
TASK ORIENTED TOOLS FOR INFORMATION RETRIEVAL

by

Peilin Yang

A dissertation submitted to the Faculty of the University of Delaware in partial
fulfillment of the requirements for the degree of Doctor of Philosophy in Electrical and
Computer Engineering

Summer 2017

© 2017 Peilin Yang
All Rights Reserved

TASK ORIENTED TOOLS FOR INFORMATION RETRIEVAL

by

Peilin Yang

Approved:
Kenneth E. Barner, Ph.D.
Chair of the Department of Electrical and Computer Engineering

Approved:
Babatunde A. Ogunnaike, Ph.D.
Dean of the College of Engineering

Approved:
Ann L. Ardis, Ph.D.
Senior Vice Provost for Graduate and Professional Education

I certify that I have read this dissertation and that in my opinion it meets the
academic and professional standard required by the University as a dissertation
for the degree of Doctor of Philosophy.

Signed:
Hui Fang, Ph.D.
Professor in charge of dissertation

I certify that I have read this dissertation and that in my opinion it meets the
academic and professional standard required by the University as a dissertation
for the degree of Doctor of Philosophy.

Signed:
Benjamin Carterette, Ph.D.
Member of dissertation committee

I certify that I have read this dissertation and that in my opinion it meets the
academic and professional standard required by the University as a dissertation
for the degree of Doctor of Philosophy.

Signed:
Chengmo Yang, Ph.D.
Member of dissertation committee

I certify that I have read this dissertation and that in my opinion it meets the
academic and professional standard required by the University as a dissertation
for the degree of Doctor of Philosophy.

Signed:
Stephan Bohacek, Ph.D.
Member of dissertation committee

ACKNOWLEDGEMENTS

I would like to thank my parents for their consistent support and unconditional

love throughout my entire life. I would like to give special thanks to my wife Yi Zhang.

It is her who encourages me to pursue a challenging but fruitful life. Without her I

cannot imagine I could achieve any of my accomplishment. Also, thank my kids for

letting me being so joyful.

I would like to express my deepest appreciation to my advisor, Hui Fang. She

opens a door for me which lets me to embrace a brand new world. Her diligence,

persistence and hard working really inspire me a lot. It is such a honor to work with

her and I will always appreciate such experience in my life.

I also thank other members in my dissertation committee Benjamin Carterette,

Chengmo Yang and Stephan Bohacek. They gave me very useful and insightful sug-

gestions and helped me to make the dissertation more solid and valid.

I would also thank my colleagues – Wei Zheng, Xitong Liu, Hao Wu, Yue Wang,

Kuang Lv, Miguel Callejas, Monica Rodriguez, Wei Zhong, Hao Xu, Ye Wang, Zitong

Cheng who gave me tremendous help. It was pleasure to discuss and work with them.

During my life at University of Delaware I have contacted many great people

and I love here. I am and will always be a Fighting Blue Hen!

iv

TABLE OF CONTENTS

LIST OF TABLES . ix
LIST OF FIGURES . xii
ABSTRACT . xiv

Chapter

1 INTRODUCTION . 1

1.1 Tools for the IR Teaching/Learning 2
1.2 Unified Reproducibility Evaluation System 3
1.3 Tools for Analyzing the Existing Models 5
1.4 Contextual Suggestion Tool . 8
1.5 Summary . 9

2 BACKGROUND AND RELATED WORK 10

2.1 TREC and TREC Collections . 10

2.1.1 TREC . 10
2.1.2 TREC Ad-hoc/Web Collections, Topics, Judgments and

Evaluation Metrics . 11

2.2 Typical Ranking Models and Index Structure 13
2.3 IR Toolkits for Teaching and Research 14
2.4 Tools for Analyzing the Ranking Models for Keyword Queries 16

2.4.1 Performance Upper Bound of Single-Term Queries 16
2.4.2 Multiple-Terms Keyword Queries Reduction 17

2.5 Contextual Suggestion . 19

2.5.1 Recommendation Systems . 20

v

3 TEACHING/LEARNING TOOLS FOR INFORMATION
RETRIEVAL . 22

3.1 Virtual IR Lab(VIRLab) . 23
3.2 Anserini . 25

3.2.1 Introduction . 25
3.2.2 Motivation . 27
3.2.3 Main Components . 29
3.2.4 Evaluation . 34

3.3 Summary and Future Work . 36

4 UNIFIED REPRODUCIBILITY EVALUATION SYSTEMS . . . 38

4.1 Privacy Preserving Evaluation Platform (PPE) 39

4.1.1 Introduction . 39
4.1.2 A General Framework of Privacy-Preserving Evaluation 40
4.1.3 A Specific Implementation . 41
4.1.4 Experiments . 45

4.1.4.1 Experiment Design 45
4.1.4.2 Retrieval Performance Comparison 46
4.1.4.3 Further Analysis . 48

4.2 RISE - A Reproducibility Platform for Retrieval Models 49

4.2.1 Reproduced Retrieval Functions 51

4.2.1.1 Okapi BM25 and Its Variants 52
4.2.1.2 Pivoted Normalization Function and Its Variants . . 53
4.2.1.3 Language Modeling Approaches 54
4.2.1.4 Divergence from Randomness Models 55
4.2.1.5 Information-based Models 55

4.2.2 Experiments . 55

4.2.2.1 Reproducibility Study 56
4.2.2.2 Experiment Design 56
4.2.2.3 Results . 56

vi

4.2.2.4 Performance Comparison on Web Search Collections 58
4.2.2.5 Summary . 60

4.3 Summary and Future Work . 60

5 TOOLS FOR UNDERSTANDING THE EXISTING IR
RANKING MODELS AND KEYWORD QUERIES 68

5.1 Performance Bound Analysis for Single Term Queries 69

5.1.1 Introduction . 69
5.1.2 A General Form of Retrieval Functions for Single-Term Queries 70
5.1.3 Upper Bound Estimation for MAP 72
5.1.4 Experiments . 74

5.1.4.1 Testing Collections 74
5.1.4.2 Experiment Setup 74
5.1.4.3 Results . 75
5.1.4.4 Parameters . 76

5.2 Reducing the Keyword Queries . 77

5.2.1 Introduction . 77
5.2.2 Subquery Ranking Details . 79

5.2.2.1 Problem Setup . 79
5.2.2.2 Subquery Ranking 79
5.2.2.3 Subquery Ranking Features 80

5.2.3 Experiments and Results . 89

5.2.3.1 Experiment Setup 89
5.2.3.2 Results of Subquery Ranking 91
5.2.3.3 Feature Importance Analysis 93

5.3 Summary and Future Work . 94

6 CONTEXTUAL SUGGESTION . 97

6.1 Mobile Context Tracking Application 98
6.2 Problem Formulation of Contextual Suggestion 99

vii

6.3 Category and Description based User Profile Modeling 100

6.3.1 Ranking Based on User Profiles 100

6.3.1.1 Category-based Similarity 101
6.3.1.2 Description-based Similarity 102

6.4 Opinion-based User Profile Modeling 102

6.4.1 Basic Idea . 102
6.4.2 Opinion-based Representation for Suggestions 105
6.4.3 Candidate Suggestions Ranking 106

6.4.3.1 Linear Interpolation 106
6.4.3.2 Learning to Rank . 108

6.5 Structured Summary Generation . 108
6.6 Experiments . 111

6.6.1 Data sets . 111
6.6.2 Experiments on Candidate Suggestion Ranking 112

6.6.2.1 Experiment Design 112
6.6.2.2 Results of candidate suggestion ranking 113
6.6.2.3 In-depth Analysis . 114

6.6.3 Experiments on Summary Generation 115

6.7 Summary and Future Work . 117

7 CONCLUSION AND FUTURE WORK 126

7.1 Conclusion . 126
7.2 Future Work . 127

BIBLIOGRAPHY . 129

Appendix

COPYRIGHTS . 140

viii

LIST OF TABLES

3.1 Indexing performance of Anserini on smaller collections using 16
threads on a modest commodity server. Index with term counts only
and with term counts and positions are included. 30

3.2 Indexing performance of Anserini, Indri and Terrier on smaller
collections using 16 threads on a modest commodity server. 30

3.3 Indexing performance of Anserini on web collections using 88 threads
on a high-end server. 31

3.4 List of TREC topic and judgment files collected in Anserini. 32

3.5 Retrieval efficiency for Terabyte 06 efficiency queries on Gov2, using a
single thread. 36

3.6 Effectiveness comparisons between Anserini and Indri on standard
TREC test collections. 37

4.1 Statistics of Test Collections . 45

4.2 Optimal Performance Comparison (MAP). Optimal parameter
settings are reported in parenthesis. 46

4.3 Retrieval functions that are reproduced in our study (Part 1) . . . 52

4.4 Retrieval functions that are reproduced in our study (Part 2) . . . 61

4.5 Data collections used for the reproducibility study 62

4.6 Performance comparison of reproduced and original results on
WT2G . 63

4.7 Performance comparison of reproduced and original results on
disk4&5 . 64

ix

4.8 The mean and standard deviation of the performance difference
between the reproduced and original results 65

4.9 Reproduced performance comparison for PL2 and NTFIDF 65

4.10 Optimal MAP/ERR@20 for all collections. ∗ indicates the model is
significant better than the base model in its category (always the first
one). † indicates the model is the best performed in its category. ‡

indicates the model is significant better than all other models in its
category. All significant tests are at p = 0.05 by a paired one-tailed
t-test. 66

4.11 Free Parameters used in Parameter Tuning 67

5.1 Instantiations of the general retrieval form 69

5.2 collections and queries . 74

5.3 Upper Bound of MAP . 75

5.4 Parameters . 76

5.5 Comparison of the MAP between using original queries and optimal
subqueries. Only queries of length 3 are shown and the ranking
function is BM25 . 79

5.6 Notations and Explanations . 81

5.7 Collections and Queries . 90

5.8 Results of using all features. OG represents the original query. SR
represents our subquery ranking model. UB represents the upper
bound where the optimal subquery for each original query is picked. 92

5.9 Feature importance analysis for queries of length 3, the lower the
better. The lowest value of each collection is bolded. TS1:
TS(MAX/MIN,SUM); TS2: TS(SUM,SUM); TS3:
TS(GMEAN,MEAN) . 96

6.1 Examples of Categories in Example Suggestions 101

6.2 Statistics of the three TREC collections 112

x

6.3 5-fold cross validation results using linear interpolation method. ∗ (or
†) indicates the improvement over the category-based (or
description-based) method is statistically significant. 120

