctgGGGGgaaa             |
| V\$IKRS/IK3.01         | Ikaros 3, potential regulator of lymphocyte differentiation                                            | 0.84 | 337 - 349 | +        | 1.000 | 0.846 | tggggGGAAagcc             |
| V\$MZF1/MZF1.01        | Myeloid zinc finger protein MZF1                                                                       | 0.99 | 338 - 346 | ÷        | 1.000 | 0.995 | ggGGGGaaa                 |
| V\$NFKB/NFKAPPAB.01    | NF-kappaB                                                                                              | 0.89 | 339 - 351 | (+)      | 1.000 | 0.906 | ggGGGAaagccca             |
| V\$NFKB/CREL.01        | c-Rel                                                                                                  | 0.91 | 341 - 353 | C        | 1.000 | 0.988 | cctgggctTTCCc             |
| V\$PERO/PPAR RXR.02    | PPAR/RXR heterodimers, DR1 sites                                                                       | 0.69 | 351 - 373 | £        | 1.000 | 0.717 | aggctccctgtaAAAGatcattg   |
| <u>V\$TBPF/TATA.02</u> | Mammalian C-type LTR TATA box                                                                          | 0.89 | 356 - 372 | £        | 1.000 | 0.904 | ccctgTAAAagatcatt         |
| <u>V\$SORY/SOX5.01</u> | Sox-5                                                                                                  | 0.87 | 363 - 379 | <u>.</u> | 1.000 | 0.991 | cttaaaCAATgatcttt         |
| V\$FKHD/FREAC2.01      | Fork head related activator-2 (FOXF2)                                                                  | 0.84 | 367 - 383 | C        | 1.000 | 0.912 | gctgctTAAAcaatgat         |
| V\$TBPF/ATATA.01       | Avian C-type LTR TATA box                                                                              | 0.78 | 369 - 385 | £        | 1.000 | 0.795 | cattgttTAAGcagcat         |
| V\$AP4R/PARAXIS.01     | Paraxis (TCF15), member of the Twist subfamily of Class B bHLH<br>factors, forms heterodimers with E12 | 0.86 | 378 - 394 | £        | 0.882 | 0.917 | agcAGCAtatgtgtggc         |
| V\$NR2F/HNF4.03        | Hepatic nuclear factor 4, DR1 sites                                                                    | 0.83 | 388 - 412 | +        | 0.833 | 0.901 | gtgtggcggtCAGAggacaactttg |
| V\$RXRF/RAR_RXR.01     | Retinoic acid receptor / retinoid X receptor heterodimer, DR1 sites                                    | 0.78 | 390 - 414 | (+)      | 0.769 | 0.850 | gtggcggtcagAGGAcaactttggg |
| V\$NOLF/OLF1.01        | Olfactory neuron-specific factor                                                                       | 0.82 | 400 - 422 | ÷        | 1.000 | 0.836 | accaacTCCCcaaagttgtcctc   |
| <u>V\$MYT1/MYT1.02</u> | MyT1 zinc finger transcription factor involved in primary neurogenesis                                 | 0.88 | 401 - 413 | (-)      | 1.000 | 0.893 | ccaAAGTtgtcct             |
| V\$LEFF/LEF1.01        | TCF/LEF-1, involved in the Wnt signal transduction pathway                                             | 0.86 | 428 - 444 | 3        | 1.000 | 0.880 | ggtcctaCAAAggtaga         |
| V\$RXRF/LXRE.02        | Highly conserved DR1 element selected by LXRbeta/RXR<br>heterodimers                                   | 0.69 | 444 - 468 | 3        | 0.782 | 0.755 | dttgaGATCagagdtdtatdtdgg  |
|                        |                                                                                                        |      |           | Ï        | Î     |       |                           |

| V\$EREF/ER.02           | Canonical palindromic estrogen response element (ERE), IR3 sites                                                                  | 0.81 | 677 - 695   | £        | 1.000 | 0.872 | aaagGTCAgcatggccctt           |
|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------|-------------|----------|-------|-------|-------------------------------|
| VSEREF/EK.02            | Canonical palindromic estrogen response element (EKE), IK3 sites                                                                  | 0.81 | 6// - 695   | Ŀ        | 0./6/ | 0.816 | aaggGCCAtgctgaccttt           |
| V\$ETSF/ELF2.01         | Ets - family member ELF-2 (NERF1a)                                                                                                | 0.90 | 689 - 709   | <u>.</u> | 1.000 | 0.939 | tccgttcaGGAAgcaagggcc         |
| V\$HEAT/HSF1.01         | Heat shock factor 1                                                                                                               | 0.84 | 690 - 714   | £        | 0.857 | 0.842 | gcccttgcttccTGAAcggaggcag     |
| V\$GKLF/GKLF.01         | Gut-enriched Krueppel-like factor                                                                                                 | 0.86 | 691 - 703   | 3        | 1.000 | 0.914 | caggaagcaAGGG                 |
| V\$MYBL/VMYB.05         | v-Myb, variant of AMV v-myb                                                                                                       | 06.0 | 701 - 713   | £        | 1.000 | 0.932 | ctgAACGgaggca                 |
| V\$BRAC/BRACH.01        | Brachyury                                                                                                                         | 0.66 | 742 - 762   | <u>.</u> | 0.750 | 0.790 | ctaccatctAGCTgtgaagtc         |
| V\$BRAC/BRACH.01        | Brachyury                                                                                                                         | 0.66 | 745 - 765   | ÷        | 0.750 | 0.715 | ttcacagctAGATggtagagg         |
| V\$HOXH/MEIS1A HOXA9.01 | Meis1a and Hoxa9 form heterodimeric binding complexes on target DNA                                                               | 0.77 | 746 - 760   | ÷        | 0.760 | 0.770 | TCACagctagatggt               |
| V\$RUSH/SMARCA3.01      | SWI/SNF related, matrix associated, actin dependent regulator of<br>chromatin, subfamily a, member 3                              | 0.96 | 751 - 761   | 0        | 1.000 | 0.963 | taCCATctagc                   |
| V\$ZFIA/ZID.01          | Zinc finger with interaction domain                                                                                               | 0.85 | 755 - 767   | :        | 0.770 | 0.853 | tgCCTCtaccatc                 |
| V\$HESF/HELT.01         | Hey-like bHLH-transcriptional repressor                                                                                           | 0.91 | 789 - 803   | ÷        | 1.000 | 0.925 | atagCACGaggcagg               |
| V\$EBOX/MYCMAX.03       | MYC-MAX binding sites                                                                                                             | 0.91 | 790 - 802   | 3        | 0.982 | 0.917 | dtgcdtCGTGcta                 |
| V\$CHRE/CHREBP MLX.01   | Carbohydrate response element binding protein (CHREBP) and<br>Max-like protein X (MIx) bind as heterodimers to glucose-responsive | 0.83 | 793 - 809   | ÷        | 1.000 | 0.877 | CACGaggcaggattgtg             |
| V\$RXRF/CAR_RXR.01      | Constitutive androstane receptor / retinoid X receptor heterodimer,<br>DR4 sites                                                  | 0.75 | 803 - 827   | :        | 0.750 | 0.764 | aaaggGGACaaaggaggacacaatc     |
| <u>V\$NR2F/HNF4.01</u>  | Hepatic nuclear factor 4, DR1 sites                                                                                               | 0.82 | 805 - 829   | <u>.</u> | 1.000 | 0.870 | ctaaaggggaCAAAggaggacacaa     |
| V\$PERO/PPAR RXR.02     | PPAR/RXR heterodimers, DR1 sites                                                                                                  | 0.69 | 808 - 830   | 3        | 1.000 | 0.693 | gctaaaggggacAAAGgaggaca       |
| V\$LEFF/LEF1.01         | TCF/LEF-1, involved in the Wnt signal transduction pathway                                                                        | 0.86 | 810 - 826   | 3        | 1.000 | 0.867 | aaggggaCAAAggagga             |
| V\$SNAP/PSE.01          | Proximal sequence element (PSE) of RNA polymerase II-transcribed<br>snRNA genes                                                   | 0.75 | 819 - 837   | +        | 0.838 | 0.819 | gTCCCctttagcagaacag           |
| V\$GREF/GRE.01          | Glucocorticoid receptor, C2C2 zinc finger protein binds glucocorticoid dependent to GREs, IR3 sites                               | 0.85 | 829 - 847   | •        | 1.000 | 0.872 | tcagtggtccctGTTCtgc           |
| V\$P53F/P53.02          | Tumor suppressor p53 (5' half site)                                                                                               | 0.91 | 847 - 869   | £        | 1.000 | 0.948 | aggaccacaactgggCATGcctt       |
| V\$SRFF/SRF.02          | Serum response factor                                                                                                             | 0.84 | 847 - 865   | £        | 0.866 | 0.865 | aggacCACAactgggcatg           |
| V\$P53F/P53.01          | Tumor suppressor p53                                                                                                              | 0.73 | 848 - 870   | :        | 1.000 | 0.746 | gaaggCATGcccagttgtggtcc       |
| V\$CP2F/CP2.02          | [LBP-1c (leader-binding protein-1c), LSF (late SV40 factor), CP2, SEF (SA33 enhancer factor)                                      | 0.84 | 855 - 873   | ÷        | 1.000 | 0.843 | aACTGggcatgccttctct           |
| V\$P53F/P53.02          | Tumor suppressor p53 (5' half site)                                                                                               | 0.91 | 858 - 880   | 3        | 1.000 | 0.959 | gacagacagagaaggCATGccca       |
| V\$GREF/ARE.02          | Androgene receptor binding site, IR3 sites                                                                                        | 0.89 | 866 - 884   | £        | 0.956 | 0.897 | ccttctctgtctGTCCcat           |
| V\$CREB/TAXCREB.02      | Tax/CREB complex                                                                                                                  | 0.71 | 871 - 891   | ÷        | 0.750 | 0.721 | tctgtcTGTCccatccccctg         |
| V\$MAZF/MAZ.01          | Myc associated zinc finger protein (MAZ)                                                                                          | 06.0 | 889 - 901   | +        | 1.000 | 006.0 | ctgcGAGGagcag                 |
| V\$AP4R/PARAXIS.01      | Paraxis (TCF15), member of the Twist subfamily of Class B bHLH factors, forms heterodimers with E12                               | 0.86 | 894 - 910   | +        | 0.882 | 0.872 | aggAGCAgatgcaggcc             |
| V\$SRFF/SRF.03          | Serum response factor                                                                                                             | 0.79 | 904 - 922   | -        | 0.868 | 0.875 | agcacctaatAAGGcctgc           |
| V\$SRFF/SRF.03          | Serum response factor                                                                                                             | 0.79 | 905 - 923   | ÷        | 0.754 | 0.851 | caggccttatTAGGtgcta           |
| V\$RBPF/RBPJK.01        | Mammalian transcriptional repressor RBP-Jkappa/CBF1                                                                               | 0.84 | 923 - 937   | £        | 1.000 | 0.843 | atgcTGGGagcctgg               |
| V\$THAP/THAP1.01        | THAP domain containing, apoptosis associated protein                                                                              | 0.90 | 949 - 959   | £        | 1.000 | 0.937 | agtgttGGCAg                   |
| V\$NKXH/HMX3.01         | H6 homeodomain HMX3/Nkx5.1 transcription factor                                                                                   | 0.89 | 959 - 973   | 3        | 1.000 | 0.945 | acatccAAGTgggcc               |
| <u>V\$NR2F/HPF1.01</u>  | HepG2-specific P450 2C factor-1, DR1 sites                                                                                        | 0.78 | 965 - 989   | <u>.</u> | 1.000 | 0.846 | atgaagagcagAAAGtacatccaag     |
| V\$GREF/ARE.01          | Androgene receptor binding site, IR3 sites                                                                                        | 0.80 | 969 - 987   | ÷        | 0.750 | 0.834 | gatgtactttcTGCTcttc           |
| V\$GCMF/GCM1.01         | Glial cells missing homolog 1, chorion-specific transcription factor<br>GCMa                                                      | 0.85 | 1001 - 1011 | £        | 1.000 | 0.925 | gtCCCTcatag                   |
| V\$RXRF/RAR_RXR.01      | Retinoic acid receptor / retinoid X receptor heterodimer, DR1 sites                                                               | 0.78 | 1011 - 1035 | ŧ        | 0.807 | 0.780 | gttatgcccacAGGGcagagagag      |
| V\$YY1F/YY1.02          | Vin and Yang 1 repressor sites                                                                                                    | 0.94 | 1041 - 1059 | -        | 1.000 | 0.945 | agacaCCATctccaaaaga           |
| V\$PAX5/PAX5.03         | PAX5 paired domain protein                                                                                                        | 0.80 | 1052 - 1080 | £        | 0.789 | 0.833 | tggtgTCTCtgtggaatagggtcaggatg |
|                         |                                                                                                                                   |      |             |          |       |       |                               |

|                            |                                                                                                                                                                                          | Ī    |             | •              |       |       |                                  |
|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------------|----------------|-------|-------|----------------------------------|
| V\$SNAP/PSE.02             | Proximal sequence element (PSE) of RNA polymerase III-transcribed<br>genes                                                                                                               | 0.73 | 1058 - 1076 | (-)            | 1.000 | 0.732 | ctgacCCTAttccacagag              |
| <u>V\$RORA/REV-ERBA.01</u> | Orphan nuclear receptor rev-erb alpha (NR1D1)                                                                                                                                            | 0.88 | 1062 - 1084 | ÷              | 1.000 | 0.919 | gtggaataggGTCAggatgtcag          |
| V\$EREF/ER.01              | Estrogen receptor, IR3 sites                                                                                                                                                             | 0.83 | 1068 - 1086 | ŧ              | 1.000 | 0.853 | taggGTCAggatgtcagtg              |
| V\$ETSF/PDEF.01            | Prostate-derived Ets factor                                                                                                                                                              | 0.93 | 1068 - 1088 | £              | 1.000 | 0.937 | tagggtcaGGATgtcagtgtt            |
| V\$MEF3/MEF3.01            | MEF3 binding site, present in skeletal muscle-specific transcriptional enhancers                                                                                                         | 0.89 | 1070 - 1082 | (+             | 1.000 | 0.899 | gggTCAGgatgtc                    |
| V\$TALE/TGIF.01            | TG-interacting factor belonging to TALE class of homeodomain<br>factors                                                                                                                  | 1.00 | 1076 - 1086 | ÷              | 1.000 | 1.000 | ggatGTCAgtg                      |
| <u>V\$CSEN/DREAM.01</u>    | Downstream regulatory element-antagonist modulator,<br>Ca2+-binding protein of the neuronal calcium sensors family that<br>binds DRE (downstream regulatory element) sites as a tetramer | 0.95 | 1078 - 1088 | (+)            | 1.000 | 0.964 | atGTCAgtgtt                      |
| V\$FKHD/FREAC4.01          | Fork head related activator-4 (FOXD1)                                                                                                                                                    | 0.78 | 1080 - 1096 | :              | 1.000 | 0.824 | cctgagaaAACActgac                |
| V\$PAX6/PAX6.04            | PAX6 paired domain binding site                                                                                                                                                          | 0.83 | 1095 - 1113 | £              | 0.944 | 0.856 | ggtCCCCaagtgtctggct              |
| V\$NKXH/HMX3.01            | H6 homeodomain HMX3/Nkx5.1 transcription factor                                                                                                                                          | 0.89 | 1096 - 1110 | +              | 1.000 | 0.890 | gtccccAAGTgtctg                  |
| V\$EBOX/USF.04             | Upstream stimulating factor 1/2                                                                                                                                                          | 06.0 | 1098 - 1110 | -              | 0.851 | 0.935 | cagaCACTtgggg                    |
| V\$AP4R/TH1E47.01          | Thing1/E47 heterodimer, TH1 bHLH member specific expression in a variety of embryonic tissues                                                                                            | 0.93 | 1102 - 1118 | (-)            | 1.000 | 0.949 | ataggagCCAGacactt                |
| V\$SMAD/SMAD3.01           | Smad3 transcription factor involved in TGF-beta signaling                                                                                                                                | 0.99 | 1106 - 1114 | ÷              | 1.000 | 0.994 | GTCTggctc                        |
| V\$GATA/GATA1.01           | GATA-binding factor 1                                                                                                                                                                    | 0.96 | 1111 - 1123 | :              | 1.000 | 0.968 | ctgtGATAggagc                    |
| <u>V\$EVI1/EVI1.05</u>     | Ecotropic viral integration site 1 encoded factor, amino-terminal zinc finger domain                                                                                                     | 0.81 | 1121 - 1137 | (+             | 0.750 | 0.813 | cagagaaCATActttcc                |
| V\$GREF/PRE.01             | Progesterone receptor binding site, IR3 sites                                                                                                                                            | 0.84 | 1122 - 1140 | :              | 1.000 | 0.904 | tccggaaagtaTGTTctct              |
| V\$ETSF/ELK1.02            | Elk-1                                                                                                                                                                                    | 0.91 | 1125 - 1145 | <u>.</u>       | 1.000 | 0.955 | ccctgtccGGAAagtatgttc            |
| V\$HOXF/NANOG.01           | Homeobox transcription factor Nanog                                                                                                                                                      | 0.94 | 1145 - 1161 | :              | 1.000 | 0.952 | cactgAATGgcgccagc                |
| V\$CAAT/NFY.02             | Nuclear factor Y (Y-box binding factor)                                                                                                                                                  | 0.83 | 1148 - 1162 | ÷              | 0.750 | 0.833 | ggcgCCATtcagtga                  |
| V\$SORY/HBP1.01            | HMG box-containing protein 1                                                                                                                                                             | 0.86 | 1148 - 1164 | :              | 1.000 | 0.880 | gttcactgAATGgcgcc                |
| V\$STAT/STAT5.01           | STAT5: signal transducer and activator of transcription 5                                                                                                                                | 0.89 | 1149 - 1167 | :              | 0.845 | 068.0 | ccagTTCActgaatggcgc              |
| V\$STAT/STAT5.01           | STAT5: signal transducer and activator of transcription 5                                                                                                                                | 0.89 | 1151 - 1169 | ÷              | 0.845 | 0.890 | gccaTTCAgtgaactgggc              |
| V\$NR2F/TR2.01             | Nuclear hormone receptor TR2, DR5 binding sites                                                                                                                                          | 0.76 | 1154 - 1178 | :              | 0.829 | 0.775 | gaaggaaatgcccaGTTCactgaat        |
| V\$PAX6/PAX6.04            | PAX6 paired domain binding site                                                                                                                                                          | 0.83 | 1154 - 1172 | :              | 0.777 | 0.831 | aatGCCCagttcactgaat              |
| V\$NFKB/CREL.01            | c-Rel                                                                                                                                                                                    | 0.91 | 1164 - 1176 | +              | 1.000 | 0.969 | ctgggcatTTCCt                    |
| V\$BRAC/BRACH.01           | Brachyury                                                                                                                                                                                | 0.66 | 1190 - 1210 | <u>.</u>       | 0.750 | 0.677 | tttgcagccAGGAgttaggtg            |
| V\$PAX6/PAX4 PD.01         | PAX4 paired domain binding site                                                                                                                                                          | 0.91 | 1192 - 1210 | <u>-</u>       | 0.965 | 0.916 | tttGCAGccaggagttagg              |
| V\$HEAT/HSF2.02            | Heat shock factor 2                                                                                                                                                                      | 0.95 | 1216 - 1240 | -              | 1.000 | 0.965 | ttgctaggttccAGAAaactcctag        |
| V\$HEAT/HSF1.01            | Heat shock factor 1                                                                                                                                                                      | 0.84 | 1217 - 1241 | £              | 0.952 | 0.878 | taggagttttctGGAAcctagcaac        |
| V\$STAT/STAT1.01           | Signal transducer and activator of transcription 1                                                                                                                                       | 0.77 | 1218 - 1236 | <u>.</u>       | 0.767 | 0.779 | taggttccaGAAAactcct              |
| <u>V\$STAT/STAT.01</u>     | Signal transducers and activators of transcription                                                                                                                                       | 0.87 | 1220 - 1238 | £              | 1.000 | 0.895 | gagttttctGGAAcctagc              |
| V\$XBBF/RFX1.01            | X-box binding protein RFX1                                                                                                                                                               | 0.89 | 1227 - 1245 | <del>(</del> + | 1.000 | 0.942 | ctggaacctaGCAActcac              |
| V\$ETSF/CETS1P54.01        | c-Ets-1(p54)                                                                                                                                                                             | 0.92 | 1239 - 1259 | ÷              | 0.901 | 0.920 | aactcaCAGGaaacaatggaa            |
| V\$CLOX/CDPCR3.01          | Cut-like homeodomain protein                                                                                                                                                             | 0.73 | 1240 - 1258 | ÷              | 1.000 | 0.730 | actcacaggaaacaATGGa              |
| <u>V\$FKHD/FKHRL1.01</u>   | Fkh-domain factor FKHRL1 (FOXO)                                                                                                                                                          | 0.83 | 1242 - 1258 | +              | 1.000 | 0.846 | tcacaggaAACAatgga                |
| V\$SORY/SOX5.01            | Sox-5                                                                                                                                                                                    | 0.87 | 1246 - 1262 | ÷              | 1.000 | 0.988 | agga <mark>aaCAAT</mark> ggaaact |
| V\$XBBF/RFX1.02            | X-box binding protein RFX1                                                                                                                                                               | 06.0 | 1246 - 1264 | +              | 0.881 | 0.919 | aggaaacaatgGAAActtg              |
| V\$IRFF/ISRE.01            | Interferon-stimulated response element                                                                                                                                                   | 0.81 | 1247 - 1267 | +              | 1.000 | 0.849 | ggaaacaatgGAAActtgggt            |
| V\$PRDF/BLIMP1.01          | Transcriptional repressor B lymphocyte-induced maturation<br>protein-1 (Blimp-1, prdm1)                                                                                                  | 0.81 | 1251 - 1269 | <del>()</del>  | 1.000 | 0.810 | acaatgGAAActtgggttt              |
|                            |                                                                                                                                                                                          |      |             |                |       |       |                                  |

| <u>V\$NFAT/NFAT5.01</u> | Nuclear factor of activated T-cells 5                                                                                                                   | 0.83 | 1253 - 1271 | £        | 1.000 | 0.842 | aatGGAAacttgggttttgt      |
|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------------|----------|-------|-------|---------------------------|
| <u>V\$AP1F/AP1.02</u>   | Activator protein 1                                                                                                                                     | 0.87 | 1290 - 1300 | C        | 1.000 | 0.905 | ltttGAGTgatg              |
| V\$EKLF/EKLF.01         | Erythroid krueppel like factor (EKLF)                                                                                                                   | 0.89 | 1294 - 1310 | £        | 1.000 | 0.911 | actcaaaGGGTtttcct         |
| V\$NFAT/NFAT.01         | Nuclear factor of activated T-cells                                                                                                                     | 0.95 | 1294 - 1312 | 3        | 1.000 | 0.976 | tgaGGAAaaccctttgagt       |
| V\$GKLF/GKLF.02         | Gut-enriched Krueppel-like factor                                                                                                                       | 0.96 | 1295 - 1307 | £        | 1.000 | 0.986 | ctcAAAGggtttt             |
| V\$NFKB/CREL.01         | c-Rel                                                                                                                                                   | 0.91 | 1298 - 1310 | £        | 1.000 | 0.970 | aaaggttTTCCt              |
| V\$STAT/STAT.01         | Signal transducers and activators of transcription                                                                                                      | 0.87 | 1300 - 1318 | 3        | 1.000 | 0.882 | tgcctttgaGGAAaaccct       |
| V\$BCL6/BCL6.01         | POZ/zinc finger protein, transcriptional repressor, translocations<br>observed in diffuse large cell lymphoma                                           | 0.76 | 1303 - 1319 | £        | 1.000 | 0.762 | gttTTCCtcaaaggcac         |
| V\$LEFF/LEF1.02         | TCF/LEF-1, involved in the Wnt signal transduction pathway                                                                                              | 0.94 | 1304 - 1320 | £        | 1.000 | 0.943 | ttttcctCAAggcaca          |
| V\$GKLF/GKLF.02         | Gut-enriched Krueppel-like factor                                                                                                                       | 0.96 | 1309 - 1321 | ŧ        | 1.000 | 0.970 | ctcAAGgcacac              |
| V\$MOKF/MOK2.02         | Ribonucleoprotein associated zinc finger protein MOK-2 (human)                                                                                          | 0.98 | 1309 - 1329 | <u>.</u> | 1.000 | 0.991 | aagtatgtgtgCCTTtgag       |
| V\$MYBL/CMYB.02         | c-Myb, important in hematopoesis, cellular equivalent to avian<br>myoblastosis virus oncogene v-myb                                                     | 96.0 | 1325 - 1337 | Э        | 1.000 | 0.963 | aaTAACtgaagta             |
| V\$MEF2/MEF2.06         | Myocyte-specific enhancer factor 2                                                                                                                      | 0.87 | 1327 - 1349 | <u>.</u> | 1.000 | 0.898 | ggtggagagaaAAATaactgaag   |
| V\$HNF1/HNF1.01         | Hepatic nuclear factor 1                                                                                                                                | 0.80 | 1331 - 1347 | Ŧ        | 1.000 | 0.814 | aGTTAtttttctctcca         |
| <u>V\$E2FF/E2F.01</u>   | E2F, involved in cell cycle regulation, interacts with Rb p107 protein                                                                                  | 0.75 | 1334 - 1350 | <u>.</u> | 1.000 | 0.790 | gggtggagaGAAAaata         |
| V\$DICE/DICE.01         | Downstream Immunoglobulin Control Element, interacting factor:<br>BEN (also termed Mus-TRD1 and WBSCR11)                                                | 0.80 | 1337 - 1351 | ÷        | 1.000 | 0.802 | ttttCTCTccaccca           |
| V\$HOXF/GSH2.01         | Homeodomain transcription factor Gsh-2                                                                                                                  | 0.95 | 1342 - 1358 | 3        | 1.000 | 0.976 | aggcTAATgggtggaga         |
| V\$PDX1/ISL1.01         | Pancreatic and intestinal lim-homeodomain factor                                                                                                        | 0.82 | 1343 - 1363 | 3        | 1.000 | 0.828 | gccccaggcTAATgggtggag     |
| V\$AP2F/AP2.01          | Activator protein 2                                                                                                                                     | 06.0 | 1352 - 1366 | £        | 1.000 | 0.975 | ttaGCCTggggdttc           |
| <u>V\$AP2F/AP2.02</u>   | Activator protein 2 alpha                                                                                                                               | 0.92 | 1352 - 1366 | <u>.</u> | 0.905 | 0.921 | gaaGCCCcaggctaa           |
| V\$CP2F/CP2.02          | LBP-1c (leader-binding protein-1c), LSF (late SV40 factor), CP2, SEF (SAA3 enhancer factor)                                                             | 0.84 | 1355 - 1373 | £        | 0.833 | 0.853 | gCCTGgggdttcctggaaa       |
| V\$ETSF/ETS1.01         | c-Ets-1 binding site                                                                                                                                    | 0.92 | 1355 - 1375 | 3        | 1.000 | 0.937 | aatttccaGGAAgccccaggc     |
| V\$NFKB/CREL.01         | c-Rel                                                                                                                                                   | 0.91 | 1356 - 1368 | £        | 1.000 | 0.937 | cctggggcTTCCt             |
| V\$HEAT/HSF1.01         | Heat shock factor 1                                                                                                                                     | 0.84 | 1357 - 1381 | £        | 0.952 | 0.869 | ctggggcttcctGGAAattttcagt |
| V\$STAT/STAT.01         | Signal transducers and activators of transcription                                                                                                      | 0.87 | 1358 - 1376 | :        | 1.000 | 0.967 | aaatttccaGGAAgcccca       |
| V\$STAT/STAT.01         | Signal transducers and activators of transcription                                                                                                      | 0.87 | 1360 - 1378 | +        | 1.000 | 0.951 | gggcttcctGGAAattttc       |
| <u>V\$BCL6/BCL6.02</u>  | POZ/zinc finger protein, transcriptional repressor, translocations<br>observed in diffuse large cell lymphoma                                           | 0.77 | 1361 - 1377 | £        | 0.800 | 0.888 | ggcttccTGGAaatttt         |
| <u>V\$SORY/HMGIY.01</u> | HMGI(Y) high-mobility-group protein I (Y), architectural transcription factor organizing the framework of a nuclear protein-DNA transcriptional complex | 0.92 | 1363 - 1379 | 0        | 1.000 | 0.944 | tgaaAATTtccaggaag         |
| V\$NFAT/NFAT5.01        | Nuclear factor of activated T-cells 5                                                                                                                   | 0.83 | 1366 - 1384 | £        | 1.000 | 0.853 | cctGGAAattttcagtcaa       |
| <u>V\$SORY/HMGIY.01</u> | HMGI(Y) high-mobility-group protein I (Y), architectural transcription factor organizing the framework of a nuclear protein-DNA transcriptional complex | 0.92 | 1368 - 1384 | ÷        | 1.000 | 0.954 | tggaAATTttcagtcaa         |
| V\$FKHD/XFD3.01         | Xenopus fork head domain factor 3 (FoxA2a)                                                                                                              | 0.82 | 1375 - 1391 | £        | 0.782 | 0.869 | tttcagtcAAAAaagg          |
| V\$EGRF/EGR2.01         | Egr-2/Krox-20 early growth response gene product                                                                                                        | 0.79 | 1395 - 1411 | £        | 0.766 | 0.834 | ccctGGGTaggtggtaa         |
| V\$HOXF/HOXB9.01        | Abd-B-like homeodomain protein Hoxb-9                                                                                                                   | 0.88 | 1402 - 1418 | £        | 1.000 | 0.927 | taggtggTAAAgacaca         |
| V\$FKHD/FREAC3.01       | Fork head related activator-3 (FOXC1)                                                                                                                   | 0.84 | 1403 - 1419 | +        | 1.000 | 0.855 | aggtgGTAAagacacac         |
| V\$EKLF/BKLF.01         | Basic krueppel-like factor (KLF3)                                                                                                                       | 0.95 | 1407 - 1423 | <u>.</u> | 1.000 | 0.953 | tgGGGTgtgtctttacc         |
| V\$SP1F/TIEG.01         | TGFbeta-inducible early gene (TIEG) / Early growth response gene<br>alpha (EGRalpha)                                                                    | 0.83 | 1411 - 1425 | 3        | 1.000 | 1.000 | gctGGGGtgtgtctt           |
| V\$EKLF/KKLF.01         | Kidney-enriched kruppel-like factor, KLF15                                                                                                              | 0.91 | 1412 - 1428 | <u>.</u> | 1.000 | 0.943 | ggagctGGGGtgtgtct         |
| <u>V\$P53F/P53.05</u>   | Tumor suppressor p53                                                                                                                                    | 0.78 | 1417 - 1439 | 3        | 1.000 | 0.802 | cacaCAAGcctggagctgggggtg  |
|                         |                                                                                                                                                         |      |             |          |       |       |                           |
| V\$AHRR/AHRARNT.02        | Aryl hydrocarbon / Arnt heterodimers, fixed core                                                       | 0.77 | 1425 - 1449 | ÷        | 0.750 | 0.784 | ctccaggcttGTGTgtctgcccctg |
|---------------------------|--------------------------------------------------------------------------------------------------------|------|-------------|----------|-------|-------|---------------------------|
| V\$ZNFP/SZF1.01           | SZF1, hematopoietic progenitor-restricted KRAB-zinc finger protein                                     | 0.82 | 1446 - 1470 | +        | 0.875 | 0.824 | cctGGGAtgcagcagggttgcctca |
| <u>V\$PAX6/PAX4 PD.01</u> | PAX4 paired domain binding site                                                                        | 0.91 | 1454 - 1472 | ÷        | 0.965 | 0.935 | gcaGCAGggttgcctcaat       |
| <u>V\$NF1F/NF1.02</u>     | Nuclear factor 1 (CTF1)                                                                                | 0.81 | 1460 - 1480 | C        | 1.000 | 0.854 | tcacTGGCattgaggcaaccc     |
| <u>V\$NF1F/NF1.03</u>     | Non-palindromic nuclear factor I binding sites                                                         | 0.92 | 1460 - 1480 | ÷        | 1.000 | 0.962 | gggttgcctcaatGCCAgtga     |
| V\$AP1R/TCF11MAFG.01      | TCF11/MafG heterodimers, binding to subclass of AP1 sites                                              | 0.81 | 1469 - 1493 | ÷        | 1.000 | 0.861 | caatgccagTGACttggcaagaaca |
| V\$XBBF/MIF1.01           | MIBP-1 / RFX1 complex                                                                                  | 0.76 | 1473 - 1491 | <u>.</u> | 0.800 | 0.782 | ttcttgccaaGTCActggc       |
| V\$GREF/GRE.01            | Glucocorticoid receptor, C2C2 zinc finger protein binds glucocorticoid dependent to GREs, IR3 sites    | 0.85 | 1486 - 1504 | :        | 1.000 | 0.905 | tcagtctcaggtGTTCttg       |
| V\$MYOD/E47.02            | E47 homodimer                                                                                          | 0.93 | 1486 - 1502 | <u>.</u> | 1.000 | 0.953 | agtctcaGGTGttcttg         |
| V\$AP4R/PARAXIS.01        | Paraxis (TCF15), member of the Twist subfamily of Class B bHLH<br>factors, forms heterodimers with E12 | 0.86 | 1487 - 1503 | £        | 1.000 | 0.863 | aagAACAcctgagactg         |
| V\$ETSF/GABP.01           | GABP: GA binding protein                                                                               | 0.86 | 1503 - 1523 | ÷        | 1.000 | 0.897 | gaggctctGGAAgagccttgt     |
| V\$MOKF/MOK2.02           | Ribonucleoprotein associated zinc finger protein MOK-2 (human)                                         | 0.98 | 1505 - 1525 | ÷        | 1.000 | 066.0 | ggctctggaagagCCTTgtct     |
| <u>V\$P53F/P53.05</u>     | Tumor suppressor p53                                                                                   | 0.78 | 1515 - 1537 | <u>.</u> | 0.760 | 0.798 | atacCCAGgttcagacaaggctc   |
| V\$MOKF/MOK2.01           | Ribonucleoprotein associated zinc finger protein MOK-2 (mouse)                                         | 0.74 | 1516 - 1536 | £        | 0.750 | 0.795 | agccttgtctgaaCCTGggta     |
| V\$FKHD/FREAC4.01         | Fork head related activator-4 (FOXD1)                                                                  | 0.78 | 1529 - 1545 | ÷        | 0.750 | 0.808 | cctgggtaTACAaagtg         |
| V\$HOXC/HOX_PBX.01        | HOX/PBX binding sites                                                                                  | 0.81 | 1557 - 1573 | +        | 1.000 | 0.893 | ggacTGATgtatgtgaa         |
| V\$AP1R/NFE2.01           | NF-E2 p45                                                                                              | 0.85 | 1561 - 1585 | •        | 1.000 | 0.868 | gacccactCTGAttcacatacatca |
| V\$OCT1/OCT.01            | Octamer binding site (OCT1/OCT2)                                                                       | 0.78 | 1564 - 1578 | £        | 0.795 | 0.867 | tgtATGTgaatcaga           |
| V\$PBXC/PBX1 MEIS1.02     | Binding site for a Pbx1/Meis1 heterodimer                                                              | 0.77 | 1564 - 1580 | <u> </u> | 1.000 | 0.845 | actcTGATtcacataca         |
| V\$AP1F/AP1.01            | Activator protein 1                                                                                    | 0.94 | 1568 - 1578 | +        | 0.880 | 0.961 | tgtgAATCaga               |
| V\$GF11/GF11.02           | Growth factor independence 1                                                                           | 06.0 | 1569 - 1583 | +        | 1.000 | 0.905 | gtgAATCagagtggg           |
| V\$AP1R/BACH1.01          | BTB/PO2-bZIP transcription factor BACH1 forms heterodimers with<br>the small Maf protein family        | 0.82 | 1579 - 1603 | ÷        | 1.000 | 0.844 | gtgggtctaTGAGtgattcagatcg |
| V\$CREB/TAXCREB.02        | Tax/CREB complex                                                                                       | 0.71 | 1580 - 1600 | Ŀ        | 0.750 | 0.718 | tctgaaTCACtcatagaccca     |
| V\$AP1R/NFE2.01           | NF-E2 p45                                                                                              | 0.85 | 1583 - 1607 | 3        | 1.000 | 0.868 | cagacgatCTGAatcactcatagac |
| V\$AP1F/AP1.02            | Activator protein 1                                                                                    | 0.87 | 1586 - 1596 | +        | 1.000 | 006.0 | tatGAGTgatt               |
| V\$AP1F/AP1.01            | Activator protein 1                                                                                    | 0.94 | 1590 - 1600 | +        | 0.833 | 0.950 | agtgATTCaga               |
| <u>V\$EVI1/EVI1.06</u>    | Ecotropic viral integration site 1 encoded factor, amino-terminal zinc finger domain                   | 0.83 | 1622 - 1638 | Э        | 1.000 | 0.860 | tggacaAGATggtgctc         |
| V\$GATA/GATA1.01          | GATA-binding factor 1                                                                                  | 0.96 | 1635 - 1647 | <u>.</u> | 1.000 | 0.961 | gcgtGATActgga             |
| V\$HOXC/HOX PBX.01        | HOX/PBX binding sites                                                                                  | 0.81 | 1648 - 1664 | ÷        | 0.944 | 0.839 | actgGGATgaatgtgtg         |
| V\$SORY/HBP1.01           | HMG box-containing protein 1                                                                           | 0.86 | 1649 - 1665 | ÷        | 1.000 | 0.878 | ctgggatgAATGtgtgg         |
| V\$PAX6/PAX6.04           | PAX6 paired domain binding site                                                                        | 0.83 | 1650 - 1668 | <u>.</u> | 1.000 | 0.840 | octCCAC acattcatcoca      |
| V\$TEAF/TEF1.01           | TEF-1 related muscle factor                                                                            | 0.84 | 1651 - 1663 | <u>.</u> | 1.000 | 0.866 | acaCATTcatccc             |
| V\$HOXF/NANOG.01          | Homeobox transcription factor Nanog                                                                    | 0.94 | 1652 - 1668 | £        | 1.000 | 0.964 | ggatgAATGtgtggagg         |
| V\$NFAT/NFAT.01           | Nuclear factor of activated T-cells                                                                    | 0.95 | 1664 - 1682 | +        | 1.000 | 0.994 | ggaGGAAaatgtagaaca        |
| V\$GREF/ARE.02            | Androgene receptor binding site, IR3 sites                                                             | 0.89 | 1675 - 1693 | <u> </u> | 1.000 | 0.911 | accagcctatatGTTCtac       |
| V\$AP1R/TCF11MAFG.01      | TCF11/MafG heterodimers, binding to subclass of AP1 sites                                              | 0.81 | 1692 - 1716 | +        | 0.777 | 0.827 | gtgagtgtgTGAAaaagcacataag |
| V\$FKHD/XFD3.01           | Xenopus fork head domain factor 3 (FoxA2a)                                                             | 0.82 | 1695 - 1711 | ÷        | 0.782 | 0.828 | agtgtgtgAAAAagcac         |
| V\$GREF/ARE.02            | Androgene receptor binding site, IR3 sites                                                             | 0.89 | 1719 - 1737 | <u>.</u> | 0.869 | 0.926 | ctcacacattttGTGCtag       |
| V\$ETSF/SPI1 PU1.02       | Spleen focus forming virus (SFFV) proviral integration oncogene<br>Spi1/transcription factor PU.1      | 96.0 | 1729 - 1749 | £        | 1.000 | 0.972 | atgtgtgaGGAActgggtgtg     |
| V\$SP1F/TIEG.01           | TGFbeta-inducible early gene (TIEG) / Early growth response gene<br>alpha (EGRalpha)                   | 0.83 | 1739 - 1753 | £        | 0.750 | 0.878 | aacTGGGtgtgtgat           |
| V\$CAAT/NFY.01            | Nuclear factor Y (Y-box binding factor)                                                                | 06.0 | 1746 - 1760 | 3        | 1.000 | 0.928 | cacaCCAAtcacaca           |

|                         |                                                                                                                               | ĺ    |                            |          |       |       |                                             |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------|------|----------------------------|----------|-------|-------|---------------------------------------------|
| V\$HOXC/PBX1.01         | Homeo domain factor Pbx-1                                                                                                     | 0.78 | 1746 - 1762                | £        | 1.000 | 0.815 | tgtgtGATTggtgtgtg                           |
| V\$SMAD/SMAD3.01        | Smad3 transcription factor involved in TGF-beta signaling                                                                     | 0.99 | 1762 - 1770                | Ŀ        | 1.000 | 1.000 | GTCTggatc                                   |
| V\$RBPF/RBPJK.02        | Mammalian transcriptional repressor RBP-Jkappa/CBF1                                                                           | 0.94 | 1783 - 1797                | £        | 1.000 | 0.950 | tcagTGGGaagagat                             |
| V\$HMTB/MTBF.01         | Muscle-specific Mt binding site                                                                                               | 06.0 | 1794 - 1802                | ÷        | 1.000 | 0.900 | agatATTTg                                   |
| V\$ZNFP/ZBRK1.01        | Transcription factor with 8 central zinc fingers and an N-terminal<br>KRAB domain                                             | 0.77 | 1800 - 1824                | <u>.</u> | 0.898 | 0.796 | ctcaggtaACAGagctttgtggcaa                   |
| <u>V\$NR2F/TR4.02</u>   | TR4 homodimer, DR1 site                                                                                                       | 0.75 | 1803 - 1827                | <u>.</u> | 1.000 | 0.761 | caactcAGGTaacagagctttgtgg                   |
| <u>V\$CREB/E4BP4.01</u> | E4BP4, bZIP domain, transcriptional repressor                                                                                 | 0.80 | 1809 - 1829                | <u>.</u> | 1.000 | 0.822 | tccaactcagGTAAcagagct                       |
| V\$PARF/VBP.01          | PAR-type chicken vitellogenin promoter-binding protein                                                                        | 0.86 | 1812 - 1828                | <u>.</u> | 1.000 | 0.890 | ccaactcagGTAAcaga                           |
| V\$ZFHX/AREB6.01        | AREB6 (Atp1a1 regulatory element binding factor 6)                                                                            | 0.93 | 1813 - 1825                | ŧ        | 1.000 | 0.955 | ctgttACCTgagt                               |
| V\$STAT/STAT1.01        | Signal transducer and activator of transcription 1                                                                            | 0.77 | 1825 - 1843                | ŧ        | 1.000 | 0.778 | ttggatcccGGAAcccaca                         |
| V\$ETSF/ELK1.02         | Elk-1                                                                                                                         | 0.91 | 1826 - 1846                | ŧ        | 1.000 | 0.950 | tggatcccGGAAcccacatgc                       |
| V\$GCMF/GCM1.01         | Glial cells missing homolog 1, chorion-specific transcription factor<br>GCMa                                                  | 0.85 | 1836 - 1846                | ÷        | 0.789 | 0.902 | aaCCCAcatgc                                 |
| V\$PDX1/ISL1.01         | Pancreatic and intestinal lim-homeodomain factor<br>Homeohov transminion factor Geh-1                                         | 0.82 | 1848 - 1868<br>1850 - 1866 | 33       | 1.000 | 0.883 | tttggaaagTAATggtctcct<br>toosagTAATggtctcct |
| V\$NFAT/NFAT5.01        | Nuclear factor of activated T-cells 5                                                                                         | 0.83 | 1850 - 1868                | 2        | 1.000 | 0.865 | tttGGAAagtaatggtctc                         |
| V\$RXRF/LXRE.02         | Highly conserved DR1 element selected by LXRbeta/RXR<br>heterodimers                                                          | 0.69 | 1861 - 1885                | C        | 0.782 | 0.720 | gtggaGCTCagaggtgttttggaaa                   |
| <u>V\$NR2F/TR4.01</u>   | TR4 homodimer, DR1 site                                                                                                       | 0.72 | 1863 - 1887                | <u>.</u> | 1.000 | 0.722 | atgtgga <mark>gctcagAGGTgtttt</mark> gga    |
| V\$MITF/MIT.01          | MIT (microphthalmia transcription factor) and TFE3                                                                            | 0.81 | 1878 - 1896                | £        | 1.000 | 0.820 | agctccaCATGtgcactgg                         |
| V\$HESF/DEC2.01         | Basic helix-loop-helix protein known as Dec2 or Sharp2                                                                        | 0.96 | 1880 - 1894                | -        | 0.903 | 0.965 | agtgcaCATGtggag                             |
| <u>V\$RP58/RP58.01</u>  | Zinc finger protein RP58 (ZNF238), associated preferentially with heterochromatin                                             | 0.84 | 1880 - 1892                | -        | 0.757 | 0.845 | tgcaCATGtggag                               |
| V\$PAX6/PAX4 PD.01      | PAX4 paired domain binding site                                                                                               | 0.91 | 1887 - 1905                | ÷        | 1.000 | 0.917 | tgtGCACtgggggcatgtat                        |
| V\$P53F/P53.02          | Tumor suppressor p53 (5' half site)                                                                                           | 0.91 | 1895 - 1917                | -        | 1.000 | 0.919 | gcgtgcgcctacataCATGcccc                     |
| <u>V\$TBPF/ATATA.01</u> | Avian C-type LTR TATA box                                                                                                     | 0.78 | 1900 - 1916                | ÷        | 0.750 | 0.781 | atgtatgTAGGcgcacg                           |
| <u>V\$GZF1/GZF1.01</u>  | GDNF-inducible zinc finger protein 1 (ZNF336)                                                                                 | 0.73 | 1902 - 1914                | <u>.</u> | 1.000 | 0.878 | TGCGcctacatac                               |
| V\$AHRR/AHRARNT.01      | Aryl hydrocarbon receptor / Arnt heterodimers                                                                                 | 0.92 | 1903 - 1927                | (-)      | 1.000 | 0.926 | gcgcgcgcgcgCGTGcgcctacata                   |
| <u>V\$NRF1/NRF1.01</u>  | Nuclear respiratory factor 1 (NRF1), bZIP transcription factor that<br>lacts on nuclear genes encoding mitochondrial proteins | 0.78 | 1906 - 1922                | -        | 1.000 | 0.941 | cgcGCGCgtgcgcctac                           |
| <u>V\$NRF1/NRF1.01</u>  | Nuclear respiratory factor 1 (NRF1), bZIP transcription factor that<br>lacts on nuclear genes encoding mitochondrial proteins | 0.78 | 1907 - 1923                | £        | 1.000 | 0.912 | tagGCGCacgcgcgc                             |
| <u>V\$ZF5F/ZF5.01</u>   | Zinc finger / POZ domain transcription factor                                                                                 | 0.95 | 1907 - 1917                | <u>.</u> | 1.000 | 0.960 | gcgtGCGCcta                                 |
| <u>V\$NRF1/NRF1.01</u>  | Nuclear respiratory factor 1 (NRF1), bZIP transcription factor that<br>lacts on nuclear genes encoding mitochondrial proteins | 0.78 | 1908 - 1924                | •        | 1.000 | 0.847 | cgcGCGCgcgtgcgcct                           |
| V\$HESF/HELT.01         | Hey-like bHLH-transcriptional repressor                                                                                       | 0.91 | 1909 - 1923                | ÷        | 1.000 | 0.957 | ggcgCACGcgcgcgc                             |
| <u>V\$NRF1/NRF1.01</u>  | Nuclear respiratory factor 1 (NRF1), bZIP transcription factor that<br>lacts on nuclear genes encoding mitochondrial proteins | 0.78 | 1909 - 1925                | ÷        | 0.750 | 0.843 | <u> მეინიტიეიეიე</u>                        |
| <u>V\$NRF1/NRF1.01</u>  | Nuclear respiratory factor 1 (NRF1), bZIP transcription factor that<br>lacts on nuclear genes encoding mitochondrial proteins | 0.78 | 1910 - 1926                | <u>.</u> | 1.000 | 0.838 | cgcGCGCgcgcgtgcgc                           |
| <u>V\$NRF1/NRF1.01</u>  | Nuclear respiratory factor 1 (NRF1), bZIP transcription factor that<br>lacts on nuclear genes encoding mitochondrial proteins | 0.78 | 1911 - 1927                | £        | 0.750 | 0.838 | cgcACGCgcgcgcgc                             |
| <u>V\$NRF1/NRF1.01</u>  | Nuclear respiratory factor 1 (NRF1), bZIP transcription factor that<br>acts on nuclear genes encoding mitochondrial proteins  | 0.78 | 1912 - 1928                | C        | 1.000 | 0.936 | cgcGCGCgcgcgcgtgc                           |
| <u>V\$NRF1/NRF1.01</u>  | Nuclear respiratory factor 1 (NRF1), bZIP transcription factor that<br>lacts on nuclear genes encoding mitochondrial proteins | 0.78 | 1913 - 1929                | ÷        | 1.000 | 0.936 | cacGCGCgcgcgcgcgc                           |
| V\$ZF5F/ZF5.01          | Zinc finger / POZ domain transcription factor                                                                                 | 0.95 | 1913 - 1923                | :        | 1.000 | 0.966 | gcgcGCGcgtg                                 |