6.4 Performance of learning to rank methods. ∗ (or †) indicates the
improvement over the category-based (or description-based) method
is statistically significant. 121

6.5 Top frequent terms in different user profiles (id:918) and positive
candidate profile (id:107) . 123

6.6 KL divergence between positive user profile (id:918) and positive
candidate profile (id:107) . 123

6.7 Comparison of results summarization methods 124

6.8 Evaluation results on the overlapped suggestions (measured by
accuracy) . 125

6.9 Evaluation results on all the suggestions (measured by accuracy) . . 125

xi

LIST OF FIGURES

3.1 Screenshots of function creation (left), function evaluation (center)
and function comparison (right) . 23

4.1 Three-level Support for PPE . 41

4.2 System Architecture . 42

4.3 Screenshot of code submission interface 43

4.4 Screenshot of the result page . 43

4.5 Parameter Sensitivity (MAP) . 46

4.6 Results of perturbation tests . 47

4.7 System Architecture . 50

4.8 Optimal Performances on ClueWeb Collections 59

5.1 Individual term scores. Term scores are computed using BM25 model.
Colors of the dots are the probability of relevant document at that
point. Axis labels show the IDF values computed by logN

df
. 84

5.2 Terms scores (computed by BM25) of the top 50 ranked documents in
the list. The numbers in the titles are the Average Precision of the
corresponding subquery. Green dots are relevant documents and red
dots are non-relevant documents. For each query only the optimal
subquery and the original query are shown. 85

5.3 Optimal Subqueries Lengths of queries with 3 terms. UB-1 denotes
the number of ground truth best subqueries that has 1 term. SR-1
denotes the number of subquery ranking model ranked best
subqueries that has 1 term. UB-2, UB-3, SR-2, SR-3 follow the same
notation. 93

xii

6.1 Data is immediately encrypted and uploaded. Encryption uses AES,
RSA with salt. 98

6.2 An example scenario when we know the user’s preferences for some
suggestions and want to predict the preference for the unknown one 118

6.3 An example results of different opinion-based representations 119

6.4 The linear interpolation method . 119

6.5 The performance of using less data to build user profile 122

6.6 Screen shot of the web-based annotation system to compare two
summary generation methods . 124

6.7 Screen shot of the web-based annotation system to evaluate the
effectiveness of components . 124

xiii

ABSTRACT

Information Retrieval (IR) is one of the most evolving research fields and has

drawn extensive attention in recent years. Because of its empirical nature, the ad-

vance of the IR field is closely related to the development of various toolkits. While

the traditional IR toolkit mainly provides a platform to evaluate the effectiveness of

retrieval models, there are many emerging challenges that needs to be addressed using

non-existing toolkits, e.g. teaching and research tools that scales at real world ap-

plication, unified reproducibility evaluation system and also new applications such as

contextual suggestion. In this thesis, we build various task-orientated IR toolkits in

order to better address the new challenges.

First, the education oriented Virtual IR Lab (VIRLab) and Lucene-based Anserini

is introduced in order to provide easy access to IR toolkits for both students and re-

searchers. These toolkits can greatly reduce the instructor’s work for teaching the IR

courses especially the teaching of ranking models. VIRLab provides a web-based in-

terface which enables the students to implement ranking models with just a few lines

of API calls. It also includes many facilities such as automatic evaluation, search en-

gine creation and the leader board for ranking models. Anserini is a command line

interface (CLI) based toolkit built on top of Lucene. The advantage of Anserini lies in

its capability of dealing with web-scale datasets and the utilities (e.g. multi-threaded

indexing and streamlined TREC evaluation) that are essential to IR researchers.

Next, we propose a privacy preserving evaluation (PPE) framework in order to

provide a general solution for the reproducibility study. In the framework, users would

have different permission levels of accessing to the data – from choosing the ranking

models from a list to leverage APIs to directly manipulate the index. We build a

second level PPE system for a commercial dataset where users can leverage APIs

xiv

to implement their ranking models and the performance is automatically returned.

We then introduce another instantiation of PPE framework – the Reproducible IR

system evaluation (RISE) – in order to provide a unified evaluation system for the

reproducibility study of IR ranking models. By using RISE, it is trivial to implement

the ranking models and compare its performance with all existing models. We believe

this could greatly reduce the redundant work of IR researchers on the unnecessary

re-implementation of other ranking models. More importantly, the unified result RISE

generates is the key to validate the utility of the proposed models.

Furthermore, we provide tools for analyzing the performance of existing ranking

models for keyword queries. The best performing ranking functions such as BM25 and

Dirichlet language model have been proposed for many years. Although there are some

recently proposed ranking functions, their performances cannot easily surpass the old

ones. Thus, it is interesting to investigate the reason behind this and also explore the

performance upper bound if there is any. In this thesis, we first apply the gain/cost

analysis in order to estimate the practical performance upper bound of single-term

queries. We then identify the best subqueries for multiple-terms keyword queries by

introducing several post-retrieval term relationship features. We argue that because

the original queries do not follow the intuitions of the newly proposed the features,

they do not achieve the better performances.

Last, we design an integrated contextual suggestion toolkit for contextual sug-

gestion. The novelty of contextual suggestion mainly lies in its “zero query” property,

meaning user does not need to submit query in order to get desired recommendations.

Our toolkit consists of two components: a mobile application that can automatically

detect the user’s “context” (e.g. location and datetime); and the other component is

essentially a recommendation system that can proactively suggests interesting venues

based on user’s current context and user’s preference history. For the recommenda-

tion part, we investigate category-based and opinion-based user profile modeling ap-

proaches. Both methods work well on TREC and Yelp collections. Detailed analysis

shows the advantage of opinion-based user profile modeling as it potentially answers

xv

“why does the user like a place”.

xvi

Chapter 1

INTRODUCTION

The past decades have witnessed the tremendous success of World Wide Web.

People all over the world can now access to publicly available information via commer-

cial search engines such as Google or Baidu with great ease. According to the online

statistics1, Google now (as of October 2016) can handle over 40,000 search queries

every second on average, which translates to over 3.5 billion searches per day and 1.2

trillion searches per year worldwide. With such huge volume of search activities it is

essential to keep improving the search infrastructures so that they can meet the user’s

information needs.

Information Retrieval (IR), usually used by academia in favor of its industrial

counterpart search engine, is one of the most evolving fields and has drawn extensive

attention in recent years. Although there are many research topics in IR that need

sophisticated theoretical analysis, the experiments are always needed to validate the

hypothesis proposed by the researchers due to the empirical nature of this fast evolv-

ing field. Traditionally, large amount studies related to the IR researches used toolkits

mainly to measure the effectiveness and efficiency of the corresponding works. For

example, the toolkits that measure the utility of the ranking model such as Indri and

Terrier; the toolkits that measure the reading rate of a specific indexing method such

as Indri. We can see that for some of the tools such as Indri has been used for many

years since its first release (back in 2000). However, the fast pace of IR research and

the emerging challenges that needs to be addressed require non-existing toolkits to ad-

dress. For example, IR toolkit for teaching/learning, unified reproducibility evaluation

1 http://www.internetlivestats.com/google-search-statistics/

1

system and other toolkits for new IR application such as contextual suggestion. In this

thesis, we build various task-orientated IR toolkits in order to better address the new

challenges and we will show more details in the following sections.

1.1 Tools for the IR Teaching/Learning

IR teaching and learning tools are essential for the spreading the IR techniques

and thus get more recognition from the general crowds especially the college students.

The tools also help the instructors to design the IR courses with more hands-on tasks

for the students which greatly enrich students’ knowledge base and their experimen-

tal skills. Unfortunately, current IR tools are mainly designed for more advanced

researchers and thus are not quite suitable for the people without too much specialty

of the field. We investigate some IR classes provided by colleges such as University

of Illinois Urbana-Champaign and University of Delaware. The toolkits used those IR

classes are the tailored version of Indri which was released years ago. Apparently, the

IR community lacks the special version of the IR tools which is dedicated for teaching

and learning the IR techniques. In this thesis, we propose two tools to address this

problem. Specifically, Virtual IR Lab (VIRLab) [32], a web based IR system mainly

aims for easy and fast evaluation of ranking models and Anserini [113], a Lucene-based

tool targeted for providing web-scale search ability tool with Command Line Interface

(CLI) and modular design. Designed as a web service, VIRLab provides an interface

which enables the students to implement ranking models with just a few lines of APIs

calls. It also includes many facilities such as automatic evaluation, search engine cre-

ation and the leader board for ranking models. All the functionalities are aimed to

provide a system where the students can focus on the real important parts of the IR

techniques without worrying too much about the system setup, scalability handling,

etc. Anserini2 is the other effort followed by VIRLab where the main concern is to

provide a more advanced CLI based tool for both students and researchers. Anserini

2 http://anserini.io

2

itself is built on top popular open source project Lucene3. In the first place, Lucene is

not specifically designed for students or IR researchers. The documentation of Lucene

is poorly maintained and this is, in our opinion, the main reason that prevents it from

being widely adopted by the IR community. However, the merits of Lucene should

not be ignored and this is where Anserini comes in. The advantage of Anserini lies in

its capability of dealing with web-scale data collections such as ClueWeb124 of which

the raw size is more than 7TB. This provides a good opportunity for people to have a

better sense of real world application and how important of scalability to a real system.

Anserini is also bundled with handy resources for IR research (e.g. queries and their

judgments) and popular 3rd party libraries like Ranklib5 and Deeplearning4J6 which

can be easily utilized by students and IR researchers to expand the current capability

of the tool. Anserini’s modular design is a perfect place for the users to configure and

understand the corresponding components. For example, indexing option can be easily

changed from porter stemmer to snowball stemmer so that the impact of such change

can be monitored.

1.2 Unified Reproducibility Evaluation System

Another research endeavor is a long standing problem in evaluating the effec-

tiveness of IR system7. For a typical IR evaluation system the ideal case is to have a

unified testing environment which is responsible for everything related to the evaluation

process except the ranking model part. That said, everything including pre-processing

and indexing the documents, generating the ranking list, evaluating the results, the

3 https://lucene.apache.org/

4 http://lemurproject.org/clueweb12/

5 https://sourceforge.net/p/lemur/wiki/RankLib/

6 https://deeplearning4j.org/

7 There are several aspects in IR system can be evaluated. We focus on the evaluation
of effectiveness of the system. Specifically only the effectiveness of the ranking model
is investigated

3

choice of evaluation metrics and interpretation of the performance, all should be un-

der the same settings if one’s purpose is purely compare the effectiveness of different

ranking models. However, different research groups would like to maintain/use their

favored toolkits such as Indri8, Terrier9 or ATIRE10 where the settings of the toolkits

are different enough to produce different ranking results [111]. Apparently the unified

evaluation system is the very basis of comparing the effectiveness of ranking models

and thus should be carefully treated. In this dissertation we propose two systems –

privacy preserving evaluation platform (PPE) [112] and Reproducible Information re-

trieval System Evaluation (RISE) [111] in order to offer unified evaluation toolkits to

the IR community for standardizing the comparison of ranking models.

It is well known that industrial data sets are valuable for the academic research

since they reflect real world information needs in a more practical way. However, data

from industry is normally protected by the owners of the data, e.g. companies like

Google or Yahoo and can not be disclosed or redistributed due to intellectual property

rights. Thus any experiments using the industrial data sets are often belong to some

specific researchers and can not be reproduced by others. In order to better leverage

the data sets from industry and bring the resource gap between the researchers who are

inevitably not sharing the same resources in the world, we propose a privacy- preserving

evaluation platform (PPE) for evaluation the information retrieval models. Specifically,

we propose that there could be a hierarchical structure for this platform: each level

exposures different aspects/information to the end users and thus the owner of the data

can dynamically control the accessibility of the data. For example, the highest level of

such system can just provide any available information of the data, e.g. the structure

of the index or the APIs that manipulate the index, which enables the users to explore

the data with greatest freedom. Then the second level could be hiding the details of

8 http://www.lemurproject.org/indri/

9 http://terrier.org/

10 http://atire.org/index.php

4

the index but showing the detailed search results, e.g. ranking scores of the documents.

The lowest level would be just the performance like MAP shown to the user without

further information. Such hierarchical model can provide a viable solution to utilize

the industrial data while the users do not necessarily have the permit to directly access

the data, and thus is preferable. To test the proposed platform we evaluate some classic

ranking functions such as BM25, Dirichlet language model, axiomatic model (F2EXP)

using the PPE platform. By incorporating the diagnostic analysis [30] we are able to

gain new insights about existing retrieval models. Although the experiments focus on

the evaluation of basic IR models, the framework can be easily generalized for other

tasks.

Followed by the idea of PPE we build RISE that instantiates the idea of PPE.

The uniqueness and the advantage of RISE is that they offer centralized and controlled

IR evaluation system which facilitates easy yet trusted comparison of retrieval models.

With the help of RISE we are able to conduct a comprehensive reproducibility study

for information retrieval models. In particular, we implement and evaluate more than

20 basic retrieval functions over 16 standard collections for IR research. Experimental

results allow us to make a few interesting observations. We first compare the evalua-

tion results with those reported in the original papers, and find that the performance

differences between the reproduced results and the original ones are small for majority

of the retrieval functions. Among all the implemented functions, only one of them

consistently generates worse performance than the one reported in the original paper.

Moreover, we report the retrieval performance of all the implemented retrieval func-

tions over standard test collections for IR research. This is the first time of reporting

such a large scale comparison of IR retrieval models. Such a comparison can be used

as the performance references of the selected models.

1.3 Tools for Analyzing the Existing Models

With the unified IR evaluation system like VIRLab and RISE we have men-

tioned above we are able to compare ranking models with ease and trust. After a

5

comprehensive comparison of the most widely used ranking models [110, 111] we find

that the optimum performances of some models [1,33,43,69,87,92,118] are quite similar

on several data collections for IR research. The commonalities of those models are:

(1) all of them are based on bag-of-terms document representation assumption. That

is, terms in the document are independent with each other and the occurrence (or ab-

sence) of one term does not affect the occurrence (or absence) of any other terms, and

(2) the models consist of basic signals (statistics) such as Term Frequency (TF), In-

verted Document Frequency (IDF), Document Length Normalization (DLN) and other

collection statistics [29]. With this finding some interesting questions here would be:

it remains unclear whether we have reached the performance upper bound for such

retrieval models. If so, what is the upper bound performance? If not, how can we do

better?

To find the performance upper bound is quite challenging: although most of the

IR ranking models deal with basic signals, how they combine the signals to compute the

relevance scores are quite diverse due to different implementations of IR heuristics [29].

This kind of variants makes it difficult to generalize the analysis. Moreover, typically

there are one or more free parameters in the ranking models which can be tuned via

the training collections. These free parameters make the analysis more complicated.

We can simplify the problem and just focus on single-term queries and study how

to estimate the performance bound for retrieval functions utilizing only basic ranking

signals. With only one term in a query, many retrieval functions can be greatly sim-

plified. For example, Okapi BM25 and Pivoted normalization functions have different

implementations for the IDF part, but this part can be omitted in the functions for

single-term queries because it would not affect the ranking of search results. All the

simplified functions can then be generalized to a general function form for single-term

queries. As a result, the problem of finding the upper bound of retrieval function

utilizing basic ranking signals becomes that of finding the optimal performance of the

generalized retrieval function. We propose to use cost/gain analysis to solve the prob-

lem [10, 11, 28]. As the estimated performance upper bound of simplified/generalized

6

model is in general better than the existing ranking models, this finding provides the

practical foundation of the potentially more effective ranking models for single term

queries.

To extend the analysis from single-term queries to multiple-terms queries is not

that obvious. However, some other clues can be utilized. Previous work [5, 52] have

shown that verbose queries often contain unnecessary terms which are actually harmful

to the effectiveness. Others [31] also found that this is also true for keyword queries for

web scale collection. Our empirical experiments confirm that keyword queries can also

be reduced in order to improve the performance for standard IR data collections. We

argue that because the original keyword queries do not have some preferable properties

that is why they can not achieve the best performance. In order to find such nice

properties we propose a set of novel features that can better capture the relations

among query terms, and then apply a learning-to-rank algorithm to rank the subqueries

based on these new features as well as some existing ones. Specifically, the proposed

features are query term proximity, the aggregated ranking scores of query terms, and

the compactness and position of term tensors. The query term proximity features

treat part of the query as phrases instead of separated terms and the intuition comes

from the term dependency model [72]. They try to capture the “tight bond” between

query terms. The aggregated ranking scores of query terms is originated from term

frequency and inverted document frequency constraint [30] and it mainly investigate

various high-level statistics from term scores (not the document scores) in the ranking

list. The compactness and position of term tensors features view the term scores as

tensors in the multi-dimensional space and measure the spatial properties of the tensors

cluster. We rank all subqueries for each original keyword query in standard IR data

collections using the state-of-the-art learning-to-rank algorithm LambdaMART. The

subquery ranking results show that we can identify the best subqueries more effectively.

We further do intensive feature importance analysis. The results verify the utility of

our proposed features.

7

1.4 Contextual Suggestion Tool

Last, we design an integrated contextual suggestion toolkit for the automatic

detection of the users “context” (e.g. location and date) via mobile application and then

proactively suggests interesting venues to the user based the context. The contextual

suggestion is a new area of the active IR research and the most notable feature of

contextual suggestion is its “zero query” property – to recommend interesting venues

to the users based on contextual information such as geographic location, temporal

information and user’s activity history but without user’s input query. For this task,

we first build a mobile phone application which can silently track the current context of

the user. We then recommend the interesting places to the user based on the detected

context.

User profiling is the key component to effectively rank candidate places with

respect to a user’s silent information need. In order to model use profile we first

propose to leverage the category and description information about the places in user’s

activity history to construct user profiles [105]. The advantage of such approach is

the ease of computation and the satisfactory results [27]. We further find that using

category or description to build a user profile is not enough: category of places is

too general to capture a user’s underlying needs; while the text description of a place

is too specific to be generalized to other places. In other studies [106–109, 114] we

leverage opinion, i.e. opinion ratings and the associated text reviews, to construct

an opinionated user profile. By doing like this we aim to explain “why the user likes

or dislikes the suggestion” instead of simply recording “what places the user liked or

dislike” in the search history. The problem of this approach is that on-line opinions

are notoriously skewed as only very small number of people post their opinions. To

address this data sparsity challenge we propose to also include the opinions from similar

users as the current user to construct the profile of current user. The assumption here

is that users with similar ratings have the similar reasons of giving the rating. By

modeling the candidate places in the similar fashion the similarity between user profile

and candidates profile is used to rank the candidates. We tried different representations

8

of the text reviews when modeling the profiles. We further apply Learning-to-Rank

(LTR) method to the similarity scores for the ranking method. Experiment results on

standard data collections and a self-crawled Yelp collection validate the effectiveness

of the method.

1.5 Summary

IR community needs a set of new tools to address the emerging challenges. In

the following of this thesis we will be introducing more details on the tools we develop

for various tasks.

The rest of the thesis is organized as follows. First, we discuss some general

background of the thesis and the previous work in Chapter 2. In Chapter 3, we discuss

the IR teaching and learning tools VIRLab and Anserini – their advantage in providing

the real world experience to the users and the typical use cases. We describe our effort

on the unified evaluation systems in Chapter 4. There we will have detailed illustration

of our proposed systems, namely PPE and RISE. We explain how we build tools to

analyze the performance upper bound for single term queries in Chapter 5. Later

in that chapter we continue to introduce how we identify key features to reduce the

multiple-terms keyword queries. In Chapter 6, we continue to explore the tools for new

IR application – the contextual suggestion, where we first build a mobile application

to capture user’s location and temporal information. We then build a recommendation

tool to suggest interesting places to the user based on user’s preference history. We

finally summarize the thesis and discuss the future work in Chapter 7.

9

Chapter 2

BACKGROUND AND RELATED WORK

In this thesis, we build the tools and systems for various IR tasks in order to

better address the new challenges of the emerging problems. Specifically, four sets of

tools are proposed: tools for IR teaching and learning; tools for reproducibility study

and the evaluation; tools for analyzing the performance of existing ranking models and

the tools for the new IR application i.e., contextual suggestion. In this chapter, we will

describe the necessary background and the key concepts for understanding the thesis.

We will also describe the previous work in the related research fields.

2.1 TREC and TREC Collections

Most IR research deals with data collections no matter which specific problem

is been explored. There are several standard data collections we have mentioned in

Chapter 1. Since for most of the work, we mainly focus on the most basic problems in

IR, e.g. the efficiency and the effectiveness of ranking models as well as the indexing

over the standard TREC Ad-hoc/Web collections, It is essential to introduce TREC

conference and TREC Ad-hoc/Web collections.