| <u>V\$NRF1/NRF1.01</u> | Nuclear respiratory factor 1 (NRF1), bZIP transcription factor that<br>acts on nuclear genes encoding mitochondrial proteins  | 0.78 | 1914 - 1930 | Э             | 1.000 | 0.942 | cgcGCGCgcgcgcgcgt        |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------|------|-------------|---------------|-------|-------|--------------------------|
| <u>V\$NRF1/NRF1.01</u> | Nuclear respiratory factor 1 (NRF1), bZIP transcription factor that<br>acts on nuclear genes encoding mitochondrial proteins  | 0.78 | 1915 - 1931 | £             | 1.000 | 0.942 | იეიმიეთევიეიეი<br>იქიე   |
| V\$ZF5F/ZF5.01         | Zinc finger / POZ domain transcription factor                                                                                 | 0.95 | 1915 - 1925 | :             | 1.000 | 0.968 | gcgcGCgcg                |
| <u>V\$NRF1/NRF1.01</u> | Nuclear respiratory factor 1 (NRF1), bZIP transcription factor that<br>acts on nuclear genes encoding mitochondrial proteins  | 0.78 | 1916 - 1932 | •             | 1.000 | 0.933 | tgcGCGCgcgcgcgc          |
| V\$ZF5F/ZF5.01         | Zinc finger / POZ domain transcription factor                                                                                 | 0.95 | 1916 - 1926 | ÷             | 1.000 | 0.968 | gcgcGCgcg                |
| <u>V\$NRF1/NRF1.01</u> | Nuclear respiratory factor 1 (NRF1), bZIP transcription factor that acts on nuclear genes encoding mitochondrial proteins     | 0.78 | 1917 - 1933 | ÷             | 1.000 | 0.942 | cgcGCGcgcgcgcac          |
| V\$ZF5F/ZF5.01         | Zinc finger / POZ domain transcription factor                                                                                 | 0.95 | 1917 - 1927 | -             | 1.000 | 0.968 | gcgcGCGCgcg              |
| <u>V\$NRF1/NRF1.01</u> | Nuclear respiratory factor 1 (NRF1), bZIP transcription factor that<br>acts on nuclear genes encoding mitochondrial proteins  | 0.78 | 1918 - 1934 | (-)           | 1.000 | 006.0 | tgtGCGCgcgcgcgcgc        |
| V\$ZF5F/ZF5.01         | Zinc finger / POZ domain transcription factor                                                                                 | 0.95 | 1918 - 1928 | ÷             | 1.000 | 0.968 | მიმიცევიშ                |
| <u>V\$NRF1/NRF1.01</u> | Nuclear respiratory factor 1 (NRF1), bZIP transcription factor that<br>lacts on nuclear genes encoding mitochondrial proteins | 0.78 | 1919 - 1935 | ÷             | 1.000 | 0.942 | cgcGCGCgcgcgcacac        |
| V\$ZF5F/ZF5.01         | Zinc finger / POZ domain transcription factor                                                                                 | 0.95 | 1919 - 1929 | <u>.</u>      | 1.000 | 0.968 | gcgcGCgcg                |
| <u>V\$NRF1/NRF1.01</u> | Nuclear respiratory factor 1 (NRF1), bZIP transcription factor that<br>lacts on nuclear genes encoding mitochondrial proteins | 0.78 | 1920 - 1936 | •             | 0.750 | 0.796 | tgtGTGCgcgcgcgc          |
| V\$ZF5F/ZF5.01         | Zinc finger / POZ domain transcription factor                                                                                 | 0.95 | 1920 - 1930 | ÷             | 1.000 | 0.968 | gcgcGCgcg                |
| V\$E2FF/E2F.03         | E2F, involved in cell cycle regulation, interacts with Rb p107 protein                                                        | 0.85 | 1921 - 1937 | +             | 1.000 | 0.865 | cgcgcGCGCgcacacac        |
| <u>V\$NRF1/NRF1.01</u> | Nuclear respiratory factor 1 (NRF1), bZIP transcription factor that<br>lacts on nuclear genes encoding mitochondrial proteins | 0.78 | 1921 - 1937 | £             | 1.000 | 0.838 | cgcGCGCgcgcacacac        |
| V\$ZF5F/ZF5.01         | Zinc finger / POZ domain transcription factor                                                                                 | 0.95 | 1921 - 1931 | <u>.</u>      | 1.000 | 0.968 | gcgcGCgcg                |
| V\$ZF5F/ZF5.01         | Zinc finger / POZ domain transcription factor                                                                                 | 0.95 | 1922 - 1932 | £             | 1.000 | 0.968 | gcgcGCGCgca              |
| V\$ZF5F/ZF5.01         | Zinc finger / POZ domain transcription factor                                                                                 | 0.95 | 1923 - 1933 | :             | 1.000 | 1.000 | gtgcGCGCgcg              |
| V\$ZF5F/ZF5.01         | Zinc finger / POZ domain transcription factor                                                                                 | 0.95 | 1924 - 1934 | ÷             | 1.000 | 0.952 | gcgcGCGcaca              |
| V\$ZF5F/ZF5.01         | Zinc finger / POZ domain transcription factor                                                                                 | 0.95 | 1925 - 1935 | -             | 1.000 | 0.997 | gtgtGCGCgcg              |
| V\$DICE/DICE.01        | Downstream Immunoglobulin Control Element, interacting factor:<br>BEN (also termed Mus-TRD1 and WBSCR11)                      | 0.80 | 1975 - 1989 | <u>.</u>      | 0.891 | 0.817 | tgttTTCTgtacctc          |
| V\$FKHD/ILF1.01        | Winged-helix transcription factor IL-2 enhancer binding factor (ILF),<br>forkhead box K2 (FOXK2)                              | 0.98 | 1978 - 1994 | <del>()</del> | 1.000 | 0.988 | gtacagaaAACAaacac        |
| V\$FKHD/HFH3.01        | HNF-3/Fkh Homolog 3 (FOXI1, Freac-6)                                                                                          | 0.97 | 1982 - 1998 | +             | 1.000 | 0.977 | agaaaacAAACacaata        |
| V\$CABL/CABL.01        | Multifunctional c-Abl src type tyrosine kinase                                                                                | 0.97 | 1984 - 1994 | ÷             | 1.000 | 0.973 | aaAACAaacac              |
| <u>V\$FKHD/FHXB.01</u> | Fork head homologous X binds DNA with a dual sequence specificity<br>(FHXA and FHXB)                                          | 0.83 | 1987 - 2003 | ÷             | 606.0 | 0.844 | acaaacACAAtaaataa        |
| V\$HOXF/HOXA9.01       | Member of the vertebrate HOX - cluster of homeobox factors                                                                    | 0.87 | 1990 - 2006 | ÷             | 0.780 | 0.890 | aacacaataAATAaaag        |
| V\$FAST/FAST1.01       | FAST-1 SMAD interacting protein                                                                                               | 0.81 | 1991 - 2005 | :             | 1.000 | 0.829 | ttttattTATTgtgt          |
| V\$ATBF/ATBF1.01       | AT-binding transcription factor 1                                                                                             | 0.79 | 1995 - 2011 | <u>.</u>      | 0.782 | 0.807 | agtggcttttATTTatt        |
| V\$TBPF/TATA.01        | Cellular and viral TATA box elements                                                                                          | 06.0 | 2003 - 2019 | <u>.</u>      | 1.000 | 0.936 | agctaTAAAgtggcttt        |
| V\$NKXH/TTF1.01        | Thyroid transcription factor-1 (TTF1) binding site                                                                            | 0.92 | 2024 - 2038 | -             | 1.000 | 0.939 | agactCAAGcatccc          |
| V\$CEBP/CEBP.02        | CCAAT/enhancer binding protein                                                                                                | 0.92 | 2034 - 2048 | +             | 0.885 | 0.926 | agtctgtaGAAAggt          |
| V\$FKHD/FREAC2.01      | Fork head related activator-2 (FOXF2)                                                                                         | 0.84 | 2042 - 2058 | ÷             | 1.000 | 0.991 | gaaaggTAAAcaaaag         |
| V\$SORY/SRY.01         | Sex-determining region Y gene product                                                                                         | 0.93 | 2046 - 2062 | Ŧ             | 1.000 | 0.940 | ggtaaACAAaaggtaa         |
| V\$NBRE/NBRE.01        | Monomers of the nur subfamily of nuclear receptors (nur77, nurr1, nor-1)                                                      | 0.86 | 2052 - 2066 | £             | 1.000 | 0.867 | caaaAAGGtaaacag          |
| V\$RXRF/VDR_RXR.04     | Bipartite binding site of VDR/RXR heterodimers, DR3 sites                                                                     | 0.79 | 2052 - 2076 | ÷             | 0.750 | 0.814 | caaaaGGTAaacaggtacatggag |
| <u>V\$FKHD/ILF1.01</u> | Winged-helix transcription factor IL-2 enhancer binding factor (ILF),<br>forkhead box K2 (FOXK2)                              | 0.98 | 2054 - 2070 | £             | 1.000 | 0.981 | aaaaggtaAACAggtac        |
| V\$ZFHX/AREB6.01       | AREB6 (Atp1a1 regulatory element binding factor 6)                                                                            | 0.93 | 2061 - 2073 | <u>.</u>      | 1.000 | 0.953 | catgtACCTgttt            |

| ctCCATgtacc                                                                                          | atgcactCAGCtgctcacatc | gcactcAGCTgctcaca   | ctgagtgCATGtgagatcc                                | CATGtgagatcccctc                                                                                                                               | aTCCCcctctccgaaaac                                                              | ccctctctcGAAAactg                                                      | cgtgCTCCacacgga                                                                                          | tgtggagcACGTggtgtgaag   | tggAGCAcgtggtgtga                                                                                      | tggagcaCGTGgt                       | ggagcaCGTGgtg         | ggagCACGtggtgtg                         | acaccaCGTGctc         | cacaccaCGTGct                       | cctTCACaccacgtg                           | gcacacgCCGCtccttcacacca                                                   | agcgGCGTgtgcggagg                    | agcGGCGtgtgcggaggctcgagg                                  | gcggaggctCGAGgccctgccagg | ggGCTCgaggccc                       | cctgcCAGGtggcgtct                                                        | acgcCACCtggca                   | acgcCACCtggca                                     | tgagacGCCAcctgg                                                   | gagACGCcacc                                                                                    | ctatCCCAcactccaagccacgt                          | ccagaCGTGgcttggagtgtggg | cacgccaGACGtggcttggag                                                              | cgccagaCGTGgc                                       | ccCAACcggctcc                                                                                       | gatgtggGATGaggccc                                 | gccTCATcccacatc                           | cCCCAatcccctcg                           | GTCTgggcc                                                 | acconstate                                               |
|------------------------------------------------------------------------------------------------------|-----------------------|---------------------|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------|-------------------------------------|-----------------------|-----------------------------------------|-----------------------|-------------------------------------|-------------------------------------------|---------------------------------------------------------------------------|--------------------------------------|-----------------------------------------------------------|--------------------------|-------------------------------------|--------------------------------------------------------------------------|---------------------------------|---------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------|-------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------|---------------------------------------------------|-------------------------------------------|------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------|
| 0.967                                                                                                | 0.830                 | 0.962               | 0.818                                              | 0.831                                                                                                                                          | 0.778                                                                           | 0.810                                                                  | 0.816                                                                                                    | 0.886                   | 0.860                                                                                                  | 0.959                               | 0.997                 | 0.918                                   | 066.0                 | 0.946                               | 0.838                                     | 0.877                                                                     | 0.839                                | 0.803                                                     | 0.759                    | 0.852                               | 0.984                                                                    | 0.928                           | 0.855                                             | 0.766                                                             | 0.954                                                                                          | 0.774                                            | 0.731                   | 0.887                                                                              | 0.971                                               | 0.963                                                                                               | 0.994                                             | 0.838                                     | 0.881                                    | 0.993                                                     | 0 001                                                    |
| 1.000                                                                                                | 1.000                 | 1.000               | 1.000                                              | 0.944                                                                                                                                          | 0.838                                                                           | 1.000                                                                  | 0.783                                                                                                    | 1.000                   | 0.882                                                                                                  | 1.000                               | 1.000                 | 1.000                                   | 1.000                 | 1.000                               | 1.000                                     | 1.000                                                                     | 1.000                                | 0.761                                                     | 1.000                    | 1.000                               | 1.000                                                                    | 0.829                           | 0.767                                             | 1.000                                                             | 1.000                                                                                          | 1.000                                            | 0.792                   | 1.000                                                                              | 1.000                                               | 0.989                                                                                               | 1.000                                             | 0.750                                     | 1.000                                    | 1.000                                                     | 1 000                                                    |
| •                                                                                                    | <u> </u>              | <u> </u>            | ÷                                                  | (+)                                                                                                                                            | ÷                                                                               | ÷                                                                      | Ξ                                                                                                        | ÷                       | (+)                                                                                                    | ÷                                   | £                     | £                                       | 3                     | 3                                   | 3                                         | •                                                                         | £                                    | £                                                         | £                        | £                                   | ÷                                                                        | 3                               | 3                                                 | 3                                                                 | Ξ                                                                                              | £                                                | 3                       | 3                                                                                  | -                                                   | •                                                                                                   | <u> </u>                                          | £                                         | <u> </u>                                 | <u>.</u>                                                  | 3                                                        |
| 2066 - 2076                                                                                          | 2079 - 2099           | 2081 - 2097         | 2090 - 2108                                        | 2097 - 2113                                                                                                                                    | 2105 - 2123                                                                     | 2109 - 2125                                                            | 2134 - 2148                                                                                              | 2138 - 2158             | 2140 - 2156                                                                                            | 2140 - 2152                         | 2141 - 2153           | 2141 - 2155                             | 2142 - 2154           | 2143 - 2155                         | 2145 - 2159                               | 2149 - 2171                                                               | 2160 - 2176                          | 2160 - 2184                                               | 2170 - 2194              | 2175 - 2187                         | 2186 - 2202                                                              | 2188 - 2200                     | 2188 - 2200                                       | 2190 - 2204                                                       | 2193 - 2203                                                                                    | 2208 - 2230                                      | 2212 - 2234             | 2218 - 2238                                                                        | 2224 - 2236                                         | 2238 - 2250                                                                                         | 2248 - 2264                                       | 2250 - 2264                               | 2264 - 2278                              | 2277 - 2285                                               | CUCC _ COCC                                              |
| 96.0                                                                                                 | 0.82                  | 0.92                | 0.81                                               | 0.83                                                                                                                                           | 0.75                                                                            | 0.75                                                                   | 0.80                                                                                                     | 0.88                    | 0.86                                                                                                   | 0.89                                | 0.92                  | 0.91                                    | 0.92                  | 0.89                                | 0.80                                      | 0.87                                                                      | 0.77                                 | 0.79                                                      | 0.75                     | 0.85                                | 96.0                                                                     | 06.0                            | 0.83                                              | 0.75                                                              | 0.95                                                                                           | 0.77                                             | 0.73                    | 0.85                                                                               | 0.93                                                | 96.0                                                                                                | 0.99                                              | 0.80                                      | 0.80                                     | 0.99                                                      | 000                                                      |
| SWI/SNF related, matrix associated, actin dependent regulator of<br>chromatin, subfamily a, member 3 | HEN1                  | Activator protein 4 | MIT (microphthalmia transcription factor) and TFE3 | Carbohydrate response element binding protein (CHREBP) and<br>Max-like protein X (MIX) bind as heterodimers to glucose-responsive<br>promoters | Proximal sequence element (PSE) of RNA polymerase II-transcribed<br>snRNA genes | E2F, involved in cell cycle regulation, interacts with Rb p107 protein | Downstream Immunoglobulin Control Element, interacting factor:<br>BEN (also termed Mus-TRD1 and WBSCR11) | X-box-binding protein 1 | Paraxis (TCF15), member of the Twist subfamily of Class B bHLH<br>factors, forms heterodimers with E12 | AhR nuclear translocator homodimers | c-Myc/Max heterodimer | Hey-like bHLH-transcriptional repressor | c-Myc/Max heterodimer | AhR nuclear translocator homodimers | Sterol regulatory element binding protein | Core promoter-binding protein (CPBP) with 3 Krueppel-type zinc<br>fingers | Early growth response gene 3 product | Bipartite binding site of VDR/RXR heterodimers, DR4 sites | Heat shock factor 1      | Zinc finger with interaction domain | Complex of Lmo2 bound to Tal-1, E2A proteins, and GATA-1,<br>half-site 1 | Upstream stimulating factor 1/2 | DNA binding site for NEUROD1 (BETA-2 / E47 dimer) | Heterodimers of the bHLH transcription factors HAND2 (Thing2) and | Winged helix protein, involved in hair keratinization and thymus<br>epithelium differentiation | Se-Cys tRNA gene transcription activating factor | Tumor suppressor p53    | Activating transcription factor 6, member of b-zip family, induced by<br>ER stress | Hypoxia inducible factor, bHLH / PAS protein family | c-Myb, important in hematopoesis, cellular equivalent to avian<br>myoblastosis virus oncogene v-myb | MEL1 (MDS1/EVI1-like gene 1) DNA-binding domain 2 | Sterol regulatory element binding protein | Ras-responsive element binding protein 1 | Smad3 transcription factor involved in TGF-beta signaling | Bihommatain accoriated zinc finger protein MOK-2 (human) |
| RUSH/SMARCA3.01                                                                                      | HEN1/HEN1.01          | AP4R/AP4.02         | MITF/MIT.01                                        | CHRE/CHREBP MLX.01                                                                                                                             | SNAP/PSE.01                                                                     | \$E2FF/E2F.01                                                          | \$DICE/DICE.01                                                                                           | \$CREB/XBP1.01          | AP4R/PARAXIS.01                                                                                        | \$HIFF/ARNT.01                      | \$EBOX/MYCMAX.02      | \$HESF/HELT.01                          | \$EBOX/MYCMAX.02      | \$HIFF/ARNT.01                      | \$SREB/SREBP.02                           | \$ZBPF/ZF9.01                                                             | \$EGRF/EGR3.01                       | \$RXRF/VDR_RXR.05                                         | \$HEAT/HSF1.02           | \$ZFIA/ZID.01                       | \$MYOD/TAL1 E2A.01                                                       | SEBOX/USF.04                    | \$NEUR/NEUROD1.01                                 | \$HAND/HAND2 E12.01                                               | \$WHNF/WHN.01                                                                                  | STAF/STAF.01                                     | \$P53F/P53.01           | \$CREB/ATF6.02                                                                     | \$HIFF/HIF1.02                                      | \$MYBL/CMYB.02                                                                                      | \$EVI1/MEL1.02                                    | \$SREB/SREBP.02                           | \$RREB/RREB1.01                          | \$SMAD/SMAD3.01                                           |                                                          |

| V\$ZBPF/ZF9.01            | Core promoter-binding protein (CPBP) with 3 Krueppel-type zinc<br>finners                            | 0.87 | 2298 - 2320 | £        | 1.000 | 0.892 | ggccgcgCCGCtcctccagagag     |
|---------------------------|------------------------------------------------------------------------------------------------------|------|-------------|----------|-------|-------|-----------------------------|
| V\$ZBPF/ZNF219.01         | Kruppel-like zinc finger protein 219                                                                 | 0.91 | 2331 - 2353 | 3        | 1.000 | 0.914 | gcggcggCCCcgcctcctagcc      |
| V\$SP1F/SP1.01            | Stimulating protein 1, ubiquitous zinc finger transcription factor                                   | 0.88 | 2334 - 2348 | ÷        | 0.771 | 0.883 | taggAGGCgggggcc             |
| V\$PURA/PURALPHA.01       | Purine-rich element binding protein A                                                                | 0.97 | 2336 - 2348 | +        | 1.000 | 0.991 | ggAGGCgggggcc               |
| V\$AP4R/AP4.01            | Activator protein 4                                                                                  | 0.85 | 2344 - 2360 | Ŀ        | 1.000 | 0.854 | cccctCAGCggcggccc           |
| V\$ZBPF/ZNF219.01         | Kruppel-like zinc finger protein 219                                                                 | 0.91 | 2346 - 2368 | <u>.</u> | 1.000 | 0.929 | ggccccgCCCctcagcggcggc      |
| <u>V\$ZBPF/ZF9.01</u>     | Core promoter-binding protein (CPBP) with 3 Krueppel-type zinc<br>fingers                            | 0.87 | 2349 - 2371 | •        | 1.000 | 0.980 | cctggccCCGCcccctcagcggc     |
| V\$EGRF/EGR1.02           | EGR1, early growth response 1                                                                        | 0.86 | 2351 - 2367 | +        | 1.000 | 0.985 | cgctgaggGGGCggggc           |
| V\$GCMF/GCM1.01           | Glial cells missing homolog 1, chorion-specific transcription factor<br>GCMa                         | 0.85 | 2351 - 2361 | :        | 1.000 | 0.857 | ccCCCTcagcg                 |
| V\$SP1F/SP1.01            | Stimulating protein 1, ubiquitous zinc finger transcription factor                                   | 0.88 | 2355 - 2369 | ÷        | 1.000 | 1.000 | gaggGGGCggggcca             |
| V\$MAZF/MAZR.01           | MYC-associated zinc finger protein related transcription factor                                      | 0.88 | 2357 - 2369 | ÷        | 1.000 | 0.940 | 000 <mark>000666</mark> cca |
| V\$P53F/P53.05            | Tumor suppressor p53                                                                                 | 0.78 | 2358 - 2380 | 3        | 1.000 | 0.812 | ctaaCAAGacctggccccgcccc     |
| 10:1MSM/INSMISO           | Zinc finger protein insulinoma-associated 1 (IA-1) functions as a<br>transcriptional repressor       | 06.0 | 2375 - 2387 | ÷        | 1.000 | 0.923 | tgttaGGGGgtg                |
| <u>V\$SP1F/TIEG.01</u>    | TGFbeta-inducible early gene (TIEG) / Early growth response gene<br>alpha (EGRalpha)                 | 0.83 | 2377 - 2391 | ÷        | 1.000 | 0.868 | ttaGGGGcgtggtct             |
| V\$TBPF/MTATA.01          | Muscle TATA box                                                                                      | 0.84 | 2381 - 2397 | <u>.</u> | 0.777 | 0.852 | ccataTAGAccacgccc           |
| V\$SRFF/SRF.01            | Serum response factor                                                                                | 0.66 | 2383 - 2401 | Ŀ        | 1.000 | 0.703 | ctgaccaTATAgaccacgc         |
| <u>V\$RUSH/SMARCA3.01</u> | SWI/SNF related, matrix associated, actin dependent regulator of<br>chromatin, subfamily a, member 3 | 96.0 | 2389 - 2399 | <u>.</u> | 1.000 | 0.963 | gaCCATataga                 |
| V\$CREB/TAXCREB.02        | Tax/CREB complex                                                                                     | 0.71 | 2395 - 2415 | ÷        | 0.750 | 0.721 | tggtcaGGACgcgttgcctcg       |
| <u>V\$MEF3/MEF3.01</u>    | MEF3 binding site, present in skeletal muscle-specific transcriptional enhancers                     | 0.89 | 2395 - 2407 | ÷        | 1.000 | 0.927 | tggTCAGgacgcg               |
| V\$WHNF/WHN.01            | Winged helix protein, involved in hair keratinization and thymus epithelium differentiation          | 0.95 | 2400 - 2410 | ÷        | 1.000 | 0.976 | aggACGCgttg                 |
| V\$ZBPF/ZNF219.01         | Kruppel-like zinc finger protein 219                                                                 | 0.91 | 2404 - 2426 | <u>.</u> | 1.000 | 0.934 | ggttccgCCCcgaggcaacgcg      |
| V\$AP2F/AP2.02            | Activator protein 2 alpha                                                                            | 0.92 | 2407 - 2421 | +        | 1.000 | 0.935 | gttGCCTcgggggcg             |
| V\$ZBPF/ZBP89.01          | Zinc finger transcription factor ZBP-89                                                              | 0.93 | 2407 - 2429 | -        | 1.000 | 0.946 | ccaggttccgCCCcgaggcaac      |
| V\$EGRF/EGR1.02           | EGR1, early growth response 1                                                                        | 0.86 | 2409 - 2425 | +        | 1.000 | 0.923 | tgcctcggGGGCggaac           |
| V\$SP1F/SP1.01            | Stimulating protein 1, ubiquitous zinc finger transcription factor                                   | 0.88 | 2413 - 2427 | £        | 1.000 | 0.912 | tcggGGGCggaacct             |
| V\$RREB/RREB1.01          | Ras-responsive element binding protein 1                                                             | 0.80 | 2425 - 2439 | Ŀ        | 1.000 | 0.808 | cCCCAcaagaccagg             |
| V\$SREB/SREBP.02          | Sterol regulatory element binding protein                                                            | 0.80 | 2431 - 2445 | Ŀ        | 0.750 | 0.838 | gccACACcccacaag             |
| <u>V\$SP1F/TIEG.01</u>    | TGFbeta-inducible early gene (TIEG) / Early growth response gene<br>alpha (EGRalpha)                 | 0.83 | 2433 - 2447 | £        | 1.000 | 0.942 | tgtGGGtgtggcta              |
| V\$EKLF/BKLF.01           | Basic krueppel-like factor (KLF3)                                                                    | 0.95 | 2435 - 2451 | +        | 1.000 | 0.979 | tgGGGTgtggctaaatg           |
| V\$NKXH/HMX2.02           | Hmx2/Nkx5-2 homeodomain transcription factor                                                         | 0.82 | 2441 - 2455 | (+       | 0.750 | 0.822 | gtggctAAATgtttg             |
| V\$NKXH/HMX2.02           | Hmx2/Nkx5-2 homeodomain transcription factor                                                         | 0.82 | 2446 - 2460 | -        | 1.000 | 0.829 | acctccAAACattta             |
| V\$SP1F/GC.01             | GC box elements                                                                                      | 0.88 | 2453 - 2467 | (+       | 0.872 | 0.892 | ttggaGGTGgggcct             |
| V\$MAZF/MAZR.01           | MYC-associated zinc finger protein related transcription factor                                      | 0.88 | 2455 - 2467 | +        | 1.000 | 0.900 | ggaggtGGGGcct               |
| V\$ZBPF/ZNF219.01         | Kruppel-like zinc finger protein 219                                                                 | 0.91 | 2480 - 2502 | -        | 1.000 | 0.934 | ggctccgCCCcgaggcgccaag      |
| V\$AP2F/AP2.02            | Activator protein 2 alpha                                                                            | 0.92 | 2483 - 2497 | +        | 1.000 | 0.940 | ggcGCCTcgggggcg             |
| V\$ZBPF/ZBP89.01          | Zinc finger transcription factor ZBP-89                                                              | 0.93 | 2483 - 2505 | <u>.</u> | 1.000 | 0.949 | tccggctccgCCCcgaggcgcc      |
| V\$EGRF/EGR1.02           | EGR1, early growth response 1                                                                        | 0.86 | 2485 - 2501 | ÷        | 1.000 | 0.939 | cgcctcggGGGCggagc           |
| V\$SP1F/GC.01             | GC box elements                                                                                      | 0.88 | 2489 - 2503 | ÷        | 1.000 | 0.957 | tcgggGGCGgagccg             |
| V\$ZBPF/ZNF219.01         | Kruppel-like zinc finger protein 219                                                                 | 0.91 | 2500 - 2522 | <u>.</u> | 1.000 | 0.932 | cgccccgCCCcgggtctcccggc     |

|   | jgcargccccguuuucggggcccc<br>agaacccgggGGGggggggc                         | 0 ccggGGGCgggggcgt                                                 | t cgggggggggggGGTGcacggggggg                  | 2 cggggggggGGGCgtgca          | 2 gggggcGGGGcgtgcac                        | 5 gggggcGGGcgt                                                  | ggcGGGGgtgcacg                                                                       | 5 cgtgCACGggagggc                       | 0 gcacGGGAgggcgggga                                    | t   gggaGGGCggggacg                                                | 1 ggagGGCGgggacggga              | 7 ggAGGcggggac                        | 5 gagggcGGGGacg                                                 | 1 gcGGGacg                       | 3 cacccCCCAaccaactcccgtc                                                                                       | 9 cCCCAaccaactccc                        | 7 ccccaccCCCcaaccaactccc             | 5 ccccccaCCCcccaaccaactc             | 2 tggttGGGGgggt                                                                                 | 3 cccaccCCCCaacc                                                                       | 7 gttgggGGGGtgggggg                        | 0 cCCCAcccccaac                          | s ttgGGGGggtggggg                                                                    |                               |  | 2566 |   |
|---|--------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------|-------------------------------|--------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------|----------------------------------|---------------------------------------|-----------------------------------------------------------------|----------------------------------|----------------------------------------------------------------------------------------------------------------|------------------------------------------|--------------------------------------|--------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------|------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------|--|------|---|
|   | 0.86                                                                     | 1.00(                                                              | 0.93/                                         | 0.88                          | 0.97                                       | 0.91                                                            | 0.859                                                                                | 0.92(                                   | 0.92(                                                  | 0.93/                                                              | 0.80                             | 0.97                                  | 0.896                                                           | :66'0                            | 0.753                                                                                                          | 0.889                                    | 0.94                                 | 0.93!                                | 0.92                                                                                            | 0.948                                                                                  | 0.92                                       | 0.86(                                    | 0.85                                                                                 |                               |  |      |   |
|   | 1.000                                                                    | 1.000                                                              | 1.000                                         | 1.000                         | 1.000                                      | 1.000                                                           | 1.000                                                                                | 1.000                                   | 1.000                                                  | 1.000                                                              | 1.000                            | 1.000                                 | 1.000                                                           | 1.000                            | 1.000                                                                                                          | 1.000                                    | 1.000                                | 1.000                                | 1.000                                                                                           | 1.000                                                                                  | 1.000                                      | 1.000                                    | 1.000                                                                                |                               |  |      |   |
| [ | ΞĒ                                                                       | ÷                                                                  | ÷                                             | ŧ                             | ŧ                                          | ÷                                                               | ( <del>+</del>                                                                       | ÷                                       | £                                                      | £                                                                  | £                                | ŧ                                     | ŧ                                                               | ŧ                                | -                                                                                                              | <u>.</u>                                 | <u>.</u>                             | <u>.</u>                             | ÷                                                                                               | :                                                                                      | ŧ                                          | <u>.</u>                                 | ÷                                                                                    |                               |  |      | E |
|   | 2505 - 2521                                                              | 2509 - 2523                                                        | 2510 - 2534                                   | 2510 - 2526                   | 2511 - 2527                                | 2511 - 2523                                                     | 2514 - 2528                                                                          | 2521 - 2535                             | 2524 - 2540                                            | 2528 - 2542                                                        | 2529 - 2545                      | 2529 - 2541                           | 2530 - 2542                                                     | 2534 - 2542                      | 2539 - 2561                                                                                                    | 2542 - 2556                              | 2542 - 2564                          | 2544 - 2566                          | 2548 - 2560                                                                                     | 2549 - 2563                                                                            | 2550 - 2566                                | 2550 - 2564                              | 2551 - 2565                                                                          |                               |  |      |   |
|   | 0.86                                                                     | 0.88                                                               | 0.92                                          | 0.86                          | 0.91                                       | 0.88                                                            | 0.83                                                                                 | 0.91                                    | 0.88                                                   | 0.88                                                               | 0.78                             | 0.97                                  | 0.88                                                            | 0.99                             | 0.73                                                                                                           | 0.80                                     | 0.91                                 | 0.91                                 | 06.0                                                                                            | 0.89                                                                                   | 0.91                                       | 0.80                                     | 0.83                                                                                 |                               |  |      | P |
|   | zinc inger transcription ractor zBP-89<br> EGR1, early growth response 1 | Stimulating protein 1, ubiquitous zinc finger transcription factor | Aryl hydrocarbon receptor / Arnt heterodimers | EGR1, early growth response 1 | Kidney-enriched kruppel-like factor, KLF15 | MYC-associated zinc finger protein related transcription factor | TGFbeta-inducible early gene (TIEG) / Early growth response gene<br>alpha (EGRalpha) | Hey-like bHLH-transcriptional repressor | Collagen krox protein (zinc finger protein 67 - zfp67) | Stimulating protein 1, ubiquitous zinc finger transcription factor | E2F-1/DP-2 heterodimeric complex | Purine-rich element binding protein A | MYC-associated zinc finger protein related transcription factor | Myeloid zinc finger protein MZF1 | Transcriptional repressor, binds to elements found predominantly in genes that participate in lipid metabolism | Ras-responsive element binding protein 1 | Kruppel-like zinc finger protein 219 | Kruppel-like zinc finger protein 219 | Zinc finger protein insulinoma-associated 1 (IA-1) functions as a<br>Itranscriptional repressor | Zinc finger transcription factor, Zic family member 2 (odd-paired homolog, Drosophila) | kidney-enriched kruppel-like factor, KLF15 | Ras-responsive element binding protein 1 | TGFbeta-inducible early gene (TIEG) / Early growth response gene<br>alpha (EGRalpha) | nce.                          |  |      |   |
|   | V\$EGRF/EGR1.02                                                          | V\$SP1F/SP1.01                                                     | V\$AHRR/AHRARNT.01                            | V\$EGRF/EGR1.02               | V\$EKLF/KKLF.01                            | V\$MAZF/MAZR.01                                                 | V\$SP1F/TIEG.01                                                                      | V\$HESF/HELT.01                         | V\$EGRF/CKROX.01                                       | V\$SP1F/SP1.01                                                     | V\$E2FF/E2F1 DP2.01              | V\$PURA/PURALPHA.01                   | V\$MAZF/MAZR.01                                                 | V\$MZF1/MZF1.01                  | V\$ZBPF/ZNF202.01                                                                                              | V\$RREB/RREB1.01                         | V\$ZBPF/ZNF219.01                    | V\$ZBPF/ZNF219.01                    | V\$INSM/INSM1.01                                                                                | V\$GLIF/ZIC2.01                                                                        | V\$EKLF/KKLF.01                            | V\$RREB/RREB1.01                         | V\$SP1F/TIEG.01                                                                      | 0 matches found in this seque |  | -    |   |

100 bp

Table A.2Genomatix Analysis of the Human Perlecan Promoter Region<br/>Published By Renato Iozzo (1997)

| Individual binding sites in a p<br>ModelTeconoctor Comparation                              | oromoter are NEVER sufficient to indicate transcriptional function. Fund                                                                                                                 | onal as    | sessment of b | inding   | sites can be     | carried out by     | our other tools, e.g.                           |
|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------|----------|------------------|--------------------|-------------------------------------------------|
| If MatInspector does <b>not</b> ide                                                         | e seriorime) i lainevrones, promopriere<br>ntify a known site, please send an email to <u>support©genomatix.de</u> citi                                                                  | g the c    | orresponding  | paperi   |                  |                    |                                                 |
|                                                                                             | Search Results ( 390                                                                                                                                                                     | match      | les)          |          |                  |                    |                                                 |
| latInspector Release profession                                                             | al 7.4.8, May 2007                                                                                                                                                                       |            |               |          |                  |                    | Wed Jun 27 16:31:53                             |
| olution parameters:                                                                         |                                                                                                                                                                                          |            |               |          |                  |                    |                                                 |
| equence file: <u>IozzoPaper</u><br>amily matches: yes<br>latInspector library: Matrix Famil | <u>.seq</u> (2565 bp)<br>y Library Version 6.3 (March 2007)                                                                                                                              |            |               |          |                  |                    |                                                 |
| elected groups<br>ore/matrix sim)                                                           | ertebrates.lib (0.75/Optimized)                                                                                                                                                          |            |               |          |                  |                    |                                                 |
| nspecting sequence IozzoP                                                                   | aper (1 - 2565):                                                                                                                                                                         |            |               |          |                  |                    |                                                 |
|                                                                                             |                                                                                                                                                                                          |            | Position      | ;        | •                |                    | Sequence                                        |
| Family/matrix                                                                               | Further Information                                                                                                                                                                      | tal<br>tal | from - to     | Str.     | <u>Core sim.</u> | <u>Matrix sim.</u> | (red: ci-value > 60<br>capitals: core sequence) |
| V\$SF1F/FTF.01                                                                              | Alpha (1)-fetoprotein transcription factor (FTF), liver receptor<br>homologue-1 (LRH-1)                                                                                                  | .94        | 12 - 24       | 3        | 1.000            | 0.960              | tttcCAAGgcctt                                   |
| V\$NFAT/NFAT5.01                                                                            | Nuclear factor of activated T-cells 5                                                                                                                                                    | 0.83       | 17 - 35       | ÷        | 1.000            | 0.890              | cttGGAAaatcctgccac                              |
| V\$CIZF/NMP4.01                                                                             | NMP4 (nuclear matrix protein 4) / CIZ (Cas-interacting zinc finger protein)                                                                                                              | 76.0       | 20 - 30       | ÷        | 1.000            | 0.972              | ggAAAAatcct                                     |
| V\$BTBF/KAISO.01                                                                            | Transcription factor Kaiso, ZBTB33                                                                                                                                                       | 0.92       | 25 - 35       | ÷        | 1.000            | 0.992              | aatcCTGCcac                                     |
| V\$EBOX/ATF6.01                                                                             | Member of b-zip family, induced by ER damage/stress, binds to the ERSE in association with NF-Y                                                                                          | .93        | 29 - 41       | ÷        | 1.000            | 0.933              | ctgCCACtagggc                                   |
| V\$HAND/HAND2 E12.01                                                                        | Heterodimers of the bHLH transcription factors HAND2 (Thing2) and E12                                                                                                                    | 0.75       | 38 - 52       | ÷        | 1.000            | 0.758              | gggctgGCCAcctgc                                 |
| V\$NF1F/NF1.01                                                                              | Nuclear factor 1                                                                                                                                                                         | 0.82       | 38 - 58       | +        | 0.763            | 0.851              | gggCTGGccacctgccagctc                           |
| <u>V\$NF1F/NF1.02</u>                                                                       | Nuclear factor 1 (CTF1)                                                                                                                                                                  | 0.81       | 38 - 58       | <u>.</u> | 1.000            | 0.901              | gagcTGGCaggtggccagccc                           |
| V\$MYOD/E47.01                                                                              | MyoD/E47 and MyoD/E12 dimers                                                                                                                                                             | .92        | 40 - 56       | <u>.</u> | 1.000            | 0.953              | gctgGCAGgtggccagc                               |
| V\$HESF/HES1.02                                                                             | Drosophila hairy and enhancer of split homologue 1 (HES-1)                                                                                                                               | 0.87       | 41 - 55       | <u>.</u> | 0.750            | 0.873              | ctggCAGGtggccag                                 |
| V\$NEUR/NEUROD1.01                                                                          | DNA binding site for NEUROD1 (BETA-2 / E47 dimer)                                                                                                                                        | 0.83       | 42 - 54       | +        | 0.767            | 0.905              | tggcCACCtgcca                                   |
| V\$CREB/CJUN ATF2.01                                                                        | c-Jun/ATF2 heterodimers                                                                                                                                                                  | 66.0       | 52 - 72       | (-)      | 1.000            | 0.991              | ctccacTGACttcagagctgg                           |
| V\$CREB/ATF2.01                                                                             | Activating transcription factor 2                                                                                                                                                        | 0.87       | 53 - 73       | ÷        | 0.777            | 0.890              | cagctcTGAAgtcagtggagt                           |
| V\$PAX5/PAX5.01                                                                             | B-cell-specific activator protein                                                                                                                                                        | .79        | 57 - 85       | £        | 0.857            | 0.799              | tctgaaGTCAgtggagtttttgaagccttt                  |
| V\$CSEN/DREAM.01                                                                            | Downstream regulatory element-antagonist modulator,<br>Ca2+-binding protein of the neuronal calcium sensors family that<br>binds DRE (downstream regulatory element) sites as a tetramer | .95        | 61 - 71       | ÷        | 1.000            | 0.963              | aaGTCAgtgga                                     |
| V\$EV11/MEL1.02                                                                             | MEL1 (MDS1/EVI1-like gene 1) DNA-binding domain 2                                                                                                                                        | 66.0       | 82 - 98       | 3        | 1.000            | 066.0              | cctgtccGATGagaaag                               |
| V\$GREF/ARE.02                                                                              | Androgene receptor binding site, IR3 sites                                                                                                                                               | 0.89       | 89 - 107      | <u>.</u> | 0.956            | 0.891              | tggaaactccctGTCCgat                             |
| V\$NFAT/NFAT5.01                                                                            | Nuclear factor of activated T-cells 5                                                                                                                                                    | 0.83       | 91 - 109      | <u>.</u> | 1.000            | 0.871              | cttGGAAactccctgtccg                             |
| <u>V\$SP1F/BTEB3.01</u>                                                                     | Basic transcription element (BTE) binding protein, BTEB3, FKLF-2                                                                                                                         | 0.93       | 93 - 107      | £        | 1.000            | 0.958              | gacagGGAGtttcca                                 |
| V\$NFKB/NFKAPPAB65.01                                                                       | NF-kappaB (p65)                                                                                                                                                                          | 0.87       | 95 - 107      | ÷        | 1.000            | 0.991              | cag <mark>g</mark> agtTTCCa                     |
| V\$CHRE/CHREBP MLX.01                                                                       | Carbohydrate response element binding protein (CHREBP) and<br>Max-like protein X (Mlx) bind as heterodimers to glucose-responsive<br>promoters                                           | 0.83       | 106 - 122     | ÷        | 0.833            | 0.892              | CAAGtgcaaacctggtg                               |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Androacene recenter hinding aite ID3 aitee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0000 | 110 120   |              | 0 050 | 0 004 | toto toto toto toto      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|--------------|-------|-------|--------------------------|
| V&GREF/ARE.UZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Attarogene receptor birtaing site, IN3 sites<br>TP4 homodimer DP1 eite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20.0 | 115 - 120 | Ð            | 600.0 | 0.094 | rgcaaacciggconactor      |
| V # M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M V 2 F / M | More the former of the succession of the success |      |           |              | 1 000 | 10.00 |                          |
| VSMALF/MAL.UI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Wyc associated ziric iiriger proteiri (imaz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 05.0 | 120 - 130 | 2            | nnn-T | 0.500 | arrroyoggaga             |
| <u>V\$MZF1/MZF1.01</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Myeloid zinc finger protein MZF1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 66.0 | 126 - 134 | <u>.</u>     | 1.000 | 0.991 | gaGGGGaga                |
| V\$RUSH/SMARCA3.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SWI/SNF related, matrix associated, actin dependent regulator of<br>chromatin, subfamily a, member 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.96 | 132 - 142 | <u>.</u>     | 1.000 | 0.984 | tcCCATttgag              |
| V\$GLIF/GLI1.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Zinc finger transcription factor GLI1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.87 | 134 - 148 | :            | 1.000 | 0.929 | gggacctCCCAtttg          |
| V\$NFKB/NFKAPPAB.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NF-kappaB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.89 | 137 - 149 | ÷            | 1.000 | 0.937 | atGGGAggtccct            |
| V\$NFKB/NFKAPPAB.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NF-kappaB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.89 | 138 - 150 | <u>.</u>     | 1.000 | 0.938 | caGGGAcctccca            |
| V\$NOLF/OLF1.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Olfactory neuron-specific factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.82 | 139 - 161 | ŧ            | 1.000 | 0.874 | gggaggTCCCtgggggtggctgtg |
| V\$EBOX/ATF6.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Member of b-zip family, induced by ER damage/stress, binds to the ERSE in association with NF-Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.93 | 147 - 159 | •            | 1.000 | 0.936 | cagCCACcccagg            |
| V\$ZBPF/ZNF202.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Transcriptional repressor, binds to elements found predominantly in genes that participate in lipid metabolism                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.73 | 147 - 169 | •            | 0.761 | 0.800 | gcagccTCCAcagccacccagg   |
| V\$GZF1/GZF1.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | GDNF-inducible zinc finger protein 1 (ZNF336)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.73 | 167 - 179 | £            | 0.750 | 0.798 | TGCTcctctatca            |
| V\$GATA/GATA1.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | GATA-binding factor 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.95 | 170 - 182 | :            | 1.000 | 0.955 | gtctGATAgagga            |
| V\$NOLF/OLF1.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Olfactory neuron-specific factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.82 | 183 - 205 | ÷            | 1.000 | 0.844 | ctcagcTCCCcaagggccaagtc  |
| V\$P53F/P53.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Tumor suppressor p53 (3' half site)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.92 | 190 - 212 | £            | 1.000 | 0.932 | ccccaaggccaagtCATGtctc   |
| V\$ATBF/ATBF1.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | AT-binding transcription factor 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.79 | 235 - 251 | :            | 0.782 | 0.790 | tcttattagtATTTgtg        |
| V\$SATB/SATB1.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Special AT-rich sequence-binding protein 1, predominantly<br>expressed in thymocytes, binds to matrix attachment regions<br>(MARs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.94 | 242 - 256 | (+           | 1.000 | 0.955 | actAATAagagaaat          |
| V\$ATBF/ATBF1.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | AT-binding transcription factor 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.79 | 254 - 270 | £            | 0.782 | 0.793 | aatggctaccACTTatt        |
| V\$NKXH/NKX32.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Homeodomain protein NKX3.2 (BAPX1, NKX3B, Bagpipe homolog)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.96 | 259 - 273 | :            | 1.000 | 0.968 | tgaaataAGTGgtag          |
| V\$PPAR/PPARG.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Pal3 motif, bound by a PPAR-gamma homodimer, IR3 sites                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.67 | 264 - 286 | :            | 0.794 | 0.676 | cacTTGGtaagcatgaaataagt  |
| V\$EBOX/USF.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Upstream stimulating factor 1/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.90 | 278 - 290 | <u>.</u>     | 0.851 | 0.942 | cagaCACTtggta            |
| V\$MOKF/MOK2.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ribonucleoprotein associated zinc finger protein MOK-2 (mouse)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.74 | 278 - 298 | <u>.</u>     | 0.750 | 0.804 | agccatttcagacACTTggta    |
| V\$FKHD/ILF1.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Winged-helix transcription factor IL-2 enhancer binding factor (ILF), forkhead box K2 (FOXK2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.98 | 295 - 311 | 3            | 1.000 | 0.987 | ttttaaaaAACAcagcc        |
| <u>V\$SATB/SATB1.01</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Special AT-rich sequence-binding protein 1, predominantly<br>expressed in thymocytes, binds to matrix attachment regions<br>(MARs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.94 | 310 - 324 | -            | 1.000 | 0.964 | attAATAtatttctt          |
| V\$BRNF/BRN3.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Brn-3, POU-IV protein class                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.89 | 314 - 332 | ÷            | 1.000 | 0.913 | aatatatTAATttatctta      |
| <u>V\$0CT1/0CT1.06</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Octamer-binding factor 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.81 | 314 - 328 | ÷            | 1.000 | 0.891 | aatattAATTtat            |
| V\$EVI1/EVI1.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ecotropic viral integration site 1 encoded factor, amino-terminal zinc finger domain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.73 | 315 - 331 | •            | 0.750 | 0.733 | aagataaattaaTATAt        |
| V\$LHXF/LHX3.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Homeodomain binding site in LIM/Homeodomain factor LHX3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.81 | 315 - 329 | ŧ            | 1.000 | 0.867 | atataTTAAtttatc          |
| V\$HOMF/MSX.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Homeodomain proteins MSX-1 and MSX-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.97 | 316 - 328 | £            | 1.000 | 0.972 | tatatTAATttat            |
| V\$RBIT/BRIGHT.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Bright, B cell regulator of IgH transcription                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.92 | 317 - 329 | <u>.</u>     | 1.000 | 0.956 | gataaATTAatat            |
| V\$SORY/HMGA.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | HMGA family of architectural transcription factors (HMGA1, HMGA2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.88 | 319 - 335 | <del>(</del> | 1.000 | 0.903 | attAATTtatcttaatt        |
| <u>V\$EVI1/EVI1.03</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ecotropic viral integration site 1 encoded factor, amino-terminal zinc finger domain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.79 | 320 - 336 | (-)          | 1.000 | 0.795 | gaattAAGAtaaattaa        |
| V\$GATA/GATA1.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | GATA-binding factor 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.95 | 321 - 333 | :            | 1.000 | 0.961 | ttaaGATAaatta            |
| <u>V\$OCT1/OCT1.06</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Octamer-binding factor 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.81 | 324 - 338 | +            | 1.000 | 0.888 | tttatcttAATTctc          |
| V\$SNAP/PSE.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Proximal sequence element (PSE) of RNA polymerase III-transcribed genes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.73 | 324 - 342 | ÷            | 0.857 | 0.781 | tttatCTTAattctcataa      |
| V\$NKXH/NKX25.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Homeo domain factor Nkx-2.5/Csx, tinman homolog low affinity sites                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.88 | 326 - 340 | ÷            | 1.000 | 0.971 | tatctTAATtctcat          |

| V\$OCTB/TST1.01         | POIL-factor Tst-1/Oct-6                                                                                | 000  | 326 - 338 | 2        | 1.000 | 0.902 | ana ATT Andra               |
|-------------------------|--------------------------------------------------------------------------------------------------------|------|-----------|----------|-------|-------|-----------------------------|
| V\$STAT/STAT.01         | Signal transducers and activators of transcription                                                     | 0.87 | 328 - 346 | 2        | 0.807 | 0.876 | ottottatoAGAAttaaga         |
| V\$0CT1/0CT1.06         | Octamer-binding factor 1                                                                               | 0.81 | 329 - 343 | 3        | 1.000 | 0.910 | gttatgagAATTaag             |
| V\$PARF/DBP.01          | Albumin D-box binding protein                                                                          | 0.84 | 331 - 347 | <u>.</u> | 1.000 | 0.862 | tgttgTTATgagaatta           |
| V\$CREB/ATF.02          | Activating transcription factor                                                                        | 0.83 | 357 - 377 | £        | 0.750 | 0.832 | acgtctTAACgttattctcat       |
| V\$MYBL/VMYB.05         | v-Myb, variant of AMV v-myb                                                                            | 06'0 | 360 - 372 | <u>.</u> | 1.000 | 0.908 | aatAACGttaaga               |
| V\$MYBL/VMYB.03         | v-Myb, viral myb variant from transformed BM2 cells                                                    | 0.87 | 361 - 373 | £        | 1.000 | 0.885 | cttAACGttattc               |
| V\$IRFF/IRF3.01         | Interferon regulatory factor 3 (IRF-3)                                                                 | 0.85 | 365 - 385 | <u>.</u> | 0.758 | 0.850 | tgtagaaaatGAGAataacgt       |
| <u>V\$OCT1/0CT1.04</u>  | Octamer-binding factor 1                                                                               | 0.80 | 366 - 380 | <u>.</u> | 0.846 | 0.838 | aaAATGagaataacg             |
| V\$GCNR/RTR.01          | Retinoid receptor-related testis-associated receptor (GCNF/RTR),<br>DR0 sites                          | 0.81 | 400 - 418 | •        | 1.000 | 0.838 | cacatgtTCAAgttccatg         |
| V\$MITF/MIT.01          | MIT (microphthalmia transcription factor) and TFE3                                                     | 0.81 | 406 - 424 | ÷        | 1.000 | 0.862 | acttgaaCATGtgctcaac         |
| V\$AP4R/PARAXIS.01      | Paraxis (TCF15), member of the Twist subfamily of Class B bHLH<br>factors, forms heterodimers with E12 | 0.86 | 407 - 423 | C        | 0.882 | 0.882 | ttgAGCAcatgttcaag           |
| V\$EBOX/MYCMAX.02       | c-Myc/Max heterodimer                                                                                  | 0.92 | 410 - 422 | <u>.</u> | 0.860 | 0.936 | tgagcaCATGttc               |
| V\$SORY/SOX5.01         | Sox-5                                                                                                  | 0.87 | 467 - 483 | £        | 1.000 | 066.0 | tgagaaCAATacccgga           |
| V\$P53F/P53.05          | Tumor suppressor p53                                                                                   | 0.78 | 469 - 491 | £        | 0.760 | 0.805 | agaaCAATacccggacagggact     |
| V\$HEAT/HSF2.02         | Heat shock factor 2                                                                                    | 0.95 | 484 - 508 | <u>.</u> | 1.000 | 0.965 | gaggtgtggggaAGAAtagtccctg   |
| V\$ETSF/SPI1 PU1.02     | Spleen focus forming virus (SFFV) proviral integration oncogene<br>Spi1/transcription factor PU.1      | 96.0 | 487 - 507 | •        | 1.000 | 0.961 | aggtgtggGGAAgaatagtcc       |
| V\$MZF1/MZF1.01         | Myeloid zinc finger protein MZF1                                                                       | 0.99 | 495 - 503 | <u>.</u> | 1.000 | 1.000 | gtGGGGaag                   |
| <u>V\$GATA/GATA1.03</u> | GATA-binding factor 1                                                                                  | 0.95 | 504 - 516 | <u>.</u> | 1.000 | 0.957 | atctGATAgaggt               |
| V\$HOXF/CRX.01          | Cone-rod homeobox-containing transcription factor / otx-like<br>homeobox gene                          | 0.94 | 506 - 522 | •        | 1.000 | 0.952 | ttctTAATctgatagag           |
| V\$PLAG/PLAG1.01        | Pleomorphic adenoma gene (PLAG) 1, a developmentally regulated<br>C2H2 zinc finger protein             | 0.88 | 529 - 549 | ÷        | 1.000 | 0.907 | GAGGgccaagattgggcgtcc       |
| V\$GABF/GAGA.01         | GAGA-Box                                                                                               | 0.78 | 551 - 575 | <u>.</u> | 0.750 | 0.780 | cagggAGATagggggggggacagagga |
| V\$PAX6/PAX6.04         | PAX6 paired domain binding site                                                                        | 0.83 | 556 - 574 | £        | 1.000 | 0.835 | tgtCCACccctatctccct         |
| V\$GATA/GATA1.01        | GATA-binding factor 1                                                                                  | 0.96 | 561 - 573 | <u>.</u> | 1.000 | 1.000 | gggaGATAggggt               |
| V\$CP2F/CP2.01          | CP2                                                                                                    | 06.0 | 616 - 634 | £        | 1.000 | 0.920 | acCTGGgttggggccaggc         |
| V\$MYBL/CMYB.01         | C-Myb, important in hematopoesis, cellular equivalent to avian myoblastosis virus oncogene v-myb       | 06.0 | 629 - 641 | 3        | 1.000 | 0.997 | gcCAACtgcctgg               |
| V\$IRFF/IRF4.02         | Interferon regulatory factor 4                                                                         | 0.69 | 648 - 668 | <u>.</u> | 1.000 | 0.738 | aacaGAAAttgcatccacggt       |
| V\$0CT1/0CT1.02         | Octamer-binding factor 1                                                                               | 0.85 | 652 - 666 | £        | 1.000 | 0.872 | tggATGCaatttctg             |
| V\$CHOP/CHOP.01         | Heterodimers of CHOP and C/EBPalpha                                                                    | 06.0 | 653 - 665 | £        | 1.000 | 0.911 | ggatGCAAtttct               |
| V\$GREF/PRE.01          | Progesterone receptor binding site, IR3 sites                                                          | 0.84 | 654 - 672 | £        | 1.000 | 0.915 | gatgcaatttcTGTTcttt         |
| V\$MYBL/VMYB.01         | V-Myb                                                                                                  | 0.88 | 659 - 671 | <u>.</u> | 0.817 | 0.882 | aagAACAgaaatt               |
| V\$FKHD/FREAC2.01       | Fork head related activator-2 (FOXF2)                                                                  | 0.84 | 663 - 679 | <u>.</u> | 1.000 | 0.859 | gagttgTAAAgaacaga           |
| <u>V\$PAX6/PAX6.02</u>  | PAX6 paired domain and homeodomain are required for binding to<br>this site                            | 0.87 | 678 - 696 | -        | 1.000 | 0.871 | tgtgtgggaCCAGctcaga         |
| V\$OCTP/OCT1P.01        | Octamer-binding factor 1, POU-specific domain                                                          | 0.86 | 695 - 707 | £        | 1.000 | 0.914 | caaATATgcccca               |
| V\$OCTP/OCT1P.01        | Octamer-binding factor 1, POU-specific domain                                                          | 0.86 | 708 - 720 | <u>.</u> | 1.000 | 0.914 | aaaATATgccgtg               |
| <u>V\$AIRE/AIRE.01</u>  | Autoimmune regulator                                                                                   | 0.86 | 725 - 751 | £        | 0.857 | 0.878 | atatcttttggagatagGGGAtctatc |
| V\$GATA/GATA1.01        | GATA-binding factor 1                                                                                  | 0.96 | 733 - 745 | ÷        | 1.000 | 1.000 | tggaGATAgggga               |
| V\$MZF1/MZF1.02         | Myeloid zinc finger protein MZF1                                                                       | 0.99 | 739 - 747 | +        | 1.000 | 0.994 | taGGGGatc                   |
| V\$CLOX/CDPCR3HD.01     | Cut-like homeodomain protein                                                                           | 0.94 | 740 - 758 | 3        | 1.000 | 0.978 | catcocagataGATCccct         |

|                                    | 1                                                                                                                                                              |      |                        |          |                |                |                                      |
|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------------------|----------|----------------|----------------|--------------------------------------|
| V3GATA/GATA1.03                    |                                                                                                                                                                | C6.0 | /43 - / 00             |          | 000.T          | 555.0          |                                      |
| V\$ZBPF/ZNF219.01                  | Kruppel-like zinc finger protein 219                                                                                                                           | 0.91 | 747 - 769              | <u>.</u> | 1.000          | 0.920          | atcctgaCCCCcatcccagatag              |
| V\$CREB/TAXCREB.02                 | Tax/CREB complex                                                                                                                                               | 0.71 | 751 - 771              | <u>.</u> | 1.000          | 0.723          | gcatccTGACccccatcccag                |
| V\$RORA/REV-ERBA.01                | Orphan nuclear receptor rev-erb alpha (NR1D1)                                                                                                                  | 0.88 | 752 - 774              | ÷        | 1.000          | 0.913          | tgggatggggGTCAggatgccag              |
| V\$GCMF/GCM1.01                    | Glial cells missing homolog 1, chorion-specific transcription factor<br>GCMa                                                                                   | 0.85 | 754 - 764              | <u>.</u> | 0.789          | 0.899          | gaCCCCcatcc                          |
| V\$EREF/ER.01                      | Estrogen receptor, IR3 sites                                                                                                                                   | 0.83 | 758 - 776              | £        | 1.000          | 0.849          | gggggGTCAggatgccagtg                 |
| V\$ETSF/PDEF.01                    | Prostate-derived Ets factor                                                                                                                                    | 0.93 | 758 - 778              | ÷        | 1.000          | 0.942          | gggggtcaGGATgccagtgtt                |
| V\$MEF3/MEF3.01                    | MEF3 binding site, present in skeletal muscle-specific transcriptional<br>enhancers                                                                            | 0.89 | 760 - 772              | ÷        | 1.000          | 0.946          | gggTCAGgatgcc                        |
| V\$MYOD/MYOD.01                    | Myogenic regulatory factor MyoD (myf3)                                                                                                                         | 0.88 | 785 - 801              | 3        | 1.000          | 0.937          | ccaGGCAtctggggggt                    |
| V\$PAX6/PAX6.04                    | PAX6 paired domain binding site                                                                                                                                | 0.83 | 785 - 803              | ÷        | 0.944          | 0.835          | atcCCCCagatgcctggat                  |
| V\$NEUR/NEUROD1.01                 | DNA binding site for NEUROD1 (BETA-2 / E47 dimer)                                                                                                              | 0.83 | 788 - 800              | <u>.</u> | 1.000          | 0.832          | caggCATCtgggg                        |
| V\$DMTF/DMP1.01                    | Cyclin D-interacting myb-like protein, DMTF1 - cyclin D binding<br>myb-like transcription factor 1                                                             | 0.82 | 795 - 807              | £        | 1.000          | 0.835          | tgcctGGATgaaa                        |
| V\$MOKF/MOK2.02                    | Ribonucleoprotein associated zinc finger protein MOK-2 (human)                                                                                                 | 0.98 | 802 - 822              | <u>.</u> | 1.000          | 1.000          | aagcacattgggggCCTTtcat               |
| V\$BNCF/BNC.01<br>V\$INSM/INSM1.01 | Basonuclin, cooperates with USF1 in rDNA Poll transcription)<br>Zinc finger protein insulinoma-associated 1 (1A-1) functions as a<br>transcriptional repressor | 0.85 | 806 - 824<br>832 - 844 | ÷ I      | 0.789<br>1.000 | 0.864<br>0.925 | aaggccccaaTGTGcttgg<br>tgataGGGGtccg |
| <u>V\$GATA/GATA1.01</u>            | GATA-binding factor 1                                                                                                                                          | 0.96 | 835 - 847              | :        | 1.000          | 0.992          | ctgtGATAggggt                        |
| V\$ETSF/ELK1.02                    | Elk-1                                                                                                                                                          | 0.91 | 849 - 869              | <u>.</u> | 1.000          | 0.971          | ctggctccGGAAgctatgttc                |
| V\$HESF/HES1.01                    | Drosophila hairy and enhancer of split homologue 1 (HES-1)                                                                                                     | 0.92 | 868 - 882              | ÷        | 1.000          | 0.950          | aggeetgGTGCcgee                      |
| V\$SP1F/SP1.02                     | Stimulating protein 1, ubiquitous zinc finger transcription factor                                                                                             | 0.85 | 873 - 887              | <u>.</u> | 1.000          | 0.867          | cactGGGCggcacca                      |
| V\$NR2F/TR2.01                     | Nuclear hormone receptor TR2, DR5 binding sites                                                                                                                | 0.76 | 880 - 904              | <u>.</u> | 0.780          | 0.762          | gaaggaaatgcccaGCTCactgggc            |
| V\$NFKB/CREL.01                    | c-Rel                                                                                                                                                          | 0.91 | 890 - 902              | ÷        | 1.000          | 0.969          | ctgggcatTTCCt                        |
| V\$NR2F/ARP1.01                    | Apolipoprotein AI regulatory protein 1, NR2F2, DR1 sites                                                                                                       | 0.82 | 899 - 923              | +        | 0.809          | 0.861          | tccttctgtccacaGCTCacctcac            |
| <u>V\$RXRF/VDR_RXR.05</u>          | Bipartite binding site of VDR/RXR heterodimers, DR4 sites                                                                                                      | 0.79 | 900 - 924              | <u>.</u> | 0.952          | 0.791          | agtGAGGtgagctgtggacagaagg            |
| V\$SREB/SREBP.01                   | Sterol regulatory element binding protein 1 and 2                                                                                                              | 06.0 | 912 - 926              | +        | 1.000          | 0.952          | agcTCACctcactcc                      |
| V\$BRAC/BRACH.01                   | Brachyury                                                                                                                                                      | 0.66 | 916 - 936              | <u>.</u> | 0.750          | 0.698          | tttgcagccAGGAgtgaggtg                |
| V\$PAX6/PAX4 PD.01                 | PAX4 paired domain binding site                                                                                                                                | 0.91 | 918 - 936              | 3        | 0.965          | 0.941          | ttttGCAGccaggagtgagg                 |
| <u>V\$OAZF/ROAZ.01</u>             | Rat C2H2 Zn finger protein involved in olfactory neuronal<br>differentiation                                                                                   | 0.73 | 919 - 935              | 0        | 0.750          | 0.794          | ttGCAGccaggagtgag                    |
| V\$HEAT/HSF1.01                    | Heat shock factor 1                                                                                                                                            | 0.84 | 941 - 965              | +        | 0.952          | 0.878          | gccatgagttctGGAAcctagcaac            |
| V\$XBBF/RFX1.01                    | X-box binding protein RFX1                                                                                                                                     | 0.89 | 951 - 969              | +        | 1.000          | 0.942          | ctggaacctaGCAActctc                  |
| V\$MYT1/MYT1L.01                   | Myelin transcription factor 1-like, neuronal C2HC zinc finger factor 1                                                                                         | 0.92 | 958 - 970              | <u>.</u> | 1.000          | 0.958          | tgagAGTTgctag                        |
| V\$ETSF/CETS1P54.01                | c-Ets-1(p54)                                                                                                                                                   | 0.92 | 965 - 985              | £        | 0.901          | 0.920          | ctctcaCAGGaaacaatggaa                |
| V\$CLOX/CDPCR3.01                  | Cut-like homeodomain protein                                                                                                                                   | 0.73 | 966 - 984              | £        | 1.000          | 0.730          | tctcacaggaaacaATGGa                  |
| V\$FKHD/FKHRL1.01                  | Fkh-domain factor FKHRL1 (FOXO)                                                                                                                                | 0.83 | 968 - 984              | Ŧ        | 1.000          | 0.846          | tcacaggaAACAatgga                    |
| V\$HEAT/HSF2.01                    | Heat shock factor 2                                                                                                                                            | 0.88 | 970 - 994              | £        | 0.875          | 0.885          | acaggaaacaatgGAAActtcagtt            |
| V\$SORY/SOX5.01                    | Sox-5                                                                                                                                                          | 0.87 | 972 - 988              | +        | 1.000          | 0.988          | aggaaaCAATggaaact                    |
| V\$XBBF/RFX1.02                    | X-box binding protein RFX1                                                                                                                                     | 06.0 | 972 - 990              | ÷        | 0.881          | 0.919          | aggaaacaatgGAAActtc                  |
| V\$IRFF/ISRE.01                    | Interferon-stimulated response element                                                                                                                         | 0.81 | 973 - 993              | ŧ        | 1.000          | 0.849          | ggaaacaatgGAAActtcagt                |
| V\$HEAT/HSF1.03                    | Heat shock factor 1                                                                                                                                            | 0.76 | 979 - 1003             | <u>.</u> | 0.868          | 0.768          | ggagaataaaacTGAAgtttccatt            |
| V\$NFAT/NFAT5.01                   | Nuclear factor of activated T-cells 5                                                                                                                          | 0.83 | 679 - 997              | +        | 1.000          | 0.875          | aatGGAAacttcagtttta                  |
| <u>V\$MYT1/MYT1.01</u>             | MyT1 zinc finger transcription factor involved in primary<br>neurogenesis                                                                                      | 0.75 | 982 - 994              | £        | 0.750          | 0.756          | ggaAACTtcagtt                        |
| V\$CDXF/CDX2.01                    | Cdx-2 mammalian caudal related intestinal transcr. factor                                                                                                      | 0.84 | 987 - 1005             | +        | 1.000          | 0.849          | cttcagtTTTAttctcctc                  |
| V\$MAZF/MAZ.01                     | Myc associated zinc finger protein (MAZ)                                                                                                                       | 0.90 | 997 - 1009             | <u>:</u> | 1.000          | 0.909          | agagGAGGagaat                        |
|                                    |                                                                                                                                                                |      |                        |          |                |                |                                      |

| V\$MEF2/SL1.01          | Member of the RSRF (related to serum response factor) protein family from Xenopus laevis                                                                              | 0.84 | 1001 - 1023 | ÷             | 1.000 | 0.865 | tcctcctCTATcattactcaaaa                  |
|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------------|---------------|-------|-------|------------------------------------------|
| V\$GATA/GATA1.01        | GATA-binding factor 1                                                                                                                                                 | 0.96 | 1004 - 1016 | <u>.</u>      | 1.000 | 096.0 | taatGATAgagga                            |
| V\$HOXF/HOX1-3.01       | Hox-1.3, vertebrate homeobox protein                                                                                                                                  | 0.82 | 1004 - 1020 | <u>.</u>      | 1.000 | 0.831 | tgagTAATgatagagga                        |
| V\$CLOX/CUT2.01         | Cut repeat II                                                                                                                                                         | 0.67 | 1005 - 1023 | ŀ             | 0.750 | 0.687 | ttttgagtaATGAtagagg                      |
| V\$PARF/TEF HLF.01      | Thyrotrophic embryonic factor / hepatic leukemia factor                                                                                                               | 0.78 | 1009 - 1025 | ÷             | 1.000 | 0.780 | tatcaTTACtcaaaagg                        |
| V\$PARF/HLF.01          | Hepatic leukemia factor                                                                                                                                               | 0.84 | 1010 - 1026 | <u>·</u>      | 1.000 | 0.858 | accttttgaGTAAtgat                        |
| V\$AP1F/AP1.02          | Activator protein 1                                                                                                                                                   | 0.87 | 1012 - 1022 | -             | 1.000 | 0.934 | tttGAGTaatg                              |
| V\$NFAT/NFAT.01         | Nuclear factor of activated T-cells                                                                                                                                   | 0.95 | 1016 - 1034 | -             | 1.000 | 0.976 | tgaGGAAaaccttttgagt                      |
| V\$NKXH/HMX2.02         | Hmx2/Nkx5-2 homeodomain transcription factor                                                                                                                          | 0.82 | 1020 - 1034 | :             | 1.000 | 0.835 | tgaggaAAACctttt                          |
| V\$STAT/STAT.01         | Signal transducers and activators of transcription                                                                                                                    | 0.87 | 1022 - 1040 | <u>.</u>      | 1.000 | 0.882 | tagctttgaGGAAaacctt                      |
| V\$LEFF/LEF1.02         | TCF/LEF-1, involved in the Wnt signal transduction pathway                                                                                                            | 0.94 | 1026 - 1042 | +             | 1.000 | 0.949 | ttttcctCAAAgctaca                        |
| V\$NFAT/NFAT.01         | Nuclear factor of activated T-cells                                                                                                                                   | 0.95 | 1042 - 1060 | <u>.</u>      | 1.000 | 0.964 | agaGGAAaactatgtatgt                      |
| V\$HOXC/HOX PBX.01      | HOX/PBX binding sites                                                                                                                                                 | 0.81 | 1058 - 1074 | <u>·</u>      | 1.000 | 0.831 | aggcTGATgggtggaga                        |
| <u>V\$PAX6/PAX6.03</u>  | Pax-6 paired domain binding site                                                                                                                                      | 0.76 | 1058 - 1076 | +             | 0.806 | 0.780 | tctccACCCatcagcctcg                      |
| V\$CAAT/ACAAT.01        | Avian C-type LTR CCAAT box                                                                                                                                            | 0.83 | 1060 - 1074 | ŧ             | 0.750 | 0.874 | tccaCCCAtcagcct                          |
| V\$HEAT/HSF2.01         | Heat shock factor 2                                                                                                                                                   | 0.88 | 1074 - 1098 | ÷             | 0.875 | 0.902 | tcgggctgccctgGAAAtttcaggc                |
| <u>V\$HICF/HIC1.01</u>  | Hypermethylated in cancer 1, transcriptional repressor containing<br>five Krüppel-like C2H2 zinc fingers, for optimal binding multiple<br>binding sites are required. | 6.93 | 1075 - 1087 | <del>(+</del> | 1.000 | 0.945 | cgggcTGCCtgg                             |
| V\$STAT/STAT6.01        | STAT6: signal transducer and activator of transcription 6                                                                                                             | 0.84 | 1076 - 1094 | ÷             | 0.758 | 0.879 | gggcTGCCctggaaatttc                      |
| <u>V\$PAX6/PAX6.02</u>  | PAX6 paired domain and homeodomain are required for binding to<br>this site                                                                                           | 0.87 | 1078 - 1096 | •             | 1.000 | 0.949 | ctgaaatttCCAGggcagc                      |
| V\$HEAT/HSF1.01         | Heat shock factor 1                                                                                                                                                   | 0.84 | 1083 - 1107 | -             | 0.857 | 0.886 | ccttcttctgccTGAAatttccagg                |
| V\$SORY/HMGIY.01        | HMGI(Y) high-mobility-group protein I (Y), architectural transcription factor organizing the framework of a nuclear protein-DNA transcriptional complex               | 0.92 | 1085 - 1101 | ÷             | 1.000 | 0.948 | tggaAATTtcaggcaga                        |
| V\$MOKF/MOK2.01         | Ribonucleoprotein associated zinc finger protein MOK-2 (mouse)                                                                                                        | 0.74 | 1115 - 1135 | <u>·</u>      | 0.750 | 0.798 | gacatattcagtgCCTAttct                    |
| <u>V\$CP2F/CP2.02</u>   | LBP-1c (leader-binding protein-1c), LSF (late SV40 factor), CP2, SEF (SAA3 enhancer factor)                                                                           | 0.84 | 1123 - 1141 | ÷             | 1.000 | 0.902 | cACTGaatatgtctgggggg                     |
| V\$OCTP/OCT1P.01        | Octamer-binding factor 1, POU-specific domain                                                                                                                         | 0.86 | 1123 - 1135 | <u>.</u>      | 1.000 | 0.903 | gacATATtcagtg                            |
| V\$INSM/INSM1.01        | Zinc finger protein insulinoma-associated 1 (IA-1) functions as a                                                                                                     | 06.0 | 1132 - 1144 | (+            | 1.000 | 0.979 | tgtctGGGGgctt                            |
| V\$MYBL/CMYB.02         | c-Myb, important in hematopoesis, cellular equivalent to avian<br>myoblastosis virus oncogene v-myb                                                                   | 96.0 | 1158 - 1170 | Э             | 0.989 | 0.961 | ccCAACcgcaggc                            |
| V\$RXRF/RAR_RXR.03      | Retinoic acid receptor / retinoid X receptor heterodimer, DR5 sites                                                                                                   | 0.81 | 1164 - 1188 | +             | 1.000 | 0.933 | ggttgGGTCagaaacagatcatggg                |
| V\$NR2F/TR2.01          | Nuclear hormone receptor TR2, DR5 binding sites                                                                                                                       | 0.76 | 1166 - 1190 | ÷             | 0.780 | 0.840 | ttgggtcagaaacaGATCatggggc                |
| V\$ZFHX/AREB6.04        | AREB6 (Atp1a1 regulatory element binding factor 6)                                                                                                                    | 0.98 | 1171 - 1183 | -             | 1.000 | 1.000 | gatctGTTTctga                            |
| <u>V\$GF11/GF11.01</u>  | Growth factor independence 1 zinc finger protein acts as<br>transcriptional repressor                                                                                 | 0.96 | 1186 - 1200 | Э             | 1.000 | 0.985 | taaAATCacagcccc                          |
| V\$HOXF/HOXB9.01        | Abd-B-like homeodomain protein Hoxb-9                                                                                                                                 | 0.88 | 1191 - 1207 | <u>.</u>      | 1.000 | 0.934 | tgggtggTAAAatcaca                        |
| <u>V\$EGRF/WT1.01</u>   | Wilms Tumor Suppressor                                                                                                                                                | 0.92 | 1196 - 1212 | <u>.</u>      | 1.000 | 0.927 | tcgggTGGGtggtaaaa                        |
| V\$GLIF/ZIC2.01         | Zinc finger transcription factor, Zic family member 2 (odd-paired homolog, Drosophila)                                                                                | 0.89 | 1197 - 1211 | £             | 0.827 | 0.914 | tttaccaCCCAcccg                          |
| V\$EGRF/NGFIC.01        | Nerve growth factor-induced protein C                                                                                                                                 | 0.80 | 1198 - 1214 | <u>·</u>      | 0.754 | 0.845 | gctcGGGTgggtggtaa                        |
| V\$AP4R/TAL1ALPHAE47.01 | Tal-1alpha/E47 heterodimer                                                                                                                                            | 0.87 | 1208 - 1224 | -             | 1.000 | 0.921 | catcaCAGAtgctcggg                        |
| V\$RXRF/CAR RXR.01      | Constitutive androstane receptor / retinoid X receptor heterodimer, DR4 sites                                                                                         | 0.75 | 1236 - 1260 | Э             | 1.000 | 0.782 | actca <mark>GGT</mark> Ccagacagaccagaccc |

| V\$SMAD/SMAD3.01          | Smad3 transcription factor involved in TGF-beta signaling                                                      | 0.99 | 1238 - 1246 | ÷        | 1.000 | 0.993 | GTCTggtct                 |
|---------------------------|----------------------------------------------------------------------------------------------------------------|------|-------------|----------|-------|-------|---------------------------|
| V\$SMAD/SMAD3.01          | Smad3 transcription factor involved in TGF-beta signaling                                                      | 0.99 | 1247 - 1255 | ÷        | 1.000 | 0.996 | GTCTggacc                 |
| V\$EGRF/EGR2.01           | Egr-2/Krox-20 early growth response gene product                                                               | 0.79 | 1261 - 1277 | £        | 0.782 | 0.821 | gtgtGAGTtggtgtggt         |
| V\$IRFF/IRF4.02           | Interferon regulatory factor 4                                                                                 | 0.69 | 1264 - 1284 | <u>.</u> | 1.000 | 0.706 | cccaGAAAccacaccaactca     |
| V\$HAML/AML3.01           | Runt-related transcription factor 2 / CBFA1 (core-binding factor, runt domain, alpha subunit 1)                | 0.84 | 1269 - 1283 | ÷        | 1.000 | 0.972 | tggtGTGGtttctgg           |
| V\$GF11/GF11.02           | Growth factor independence 1                                                                                   | 06.0 | 1291 - 1305 | <u>.</u> | 1.000 | 0.991 | ataAATCacagcccc           |
| V\$BRNF/BRN5.01           | Brn-5, POU-VI protein class (also known as emb and CNS-1)                                                      | 0.74 | 1292 - 1310 | <u>.</u> | 1.000 | 0.756 | atcaCATAaatcacagccc       |
| V\$TBPF/MTATA.01          | Muscle TATA box                                                                                                | 0.84 | 1293 - 1309 | <u>.</u> | 1.000 | 0.862 | tcacaTAAAtcacagcc         |
| V\$HOXC/PBX HOXA9.01      | PBX - HOXA9 binding site                                                                                       | 0.79 | 1294 - 1310 | £        | 1.000 | 0.954 | gctgTGATttatgtgat         |
| V\$HOXF/HOXA9.01          | Member of the vertebrate HOX - cluster of homeobox factors                                                     | 0.87 | 1295 - 1311 | <u>.</u> | 1.000 | 0.968 | aatcacataAATCacag         |
| V\$PARF/TEF.01            | Thyrotrophic embryonic factor                                                                                  | 0.85 | 1297 - 1313 | ÷        | 0.772 | 0.898 | gtgatttatGTGAttca         |
| V\$PBXC/PBX1 MEIS1.01     | Binding site for a Pbx1/Meis1 heterodimer                                                                      | 0.74 | 1303 - 1319 | £        | 1.000 | 0.777 | tatgTGATtcaaagttg         |
| V\$LEFF/LEF1.02           | TCF/LEF-1, involved in the Wnt signal transduction pathway                                                     | 0.94 | 1305 - 1321 | ÷        | 1.000 | 0.977 | tgtgattCAAAgttggt         |
| V\$CHRF/CHR.01            | Cell cycle gene homology region (CDE/CHR tandem elements<br>regulate cell cycle dependent repression)          | 0.92 | 1306 - 1318 | C        | 1.000 | 0.943 | aactTTGAatcac             |
| V\$BARB/BARBIE.01         | Barbiturate-inducible element                                                                                  | 0.88 | 1309 - 1323 | ÷        | 1.000 | 0.894 | attcAAGttggtgt            |
| <u>V\$MYT1/MYT1.02</u>    | MyT1 zinc finger transcription factor involved in primary<br>neurogenesis                                      | 0.88 | 1311 - 1323 | £        | 1.000 | 0.882 | tcaAAGTtggtgt             |
| V\$HOXF/CRX.01            | Cone-rod homeobox-containing transcription factor / otx-like<br>homeobox gene                                  | 0.94 | 1322 - 1338 | •        | 1.000 | 0.947 | tgttTAATcactcacac         |
| <u>V\$AP1F/AP1.02</u>     | Activator protein 1                                                                                            | 0.87 | 1323 - 1333 | ÷        | 1.000 | 0.897 | tgtGAGTgatt               |
| V\$FKHD/FREAC2.01         | Fork head related activator-2 (FOXF2)                                                                          | 0.84 | 1327 - 1343 | ÷        | 1.000 | 0.881 | agtgatTAAAcatggga         |
| V\$E2FF/E2F.01            | E2F, involved in cell cycle regulation, interacts with Rb p107 protein                                         | 0.75 | 1333 - 1349 | ÷        | 1.000 | 0.762 | taaacatggGAAAatgg         |
| V\$RBPF/RBPJK.02          | Mammalian transcriptional repressor RBP-Jkappa/CBF1                                                            | 0.94 | 1335 - 1349 | +        | 1.000 | 0.965 | aacaTGGGaaaatgg           |
| V\$PRDF/BLIMP1.01         | Transcriptional repressor B lymphocyte-induced maturation<br>protein-1 (Blimp-1, prdm1)                        | 0.81 | 1336 - 1354 | £        | 1.000 | 0.833 | acatggGAAAatggtgcag       |
| V\$YY1F/YY1.02            | Yin and Yang 1 repressor sites                                                                                 | 0.94 | 1336 - 1354 | <u>.</u> | 1.000 | 0.962 | dtgcaCCATtttcccatgt       |
| <u>V\$PTF1/PTF1.01</u>    | PTF1 binding sites are bipartite with an E-box and a TC-box<br>(RBP-J/L) spaced one helical turn apart         | 0.76 | 1339 - 1359 | 3        | 1.000 | 0.854 | cccaCCTGcaccattttccca     |
| <u>V\$RUSH/SMARCA3.01</u> | SWI/SNF related, matrix associated, actin dependent regulator of<br>chromatin, subfamily a, member 3           | 96.0 | 1341 - 1351 | 3        | 1.000 | 0.961 | caCCATtttcc               |
| V\$ZBPF/ZNF202.01         | Transcriptional repressor, binds to elements found predominantly in genes that participate in lipid metabolism | 0.73 | 1343 - 1365 | 3        | 1.000 | 0.749 | gcccacCCCAcctgcaccatttt   |
| V\$MYOD/E47.01            | MyoD/E47 and MyoD/E12 dimers                                                                                   | 0.92 | 1347 - 1363 | ÷        | 1.000 | 0.946 | tggtGCAGgtggggtgg         |
| V\$EKLF/EKLF.01           | Erythroid krueppel like factor (EKLF)                                                                          | 0.89 | 1351 - 1367 | ÷        | 1.000 | 0:930 | gcaggtgGGGTgggcag         |
| V\$SREB/SREBP.02          | Sterol regulatory element binding protein                                                                      | 0.80 | 1352 - 1366 | C        | 0.750 | 0.849 | tgcCCACcccacctg           |
| V\$RXRF/CAR_RXR.01        | Constitutive androstane receptor / retinoid X receptor heterodimer,<br>DR4 sites                               | 0.75 | 1357 - 1381 | £        | 0.770 | 0.805 | ggggtGGGCagctcagttcagtaac |
| V\$CREB/E4BP4.01          | E4BP4, bZIP domain, transcriptional repressor                                                                  | 0.80 | 1367 - 1387 | ÷        | 1.000 | 0.802 | gctcagttcaGTAAcccagtg     |
| V\$PARF/HLF.01            | Hepatic leukemia factor                                                                                        | 0.84 | 1368 - 1384 | ÷        | 1.000 | 0.856 | ctcagttcaGTAAccca         |
| V\$PARF/TEF HLF.01        | Thyrotrophic embryonic factor / hepatic leukemia factor                                                        | 0.78 | 1369 - 1385 | <u>.</u> | 1.000 | 0.805 | ctgggTTACtgaactga         |
| V\$FXRE/FXRE.01           | Farnesoid X - activated receptor (RXR/FXR dimer), IR1 sites                                                    | 0.80 | 1371 - 1383 | ÷        | 0.750 | 0.832 | AGTTcagtaaccc             |
| V\$FXRE/FXRE.01           | Farnesoid X - activated receptor (RXR/FXR dimer), IR1 sites                                                    | 0.80 | 1371 - 1383 | <u>.</u> | 0.875 | 0.881 | GGGTtactgaact             |
| V\$CLOX/CDP.01            | Cut-like homeodomain protein                                                                                   | 0.75 | 1398 - 1416 | C        | 1.000 | 0.793 | acccacTAATcacagtgcc       |
| <u>V\$GF11/GF11.02</u>    | Growth factor independence 1                                                                                   | 06.0 | 1398 - 1412 | C        | 1.000 | 0.914 | actAATCacagtgcc           |
| V\$HOXF/CRX.01            | Cone-rod homeobox-containing transcription factor / otx-like<br>homeobox gene                                  | 0.94 | 1398 - 1414 | 3        | 1.000 | 0.961 | ccacTAATcacagtgcc         |
| <u>V\$PDX1/PDX1.01</u>    | Pdx1 (IDX1/IPF1) pancreatic and intestinal homeodomain TF                                                      | 0.74 | 1399 - 1419 | 3        | 1.000 | 0.764 | ctcaccacTAATcacagtgc      |
| V\$CAAT/ACAAT.01          | Avian C-type LTR CCAAT box                                                                                     | 0.83 | 1401 - 1415 | 3        | 0.750 | 0.874 | cccaCTAAtcacagt           |

| V\$NR2F/TR4.02             | TR4 homodimer, DR1 site                                                                                                                        | 0.75 | 1417 - 1441 | ÷        | 1.000 | 0.778 | gagaacAGGTaaaagatacaggctg              |
|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|------|-------------|----------|-------|-------|----------------------------------------|
| V\$ZFHX/AREB6.01           | AREB6 (Atp1a1 regulatory element binding factor 6)                                                                                             | 0.93 | 1419 - 1431 | <u>.</u> | 1.000 | 0.940 | cttttACCTgttc                          |
| V\$PLZF/PLZF.01            | Promyelocytic leukemia zink finger (TF with nine Krueppel-like zink<br>fingers)                                                                | 0.86 | 1430 - 1444 | £        | 1.000 | 0.897 | agaTACAggctgagg                        |
| V\$HOXF/GSC.01             | Vertebrate bicoid-type homeodomain protein Goosecoid                                                                                           | 0.98 | 1465 - 1481 | ÷        | 1.000 | 0.983 | cctgTAATcccatcact                      |
| V\$RXRF/VDR_RXR.02         | VDR/RXR Vitamin D receptor RXR heterodimer, DR3 sites                                                                                          | 0.86 | 1484 - 1508 | £        | 0.777 | 0.898 | tgggaggggggggggggggggggggggggggggggggg |
| <u>V\$E2FF/E2F1 DP2.01</u> | E2F-1/DP-2 heterodimeric complex                                                                                                               | 0.78 | 1491 - 1507 | £        | 1.000 | 0.810 | gcaaGGCGggcagatca                      |
| V\$NR2F/HNF4.02            | Hepatic nuclear factor 4, DR2 sites                                                                                                            | 0.76 | 1497 - 1521 | ÷        | 0.750 | 0.805 | cgggcagatcaCAAGgtcaggagtt              |
| V\$EREF/ERR.01             | Estrogen related receptor                                                                                                                      | 0.87 | 1502 - 1520 | ÷        | 1.000 | 0.957 | agatcacAAGGtcaggagt                    |
| <u>V\$RORA/RORA1.01</u>    | RAR-related orphan receptor alpha1                                                                                                             | 0.93 | 1502 - 1524 | ÷        | 1.000 | 0.942 | agatcacaa6GTCaggagttcga                |
| <u>V\$SF1F/SF1.01</u>      | SF1 steroidogenic factor 1                                                                                                                     | 0.95 | 1504 - 1516 | ÷        | 1.000 | 0.996 | atcaCAAGgtcag                          |
| V\$NBRE/NBRE.01            | Monomers of the nur subfamily of nuclear receptors (nur77, nurr1, nor-1)                                                                       | 0.86 | 1505 - 1519 | ÷        | 1.000 | 0.932 | tcacAAGGtcaggag                        |
| V\$OCTB/TST1.01            | POU-factor Tst-1/Oct-6                                                                                                                         | 06.0 | 1540 - 1552 | -        | 0.900 | 0.926 | gggtTTTAccatg                          |
| V\$HOXF/BARX2.01           | Barx2, homeobox transcription factor that preferentially binds to paired TAAT motifs                                                           | 0.95 | 1551 - 1567 | •        | 1.000 | 0.953 | ttttTAATagagatggg                      |
| <u>V\$MEF2/SL1.01</u>      | Member of the RSRF (related to serum response factor) protein<br>family from Xenopus laevis                                                    | 0.84 | 1551 - 1573 | £        | 1.000 | 0.845 | cccatctCTATtaaaaatacaaa                |
| V\$HOXF/HOXC13.01          | Homeodomain transcription factor HOXC13                                                                                                        | 0.91 | 1555 - 1571 | £        | 1.000 | 0.933 | tctctatTAAAaataca                      |
| V\$BRNF/BRN2.01            | Brn-2, POU-III protein dass                                                                                                                    | 0.86 | 1557 - 1575 | ÷        | 0.966 | 0.883 | tcTATTaaaatacaaaaa                     |
| V\$EBOX/ATF6.01            | Member of b-zip family, induced by ER damage/stress, binds to the ERSE in association with NF-Y                                                | 0.93 | 1580 - 1592 | -        | 1.000 | 0.938 | ccaCCACgcctgg                          |
| V\$RXRF/VDR RXR.01         | VDR/RXR Vitamin D receptor RXR heterodimer, DR3 sites                                                                                          | 0.85 | 1612 - 1636 | £        | 1.000 | 0.855 | attcaggaggctGAGGccggagaat              |
| V\$BCL6/BCL6.01            | POZ/zinc finger protein, transcriptional repressor, translocations<br>observed in diffuse large cell lymphoma                                  | 0.76 | 1633 - 1649 | ÷        | 0.756 | 0.769 | gaaTTGCttgaacccgg                      |
| <u>V\$AP2F/AP2.02</u>      | Activator protein 2 alpha                                                                                                                      | 0.92 | 1642 - 1656 | <u>.</u> | 1.000 | 0.927 | tccGCCTccgggttc                        |
| V\$PURA/PURALPHA.01        | Purine-rich element binding protein A                                                                                                          | 0.97 | 1648 - 1660 | ÷        | 1.000 | 0.985 | ggAGGCggaggtt                          |
| <u>V\$NF1F/NF1.01</u>      | Nuclear factor 1                                                                                                                               | 0.82 | 1655 - 1675 | -        | 1.000 | 0.834 | atcTTGGctcactgcaacctc                  |
| <u>V\$NF1F/NF1.02</u>      | Nuclear factor 1 (CTF1)                                                                                                                        | 0.81 | 1655 - 1675 | £        | 0.750 | 0.877 | gaggTTGCagtgagccaagat                  |
| V\$EGRF/NGFIC.01           | Nerve growth factor-induced protein C                                                                                                          | 0.80 | 1674 - 1690 | <u>-</u> | 0.785 | 0.823 | gagtGCGGtggtgggat                      |
| <u>V\$AHRR/AHR.01</u>      | Aryl hydrocarbon / dioxin receptor                                                                                                             | 0.78 | 1676 - 1700 | :        | 0.750 | 0.801 | ccccaggctgGAGTgcggtggtggg              |
| V\$CHRE/CHREBP MLX.01      | Carbohydrate response element binding protein (CHREBP) and<br>Max-like protein X (Mlx) bind as heterodimers to glucose-responsive<br>promoters | 0.83 | 1681 - 1697 | ÷        | 0.833 | 0.836 | CAGGctggagtgcggtg                      |
| <u>V\$AP2F/AP2.01</u>      | Activator protein 2                                                                                                                            | 0.90 | 1690 - 1704 | £        | 1.000 | 0.901 | ccaGCCTggggacag                        |
| V\$GATA/GATA1.06           | Complex of Lmo2 bound to Tal-1, E2A proteins, and GATA-1,<br>half-site 2                                                                       | 0.96 | 1712 - 1724 | •        | 1.000 | 0.970 | ttttGATAaggag                          |
| V\$MOKF/MOK2.01            | Ribonucleoprotein associated zinc finger protein MOK-2 (mouse)                                                                                 | 0.74 | 1758 - 1778 | -        | 0.750 | 0.744 | gcccacatcattgCCTGcatg                  |
| V\$ETSF/PU1.01             | Pu.1 (Pu120) Ets-like transcription factor identified in lymphoid<br>B-cells                                                                   | 0.89 | 1797 - 1817 | ÷        | 1.000 | 0.899 | cctgcagaGGAAtctatgtga                  |
| V\$CLOX/CDP.02             | Transcriptional repressor CDP                                                                                                                  | 0.81 | 1800 - 1818 | £        | 0.806 | 0.816 | gcagaggaATCTatgtgaa                    |
| <u>V\$TEAF/TEF1.01</u>     | TEF-1 related muscle factor                                                                                                                    | 0.84 | 1801 - 1813 | (-)      | 0.750 | 0.855 | ataGATTcctctg                          |
| V\$CLOX/CDPCR3HD.01        | Cut-like homeodomain protein                                                                                                                   | 0.94 | 1803 - 1821 | <u>-</u> | 0.885 | 0.943 | dttttcacataGATTcdtc                    |
| V\$WHNF/WHN.01             | Winged helix protein, involved in hair keratinization and thymus<br>epithelium differentiation                                                 | 0.95 | 1818 - 1828 | C        | 1.000 | 0.977 | aggACGCtttt                            |
| V\$EGRF/CKROX.01           | Collagen krox protein (zinc finger protein 67 - zfp67)                                                                                         | 0.88 | 1819 - 1835 | <u>.</u> | 1.000 | 0.920 | gagcGGGAggacgcctt                      |