2.1.1 TREC

TREC stands for Text RetriEval Conference1 and is co-sponsored by the Na-
tional Institute of Standards and Technology (NIST) and U.S. Department of Defense.
The first TREC was held in 1992 as part of the TIPSTER Text program. Its purpose
was to support research within the information retrieval community by providing the
infrastructure necessary for large-scale evaluation of text retrieval methodologies. In
particular, the TREC workshop series has the following goals:

1 http://trec.nist.gov/

10

• to encourage research in information retrieval based on large test collections;

• to increase communication among industry, academia, and government by creat-
ing an open forum for the exchange of research ideas;

• to speed the transfer of technology from research labs into commercial products
by demonstrating substantial improvements in retrieval methodologies on real-
world problems; and

• to increase the availability of appropriate evaluation techniques for use by indus-
try and academia, including the development of new evaluation techniques more
applicable to current systems.

There are several tracks in TREC such as Ad-hoc track [41], Robust track

[98, 99], Web track [22], Million Query track [15], Microblog track [62, 63], Contextual

Suggestion track [25, 26], Session Track [12, 13], etc. Apparently, different tracks have

different purposes. Our work mainly relates to Ad-hoc track, Web track and Contextual

Suggestion track.

Ad-hoc track mainly refers to the tracks in earlier years whose main aim is to

improve the effectiveness of general search, e.g. random daily searches. Web track

is very similar to Ad-hoc track in terms of the formatting – it mimics the general

searches from the users. However, the data sets used in Web track is in general larger

than that of Ad-hoc track in order to reflect the fast-growing of the data in the real

world. Contextual Suggestion track is different from Ad-hoc track and Web track.

There are no queries in this task to model the dynamic needs of mobile search. Users’

preference histories instead of the queries are provided and the system is expected to

recommend interesting places and events based on user’s current context.

2.1.2 TREC Ad-hoc/Web Collections, Topics, Judgments and Evaluation

Metrics

One of the most valuable stuff of TREC is its data collections, the queries, and

the corresponding judgments for the collections. They together provide a standard way

to evaluate the systems, models, algorithms submitted by different research groups all

over the world.

11

In our thesis, we mainly use the Ad-hoc track data collections and the Web track

data collections. Disk1&2, Disk4&5, AQUAINT are the data collections for Ad-hoc

track. They are relatively small (less than 5GB per collection) and old (were used in

2005 TREC or before). The contents are mainly news articles and government records.

WT2G, WT10G, GOV2, ClueWeb09, ClueWeb12 are for Web track and all of them

were crawled from the web. WT2G, as its name suggests, is only 2GB. WT10G is 10GB.

GOV2 is crawled from .gov domain and is over 270GB. ClueWeb09 and ClueWeb12

are the much larger data sets recently crawled. ClueWeb09 is over 5TB uncompressed

and ClueWeb12 is over 7TB uncompressed. There are two sub-collections for ClueWeb

collections – ClueWeb09B and ClueWeb12B where only the English pages are kept

and the non-English pages are not part of them. ClueWeb09B and ClueWeb12B are

roughly 1/10 in terms of size compared with the full collections.

Topics are essential the queries. For Ad-hoc and Web track, some queries contain

three parts: title, description, and narrative. Title query is very short, about 2 to 6

words. Description query is longer and the narrative is the longest with much more

details such as the intention and the expected results of the query.

Judgments contain which documents in the collection are relevant to a specific

query. There are basically two types of judgments: binary and numeric. For binary

judgment the document is labeled as relevant (usually “0”) or non-relevant (usually

“1”). For numeric judgment, numbers are assigned to documents indicating the differ-

ent level of relevant, e.g. highly relevant, relevant and non-relevant.

Evaluation metrics are mainly used to as a single point indicating how good is the

model or system. Mean Average Precision (MAP), Normalized Discounted Cumulative

Gain (nDCG), Precision, Recall are the most commonly used ones. MAP is mainly

for binary judgment while nDCG is for numeric judgment. Precision and Recall are

often followed by a number indicating we only judgment till a specific position in the

ranking list. For example, P@5 means we only look at the top 5 ranked documents in

the ranking list and the metric is just for them.

12

2.2 Typical Ranking Models and Index Structure

We would like to introduce the typical ranking models such as BM25 [87] and

Dirichlet Language Model [82] and the key information stored in an index. Some

ranking models will be used for the entire thesis so it is better to introduce them

before actually use them. BM25 and Dirichlet Language Model are the most widely

used ranking models in IR research. BM25 was proposed by Robertson et al. back in

1994 in TREC-3. Dirichlet Language Model was firstly proposed in 1998. Albeit the

mentioned models are old, they are still among the most effective ranking models [111].

These models are based on bag-of-terms document representation assumption where

the terms are seen individually and there is no relationship between them. Although

this assumption may be far away from the truth, the ranking models based on this

assumption have decent performance. Other popular bag-of-terms ranking models

include the Divergence from Randomness model [1] and Axiomatic Models [33]. In

chapter 3, we will introduce the different index for the data collections and we would

like to provide some basic knowledge about the index and the relationship between

the index and the ranking models. When we build the index for a document (or a

set of documents) we are basically extracting the information from the document. We

will introduce the most important ones here: term counts, positions and document

vector. Term counts are the most basic information and are basically the number of

occurrence of each term in the document. Most ranking models which are based on

bag-of-terms, such as BM25 and Dirichlet Language Model need term counts in order

to work. Positions record the position of each term in the document. This is required

for proximity query where the distance between query terms is needed. The structure

of most indexes is the inverted posting lists where the terms are the entries of the

posting lists and there is no information about a specific document, e.g. which terms

are in a document. But index can also have document vector where the terms and their

counts and positions of a document are also stored. The document vector is essential

for relevance feedback where we look at the top ranked documents and compare the

query terms with the document vector.

13

2.3 IR Toolkits for Teaching and Research

Tools for teaching and research are always important for any research field.

There are various efforts from the related fields such as machine learning, signal pro-

cessing [45] or natural language processing. There have been significant efforts on

developing various single-machine tool and web services for IR teaching and research.

We first introduce some long-lived and popular tools for IR researchers. Indri2 is

probably the most popular and one of the oldest toolkit for IR research community. The

main purpose of Indri is to provide the indexing and searching functionality mainly

focus on the inference network with language models. Galago can be seen as the

upgraded version of Indri which is written in Java. The emphasize of Galago is to

provide the similar functionality with Indri while improving the efficiency. Terrier3 is

another excellent tool for efficient indexing and retrieval. Lucene4 is an open source

project built for easy deployment of the real-world search application. Some biggest

advantages of Lucene include its capability of dealing with web-scale data set and the

general acceptance of from people. There are some other tools which also provide the

basic functionality of indexing and retrieval over data collections such as ATIRE5.

We build Anserini on top Lucene in order to leverage its merits since Lucene

is not intrinsically for IR research. Anserini ships with the following functionalities:

multi-threaded indexing, TREC topics and judgments for streamlining the evaluation

and utilities such as relevance feedback. These functionalities are in hope of bridge the

gap between Lucene and IR researchers to let them better understand the advantage

of Lucene when dealing with large web-scale data collections.

Move the evaluation from the single machine tool to web service or Evaluation-

as-a-Service (EaaS) [60, 61, 86] and make it automatic is a new trend. The trend is

2 https://www.lemurproject.org/indri/

3 http://terrier.org/

4 https://lucene.apache.org/

5 http://atire.org/index.php?title=About ATIRE

14

closely related to the reproducibility study. The SIGIR 2015 Workshop on Repro-

ducibility, Inexplicability, and Generalizability of Results (RIGOR) [44] is one of the

venues that encourage the study of reproducibility. Their reproducibility challenge in-

vited developers of 7 open-source search engines to provide baselines for TREC GOV2

collection. Trotman et. al. [96] and Muhleisen el. al. [74] have also tried to reproduce

retrieval results for IR models, but the number of retrieval functions and the number

of collections used in these studies (1 function 1 collection for [96] and 9 functions 10

collections for [74]) are not as large as what we studied in this paper. Lin et al. [58]

proposed an open-source IR reproducibility challenge where they split the IR system

into pieces of components such as two kinds of tokenization methods and four differ-

ent IR toolkits. By easily configuring different combinations of these components, we

can have a partially filled matrix indicating the performances of specific combinations

of the components. Such transparent experiment set up makes it possible to have a

better understanding about the impact of different components. Gollub et al. [38] de-

scribed a reference implementation of their proposed IR evaluation web service which

bears the important properties like web dissemination and peer-to-peer collaboration.

Hanbury et al. [39] reviewed some of the existing automated IR evaluation approaches

and proposed a framework for web service based component-level IR system evalua-

tion. Lagun and Agichtein proposed a web service, which enables large scale studies of

remote users [53]. Their system focused on providing a platform that reproduces and

extends the previous findings on how users interact with the search engine especially

the search results. Xitong et al. [67,68] provided a system that can benefit the teaching

of IR by introducing the entity related tasks.

We have developed three systems: Virtual IR Lab (VIRLab), Privacy Preserving

Evaluation (PPE) and Reproducibility Ir System Evaluation (RISE). VIRLab [32] pro-

vides a web service for users to implement retrieval functions. It is mainly designed to

facilitate teaching IR models. PPE is designed mainly for IR researchers in academia

to leverage the private industrial data sets. The system hides the data collection (or

the index) from the users, which avoids the re-distribution of the data collection. RISE

15

is also designed as a web service to provide a unified interface for the users to evaluate

their models/algorithms. The uniqueness of RISE system is that it is specifically de-

signed to facilitate the implementation and evaluation of retrieval functions. It hides

the details about collection processing and evaluation, and enables users to focus on

only the implementation of retrieval models. Because of its flexibility, we are able to

implement and compare a wide range of retrieval functions that were not implemented

in any other open-source toolkits. Second, our reproducibility study includes more

retrieval functions and more data collections. The ultimate goal of the RISE system is

to provide a complete set of benchmark results of IR models.

2.4 Tools for Analyzing the Ranking Models for Keyword Queries

2.4.1 Performance Upper Bound of Single-Term Queries

Although there are lots of effective ranking models proposed by researchers,

there are fewer studies dedicated to the theoretical analysis of their performances up-

per bound. One related domain is the constraint analysis [29] which proposes formal

constraints that a reasonable ranking model should bear. Examples of the constraints

including how should a ranking model incorporate TF, how to regulate the interaction

of TF and DL, how to penalize long document in the collection, etc. The constraint

analysis provides a general guide of how a reasonable ranking model should be designed.