| V\$CREB/ATE.01         Act           V\$E4FF/E4F.01         6U           V\$E4FF/E4F.01         6U           V\$EAFF/E4F.01         Fa           V\$EAFF/E4F.01         Pa           V\$SEB/AX5.01         Ta           V\$SPLG/PAXCEB.02         Ta           V\$SPLG/PAXCEB.02         Ta           V\$SPLG/PLG1.01         Pi           V\$SPEB/SREBP.02         Ste           V\$SMAZF/MAX2.02         My                                                   | tivating transcription factor<br>.L.Krueppel-related transcription factor, regulator of adenovirus<br>4 promoter                                                                           | 0.90   | 1832 - 1852<br>1837 - 1849 | ÷÷       | 1.000 | 0.965<br>0.887 | gctccgTGACgttgcttggga<br>gtgACGTtgcttg |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------------------------|----------|-------|----------------|----------------------------------------|
| V\$E4FF/E4F.01         GLI           V\$PAX6/PAX6.01         E4           V\$CREB/TAXCREB.02         Pai           V\$SHEF/HE1.01         Pai           V\$PLAG/PLAG1.01         Pai           V\$PLAG/PLAG1.01         Pai           V\$PLAG/PLAG1.01         Pai           V\$PLAG/PLAG1.01         Pai           V\$PLAG/PLAG1.01         Pai           V\$STEB/STEBP.02         Ste           V\$MAZF/MAZ.01         M           V\$NXXH/HMX2.02         Hm | .I-Krueppel-related transcription factor, regulator of adenovirus<br>4 promoter                                                                                                            | 0.82   | 1837 - 1849                | +        | 1.000 | 0.887          | gtgACGTtgcttg                          |
| V&PAX6/PAX6.01         Pai           V&CREB/TAXCREB.02         Tai           V&ILFF/HIE1.01         HYI           V&PLAG/PLAG1.01         Pie           V&PLAG/PLAG1.01         Pie           V&SREB/SREBP.02         Ste           V&MX         V           VSMAZF/MAZ.01         My                                                                                                                                                                           |                                                                                                                                                                                            |        |                            | ĺ        |       |                |                                        |
| V\$CREB/TAXCREB.02         Tax           V\$HIFF/HIF1.01         HYI           V\$PLAG/PLAG1.01         Pie           V\$PLAG/PLAG1.01         Pie           V\$PLAG/PLAG1.01         Cie           V\$STREB/SREBP.02         Ste           V\$MAZF/MAZ.01         My           V\$NKXH/HMX2.02         Hm                                                                                                                                                      | ax-6 paired domain binding site                                                                                                                                                            | 0.75   | 1848 - 1866                | <u>.</u> | 1.000 | 0.768          | cgatcACGCatacgtccca                    |
| V\$HIFF.MIF1.01         Hyr           V\$PLaG/PLAG1.01         Pie           V\$SREB/SREBP.02         Stell           V\$SMAZF/MAZ.01         My           V\$SNKXH/hMX2.02         My                                                                                                                                                                                                                                                                          | ax/CREB complex                                                                                                                                                                            | 0.71   | 1849 - 1869                | <u>.</u> | 0.750 | 0.747          | cctcgaTCACgcatacgtccc                  |
| V\$PLAG/PLAG1.01         Ple           V\$SREB/SREBP.02         Ste           V\$MAZF/MAZ.01         My           V\$NXXH/HMX2.02         Hrr                                                                                                                                                                                                                                                                                                                   | <pre>/poxia induced factor-1 (HIF-1)</pre>                                                                                                                                                 | 0.87   | 1849 - 1861                | <u>.</u> | 1.000 | 0.895          | acgcatACGTccc                          |
| V\$SEEB/SREBP.02         Stell           V\$MAZF/MAZ.01         My           V\$NKXH/HMX2.02         Hm                                                                                                                                                                                                                                                                                                                                                         | eomorphic adenoma gene (PLAG) 1, a developmentally regulated                                                                                                                               | 0.88   | 1866 - 1886                | ÷        | 1.000 | 0.885          | GAGGggctgagtgt <mark>gg</mark> tgtga   |
| V\$MAZF/MAZ.01 My                                                                                                                                                                                                                                                                                                                                                                                                                                               | erol regulatory element binding protein                                                                                                                                                    | 0.80   | 1875 - 1889                | 3        | 1.000 | 0.838          | cccTCACaccacact                        |
| V\$NKXH/HMX2.02                                                                                                                                                                                                                                                                                                                                                                                                                                                 | yc associated zinc finger protein (MAZ)                                                                                                                                                    | 06.0   | 1907 - 1919                | £        | 1.000 | 0.919          | ggtgGAGGtgagc                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | mx2/Nkx5-2 homeodomain transcription factor                                                                                                                                                | 0.82   | 1915 - 1929                | 3        | 1.000 | 0.856          | gcttccAAACgctca                        |
| V\$PRDF/BLIMP1.01<br>pro                                                                                                                                                                                                                                                                                                                                                                                                                                        | anscriptional repressor B lymphocyte-induced maturation<br>otein-1 (Blimp-1, prdm1)                                                                                                        | 0.81   | 1928 - 1946                | +        | 0.787 | 0.839          | gcgagtTAAAgtgggcatg                    |
| V\$HOMF/EN1.01 Ho                                                                                                                                                                                                                                                                                                                                                                                                                                               | protein engrailed (en-1)                                                                                                                                                                   | 0.77   | 1930 - 1942                | £        | 0.826 | 0.801          | gagTTAAagtggg                          |
| V\$NKXH/HMX3.01 H6                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5 homeodomain HMX3/Nkx5.1 transcription factor                                                                                                                                             | 0.89   | 1930 - 1944                | £        | 1.000 | 0.894          | gagttaAAGTgggca                        |
| V\$PLZF/PLZF.01                                                                                                                                                                                                                                                                                                                                                                                                                                                 | omyelocytic leukemia zink finger (TF with nine Krueppel-like zink<br>Igers)                                                                                                                | 0.86   | 1931 - 1945                | ÷        | 0.958 | 0.866          | agtTAAAgtgggcat                        |
| V\$P53F/P53.02                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Imor suppressor p53 (5' half site)                                                                                                                                                         | 0.91   | 1939 - 1961                | <u>.</u> | 1.000 | 0.913          | atcctcaccggctcaCATGccca                |
| V\$CAAT/NFY.01                                                                                                                                                                                                                                                                                                                                                                                                                                                  | uclear factor Y (Y-box binding factor)                                                                                                                                                     | 06.0   | 1954 - 1968                | <u>.</u> | 1.000 | 0.927          | ccaaCCAAtcctcac                        |
| V\$ATBF/ATBF1.01                                                                                                                                                                                                                                                                                                                                                                                                                                                | -binding transcription factor 1                                                                                                                                                            | 0.79   | 1960 - 1976                | £        | 0.782 | 0.793          | attggttggtACTTcag                      |
| Zin<br>V\$RU49/RU49.01<br>rep                                                                                                                                                                                                                                                                                                                                                                                                                                   | nc finger transcription factor RU49 (zinc finger proliferation 1 -<br>pro 1). RU49 exhibits a strong preference for binding to tandem<br>peats of the minimal RU49 consensus binding site. | 0.98   | 1967 - 1973                | •        | 1.000 | 1.000          | aAGTAcc                                |
| V\$RBPF/RBPJK.01                                                                                                                                                                                                                                                                                                                                                                                                                                                | ammalian transcriptional repressor RBP-Jkappa/CBF1                                                                                                                                         | 0.84   | 1987 - 2001                | ÷        | 0.789 | 0.871          | agagTGTGaaagtgt                        |
| V\$PRDF/BLIMP1.01<br>pro                                                                                                                                                                                                                                                                                                                                                                                                                                        | anscriptional repressor B lymphocyte-induced maturation<br>otein-1 (Blimp-1, prdm1)                                                                                                        | 0.81   | 1988 - 2006                | £        | 1.000 | 0.858          | gagtgtGAAAgtgttcccg                    |
| V\$E2FF/E2F.01 E2                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2F, involved in cell cycle regulation, interacts with Rb p107 protein                                                                                                                      | 0.75   | 1996 - 2012                | <u>.</u> | 0.750 | 0.769          | gctacccggGAACactt                      |
| V\$STAT/STAT6.01 ST                                                                                                                                                                                                                                                                                                                                                                                                                                             | AT6: signal transducer and activator of transcription 6                                                                                                                                    | 0.84   | 1996 - 2014                | 3        | 0.793 | 0.876          | gcgcTACCcgggaacactt                    |
| V\$XBBF/RFX1.01 X-E                                                                                                                                                                                                                                                                                                                                                                                                                                             | box binding protein RFX1                                                                                                                                                                   | 0.89   | 1996 - 2014                | 3        | 0.881 | 0.917          | gcgctacccgGGAAcactt                    |
| V\$IKRS/IK3.01 Ika                                                                                                                                                                                                                                                                                                                                                                                                                                              | aros 3, potential regulator of lymphocyte differentiation                                                                                                                                  | 0.84   | 1997 - 2009                | :        | 1.000 | 0.876          | acccgGGAAcact                          |
| V\$0AZF/R0AZ.01                                                                                                                                                                                                                                                                                                                                                                                                                                                 | at C2H2 Zn finger protein involved in olfactory neuronal<br>(fferentiation                                                                                                                 | 0.73   | 2009 - 2025                | ÷        | 0.750 | 0.735          | taGCGCacaagtgtgtt                      |
| V\$NKXH/HMX3.01 H6                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5 homeodomain HMX3/Nkx5.1 transcription factor                                                                                                                                             | 0.89   | 2011 - 2025                | ÷        | 1.000 | 0.906          | gcgcacAAGTgtgtt                        |
| V\$RUSH/SMARCA3.02 SW                                                                                                                                                                                                                                                                                                                                                                                                                                           | NI/SNF related, matrix associated, actin dependent regulator of<br>iromatin, subfamily a, member 3                                                                                         | 0.98   | 2014 - 2024                | 3        | 1.000 | 0.985          | acacACTTgtg                            |
| V\$E2FF/E2F.02                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2F, involved in cell cycle regulation, interacts with Rb p107 protein                                                                                                                      | 0.84   | 2024 - 2040                | ÷        | 0.857 | 0.884          | ttcgtgcggTAAAagtt                      |
| V\$CLOX/CDPCR3.01                                                                                                                                                                                                                                                                                                                                                                                                                                               | ut-like homeodomain protein                                                                                                                                                                | 0.73   | 2027 - 2045                | +        | 1.000 | 0.747          | gtgcggtaaagttATGGt                     |
| V\$BRNF/BRN5.01                                                                                                                                                                                                                                                                                                                                                                                                                                                 | n-5, POU-VI protein class (also known as emb and CNS-1)                                                                                                                                    | 0.74   | 2029 - 2047                | <u>.</u> | 1.000 | 0.778          | acacCATAacttttaccgc                    |
| V\$MYT1/MYT1.02                                                                                                                                                                                                                                                                                                                                                                                                                                                 | yT1 zinc finger transcription factor involved in primary<br>aurogenesis                                                                                                                    | 0.88   | 2033 - 2045                | ÷        | 1.000 | 0.891          | taaAAGTtatggt                          |
| V\$GREF/GRE.01 del                                                                                                                                                                                                                                                                                                                                                                                                                                              | ucocorticoid receptor, C2C2 zinc finger protein binds glucocorticoid<br>spendent to GREs, IR3 sites                                                                                        | 1 0.85 | 2043 - 2061                | ÷        | 1.000 | 0.910          | ggtgtggaagg <mark>tGTTC</mark> ttg     |
| V\$EKLF/BKLF.01 Ba                                                                                                                                                                                                                                                                                                                                                                                                                                              | asic krueppel-like factor (KLF3)                                                                                                                                                           | 0.95   | 2059 - 2075                | ÷        | 1.000 | 0.960          | ttGGGTgtggaagttgg                      |
| V\$ETSF/SPI1 PU1.02                                                                                                                                                                                                                                                                                                                                                                                                                                             | bleen focus forming virus (SFFV) proviral integration oncogene<br>vi1/transcription factor PU.1                                                                                            | 0.96   | 2059 - 2079                | £        | 1.000 | 0.974          | ttgggtgtGGAAgttggggcgt                 |
| V\$PAX6/PAX6.01                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ax-6 paired domain binding site                                                                                                                                                            | 0.75   | 2066 - 2084                | <u>.</u> | 1.000 | 0.842          | gtttcACGCccaacttcca                    |
| V\$E2FF/RB E2F1 DP1.01 RB,                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3/E2F-1/DP-1 heterotrimeric complex                                                                                                                                                        | 0.71   | 2068 - 2084                | 3        | 0.765 | 0.809          | gtttcACGCccaacttc                      |
| V\$E2FF/E2F.02                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2F, involved in cell cycle regulation, interacts with Rb p107 protein                                                                                                                      | 0.84   | 2071 - 2087                | £        | 1.000 | 606.0          | gttgggcgtGAAAcgtg                      |
| V\$PRDF/BLIMP1.01 [Tra                                                                                                                                                                                                                                                                                                                                                                                                                                          | anscriptional repressor B lymphocyte-induced maturation<br>otein-1 (Blimp-1, prdm1)                                                                                                        | 0.81   | 2074 - 2092                | £        | 1.000 | 0.824          | gggcgtGAAAcgtgtgagc                    |

| (2.02 | Hmx2/Nkx5-2 homeodomain transcription factor                                                                                  | 0.82 | 2075 - 2089 | ÷        | 1.000 | 0.887 | ggcgtgAAACgtgtg                |
|-------|-------------------------------------------------------------------------------------------------------------------------------|------|-------------|----------|-------|-------|--------------------------------|
|       | Ank nuclear translocator nomodimers                                                                                           | 0.89 | 5802 - //02 | Ð        | 1.000 | 768.0 | cgtgaaacolotg                  |
|       | Hmx2/Nkx5-2 homeodomain transcription factor                                                                                  | 0.82 | 2080 - 2094 | Ū        | 0.750 | 0.837 | cggctcACACgtttc                |
|       | Neural-restrictive-silencer-element                                                                                           | 0.67 | 2085 - 2105 | ŧ        | 1.000 | 0.687 | gtgtgagccgCGGAcgacagc          |
|       | Activator protein 4                                                                                                           | 0.85 | 2096 - 2112 | <u>.</u> | 1.000 | 0.882 | gcacgCAGCtgtcgtcc              |
|       | MyoD/E47 and MyoD/E12 dimers                                                                                                  | 0.92 | 2096 - 2112 | <u>.</u> | 1.000 | 0.925 | gcacGCAGctgtcgtcc              |
|       | Activator protein 4                                                                                                           | 0.92 | 2097 - 2113 | £        | 1.000 | 0.935 | gacgacAGCTgcgtgcg              |
|       | Egr-2/Krox-20 early growth response gene product                                                                              | 0.79 | 2103 - 2119 | £        | 1.000 | 0.815 | agctGCGTgcgtgtgag              |
|       | Early growth response gene 3 product                                                                                          | 0.77 | 2107 - 2123 | £        | 1.000 | 0.772 | gcgtGCGTgtgagcgtg              |
|       | Early growth response gene 3 product                                                                                          | 0.77 | 2115 - 2131 | £        | 1.000 | 0.772 | gtgaGCGTgggaaggag              |
|       | Mammalian transcriptional repressor RBP-Jkappa/CBF1                                                                           | 0.94 | 2118 - 2132 | £        | 1.000 | 0.962 | agcgTGGGaaggaga                |
|       | Hey-like bHLH-transcriptional repressor                                                                                       | 0.91 | 2163 - 2177 | <u>.</u> | 1.000 | 0.931 | cccgCACGggcgact                |
|       | Aryl hydrocarbon receptor / Arnt heterodimers                                                                                 | 0.92 | 2168 - 2192 | £        | 1.000 | 0.934 | cccgtgcggggCGTGcagggacgtg      |
|       | EGR1, early growth response 1                                                                                                 | 0.86 | 2168 - 2184 | £        | 1.000 | 0.865 | cccgtgcgGGGCgtgca              |
|       | TGFbeta-inducible early gene (TIEG) / Early growth response gene<br>alpha (EGRalpha)                                          | 0.83 | 2172 - 2186 | (+       | 1.000 | 0.859 | tgcGGGGcgtgcagg                |
|       | Activating transcription factor 6, member of b-zip family, induced by<br>ER stress                                            | 0.85 | 2180 - 2200 | ÷        | 1.000 | 0.883 | gtgcaggGACGtggaagtcgc          |
|       | Spleen focus forming virus (SFFV) proviral integration oncogene<br>Spi1/transcription factor PU.1                             | 0.96 | 2184 - 2204 | £        | 1.000 | 0.966 | agggacgtGGAAgtcgccggc          |
|       | NUDR (nuclear DEAF-1 related transcriptional regulator protein)                                                               | 0.73 | 2188 - 2206 | Ĵ        | 0.777 | 0.735 | gcgCCGGcgacttccacgt            |
|       | Nuclear respiratory factor 1 (NRF1), bZIP transcription factor that<br>lacts on nuclear genes encoding mitochondrial proteins | 0.78 | 2193 - 2209 | Ĵ        | 1.000 | 0.819 | cgcGCGCcggcgacttc              |
|       | Nuclear respiratory factor 1 (NRF1), bZIP transcription factor that<br>lacts on nuclear genes encoding mitochondrial proteins | 0.78 | 2194 - 2210 | ÷        | 0.750 | 0.786 | aagTCGCcggcgcgcgc              |
|       | Nuclear respiratory factor 1 (NRF1), bZIP transcription factor that<br>lacts on nuclear genes encoding mitochondrial proteins | 0.78 | 2199 - 2215 | <u>.</u> | 0.750 | 0.826 | tccCCGCgcgcgccggc              |
|       | Nuclear respiratory factor 1 (NRF1), bZIP transcription factor that<br>lacts on nuclear genes encoding mitochondrial proteins | 0.78 | 2200 - 2216 | ÷        | 1.000 | 0.788 | ccgGCGCgcgcggggaa              |
|       | Zinc finger / POZ domain transcription factor                                                                                 | 0.95 | 2200 - 2210 | <u>.</u> | 1.000 | 0.963 | gcgcGCcgg                      |
|       | Zinc finger / POZ domain transcription factor                                                                                 | 0.95 | 2203 - 2213 | £        | 1.000 | 996'0 | gcgcGCGCggg                    |
|       | c-Ets-1 binding site                                                                                                          | 0.92 | 2205 - 2225 | (+       | 1.000 | 0.920 | gcgcgcggGGAAgcggggggg          |
|       | Kruppel-like zinc finger protein 219                                                                                          | 0.91 | 2208 - 2230 | <u>.</u> | 1.000 | 0.936 | cccggctCCCcgcttccccgcg         |
|       | Myeloid zinc finger protein MZF1                                                                                              | 0.99 | 2209 - 2217 | ÷        | 1.000 | 0.991 | gcGGGGaag                      |
|       | Nerve growth factor-induced protein C                                                                                         | 0.80 | 2213 - 2229 | ÷        | 0.785 | 0.809 | ggaaGCGGggggagccgg             |
|       | Myc associated zinc finger protein (MAZ)                                                                                      | 06.0 | 2234 - 2246 | ÷        | 1.000 | 0.959 | cgggGAGGcgaga                  |
|       | MYC-MAX binding sites                                                                                                         | 0.91 | 2245 - 2257 | <u>.</u> | 0.789 | 0.914 | gggccaGGCGctc                  |
|       | Tumor suppressor p53                                                                                                          | 0.73 | 2266 - 2288 | ÷        | 1.000 | 0.759 | catccCATGcccgggcccgggcc        |
|       | Pleomorphic adenoma gene (PLAG) 1, a developmentally regulated<br>C2H2 zinc finger protein                                    | 0.88 | 2270 - 2290 | C        | 0.958 | 0.889 | GGGGcccgggcccgggcatgg          |
|       | Pleomorphic adenoma gene (PLAG) 1, a developmentally regulated<br>C2H2 zinc finger protein                                    | 0.88 | 2284 - 2304 | ÷        | 0.958 | 206'0 | <u>GGGGcggggggaccggggggccc</u> |
|       | Kruppel-like zinc finger protein 219                                                                                          | 0.91 | 2288 - 2310 | £        | 1.000 | 0.932 | ccccggtCCCCcgccccgtccca        |
|       | Wilms Tumor Suppressor                                                                                                        | 0.92 | 2289 - 2305 | 3        | 0.953 | 0.971 | cggggGGGGggaccggg              |
|       | Core promoter-binding protein (CPBP) with 3 Krueppel-type zinc<br>fingers                                                     | 0.87 | 2291 - 2313 | (+       | 1.000 | 0.874 | cggtcccCCGCcccgtcccatcc        |
|       | MYC-associated zinc finger protein related transcription factor                                                               | 0.88 | 2293 - 2305 | <u>с</u> | 1.000 | 0.892 | cggggcGGGgac                   |
|       | Stimulating protein 1, ubiquitous zinc finger transcription factor                                                            | 0.88 | 2293 - 2307 | <u>.</u> | 1.000 | 766.0 | gacgGGGCgggggac                |
|       | kidney-enriched kruppel-like factor, KLF15                                                                                    | 0.91 | 2294 - 2310 | C        | 1.000 | 0.936 | tgggacGGGGggggga               |
|       |                                                                                                                               |      |             |          |       |       |                                |

| V\$EGRF/WT1.01         | Wilms Tumor Suppressor                                                                                         | 0.92 | 2289 - 2305 | C        | 0.953 | 0.971 | cggggCGGGggaccggg           |
|------------------------|----------------------------------------------------------------------------------------------------------------|------|-------------|----------|-------|-------|-----------------------------|
| V\$ZBPF/ZF9.01         | Core promoter-binding protein (CPBP) with 3 Krueppel-type zinc<br>fingers                                      | 0.87 | 2291 - 2313 | ÷        | 1.000 | 0.874 | cggtcccCCGCcccgtcccatcc     |
| V\$MAZF/MAZR.01        | MYC-associated zinc finger protein related transcription factor                                                | 0.88 | 2293 - 2305 | 3        | 1.000 | 0.892 | cggggcGGGgac                |
| V\$SP1F/SP1.01         | Stimulating protein 1, ubiquitous zinc finger transcription factor                                             | 0.88 | 2293 - 2307 | 3        | 1.000 | 0.997 | gacgGGGCggggggac            |
| V\$EKLF/KKLF.01        | Kidney-enriched kruppel-like factor, KLF15                                                                     | 0.91 | 2294 - 2310 | 3        | 1.000 | 0.936 | tgggacGGGGcggggga           |
| V\$EGRF/EGR1.02        | EGR1, early growth response 1                                                                                  | 0.86 | 2295 - 2311 | 3        | 1.000 | 0.888 | atgggacgGGGCggggg           |
| V\$E2FF/E2F.02         | E2F, involved in cell cycle regulation, interacts with Rb p107 protein                                         | 0.84 | 2327 - 2343 | 3        | 1.000 | 0.896 | gctccccgcCAAAcccg           |
| V\$NF1F/NF1.01         | Nuclear factor 1                                                                                               | 0.82 | 2329 - 2349 | +        | 1.000 | 0.838 | ggtTTGGcgggggagccgggcc      |
| V\$NF1F/NF1.02         | Nuclear factor 1 (CTF1)                                                                                        | 0.81 | 2329 - 2349 | 3        | 0.750 | 0.810 | ggccCGGCtccccgccaacc        |
| V\$E2FF/RB E2F1 DP1.01 | RB/E2F-1/DP-1 heterotrimeric complex                                                                           | 0.71 | 2330 - 2346 | ÷        | 0.795 | 0.759 | gtttgGCGGggagccgg           |
| V\$MAZF/MAZ.01         | Myc associated zinc finger protein (MAZ)                                                                       | 06.0 | 2331 - 2343 | £        | 0.866 | 0.901 | tttgGCGGggagc               |
| V\$MZF1/MZF1.01        | Myeloid zinc finger protein MZF1                                                                               | 0.99 | 2335 - 2343 | £        | 1.000 | 0.991 | gcGGGGagc                   |
| V\$NRSF/NRSE.01        | Neural-restrictive-silencer-element                                                                            | 0.67 | 2346 - 2366 | £        | 0.782 | 0.681 | ggccgggccgCGGCccgcgcg       |
| V\$PLAG/PLAG1.01       | Pleomorphic adenoma gene (PLAG) 1, a developmentally regulated<br>C2H2 zinc finger protein                     | 0.88 | 2355 - 2375 | £        | 0.833 | 0.887 | GCGGcccgcgcggggggggggtg     |
| V\$EGRF/NGFIC.01       | Nerve growth factor-induced protein C                                                                          | 0.80 | 2358 - 2374 | £        | 0.762 | 0.818 | gcccGCGCgggggggct           |
| V\$EGRF/WT1.01         | Wilms Tumor Suppressor                                                                                         | 0.92 | 2360 - 2376 | +        | 0.953 | 0.984 | ccgcgCGGGggggctgg           |
| V\$ZBPF/ZNF202.01      | Transcriptional repressor, binds to elements found predominantly in genes that participate in lipid metabolism | 0.73 | 2361 - 2383 | •        | 1.000 | 0.817 | tgggccCCCAgccccccgcgcg      |
| V\$EGRF/WT1.01         | Wilms Tumor Suppressor                                                                                         | 0.92 | 2362 - 2378 | ÷        | 0.837 | 0.920 | gcgcgGGGGggctgggg           |
| V\$MAZF/MAZR.01        | MYC-associated zinc finger protein related transcription factor                                                | 0.88 | 2363 - 2375 | £        | 1.000 | 0.929 | cgcgggGGGGctg               |
| V\$RXRF/VDR_RXR.05     | Bipartite binding site of VDR/RXR heterodimers, DR4 sites                                                      | 0.79 | 2363 - 2387 | £        | 0.904 | 0.812 | cgcGGGGggggctggggggcccagaca |
| V\$RREB/RREB1.01       | Ras-responsive element binding protein 1                                                                       | 0.80 | 2364 - 2378 | 3        | 1.000 | 0.869 | cCCCAgccccccgc              |
| V\$ZBPF/ZNF219.01      | Kruppel-like zinc finger protein 219                                                                           | 0.91 | 2364 - 2386 | 3        | 1.000 | 0.917 | gtctgggCCCCcagccccccgc      |
| V\$SP1F/SP1.01         | Stimulating protein 1, ubiquitous zinc finger transcription factor                                             | 0.88 | 2366 - 2380 | ÷        | 1.000 | 0.895 | ggggGGGCtgggggc             |
| V\$SMAD/SMAD3.01       | Smad3 transcription factor involved in TGF-beta signaling                                                      | 66.0 | 2378 - 2386 | 3        | 1.000 | 0.993 | GTCTgggcc                   |
| V\$NRSF/NRSE.01        | Neural-restrictive-silencer-element                                                                            | 0.67 | 2395 - 2415 | ÷        | 0.782 | 0.673 | agtagctgcgCGGCcggctgg       |
| V\$STAF/ZNF76 143.01   | ZNF143 is the human ortholog of Xenopus Staf, ZNF76 is a DNA binding protein related to ZNF143 and Staf        | 0.76 | 2398 - 2420 | •        | 1.000 | 0.783 | tcgcCCCAgccggccgcgcgcdct    |
| V\$EGRF/EGR1.02        | EGR1, early growth response 1                                                                                  | 0.86 | 2407 - 2423 | ÷        | 1.000 | 0.892 | gccggctgGGGCgagca           |
| V\$CP2F/CP2.01         | CP2                                                                                                            | 06.0 | 2410 - 2428 | ÷        | 1.000 | 0.920 | ggCTGGggcgagcagagcc         |
| V\$ZBPF/ZNF219.01      | Kruppel-like zinc finger protein 219                                                                           | 0.91 | 2426 - 2448 | 3        | 1.000 | 0.949 | cggaccgCCCcggggccgcgggc     |
| V\$ZBPF/ZF9.01         | Core promoter-binding protein (CPBP) with 3 Krueppel-type zinc fingers                                         | 0.87 | 2429 - 2451 | <u> </u> | 1.000 | 0.885 | ccacggaCCGCccccggggccgcg    |
| V\$AP2F/AP2.02         | Activator protein 2 alpha                                                                                      | 0.92 | 2431 - 2445 | 3        | 0.905 | 0.922 | accGCCCccgggccg             |
| V\$EGRF/EGR1.02        | EGR1, early growth response 1                                                                                  | 0.86 | 2431 - 2447 | ÷        | 1.000 | 0.868 | cggcccggGGGCggtcc           |
| V\$GLIF/ZIC2.01        | Zinc finger transcription factor, Zic family member 2 (odd-paired homolog, Drosophila)                         | 0.89 | 2434 - 2448 | <u>.</u> | 1.000 | 0.956 | cggaccgCCCcggg              |
| V\$SP1F/SP1.01         | Stimulating protein 1, ubiquitous zinc finger transcription factor                                             | 0.88 | 2435 - 2449 | ÷        | 1.000 | 0.894 | ccggGGGCggtccgt             |
| V\$ZBPF/ZF9.01         | Core promoter-binding protein (CPBP) with 3 Krueppel-type zinc<br>fingers                                      | 0.87 | 2440 - 2462 | •        | 1.000 | 006.0 | ccaggccCCGCccacggaccgcc     |
| V\$EGRF/EGR2.01        | Egr-2/Krox-20 early growth response gene product                                                               | 0.79 | 2442 - 2458 | ÷        | 0.751 | 0.887 | cggtCCGTgggcggggc           |
| V\$SP1F/SP1.02         | Stimulating protein 1, ubiquitous zinc finger transcription factor                                             | 0.85 | 2446 - 2460 | ÷        | 1.000 | 0.966 | ccgtGGGCggggcct             |
| V\$MAZF/MAZR.01        | MYC-associated zinc finger protein related transcription factor                                                | 0.88 | 2448 - 2460 | ÷        | 1.000 | 0.899 | gtgggcGGGGcct               |
| V\$NOLF/OLF1.01        | Olfactory neuron-specific factor                                                                               | 0.82 | 2457 - 2479 | 3        | 1.000 | 0.834 | cgccccTCCccggagcgccaggc     |
| V\$ZBPF/ZF9.01         | Core promoter-binding protein (CPBP) with 3 Krueppel-type zinc<br>fingers                                      | 0.87 | 2465 - 2487 | 3        | 1.000 | 0.882 | ccccgaaCCGCccctccccggag     |
| V\$SP1F/GC.01          | GC box elements                                                                                                | 0.88 | 2466 - 2480 | ÷        | 0.876 | 0.933 | tccggGGAGgggcgg             |
| V\$EGRF/EGR1.02        | EGR1, early growth response 1                                                                                  | 0.86 | 2467 - 2483 | ÷        | 1.000 | 0.903 | ccggggggGGGGCggttc          |
| V\$EKLF/KKLF.01        | Kidney-enriched kruppel-like factor, KLF15                                                                     | 0.91 | 2468 - 2484 | ÷        | 1.000 | 0.963 | caggaaGGGGcagttca           |

|   | cgggGAGGggcgg                            | cgaaccgCCCtccc                                                                         | ggag <mark>gGGCGgtt</mark> cgg | GAGGggcggttcgg <mark>gg</mark> cccgg                                                       | cCCCGaaccgcccct                          | cgCAGCgccggggcccgggccc       | მიიმმმებიიი                                                        | gca6CGCcggggccggg                                                                                                         | იიემიებიებიები                                                                                                            | cgccccgCCCCcgcagcgccggg              | gcccgccccgCCCcgcagcgcc                  | cgctgcggGGGCggggc             | tggccgcCCGCcccgccccgca                                                     | gcggGGGGggggggg                                                    | cgggggggggggggggggggggggggggggggggggggg | ggggggggggggggggggggggggggggggggggggggg    | ggggggggggggggggggggggggggggggggggggggg                         | ggcggggGGGggcca               | მმიმცვებებები                                                      | cggggGGGGgggccagg      | GCGGccaggaaagggggggggg                                         | cccaccgCCCCctttcctggccg              | cggcccaccgCCCCtttcctgg                  | aggaaaggGGGCggtgg             | cccaccgCCCCcttt                                                                        | aaggGGGCggtgggc                                                    | agggccgcgcTGTCccgag                                          | gggcCGCGctgtc                                                                                                       |                                | 2565 |  |
|---|------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------|------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------------------|-------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------|--------------------------------------------|-----------------------------------------------------------------|-------------------------------|--------------------------------------------------------------------|------------------------|----------------------------------------------------------------|--------------------------------------|-----------------------------------------|-------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--------------------------------|------|--|
|   | 0.969                                    | 0.944                                                                                  | 0.887                          | 0.907                                                                                      | 0.837                                    | 0.794                        | 0.898                                                              | 0.788                                                                                                                     | 0.784                                                                                                                     | 0.935                                | 0.956                                   | 0.991                         | 0.885                                                                      | 1.000                                                              | 0.892                                   | 0.961                                      | 0.916                                                           | 0.862                         | 0.976                                                              | 0.922                  | 0.880                                                          | 0.937                                | 0.946                                   | 0.865                         | 0.937                                                                                  | 0.911                                                              | 0.887                                                        | 0.886                                                                                                               |                                |      |  |
|   | 1.000                                    | 1.000                                                                                  | 1.000                          | 1.000                                                                                      | 0.750                                    | 0.882                        | 1.000                                                              | 1.000                                                                                                                     | 0.750                                                                                                                     | 1.000                                | 1.000                                   | 1.000                         | 1.000                                                                      | 1.000                                                              | 1.000                                   | 1.000                                      | 1.000                                                           | 1.000                         | 1.000                                                              | 0.953                  | 0.833                                                          | 1.000                                | 1.000                                   | 1.000                         | 1.000                                                                                  | 1.000                                                              | 1.000                                                        | 1.000                                                                                                               |                                |      |  |
|   | £                                        | Э                                                                                      | £                              | ÷                                                                                          | 3                                        | 3                            | <u> </u>                                                           | 3                                                                                                                         | ÷                                                                                                                         | 3                                    | 3                                       | £                             | 3                                                                          | £                                                                  | ÷                                       | £                                          | £                                                               | £                             | £                                                                  | £                      | £                                                              | 3                                    | 3                                       | £                             | •                                                                                      | £                                                                  | £                                                            | ÷                                                                                                                   |                                |      |  |
|   | 2468 - 2480                              | 2470 - 2484                                                                            | 2471 - 2485                    | 2472 - 2492                                                                                | 2473 - 2487                              | 2485 - 2505                  | 2485 - 2499                                                        | 2488 - 2504                                                                                                               | 2489 - 2505                                                                                                               | 2494 - 2516                          | 2497 - 2519                             | 2499 - 2515                   | 2502 - 2524                                                                | 2503 - 2517                                                        | 2504 - 2520                             | 2505 - 2521                                | 2505 - 2517                                                     | 2508 - 2524                   | 2508 - 2522                                                        | 2510 - 2526            | 2518 - 2538                                                    | 2519 - 2541                          | 2522 - 2544                             | 2524 - 2540                   | 2527 - 2541                                                                            | 2528 - 2542                                                        | 2545 - 2563                                                  | 2546 - 2558                                                                                                         |                                |      |  |
| ĺ | 0.90                                     | 0.89                                                                                   | 0.88                           | 0.88                                                                                       | 0.80                                     | 0.78                         | 0.88                                                               | 0.78                                                                                                                      | 0.78                                                                                                                      | 0.91                                 | 0.93                                    | 0.86                          | 0.87                                                                       | 0.88                                                               | 0.86                                    | 0.91                                       | 0.88                                                            | 0.86                          | 0.88                                                               | 0.92                   | 0.88                                                           | 0.91                                 | 0.93                                    | 0.86                          | 0.89                                                                                   | 0.88                                                               | 0.85                                                         | 0.87                                                                                                                |                                |      |  |
|   | Myc associated zinc finger protein (MAZ) | Zinc finger transcription factor, Zic family member 2 (odd-paired homolog, Drosophila) | GC box elements                | Pleomorphic adenoma gene (PLAG) 1, a developmentally regulated<br>C2H2 zinc finger protein | Ras-responsive element binding protein 1 | Zebrafish PAX9 binding sites | Stimulating protein 1, ubiquitous zinc finger transcription factor | Nuclear respiratory factor 1 (NRF1), bZIP transcription factor that acts on nuclear genes encoding mitochondrial proteins | Nuclear respiratory factor 1 (NRF1), bZIP transcription factor that acts on nuclear genes encoding mitochondrial proteins | Kruppel-like zinc finger protein 219 | Zinc finger transcription factor ZBP-89 | EGR1, early growth response 1 | Core promoter-binding protein (CPBP) with 3 Krueppel-type zinc<br>lfingers | Stimulating protein 1, ubiquitous zinc finger transcription factor | EGR1, early growth response 1           | kidney-enriched kruppel-like factor, KLF15 | MYC-associated zinc finger protein related transcription factor | EGR1, early growth response 1 | Stimulating protein 1, ubiquitous zinc finger transcription factor | Wilms Tumor Suppressor | Pleomorphic adenoma gene (PLAG) 1, a developmentally regulated | Kruppel-like zinc finger protein 219 | Zinc finger transcription factor ZBP-89 | EGR1, early growth response 1 | Zinc finger transcription factor, Zic family member 2 (odd-paired homolog, Drosophila) | Stimulating protein 1, ubiquitous zinc finger transcription factor | Basonuclin, cooperates with USF1 in rDNA PolI transcription) | Cell cycle-dependent element, CDF-1 binding site (CDE/CHR tandem elements regulate cell cycle dependent repression) | .e.                            |      |  |
|   | V\$MAZF/MAZ.01                           | V\$GLIF/ZIC2.01                                                                        | V\$SP1F/GC.01                  | V\$PLAG/PLAG1.01                                                                           | V\$RREB/RREB1.01                         | <u>V\$PAX9/PAX9.01</u>       | V\$SP1F/SP1.01                                                     | V\$NRF1/NRF1.01                                                                                                           | <u>V\$NRF1/NRF1.01</u>                                                                                                    | <u>V\$ZBPF/ZNF219.01</u>             | V\$ZBPF/ZBP89.01                        | V\$EGRF/EGR1.02               | V\$ZBPF/ZF9.01                                                             | V\$SP1F/SP1.01                                                     | V\$EGRF/EGR1.02                         | V\$EKLF/KKLF.01                            | V\$MAZF/MAZR.01                                                 | V\$EGRF/EGR1.02               | V\$SP1F/SP1.01                                                     | V\$EGRF/WT1.01         | V\$PLAG/PLAG1.01                                               | V\$ZBPF/ZNF219.01                    | V\$ZBPF/ZBP89.01                        | V\$EGRF/EGR1.02               | V\$GLIF/ZIC2.01                                                                        | V\$SP1F/SP1.01                                                     | V\$BNCF/BNC.01                                               | V\$CDEF/CDE.01                                                                                                      | 3 matches found in this sequen |      |  |