Our work further explores this direction by providing the practical performance upper

bound as well as the optimal parameters which helps to fine tune the constraint theory.

Our estimation method is mostly inspired by the RankNet [10,11] and the Lamb-

daRank [10,28] which are successful in the learning to rank domain. In their works they

apply the pair-wise documents comparison for a specific query which is also adopted

by our work. However, we did two different things in our work: (1) the aforementioned

techniques apply neural network as the underlying model while we follow the rationale

proposed by some classic ranking model, i.e. the ranking score should be positively

correlated with TF and inversely correlated with DL, to find the local optimum of the

generalized ranking models. (2) we aim to optimize MAP instead of NDCG and we

16

proposed a simplified equation for calculating the difference of MAP if two documents

are swapped in the ranking list which can make the analysis more efficiency. There is

another work which indeed directly optimizes MAP called SVMMAP [116]. SVMMAP

is actually another learning to ranking algorithm based on support vector machine. It

performs optimization only on a working set of constraints which is extended with the

most violated constraint at each optimization step. Taylor et al. [95] used the cost

analysis to predicate a family of BM25 ranking models. They however did not apply

the gain analysis which has shown to be superior in our experiments.

2.4.2 Multiple-Terms Keyword Queries Reduction

Reducing verbose queries to shorter queries has been intensively studied in re-

cent years. Most previous work involves in generating the features for either the orig-

inal query Q, the subquery q or groups of terms. Basically there are several features

categories:

Statistical Features TF-IDF based features are the most widely used set of statistical

features which include various statistics such as collection TF [8], IDF [52], residual IDF

[23], TF in matching Wikipedia titles [47], count of passages containing the subquery

[80,103] etc. Other popular features include simplified clarity score [23,52] and mutual

information (MI) between query terms [50,51,104], domain specific dictionaries based

features such as whether the term indicating a brand [104].

Query Features Query features are only based on the query itself and no collection

context is involved. Similarity Original Query measures the cosine similarity between

TF-IDF vectors of each subquery and the original query [52]. Presence of Stop Words

[5,80] computes the ratio of stop words in subquery. IsRightMost and IsLeftMost [104]

are the features that capture the position of the subquery in the original query.

Term Dependency Features These features capture the dependencies between query

words. Park et al. [80] proposed four types of dependencies among query terms: parent-

child, ancestor-descendant, siblings and c-commanding. The final features include the

17

number of dependent clauses in the query; the ratio of the dependent term pairs which

have parent-child; ancestor-dependent, siblings, and c-commanding in the query.

Post Retrieval Features These features are based on the ranking results of sub-

queries. Typically, these features are expensive to compute but they have been proven

to be effective. Query-document Relevance Scores [5, 18] are the LambdaRank and

BM25 scores of top K documents, the click through counts of top K documents and

the page-rank scores of top K documents. Query scope [52] of a subquery is the size of

the retrieved document set relative to the size of the collection. Weighted Information

Gain [8] is the difference of the retrieval quality by comparing the state where only the

average document is retrieved to the state where the actual results are observed. Query

drift among results [23] is a set of features which include the standard deviation of the

ranking scores at 100 documents, the maximum standard deviation in the ranking list,

etc.

Our proposed features are all post-retrieval features and some of them share the

similar ideas with previous studies, e.g. term proximity based features are inspired

by the term dependency features mentioned above. Different from the previous work,

we are interested in the document score of the proposed term proximity models and

various properties of the term scores.

A large number of research efforts have been made towards combining the fea-

tures using a classification or a regression model. The classification problem is equiv-

alent to pick the best subquery and it typically decides whether a term in the original

query should be included in the best subquery. The regression problem is to learn a

weight for each term denoting its importance score or to learn a weight for a sub-query;

the top terms or the subquery with highest weight is then chosen. RankSVM [5,52,79],

decision trees, AdaBoost, logistic regression [104] are popular classification models

while random forests [5] is the most popular regression model. We adopt the classifi-

cation model in our work where we apply the LambdaMART to the features from all

subqueries and the model learns which subquery should be the best subquery.

18

2.5 Contextual Suggestion

The problem of contextual suggestion was first introduced at TREC in 2012,

and the track has been running in the past four years [24–27]. Although the details

of the track varied, the task remains the same. Given a user’s preferences on a set of

example suggestions and a context, track participants are expected to return a ranked

list of new suggestions that are likely to satisfy both the user preferences (based on their

preferences on the example suggestions) as well as the contexts such as geotemporal

locations. Each example suggestion includes a title, description and an associated URL.

For each user, we know their preferences on part or all of the example suggestions.

Most TREC participants retrieved candidate suggestions from various online

services such as Google Place or Yelp based on the geographical context and then use

some heuristics, e.g. nightclub will not be shown if the temporal context is in the

morning, to filter out the suggestions that do not match the temporal contexts [25,27].

After that, the task is to retrieve useful suggestions based on user preferences. Most

participants formulated the task as a content-based recommendation problem. For

example, Hubert and Cabanac [46] used the terms in the description as the profile

of the places. They use the web contents of the candidate places to compare with

the example places in order to get rank the candidates. Yang et al. [115] used the

proportion number of the places in each category to select the places among categories.

Yang et al. [105] applied the hierarchical category structure to compute the similarity

between examples and candidates. Rao and Carterette [85] also leveraged the TREC

official description and other text description crawled from the open web to model the

problem as a general text retrieval problem. McCreadie et al. [71] tried to extract the

business hours, location of the business, tf-idf value of description terms in Wiki Travel

as the features to feed a learning-to-rank algorithm. A common strategy adopted by

top-ranked participants of TREC is to estimate a user profile based on the example

suggestions and then rank candidate suggestions based on their similarities to the user

profile. The basic assumption is that a user would prefer suggestions that are similar

to those example suggestions liked by the user.

19

There are some studies that used terms from the description of the places or

the web pages of the example suggestions to construct user profiles, and then various

similarity measures are used to rank the candidates [105, 114]. A few studies also

explored the use of category information for user profiling and candidate ranking. For

example, Li and Alonso [57] utilized the accumulative category scores to model both

user and candidate profiles, and then use the full range cosine similarity between the

two profiles for candidate ranking. Li et al. [56] leveraged how likely each popular

category is liked/disliked by users to construct user profiles, and the candidate ranking

is to favor suggestions from a user’s favorite categories. McCreadie et al. [71] proposed

to rank the candidates by comparing two trees of finer-grained categories between

user profile and candidate profile using a tree-matching technique. Diversification is

then applied so that the categories of top ranked candidates are normalized. Yates et

al. [115] proposed to recommend the candidates which are proportional to the number

of example suggestions in each category. Koolen et al. [49] applied a similar method

with a major modification of retrieving the category information from Wikitravel6.

Although we also use category and description of example suggestions to build

user profile, we propose to leverage text reviews about the example suggestion to

estimate the user profile which is unseen from previous works.

2.5.1 Recommendation Systems

The problem of contextual suggestion is also similar to collaborative filtering

[93]. Collaborative filtering assumes that similar users would share similar ratings, and

focuses on predicting the user rating based on such an assumption. It often requires a

large number of past user preferences to be more accurate and sometimes it may suffer

from data sparsity problem which is known as the cold start problem [89]. In order to

solve the data sparsity problem, reviews were incorporated to improve the performance.

Hariri et al. [40] inferred the context or the intent of the trip by analyzing reviews.

In particular, they used latent Dirichlet Allocation to identify the topics from the

6 http://www.wikitravel.org/

20

reviews, and the final ranking scores are generated based on both the context scores

as well as the scores generated by traditional collaborative filtering methods. Jakob

et al. [48] proposed to cluster the features and then apply natural language processing

techniques to identify the polarity of the opinions. A few studies also focused on

leveraging Location Based Social Network to solve the data sparsity problem. Noulas

et al. [76] applied random walk based on latent space models and computed a variety of

similarity criteria with venue’s visit frequencies on the location based social newtowkr.

Bao et al [6] proposed to first constructing a weighted category hierarchy and then

identify local experts for each category. The local experts are then matched to a given

user and the score of the candidate is inferred based on the opinions of the local experts.

Our work is also related to other studies that utilized reviews to improve the

performance of recommendation systems. Raghavan et al. [84] proposed to use the

helpfulness, features from the text reviews and the meta-data (average rating, average

length of text reviews and etc.) of the opinions to train a regression model in order to

generate a quality score for each opinion. The quality score is then incorporated into

the probabilistic matrix factorization as an inverse factor which affects the variance

of the prediction from the mean of the factor model. Levi et al. [55] extended this

study and analyzed the review texts to get the intent, features and the ratings for

each feature. Qumsiyeh and Ng [83] explored the aspects in the reviews and computed

the probability of each genres (categories) in each rating level. Their work is limited

to the applications in multimedia domains, and the genres of each type of media is

pre-defined.

Our work is different from these previous studies in the following aspects. First,

our focus is to directly use reviews to model user profile while previous studies mainly

used reviews to predict the rating quality or the user intent. Second, existing studies on

collaborative filtering were often evaluated on only specific applications, e.g., movies,

hotels, and it is unclear how those methods could be generalized to other domains.

In contrast, our proposed method is not limited to any specific domains and can be

applied to a more general problem set up.

21

Chapter 3

TEACHING/LEARNING TOOLS FOR INFORMATION RETRIEVAL

IR teaching and learning tools are essential for the spreading the IR techniques

and thus get more recognition from the general crowds especially the college students.

The tools also help the instructors to design the IR courses with more hands-on tasks

for the students which greatly enrich students’ knowledge base and their experimental

skills. Unfortunately, current IR tools are mainly designed for more advanced re-

searchers and thus are not quite suitable for the people without too much specialty of

the field.

In this thesis, we first propose Virtual IR Lab (VIRLab) [32], a web based IR

system mainly aims for easy and fast evaluation of ranking models. VIRLab lets the

users of the system to implement their ranking functions using the system provided

APIs for manipulating the index. The implemented ranking functions are automat-

ically evaluated and the performance is returned to the users. VIRLab has other

utilities such as leader board which compares the ranking functions submitted by the

users, search engine creation which enables the users to create a demo search engine,

detailed comparison between ranking functions where the graphical tools can be used

to investigate the ranking difference between two functions side by side.