100 bp

 Table A.3
 Genomatix Analysis of the Human Perlecan Promoter Region from online Databases

|                                                                                               | Search Results ( 424                                                                                                                                                                     | matc  | hes)      |          |          |            |                                 |
|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------|----------|----------|------------|---------------------------------|
| latInspector Release profession                                                               | al 7.4.8.1, May 2007                                                                                                                                                                     |       |           |          |          |            | Wed Jul 11 19:12:41 200         |
| olution parameters:                                                                           |                                                                                                                                                                                          |       |           |          |          |            |                                 |
| equence file: <u>CorrectEnse</u><br>amily matches: yes<br>fatInspector library: Matrix Family | <u>imbl.seq</u> (2565 bp)<br>y Library Version 6.3 (March 2007)                                                                                                                          |       |           |          |          |            |                                 |
| elected groups  • ALL v. core/matrix sim)                                                     | ertebrates.lib (0.75/Optimized)                                                                                                                                                          |       |           |          |          |            |                                 |
| nspecting sequence Ensemt                                                                     | J_HUMAN_perlecan_CORRECT [Ensembl_HUMAN] (1 - 2                                                                                                                                          | 565): |           |          |          |            |                                 |
| :nsembl_HUMAN_perlecan_CORRE                                                                  | :CT_SEQUENCE_plus_strand, Reverse-Complement]                                                                                                                                            |       |           |          |          |            |                                 |
| Eamily / mateix                                                                               | Eurkhow Information                                                                                                                                                                      | t     | Position  | ţ        | Coro cim | Mateix cim | Sequence<br>(rod: ci value > 60 |
|                                                                                               |                                                                                                                                                                                          |       | from - to |          |          |            | capitals: core sequence)        |
| V\$CLOX/CLOX.01                                                                               | Cut-like homeo box                                                                                                                                                                       | 0.81  | 7 - 25    | £        | 0.804    | 0.824      | gctgacaaATCCatggaca             |
| V\$HNF6/HNF6.01                                                                               | Liver enriched Cut - Homeodomain transcription factor HNF6<br>(ONECUT)                                                                                                                   | 0.82  | 8 - 24    | ÷        | 0.833    | 0.857      | ctgacaaaTCCAtggac               |
| V\$HOXH/MEIS1B HOXA9.01                                                                       | Meis1b and Hoxa9 form heterodimeric binding complexes on target DNA                                                                                                                      | 0.78  | 9 - 23    | ÷        | 1.000    | 0.817      | TGACaaatccatgga                 |
| V\$P53F/P53.04                                                                                | Tumor suppressor p53                                                                                                                                                                     | 0.78  | 13 - 35   | ÷        | 1.000    | 0.799      | aaatcCATGgacaggcaaggcct         |
| V\$P53F/P53.01                                                                                | Tumor suppressor p53                                                                                                                                                                     | 0.73  | 14 - 36   | <u> </u> | 0.844    | 0.737      | aaggcCTTGcctgtccatggatt         |
| <u>V\$SF1F/FTF.01</u>                                                                         | Alpha (1)-fetoprotein transcription factor (FTF), liver receptor homologue-1 (LRH-1)                                                                                                     | 0.94  | 29 - 41   | 3        | 1.000    | 0.960      | tttcCAAGgcctt                   |
| V\$NFAT/NFAT5.01                                                                              | Nuclear factor of activated T-cells 5                                                                                                                                                    | 0.83  | 34 - 52   | ÷        | 1.000    | 0.890      | cttGGAAaatcctgccac              |
| V\$CIZF/NMP4.01                                                                               | NMP4 (nuclear matrix protein 4) / CI2 (Cas-interacting zinc finger protein)                                                                                                              | 0.97  | 37 - 47   | ÷        | 1.000    | 0.972      | ggAAAAatcct                     |
| V\$BTBF/KAISO.01                                                                              | Transcription factor Kaiso, ZBTB33                                                                                                                                                       | 0.92  | 42 - 52   | £        | 1.000    | 0.992      | aatcCTGCcac                     |
| <u>V\$EBOX/ATF6.01</u>                                                                        | Member of b-zip family, induced by ER damage/stress, binds to the<br>IERSE in association with NF-Y                                                                                      | 0.93  | 46 - 58   | ÷        | 1.000    | 0.933      | ctgCCACtagggc                   |
| V\$HAND/HAND2 E12.01                                                                          | Heterodimers of the bHLH transcription factors HAND2 (Thing2) and E12                                                                                                                    | 0.75  | 55 - 69   | ÷        | 1.000    | 0.758      | gggctgGCCAcctgc                 |
| V\$NF1F/NF1.01                                                                                | Nuclear factor 1                                                                                                                                                                         | 0.82  | 55 - 75   | Ŧ        | 0.763    | 0.851      | gggCTGGccacctgccagctc           |
| V\$NF1F/NF1.02                                                                                | Nuclear factor 1 (CTF1)                                                                                                                                                                  | 0.81  | 55 - 75   | 3        | 1.000    | 0.901      | gagcTGGCaggtggccagccc           |
| V\$MYOD/E47.01                                                                                | MyoD/E47 and MyoD/E12 dimers                                                                                                                                                             | 0.92  | 57 - 73   | <u>.</u> | 1.000    | 0.953      | gctgGCAGgtggccagc               |
| V\$HESF/HES1.02                                                                               | Drosophila hairy and enhancer of split homologue 1 (HES-1)                                                                                                                               | 0.87  | 58 - 72   | <u>.</u> | 0.750    | 0.873      | ctggCAGGtggccag                 |
| V\$NEUR/NEUROD1.01                                                                            | DNA binding site for NEUROD1 (BETA-2 / E47 dimer)                                                                                                                                        | 0.83  | 59 - 71   | ÷        | 0.767    | 0.905      | tggcCACCtgcca                   |
| V\$CREB/CJUN ATF2.01                                                                          | c-Jun/ATF2 heterodimers                                                                                                                                                                  | 0.99  | 69 - 89   | <u>.</u> | 1.000    | 0.991      | ctccacTGACttcagagctgg           |
| V\$CREB/ATF2.01                                                                               | Activating transcription factor 2                                                                                                                                                        | 0.87  | 70 - 90   | £        | 0.777    | 0.890      | cagctcTGAAgtcagtggagt           |
| V\$PAX5/PAX5.01                                                                               | B-cell-specific activator protein                                                                                                                                                        | 0.79  | 74 - 102  | £        | 0.857    | 0.799      | tctgaaGTCAgtggagttttgaagccttt   |
| V\$CSEN/DREAM.01                                                                              | Downstream regulatory element-antagonist modulator,<br>Ca2+-binding protein of the neuronal calcium sensors family that<br>binds DRE (downstream regulatory element) sites as a tetramer | 0.95  | 78 - 88   | ÷        | 1.000    | 0.963      | aaGTCAgtgga                     |
| V\$EVI1/MEL1.02                                                                               | MEL1 (MDS1/EVI1-like gene 1) DNA-binding domain 2                                                                                                                                        | 0.99  | 99 - 115  | <u>.</u> | 1.000    | 066.0      | cctgtccGATGagaaag               |
| V\$GREF/ARE.02                                                                                | Androgene receptor binding site, IR3 sites                                                                                                                                               | 0.89  | 106 - 124 | <u>.</u> | 0.956    | 0.891      | tggaaactccctGTCCgat             |
| V\$NFAT/NFAT5.01                                                                              | Nuclear factor of activated T-cells 5                                                                                                                                                    | 0.83  | 108 - 126 | 3        | 1.000    | 0.871      | cttGGAAactccctgtccg             |

| Basic transcription element (BTE) binding protein, BTEB3, FKLF-2                                                                               | 0.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 110 - 124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ÷                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.000 | 0.958                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | gacagGGAGtttcca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NF-kappaB (p65)                                                                                                                                | 0.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 112 - 124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (+)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.000 | 0.991                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | cagggagtTTCCa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Carbohydrate response element binding protein (CHREBP) and<br>Max-like protein X (MIx) bind as heterodimers to glucose-responsive<br>promoters | 0.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 123 - 139                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (+)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.833 | 0.892                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CAAGtgcaaacctggtg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Androgene receptor binding site, IR3 sites                                                                                                     | 0.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 127 - 145                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ÷                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.869 | 0.894                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | tgcaaacctggtGTACtct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| TR4 homodimer, DR1 site                                                                                                                        | 0.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 132 - 156                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.777 | 0.751                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | catttgAGGGgagagtacaccaggt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Myc associated zinc finger protein (MAZ)                                                                                                       | 06.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 143 - 155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.000 | 0.908                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | atttGAGGggaga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Myeloid zinc finger protein MZF1                                                                                                               | 0.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 143 - 151                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.000 | 0.991                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | gaGGGGaga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily a, member 3                                              | 96.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 149 - 159                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.000 | 0.984                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | tcCCATttgag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Zinc finger transcription factor GLI1                                                                                                          | 0.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 151 - 165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.000 | 0.929                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | gggacctCCCAtttg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| NF-kappaB                                                                                                                                      | 0.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 154 - 166                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ÷                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.000 | 0.937                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | atGGGAggtccct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| NF-kappaB                                                                                                                                      | 0.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 155 - 167                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.000 | 0.938                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | caGGGAcctccca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Olfactory neuron-specific factor                                                                                                               | 0.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 156 - 178                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ŧ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.000 | 0.874                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | gggaggTCCCtggggtggctgtg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Member of b-zip family, induced by ER damage/stress, binds to the<br>ERSE in association with NF-Y                                             | 0.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 164 - 176                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Э                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.000 | 0.936                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | cagCCACcccagg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Transcriptional repressor, binds to elements found predominantly in genes that participate in lipid metabolism                                 | 0.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 164 - 186                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.761 | 0.800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | gcagccTCCAcagccacccagg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| GDNF-inducible zinc finger protein 1 (ZNF336)                                                                                                  | 0.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 184 - 196                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ÷                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.750 | 0.798                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TGCTcctctatca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| GATA-binding factor 1                                                                                                                          | 0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 187 - 199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.000 | 0.955                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | gtctGATAgagga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Olfactory neuron-specific factor                                                                                                               | 0.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 200 - 222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ÷                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.000 | 0.844                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ctcagcTCCCcaagggccaagtc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Tumor suppressor p53 (3' half site)                                                                                                            | 0.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 207 - 229                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ÷                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.000 | 0.932                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ccccaagggccaagtCATGtctc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ETS family member FLI                                                                                                                          | 0.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 245 - 265                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | £                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.750 | 0.815                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | agcacaCCAGaaatagtaata                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Special AT-rich sequence-binding protein 1, predominantly<br>expressed in thymocytes, binds to matrix attachment regions<br>(MARs)             | 0.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 259 - 273                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ÷                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.000 | 0.944                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | agtAATAagagaaat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| AT-binding transcription factor 1                                                                                                              | 0.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 271 - 287                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.782 | 0.793                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | aatggctaccACTTatt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Homeodomain protein NKX3.2 (BAPX1, NKX3B, Bagpipe homolog)                                                                                     | 0.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 276 - 290                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u>.</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.000 | 0.968                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | tgaaataAGTGgtag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Pal3 motif, bound by a PPAR-gamma homodimer, IR3 sites                                                                                         | 0.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 281 - 303                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.794 | 0.676                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | cacTTGGtaagcatgaaataagt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Upstream stimulating factor 1/2                                                                                                                | 06.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 295 - 307                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.851 | 0.942                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | cagaCACTtggta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Ribonucleoprotein associated zinc finger protein MOK-2 (mouse)                                                                                 | 0.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 295 - 315                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u>.</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.750 | 0.804                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | agccatttcagacACTTggta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Winged-helix transcription factor IL-2 enhancer binding factor (ILF), forkhead box K2 (FOXK2)                                                  | 0.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 312 - 328                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.000 | 0.987                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ttttaaaaAACAcagcc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Special AT-rich sequence-binding protein 1, predominantly<br>expressed in thymocytes, binds to matrix attachment regions<br>(MARs)             | 0.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 327 - 341                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.000 | 0.964                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | attAATAtatttctt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Brn-3, POU-IV protein class                                                                                                                    | 0.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 331 - 349                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ÷                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.000 | 0.913                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | aatatatTAATttatctta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Octamer-binding factor 1                                                                                                                       | 0.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 331 - 345                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ÷                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.000 | 0.891                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | aatattAATTtat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Ecotropic viral integration site 1 encoded factor, amino-terminal zinc finger domain                                                           | 0.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 332 - 348                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.750 | 0.733                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | aagataaattaaTATAt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Homeodomain binding site in LIM/Homeodomain factor LHX3                                                                                        | 0.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 332 - 346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ÷                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.000 | 0.867                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | atataTTAAtttatc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Homeodomain proteins MSX-1 and MSX-2                                                                                                           | 0.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 333 - 345                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ÷                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.000 | 0.972                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | tatatTAATttat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Bright, B cell regulator of IgH transcription                                                                                                  | 0.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 334 - 346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.000 | 0.956                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | gataaATTAatat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| HMGA family of architectural transcription factors (HMGA1, HMGA2)                                                                              | 0.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 336 - 352                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ÷                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.000 | 0.903                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | attAATTtatcttaatt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Ecotropic viral integration site 1 encoded factor, amino-terminal zinc finger domain                                                           | 0.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 337 - 353                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u>.</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.000 | 0.795                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | gaattAAGAtaaattaa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| GATA-binding factor 1                                                                                                                          | 0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 338 - 350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u>.</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.000 | 0.961                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ttaaGATAaatta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                | Basic transcription element (BTE) binding protein, BTEB3, FKLF-2<br>NE-kappaB (p65)<br>NE-kappaB (p65)<br>Net-kappaB (p65)<br>Rt homodimer, DR1 site<br>Promoters<br>Rt homodimer, DR1 site<br>Mytoloid zinc finger protein (MaZ)<br>Mytoloid zinc finger protein MZ-1<br>Mytoloid zinc finger transcription factor GL1<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>NF-kappaB<br>N | Basic transcription element (BTE) binding protein, BTEB3, FKLF-2         0.03           RF-kappa8 (p65)         0.03           Carbohuber (PRE)         0.03           Max-kice protein X (Mk) bind as heterodimers to glucose-responsive<br>promoters         0.03           Androgene receptor binding site, IR3 sites         0.05           Fited homodimer, PR1 site         0.05           Mycassociated ainc finger protein (MAZ)         0.05           Wycassociated ainc finger protein (MAZ)         0.05           Wycassociated ainc finger protein (MAZ)         0.05           Wycassociated ainc finger protein (MAZ)         0.05           BV/SNF related, matrix associated, actin dependent regulator of 0.05         0.05           BV/SNF related, matrix associated, actin dependent regulator of 0.05         0.05           Divornatin, subfamily a, member 3         0.01         0.03           BV/SNF related, matrix associated at the relation of 0.03         0.05         0.03           Diffectory neuron-specific factor         0.03         0.03           Contranscription factor 1         0.04         0.05           Offectory neuron-specific factor         0.03         0.04           Consciprotion represense binding factor 1         0.03         0.04           Consciprotion regree protein 1. (ZNF336)         0.03 <t< td=""><td>Basic transcription element (BTE) binding protein, BTEB3, FLL-20.03112 · 124F-kappaB (JG5)0.03127 · 145FW-kappaB (JG5)0.03127 · 145And rogene receptor binding site, IR3 sites0.39127 · 145And rogene receptor binding site, IR3 sites0.39127 · 145And rogene receptor binding site, IR3 sites0.39127 · 145And rogene receptor binding site0.39127 · 145TR4 homodimer, DR1 site0.39131 · 155Myloid Zinc finger transcription factor GL10.99134 · 156Wyloid Zinc finger transcription factor GL10.99154 · 156Wr-kappaB0.31154 · 1560.32154 · 156Nr-kappaB0.40 · 150 · 131 · 1650.39154 · 156Nr-kappaB0.41 · 1670.39154 · 156Nr-kappaB0.41 · 1670.39154 · 156Nr-kappaB0.41 · 1670.32154 · 156Nr-kappaB0.41 · 1670.32154 · 156Off actor neuron-specific factor0.33154 · 156Off actor neuron-specific factor0.32132 · 135Off actor neuron-specific factor0.32132 · 353Off actor neuron-specific factor0.3</td><td></td><td>We share protein (HT:) binding protein, BTE3, FixJF-2         0.33         110 - 124         (+)         1.000           We share resprise element (HT:) binding protein, BTE3, FixJF-2         0.33         112 - 124         (+)         1.000           Garby Hofe response element binding protein (GrikEBP) and<br/>promoters         0.87         112 - 1345         (+)         1.000           Mathony protein (MA) bind as helerodimers to glucose-responsive<br/>promoters         0.39         112 - 1345         (+)         0.036           Mathony protein (MAZ)         0.39         132 - 135         (+)         0.036           Mathony protein (MAZ)         0.39         131 - 155         (+)         1.000           Myster fielder, matrix associated anc (MAZ)         0.39         133 - 155         (+)         1.000           Myster fielder, matrix associated anc (MAZ)         0.39         134 - 156         (+)         1.000           Myster fielder, matrix associated anc (MAZ)         0.39         134 - 156         (+)         1.000           Myster fielder, matrix associated anc (MAZ)         0.39         134 + 156         (+)         1.000           Myster fielder, matrix associated anc (MAZ)         0.31         1.31 + 136         (+)         1.000           Myster fielder, matrix associated anc (MAZ)         0.31</td><td>Basic transcription element (BTE), binding protein, DTEB3, RLF-2         0.93         110.1         110.000         0.036           Catholizate response element (BTE), binding protein, CHEB3, PMLF-2         0.93         110.1         14         (+)         10000         0.931           Catholizate response element binding arki, R3 attes         0.73         122-145         (+)         1.0000         0.933           Promodimer, DRI state         0.73         122-145         (+)         1.0000         0.933           Promodimer, DRI state         0.73         122-145         (+)         1.0000         0.934           Promodimer, DRI state         0.73         122-145         (+)         1.0000         0.934           Promodimer, DRI state         0.73         122-145         (+)         1.0000         0.934           Promodime, and matrix associated inter front of the portein (ALZ)         0.93         135-145         (+)         1.0000         0.934           Promodime, and matrix associated inter front of the portein (MEZ)         0.93         135-145         (+)         1.0000         0.934           Promodimer state         0.73         144-156         (+)         1.0000         0.934           Promodimer state         0.73         144-156         (+)</td></t<> | Basic transcription element (BTE) binding protein, BTEB3, FLL-20.03112 · 124F-kappaB (JG5)0.03127 · 145FW-kappaB (JG5)0.03127 · 145And rogene receptor binding site, IR3 sites0.39127 · 145And rogene receptor binding site, IR3 sites0.39127 · 145And rogene receptor binding site, IR3 sites0.39127 · 145And rogene receptor binding site0.39127 · 145TR4 homodimer, DR1 site0.39131 · 155Myloid Zinc finger transcription factor GL10.99134 · 156Wyloid Zinc finger transcription factor GL10.99154 · 156Wr-kappaB0.31154 · 1560.32154 · 156Nr-kappaB0.40 · 150 · 131 · 1650.39154 · 156Nr-kappaB0.41 · 1670.39154 · 156Nr-kappaB0.41 · 1670.39154 · 156Nr-kappaB0.41 · 1670.32154 · 156Nr-kappaB0.41 · 1670.32154 · 156Off actor neuron-specific factor0.33154 · 156Off actor neuron-specific factor0.32132 · 135Off actor neuron-specific factor0.32132 · 353Off actor neuron-specific factor0.3 |       | We share protein (HT:) binding protein, BTE3, FixJF-2         0.33         110 - 124         (+)         1.000           We share resprise element (HT:) binding protein, BTE3, FixJF-2         0.33         112 - 124         (+)         1.000           Garby Hofe response element binding protein (GrikEBP) and<br>promoters         0.87         112 - 1345         (+)         1.000           Mathony protein (MA) bind as helerodimers to glucose-responsive<br>promoters         0.39         112 - 1345         (+)         0.036           Mathony protein (MAZ)         0.39         132 - 135         (+)         0.036           Mathony protein (MAZ)         0.39         131 - 155         (+)         1.000           Myster fielder, matrix associated anc (MAZ)         0.39         133 - 155         (+)         1.000           Myster fielder, matrix associated anc (MAZ)         0.39         134 - 156         (+)         1.000           Myster fielder, matrix associated anc (MAZ)         0.39         134 - 156         (+)         1.000           Myster fielder, matrix associated anc (MAZ)         0.39         134 + 156         (+)         1.000           Myster fielder, matrix associated anc (MAZ)         0.31         1.31 + 136         (+)         1.000           Myster fielder, matrix associated anc (MAZ)         0.31 | Basic transcription element (BTE), binding protein, DTEB3, RLF-2         0.93         110.1         110.000         0.036           Catholizate response element (BTE), binding protein, CHEB3, PMLF-2         0.93         110.1         14         (+)         10000         0.931           Catholizate response element binding arki, R3 attes         0.73         122-145         (+)         1.0000         0.933           Promodimer, DRI state         0.73         122-145         (+)         1.0000         0.933           Promodimer, DRI state         0.73         122-145         (+)         1.0000         0.934           Promodimer, DRI state         0.73         122-145         (+)         1.0000         0.934           Promodimer, DRI state         0.73         122-145         (+)         1.0000         0.934           Promodime, and matrix associated inter front of the portein (ALZ)         0.93         135-145         (+)         1.0000         0.934           Promodime, and matrix associated inter front of the portein (MEZ)         0.93         135-145         (+)         1.0000         0.934           Promodimer state         0.73         144-156         (+)         1.0000         0.934           Promodimer state         0.73         144-156         (+) |

| ctamer-binding factor 1   0<br>coximal sequence element (PSE) of RNA polymerase III-transcribed   0 | 0.81 | 341 - 355<br>341 - 359 | ÷÷       | 1.000 | 0.888<br>0.781 | tttatcttAATTctc<br> tttatCTTAattctcataa |
|-----------------------------------------------------------------------------------------------------|------|------------------------|----------|-------|----------------|-----------------------------------------|
| r tinman homolog low affinity sites 0                                                               | 8    | 773 - 357              | E        | 1 000 | 0 971          | tatctTΔΔTtctcat                         |
|                                                                                                     | 8.0  | 343 - 355              | 2        | 1.000 | 0.902          | gagaATTAagata                           |
| transcription 0                                                                                     | .87  | 345 - 363              | 3        | 0.807 | 0.876          | gttgttatgAGAAttaaga                     |
| 0                                                                                                   | .81  | 346 - 360              | 3        | 1.000 | 0.910          | gttatgagAATTaag                         |
| 0                                                                                                   | 0.84 | 348 - 364              | <u>.</u> | 1.000 | 0.862          | tgttgTTATgagaatta                       |
| 0                                                                                                   | 0.83 | 374 - 394              | £        | 0.750 | 0.832          | acgtctTAACgttattctcat                   |
| 0                                                                                                   | 06.0 | 377 - 389              | <u>.</u> | 1.000 | 0.908          | aatAACGttaaga                           |
| ed BM2 cells                                                                                        | 0.87 | 378 - 390              | ÷        | 1.000 | 0.885          | cttAACGttattc                           |
| 0                                                                                                   | 0.85 | 382 - 402              | <u>.</u> | 0.758 | 0.850          | tgtagaaaatGAGAataacgt                   |
| 0                                                                                                   | 08.0 | 383 - 397              | <u>.</u> | 0.846 | 0.838          | aaAATGagaataacg                         |
| 0                                                                                                   | .94  | 424 - 434              | <u>.</u> | 0.833 | 0.945          | catgATTCaac                             |
| 0                                                                                                   | .94  | 424 - 434              | £        | 0.857 | 0.947          | gtTGAAtcatg                             |
| and TFE3                                                                                            | .81  | 424 - 442              | ÷        | 1.000 | 0.890          | gttgaatCATGtgctcaag                     |
| family of Class B bHLH                                                                              | .86  | 425 - 441              | •        | 0.882 | 0.914          | ttgAGCAcatgattcaa                       |
| 0                                                                                                   | .92  | 428 - 440              | <u>.</u> | 0.860 | 0.934          | tgagcaCATGatt                           |
| 0                                                                                                   | .95  | 471 - 483              | <u>.</u> | 1.000 | 0.955          | gtctGATAgagaa                           |
| 0                                                                                                   | .87  | 484 - 500              | ÷        | 1.000 | 066.0          | tgagaaCAATacccgga                       |
| 0                                                                                                   | 0.78 | 486 - 508              | £        | 0.760 | 0.805          | agaaCAATacccggacagggact                 |
| 0                                                                                                   | .95  | 501 - 525              | <u>.</u> | 1.000 | 0.965          | gaggtgtggggaAGAAtagtccctg               |
| egration oncogene                                                                                   | 96.( | 504 - 524              | <u>.</u> | 1.000 | 0.961          | aggtgtggGGAAgaatagtcc                   |
| 0                                                                                                   | 66.0 | 512 - 520              | <u>.</u> | 1.000 | 1.000          | gtGGGGaag                               |
| 0                                                                                                   | .95  | 521 - 533              | <u>.</u> | 1.000 | 0.957          | atctGATAgaggt                           |
| factor / otx-like                                                                                   | .94  | 523 - 539              | •        | 1.000 | 0.944          | ctctTAATctgatagag                       |
| 0                                                                                                   | 0.78 | 533 - 549              | •        | 0.750 | 0.788          | cctcagtaAACTcttaa                       |
| d in primary                                                                                        | 0.75 | 534 - 546              | £        | 0.750 | 0.798          | taaGAGTttactg                           |
| /elopmentally regulated                                                                             | .88  | 546 - 566              | £        | 1.000 | 0.907          | GAGGgccaagattgggcgtcc                   |
| 0                                                                                                   | 0.78 | 568 - 592              | <u>.</u> | 0.750 | 0.780          | cagggAGATaggggtggacagagg                |
| 0                                                                                                   | .83  | 573 - 591              | £        | 1.000 | 0.835          | tgtCCACccctatctccct                     |
| 0                                                                                                   | .96  | 578 - 590              | <u>.</u> | 1.000 | 1.000          | gggaGATAggggt                           |
| 0                                                                                                   | 08.0 | 631 - 645              | <u>.</u> | 1.000 | 0.831          | cCCCAacccaggctc                         |
| 0                                                                                                   | 06.0 | 633 - 651              | £        | 1.000 | 0.920          | gcCTGGgttggggccaggc                     |
| quivalent to avian                                                                                  | 06.0 | 646 - 658              | 0        | 1.000 | 0.997          | gcCAACtgcctgg                           |
| 7 dimer) 0                                                                                          | 0.83 | 648 - 660              | <u>.</u> | 0.767 | 0.893          | aggcCAACtgcct                           |
| 0                                                                                                   | .69  | 665 - 685              | <u>.</u> | 1.000 | 0.738          | aacaGAAAttgcatccacggt                   |
| 0                                                                                                   | 0.85 | 669 - 683              | £        | 1.000 | 0.872          | tggATGCaatttctg                         |
| 0                                                                                                   | 06.0 | 670 - 682              | £        | 1.000 | 0.911          | ggatGCAAtttct                           |
| sites 0                                                                                             | 0.84 | 671 - 689              | £        | 1.000 | 0.915          | gatgcaatttcTGTTcttt                     |
| 0                                                                                                   | .88  | 676 - 688              | <u>.</u> | 0.817 | 0.882          | aagAACAgaaatt                           |

| V\$FKHD/FREAC2.01      | Fork head related activator-2 (FOXF2)                                                              | 0.84 | 680 - 696  | <u>.</u> | 1.000 | 0.859 | gagttgTAAAgaacaga                                 |
|------------------------|----------------------------------------------------------------------------------------------------|------|------------|----------|-------|-------|---------------------------------------------------|
| <u>V\$PAX6/PAX6.02</u> | PAX6 paired domain and homeodomain are required for binding to<br>this site                        | 0.87 | 695 - 713  | 3        | 1.000 | 0.871 | tctgtgggaC <mark>CAG</mark> ctca <mark>g</mark> a |
| V\$OCTP/OCT1P.01       | Octamer-binding factor 1, POU-specific domain                                                      | 0.86 | 712 - 724  | ÷        | 1.000 | 0.914 | gaaATATgcccca                                     |
| V\$OCTP/OCT1P.01       | Octamer-binding factor 1, POU-specific domain                                                      | 0.86 | 725 - 737  | :        | 1.000 | 0.915 | aaaATATgccctg                                     |
| V\$AIRE/AIRE.01        | Autoimmune regulator                                                                               | 0.86 | 742 - 768  | +        | 0.857 | 0.878 | at at cttttt gg ag at ag GGGAt ct at c            |
| V\$GATA/GATA1.01       | GATA-binding factor 1                                                                              | 0.96 | 750 - 762  | £        | 1.000 | 1.000 | tggaGATAgggga                                     |
| V\$MZF1/MZF1.02        | Myeloid zinc finger protein MZF1                                                                   | 0.99 | 756 - 764  | £        | 1.000 | 0.994 | taGGGGatc                                         |
| V\$CLOX/CDPCR3HD.01    | Cut-like homeodomain protein                                                                       | 0.94 | 757 - 775  | <u>.</u> | 1.000 | 0.978 | catoccagataGATCccct                               |
| V\$GATA/GATA1.03       | GATA-binding factor 1                                                                              | 0.95 | 760 - 772  | <u>.</u> | 1.000 | 0.953 | cccaGATAgatcc                                     |
| V\$ZBPF/ZNF219.01      | Kruppel-like zinc finger protein 219                                                               | 0.91 | 764 - 786  | :        | 1.000 | 0.920 | atcctgaCCCCcatcccagatag                           |
| V\$CREB/TAXCREB.02     | Tax/CREB complex                                                                                   | 0.71 | 768 - 788  | <u>.</u> | 1.000 | 0.723 | gcatccTGACccccatcccag                             |
| V\$RORA/REV-ERBA.01    | Orphan nuclear receptor rev-erb alpha (NR1D1)                                                      | 0.88 | 769 - 791  | £        | 1.000 | 0.913 | tgggatggggGTCAggatgccag                           |
| V\$GCMF/GCM1.01        | Glial cells missing homolog 1, chorion-specific transcription factor<br>GCMa                       | 0.85 | 771 - 781  | 3        | 0.789 | 0.899 | gaCCCCcatcc                                       |
| V\$EREF/ER.01          | Estrogen receptor. IR3 sites                                                                       | 0.83 | 775 - 793  | (+)      | 1.000 | 0.849 | aaaaGTCAaaataccaata                               |
| V\$ETSF/PDEF.01        | Prostate-derived Ets factor                                                                        | 0.93 | 775 - 795  | ÷        | 1.000 | 0.942 | ggggggtcaGGATgccagtgtt                            |
| <u>V\$MEF3/MEF3.01</u> | MEF3 binding site, present in skeletal muscle-specific transcriptional<br>enhancers                | 0.89 | 777 - 789  | £        | 1.000 | 0.946 | gggTCAGgatgcc                                     |
| V\$MYOD/MYOD.01        | Myogenic regulatory factor MyoD (myf3)                                                             | 0.88 | 802 - 818  | <u>.</u> | 1.000 | 0.937 | ccaGGCAtctgggggat                                 |
| V\$PAX6/PAX6.04        | PAX6 paired domain binding site                                                                    | 0.83 | 802 - 820  | £        | 0.944 | 0.835 | atcCCCCagatgcctggat                               |
| V\$NEUR/NEUROD1.01     | DNA binding site for NEUROD1 (BETA-2 / E47 dimer)                                                  | 0.83 | 805 - 817  | <u>.</u> | 1.000 | 0.832 | caggCATCtgggg                                     |
| V\$EVI1/MEL1.02        | MEL1 (MDS1/EVI1-like gene 1) DNA-binding domain 2                                                  | 0.99 | 811 - 827  | £        | 1.000 | 0.993 | atgcctgGATGagaggc                                 |
| V\$DMTF/DMP1.01        | Cyclin D-interacting myb-like protein, DMTF1 - cyclin D binding<br>myb-like transcription factor 1 | 0.82 | 812 - 824  | £        | 1.000 | 0.831 | tgcctGGATgaga                                     |
| V\$BNCF/BNC.01         | Basonuclin, cooperates with USF1 in rDNA PolI transcription)                                       | 0.85 | 823 - 841  | £        | 0.789 | 0.881 | gaggccccaaTGTGcttgg                               |
| V\$INSM/INSM1.01       | Zinc finger protein insulinoma-associated 1 (IA-1) functions as a<br>transcriptional repressor     | 06.0 | 849 - 861  | C        | 1.000 | 0.925 | tgataGGGtccg                                      |
| V\$GATA/GATA1.01       | GATA-binding factor 1                                                                              | 0.96 | 852 - 864  | <u>.</u> | 1.000 | 0.992 | ctgtGATAggggt                                     |
| V\$ETSF/ELK1.02        | Elk-1                                                                                              | 0.91 | 866 - 886  | :        | 1.000 | 0.971 | ctggctccGGAAgctatgttc                             |
| V\$HESF/HES1.01        | Drosophila hairy and enhancer of split homologue 1 (HES-1)                                         | 0.92 | 885 - 899  | +        | 1.000 | 0.950 | aggcctgGTGCcgcc                                   |
| V\$SP1F/SP1.02         | Stimulating protein 1, ubiquitous zinc finger transcription factor                                 | 0.85 | 890 - 904  | <u>.</u> | 1.000 | 0.867 | cactGGGCggcacca                                   |
| V\$NR2F/TR2.01         | Nuclear hormone receptor TR2, DR5 binding sites                                                    | 0.76 | 897 - 921  | <u>.</u> | 0.780 | 0.762 | gaaggaaatgcccaGCTCactgggc                         |
| V\$NFKB/CREL.01        | c-Rel                                                                                              | 0.91 | 907 - 919  | £        | 1.000 | 0.969 | ctgggcatTTCCt                                     |
| V\$NR2F/ARP1.01        | Apolipoprotein AI regulatory protein 1, NR2F2, DR1 sites                                           | 0.82 | 916 - 940  | ÷        | 0.809 | 0.861 | tccttctgtccacaGCTCacctcac                         |
| V\$RXRF/VDR_RXR.05     | Bipartite binding site of VDR/RXR heterodimers, DR4 sites                                          | 0.79 | 917 - 941  | <u>.</u> | 0.952 | 0.791 | agtGAGGtgagctgtggacagaagg                         |
| V\$SREB/SREBP.01       | Sterol regulatory element binding protein 1 and 2                                                  | 06.0 | 929 - 943  | £        | 1.000 | 0.952 | agcTCACctcactcc                                   |
| V\$BRAC/BRACH.01       | Brachyury                                                                                          | 0.66 | 933 - 953  | <u>.</u> | 0.750 | 0.698 | tttgcagccAGGAgtgaggtg                             |
| V\$PAX6/PAX4 PD.01     | PAX4 paired domain binding site                                                                    | 0.91 | 935 - 953  | <u>.</u> | 0.965 | 0.941 | ttttGCAGccaggagtgagg                              |
| V\$OAZF/ROAZ.01        | Rat C2H2 Zn finger protein involved in olfactory neuronal<br>differentiation                       | 0.73 | 936 - 952  | 3        | 0.750 | 0.794 | ttGCAGccaggagtgag                                 |
| V\$HEAT/HSF1.01        | Heat shock factor 1                                                                                | 0.84 | 959 - 983  | £        | 0.952 | 0.878 | ccatgagtttctGGAAcctagcaac                         |
| V\$STAT/STAT1.01       | Signal transducer and activator of transcription 1                                                 | 0.77 | 960 - 978  | <u>.</u> | 0.767 | 0.790 | taggttccaGAAActcatg                               |
| V\$STAT/STAT.01        | Signal transducers and activators of transcription                                                 | 0.87 | 962 - 980  | £        | 1.000 | 0.895 | tgagtttctGGAAcctagc                               |
| V\$XBBF/RFX1.01        | X-box binding protein RFX1                                                                         | 0.89 | 969 - 987  | Ŧ        | 1.000 | 0.942 | dtggaacctaGCAActctc                               |
| V\$MYT1/MYT1L.01       | Myelin transcription factor 1-like, neuronal C2HC zinc finger factor 1                             | 0.92 | 976 - 988  | C        | 1.000 | 0.958 | tgagAGTTgctag                                     |
| V\$ETSF/CETS1P54.01    | c-Ets-1(p54)                                                                                       | 0.92 | 983 - 1003 | £        | 0.901 | 0.920 | ctctcaCAGGaacaatggaa                              |

| cut-like nomeodomain protein<br>  Fkh-domain factor FKHRL1 (FOXO)                     | 0.73 | 984 - 1002<br>986 - 1002 | ££       | 1.000 | 0.730<br>0.846 | tctcacaggaaacaATGGa<br>tcacaggaAACAatqqa |
|---------------------------------------------------------------------------------------|------|--------------------------|----------|-------|----------------|------------------------------------------|
| 0                                                                                     | 0.88 | 988 - 1012               | Ð        | 0.875 | 0.885          | acaggaaacaatgGAAActtcagtt                |
| 0                                                                                     | 0.87 | 990 - 1006               | ÷        | 1.000 | 0.988          | aggaaacAATggaaact                        |
| X1 0.                                                                                 | 06.0 | 990 - 1008               | ÷        | 0.881 | 0.919          | aggaaacaatgGAAActtc                      |
| sponse element 0.                                                                     | 0.81 | 991 - 1011               | ÷        | 1.000 | 0.849          | ggaaacaatgGAAActtcagt                    |
| 0                                                                                     | 0.76 | 997 - 1021               | Ŀ        | 0.868 | 0.768          | ggagaataaaacTGAAgttttccatt               |
| d T-cells 5 0.                                                                        | 0.83 | 997 - 1015               | £        | 1.000 | 0.875          | aatGGAAacttcagtttta                      |
| otion factor involved in primary                                                      | 0.75 | 1000 - 1012              | £        | 0.750 | 0.756          | ggaAACTtcagtt                            |
| related intestinal transcr. factor                                                    | 0.84 | 1005 - 1023              | £        | 1.000 | 0.849          | cttcagtTTTAttctcctc                      |
| r protein (MAZ)                                                                       | 06.0 | 1015 - 1027              | <u>.</u> | 1.000 | 606.0          | agagGAGGagaat                            |
| ed to serum response factor) protein 0.                                               | 0.84 | 1019 - 1041              | ÷        | 1.000 | 0.865          | tcctcctCTATcattactcaaaa                  |
| 0                                                                                     | 0.96 | 1022 - 1034              | Ŀ        | 1.000 | 0.960          | taatGATAgagga                            |
| box protein                                                                           | 0.82 | 1022 - 1038              | <u>.</u> | 1.000 | 0.831          | tgagTAATgatagagga                        |
| 0                                                                                     | 0.67 | 1023 - 1041              | -        | 0.750 | 0.687          | ttttgagtaATGAtagagg                      |
| or / hepatic leukemia factor 0.                                                       | 0.78 | 1027 - 1043              | ÷        | 1.000 | 0.780          | tatcaTTACtcaaaagg                        |
| 0                                                                                     | 0.84 | 1028 - 1044              | <u>.</u> | 1.000 | 0.858          | accttttgaGTAAtgat                        |
| 0                                                                                     | 0.87 | 1030 - 1040              | Ŀ        | 1.000 | 0.934          | tttGAGTaatg                              |
| cells [0.                                                                             | 0.95 | 1034 - 1052              | <u>.</u> | 1.000 | 0.976          | tgaGGAAaaccttttgagt                      |
| transcription factor                                                                  | 0.82 | 1038 - 1052              | <u>.</u> | 1.000 | 0.835          | tgaggaAAACctttt                          |
| tors of transcription                                                                 | 0.87 | 1040 - 1058              | -        | 1.000 | 0.882          | tagctttgaGGAAaacctt                      |
| t signal transduction pathway                                                         | 0.94 | 1044 - 1060              | +        | 1.000 | 0.949          | ttttcctCAAAgctaca                        |
| ilis [0.                                                                              | 0.95 | 1060 - 1078              | <u>.</u> | 1.000 | 0.964          | agaGGAAaactatgtgtgt                      |
| 0                                                                                     | 0.81 | 1076 - 1092              | Ŀ        | 1.000 | 0.831          | aggcTGATgggtggaga                        |
| site 0.                                                                               | 0.76 | 1076 - 1094              | +        | 0.806 | 0.780          | tctccACCCatcagcctcg                      |
| 0                                                                                     | 0.83 | 1078 - 1092              | +        | 0.750 | 0.874          | tccaCCCAtcagcct                          |
| 0                                                                                     | 0.88 | 1092 - 1116              | (+       | 0.875 | 0.902          | tcgggctgcctgGAAAtttcaggc                 |
| t, transcriptional repressor containing<br>ingers, for optimal binding multiple<br>0. | 0.93 | 1093 - 1105              | (+)      | 1.000 | 0.945          | cgggcTGCctgg                             |
| d activator of transcription 6                                                        | 0.84 | 1094 - 1112              | +        | 0.758 | 0.879          | gggcTGCCctggaaatttc                      |
| meodomain are required for binding to                                                 | 0.87 | 1096 - 1114              | 3        | 1.000 | 0.949          | ctgaaatttCCAGggcagc                      |
| 0                                                                                     | 0.84 | 1101 - 1125              | <u>.</u> | 0.857 | 0.886          | ccctcttctgccTGAAattttccagg               |
| protein I (Y), architectural transcription<br>work of a nuclear protein-DNA           | 0.92 | 1103 - 1119              | +        | 1.000 | 0.948          | tggaAATTtcaggcaga                        |
| e factor, KLF15 0.                                                                    | 0.91 | 1117 - 1133              | £        | 1.000 | 0.918          | agaagaGGGGagctgaa                        |
| brotein (MAZ) 0.                                                                      | 06.0 | 1117 - 1129              | ÷        | 1.000 | 0.917          | agaaGAGGggagc                            |
| MZF1 0.                                                                               | 66.0 | 1121 - 1129              | +        | 1.000 | 0.991          | gaGGGGagc                                |
| ated zinc finger protein MOK-2 (mouse)                                                | 0.74 | 1133 - 1153              | <u>.</u> | 0.750 | 0.744          | gacctattcactgCCTActct                    |
| am promoter 1 (COUP-TFI) and chicken 0.<br>noter 2 (COUP-TFII), DR1 sites             | 0.82 | 1136 - 1160              | ÷        | 1.000 | 0.839          | gtaggcagtgaatAGGTctgggggc                |
| copoesis, cellular equivalent to avian 0.                                             | 96.0 | 1176 - 1188              | 3        | 0.989 | 0.961          | ccCAACcgcaggc                            |

|                           |                                                                                                        | ĺ    |             | ĺ        |       |       |                                        |
|---------------------------|--------------------------------------------------------------------------------------------------------|------|-------------|----------|-------|-------|----------------------------------------|
| <u>V\$RXRF/RAR_RXR.03</u> | Retinoic acid receptor / retinoid X receptor heterodimer, DR5 sites                                    | 0.81 | 1182 - 1206 | Ð        | 1.000 | 0.946 | ggttgGGTCagagacagatcatggg              |
| V\$NR2F/TR2.01            | Nuclear hormone receptor TR2, DR5 binding sites                                                        | 0.76 | 1184 - 1208 | £        | 0.780 | 0.840 | ttgggtcagagacaGATCatggggc              |
| V\$GFI1/GFI1.01           | Growth factor independence 1 zinc finger protein acts as<br>transcriptional repressor                  | 96.0 | 1204 - 1218 | <u>.</u> | 1.000 | 0.985 | taaAATCacagcccc                        |
| V\$HOXF/HOXB9.01          | Abd-B-like homeodomain protein Hoxb-9                                                                  | 0.88 | 1209 - 1225 | <u>.</u> | 1.000 | 0.934 | tgggtggTAAAatcaca                      |
| <u>V\$EGRF/WT1.01</u>     | Wilms Tumor Suppressor                                                                                 | 0.92 | 1214 - 1230 | -        | 1.000 | 0.927 | tcgggTGGGtggtaaaa                      |
| V\$GLIF/ZIC2.01           | Zinc finger transcription factor, Zic family member 2 (odd-paired homolog, Drosophila)                 | 0.89 | 1215 - 1229 | ÷        | 0.827 | 0.914 | tttaccaCCCAcccg                        |
| V\$EGRF/NGFIC.01          | Nerve growth factor-induced protein C                                                                  | 0.80 | 1216 - 1232 | <u>.</u> | 0.754 | 0.845 | gctcGGGTgggtggtaa                      |
| V\$AP4R/TAL1ALPHAE47.01   | Tal-1alpha/E47 heterodimer                                                                             | 0.87 | 1226 - 1242 | <u>.</u> | 1.000 | 0.921 | catcaCAGAtgctcggg                      |
| V\$PAX5/PAX5.03           | PAX5 paired domain protein                                                                             | 0.80 | 1248 - 1276 | Ŀ        | 0.789 | 0.812 | ctcagGCCCagacagacagaccctgccaa          |
| V\$SMAD/SMAD3.01          | Smad3 transcription factor involved in TGF-beta signaling                                              | 0.99 | 1264 - 1272 | £        | 1.000 | 0.993 | GTCTgggcc                              |
| V\$EGRF/EGR2.01           | Egr-2/Krox-20 early growth response gene product                                                       | 0.79 | 1278 - 1294 | ÷        | 0.782 | 0.821 | gtgtGAGTtggtgtggt                      |
| V\$HAML/AML3.01           | Runt-related transcription factor 2 / CBFA1 (core-binding factor, runt domain, alpha subunit 1)        | 0.84 | 1286 - 1300 | ÷        | 1.000 | 0.914 | tggtGTGGttctggc                        |
| V\$GF11/GF11.02           | Growth factor independence 1                                                                           | 06'0 | 1304 - 1318 | <u>.</u> | 1.000 | 0.991 | ataAATCacagcccc                        |
| V\$BRNF/BRN5.01           | Brn-5, POU-VI protein class (also known as emb and CNS-1)                                              | 0.74 | 1305 - 1323 | <u>.</u> | 1.000 | 0.756 | gtcaCATAaatcacagccc                    |
| V\$TBPF/MTATA.01          | Muscle TATA box                                                                                        | 0.84 | 1306 - 1322 | 3        | 1.000 | 0.862 | tcacaTAAAtcacagcc                      |
| V\$HOXC/PBX HOXA9.01      | PBX - HOXA9 binding site                                                                               | 0.79 | 1307 - 1323 | ÷        | 1.000 | 0.954 | gctgTGATttatgtgac                      |
| <u>V\$HOXF/HOXA9.01</u>   | Member of the vertebrate HOX - cluster of homeobox factors                                             | 0.87 | 1308 - 1324 | Ŀ        | 1.000 | 0.968 | agtcacataAATCacag                      |
| V\$PARF/TEF.01            | Thyrotrophic embryonic factor                                                                          | 0.85 | 1310 - 1326 | ŧ        | 0.772 | 0.877 | gtgatttatGTGActca                      |
| <u>V\$AP1R/BACH2.01</u>   | Bach2 bound TRE                                                                                        | 0.89 | 1311 - 1335 | <u>.</u> | 1.000 | 0.946 | caccaacttTGAGtcacataaatca              |
| <u>V\$AP1F/AP1.01</u>     | Activator protein 1                                                                                    | 0.94 | 1318 - 1328 | ÷        | 0.904 | 0.954 | tgtgACTCaaa                            |
| <u>V\$AP1F/AP1.01</u>     | Activator protein 1                                                                                    | 0.94 | 1318 - 1328 | Ŀ        | 1.000 | 0.968 | tttgAGTCaca                            |
| V\$LEFF/LEF1.02           | TCF/LEF-1, involved in the Wnt signal transduction pathway                                             | 0.94 | 1318 - 1334 | ÷        | 1.000 | 0.944 | tgtgactCAAAgttggt                      |
| V\$MYT1/MYT1.02           | MyT1 zinc finger transcription factor involved in primary<br>neurogenesis                              | 0.88 | 1324 - 1336 | ÷        | 1.000 | 0.882 | tcaAAGTtggtgt                          |
| <u>V\$GF11/GF11B.01</u>   | Growth factor independence 1 zinc finger protein Gfi-1B                                                | 0.86 | 1335 - 1349 | 3        | 1.000 | 0.904 | gtaAATCactcacac                        |
| <u>V\$AP1F/AP1.02</u>     | Activator protein 1                                                                                    | 0.87 | 1336 - 1346 | ÷        | 1.000 | 0.897 | tgtGAGTgatt                            |
| V\$TBPF/MTATA.01          | Muscle TATA box                                                                                        | 0.84 | 1337 - 1353 | <u>.</u> | 1.000 | 0.852 | ccatgTAAAtcactcac                      |
| V\$HOXC/PBX HOXA9.01      | PBX - HOXA9 binding site                                                                               | 0.79 | 1338 - 1354 | ŧ        | 1.000 | 0.839 | tgagTGATttacatgga                      |
| V\$PBXC/PBX1 MEIS1.02     | Binding site for a Pbx1/Meis1 heterodimer                                                              | 0.77 | 1338 - 1354 | £        | 1.000 | 0.861 | tgagTGATttacatgga                      |
| V\$COMP/COMP1.01          | COMP1, cooperates with myogenic proteins in multicomponent<br>complex                                  | 0.77 | 1339 - 1361 | ÷        | 0.782 | 0.804 | ga <mark>gtgATTTac</mark> atggaaaatggt |
| <u>V\$HOXF/HOXA9.01</u>   | Member of the vertebrate HOX - cluster of homeobox factors                                             | 0.87 | 1339 - 1355 | <u>.</u> | 1.000 | 0.882 | ttccatgtaAATCactc                      |
| V\$0CT1/0CT1.05           | Octamer-binding factor 1                                                                               | 0.89 | 1340 - 1354 | Ŀ        | 1.000 | 0.905 | tcCATGtaaatcact                        |
| V\$SORY/HMGA.01           | HMGA family of architectural transcription factors (HMGA1, HMGA2)                                      | 0.88 | 1340 - 1356 | £        | 0.916 | 0.914 | agtGATTtacatggaaa                      |
| V\$RUSH/SMARCA3.01        | SWI/SNF related, matrix associated, actin dependent regulator of<br>chromatin, subfamily a, member 3   | 96.0 | 1345 - 1355 | 0        | 1.000 | 0.967 | ttCCATgtaaa                            |
| V\$PRDF/BLIMP1.01         | Transcriptional repressor B lymphocyte-induced maturation<br>protein-1 (Blimp-1, prdm1)                | 0.81 | 1347 - 1365 | ÷        | 1.000 | 0.816 | tacatgGAAAatggtgcag                    |
| <u>V\$YY1F/YY1.02</u>     | Yin and Yang 1 repressor sites                                                                         | 0.94 | 1347 - 1365 | (-)      | 1.000 | 0.968 | ctgcaCCATtttccatgta                    |
| V\$PTF1/PTF1.01           | PTF1 binding sites are bipartite with an E-box and a TC-box<br>(RBP-J/L) spaced one helical turn apart | 0.76 | 1350 - 1370 | 3        | 1.000 | 0.901 | cccaCCTGcaccattttccat                  |
| V\$RUSH/SMARCA3.01        | SWI/SNF related, matrix associated, actin dependent regulator of<br>Ichromatin, subfamily a, member 3  | 0.96 | 1352 - 1362 | <u>.</u> | 1.000 | 0.961 | caCCATtttcc                            |

| 02.01 | Transcriptional repressor, binds to elements found predominantly in<br>dense that narricinate in linid metabolism                                                                                | 0.73 | 1354 - 1376 | 3        | 1.000 | 0.749 | gcccacCCCAcctgcaccatttt   |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------------|----------|-------|-------|---------------------------|
|       | MyoD/E47 and MyoD/E12 dimers                                                                                                                                                                     | 0.92 | 1358 - 1374 | ÷        | 1.000 | 0.946 | tggtGCAGgtggggggg         |
|       | Erythroid krueppel like factor (EKLF)                                                                                                                                                            | 0.89 | 1362 - 1378 | ÷        | 1.000 | 0:630 | gcaggtgGGGTgggcag         |
|       | Sterol regulatory element binding protein                                                                                                                                                        | 0.80 | 1363 - 1377 | <u>.</u> | 0.750 | 0.849 | tgcCCACcccacctg           |
|       | Constitutive androstane receptor / retinoid X receptor heterodimer, DR4 sites                                                                                                                    | 0.75 | 1368 - 1392 | £        | 0.770 | 0.805 | ggggtGGGCagctcagttcagtacc |
|       | Pregnane X receptor / retinoid X receptor heterodimer, DR4 sites                                                                                                                                 | 0.80 | 1373 - 1397 | ÷        | 0.790 | 0.824 | gggcaGCTCagttcagtacccagtg |
|       | Zinc finger transcription factor RU49 (zinc finger proliferation 1 -<br>Zipro 1). RU49 exhibits a strong preference for binding to tandem<br>repeats of the minimal RU49 consensus binding site. | 0.98 | 1386 - 1392 | ÷        | 1.000 | 0.994 | cAGTAcc                   |
|       | Cut-like homeodomain protein                                                                                                                                                                     | 0.75 | 1408 - 1426 | <u>.</u> | 1.000 | 0.793 | acccacTAATcacagtgcc       |
|       | Growth factor independence 1                                                                                                                                                                     | 06'0 | 1408 - 1422 | <u>.</u> | 1.000 | 0.914 | actAATCacagtgcc           |
|       | Cone-rod homeobox-containing transcription factor / otx-like<br>homeobox gene                                                                                                                    | 0.94 | 1408 - 1424 | •        | 1.000 | 0.961 | ccacTAATcacagtgcc         |
|       | Pdx1 (IDX1/IPF1) pancreatic and intestinal homeodomain TF                                                                                                                                        | 0.74 | 1409 - 1429 | <u>.</u> | 1.000 | 0.764 | ctcaccacTAATcacagtgc      |
|       | Avian C-type LTR CCAAT box                                                                                                                                                                       | 0.83 | 1411 - 1425 | 3        | 0.750 | 0.874 | cccaCTAAtcacagt           |
|       | TR4 homodimer, DR1 site                                                                                                                                                                          | 0.75 | 1427 - 1451 | ÷        | 1.000 | 0.778 | gagaacAGGTaaaagatacaggctg |
|       | AREB6 (Atp1a1 regulatory element binding factor 6)                                                                                                                                               | 0.93 | 1429 - 1441 | <u>.</u> | 1.000 | 0.940 | cttttACCTgttc             |
|       | Promyelocytic leukemia zink finger (TF with nine Krueppel-like zink<br>lfingers)                                                                                                                 | 0.86 | 1440 - 1454 | ÷        | 1.000 | 0.897 | agaTACAggctgagg           |
|       | Vertebrate bicoid-type homeodomain protein Goosecoid                                                                                                                                             | 0.98 | 1475 - 1491 | £        | 1.000 | 0.983 | cctgTAATcccatcact         |
|       | Cut-like homeodomain protein                                                                                                                                                                     | 0.73 | 1483 - 1501 | ſ        | 1.000 | 0.731 | gccctcccaagtgATGGg        |
|       | VDR/RXR Vitamin D receptor RXR heterodimer, DR3 sites                                                                                                                                            | 0.86 | 1493 - 1517 | ÷        | 0.777 | 0.898 | tgggagggcaagGCGGgcagatcac |
|       | E2F-1/DP-2 heterodimeric complex                                                                                                                                                                 | 0.78 | 1500 - 1516 | ÷        | 1.000 | 0.810 | gcaaGGCGggcagatca         |
|       | Hepatic nuclear factor 4, DR2 sites                                                                                                                                                              | 0.76 | 1506 - 1530 | ÷        | 0.750 | 0.805 | cgggcagatcaCAAGgtcaggagtt |
|       | Estrogen related receptor                                                                                                                                                                        | 0.87 | 1511 - 1529 | ÷        | 1.000 | 0.957 | agatcacAAGGtcaggagt       |
|       | RAR-related orphan receptor alpha1                                                                                                                                                               | 0.93 | 1511 - 1533 | +        | 1.000 | 0.942 | agatcacaaGGTCaggagttcga   |
|       | SF1 steroidogenic factor 1                                                                                                                                                                       | 0.95 | 1513 - 1525 | ÷        | 1.000 | 966.0 | atcaCAAGgtcag             |
|       | Monomers of the nur subfamily of nuclear receptors (nur77, nurr1, nor-1)                                                                                                                         | 0.86 | 1514 - 1528 | £        | 1.000 | 0.932 | tcacAAGGtcaggag           |
|       | Fork head related activator-2 (FOXF2)                                                                                                                                                            | 0.84 | 1548 - 1564 | ÷        | 1.000 | 0.846 | acatggTAAAaacccca         |
|       | Barx2, homeobox transcription factor that preferentially binds to paired TAAT motifs                                                                                                             | 0.95 | 1561 - 1577 | •        | 1.000 | 0.953 | ttttTAATagagatggg         |
|       | Member of the RSRF (related to serum response factor) protein<br>family from Xenopus laevis                                                                                                      | 0.84 | 1561 - 1583 | £        | 1.000 | 0.845 | cccatctCTATtaaaaatacaaa   |
|       | Homeodomain transcription factor HOXC13                                                                                                                                                          | 0.91 | 1565 - 1581 | ŧ        | 1.000 | 0.933 | tctctatTAAAaataca         |
|       | Brn-2, POU-III protein class                                                                                                                                                                     | 0.86 | 1567 - 1585 | ÷        | 0.966 | 0.883 | tcTATTaaaatacaaaaa        |
|       | Member of b-zip family, induced by ER damage/stress, binds to the<br>ERSE in association with NF-Y                                                                                               | 0.93 | 1590 - 1602 | Э        | 1.000 | 0.938 | ccaCCACgcctgg             |
|       | VDR/RXR Vitamin D receptor RXR heterodimer, DR3 sites                                                                                                                                            | 0.85 | 1622 - 1646 | ÷        | 1.000 | 0.855 | attcaggaggctGAGGccggagaat |
|       | POZ/zinc finger protein, transcriptional repressor, translocations<br>observed in diffuse large cell lymphoma                                                                                    | 0.76 | 1643 - 1659 | ÷        | 0.756 | 0.769 | gaaTTGCttgaacccgg         |
|       | Activator protein 2 alpha                                                                                                                                                                        | 0.92 | 1652 - 1666 | 3        | 1.000 | 0.927 | tccGCCTccgggttc           |
|       | Purine-rich element binding protein A                                                                                                                                                            | 0.97 | 1658 - 1670 | ÷        | 1.000 | 0.985 | ggAGGCggaggtt             |
|       | Nuclear factor 1                                                                                                                                                                                 | 0.82 | 1665 - 1685 | -        | 1.000 | 0.834 | atcTTGGctcactgcaacctc     |
|       | Nuclear factor 1 (CTF1)                                                                                                                                                                          | 0.81 | 1665 - 1685 | +        | 0.750 | 0.877 | gaggTTGCagtgagccaagat     |
|       | Nerve growth factor-induced protein C                                                                                                                                                            | 0.80 | 1684 - 1700 | -        | 0.785 | 0.823 | gagtGCGGtggtgggat         |
|       |                                                                                                                                                                                                  |      |             | ĺ        |       |       |                           |

| 301 ccccaggctgGAGTgcggtggtggg | 336 CAGGctggagtgcggtg                                                                                                                          | 901 ccaGCCTggggacag | 934 gagaaGGAGtctcgc                                              | 744 gcccacatcattgCCTAcatg                                      | gtgtgtGAAAtgtgcgtgc                                                                     | 944 tgtgaaatgtgCGTGcctgcgagga                 | 313 agaTTCCtcgcaggcac                                                                                         | 920 gtgcCTGCgag                    | 816 tgcgaggaATCTatgtgaa       | 043 CttttcacataGATTocto      | 977 aggACGCcttt                                                                             | 920 gagcGGGAggacgcctt                                  | 350 gctccgtGACTtgttggggatg                                                         | 323 gttgGGATgtatgcgtg | 911 [tgggatgtatgCGTGagtgaggggc                           | 765 cactcACGCatacatccca          | 718 cctcacTCACgcatacatccc | 318 gtatGCGTgagtgaggg                 | 922 cacTCACgcatac      | 392 cgtGAGTgagg     | gcCCCTcactc                                                                  | 385 GAGGggctgagtgtggtgg                                                                    | 338 cccTCACaccacact                       | 322 ccaGGGAcacaggagacagccctca                                      | 750 tggtggAGGTgagagtttggaagcg | 919 ggtgGAGGtgaga                        | 787 aggtgAGAGtttggaagcgagttaa | 958 tgagAGTTtggaa                                                      | 324 catgcACACttaactcgct          | 968 cgagttaAGTGtgca                                        | 757 [taccaaCAATcctcaccgg     | 984 taccaaCAATcctcacc | 374 accaACAAtcctcac        |                                                                                                                                           |
|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------|------------------------------------|-------------------------------|------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------|----------------------------------------------------------|----------------------------------|---------------------------|---------------------------------------|------------------------|---------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------------|-------------------------------|------------------------------------------|-------------------------------|------------------------------------------------------------------------|----------------------------------|------------------------------------------------------------|------------------------------|-----------------------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| 0.8                           | е<br>8.0<br>8.0                                                                                                                                | 0.0                 | 0.0                                                              | 0.7                                                            | 0.6                                                                                     | 0.0                                           | 0.0                                                                                                           | 0.0                                | 6 0.8                         | 5                            | 0 0.9                                                                                       | 0.9                                                    | 0.6                                                                                | 4 0.8                 | 0.9                                                      | 0.7                              | 0.7                       | 0.8                                   | 0.9                    | 0.8                 | 0.8                                                                          | 0 0.8                                                                                      | 0.8                                       | 5 0.8                                                              | 0.7                           | 0.9                                      | 0.0                           | 0.0                                                                    | 0.6                              | 0.9                                                        | 0.7                          | 0.9                   | 0.8                        | 0 1.0                                                                                                                                     |
| 0.75                          | 0.83                                                                                                                                           | 1.00                | 1.00                                                             | 0.75                                                           | 1.00                                                                                    | 1.00                                          | 1.00                                                                                                          | 1.00                               | 08.0                          | 0.88                         | 1.00                                                                                        | 1.00                                                   | ) 0.75                                                                             | 0.94                  | 1.00                                                     | 1.00                             | 0.75                      | 1.00                                  | 0.80                   | 1.00                | 1.00                                                                         | 1.00                                                                                       | 1.00                                      | 0.87                                                               | ) 1.00                        | 1.00                                     | 1.00                          | 1.00                                                                   | 0.87                             | 1.00                                                       | 0.75                         | 1.00                  | 0.75                       | 1.00                                                                                                                                      |
| 1686 - 1710 (-                | 1691 - 1707 (-                                                                                                                                 | 1700 - 1714 (+      | 1716 - 1730 (-                                                   | 1766 - 1786 (-                                                 | 1789 - 1807 (+                                                                          | 1792 - 1816 (+                                | 1804 - 1820 (-                                                                                                | 1804 - 1814 (+                     | 1809 - 1827 (+                | 1812 - 1830 [-               | 1827 - 1837 (-                                                                              | 1828 - 1844 (-                                         | 1841 - 1861 (+                                                                     | 1853 - 1869 (+        | 1855 - 1879 (+                                           | 1855 - 1873 (-                   | 1856 - 1876 (-            | 1861 - 1877 (+                        | 1861 - 1873 (-         | 1866 - 1876 (+      | 1869 - 1879 (-                                                               | 1873 - 1893 (+                                                                             | 1882 - 1896 (-                            | 1891 - 1915 (-                                                     | 1913 - 1937 (+                | 1914 - 1926 (+                           | 1919 - 1943 (+                | 1922 - 1934 (+                                                         | 1934 - 1952 (-                   | 1936 - 1950 (+                                             | 1957 - 1975 (-               | 1959 - 1975 (-        | 1960 - 1974 (-             | 1972 - 1978                                                                                                                               |
| 0.78                          | 0.83                                                                                                                                           | 06.0                | 0.93                                                             | 0.74                                                           | 0.81                                                                                    | 0.92                                          | 0.76                                                                                                          | 0.92                               | 0.81                          | 0.94                         | 0.95                                                                                        | 0.88                                                   | 0.85                                                                               | 0.81                  | 06.0                                                     | 0.76                             | 0.71                      | 0.80                                  | 0.88                   | 0.87                | 0.85                                                                         | 0.88                                                                                       | 0.80                                      | 0.82                                                               | 0.75                          | 06.0                                     | 0.78                          | 0.92                                                                   | 0.76                             | 96.0                                                       | 0.75                         | 0.87                  | 0.83                       | 86.0                                                                                                                                      |
| rocarbon / dioxin receptor    | Carbohydrate response element binding protein (CHREBP) and<br>Max-like protein X (MIX) bind as heterodimers to glucose-responsive<br>promoters | Activator protein 2 | Basic transcription element (BTE) binding protein, BTEB3, FKLF-2 | Ribonucleoprotein associated zinc finger protein MOK-2 (mouse) | Transcriptional repressor B lymphocyte-induced maturation<br>protein-1 (Blimp-1, prdm1) | Aryl hydrocarbon receptor / Arnt heterodimers | POZ/zinc finger protein, transcriptional repressor, translocations<br>observed in diffuse large cell lymphoma | Transcription factor Kaiso, ZBTB33 | Transcriptional repressor CDP | Cut-like homeodomain nrotein | Winged helix protein, involved in hair keratinization and thymus epithelium differentiation | Collagen krox protein (zinc finger protein 67 - zfp67) | Activating transcription factor 6, member of b-zip family, induced by<br>ER stress | HOX/PBX binding sites | bHLH-PAS type transcription factors NXF/ARNT heterodimer | Pax-6 paired domain binding site | Tax/CREB complex          | Nerve growth factor-induced protein C | PAX 2/5/8 binding site | Activator protein 1 | Glial cells missing homolog 1, chorion-specific transcription factor<br>GCMa | Pleomorphic adenoma gene (PLAG) 1, a developmentally regulated<br>C2H2 zinc finger protein | Sterol regulatory element binding protein | SZF1, hematopoietic progenitor-restricted KRAB-zinc finger protein | TR4 homodimer, DR1 site       | Myc associated zinc finger protein (MAZ) | GAGA-Box                      | Myelin transcription factor 1-like, neuronal C2HC zinc finger factor 1 | Pax-6 paired domain binding site | Homeodomain protein NKX3.2 (BAPX1, NKX3B, Bagpipe homolog) | Cut-like homeodomain protein | Sox-5                 | Avian C-type LTR CCAAT box | Zinc finger transcription factor RU49 (zinc finger proliferation 1 -<br>Zinco 1). RU49 exhibits a strong preference for binding to tandem |
| Aryl hydr                     |                                                                                                                                                |                     |                                                                  | i                                                              |                                                                                         | 1                                             |                                                                                                               |                                    |                               |                              |                                                                                             |                                                        |                                                                                    |                       |                                                          |                                  |                           |                                       |                        |                     |                                                                              |                                                                                            |                                           |                                                                    |                               |                                          |                               |                                                                        |                                  |                                                            |                              |                       |                            |                                                                                                                                           |

| gagtgtGAAAgtgttcccg                                                                     | gctacccggGAACactt                                                      | gcgcTACCcgggaacactt                                       | gcgctacccgGGAAcactt        | acccgGGAAcact                                               | taGCGCacaagtgtgtt                                                         | gcgcacAAGTgtgtt                                 | acacACTTgtg                                                                                       | cacacCATAactttactgc                                                        | gtaAAGTtatggt                                                             | tggtgtgaaggTGTTcttg                           | ttGGGTgtggaagttgg                 | ttgggtgtGGAAgttggcgtg                                                                             | gtggaagttggCGTGcacgtgtggc                     | tggcgtgcACGTgtggcgcgg   | gccacaCGTGcacgc                                        | gcgtgcaCGTGtg                       | cgtgcaCGTGtgg | cgtgcaCGTGtggcg                                        | gccacaCGTGcac | cgccacaCGTGca                                       | gctccGCGCcacacgtg                    | cCGCTccgcgccacacgtg                                                                       | gtgtgGCGCggagcggc                                                      | gcagctgCCGCtccgcgccacac                                        | acgcacgcaGCTGccgctccg | ggagcggcaGCTGcgtgcgtg | agcggcAGCTgcgtgcg   | agctGCGTgcgtgtgag                                | gcgtGCGTgtgagcgtg                    | gtgaGCGTgggaaggag                    | agcgTGGGaaggaga                                     | ttcaAAAGctgcgcg               | gccgtgcggggCGTGcaggggcgtg                     | gccgtgcgGGGCgtgca             | tgcGGGGcgtgcagg                                                                      | gcgtgcagGGGCgtgga             | cgtgcaGGGcgtggaa                           | gca666cgtggaag                                                                       |
|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------|----------------------------|-------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------|-----------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------|-------------------------|--------------------------------------------------------|-------------------------------------|---------------|--------------------------------------------------------|---------------|-----------------------------------------------------|--------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------|-----------------------|-----------------------|---------------------|--------------------------------------------------|--------------------------------------|--------------------------------------|-----------------------------------------------------|-------------------------------|-----------------------------------------------|-------------------------------|--------------------------------------------------------------------------------------|-------------------------------|--------------------------------------------|--------------------------------------------------------------------------------------|
| 0.858                                                                                   | 0.769                                                                  | 0.876                                                     | 0.917                      | 0.876                                                       | 0.735                                                                     | 0.906                                           | 0.985                                                                                             | 0.732                                                                      | 0.886                                                                     | 0.874                                         | 0.960                             | 0.974                                                                                             | 0.968                                         | 0.881                   | 0.966                                                  | 0.945                               | 0.971         | 0.984                                                  | 0.985         | 0.979                                               | 0.722                                | 0.643                                                                                     | 0.912                                                                  | 0.873                                                          | 0.849                 | 0.844                 | 0.922               | 0.815                                            | 0.772                                | 0.772                                | 0.962                                               | 0.899                         | 0.934                                         | 0.865                         | 0.859                                                                                | 0.899                         | 0.959                                      | 0.868                                                                                |
| 1.000                                                                                   | 0.750                                                                  | 0.793                                                     | 0.881                      | 1.000                                                       | 0.750                                                                     | 1.000                                           | 1.000                                                                                             | 0.892                                                                      | 1.000                                                                     | 1.000                                         | 1.000                             | 1.000                                                                                             | 1.000                                         | 1.000                   | 1.000                                                  | 1.000                               | 1.000         | 1.000                                                  | 1.000         | 1.000                                               | 1.000                                | 0.750                                                                                     | 1.000                                                                  | 1.000                                                          | 1.000                 | 1.000                 | 1.000               | 1.000                                            | 1.000                                | 1.000                                | 1.000                                               | 1.000                         | 1.000                                         | 1.000                         | 1.000                                                                                | 1.000                         | 1.000                                      | 1.000                                                                                |
| <del>(+</del>                                                                           | :                                                                      | 3                                                         | 3                          | <u>.</u>                                                    | (+                                                                        | £                                               | •                                                                                                 | •                                                                          | <del>(</del> +                                                            | ÷                                             | £                                 | ÷                                                                                                 | £                                             | ÷                       | <u>.</u>                                               | ÷                                   | £             | +                                                      | <u>.</u>      | <u>.</u>                                            | (-)                                  | -                                                                                         | ÷                                                                      | (-)                                                            | 3                     | ÷                     | £                   | +                                                | £                                    | £                                    | £                                                   | £                             | ÷                                             | +                             | +                                                                                    | £                             | ÷                                          | ÷                                                                                    |
| 1993 - 2011                                                                             | 2001 - 2017                                                            | 2001 - 2019                                               | 2001 - 2019                | 2002 - 2014                                                 | 2014 - 2030                                                               | 2016 - 2030                                     | 2019 - 2029                                                                                       | 2034 - 2052                                                                | 2037 - 2049                                                               | 2046 - 2064                                   | 2062 - 2078                       | 2062 - 2082                                                                                       | 2068 - 2092                                   | 2076 - 2096             | 2078 - 2092                                            | 2078 - 2090                         | 2079 - 2091   | 2079 - 2093                                            | 2080 - 2092   | 2081 - 2093                                         | 2083 - 2099                          | 2083 - 2101                                                                               | 2086 - 2102                                                            | 2086 - 2108                                                    | 2094 - 2114           | 2095 - 2115           | 2097 - 2113         | 2103 - 2119                                      | 2107 - 2123                          | 2115 - 2131                          | 2118 - 2132                                         | 2143 - 2157                   | 2168 - 2192                                   | 2168 - 2184                   | 2172 - 2186                                                                          | 2178 - 2194                   | 2179 - 2195                                | 2182 - 2196                                                                          |
| 0.81                                                                                    | 0.75                                                                   | 0.84                                                      | 0.89                       | 0.84                                                        | 0.73                                                                      | 0.89                                            | 0.98                                                                                              | 0.73                                                                       | 0.88                                                                      | 0.84                                          | 0.95                              | 0.96                                                                                              | 0.92                                          | 0.88                    | 0.96                                                   | 0.89                                | 0.92          | 0.96                                                   | 0.92          | 0.93                                                | 0.71                                 | 0.62                                                                                      | 0.85                                                                   | 0.87                                                           | 0.81                  | 0.81                  | 0.92                | 0.79                                             | 0.77                                 | 0.77                                 | 0.94                                                | 0.88                          | 0.92                                          | 0.86                          | 0.83                                                                                 | 0.86                          | 0.91                                       | 0.83                                                                                 |
| Transcriptional repressor B lymphocyte-induced maturation<br>protein-1 (Blimp-1, prdm1) | E2F, involved in cell cycle regulation, interacts with Rb p107 protein | STAT6: signal transducer and activator of transcription 6 | X-box binding protein RFX1 | Ikaros 3, potential regulator of lymphocyte differentiation | Rat C2H2 Zn finger protein involved in olfactory neuronal differentiation | H6 homeodomain HMX3/Nkx5.1 transcription factor | SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily a, member 3 | Proximal sequence element (PSE) of RNA polymerase III-transcribed<br>genes | MyT1 zinc finger transcription factor involved in primary<br>neurogenesis | Progesterone receptor binding site, IR3 sites | Basic krueppel-like factor (KLF3) | Spleen focus forming virus (SFFV) proviral integration oncogene<br>Spi1/transcription factor PU.1 | Aryl hydrocarbon receptor / Arnt heterodimers | X-box-binding protein 1 | Basic helix-loop-helix protein known as Dec2 or Sharp2 | AhR nuclear translocator homodimers | N-Myc         | Basic helix-loop-helix protein known as Dec2 or Sharp2 | N-Myc         | Hypoxia inducible factor, bHLH / PAS protein family | RB/E2F-1/DP-1 heterotrimeric complex | Pax1 paired domain protein, expressed in the developing vertebral column of mouse embryos | E2F, involved in cell cycle regulation, interacts with Rb p107 protein | Core promoter-binding protein (CPBP) with 3 Krueppel-type zinc | HEN1                  | HEN1                  | Activator protein 4 | Egr-2/Krox-20 early growth response gene product | Early growth response gene 3 product | Early growth response gene 3 product | Mammalian transcriptional repressor RBP-Jkappa/CBF1 | Barbiturate-inducible element | Aryl hydrocarbon receptor / Arnt heterodimers | EGR1, early growth response 1 | TGFbeta-inducible early gene (TIEG) / Early growth response gene<br>alpha (EGRalpha) | EGR1, early growth response 1 | Kidney-enriched kruppel-like factor, KLF15 | TGFbeta-inducible early gene (TIEG) / Early growth response gene<br>alpha (EGRalpha) |
| PRDF/BLIMP1.01                                                                          | 2FF/E2F.01                                                             | TAT/STAT6.01                                              | 3BF/RFX1.01                | RS/IK3.01                                                   | AZF/ROAZ.01                                                               | KXH/HMX3.01                                     | JSH/SMARCA3.02                                                                                    | VAP/PSE.02                                                                 | YT1/MYT1.02                                                               | REF/PRE.01                                    | KLF/BKLF.01                       | TSF/SPI1 PU1.02                                                                                   | HRR/AHRARNT.01                                | REB/XBP1.01             | ESF/DEC2.01                                            | FF/ARNT.01                          | OX/NMYC.01    | SF/DEC2.01                                             | OX/NMYC.01    | FF/HIF1.02                                          | FF/RB E2F1 DP1.01                    | X1/PAX1.01                                                                                | <u>FF/E2F.03</u>                                                       | PF/ZF9.01                                                      | EN1/HEN1.02           | EN1/HEN1.02           | 04R/AP4.02          | <u>sRF/EGR2.01</u>                               | SRF/EGR3.01                          | 5RF/EGR3.01                          | 3PF/RBPJK.02                                        | ARB/BARBIE.01                 | HRVAHRARNT.01                                 | <u>5RF/EGR1.02</u>            | 1F/TIEG.01                                                                           | SRF/EGR1.02                   | (LF/KKLF.01                                | P1F/TIEG.01                                                                          |

| V\$E2FF/E2F1 DP1.01     | E2F-1/DP-1 heterodimeric complex                                                                                                                                      | 0.81 | 2183 - 2199 | (              | 1.000 | 0.812 | capo66C6topaaptco                      |
|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------------|----------------|-------|-------|----------------------------------------|
| V\$EGRF/EGR3.01         | Early growth response gene 3 product                                                                                                                                  | 0.77 | 2184 - 2200 | Œ              | 1.000 | 0.787 | agggGCGTggaagtcgg                      |
| V\$ETSF/SPI1 PU1.02     | Spleen focus forming virus (SFFV) proviral integration oncogene<br>Spi1/transcription factor PU.1                                                                     | 96.0 | 2184 - 2204 | ÷              | 1.000 | 0.966 | aggggcgtGGAAgtcggcggc                  |
| <u>V\$NRF1/NRF1.01</u>  | Nuclear respiratory factor 1 (NRF1), bZIP transcription factor that<br>acts on nuclear genes encoding mitochondrial proteins                                          | 0.78 | 2199 - 2215 | •              | 0.750 | 0.835 | tccCCGCgcgcgccgcc                      |
| <u>V\$NRF1/NRF1.01</u>  | Nuclear respiratory factor 1 (NRF1), bZIP transcription factor that<br>acts on nuclear genes encoding mitochondrial proteins                                          | 0.78 | 2200 - 2216 | ÷              | 1.000 | 0.792 | gcgGCGCgcgcggggaa                      |
| V\$ZF5F/ZF5.01          | Zinc finger / POZ domain transcription factor                                                                                                                         | 0.95 | 2200 - 2210 | <u>.</u>       | 1.000 | 0.963 | gcgcGCcgc                              |
| V\$ZF5F/ZF5.01          | Zinc finger / POZ domain transcription factor                                                                                                                         | 0.95 | 2203 - 2213 | £              | 1.000 | 0.966 | gcgcGCGggg                             |
| V\$ETSF/ETS1.01         | c-Ets-1 binding site                                                                                                                                                  | 0.92 | 2205 - 2225 | ÷              | 1.000 | 0.920 | gcgcgggGGAAgcgggggag                   |
| V\$ZBPF/ZNF219.01       | Kruppel-like zinc finger protein 219                                                                                                                                  | 0.91 | 2208 - 2230 | Ŀ              | 1.000 | 0.936 | cccggctCCCccgcttccccgcg                |
| V\$MZF1/MZF1.01         | Myeloid zinc finger protein MZF1                                                                                                                                      | 0.99 | 2209 - 2217 | ÷              | 1.000 | 0.991 | gcGGGGaag                              |
| V\$EGRF/NGFIC.01        | Nerve growth factor-induced protein C                                                                                                                                 | 0.80 | 2213 - 2229 | £              | 0.785 | 0.809 | ggaaGCGGggggggccgg                     |
| V\$M∆7F/M∆7.01          | Mvc associated zinc finger protein (MAZ)                                                                                                                              | U OU | 2234 - 2246 | 9              | 1.000 | 0.959 | <u>κυκαλ66κααα</u>                     |
| V\$EBOX/MYCMAX.03       | MYC-MAX binding sites                                                                                                                                                 | 0.91 | 2245 - 2257 | Ŀ              | 0.789 | 0.914 | gggccaGGCGctc                          |
| V\$P53F/P53.01          | Tumor suppressor p53                                                                                                                                                  | 0.73 | 2266 - 2288 | £              | 1.000 | 0.759 | catccCATGcccgggcccgggcc                |
| <u>V\$PLAG/PLAG1.01</u> | Pleomorphic adenoma gene (PLAG) 1, a developmentally regulated<br>C2H2 zinc finger protein                                                                            | 0.88 | 2270 - 2290 | <u>·</u>       | 0.958 | 0.889 | GGGGcccgggcccg <mark>ggcatgg</mark>    |
| V\$PLAG/PLAG1.01        | Pleomorphic adenoma gene (PLAG) 1, a developmentally regulated<br>C2H2 zinc finger protein                                                                            | 0.88 | 2284 - 2304 | •              | 0.958 | 0.907 | 00000000000000000000000000000000000000 |
| V\$ZBPF/ZNF219.01       | Kruppel-like zinc finger protein 219                                                                                                                                  | 0.91 | 2288 - 2310 | ÷              | 1.000 | 0.932 | ccccggtCCCcgccccgtccca                 |
| V\$EGRF/WT1.01          | Wilms Tumor Suppressor                                                                                                                                                | 0.92 | 2289 - 2305 | ſ              | 0.953 | 0.971 | cgggggGGGggaccggg                      |
| V\$ZBPF/ZF9.01          | Core promoter-binding protein (CPBP) with 3 Krueppel-type zinc<br>fingers                                                                                             | 0.87 | 2291 - 2313 | <del>(</del> + | 1.000 | 0.874 | cggtcccCCGCcccgtcccatcc                |
| V\$MAZF/MAZR.01         | MYC-associated zinc finger protein related transcription factor                                                                                                       | 0.88 | 2293 - 2305 | Ŀ              | 1.000 | 0.892 | cggggcGGGgac                           |
| V\$SP1F/SP1.01          | Stimulating protein 1, ubiquitous zinc finger transcription factor                                                                                                    | 0.88 | 2293 - 2307 | <u>.</u>       | 1.000 | 0.997 | gacgGGGCgggggac                        |
| V\$EKLF/KKLF.01         | Kidney-enriched kruppel-like factor, KLF15                                                                                                                            | 0.91 | 2294 - 2310 | <u>.</u>       | 1.000 | 0.936 | tgggacGGGGggggga                       |
| V\$EGRF/EGR1.02         | EGR1, early growth response 1                                                                                                                                         | 0.86 | 2295 - 2311 | <u>.</u>       | 1.000 | 0.888 | atgggacgGGGCggggg                      |
| V\$E2FF/E2F.02          | E2F, involved in cell cycle regulation, interacts with Rb p107 protein                                                                                                | 0.84 | 2326 - 2342 | <b>:</b>       | 1.000 | 0.896 | gctccccgcCAAAcccg                      |
| V\$NF1F/NF1.01          | Nuclear factor 1                                                                                                                                                      | 0.82 | 2328 - 2348 | <del>(</del> + | 1.000 | 0.838 | ggtTTGGcgggggagccgggcc                 |
| V\$NF1F/NF1.02          | Nuclear factor 1 (CTF1)                                                                                                                                               | 0.81 | 2328 - 2348 | <u>.</u>       | 0.750 | 0.810 | ggccCGGCtccccgccaaacc                  |
| V\$E2FF/RB E2F1 DP1.01  | RB/E2F-1/DP-1 heterotrimeric complex                                                                                                                                  | 0.71 | 2329 - 2345 | £              | 0.795 | 0.759 | gtttgGCGGggagccgg                      |
| V\$MAZF/MAZ.01          | Myc associated zinc finger protein (MAZ)                                                                                                                              | 06.0 | 2330 - 2342 | <del>(</del> + | 0.866 | 0.901 | tttgGCGGggagc                          |
| V\$MZF1/MZF1.01         | Myeloid zinc finger protein MZF1                                                                                                                                      | 0.99 | 2334 - 2342 | +              | 1.000 | 0.991 | gcGGGGagc                              |
| V\$NRSF/NRSE.01         | Neural-restrictive-silencer-element                                                                                                                                   | 0.67 | 2345 - 2365 | ÷              | 0.782 | 0.681 | ggccgggccgCGGCccgcgcg                  |
| V\$ZBPF/ZNF202.01       | Transcriptional repressor, binds to elements found predominantly in genes that participate in lipid metabolism                                                        | 0.73 | 2361 - 2383 | <u>.</u>       | 1.000 | 0.772 | tgggccCCCAgccccctccgcgc                |
| V\$EGRF/EGR1.02         | EGR1, early growth response 1                                                                                                                                         | 0.86 | 2362 - 2378 | <del>(</del> + | 1.000 | 0.911 | cgcggaggGGGCtgggg                      |
| V\$RREB/RREB1.01        | Ras-responsive element binding protein 1                                                                                                                              | 0.80 | 2364 - 2378 | <u>.</u>       | 1.000 | 0.822 | cCCCAgccccctccg                        |
| V\$ZBPF/ZNF219.01       | Kruppel-like zinc finger protein 219                                                                                                                                  | 0.91 | 2364 - 2386 | -              | 1.000 | 0.917 | gtctgggCCCCcagccccctccg                |
| V\$SP1F/SP1.01          | Stimulating protein 1, ubiquitous zinc finger transcription factor                                                                                                    | 0.88 | 2366 - 2380 | <del>(</del> + | 1.000 | 0.895 | gaggGGGCtgggggc                        |
| V\$SMAD/SMAD3.01        | Smad3 transcription factor involved in TGF-beta signaling                                                                                                             | 0.99 | 2378 - 2386 | <u>.</u>       | 1.000 | 0.993 | GTCTgggcc                              |
| <u>V\$HICF/HIC1.01</u>  | Hypermethylated in cancer 1, transcriptional repressor containing<br>five Krüppel-like C2H2 zinc fingers, for optimal binding multiple<br>binding sites are required. | 0.93 | 2397 - 2409 | (+)            | 0.869 | 0.933 | taggcTGCGcggc                          |

| tcgcCCAgccggccgcgcgcgc                                                                                  | gccggctgGGGCgagca             | ggCTGGggcgagcagagcc | cggaccgCCCcggggccgcgggc              | ccacggaCCGCcccgggccgcg                                                    | accGCCccgggccg            | cggcccggGGGCggtcc             | cggaccgCCCcggg                                                                         | ccggGGGCggtccgt                                                    | ccaggccCCGCccacggaccgcc                                                   | cggtCCGTgggcgggc                                 | ccgtGGGCggggcct                                                    | gtgggcGGGcct                                                    | t cgcccTCCCcggagcgccaggc         | ccccgaaCCGCccctccccggag                                                   | tccggGGAGgggggg | ccgggggggGGGCggttc            | cggggaGGGGcggttcg                          | cgggGAGGgcgg                             | cgaaccgCCCtccc                                                                         | ggaggGGCGgttcgg | GAGGggcggttcgggggcggg                                                                      | r cCCCGaaccgccct                         | ggcccgCCCCcgaaccgccct                | gccggccCGCcccgaaccgcc                                          | cggttcggGGGCggggc             | tcggGGGCggggccg                                                    | ggggggggggggggggggggggggggggggggggggggg                         | gcaGCGCcggccccgcc                                                                                                         | gcgGGGCcggcgtgcg                                                                                                             | cgccccgCCCcgcagcgccggc               | geccgecccgCCCCcgcagcgcc                 | jgcccgccccgCCCCcgcagcgcc                | cgctgcggGGGCggggc             | teccegeCCGCcccgccccgca                                                    | 0 gcggGGGCggggggg                                                  | cgggggggggggggggg             |                  |
|---------------------------------------------------------------------------------------------------------|-------------------------------|---------------------|--------------------------------------|---------------------------------------------------------------------------|---------------------------|-------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------|---------------------------------------------------------------------------|-----------------|-------------------------------|--------------------------------------------|------------------------------------------|----------------------------------------------------------------------------------------|-----------------|--------------------------------------------------------------------------------------------|------------------------------------------|--------------------------------------|----------------------------------------------------------------|-------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------------------|-----------------------------------------|-------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------|------------------|
| 0.783                                                                                                   | 0.892                         | 0.920               | 0.949                                | 0.885                                                                     | 0.922                     | 0.868                         | 0.956                                                                                  | 0.894                                                              | 0.900                                                                     | 0.887                                            | 0.966                                                              | 0.895                                                           | 0.834                            | 0.882                                                                     | 0.933           | 06.0                          | 0.963                                      | 0.960                                    | 0.944                                                                                  | 0.887           | 0.936                                                                                      | 0.837                                    | 0.957                                | 526.0                                                          | 0.935                         | 1.000                                                              | 0.931                                                           | 0.797                                                                                                                     | 0.785                                                                                                                        | 0.935                                | 0.956                                   | 0.956                                   | 166.0                         | 0.885                                                                     | 1.000                                                              | 0.892                         | 0 061            |
| 1.000                                                                                                   | 1.000                         | 1.000               | 1.000                                | 1.000                                                                     | 0.905                     | 1.000                         | 1.000                                                                                  | 1.000                                                              | 1.000                                                                     | 0.751                                            | 1.000                                                              | 1.000                                                           | 1.000                            | 1.000                                                                     | 0.876           | 1.000                         | 1.000                                      | 1.000                                    | 1.000                                                                                  | 1.000           | 1.000                                                                                      | 0.750                                    | 1.000                                | 1.000                                                          | 1.000                         | 1.000                                                              | 1.000                                                           | 1.000                                                                                                                     | 0.750                                                                                                                        | 1.000                                | 1.000                                   | 1.000                                   | 1.000                         | 1.000                                                                     | 1.000                                                              | 1.000                         | • • • •          |
| 3                                                                                                       | £                             | £                   | <u>.</u>                             | 3                                                                         | <u>.</u>                  | ÷                             | Ξ                                                                                      | £                                                                  | 3                                                                         | £                                                | £                                                                  | £                                                               | 3                                | <u>.</u>                                                                  | ÷               | £                             | £                                          | ŧ                                        | 3                                                                                      | +               | +                                                                                          | C                                        | <u> </u>                             | 3                                                              | £                             | £                                                                  | ÷                                                               | 3                                                                                                                         | £                                                                                                                            | -                                    | 3                                       | <u>.</u>                                | £                             | •                                                                         | £                                                                  | £                             |                  |
| 2399 - 2421                                                                                             | 2408 - 2424                   | 2411 - 2429         | 2427 - 2449                          | 2430 - 2452                                                               | 2432 - 2446               | 2432 - 2448                   | 2435 - 2449                                                                            | 2436 - 2450                                                        | 2441 - 2463                                                               | 2443 - 2459                                      | 2447 - 2461                                                        | 2449 - 2461                                                     | 2458 - 2480                      | 2466 - 2488                                                               | 2467 - 2481     | 2468 - 2484                   | 2469 - 2485                                | 2469 - 2481                              | 2471 - 2485                                                                            | 2472 - 2486     | 2473 - 2493                                                                                | 2474 - 2488                              | 2474 - 2496                          | 2477 - 2499                                                    | 2479 - 2495                   | 2483 - 2497                                                        | 2485 - 2497                                                     | 2488 - 2504                                                                                                               | 2489 - 2505                                                                                                                  | 2494 - 2516                          | 2497 - 2519                             | 2497 - 2519                             | 2499 - 2515                   | 2502 - 2524                                                               | 2503 - 2517                                                        | 2504 - 2520                   | PEDE DEDE        |
| 0.76                                                                                                    | 0.86                          | 0.90                | 0.91                                 | 0.87                                                                      | 0.92                      | 0.86                          | 0.89                                                                                   | 0.88                                                               | 0.87                                                                      | 0.79                                             | 0.85                                                               | 0.88                                                            | 0.82                             | 0.87                                                                      | 0.88            | 0.86                          | 0.91                                       | 06.0                                     | 0.89                                                                                   | 0.88            | 0.88                                                                                       | 0.80                                     | 0.91                                 | 0.87                                                           | 0.86                          | 0.88                                                               | 0.88                                                            | 0.78                                                                                                                      | 0.78                                                                                                                         | 0.91                                 | 0.93                                    | 0.93                                    | 0.86                          | 0.87                                                                      | 0.88                                                               | 0.86                          | 0                |
| ZNF143 is the human ortholog of Xenopus Staf, ZNF76 is a DNA binding protein related to ZNF143 and Staf | EGR1, early growth response 1 | CP2                 | Kruppel-like zinc finger protein 219 | Core promoter-binding protein (CPBP) with 3 Krueppel-type zinc<br>fingers | Activator protein 2 alpha | EGR1, early growth response 1 | Zinc finger transcription factor, Zic family member 2 (odd-paired homolog, Drosophila) | Stimulating protein 1, ubiquitous zinc finger transcription factor | Core promoter-binding protein (CPBP) with 3 Krueppel-type zinc<br>fingers | Egr-2/Krox-20 early growth response gene product | Stimulating protein 1, ubiquitous zinc finger transcription factor | MYC-associated zinc finger protein related transcription factor | Olfactory neuron-specific factor | Core promoter-binding protein (CPBP) with 3 Krueppel-type zinc<br>fingers | GC box elements | EGR1, early growth response 1 | Kidney-enriched kruppel-like factor, KLF15 | Myc associated zinc finger protein (MAZ) | Zinc finger transcription factor, Zic family member 2 (odd-paired homolog, Drosophila) | GC box elements | Pleomorphic adenoma gene (PLAG) 1, a developmentally regulated<br>C2H2 zinc finger protein | Ras-responsive element binding protein 1 | Kruppel-like zinc finger protein 219 | Core promoter-binding protein (CPBP) with 3 Krueppel-type zinc | EGR1, early growth response 1 | Stimulating protein 1, ubiquitous zinc finger transcription factor | MYC-associated zinc finger protein related transcription factor | Nuclear respiratory factor 1 (NRF1), bZIP transcription factor that acts on nuclear genes encoding mitochondrial proteins | Nuclear respiratory factor 1 (NRF1), bZIP transcription factor that<br>acts on nuclear genes encoding mitochondrial proteins | Kruppel-like zinc finger protein 219 | Zinc finger transcription factor ZBP-89 | Zinc finger transcription factor ZBP-89 | EGR1, early growth response 1 | Core promoter-binding protein (CPBP) with 3 Krueppel-type zinc<br>fingers | Stimulating protein 1, ubiguitous zinc finger transcription factor | EGR1, early growth response 1 | 1.2.2            |
| STAF/ZNF76 143.01                                                                                       | \$EGRF/EGR1.02                | (\$CP2F/CP2.01      | /\$ZBPF/ZNF219.01                    | /\$ZBPF/ZF9.01                                                            | V\$AP2F/AP2.02            | V\$EGRF/EGR1.02               | V\$GLIF/ZIC2.01                                                                        | V\$SP1F/SP1.01                                                     | V\$ZBPF/ZF9.01                                                            | V\$EGRF/EGR2.01                                  | V\$SP1F/SP1.02                                                     | V\$MAZF/MAZR.01                                                 | V\$NOLF/OLF1.01                  | V\$ZBPF/ZF9.01                                                            | V\$SP1F/GC.01   | V\$EGRF/EGR1.02               | V\$EKLF/KKLF.01                            | V\$MAZF/MAZ.01                           | V\$GLIF/ZIC2.01                                                                        | V\$SP1F/GC.01   | V\$PLAG/PLAG1.01                                                                           | V\$RREB/RREB1.01                         | V\$ZBPF/ZNF219.01                    | V\$ZBPF/ZF9.01                                                 | V\$EGRF/EGR1.02               | V\$SP1F/SP1.01                                                     | V\$MAZF/MAZR.01                                                 | V\$NRF1/NRF1.01                                                                                                           | V\$NRF1/NRF1.01                                                                                                              | V\$ZBPF/ZNF219.01                    | V\$ZBPF/ZBP89.01                        | V\$ZBPF/ZBP89.01                        | V\$EGRF/EGR1.02               | V\$ZBPF/ZF9.01                                                            | V\$SP1F/SP1.01                                                     | V\$EGRF/EGR1.02               | VěEVI E/VVI E 01 |

|                                   |                                                                                                                        |      |             | j |       |       |                                         |
|-----------------------------------|------------------------------------------------------------------------------------------------------------------------|------|-------------|---|-------|-------|-----------------------------------------|
| V\$EGRF/EGR1.02                   | EGR1, early growth response 1                                                                                          | 0.86 | 2508 - 2524 | ÷ | 1.000 | 0.887 | ggcgggggggggggggggggggggggggggggggggggg |
| V\$SP1F/SP1.01                    | Stimulating protein 1, ubiquitous zinc finger transcription factor                                                     | 0.88 | 2508 - 2522 | ÷ | 1.000 | 0.976 | ggcgGGGCgggcggg                         |
| V\$EGRF/WT1.01                    | Wilms Tumor Suppressor                                                                                                 | 0.92 | 2510 - 2526 | ÷ | 0.953 | 0.932 | cggggGGGGggggggg                        |
| V\$SP1F/SP1.01                    | Stimulating protein 1, ubiquitous zinc finger transcription factor                                                     | 0.88 | 2512 - 2526 | £ | 1.000 | 0.934 | gggcGGGCgggggggg                        |
| V\$EKLF/KKLF.01                   | kidney-enriched kruppel-like factor, KLF15                                                                             | 0.91 | 2514 - 2530 | £ | 1.000 | 0.921 | gcgggcGGGaggaaag                        |
| V\$MAZF/MAZ.01                    | Myc associated zinc finger protein (MAZ)                                                                               | 0.90 | 2514 - 2526 | £ | 0.866 | 0.904 | gcggGCGGggagg                           |
| V\$ETSF/PU1.01                    | [Pu.1 (Pu120) Ets-like transcription factor identified in lymphoid<br>B-cells                                          | 0.89 | 2517 - 2537 | ÷ | 1.000 | 0.901 | ggcggggggGGAAagggggggggg                |
| V\$MZF1/MZF1.01                   | Myeloid zinc finger protein MZF1                                                                                       | 0.99 | 2518 - 2526 | ÷ | 1.000 | 0.991 | gcGGGGagg                               |
| V\$MAZF/MAZ.01                    | Myc associated zinc finger protein (MAZ)                                                                               | 06.0 | 2519 - 2531 | ÷ | 1.000 | 0.910 | cgggGAGGaaagg                           |
| V\$ZBPF/ZNF219.01                 | Kruppel-like zinc finger protein 219                                                                                   | 0.91 | 2519 - 2541 | : | 1.000 | 0.937 | cccaccgCCCCctttcctccccg                 |
| V\$NFAT/NFAT.01                   | Nuclear factor of activated T-cells                                                                                    | 0.95 | 2522 - 2540 | £ | 1.000 | 0.970 | ggaGGAAaggggggggggggggggggggggggggggggg |
| V\$ZBPF/ZBP89.01                  | Zinc finger transcription factor ZBP-89                                                                                | 0.93 | 2522 - 2544 | - | 1.000 | 0.946 | dtococacogCCCCdtttoctoc                 |
| V\$EGRF/EGR1.02                   | EGR1, early growth response 1                                                                                          | 0.86 | 2524 - 2540 | ŧ | 1.000 | 0.865 | aggaaaggGGGCggtgg                       |
| V\$ZBPF/ZNF202.01                 | Transcriptional repressor, binds to elements found predominantly in genes that participate in lipid metabolism         | 0.73 | 2525 - 2547 | 3 | 1.000 | 0.775 | ceteteCCCAccgecccetttec                 |
| V\$GLIF/ZIC2.01                   | Zinc finger transcription factor, Zic family member 2 (odd-paired homolog, Drosophila)                                 | 0.89 | 2527 - 2541 | : | 1.000 | 0.937 | cccaccgCCCCcttt                         |
| V\$RREB/RREB1.01                  | Ras-responsive element binding protein 1                                                                               | 0.80 | 2528 - 2542 | : | 1.000 | 0.820 | cCCCAccgcccctt                          |
| V\$SP1F/SP1.01                    | Stimulating protein 1, ubiquitous zinc finger transcription factor                                                     | 0.88 | 2528 - 2542 | ÷ | 1.000 | 0.911 | aaggGGGCggtgggg                         |
| V\$EKLF/KKLF.01                   | kidney-enriched kruppel-like factor, KLF15                                                                             | 0.91 | 2533 - 2549 | £ | 1.000 | 0.958 | ggcggtGGGGagagggc                       |
| V\$SREB/SREBP.02                  | Sterol regulatory element binding protein                                                                              | 0.80 | 2534 - 2548 | : | 0.750 | 0.838 | ccTCTCcccaccgc                          |
| V\$MZF1/MZF1.01                   | Myeloid zinc finger protein MZF1                                                                                       | 0.99 | 2537 - 2545 | £ | 1.000 | 1.000 | gtGGGGaga                               |
| V\$BNCF/BNC.01                    | Basonuclin, cooperates with USF1 in rDNA PolI transcription)                                                           | 0.85 | 2545 - 2563 | ÷ | 1.000 | 0.887 | agggccgcTGTCccgag                       |
| V\$CDEF/CDE.01                    | Cell cycle-dependent element, CDF-1 binding site (CDE/CHR tandem<br>elements regulate cell cycle dependent repression) | 0.87 | 2546 - 2558 | + | 1.000 | 0.886 | gggcCGCGctgtc                           |
| 24 matches found in this sequence | ů                                                                                                                      |      |             |   |       |       |                                         |
|                                   |                                                                                                                        |      |             |   |       |       |                                         |
| -                                 |                                                                                                                        |      |             |   |       |       | 2565                                    |
| _                                 |                                                                                                                        |      |             |   |       |       | 2020                                    |
|                                   |                                                                                                                        | 1    |             |   |       |       |                                         |
| 100 bp                            |                                                                                                                        |      |             |   |       |       |                                         |