Anserini aims to enable IR researchers to leverage the power of Lucene but with

much less burden on exploring Lucence from scratch. Specifically, Anserini provides

a thin wrapper that can allow users to use high-level APIs to pick and combine some

underlying code pieces from Lucene to accomplish their tasks. Moreover, the modular

design of Anserini makes the implementation of new components more flexible and

faster. In addition to search, Anserini can also support new functionalities such as

learning-to-rank and word embedding. Finally, shipped with all TREC ad hoc/web

22

Figure 3.1: Screenshots of function creation (left), function evaluation (center) and
function comparison (right)

track topics and judgments, Anserini provides a convenient way to obtain such publicly

available resources for IR researchers and greatly reduces the unnecessary replicated

work. When comparing the Anserini with other academic IR toolkits, Anserini has been

shown to be more efficient in terms of both indexing and retrieval while maintaining

comparable performance in terms of effectiveness.

3.1 Virtual IR Lab(VIRLab)

In this section we describe our efforts on developing a web-based tool for IR

researchers and students to study retrieval functions in a more interactive and cost-

effective way. Our developed Virtual IR Lab (VIRLab) is our first attempt of making

a unified evaluation system and it can offer the following functionalities:

• Easy implementation of retrieval functions : Users only need to write a few lines of
code through a Web form to combine statistics retrieved from the indexes without
worrying about how to access the indexes. The code will be automatically checked
for syntax errors and translated to an executable, which will be used for ranking
documents, by a dynamic code generator.

• Flexible configuration of search engines : Users can configure a search engine by
selecting a retrieval function and a test collection. Multiple search engines can
be easily created at the same time. The users can either submit their own queries
or select queries from a set of topics associated with the corresponding document
collection. Moreover, the users can also compare the search results of two search
engines side by side to figure out their ranking differences.

23

• Tight connections among implementation, evaluation and result analysis : After
creating a retrieval function, the users can evaluate its effectiveness over a few
provided test collections by simply clicking a button. If a retrieval function
contains multiple parameter values, the users may select to evaluate all of them.
If a search engine is configured using an existing test collection with relevance
judgments, the official queries and judgments will be displayed so that the users
can easily analyze the search results to figure out when the search engine fails
and why.

• Performance comparison through leader-boards : A leader board is created for
each collection so that the most effective 10 retrieval functions are displayed.
Users can see how their retrieval functions are compared with others, and they
can also leverage the comparison functionality described earlier to figure out how
to revise their retrieval functions to improve the performance.

Figure 3.1 shows the screen-shots of three major functionalities including cre-

ating a retrieval function, evaluating the function and comparing the results of two

functions. We now provide more details about these functionalities. The front end of

the system is a web interface that allows users to create retrieval functions. Specifically,

a user can implement a retrieval function by simply combining multiple features (i.e.,

collection statistics) from a provided list based on C/C++ syntax. As an example,

the left part of Figure 3.1 shows how the Dirichlet prior retrieval function is imple-

mented. Moreover, instead of specifying a single parameter value, the users can also

specify a set of values for retrieval parameters, and then the system will automatically

create a group of functions with these parameter settings. Once a retrieval function

has been created, the user can select test collections and evaluate the effectiveness of

the retrieval function over the collections (as shown in the middle part of Figure 3.1).

The front end also enables users to use or evaluate the retrieval function through

a web-based search interface. The user first needs to create a search engine by selecting

a retrieval function and a document collection. After that, the user can either enter her

own query or select a query from existing test collections when queries are available.

If the query is from the test collections, we will display not only search results but

also the relevance judgment of these results as well as the evaluation results for the

query. This feature would allow users to easily see when their search engines fail or

24

succeed and encourage them to identify the problems and try to fix them by changing

the retrieval function. Moreover, we also empower users to compare the search results

of two search engines side by side so that they could analyze them and identify how

to revise one of the search engines accordingly. The right part of Figure 3.1 shows the

screen shot of this functionality.

To promote controlled experimental study of IR, we generate a leader-board to

report the best performed retrieval functions for each collection. Users can compare the

results of the best system with their own retrieval functions through both side-by-side

search result comparison and quantitative evaluation comparison.

The back end of the system includes several basic components such as indexer,

ranker and evaluation script. The indexing process is done off line. Several standard

TREC ad hoc collections have been indexed and ready for users to choose from. The

ranker is determined by the retrieval function that the user provided through the front

end.

As our first attempt, VIRLab is suitable for general purpose of IR research or

study. However, if we want to deploy a large scale of reproducibility study then we

need a more advanced system where users can collaborate with each other and focus

on the implementation and the evaluation of the retrieval functions. We will introduce

the other effort RISE in the next section.

3.2 Anserini

3.2.1 Introduction

Information retrieval researchers have a long history of developing, sharing, and

using software toolkits to support their work. Over the past several decades, various

IR toolkits have been built to aid in the development of new retrieval models, to test

hypotheses about information seeking, and to validate new evaluation methodologies.

As the field moves forward, IR toolkits are expected to keep up with emerging require-

ments such as the ability to handle large web collections and new data formats. The

growing complexity of modern software ecosystems and the resource constraints felt

25

by most academic research groups make maintaining open-source toolkits a constant

struggle.

Most IR toolkits developed by academics, such as Indri,1 Galago,2 and Terrier,3

were primarily designed to facilitate evaluation over standard test collections from

evaluation forums such as TREC, CLEF, NTCIR, etc. In many cases, scalability

took a back seat to efforts around improving retrieval models, and thus these systems

often struggle to scale to modern web collection. As an example, the ClueWeb12

collection4 contains 733 million web pages, totaling 5.54 TB compressed (or 27.3 TB

uncompressed). The standard practice for working with this collection, as exemplified

by the infrastructure built for the TREC 2014 Session Track [14], is to separately index

partitions of the collection and then build a distributed architecture that integrates

results from each partition. In general, working with web-scale collections using existing

academic IR toolkits is time- and resource-intensive, even for basic tasks.

With the exception of a small number of companies (e.g., commercial web search

engines), the open-source Lucene system5 and its derivatives such as Solr and Elastic-

search (for convenience, we simply refer to as “Lucene” collectively in this thesis) have

become the de facto platform for deploying search applications in industry. Examples

include LinkedIn, Twitter, Bloomberg, as well as a number of online retailers and many

large companies in the financial services space. Despite its undeniable operational suc-

cess, a large user base, and a vibrant community of contributors, Lucene is not well

suited to information retrieval research. For many reasons, including poor documen-

tation of system internals and a number of unintuitive abstractions, Lucene is not as

widely used for research as academic toolkits such as Indri or Terrier.

1 http://www.lemurproject.org/indri/

2 http://www.lemurproject.org/galago.php

3 http://terrier.org/

4 http://www.lemurproject.org/clueweb12/

5 https://lucene.apache.org/

26

http://www.lemurproject.org/indri/
http://www.lemurproject.org/galago.php
http://terrier.org/
http://www.lemurproject.org/clueweb12/
https://lucene.apache.org/

In this thesis, we describe our efforts in developing a new open-source informa-

tion retrieval toolkit called Anserini that builds on Lucene.6 We aim to bridge the

gap described above that separates the practice of building real-world search applica-

tions from information retrieval research. Anserini provides wrappers and extensions

on top of core Lucene libraries that allow researchers to use more intuitive APIs to

accomplish common research tasks. Our initial efforts have focused on three function-

alities: scalable, multi-threaded inverted indexing to handle modern web collections,

streamlined IR evaluation for ad hoc retrieval on standard test collections, and an ex-

tensible architecture for multi-stage ranking. Anserini ships with support for standard

TREC test collections, providing a convenient way to replicate competitive baselines

“right out of the box”, supporting the community’s aspirations toward reproducible

results [2, 32,35,59,100,111].

We experimentally evaluate the efficiency and effectiveness of Anserini on a

number of standard test collections. In terms of indexing performance, it is able to

handle the largest research web collection available today with ease on a single modern

server. We observe better indexing performance compared to Indri, a popular choice

among researchers today. In terms of retrieval, we also find that Anserini is not only

faster than Indri, but returns rankings that are comparable in quality. In other words,

Anserini is faster and just as good. We present the case that Anserini should be adopted

as the toolkit of choice for information retrieval researchers.

3.2.2 Motivation

Despite its popularity in industry and broad adoption for operational search

deployments, Lucene remains under-utilized in information retrieval research. We begin

with some high-level discussions of why we believe this might be so to motivate our

efforts in building Anserini.

From the very beginning, Lucene was written for “real world” search applica-

tions, not with researchers in mind. For the most part, its developers targeted an

6 http://anserini.io/

27

http://anserini.io/

audience that mostly used search engines as black boxes, as opposed to researchers

that required access to ranking internals such as scoring models, mechanisms for post-

ings traversal, etc. Because of the target user population, documentation for Lucene

internals has always been quite poor, especially in keeping up with the relatively rapid

pace in which the developer community has been releasing improved versions of the

software. Access to these internals is exactly what information retrieval researchers

need for their studies, and therefore poor documentation has been a barrier to entry.

To further compound this issue, the internal APIs in Lucene are not organized

in a way that would be intuitive to most IR researchers, with class names that are not

indicative of functionality and many levels of indirection. This is not an issue for “black

box” users of Lucene, but presents a hurdle for information retrieval researchers who

desire access to system internals. As an example, the code to open up a Lucene index

and to traverse postings programmatically (without invoking the scoring function) is

unnecessarily complex and involves dispatching to several intermediate classes along

the way. Some researchers have the impression that Lucene is difficult to use, and

indeed there is some truth to this, especially with respect to low-level abstractions.

Another side effect of Lucene’s focus on “black box” search is that it has severely

lagged behind in the implementation of modern ranking functions. For the longest time,

the only scoring model available was an ad hoc variant of tf-idf. BM25 was not added

to Lucene until 2011,7 more than a decade after BM25 gained widespread adoption

in the research community as being more effective than tf-idf variants. This lag in

adopting “research best practices” has contributed to the perception that Lucene is

not effective and ill-suited for information retrieval research. However, this perception

is no longer accurate today. Lucene comes with implementations of modern baseline

retrieval models, and we show that the effectiveness of Lucene’s implementations is at

least as good as those offered by academic IR toolkits (see Section 3.2.4).

Finally, because Lucene is written in Java, there is sometimes the perception

7 https://issues.apache.org/jira/browse/LUCENE-2959

28

https://issues.apache.org/jira/browse/LUCENE-2959

that it is slow and inefficient, particularly when scaling up to modern web collections.