Table A.4TranscriptionFactorResponseElementsinthePlnPromoterSequenceThetablebelowrepresentsalistofpotentialtranscriptionfactorresponseelementsinthehumanandmousePlnpromoterregions.ThelistwascompiledbycomparingtheMatInspectordataandresearchingsignalingpathwaysrelevanttoprostatecancertumorgrowthandmetastasis.andmetastasis.andandandandandandandandandandandandandandandandandandandandandandandandandandandandandandandandandandandandandandandandandandandandandandandandandandandandandandandandandandandandandandandandandandandandandandandandandandandandandandandandandandandandandandandandandandandandandandandandandandand<td

| Transcription Factor | Iozzo Promoter       | Iozzo Promoter        | Human Promoter      | Mouse Promoter                         |
|----------------------|----------------------|-----------------------|---------------------|----------------------------------------|
|                      | (counting)           | (MatInspector)        | from Ensembl        | from Ensembl                           |
|                      | Start = +1, numbers  | (-2565 = 1)           | (-2565 = 1)         | (-2566 = 1)                            |
|                      | are all negative     |                       |                     |                                        |
| NF-CTF1              | 2527 - 2512 (AP2/NF- | 38 - 58 (-)           | 55 – 75 (-)         | 1460 - 1480 (-)                        |
|                      | CTF1)                | 1655 - 1675 (+)       | 1665 - 1685 (+)     |                                        |
|                      | 1947 - 1935          | 2329 - 2349 (-)       | 2328 - 2348 (-)     |                                        |
| NFkappaB             | 2469 - 2460          | 95 - 107 (+)          | 112 – 124 (+) (c-   | 99 - 111 (+)                           |
|                      |                      | 137 - 149(+)          | Jun/ATF2)           | 339 - 351(+)                           |
|                      |                      | 138 - 150 (-)         | 154 - 166 (+)       |                                        |
|                      |                      |                       | 155 – 167 (-)       |                                        |
| GATA-1               | 2392 - 2387          | 170 - 182 (-)         | 187 – 199 (-)       | 445 – 457 (+) (Lmo2,                   |
|                      | 2240 - 2235          | 321 - 333 (-)         | 338 - 350 (-)       | GATA <sup>1</sup> / <sub>2</sub> site) |
|                      | 2109 - 2104          | 504 - 516 (-)         | 471 - 483 (-)       | 479 - 491 (+)                          |
|                      | 2058 - 2053          | 561 - 573 (-)         | 521 - 533 (-)       | 1111 - 1123 (-)                        |
|                      | 2000 - 1995          | 733 – 745 (+)         | 578 - 590 (-)       | 1635 - 1647 (-)                        |
|                      | 1840 - 1835          | 743 – 755 (-)         | 750 - 762 (+)       | ()                                     |
|                      | 1830 - 1825          | 835 - 847 (-)         | 760 - 772 (-)       |                                        |
|                      | 1727 – 1722          | 1004 - 1016 (-)       | 852 - 864 (-)       |                                        |
|                      | 1558 - 1545 (GATA-   | 1712 – 1724 (-)       | 1022 - 1034 (-)     |                                        |
|                      | 1/CEBP)              | (Lmo2, GATA 1/2 site) |                     |                                        |
| AP-2                 | 2527 - 2512 (AP2/NF- | 1642 – 1656 (-) (AP-  | 1652 - 1666 (-)(AP- | 1352 - 1366 (+) (AP-                   |
|                      | CTF1)                | 2α)                   | 2α)                 | 2)                                     |
|                      | 2375 - 2368          | 1690 – 1704 (+) (AP-  | 1700 - 1714 (+)     | 1352 – 1366 (-)(AP-                    |
|                      | 1701 - 1694          | 2)                    | 2432 - 2446 (-)(AP- | 2α)                                    |
|                      | 1489 – 1476 (AP2, H- | 2431 – 2445 (-) (AP-  | 2α)                 | 2407 - 2421 (+)(AP-                    |
|                      | APF-1)               | 2α)                   | ,                   | 2α)                                    |
|                      | 1362 - 1355          |                       |                     | 2483 - 2497 (+)(AP-                    |
|                      | 1036 - 1029          |                       |                     | 2α)                                    |
|                      | 317 - 310            |                       |                     |                                        |
|                      | 303 - 293 (2 AP-2)   |                       |                     |                                        |
|                      | 271 - 263 (AP-2/Sp1) |                       |                     |                                        |
|                      | 259 - 252            |                       |                     |                                        |
|                      | 157-150              |                       |                     |                                        |
|                      | 132 - 122 (AP-2/Sp1) |                       |                     |                                        |
|                      | 73 - 66              |                       |                     |                                        |
| Glucocorticoid       | 1901 - 1896          | 2043 - 2061 (+)       |                     | 829 - 847 (-)                          |
| Receptor             | 512 - 507            |                       | Not present—        | 1486 - 1504 (-)                        |
|                      |                      |                       | -                   |                                        |
| c-Ets-1              | 1802 - 1795          | 965 - 985 (+)         | 983 - 1003 (+)      | 1239 - 1259 (+)                        |
|                      |                      | 2205 - 2225 (+)       | 2205 - 2225 (+)     | 1355 – 1375 (-)                        |
|                      | 1688 - 1683          | 873 - 887 (-)         | 890 - 904 (-)       | 2334 - 2348 (+)                        |
| Sp1                  | 1125 – 1117          | 2293 - 2307 (-)       | 2293 - 2307 (-)     | 2355 - 2369 (+)                        |
|                      | 1071 - 1066          | 2366 - 2380 (+)       | 2366 - 2380 (+)     | 2413 - 2427 (+)                        |

| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | r                  | 0.40 0.10            | a. 12.5 a. 1.12.5 :                                   | <b>0</b> 10 6 <b>0</b> 1 <b>0</b> 1 <b>0</b> 1 | <b>2</b> 500              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------------|-------------------------------------------------------|------------------------------------------------|---------------------------|
| 917 - 090<br>968 - 600<br>271 - 253 (AP 270)<br>132 - 277<br>197 - 189<br>132 - 122 (AP 278)<br>135 - 124 (AP 270)<br>135 - 124 (AP 270)<br>136 - 122 (AP 278)<br>137 - 121 (AP 270)<br>138 - 120 (AP 270)<br>139 - 120 (AP 270)<br>139 - 120 (AP 270)<br>139 - 120 (AP 270)                                                                   |                    | 948 - 940            | 2435 - 2449 (+)                                       | 2436 - 2450 (+)                                | 2509 - 2523 (+)           |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    | 917 - 909            | 2446 - 2460 (+)                                       | 2447 - 2461 (+)                                | 2528 - 2542 (+)           |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    | 608 600              | 2485 2400 ()                                          | 2492 $2407$ (1)                                | ===== (*)                 |
| $ \frac{271 - 263 (AP-23p1)}{2258 - 321 (+)} \frac{2503 - 2517 (+)}{2582 - 2524 (+)} \frac{2508 - 2521 (+)}{2582 - 2554 (+)} \frac{2582 - 2554 (+)}{2528 - 2552 (+)} \frac{2582 - 2554 (+)}{2528 - 2552 (+)} \frac{2582 - 2554 (+)}{2528 - 2564 (+)} \frac{138 - 150 (+)}{255 - 267 (+)} \frac{138 - 150 (+)}{2184 - 2204 (+)} \frac{247 - 248 (+)}{2184 - 2204 (+)} \frac{257 - 272 (+)}{2184 - 2204 (+)} \frac{247 - 248 (+)}{247 - 248 (+)} \frac{245 - 247 (+)}{2489 - 203 (+)} \frac{247 - 248 (+)}{247 - 248 (+)} \frac{245 - 2467 (+)}{2385 - 187 (+)} \frac{245 - 2467 (+)}{2385 - 2415 (+)} \frac{245 - 2467 (+)}{2385 - 283 (+)} \frac{245 - 2467 (+)}{2395 - 2415 (+)} \frac{245 - 2467 (+)}{2385 - 283 (+)} \frac{245 - 248 (+)}{238 - 230 (+)} \frac{245 - 248 (+)}{238 - 238 (+)} \frac{245 - 228 (+)}{238 - 238 (+)} 24$ |                    | 698 - 690            | 2485 - 2499 (-)                                       | 2483 - 2497(+)                                 |                           |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    | 271 – 263 (AP-2/Sp1) | 2503 - 2517 (+)                                       | 2503 - 2517 (+)                                |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    | 232 - 227            | 2508 - 2522 (+)                                       | 2508 - 2522(+)                                 |                           |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    | 107 190              | 2500 2522 (1)                                         | 2500 - 2522 (1)                                |                           |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    | 19/ - 189            | 2528 - 2542 (+)                                       | 2512 - 2526 (+)                                |                           |
| 25-29         100 $$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    | 132 – 122 (AP-2/Sp1) |                                                       | 2528 - 2542 (+)                                |                           |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    | 35-29                |                                                       |                                                |                           |
| CLEDP         1338 - 1535         C/EBPa)         C/EBPa a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CERR               | 1550 1545            | 653 – 665 (+) (CHOP,                                  | 670 - 682 (+)(CHOP,                            | 2024 2049 (1)             |
| TEF-1         811 - 803         1801 - 1813 (·)         1310 - 1326 (·)         135 - 150 (·)           Pu.1         763 - 758         487 - 507 (·)         504 - 524 (·)         614 - 634 (·)           763 - 758         1797 - 1817 (·)         2062 - 2082 (·)         614 - 634 (·)           763 - 758         227 - 727 (·) (·c)         1184 - 2204 (·)         614 - 634 (·)           763 - 758         52 - 727 (·) (·c)         1197 - 1087 (·)         69 - 89 (·) (·c)         511 - 531 (·) (/CREB)           729 - 722         451 - 443         52 - 727 (·) (·c)         1197 - 171 (·)         69 - 89 (·) (·c)         511 - 531 (·) (/CREB)           71 - 722         451 - 443         1289 - 1849 (·)         (788 - 788 (·))         1580 - 1600 (·)         2395 - 2415 (·)           71 - 71 (·)         (Tax/CREB)         1850 - 1876 (·)         1580 - 1600 (·)         2395 - 2415 (·)           GC Box         99 - 81 (2)         2466 - 2480 (·)         2467 - 2481 (·)         2453 - 2467 (·)           128 - 1809 (·)         (Tax/CREB)         1380 - 1320 (·)         1304 - 1320 (·)         1304 - 1320 (·)           GC Box         99 - 81 (2)         2466 - 2480 (·)         2467 - 2481 (·)         2453 - 2467 (·)           1304 - 1320 (·)         1235 - 1357 (·)         1368 - 1392 (·)         849 - 69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | СЕВР               | 1558 - 1545          | C/EBPa)                                               | C/EBPa)                                        | 2034 - 2048 (+)           |
| TEF-1         811 - 803         1801 - 1813 (-)         1310 - 1326 (-)         255 - 567 (-)<br>1651 - 1663 (-)           Pu. 1         763 - 758         487 - 507 (-)<br>1797 - 1817 (+)<br>2184 - 2204 (+)         504 - 524 (-)<br>2059 - 2079 (+)<br>2184 - 2204 (+)         (14 - 634 (-)<br>1729 - 1749 (+)           ATF/CREB<br>Tax/CREB         763 - 758         52 - 72 (- (-)<br>337 - 377 (+) (+ATF2)<br>357 - 377 (+) (+ATF2)<br>357 - 377 (+) (+ATF2)<br>1829 - 1849 (+)         69 - 89 (-) (c-<br>Jun/ATF2)<br>758 - 788 (-)<br>1850 - 1876 (-)         511 - 531 (+) (CREB<br>only)<br>871 - 891 (-)           GC Box         119 - 106<br>90 - 81 (2)<br>62 - 49         2466 - 2480 (+)<br>2471 - 2485 (+)         2467 - 2481 (+)<br>2477 - 2486 (+)         2453 - 2467 (+)<br>2495 - 2415 (+)           TCF/LEF-1        Not identified         1226 - 1260 (-)<br>1305 - 1321 (+)         1044 - 1060 (+)<br>1318 - 1334 (+)         2483 - 444 (-)<br>607 - 623 (-)<br>803 - 827 (-)           Smad3        Not identified         1238 - 1246 (+)<br>1237 - 1387 (+)         1264 - 1272 (+)<br>2378 - 2386 (-)         1106 - 1114 (+)<br>106 - 1114 (+)<br>1123 - 1136 (+)           REB1        Not identified         1819 - 1835 (-)         1828 - 1844 (-)<br>2474 - 2428 (+)         2246 - 2278 (-)<br>2277 - 236 (-)           GF11        Not identified         1819 - 1835 (-)         1828 - 1844 (+)<br>2474 - 2256 (-)         2254 - 2278 (-)<br>2277 - 236 (-)           GF11        Not identified         1819 - 1835 (-)         1828 - 1844 (+)<br>2474 - 2256 (-) <t< th=""><th></th><th></th><th></th><th></th><th>138 - 150 (-)</th></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    |                      |                                                       |                                                | 138 - 150 (-)             |
| TEF-1         S11 = 003         1010 = 1213 (·)         1310 = 1226 (·)         1531 = 1263 (·)           Pu. 1         763 - 758         487 - 507 (·)         504 - 524 (·)         1651 - 1663 (·)           763 - 758         (Pul20)         2184 - 2204 (·)         2184 - 2204 (·)         1729 - 1749 (·)           ATF/CREB         729 - 722         751 - 771 (·)         (Pul20)         53 - 73 (·) (/ATF2)         53 - 73 (·) (/CE           357 - 737 (·) (ATF2)         357 - 377 (·) (/ATF2)         53 - 73 (·) (/ATF2)         57 - 758 (·)         511 - 531 (·) (/CEB           710 - 710 (·)         (Pul20)         257 - 727 (·) (/CE         100 - 1683 (·)         57 - 758 (·)         511 - 891 (·)           352 - 71 (·) (CF         100 - 168 (·)         257 - 727 (·) (/CF         100 - 168 (·)         57 - 758 (·)         511 - 891 (·)           352 - 71 (·) (TEKEB)         1839 - 1869 (·)         (CREB)         1856 - 1876 (·)         1580 - 1600 (·)           1832 - 1852 (·) (ATF)         1849 - 1869 (·)         2447 - 2481 (·)         2453 - 2467 (·)         2453 - 2467 (·)           GC Box         99 - 81 (2)         2467 - 2481 (·)         2453 - 2467 (·)         2450 - 2363 (·)         1304 - 1320 (·)           Madrostane        Not identified         1236 - 1260 (·)         1368 - 1392 (·)         81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TEE 1              | 011 002              | 1901 1912 ()                                          | 1210 1226 (1)                                  | 255 267 ()                |
| Pn. 1         763 - 758         487 - 507 (·)<br>(Pu 120)         504 - 524 (·)<br>2062 - 2082 (+)<br>2018 - 2204 (+)         614 - 634 (·)<br>(1729 - 1749 (+)           ATF/CREB         763 - 758         197 - 1817 (+)<br>(Pu 120)         2018 - 2204 (+)<br>2184 - 2204 (+)         614 - 634 (·)<br>(Pu 120)           ATF/CREB         729 - 722<br>451 - 443         52 - 72 (·) (c-<br>Jum/ATF2)<br>357 - 377 (+) (ATF2)<br>357 - 377 (+) (ATF2)<br>357 - 377 (+) (ATF2)<br>1832 - 1852 (+) (ATF2)<br>1832 - 1852 (+) (ATF2)<br>1835 - 1876 (-)         511 - 531 (+) (CREB<br>only)<br>871 - 891 (+)<br>1856 - 1876 (-)           GC Box         119 - 106<br>99 - 81 (2)<br>62 - 49         1026 - 1042 (+)<br>(Tax/CREB)         2467 - 2481 (+)<br>2471 - 2485 (+)         2467 - 2481 (+)<br>2472 - 2486 (+)         2453 - 2467 (+)<br>2489 - 2503 (+)           TCF/LEF-1         -Not identified         1226 - 1260 (-)<br>1357 - 1387 (+)         1348 - 1334 (+)         803 - 827 (-)           Smad3         -Not identified         1236 - 1260 (-)<br>1357 - 1387 (+)         1368 - 1392 (+)         803 - 827 (-)           Smad3         -Not identified         1236 - 1260 (-)<br>1357 - 1387 (+)         1368 - 1392 (+)         803 - 827 (-)           GC Kox         -Not identified         1236 - 1260 (-)<br>1357 - 1387 (+)         1368 - 1392 (+)         803 - 827 (-)           Ge Ha         -Not identified         1237 - 1387 (+)         2378 - 2386 (-)         2378 - 2386 (-)         2378 - 2386 (-)           GFI1         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1EF-1              | 811 - 803            | 1801 - 1813(-)                                        | 1310 - 1320(+)                                 | 233 = 207 (-)             |
| Pu. 1         763 - 758         487 - 507 (-)<br>1797 - 1817 (+)<br>(Pul 20)         504 - 524 (-)<br>2184 - 2204 (+)<br>2817 - 2537 (+)         614 - 634 (-)<br>1729 - 1749 (+)           ATF/CREB         759 - 722<br>451 - 443         52 - 72 (-) (-<br>Jun ATF2)<br>357 - 377 (+) (ATF)<br>751 - 771 (-)<br>Tax/CREB         69 - 89 (-) (c-<br>Jun ATF2)<br>751 - 771 (-)<br>Tax/CREB         511 - 531 (+) (CREB<br>only)           GC Box         119 - 106<br>9 - 81 (2)<br>(-2 - 49)         2466 - 2480 (+)<br>2471 - 2485 (+)         2467 - 2481 (+)<br>2472 - 2486 (+)         2453 - 2467 (+)<br>2473 - 2480 (+)           TCF/LEF-1        Not identified         1236 - 1260 (-)<br>(Tax/CREB)         1044 - 1060 (+)<br>(1305 - 1321 (+)         428 - 444 (-)<br>(307 - 623 (-)<br>810 - 826 (-)<br>1304 - 1320 (+)           Smad3        Not identified         1238 - 126 (+)<br>(2378 - 2386 (-)         1368 - 1392 (+)<br>(2378 - 2386 (-)         803 - 827 (-)<br>(2378 - 2386 (-)           File        Not identified         1238 - 126 (+)<br>(2378 - 2386 (-)         1264 - 1727 (+)<br>(1304 - 11320 (+))         1066 - 1114 (+)<br>(1304 - 1320 (+))           File        Not identified         1238 - 126 (+)<br>(2378 - 2386 (-)         1264 - 1272 (+)<br>(2378 - 2386 (-)         1303 - 827 (-)<br>(2377 - 2285 (-)           File        Not identified         1238 - 126 (+)<br>(2378 - 2386 (-)         1264 - 1272 (+)<br>(2378 - 2386 (-)         1303 - 131 (+)           File        Not identified         1291 - 1335 (-)         1288 - 1844 (+)         2234 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |                      |                                                       |                                                | 1651 – 1663 (-)           |
| Pu. 1         763 - 758         1797 - 1817 (+)<br>(Pu120)<br>2184 - 2204 (+)<br>2184 - 2204 (+)<br>2185 - 1876 (-)         614 - 634 (-)<br>1729 - 1749 (+)<br>2172 - 1749 (+)           ATF/CREB<br>Tax/CREB         729 - 722<br>451 - 443         729 - 722<br>451 - 443         729 - 722<br>(Tax/CREB)<br>1832 - 1852 (+) (ATF)<br>1832 - 1852 (+) (ATF)<br>1835 - 1876 (-)         511 - 531 (+) (CEB<br>only)<br>871 - 891 (+)<br>1856 - 1876 (-)           GC Box         119 - 106<br>99 - 81 (2)<br>62 - 49         2467 - 2481 (+)<br>2471 - 2485 (+)         2467 - 2481 (+)<br>2471 - 2485 (+)         2453 - 2467 (+)<br>2489 - 2503 (+)           TCF/LEF-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    |                      | 487 - 507 (-)                                         | 504 - 524 (-)                                  |                           |
| Pn. 1         763 – 758         (Pu 120)<br>(Pu 120)         2184 – 2204 (+)<br>(2517 – 2337 (+)<br>(2517 – 2337 (+)         614 – 634 (+)<br>(1729 – 1749 (+)           ATF/CREB         S2 – 72 (-) (c-<br>Jun/ATF2)<br>33 – 737 (+) (ATF2)<br>751 – 711 (-)         and<br>(Fax/CREB)         511 – 531 (+) (CREB<br>only)           729 – 722<br>451 – 443         S2 – 72 (-) (c-<br>Jun/ATF2)         and<br>(Fax/CREB)         for any (-) (c-<br>Jun/ATF2)         for any (-) (c-<br>Jun/ATF2)         for any (-) (c-<br>Jun/ATF2)           768 – 788 (-)<br>1829 – 1849 (+)<br>(CREB)         1832 – 1852 (+) (ATF)<br>1832 – 1852 (+) (ATF)         for any (-) (c-<br>Jun/ATF2)         for any (-) (c-<br>Jun/ATF2)           GC Box         119 – 106<br>9 – 810 (-)<br>(fax/CREB)         2466 – 2480 (+)<br>2471 – 2485 (+)         2467 – 2481 (+)<br>2472 – 2486 (+)         2453 – 2467 (+)<br>2489 – 2503 (+)           TCF/LEF-1         -Not identified<br>-Not identified<br>Not i                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |                      | 1797 - 1817 (+)                                       | 2062 - 2082(+)                                 |                           |
| Pd. 1 $105 - 135$ $(P1120)$ $1144 - 2244$ (*) $1729 - 1749$ (*)         ATF/CREB $52 - 72 \cdot (1) (c)$ $(P1120)$ $2517 - 2537 (*)$ $(P1120)$ ATF/CREB $729 - 722$ $53 - 737 (*) (ATF)$ $69 - 89 (\cdot) (c - 100)$ $511 - 531 (*) (CREB)$ $337 - 377 (*) (ATF)$ $751 - 771 (\cdot)$ $(Tax/CREB)$ $69 - 89 (\cdot) (c - 100)$ $871 - 891 (*)$ $Tx/CREB$ $119 - 106$ $2466 - 2480 (*)$ $2467 - 2481 (*)$ $2453 - 2467 (*)$ $GC$ Box $99 - 81 (2)$ $2466 - 2480 (*)$ $2477 - 2486 (*)$ $2489 - 2503 (*)$ $GC - 1042 (*)$ $1026 - 1042 (*)$ $1044 - 1060 (*)$ $810 - 826 (\cdot)$ $810 - 826 (\cdot)$ $TCF/LEF - 1$ $-Not$ identified $1236 - 1260 (\cdot)$ $1368 - 1392 (*)$ $803 - 827 (\cdot)$ $Smad3$ $-Not$ identified $1236 - 1260 (\cdot)$ $1368 - 1392 (*)$ $803 - 827 (\cdot)$ $Smad3$ $-Not$ identified $1238 - 1238 (\cdot)$ $277 - 2386 (\cdot)$ $1264 - 1272 (*)$ $REB1$ $-Not$ identified $1819 - 1835 (\cdot)$ $1326 - 1370 (\cdot)$ $1326 - 1370 (\cdot)$ $RCF/LEF - 1$ $-Not$ identified $1237 - 2386 (\cdot)$ $2277 -$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | D 1                | 762 759              | $(\mathbf{D}_{11}, \mathbf{D}_{12}, \mathbf{D}_{12})$ | $2002 \ 2002 \ (1)$                            | 614 - 634 (-)             |
| ATF/CREB         729 – 722         729 – 722         729 – 722         729 – 722         729 – 722         729 – 722         729 – 722         729 – 722         729 – 722         729 – 722         729 – 722         729 – 722         729 – 722         729 – 722         729 – 722         729 – 722         729 – 722         729 – 722         729 – 722         729 – 722         729 – 722         729 – 722         729 – 722         729 – 722         729 – 722         729 – 722         729 – 722         729 – 722         729 – 722         729 – 722         729 – 722         729 – 722         729 – 722         729 – 722         729 – 722         729 – 722         729 – 722         729 – 722         729 – 722         729 – 722         729 – 722         729 – 722         729 – 722         729 – 722         729 – 722         729 – 722         729 – 722         729 – 722         729 – 722         729 – 722         720 – 722         720 – 722         720 – 722         720 – 722         720 – 722         720 – 722         720 – 722         720 – 722         720 – 722         720 – 722         720 – 722         720 – 722         720 – 722         720 – 722         720 – 722         720 – 722         720 – 722         720 – 722         720 – 722         720 – 722         720 – 722         720 – 722         720 – 722         720 – 722 <th< th=""><th>Pu. 1</th><th>/03 - /38</th><th>(Pu120)</th><th>2184 - 2204 (+)</th><th>1729 - 1749 (+)</th></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Pu. 1              | /03 - /38            | (Pu120)                                               | 2184 - 2204 (+)                                | 1729 - 1749 (+)           |
| Image: construction of the construction of                                                                                                                                                                                                                                                                               |                    |                      | 2059 – 2079 (+)                                       | 2517 – 2537 (+)                                |                           |
| ATF/CREB         729 - 722 $52 - 72 (\cdot) (c-)$<br>Jun/ATT2) $69 - 89 (\cdot) (c-)$<br>Jun/ATT2) $511 - 531 (+) (CREB only)$ ATF/CREB $729 - 722$ $451 - 443$ $69 - 89 (\cdot) (c-)$<br>Trop - 771 (-) $511 - 531 (+) (CREB only)$ BC $857 - 377 (+) (ATF)$ $768 - 788 (\cdot)$ $1850 - 1600 (\cdot)$ IS20 - 1829 (+) (CREB) $1829 - 1849 (+)$ $768 - 788 (\cdot)$ $1580 - 1600 (\cdot)$ GC Box $119 - 106$ $99 - 81 (2)$ $2466 - 2480 (+)$ $2467 - 2481 (+)$ $2489 - 2503 (+)$ GC FLEF-1        Not identified- $1026 - 1042 (+)$ $1044 - 1060 (+)$ $810 - 826 (-)$ mdrostane        Not identified- $1238 - 1246 (+)$ $1044 - 1060 (+)$ $810 - 826 (-)$ Smad3        Not identified- $1236 - 1260 (-)$ $1388 - 1392 (+)$ $803 - 827 (-)$ Smad3        Not identified- $1238 - 1286 (+)$ $2277 - 2285 (-)$ $78 - 98 (-)$ Stell        Not identified- $1829 - 1837 (-)$ $1828 - 1844 (-)$ $106 - 1114 (+)$ Smad3        Not identified- $2378 - 238 (-)$ $2277 - 2285 (-)$ $78 - 98 (-)$ Stell                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |                      | 2184 - 2204 (+)                                       | (Pu120)                                        |                           |
| ATF/CREB<br>Tax/CREB         729 - 722<br>451 - 443         Jun/ATE2<br>53 - 737 (+) (ATF2)<br>(Tax/CREB)         69 - 89 (-) (c-<br>Jun/ATE2)<br>(Tax/CREB)         511 - 531 (+) (CREB)<br>only)           GC Box         119 - 106<br>99 - 81 (2)<br>62 - 49         2465 - 2480 (+)<br>(Tax/CREB)         2467 - 2481 (+)<br>2472 - 2486 (+)         2453 - 2467 (+)<br>2489 - 2503 (+)           TCF/LEF-1         119 - 106<br>99 - 81 (2)<br>62 - 49         2466 - 2480 (+)<br>2471 - 2485 (+)         2467 - 2481 (+)<br>2472 - 2486 (+)         2453 - 2467 (+)<br>2489 - 2503 (+)           TCF/LEF-1        Not identified         1236 - 1042 (+)<br>1305 - 1321 (+)         1044 - 1060 (+)<br>1318 - 1334 (+)         428 - 444 (+)<br>607 - 623 (-)<br>810 - 826 (-)<br>1304 - 1320 (+)           Smad3        Not identified         1236 - 1260 (-)<br>1357 - 1387 (+)         1368 - 1392 (+)<br>2378 - 2386 (-)         803 - 827 (-)           Elk-1        Not identified         1236 - 1260 (-)<br>1377 - 1387 (+)         1368 - 1392 (+)<br>2378 - 2386 (-)         1006 - 1114 (+)<br>1762 - 1770 (-)<br>1104 - 1132 (+)           FIREB1        Not identified         1237 - 2386 (-)         277 - 2285 (-)<br>2377 - 2285 (-)         78 - 98 (-)<br>193 - 213 (+)<br>1125 - 1145 (+)<br>1125 - 1145 (+)<br>1125 - 1145 (+)           GF11        Not identified         1819 - 1835 (-)         1828 - 1844 (-)<br>2364 - 2378 (+)<br>2324                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    |                      | 52 = 72 (-) (c-                                       |                                                |                           |
| ATF/CREB<br>Tax/CREB $729 - 722$<br>$451 - 443357 - 372 + (1/(ATF2))357 - 377 + (1/(ATF2))751 - 771 (-)(Tax/CREB)1829 - 1849 (+)(CREB)1839 - 1869 (-)(Tax/CREB)69 - 89 (.) (c-)190 - 106 (-)1856 - 1876 (-)511 - 531 (+) (CREB)871 - 891 (+)1580 - 1600 (-)2395 - 2415 (+)GC Box119 - 10699 - 81 (2)62 - 492466 - 2480 (+)2471 - 2485 (+)2467 - 2481 (+)2472 - 2486 (+)2472 - 2486 (+)2483 - 2467 (+)2489 - 2503 (+)TCF/LEF-11026 - 1042 (+)-Not identified1026 - 1042 (+)1305 - 1321 (+)1044 - 1060 (+)1318 - 1334 (+)803 - 827 (-)1304 - 1320 (+)Smad3Not identified1238 - 1246 (+)2378 - 2386 (-)1264 - 1272 (+)2378 - 2386 (-)1106 - 114 (+)1762 - 1770 (-)2378 - 2386 (-)78 - 98 (-)1303 - 1321 (+)RREB1Not identified1819 - 1835 (-)2364 - 2378 (-)886 - 886 (-)78 - 98 (-)1225 - 1145 (-)1225 - 1145 (-)1226 + 2378 (-)2277 - 2285 (-)2264 - 2278 (-)2277 - 2285 (-)GFI1Not identified1181 - 1335 (-)1828 - 1844 (-)2524 - 2540 (+)2277 - 2285 (-)GFI1Not identified1181 - 1035 (-)1320 - 1125 (-)1304 - 1318 (-)1304 - 1318 (-)GFI1Not identified1181 - 1035 (-)1328 - 1844 (-)2524 - 258 (-)2576 - 2277 - 2285 (-)2576 - 2277 - 2285 (-)2576 - 2277 - 2285 (-)2576 - 2277 - 2285 (-)2576 - 2277 - 2285 (-)2576 - 2277 - 2285 (-)2576 - 2278 - 2542 (-)2576 - 2278 - 2542 (-)2576 - 2576 (-)25$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |                      | 52 = 72 (-) (C-                                       |                                                |                           |
| ATF/CREB<br>Tax/CREB         729 - 722<br>451 - 443 $357 - 737 + (1/417F) (1/$                                                                                                                                                                                                                                                                                                 |                    |                      | Jun/ATF2)                                             |                                                |                           |
| ATF/CREB<br>Tax/CREB         729 - 722<br>(451 - 443) $357 - 377 + (+) + (ATF) (51 - 771 (-)) (1ax/CREB) (1ax/CREB) (1829 - 1849 (+)) (2-100 (-)) (1ax/CREB) (1832 - 1852 (+) (ATF) (1856 - 1876 (-)) (1856 - 1876 (-)) (1856 - 1876 (-)) (1850 - 1600 (-)) (1382 - 1852 (+) (ATF) (1840 - 1869 (-)) (1ax/CREB) (1640 - (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (1640 (-)) (16$                                                                                                                                                                                                                                                                                                 |                    | 1                    | <del>53 – 73 (+) (ATF2)</del>                         | 1                                              |                           |
| ATF/CREB<br>Tax/CREB729 - 722<br>451 - 443 $751 - 771 (-)$<br>(Tax/CREB)<br>(Rax/CREB)<br>(Rax/CREB)<br>(Rax/CREB)<br>(Rax/CREB)<br>(Rax/CREB) $69 - 89 (-) (c-)$<br>(Rax/CREB)<br>(Rax/CREB)<br>(Rax/CREB) $69 - 89 (-) (c-)$<br>(Rax/CREB)<br>(Rax/CREB)<br>(Rax/CREB) $69 - 89 (-) (c-)$<br>(Rax/CREB)<br>(Rax/CREB) $69 - 89 (-) (c-)$<br>(Rax/CREB) $69 - 89 (-) (2-)$<br>(Rax/CREB) $60 (-)$<br>(2467 - 2481 (+)<br>(2467 - 2486 (+))<br>(2467 - 2486 (+))<br>(2467 - 2486 (+))<br>(2467 - 2486 (+))<br>(1304 - 1320 (+)) $60 (-)$<br>(2467 - 248 (+))<br>(246 - 1324 (+))<br>(1304 - 1320 (+)) $60 (-)$<br>(2378 - 2386 (-))<br>(2378 - 2386 (-))<br>(2378 - 2386 (-)) $60 (-)$<br>(2378 - 2386 (-))<br>(2378 - 2386 (-))<br>(2378 - 2386 (-)) $100 (-) 114 (+)$<br>(1320 - 1170 (-))<br>(2277 - 2285 (-))Elk-1Not identified $1819 - 1835 (-)$ $1828 - 1844 (-)$<br>(2364 - 2378 (-))<br>(2364 - 2378 (-))<br>(2364 - 2378 (-)) $138 - 1349 (-)$<br>(2364 - 2378 (-))<br>(2364 - 2378 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |                      | <del>357 – 377 (+) (ATF)</del>                        |                                                | 511 – 531 (+) (CREB       |
| ATF/CREB<br>Tax/CREB         729 – 722<br>451 – 443         (Tar/T1C)<br>(Tax/CREB)<br>1820 – 1849 (+)<br>(CREB)<br>1820 – 1849 (+)<br>(CREB)         Jun/ATE2)<br>768 – 788 (-)<br>1856 – 1876 (-)         Jun/ATE2<br>778 – 788 (-)<br>1856 – 1876 (-)         Jun/ATE2<br>2395 – 2415 (+)           GC Box         119 – 106<br>99 – 81 (2)<br>62 – 49         2466 – 2480 (+)<br>2471 – 2485 (+)         2467 – 2481 (+)<br>2472 – 2486 (+)         2453 – 2467 (+)<br>2489 – 2503 (+)           TCF/LEF-1        Not identified         1026 – 1042 (+)<br>1305 – 1321 (+)         1044 – 1060 (+)<br>1318 – 1334 (+)         803 – 827 (-)           Smad3        Not identified         1236 – 1260 (-)<br>1328 – 1246 (+)         1368 – 1392 (+)         803 – 827 (-)           Elk-1        Not identified         1236 – 1260 (-)<br>1328 – 1246 (+)         1264 – 1272 (+)         1106 – 1114 (+)           Smad3        Not identified         1238 – 1246 (+)<br>1237 – 1238 (-)         2378 – 2386 (-)         277 – 2285 (-)           Flk-1        Not identified         1819 – 1835 (-)         1828 – 1844 (-)         2264 – 22378 (-)           GF11        Not identified         1819 – 1835 (-)         1828 – 1844 (-)         2254 – 2540 (+)           -Not identified         1819 – 1835 (-)         1828 – 1844 (-)         2264 – 22378 (-)         2264 – 22378 (-)           -Not identified         1816 – 1200 (-)         1336 – 1312 (-)         1356 – 1350 (-)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    |                      | 751 - 771 ()                                          | 69 – 89 (-) (c-                                | only)                     |
| Tax/CREB       451 – 443       (1ax/CREB)<br>(2000)       (788 – 788 (·))<br>(2000)       768 – 788 (·)<br>(1850 – 1876 (·))       871 – 891 (·)<br>(1580 – 1600 (·)<br>2395 – 2415 (·))         GC Box       119 – 106<br>99 – 81 (2)<br>62 – 49       2466 – 2480 (·)<br>2471 – 2485 (·)       2467 – 2481 (·)<br>2472 – 2486 (·)       2453 – 2467 (·)<br>2472 – 2486 (·)         TCF/LEF-1       -Not identified       1026 – 1042 (·)<br>1305 – 1321 (·)       1044 – 1060 (·)<br>1318 – 1334 (·)       803 – 827 (·)<br>1304 – 1320 (·)         Smad3      Not identified       1236 – 1260 (·)<br>1237 – 1387 (·)       1368 – 1392 (·)<br>1318 – 1334 (·)       803 – 827 (·)<br>1304 – 1320 (·)         Elk-1      Not identified       1236 – 1260 (·)<br>1237 – 1387 (·)       1368 – 1392 (·)<br>137 – 1387 (·)       1106 – 1114 (·)<br>1304 – 1220 (·)         FREB1      Not identified       1238 – 1246 (·)<br>1237 – 1238 (·)       1264 – 1272 (·)<br>1762 – 1770 (·)<br>2378 – 2386 (·)       1106 – 1114 (·)<br>1307 – 137 (·)         RREB1      Not identified       1819 – 1835 (·)       1828 – 1844 (·)<br>2364 – 2378 (·)<br>2364                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ATF/CREB           | 729 - 722            | (T) (CDEE)                                            | Jun/ATF2)                                      | 071 001 (1)               |
| Nuccessor         For - For (CREB)<br>(CREB)         1829 - 1849 (+)<br>(CREB)         160 - 763 (+)<br>(1856 - 1876 (+))         1580 - 1600 (-)<br>2395 - 2415 (+)           GC Box         119 - 106<br>99 - 81 (2)<br>62 - 49         2466 - 2480 (+)<br>2471 - 2485 (+)         2467 - 2481 (+)<br>2472 - 2486 (+)         2453 - 2467 (+)<br>2489 - 2503 (+)           TCF/LEF-1        Not identified         1026 - 1042 (+)<br>1305 - 1321 (+)         1044 - 1060 (+)<br>1318 - 1334 (+)         828 - 444 (-)<br>607 - 623 (-)<br>810 - 826 (-)<br>1304 - 1320 (+)           Smad3        Not identified         1236 - 1260 (-)<br>1328 - 1246 (+)         1368 - 1392 (+)         803 - 827 (-)           EIk-1        Not identified         1236 - 1260 (-)<br>1328 - 1246 (+)         1368 - 1392 (+)         803 - 827 (-)           Smad3        Not identified         1236 - 1260 (-)<br>1328 - 1246 (+)         1264 - 1272 (+)<br>1762 - 1770 (-)<br>2378 - 2386 (-)         1106 - 1114 (+)<br>1762 - 1770 (-)<br>2378 - 2386 (-)         1106 - 1114 (+)<br>1762 - 1770 (-)<br>2378 - 2386 (-)           EIk-1        Not identified         1819 - 1835 (-)         1828 - 1844 (-)         2254 - 2540 (+)<br>1826 - 1846 (+)           CKrox        Not identified         1819 - 1835 (-)         1828 - 1844 (-)<br>2364 - 2378 (-)         2264 - 2278 (-)<br>2254 - 2550 (-)           GF11        Not identified         1186 - 1200 (-)<br>1398 - 1412 (-)         1304 - 1318 (-)<br>1398 - 1412 (-)         139 - 157 (+)<br>1398 - 157 (+)<br>1398 - 1412 (-)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Tax/CRFB           | 451 - 443            | (Tax/CREB)                                            | 768 - 788(-)                                   | 8/1-891 (+)               |
| Image: Constructive Androstane         (CREB)         (CRES)         (CRES)         (CRES)<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | I da/UNED          |                      | 1829 - 1849 (+)                                       | 105( 107( ()                                   | 1580 - 1600 (-)           |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |                      | (CREB)                                                | 1856 - 1876 (-)                                | 2395 - 2415 (+)           |
| Iss2 = 1832 (+) (AT) F<br>(Tax/CREB)         Iss2 = 1832 (+) (AT) F<br>(Tax/CREB)           GC Box         119 - 106<br>99 - 81 (2)<br>62 - 49         2466 - 2480 (+)<br>2471 - 2485 (+)         2467 - 2481 (+)<br>2472 - 2486 (+)         2453 - 2467 (+)<br>2489 - 2503 (+)           TCF/LEF-1        Not identified         1026 - 1042 (+)<br>1305 - 1321 (+)         1044 - 1060 (+)<br>1318 - 1334 (+)         2489 - 4246 (-)<br>607 - 623 (-)<br>810 - 826 (-)<br>1304 - 1320 (+)           Consitutive<br>Androstane        Not identified         1236 - 1260 (-)<br>1357 - 1327 (+)         1368 - 1392 (+)<br>1264 - 1272 (+)         803 - 827 (-)           Smad3        Not identified         1238 + 1246 (+)<br>1247 - 1255 (+)<br>2378 - 2386 (-)         1264 - 1272 (+)<br>1762 - 1770 (-)<br>2378 - 2386 (-)         1106 - 1114 (+)<br>1762 - 1770 (-)<br>2378 - 2386 (-)           Elk-1        Not identified         1819 - 1835 (-)         1828 - 1844 (-)         2524 - 2540 (+)           CKrox        Not identified         1819 - 1835 (-)         1828 - 1844 (-)         2524 - 2540 (+)           GFI1        Not identified         1819 - 1835 (-)         1828 - 1844 (-)         2524 - 2540 (+)           GFI1        Not identified         1186 - 1200 (-)<br>139 - 137 (-)         1304 - 1318 (-)         1569 - 1583 (+)           Madrogen Receptor        Not identified         1186 - 1200 (-)<br>139 - 137 (-)         1304 - 1318 (+)         139 - 157 (+)<br>139 - 157 (+)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |                      | (CRED)                                                |                                                | 2575 - 2415(1)            |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |                      | 1832 - 1852 (+) (A1F)                                 |                                                |                           |
| GC Box119 - 106<br>99 - 81 (2)<br>62 - 492466 - 2480 (+)<br>2471 - 2485 (+)2467 - 2481 (+)<br>2472 - 2486 (+)2453 - 2467 (+)<br>2489 - 2503 (+)TCF/LEF-1Not identified<br>1-Not identified1026 - 1042 (+)<br>1305 - 1321 (+)1044 - 1060 (+)<br>1318 - 1334 (+)428 - 444 (-)<br>607 - 623 (-)<br>810 - 826 (-)<br>1304 - 1320 (+)Consitutive<br>AndrostaneNot identified1236 - 1260 (-)<br>1327 - 1387 (+)1368 - 1392 (+)803 - 827 (-)Smad3Not identified1236 - 1260 (-)<br>1327 - 1387 (+)1368 - 1392 (+)803 - 827 (-)Elk-1Not identified1238 - 1246 (+)<br>1247 - 1255 (+)<br>2378 - 2386 (-)2207 - 2285 (-)<br>2277 - 2285 (-)2277 - 2286 (-)<br>2277 - 2285 (-)Elk-1Not identified1819 - 1835 (-)1828 - 1844 (-)2524 - 2540 (+)<br>2473 - 2487 (-)2364 - 2378 (-)<br>2364 - 2378 (-)2364 - 2378 (-)<br>2364 - 2378 (-)GFI1Not identified1186 - 1200 (-)<br>1291 - 1305 (-)1204 - 1318 (-)<br>1304 - 1318 (-)1569 - 1583 (+)GFI1Not identified1186 - 1200 (-)<br>1398 - 1412 (-)136 - 1204 (-)<br>1304 - 1318 (-)139 - 157 (+)<br>139 - 157 (+)Androgen ReceptorNot identified89 - 107 (-)<br>106 - 128 (+)106 - 124 (-)<br>1335 - 1349 (-)139 - 157 (+)<br>1675 - 1693 (-)PBX1Not identified1303 - 1319 (+)1338 - 1354 (+)1564 - 1580 (+)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |                      | 1849 - 1869 (-)                                       |                                                |                           |
| GC Box $119 - 106$<br>99 - 81 (2)<br>62 - 49 $2466 - 2480 (+)2471 - 2485 (+)$ $2467 - 2481 (+)2472 - 2486 (+)$ $2453 - 2467 (+)2489 - 2503 (+)$ TCF/LEF-1      Not identified $1026 - 1042 (+)1305 - 1321 (+)$ $1044 - 1060 (+)1318 - 1334 (+)$ $428 - 444 (-)607 - 623 (-)810 - 826 (-)1304 - 1320 (+)$ Consitutive<br>Androstane      Not identified $1236 - 1260 (-)$<br>1357 - 1387 (+) $1368 - 1392 (+)$ $803 - 827 (-)$ Smad3      Not identified $1238 - 1246 (+)1247 - 1255 (+)2378 - 2386 (-)$ $1264 - 1272 (+)2378 - 2386 (-)$ $1106 - 1114 (+)1762 - 1770 (-)2277 - 2285 (-)$ Elk-1      Not identified $849 - 869 (-)$ $866 - 886 (-)$ $1125 - 1145 (-)1125 - 1145 (-)1125 - 1145 (-)1126 - 11846 (+)$ CKrox      Not identified $1819 - 1835 (-)$ $1828 - 1844 (-)$ $2254 - 2530 (+)2177 - 2286 (-)$ RREB1      Not identified $1186 - 1200 (-)1398 - 1412 (-)$ $1304 - 1318 (-)1304 - 1318 (-)1304 - 1318 (-)1304 - 1318 (-)1304 - 1318 (-)1304 - 1318 (-)1304 - 1318 (-)1304 - 1318 (-)139 - 157 (+)139 - 157 (+)139 - 157 (+)139 - 157 (+)139 - 157 (+)139 - 157 (+)139 - 157 (+)139 - 157 (+)139 - 157 (+)139 - 157 (+)139 - 157 (+)139 - 157 (+)139 - 157 (+)139 - 157 (+)139 - 157 (+)139 - 157 (+)139 - 157 (+)139 - 157 (+)139 - 157 (+)139 - 157 (+)139 - 157 (+)139 - 157 (+)139 - 157$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    |                      | (Tax/CREB)                                            |                                                |                           |
| GC Box $199 - 81 (2) \\ 62 - 49$ $2466 - 2480 (+) \\ 2471 - 2485 (+)$ $2467 - 2481 (+) \\ 2472 - 2486 (+)$ $2439 - 2503 (+) \\ 2489 - 2503 (+)$ TCF/LEF-1 $1026 - 1042 (+) \\ 1305 - 1321 (+)$ $1044 - 1060 (+) \\ 138 - 1334 (+)$ $428 - 444 (.) \\ 607 - 623 (.) \\ 810 - 826 (.) \\ 1304 - 1320 (+)$ Consitutive Androstane      Not identified $1236 - 1260 (.) \\ 1357 - 1387 (+)$ $1368 - 1392 (+)$ $803 - 827 (.) \\ 1304 - 1320 (+)$ Smad3      Not identified $1238 - 1246 (+) \\ 2378 - 2386 (.)$ $1264 - 1272 (+) \\ 2378 - 2386 (.)$ $1762 - 1770 (.) \\ 2277 - 2285 (.)$ Elk-1      Not identified $849 - 869 (.)$ $866 - 886 (.)$ $193 - 213 (.) \\ 1125 - 1145 (.) \\ 1226 - 1846 (+) \\ 12264 - 2278 (.) \\ 2264 - 2278 (.) \\ 2264 - 2278 (.) \\ 2264 - 2278 (.) \\ 2264 - 2278 (.) \\ 2264 - 2278 (.) \\ 2264 - 2278 (.) \\ 2264 - 2278 (.) \\ 2264 - 2278 (.) \\ 2264 - 2278 (.) \\ 2264 - 2278 (.) \\ 2264 - 2278 (.) \\ 2264 - 2278 (.) \\ 2264 - 2278 (.) \\ 2264 - 2278 (.) \\ 2264 - 2278 (.) \\ 2264 - 2278 (.) \\ 2264 - 2278 (.) \\ 2264 - 2278 (.) \\ 2264 - 2278 (.) \\ 2264 - 2278 (.) \\ 2264 - 2278 (.) \\ 2264 - 2278 (.) \\ 2264 - 2278 (.) \\ 2264 - 2278 (.) \\ 2264 - 2278 (.) \\ 2264 - 2278 (.) \\ 2264 - 2278 (.) \\ 2264 - 2278 (.) \\ 2264 - 2278 (.) \\ 2264 - 2278 (.) \\ 2264 - 2278 (.) \\ 2264 - 2278 (.) \\ 2264 - 2278 (.) \\ 2264 - 2278 (.) \\ 2264 - 2278 (.) \\ 2264 - 2278 (.) \\ 2264 - 2278 (.) \\ 2264 - 2278 (.) \\ 2264 - 2278 (.) \\ 2264 - 2278 (.) \\ 2264 - 2278 (.) \\ 2264 - 2278 (.) \\ 2264 - 2278 (.) \\ 2264 - 2278 (.) \\ 2264 - 2278 (.) \\ 2264 - 2278 (.) \\ 2264 - 2278 (.) \\ 2264 - 2278 (.) \\ 2264 - 2278 (.) \\ 2264 - 227$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                  | 119 - 106            |                                                       |                                                |                           |
| GC Box $99-81(2)$<br>(2-49) $2471-2485(+)$ $2472-2486(+)$ $2489-2503(+)$ TCF/LEF-1 $1026-1042(+)1305-1321(+)$ $1044-1060(+)1318-1334(+)$ $428-444(-)607-623(-)810-826(-)$ Consitutive<br>Androstane        Not identified $1236-1260(-)$<br>1357-1387(+) $1044-1060(+)1318-1334(+)$ $803-827(-)$ Smad3        Not identified $1238-1246(+)1247-1255(+)$ $1264-1272(+)2378-2386(-)$ $1106-1114(+)1762-1770(-)$ Elk-1        Not identified $849-869(-)$ $866-886(-)$ $1725-1145(-)1125-1145(-)$ RREB1        Not identified $2364-2378(-)$ $2264-2278(-)$ $2524-2540(+)$ GFI1        Not identified $2189-1835(-)$ $1828-1844(-)$ $2524-2540(+)$ Androgen Receptor        Not identified $1819-1835(-)$ $1828-1844(-)$ $2542-2586(-)$ GFI1        Not identified $1186-1200(-)$ $1304-1318(-)$ $1569-1583(+)$ Androgen Receptor        Not identified $1186-1200(-)$ $1304-1318(-)$ $139-157(-)$ Androgen Receptor        Not identified $130-128(+)$ $1065-124(-)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CCD                | $11^{-1}$ 100        | 2466 - 2480 (+)                                       | 2467 - 2481 (+)                                | 2453 - 2467 (+)           |
| 62 - 492111 $2105 (4)$ $2102 (4)$ $2105 (4)$ $2105 (4)$ TCF/LEF-1Not identified $1026 - 1042 (+)$<br>$1305 - 1321 (+)$ $1044 - 1060 (+)$<br>$1318 - 1334 (+)$ $428 - 444 (-)$<br>$607 - 623 (-)$<br>$810 - 826 (-)$<br>$1304 - 1320 (+)$ Consitutive<br>AndrostaneNot identified $1236 - 1260 (-)$<br>$1357 - 1387 (+)$ $1044 - 1060 (+)$<br>$1318 - 1334 (+)$ $428 - 444 (-)$<br>$617 - 623 (-)$<br>$1304 - 1320 (+)$ Smad3Not identified $1236 - 1260 (-)$<br>$1357 - 1387 (+)$ $1368 - 1392 (+)$ $803 - 827 (-)$<br>$1762 - 1770 (-)$<br>$2378 - 2386 (-)$ Elk-1Not identified $1238 - 1246 (+)$<br>$2378 - 2386 (-)$ $1264 - 1272 (+)$<br>$2378 - 2386 (-)$ $1106 - 1114 (+)$<br>$1762 - 1770 (-)$<br>$2378 - 2386 (-)$ Elk-1Not identified $849 - 869 (-)$ $866 - 886 (-)$ $193 - 213 (-)$<br>$1125 - 1145 (-)$<br>$1826 - 1846 (+)$ CKroxNot identified $2364 - 2378 (-)$<br>$2473 - 2487 (-)$ $2364 - 2378 (-)$<br>$2474 - 2488 (-)$ $2264 - 2278 (-)$<br>$2526 - 2550 (-)$ GFI1Not identified $1186 - 1200 (-)$<br>$1398 - 1412 (-)$ $1304 - 1318 (-)$<br>$1304 - 1318 (-)$<br>$139 - 157 (-)$ $139 - 157 (+)$<br>$139 - 157 (-)$<br>$1398 - 1412 (-)$ $139 - 157 (+)$<br>$139 - 157 (-)$<br>$139 - 157 (-)$ Androgen ReceptorNot identified $89 - 107 (-)$<br>$110 - 128 (+)$ $106 - 124 (-)$<br>$127 - 145 (+)$ $139 - 157 (+)$<br>$139 - 157 (-)$<br>$139 - 157 (-)$<br>$139 - 157 (-)$<br>$139 - 157 (-)$<br>$139 - 157 (-)$ PBX1Not identified $1303 - 1319 (+)$ $1338 - 1354 (+)$ $1356 - 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | GC Box             | 99 – 81 (2)          | 2471 - 2485(+)                                        | 2472 - 2486(+)                                 | 2489 - 2503(+)            |
| TCF/LEF-1      Not identified       1026 - 1042 (+)<br>1305 - 1321 (+)       1044 - 1060 (+)<br>1318 - 1334 (+)       428 - 444 (-)<br>607 - 623 (-)<br>810 - 826 (-)<br>1304 - 1320 (+)         Consitutive<br>Androstane      Not identified       1236 - 1260 (-)<br>1357 - 1387 (+)       1368 - 1392 (+)       803 - 827 (-)         Smad3      Not identified       1238 - 1246 (+)<br>1247 - 1255 (+)<br>2378 - 2386 (-)       1264 - 1272 (+)<br>2378 - 2386 (-)       1106 - 1114 (+)<br>1762 - 1770 (-)<br>2277 - 2285 (-)         Elk-1      Not identified       849 - 869 (-)       866 - 886 (-)       193 - 213 (-)<br>1125 - 1145 (-)<br>1125 - 1145 (-)         CKrox      Not identified       1819 - 1835 (-)       1828 - 1844 (-)       2524 - 2540 (+)         RREB1      Not identified       1819 - 1835 (-)       1828 - 1844 (-)       2524 - 2278 (-)         Ardrogen Receptor      Not identified       1186 - 1200 (-)<br>1291 - 1305 (-)<br>1398 - 1412 (-)       1204 - 1218 (-)<br>1304 - 1318 (-)<br>1304 - 1318 (-)       1569 - 1583 (+)         Androgen Receptor      Not identified       89 - 107 (-)<br>110 - 128 (+)       106 - 124 (-)<br>1408 - 1422 (-)       139 - 157 (+)<br>139 - 157 (-)<br>139 - 157 (-)<br>139 - 157 (-)         PBX1      Not identified       1303 - 1319 (+)       1338 - 1354 (+)       1569 - 1583 (+)<br>1719 - 1737 (-)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    | 62 – 49              | 21/1 2105 (*)                                         | 21/2 2100 (*)                                  | 2109 2505 (1)             |
| $ \begin{array}{c} {\bf TCF/LEF-1} \\ {\bf r-Not identified} \\ {\bf r-Not identified}$                                                                                                                                                        |                    |                      |                                                       |                                                | 428 - 444 (-)             |
| TCF/LEF-1 $1026 - 1042 (+)$<br>$1305 - 1321 (+)$ $1044 - 1060 (+)$<br>$1318 - 1334 (+)$ $807 - 826 (-)$<br>$810 - 826 (-)$<br>$1304 - 1320 (+)$ Consitutive<br>AndrostaneNot identified $1236 - 1260 (-)$<br>$1357 - 1387 (+)$ $1368 - 1392 (+)$ $803 - 827 (-)$ Smad3Not identified $1238 - 1246 (+)$<br>$1247 - 1255 (+)$<br>$2378 - 2386 (-)$ $1264 - 1272 (+)$<br>$2378 - 2386 (-)$ $1106 - 1114 (+)$<br>$1762 - 1770 (-)$<br>$2277 - 2285 (-)$ Elk-1Not identified $849 - 869 (-)$<br>$2364 - 2378 (-)$ $866 - 886 (-)$ $193 - 213 (-)$<br>$1125 - 1145 (-)$<br>$1826 - 1846 (+)$ CKroxNot identified $2364 - 2378 (-)$<br>$2473 - 2487 (-)$ $2264 - 2278 (-)$<br>$2364 - 2378 (-)$<br>$2364 - 2378 (-)$ $2264 - 2278 (-)$<br>$2425 - 2439 (-)$ GFI1Not identified $1186 - 1200 (-)$<br>$1291 - 1305 (-)$<br>$1398 - 1412 (-)$ $1204 - 1218 (-)$<br>$1304 - 1318 (-)$ $1569 - 1583 (+)$ Androgen Receptor $-Not identified$ $89 - 107 (-)$<br>$110 - 128 (+)$ $106 - 124 (-)$<br>$127 - 145 (+)$ $139 - 157 (+)$<br>$139 - 157 (-)$<br>$1665 - 1503 (-)$<br>$177 - 1737 (-)$ PBX1Not identified $1303 - 1319 (+)$ $1338 - 1354 (+)$ $1564 - 1580 (+)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    |                      |                                                       |                                                | 607 623 ()                |
| ICF/LEF-1      Not identified $1305 - 1321 (+)$ $1318 - 1334 (+)$ $810 - 826 (-)$ Consitutive<br>Androstane      Not identified $1236 - 1260 (-)$ $1368 - 1392 (+)$ $803 - 827 (-)$ Smad3      Not identified $1238 - 1246 (+)$ $1264 - 1272 (+)$ $1106 - 1114 (+)$ Smad3      Not identified $1238 - 1246 (+)$ $1264 - 1272 (+)$ $1106 - 1114 (+)$ Elk-1      Not identified $849 - 869 (-)$ $866 - 886 (-)$ $78 - 98 (-)$ Elk-1      Not identified $2378 - 2386 (-)$ $2277 - 2285 (-)$ $78 - 98 (-)$ REB1      Not identified $2364 - 2378 (-)$ $2264 - 2278 (-)$ $2254 - 2439 (-)$ GFI1      Not identified $1186 - 1200 (-)$ $1247 - 2488 (-)$ $2542 - 2439 (-)$ Androgen Receptor      Not identified $1186 - 1200 (-)$ $1304 - 1318 (-)$ $139 - 157 (+)$ PBX1      Not identified $89 - 107 (-)$ $106 - 124 (-)$ $139 - 157 (+)$ $139 - 157 (-)$ $866 - 884 (+)$ $139 - 157 (+)$ $139 - 157 (-)$ $REB1$ Not identified $89 - 107 (-)$ $106 - 124 (-)$ $139 - 157 (+)$ <th></th> <th></th> <th>1026 - 1042 (+)</th> <th>1044 - 1060 (+)</th> <th>007 = 025 (-)</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |                      | 1026 - 1042 (+)                                       | 1044 - 1060 (+)                                | 007 = 025 (-)             |
| Not identified       1305 1321 (*)       13105 1354 (*)       1304 - 1320 (*)         Consitutive<br>Androstane      Not identified       1236 - 1260 (·)<br>1357 - 1387 (*)       1368 - 1392 (*)       803 - 827 (·)         Smad3      Not identified       1238 - 1246 (*)<br>1247 - 1255 (*)<br>2378 - 2386 (-)       1264 - 1272 (*)<br>2378 - 2386 (-)       1106 - 1114 (*)         File      Not identified       1238 - 1246 (*)<br>1247 - 1255 (*)       1264 - 1272 (*)<br>2378 - 2386 (-)       1106 - 1114 (*)         File      Not identified       1247 - 1255 (*)       2378 - 2386 (-)       277 - 2285 (·)         File      Not identified       849 - 869 (·)       866 - 886 (·)       193 - 213 (·)         I125 - 1145 (·)       1819 - 1835 (·)       1828 - 1844 (·)       2264 - 2278 (·)         RREB1      Not identified       2364 - 2378 (·)       2364 - 2378 (·)       2425 - 2439 (·)         GFI1      Not identified       1186 - 1200 (·)       1304 - 1318 (·)       1304 - 1318 (·)         GFI1      Not identified       1186 - 1200 (·)       1304 - 1318 (·)       139 - 157 (·)         Androgen Receptor      Not identified       1186 - 1200 (·)       1304 - 1318 (·)       139 - 157 (·)         File      Not identified       1106 - 124 (·)       1369 - 1583 (+)       139                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TCF/LEF-I          |                      | 1305 - 1321(+)                                        | 1318 - 1334 (+)                                | 810 - 826 (-)             |
| $ \begin{array}{ c c c c c c } \hline \mathbf{Consitutive} & \mathbf{-}\mbox{Not identified} & 1236 - 1260 (-) \\ \mbox{Androstane} & 1238 - 1246 (+) \\ 1357 - 1387 (+) & 1368 - 1392 (+) & 803 - 827 (-) \\ 12378 - 1286 (-) & 1264 - 1272 (+) \\ 1762 - 1770 (-) \\ 2378 - 2386 (-) & 2277 - 2285 (-) \\ 2277 - 2285 (-) \\ 2277 - 2285 (-) \\ 2277 - 2285 (-) \\ 2277 - 2285 (-) \\ 2277 - 2285 (-) \\ 2277 - 2285 (-) \\ 2277 - 2285 (-) \\ 2277 - 2285 (-) \\ 2277 - 2285 (-) \\ 2277 - 2285 (-) \\ 2172 - 1145 (-) \\ 1125 - 1145 (-) \\ 1125 - 1145 (-) \\ 1125 - 1145 (-) \\ 1125 - 1145 (-) \\ 1125 - 1145 (-) \\ 1126 - 11846 (+) \\ \hline \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    | Not identified       | 1505 1521(1)                                          | 1510 1554(1)                                   | 1304 - 1320 (+)           |
| $ \begin{array}{c c} \mbox{Consitutive} ⫬ identified & 1236 - 1260 (-) \\ 1357 - 1387 (+) & 1368 - 1392 (+) & 803 - 827 (-) \\ 1238 - 1246 (+) \\ 1247 - 1255 (+) \\ 2378 - 2386 (-) & 2277 - 2285 (-) \\ 2378 - 2386 (-) & 2277 - 2285 (-) \\ 2277 - 2285 (-) \\ 2277 - 2285 (-) \\ 2277 - 2285 (-) \\ 2277 - 2285 (-) \\ 2277 - 2285 (-) \\ 2277 - 2285 (-) \\ 2277 - 2285 (-) \\ 2277 - 2285 (-) \\ 1125 - 1145 (-) \\ 1125 - 1145 (-) \\ 1125 - 1145 (-) \\ 1125 - 1145 (-) \\ 1125 - 1145 (-) \\ 1125 - 1145 (-) \\ 1125 - 1145 (-) \\ 1125 - 1145 (-) \\ 1125 - 1145 (-) \\ 1125 - 1145 (-) \\ 1125 - 1145 (-) \\ 12264 - 2378 (-) \\ 2364 - 2378 (-) \\ 2364 - 2378 (-) \\ 2364 - 2378 (-) \\ 2364 - 2378 (-) \\ 2474 - 2488 (-) \\ 2528 - 2542 (-) \\ 2550 - 2564 (-) \\ 2528 - 2542 (-) \\ 2550 - 2564 (-) \\ 2550 - 2564 (-) \\ 1291 - 1305 (-) \\ 1398 - 1412 (-) \\ 1408 - 1422 (-) \\ \end{array} \right) $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |                      |                                                       |                                                |                           |
| Androstane      Not identified       1357 - 1387 (+)       1368 - 1392 (+)       803 - 827 (-)         Smad3      Not identified       1238 - 1246 (+)       1264 - 1272 (+)       1106 - 1114 (+)         1247 - 1255 (+)       2378 - 2386 (-)       2378 - 2386 (-)       2277 - 2285 (-)         2378 - 2386 (-)       2378 - 2386 (-)       78 - 98 (-)         125 - 1145 (-)       1125 - 1145 (-)       1125 - 1145 (-)         125 - 1145 (-)       1125 - 1145 (-)       1125 - 1145 (-)         125 - 1145 (-)       1264 - 1272 (+)       2130 - 1316 (+)         CKrox      Not identified       1819 - 1835 (-)       1828 - 1844 (-)       2524 - 2540 (+)         RREB1      Not identified       2364 - 2378 (-)       2425 - 2439 (-)       2425 - 2439 (-)        Not identified       2473 - 2487 (-)       2474 - 2488 (-)       2542 - 2556 (-)         2528 - 2542 (-)       2550 - 2564 (-)       1304 - 1318 (-)       1569 - 1583 (+)         GFI1      Not identified       1186 - 1200 (-)       1304 - 1318 (-)       1569 - 1583 (+)         1399 - 157 (-)       1398 - 1412 (-)       1304 - 1318 (-)       1569 - 1583 (+)         1399 - 157 (-)       106 - 124 (-)       866 - 884 (+)       139 - 157 (-)         Androgen Receptor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Consitutive        |                      | 1236 - 1260 (-)                                       | 12(9 1202 (1)                                  | 002 027 ()                |
| Index of Mile       1238 - 1246 (+)<br>1247 - 1255 (+)<br>2378 - 2386 (-)       1264 - 1272 (+)<br>2378 - 2386 (-)       1106 - 1114 (+)<br>1762 - 1770 (-)<br>2277 - 2285 (-)         Elk-1      Not identified       849 - 869 (-)       866 - 886 (-)       193 - 213 (-)<br>1125 - 1145 (-)<br>1826 - 1846 (+)         CKrox      Not identified       1819 - 1835 (-)       1828 - 1844 (-)       2524 - 2540 (+)         RREB1      Not identified       1819 - 1835 (-)       1828 - 1844 (-)       2542 - 2439 (-)         GFI1      Not identified       1186 - 1200 (-)       1204 - 1218 (-)       1569 - 1583 (+)         Madrogen Receptor      Not identified       1186 - 1200 (-)       1204 - 1218 (-)       1569 - 1583 (+)         PBX1      Not identified       89 - 107 (-)       106 - 124 (-)       866 - 884 (+)       139 - 157 (+)         PBX1      Not identified       1303 - 1319 (+)       1338 - 1354 (+)       1564 - 1580 (+)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Androstane         | Not identified       | 1357 - 1387 (+)                                       | 1368 - 1392 (+)                                | 803 - 827 (-)             |
| Smad3      Not identified       1237 - 1240 (+)<br>1247 - 1255 (+)<br>2378 - 2386 (-)       1106 - 1114 (+)<br>2378 - 2386 (-)         Elk-1      Not identified       849 - 869 (-)       866 - 886 (-)       193 - 213 (-)<br>1125 - 1145 (-)<br>1125 - 1145 (-)         CKrox      Not identified       1819 - 1835 (-)       1828 - 1844 (-)       2264 - 2278 (-)         RREB1      Not identified       2364 - 2378 (-)<br>2473 - 2487 (-)       2364 - 2378 (-)<br>2474 - 2488 (-)       2264 - 2278 (-)         GF11      Not identified       1186 - 1200 (-)<br>1291 - 1305 (-)       1204 - 1218 (-)<br>1304 - 1318 (-)       1569 - 1583 (+)         Androgen Receptor      Not identified       1186 - 1200 (-)<br>1291 - 1305 (-)       1304 - 1318 (-)<br>1398 - 1412 (-)       139 - 157 (+)<br>139 - 157 (-)         PBX1      Not identified       1303 - 1319 (+)       1338 - 1354 (+)       1564 - 1580 (+)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |                      | 1229 1246 (+)                                         |                                                | 1106 1114 (+)             |
| Smad3Not identified $1247 - 1255 (+) \\ 2378 - 2386 (-)$ $2378 - 2386 (-)$ $1762 - 17/0 (-) \\ 2277 - 2285 (-)$ Elk-1Not identified $849 - 869 (-)$ $866 - 886 (-)$ $193 - 213 (-) \\ 1125 - 1145 (-) \\ 1826 - 1846 (+)$ CKroxNot identified $1819 - 1835 (-)$ $1828 - 1844 (-)$ $2524 - 2540 (+)$ RREB1Not identified $2364 - 2378 (-)$ $2364 - 2378 (-)$ $2264 - 2278 (-)$ $2528 - 2542 (-)$ $2526 - 2540 (+)$ $2252 - 2439 (-)$ $2526 - 2549 (-)$ GFI1Not identified $1186 - 1200 (-)$ $1304 - 1318 (-)$ $1369 - 157 (+)$ $1398 - 1412 (-)$ $1398 - 1412 (-)$ $139 - 157 (+)$ $139 - 157 (+)$ $1398 - 1412 (-)$ $1106 - 124 (-)$ $866 - 884 (+)$ $969 - 987 (+)$ $Not identified$ $110 - 128 (+)$ $127 - 145 (+)$ $969 - 987 (+)$ $1675 - 1693 (-)$ $1719 - 1737 (-)$ $1719 - 1737 (-)$ PBX1Not identified $1303 - 1319 (+)$ $1338 - 1354 (+)$ $1564 - 1580 (+)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <i>a</i> <b>12</b> |                      | 1238 - 1240(+)                                        | 1264 - 1272 (+)                                | 1100 - 1114(+)            |
| Elk-1       2378 - 2386 (-)       2578 - 2386 (-)       2277 - 2285 (-)         Elk-1      Not identified       849 - 869 (-)       866 - 886 (-)       193 - 213 (-)         I257 - 145 (-)       1125 - 1145 (-)       1125 - 1145 (-)       1125 - 1145 (-)         I266 - 1846 (+)       1125 - 1145 (-)       1125 - 1145 (-)       1125 - 1145 (-)         I277 - 2285 (-)       2524 - 2540 (+)       1125 - 1145 (-)       1126 - 1846 (+)         I286 - 1846 (-)       2364 - 2378 (-)       2364 - 2378 (-)       2425 - 2439 (-)        Not identified       2364 - 2378 (-)       2474 - 2488 (-)       2542 - 2556 (-)         2528 - 2542 (-)       2550 - 2564 (-)       1204 - 1218 (-)       1304 - 1318 (-)         I398 - 1412 (-)       1398 - 1412 (-)       1304 - 1318 (-)       1569 - 1583 (+)         Androgen Receptor      Not identified       89 - 107 (-)       106 - 124 (-)       866 - 884 (+)        Not identified       110 - 128 (+)       127 - 145 (+)       969 - 987 (+)       1675 - 1693 (-)         9BX1      Not identified       1303 - 1319 (+)       1338 - 1354 (+)       1564 - 1580 (+)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Smad3              | Not identified       | 1247 – 1255 (+)                                       | 2378 - 2386                                    | 1762 - 1770 (-)           |
| Elk-1 $Not identified$ $849 - 869 (-)$ $866 - 886 (-)$ $78 - 98 (-)$<br>$193 - 213 (-)$<br>$1125 - 1145 (-)$<br>$1826 - 1846 (+)$ CKrox $Not identified$ $1819 - 1835 (-)$ $1828 - 1844 (-)$ $2524 - 2540 (+)$<br>$2264 - 2278 (-)$<br>$2264 - 2278 (-)$ RREB1 $Not identified$ $2364 - 2378 (-)$<br>$2473 - 2487 (-)$ $2364 - 2378 (-)$<br>$2474 - 2488 (-)$<br>$2524 - 2556 (-)$<br>$2524 - 2556 (-)$<br>$2528 - 2554 (-)$ GFI1 $Not identified$ $1186 - 1200 (-)$<br>$1291 - 1305 (-)$<br>$1398 - 1412 (-)$ $1204 - 1218 (-)$<br>$1304 - 1318 (-)$<br>$139 - 157 (+)$<br>$139 - 157 (-)$ Androgen Receptor $89 - 107 (-)$<br>$110 - 128 (+)$ $106 - 124 (-)$<br>$127 - 145 (+)$ $139 - 157 (+)$<br>$1675 - 1693 (-)$<br>$1719 - 1737 (-)$ PBX1Not identified $1303 - 1319 (+)$ $1338 - 1354 (+)$ $1564 - 1580 (+)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    | Tot identified       | 2378 - 2386 (-)                                       | 2370 2300 (-)                                  | <u>2277 – 2285 (-)</u>    |
| Elk-1      Not identified       849 - 869 (-)       866 - 886 (-)       19 3 - 213 (-)<br>1125 - 1145 (-)<br>1826 - 1846 (+)         CKrox      Not identified       1819 - 1835 (-)       1828 - 1844 (-)       2524 - 2540 (+)         RREB1      Not identified       2364 - 2378 (-)       2364 - 2378 (-)       2425 - 2439 (-)        Not identified       2473 - 2487 (-)       2474 - 2488 (-)       2542 - 2556 (-)         GFI1      Not identified       1186 - 1200 (-)<br>1291 - 1305 (-)       1304 - 1318 (-)       1569 - 1583 (+)         Madrogen Receptor      Not identified       189 - 107 (-)       106 - 124 (-)       139 - 157 (+)         Androgen Receptor      Not identified       100 - 128 (+)       106 - 124 (-)       866 - 884 (+)         PBX1      Not identified       1303 - 1319 (+)       1338 - 1354 (+)       1564 - 1580 (+)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |                      |                                                       |                                                | 78 - 98 (-)               |
| Elk-1      Not identified       849 - 869 (-)       866 - 886 (-)       193 - 213 (-)         CKrox      Not identified       1819 - 1835 (-)       1828 - 1844 (-)       2524 - 2540 (+)         RREB1      Not identified       2364 - 2378 (-)       2364 - 2378 (-)       2425 - 2439 (-)        Not identified       2364 - 2378 (-)       2474 - 2488 (-)       2542 - 2556 (-)        Not identified       1186 - 1200 (-)       1304 - 1318 (-)       1569 - 1583 (+)        Not identified       1186 - 1200 (-)       1304 - 1318 (-)       1569 - 1583 (+)        Not identified       1398 - 1412 (-)       1408 - 1422 (-)       139 - 157 (+)         Androgen Receptor       89 - 107 (-)       106 - 124 (-)       866 - 884 (+)        Not identified       110 - 128 (+)       127 - 145 (+)       969 - 987 (+)         1675 - 1693 (-)       1719 - 1737 (-)       1719 - 1737 (-)         PBX1      Not identified       1303 - 1319 (+)       1338 - 1354 (+)       1564 - 1580 (+)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                  |                      |                                                       | 1                                              | 103 213()                 |
| Not identified      Not identified       1819 - 1835 (-)       1828 - 1844 (-)       2524 - 2540 (+)         CKrox      Not identified       1819 - 1835 (-)       1828 - 1844 (-)       2524 - 2540 (+)         RREB1      Not identified       2364 - 2378 (-)       2364 - 2378 (-)       2425 - 2439 (-)        Not identified       2473 - 2487 (-)       2474 - 2488 (-)       2542 - 2556 (-)        Not identified       1186 - 1200 (-)       1204 - 1218 (-)       1304 - 1318 (-)         1398 - 1412 (-)       1304 - 1318 (-)       1569 - 1583 (+)       1569 - 1583 (+)         Androgen Receptor      Not identified       89 - 107 (-)       106 - 124 (-)       866 - 884 (+)        Not identified       110 - 128 (+)       127 - 145 (+)       969 - 987 (+)       1675 - 1693 (-)         PBX1      Not identified       1303 - 1319 (+)       1338 - 1354 (+)       1564 - 1580 (+)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Elk-1              | 21.11.10             | 849 - 869 (-)                                         | 866 - 886 (-)                                  | 193 - 213 (-)             |
| CKroxNot identified $1819 - 1835(-)$ $1828 - 1844(-)$ $2524 - 2540(+)$ RREB12364 - 2378(-)<br>2473 - 2487(-) $2364 - 2378(-)$<br>2474 - 2488(-) $2264 - 2278(-)$<br>2425 - 2439(-)GFI1Not identified $1186 - 1200(-)$<br>1291 - 1305(-) $1204 - 1218(-)$<br>1398 - 1412(-) $1569 - 1583(+)$ Androgen Receptor89 - 107(-)<br>110 - 128(+) $106 - 124(-)$<br>127 - 145(+) $139 - 157(+)$<br>1398 - 157(-)PBX1Not identified $1303 - 1319(+)$ $1338 - 1354(+)$ $1564 - 1580(+)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    | Not identified       | ( )                                                   |                                                | 1125 – 1145 (-)           |
| CKrox        Not identified $1819 - 1835(-)$ $1828 - 1844(-)$ $2524 - 2540(+)$ RREB1        Not identified $2364 - 2378(-)$ $2364 - 2378(-)$ $2264 - 2278(-)$ Not identified $2364 - 2378(-)$ $2364 - 2378(-)$ $2425 - 2439(-)$ Not identified $2473 - 2487(-)$ $2474 - 2488(-)$ $2542 - 2556(-)$ Not identified $1186 - 1200(-)$ $1204 - 1218(-)$ $1304 - 1318(-)$ $1291 - 1305(-)$ $1398 - 1412(-)$ $1335 - 1349(-)$ $1569 - 1583(+)$ Androgen Receptor $89 - 107(-)$ $106 - 124(-)$ $866 - 884(+)$ $Not$ identified $89 - 107(-)$ $106 - 124(-)$ $866 - 884(+)$ $110 - 128(+)$ $127 - 145(+)$ $969 - 987(+)$ $1675 - 1693(-)$ $1719 - 1737(-)$ $1303 - 1319(+)$ $1338 - 1354(+)$ $1564 - 1580(+)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    |                      |                                                       |                                                | 1826 - 1846 (+)           |
| RREB1 $Not identified$ $2364 - 2378 (-)$ $2364 - 2378 (-)$ $2264 - 2278 (-)$ $GFI1$ $Not identified$ $2364 - 2378 (-)$ $2364 - 2378 (-)$ $2474 - 2488 (-)$ $2425 - 2439 (-)$ $GFI1$ $Not identified$ $1186 - 1200 (-)$ $1204 - 1218 (-)$ $1569 - 1583 (+)$ $I186 - 1200 (-)$ $1291 - 1305 (-)$ $1304 - 1318 (-)$ $1569 - 1583 (+)$ $I186 - 1200 (-)$ $1398 - 1412 (-)$ $1304 - 1318 (-)$ $1569 - 1583 (+)$ $I198 - 1412 (-)$ $I106 - 124 (-)$ $I199 - 157 (+)$ $I39 - 157 (-)$ $I10 - 128 (+)$ $I06 - 124 (-)$ $866 - 884 (+)$ $969 - 987 (+)$ $I075 - I693 (-)$ $I10 - 128 (+)$ $I27 - 145 (+)$ $969 - 987 (+)$ $I075 - I693 (-)$ $I719 - I737 (-)$ $I719 - I737 (-)$ $I719 - I737 (-)$ PBX1 $Not identified$ $I303 - 1319 (+)$ $I338 - 1354 (+)$ $I564 - 1580 (+)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CKrox              | Not identified       | 1819 - 1835 (-)                                       | 1828 - 1844 (-)                                | 2524 - 2540 (+)           |
| RREB1 $2364 - 2378(-)$<br>$2473 - 2487(-)$ $2364 - 2378(-)$<br>$2474 - 2488(-)$<br>$2542 - 2556(-)$<br>$2528 - 2542(-)$ $2425 - 2439(-)$<br>$2542 - 2556(-)$<br>$2550 - 2564(-)$ GF11 $Not identified$ $1186 - 1200(-)$<br>$1291 - 1305(-)$<br>$1398 - 1412(-)$ $1204 - 1218(-)$<br>$1304 - 1318(-)$<br>$1335 - 1349(-)$ $1569 - 1583(+)$ Androgen Receptor $89 - 107(-)$<br>$110 - 128(+)$ $106 - 124(-)$<br>$127 - 145(+)$ $866 - 884(+)$<br>$969 - 987(+)$<br>$1675 - 1693(-)$<br>$1719 - 1737(-)$ PBX1Not identified $1303 - 1319(+)$ $1338 - 1354(+)$ $1564 - 1580(+)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C2HVA              | internetion          |                                                       | 621 645 ()                                     | 2264 2278 ()              |
| <b>RREB1</b> $Not identified$ $2364 - 2378(-)$ $2364 - 2378(-)$ $2425 - 2439(-)$ <b>GFI1</b> $Not identified$ $1186 - 1200(-)$ $1204 - 1218(-)$ $2550 - 2564(-)$ <b>GFI1</b> $Not identified$ $1186 - 1200(-)$ $1304 - 1318(-)$ $1569 - 1583(+)$ <b>Androgen Receptor</b> $Not identified$ $89 - 107(-)$ $106 - 124(-)$ $139 - 157(+)$ <b>PBX1</b> Not identified $1303 - 1319(+)$ $1338 - 1354(+)$ $1564 - 1580(+)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    |                      | 00.01 00.00 C                                         | 031 - 043 (-)                                  | 2204 - 2278(-)            |
| Androgen Receptor      Not identified       2473 - 2487 (-)       2474 - 2488 (-)       2542 - 2556 (-)         Androgen Receptor      Not identified       1186 - 1200 (-)       1204 - 1218 (-)       1204 - 1318 (-)       1569 - 1583 (+)         Androgen Receptor      Not identified       1398 - 1412 (-)       1335 - 1349 (-)       139 - 157 (+)         PBX1      Not identified       100 - 128 (+)       100 - 124 (-)       139 - 157 (-)         Box       110 - 128 (+)       106 - 124 (-)       866 - 884 (+)         107 - 145 (+)       1675 - 1693 (-)       1719 - 1737 (-)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | RRFR1              |                      | 2364 – 2378 (-)                                       | 2364 – 2378 (-)                                | 2425 – 2439 (-)           |
| GFI1 $1186 - 1200 (-)$<br>1291 - 1305 (-)<br>1398 - 1412 (-) $1204 - 1218 (-)1304 - 1318 (-)1335 - 1349 (-)$ $1569 - 1583 (+)$ Androgen Receptor $89 - 107 (-)110 - 128 (+)$ $106 - 124 (-)127 - 145 (+)$ $139 - 157 (+)1399 - 157 (-)$ PBX1        Not identified $1303 - 1319 (+)$ $1338 - 1354 (+)$ $1564 - 1580 (+)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | KALDI              | Not identified       | 2473 - 2487 (-)                                       | 2474 - 2488 (-)                                | 2542 - 2556 (-)           |
| GFI1 $1186 - 1200 (-)$ $1204 - 1218 (-)$ $1269 - 1583 (+)$ Androgen Receptor $Not identified$ $89 - 107 (-)$ $106 - 124 (-)$ $139 - 157 (+)$ PBX1 $Not identified$ $1303 - 1319 (+)$ $1338 - 1354 (+)$ $1569 - 1583 (+)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |                      | , , , , , , , , , , , , , , , , , , ,                 | 2528 - 2542                                    | 2550 - 2564               |
| GF11 $1186 - 1200 (-)$<br>$1291 - 1305 (-)$<br>$1398 - 1412 (-)$ $1204 - 1218 (-)$<br>$1304 - 1318 (-)$<br>$1335 - 1349 (-)$<br>$1408 - 1422 (-)$ $1569 - 1583 (+)$ Androgen Receptor $89 - 107 (-)$<br>$110 - 128 (+)$ $106 - 124 (-)$<br>$127 - 145 (+)$ $139 - 157 (-)$<br>$866 - 884 (+)$<br>$969 - 987 (+)$<br>$1675 - 1693 (-)$<br>$1719 - 1737 (-)$ PBX1Not identified $1303 - 1319 (+)$ $1338 - 1354 (+)$ $1564 - 1580 (+)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |                      |                                                       | 1204 1219()                                    | 2000 200 <del>1</del> (-) |
| GFI1      Not identified       1291 - 1305 (-)<br>1291 - 1305 (-)<br>1398 - 1412 (-)       1304 - 1318 (-)<br>1335 - 1349 (-)<br>1408 - 1422 (-)       1569 - 1583 (+)         Androgen Receptor       89 - 107 (-)<br>110 - 128 (+)       106 - 124 (-)<br>127 - 145 (+)       139 - 157 (+)<br>139 - 157 (-)         PBX1      Not identified       1303 - 1319 (+)       1338 - 1354 (+)       1569 - 1583 (+)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    | 1                    | 1186 - 1200 (-)                                       | 1204 - 1218 (-)                                |                           |
| Androgen Receptor        Not identified         1291 – 1503 (-)<br>1398 – 1412 (-)         1335 – 1349 (-)<br>1408 – 1422 (-)         1309 – 1583 (+)          Not identified         89 – 107 (-)<br>110 – 128 (+)         106 – 124 (-)<br>127 – 145 (+)         139 – 157 (+)<br>139 – 157 (-)           PBX1        Not identified         1303 – 1319 (+)         1338 – 1354 (+)         1564 – 1580 (+)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CFI1               |                      | 1201 1205 ()                                          | 1304 – 1318 (-)                                | 1560 1592 (1)             |
| Androgen Receptor $1398 - 1412 (-)$ $1398 - 1412 (-)$ $1408 - 1422 (-)$ Not identified $89 - 107 (-)$ $106 - 124 (-)$ $139 - 157 (-)$ $106 - 124 (-)$ $866 - 884 (+)$ $969 - 987 (+)$ $110 - 128 (+)$ $127 - 145 (+)$ $969 - 987 (+)$ $1719 - 1737 (-)$ $1303 - 1319 (+)$ $1338 - 1354 (+)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | GUI                | Not identified       | 1291 - 1505 (-)                                       | 1335 - 1349 (-)                                | 1303 - 1363 (+)           |
| Androgen Receptor $139 - 157 (+)$<br>$139 - 157 (-)$ Not identified $89 - 107 (-)$<br>$110 - 128 (+)$ $106 - 124 (-)$<br>$127 - 145 (+)$ $139 - 157 (-)$<br>$866 - 884 (+)$<br>$969 - 987 (+)$<br>$1675 - 1693 (-)$<br>$1719 - 1737 (-)$ PBX1Not identified $1303 - 1319 (+)$ $1338 - 1354 (+)$ $1564 - 1580 (+)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    | - tot radiation      | 1398 – 1412 (-)                                       | 1408 - 1422 (-)                                |                           |
| Androgen Receptor $89 - 107 (-)$<br>$110 - 128 (+)$ $106 - 124 (-)$<br>$127 - 145 (+)$ $139 - 157 (-)$<br>$139 - 157 (-)$<br>$866 - 884 (+)$<br>$969 - 987 (+)$<br>$1675 - 1693 (-)$<br>$1719 - 1737 (-)$ PBX1Not identified $1303 - 1319 (+)$ $1338 - 1354 (+)$ $1564 - 1580 (+)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |                      |                                                       | 1100 1722 (-)                                  | 120 157 (+)               |
| Androgen Receptor         89 - 107 (-)         106 - 124 (-)         139 - 157 (-)          Not identified         110 - 128 (+)         127 - 145 (+)         969 - 987 (+)           PBX1        Not identified         1303 - 1319 (+)         1338 - 1354 (+)         1564 - 1580 (+)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |                      |                                                       |                                                | 159 - 157 (+)             |
| Androgen Receptor         89 - 107 (-)<br>110 - 128 (+)         106 - 124 (-)<br>127 - 145 (+)         866 - 884 (+)<br>969 - 987 (+)<br>1675 - 1693 (-)<br>1719 - 1737 (-)           PBX1        Not identified         1303 - 1319 (+)         1338 - 1354 (+)         1564 - 1580 (+)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |                      |                                                       | 1                                              | 139 – 157 (-)             |
| Androgen Keceptor        Not identified         110 - 128 (+)         127 - 145 (+)         969 - 987 (+)          Not identified         1303 - 1319 (+)         1338 - 1354 (+)         1564 - 1580 (+)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |                      | 89-107 (-)                                            | 106 - 124 (-)                                  | 866 - 884 (+)             |
| Not identified $110 - 120(1)$ $127 - 143(1)$ $509 - 90(1)$ PBX1      Not identified $1303 - 1319(+)$ $1338 - 1354(+)$ $1564 - 1580(+)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Androgen Receptor  |                      | 110 - 128(+)                                          | 127 - 145(+)                                   | 969 - 987 (+)             |
| PBX1         10/5 - 1693 (-)<br>1719 - 1737 (-)          Not identified         1303 - 1319 (+)         1338 - 1354 (+)         1564 - 1580 (+)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    | Not identified       | 110 120(1)                                            | 12/ 143(1)                                     | 1675 1602 ()              |
| PBX1         1719 - 1737 (-)          Not identified         1303 - 1319 (+)         1338 - 1354 (+)         1564 - 1580 (+)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |                      |                                                       |                                                | 10/5 - 1093 (-)           |
| <b>PBX1</b> Not identified 1303 – 1319 (+) 1338 – 1354 (+) 1564 – 1580 (+)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    |                      |                                                       |                                                | 1719 – 1737 (-)           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PBX1               | Not identified       | 1303 - 1319 (+)                                       | 1338 - 1354 (+)                                | 1564 - 1580 (+)           |

|        |                |               |                                  | heterodimer<br>1746 – 1762 (+)<br>homodomain |
|--------|----------------|---------------|----------------------------------|----------------------------------------------|
| Nkx3.2 | Not identified | 259 – 273 (-) | 276 – 290 (-)<br>1936 – 1950 (+) | 480 - 494 (+)                                |