Developers often point to the managed memory environment of the Java Virtual Ma-

chine (JVM) as not being conducive to efficient low-level implementations of search

engine internals. We experimentally show that this is definitely not true (see Sec-

tion 3.2.4). The open-source community has devoted substantial effort to optimizing

the performance of Lucene and taking advantage of today’s multi-core processors. It

is capable of handling large web collections on a single server with ease.

The goal of Anserini is to align the research and practice of building search

applications with research in information retrieval. Colloquially speaking, our toolkit

aims to smooth out the “rough edges” around Lucene for the purposes of information

retrieval research. It is not our goal to replace or reimplement Lucene, but rather to

facilitate its use as a research toolkit by presenting as gentle a learning curve as possible

to newcomers.

3.2.3 Main Components

Anserini Components fall into two categories: wrappers and extensions. Wrap-

pers provide APIs that leverage core Lucene library components to accomplish specific

tasks. They are tightly integrated with “core” Lucene and in some cases, represent

custom implementation of existing Lucene APIs. Extensions, on the other hand, are

components that are distinct from Lucene and more loosely coupled: these may repre-

sent our own implementations or connectors to third-party libraries.

Multi-threaded indexing (wrapper). Inverted indexing is one of the most funda-

mental tasks in information retrieval and the starting point of many research studies.

In working with large web collections, it is imperative that indexing operations are

efficient and scalable. While academic researchers have attempted to address this issue

via MapReduce and related frameworks [16, 64], these solutions impose the burden of

requiring clusters and additional software infrastructure.

Lucene supports multi-threaded indexing, and as we experimentally show (Sec-

tion 3.2.4), it is able to scale up to large web collections on a single commodity server.

29

Table 3.1: Indexing performance of Anserini on smaller collections using 16 threads on
a modest commodity server. Index with term counts only and with term counts and
positions are included.

Anserini (count) Anserini (pos)
Collection docs terms time size time size
Disk12 742k 219m 00:01:27 199MB 00:01:30 512MB
Disk45 528k 175m 00:01:18 166MB 00:01:28 423MB
AQUAINT 1.03m 318m 00:01:54 305MB 00:01:44 734MB
WT2G 246k 182m 00:02:37 143MB 00:02:54 437MB
WT10G 1.69m 752m 00:05:24 708MB 00:05:21 2.9GB
Gov2 25.2m 17.3b 01:16:18 11GB 02:00:37 38GB

Table 3.2: Indexing performance of Anserini, Indri and Terrier on smaller collections
using 16 threads on a modest commodity server.

Anserini (doc) Indri Terrier(single thread)
Collection docs terms time size time size time size
Disk12 742k 219m 00:03:04 2.5GB 00:12:28 2.5GB 00:06:48 201m
Disk45 528k 175m 00:02:51 2.1GB 00:06:55 1.9GB 00:06:40 199m
AQUAINT 1.03m 318m 00:04:23 3.8GB 00:17:36 3.9GB 00:20:20 554m
WT2G 246k 182m 00:04:26 2.3GB 00:07:25 2.2GB 00:09:44 253m
WT10G 1.69m 752m 00:09:45 12GB 00:42:51 9.6GB 00:49:39 1.2GB
Gov2 25.2m 17.3b 06:40:15 331GB 14:51:12 215GB 20:41:49 17GB

The biggest issue, however, is that Lucene itself only provides access to a collection

of indexing components that researchers need to assemble together to build an end-

to-end indexer. For example, the developer would need to write from scratch custom

document processing pipelines, code for managing individual indexing threads, and

implementations of load balancing and synchronization procedures.

We address these issues in Anserini by providing abstractions for document col-

lections that an IR researcher would be comfortable with, as well as the implementation

of an efficient, high-throughput, multi-threaded indexer that takes advantage of these

abstractions. Anserini models collections as comprised of individual segments (for ex-

ample, the ClueWeb12 collection is comprised of a number of compressed WARC files)

and provides implementations for common document formats—for parsing TREC-style

XML documents, web pages stored in WARCs, tweets in JSON format, etc. In fact,

Anserini ships with the ability to index many TREC collections “right out of the box”.

This greatly reduces the learning curve for researchers to get started with Lucene.

30

Table 3.3: Indexing performance of Anserini on web collections using 88 threads on a
high-end server.

Anserini (count) Anserini (pos)
Collection docs terms time size time size
CW09b 50m 31b 00:41 28GB 01:12 75GB
CW09 504m 268b 07:38 254GB 12:19 649GB
CW12b13 52m 31b 01:01 29GB 01:28 76GB
CW12 732m 429b 17:14 376GB 22:12 1.1TB

Streamlined IR evaluation (extension). Test collections play an important role

in information retrieval research, and a substantial amount of research activity in im-

proving ranking models is focused around ad hoc retrieval runs. A research toolkit

should make this “inner loop” of IR research as easy as possible. Since Lucene was

not originally designed for researchers, support for running experiments on standard

test collections is largely missing. Anserini fills in this gap by implementing missing

features: parsers for different query formats, a unified driver program for ad hoc exper-

iments that outputs standard trec eval format, etc. For convenience, existing TREC

topics and qrels are included directly in our code repository—once again, reducing the

learning curve for researchers to get started with Lucene.

There are two main uses for this feature in Anserini: First, our toolkit provides

an easy way for researchers to replicate baselines of standard retrieval models such as

BM25 and query likelihood. Armstrong et al. [3] previously identified the prevalent

problem of weak baselines in experimental IR papers. Lin et al. [59] further noted that

authors are often vague about the baseline parameter settings and the implementations

they use. For example, Mühleisen et al. [75] reported large differences in effectiveness

across four systems that all purport to implement BM25. Trotman et al. [97] pointed

out that BM25 and query likelihood with Dirichlet priors can actually refer to at least

half a dozen variants, and in some cases, differences in effectiveness are statistically

significant. There is substantial community interest in engaging with reproducibility-

related issues [2,35], and Anserini contributes to this discussion. Our proposed solution

is to have widely-available baselines that are both competitive in effectiveness and easy

to replicate. It is our hope that Anserini can fill this role.

31

Table 3.4: List of TREC topic and judgment files collected in Anserini.

Collection Topics & Judgments
Disk12 51-200

Disk45
301-450
601-750

AQUAINT ROBUST04 Hard
WT2G 401-450
WT10G 451-550
Gov2 701-850
CW09 51-200
CW12 201-300

Second, an easy-to-use baseline retrieval component in Anserini provides the

starting point for additional ranking extensions. In particular, we advocate a multi-

stage ranking architecture [4, 20, 81, 102] so that researchers will not need to directly

work with native Lucene scoring APIs. That is, researchers should take advantage of

Anserini APIs that generate an initial document ranking and hooks for feature extrac-

tion to build subsequent reranking stages. This, in fact, is the common architecture

used in commercial web search engines today to support learning to rank [81].

Table 3.4 lists all topic and judgment files we have collected from TREC web

site in order to ease the evaluation process.

We show some of the key commands to make the TREC evaluation as simple

and easy as possible here. Anserini is open sourced and is hosted on Github. It is easy

to get the code base by simply putting

g i t c l one git@github . com : c a s t o r i n i / Anse r in i . g i t

After get the source code one can compile and build the binaries using

mvn c l ean package appassembler : assemble

We use Gov2 as the example to show how easy for the users of Anserini to streamline

the TREC evaluation. Index the collection will be one command:

nohup sh t a r g e t / appassembler / bin / IndexCo l l e c t i on

−c o l l e c t i o n Gov2Col lect ion \

−input /path/ to /gov2/ \

32

−genera to r JsoupGenerator \

−index lucene−index . gov2 . pos+docvec to r s \

−threads 16 −s t o r e P o s i t i o n s \

−s to r eDocvec to r s −opt imize \

> l og . gov2 . pos+docvec to r s &

The directory /path/to/gov2/ should be the root directory of Gov2 collection, i.e., ls

/path/to/gov2/ should bring up a bunch of subdirectories, GX000 to GX272. The

command above builds a standard positional index (-storePositions) that’s optimized

into a single segment (-optimize). If one also wants to store document vectors (e.g.,

for query expansion), add the -docvectors option. The above command builds an

index that stores term positions (-storePositions) as well as doc vectors for relevance

feedback (-storeDocvectors), and -optimize force merges all index segment into one.

After indexing is done, one should be able to perform a retrieval as follows:

sh t a r g e t / appassembler / bin / SearchWebCollect ion \

−t o p i c r e a d e r Trec \

−index lucene−index . gov2 . pos+docvec to r s \

−bm25 \

−t o p i c s s r c /main/ r e s o u r c e s / top i c s−and−q r e l s / t o p i c s .701−750. txt \

−output run . gov2 .701−750.bm25 . txt

For the retrieval model: specify -bm25 to use BM25, -ql to use query likelihood, and

add -rm3 to invoke the RM3 relevance feedback model (requires docvectors index).

Topics and qrels are stored in src/main/resources/topics-and-qrels/. Use trec eval to

compute AP and P30:

eva l / t r e c e v a l . 9 . 0 / t r e c e v a l \

s r c /main/ r e s o u r c e s / top i c s−and−q r e l s / q r e l s .701−750. txt \

run . gov2 .701−750.bm25 . txt

one should be able to get the same results shown in Table 3.6.

33

Relevance feedback (extension). Relevance feedback techniques provide robust

solutions to the vocabulary mismatch problem between expressions of user information

needs and relevant documents. Anserini provides a reference implementation of the

RM3 variant of relevance models [54], built as a reranking module in the multi-stage

architecture described above. Thus, our implementation is useful not only as a baseline

for comparing query expansion techniques, but provides an example of how reranking

extensions can be implemented in Anserini.

3.2.4 Evaluation

We describe experiments to support three claims about Anserini and the use of

Lucene for information retrieval research. First, that Anserini is highly scalable and

able to efficiently index large web collections. Second, that Anserini is similarly efficient

in searching these collections and ranking documents using standard baseline models.

Finally, Anserini is able to achieve scalable indexing and efficient retrieval without

The indexing performance of Anserini on a number of smaller and older collec-

tions is shown in Table 3.1 and Table 3.2. These experiments were conducted on a

server with dual AMD Opteron 6128 processors (2.0GHz, 8 cores) with 40GB RAM

running CentOS 6.8. This machine can be characterized as an old, modest commodity

server. All experiments were run on an otherwise idle machine. With Anserini, we used

16 threads for indexing. and we report results from three different index configurations:

count indexes where only term frequency information is stored (count), positional in-

dexes that also store term positions (pos), and positional indexes that also store the

raw documents and parsed document vectors (doc). In Table 3.1 we report the results

for two different index configurations: count indexes where only term frequency infor-

mation is stored (count), positional indexes that also store term positions (pos). For

each condition, we report the indexing time in HH:MM:SS as well as the index size.

The size of each collection is also shown for reference. We can see that Anserini can

greatly reduce the size of the index and make the indexing fast.

34

In Table 3.2 we report another index configuration for Anserini: positional in-

dexes that also store the raw documents and parsed document vectors (doc). As a

comparison condition, we indexed the same collections using Indri 5.9 and Terrier 4.2

on the same machine. Indri enables the multi-threaded indexing (user can not explic-

itly set the number of threads to be used though) and its default indexing option is to

include the term counts, positions, document vectors and the raw documents. So this

can be seen as a fair comparison between Anserini and Indri. For Terrier, efficiency

is one of its concerns so it should be included in the comparison. However, we have

encountered difficulties when applying the multi-threaded option of it. So the indexing

time of Terrier is using a single thread. Also, the index built with Terrier does not

contain the raw documents. This may not be the fair comparison with the other two

tools but we want to show here as the reference.

In Table 3.3, we report indexing performance for larger web collections on a

server with dual Intel Xeon E5-2699 v4 processors (2.2GHz, 22 cores) and 1 TB RAM

running Ubuntu 16.04. The table rows indicate different collections: CW09b refers

to the ClueWeb09 (category B) web crawl, CW09 refers to all English pages in the

ClueWeb09 web crawl, CW12b13 refers to the smaller ClueWeb12-B13 web crawl, and

CW12 refers to the complete ClueWeb12 web crawl. Due to the size of the collections,

we only report the count and positional index configurations. For these experiments,

we used 88 threads for indexing on an otherwise idle machine; indexing time is reported

in HH:MM. On this modern server, we are able to index all of ClueWeb12, one of the

largest collections available to researchers today, in less than a day! As seen from

Table 3.2, even on an older server, the indexing performance of Lucene is impressive.

Compared to academic toolkits, Lucene does not appear to have any trouble scaling

to large modern web collections.

Our next set of experiments were conducted on the Gov2 collection with Ter-

abyte 06 efficiency queries. We issued all 100,000 queries sequentially against Indri,

Terrier and Anserini indexes on the slower AMD Opteron server. Results are shown

in Table 3.5, which reports latency (ms) and throughput (queries per second, or qps).

35

Table 3.5: Retrieval efficiency for Terabyte 06 efficiency queries on Gov2, using a single
thread.

Latency (ms) Throughput (qps)
Indri 2403 0.42

Terrier 1358 0.72
Anserini 382 2.61

In this experiment, we used only a single query thread, and therefore do not take ad-

vantage of Lucene’s ability to execute queries in parallel on multiple threads (so in our

case, throughput is simply the inverse of latency). We see from these experiments that

Lucene is roughly six times faster than Indri and is 3.5 times faster than Terrier.

Finally, we compared the retrieval effectiveness of Anserini and Indri. For Indri

we refer to the RISE work of Yang and Fang [111], as they fine-tuned model parameters

to achieve optimal effectiveness. We considered two baseline ranking models: Okapi

BM25 (BM25) and query likelihood with Dirichlet priors (LM). For Anserini, we re-

moved stopwords (the default) and tuned parameters as follows: for BM25 k = 0.9 and

b ∈ [0, 1] in increments of 0.1; for LM u ∈ [0, 5000] in increments of 500. Results on

standard TREC collections and queries are shown in Table 3.6, where (I) refers to Indri

and (A) refers to Anserini. We see that effectiveness results are comparable between

the two systems.

In summary, our experiments show that Anserini is at least as good as In-

dri in terms of effectiveness, and much faster in both indexing and retrieval. These

results are consistent with findings from the recent Open-Source IR Reproducibility

Challenge [59]. Together, empirical evidence presents a compelling case for adopting

Lucene for information retrieval research.

3.3 Summary and Future Work

In this chapter we have discussed the tools for IR teaching. Specifically, we

introduce VIRLab and Anserini as our efforts to push forward this matter. While

VIRLab emphasizes the easy usage for the students or the beginners of IR, Anserini

36

Table 3.6: Effectiveness comparisons between Anserini and Indri on standard TREC
test collections.

Collection Disk12 Disk45 WT2G WT10G Gov2
Queries 51-200 301-450 401-450 451-550 701-850

601-700
BM25 (I) 0.2040 0.2478 0.3152 0.1955 0.2970
BM25 (A) 0.2267 0.2500 0.3015 0.1981 0.3030
LM (I) 0.2269 0.2516 0.3116 0.1915 0.2995
LM (A) 0.2232 0.2465 0.2922 0.2015 0.2951

focuses more on the scalability and the command line interface to deal with the large

data collection on the single machine.

For the future work there are many interesting and challenging directions. First,

to control what can be exposed to the users from the results due to data privacy

concerns is a promising direction for web based teaching toolkits such as VIRLab.

Second, it is nice to incorporate more state-of-the-art functionalities to Anserini, e.g.

deep learning models for information retrieval as the baseline for this active field, which

makes it more appealing.

37

Chapter 4

UNIFIED REPRODUCIBILITY EVALUATION SYSTEMS

In this chapter, we propose and develop several unified IR evaluation systems

that aim to (1) solve the data privacy concern when doing the evaluation, (2) improve

the reproducibility of IR research and (3) facilitate the evaluation and comparison of

retrieval functions.

To address the data privacy problem, we propose to bridge the gap between

academic research and industry data sets through a privacy-preserving evaluation plat-

form. The novelty of the platform lies in its “data-centric” mechanism, where the data

sit on a secure server and IR algorithms to be evaluated would be uploaded to the

server. The platform will run the codes of the algorithms and return the evaluation

results. Preliminary experiments with retrieval models reveal interesting new observa-

tions and insights about state of the art retrieval models, demonstrating the value of

an industry data set.

For reproducibility study, a web based IR evaluation system RISE is proposed.

With the help of RISE, more than 20 state of the art retrieval functions have been im-

plemented and systematically evaluated over 16 standard TREC collections (including

the newly released ClueWeb datasets). Our reproducibility study leads to several inter-

esting observations. First, the performance difference between the reproduced results

and those reported in the original papers is small for most retrieval functions. Second,

the optimal performance of a few representative retrieval functions is still comparable

over the new TREC ClueWeb collections. Finally, RISE is made publicly available so

that any IR researchers would be able to utilize it to evaluate other retrieval functions.

38

4.1 Privacy Preserving Evaluation Platform (PPE)

4.1.1 Introduction

Evaluation is essential in the field of Information Retrieval (IR). Whenever a

new IR technique is proposed and developed, it needs to be evaluated and analyzed

using multiple representative data collections. Since the beginning of the field, there

have been a few community-based efforts on constructing evaluation collections for the

IR research, such as TREC, NTCIR and CLEF. These collections are available for

researchers to download, and the researchers can then conduct experiments on these

data collections using their own computers. Such an evaluation methodology has been

used by many researchers in thousands of publications.

Although TREC collections can provide valuable insights on how well an IR

method performs, they are not the same data collections used by the search engine

industry. Unfortunately, privacy is one of the reasons that prevent industry from

sharing their data sets [91]. As a result, it remains unclear how well the observations

we draw about an IR method based on the TREC collections can be generalized to the

real world data sets used in the search engine industry.

One possible solution is to anonymize the data to protect privacy [19]. However,

the data anonymization would lead to the loss of some useful information, and it would

also pose constraints on the developed methods. Recently, a data-centric evaluation

methodology has been proposed [32, 34, 111]. This evaluation methodology does not

require the sharing of the industry data set, which protects the privacy of the data.

Instead, it advocates the industry to host an online evaluation system so that the

researchers could upload their codes to evaluate their effectiveness over the industry

data sets. A number of parallel works have been done under the name of Evaluation-

as-a-Service (EaaS) [44, 60, 78] where the users of such system can leverage the APIs

provided by the system to fetch documents or to submit a ranking request.

This paper follows the idea of the privacy-preserving evaluation (PPE) frame-

work, and presents a specific implementation of the framework, i.e., the PPE-M system.

With the implemented system, we evaluate a few representative basic IR models over an

39

industry data set and compare the results with those obtained on the standard TREC

collections. Our study demonstrates that the PPE framework enables researchers to

evaluate their methods using industry data collections, which essentially closes the gap

between the IR researchers in academia and the industry data. Moreover, evaluation

over the industry data set makes it possible to gain new insights about existing re-

trieval models. We focus on the evaluation of basic IR models in this paper, but the

framework can be easily generalized for other tasks.

4.1.2 A General Framework of Privacy-Preserving Evaluation

Traditional IR evaluation methodology often requires a data collection to be

downloaded to a local computer that also stores the code of an IR algorithm. After

downloading the data, we can then run the code, get the results on the data collec-

tion and conduct further analysis. Clearly, this methodology would not work well for

industry data sets which are not publicly available.

To address this limitation, a data-centric based privacy- preserving evaluation

framework has been recently proposed [34]. The basic idea is to keep a data collection

securely stored on its own server while allowing researchers to upload their codes to

the server. The codes can access the statistics of the data collection through some

pre-defined strategies, and then will be executed on the host server. The results will

be returned to the researchers for further analysis.

There could be many different ways to implement such a general framework. In

particular, we propose 3 different levels of support for evaluation that can accommodate

different tradeoffs. The main idea is illustrated in Figure 4.1. The top level requires

most work from the researcher’s side but is most general as it can support evaluation

of any algorithm in any language. The middle level provides API support, so the

researcher can focus on implementing just the key component of the algorithm to be

evaluated, but it requires the researcher to use a particular API. The low level provides

an interactive evaluation Web interface and attempts to minimize a researcher’s work,

but the algorithm that can be supported in this way may also be limited by the code

40

Figure 4.1: Three-level Support for PPE

that can be “opened up” by the system. An interactive system won’t be able to

provide full API support, so this would limit the algorithms that can be implemented

and evaluated. It is clear that the top level is most general to support any algorithm,

while the low level is most advanced with minimum effort on users, but has restriction

on the algorithms to be evaluated.

We have already implemented the top level and the middle level, and will try

to implement the low level in the future. Since the top level is trivial to implement,

we focus on explaining how to implement the middle level in the next section.

4.1.3 A Specific Implementation

We now describe our implementation of the previously described privacy-preserving

evaluation (PPE) framework. The implemented system focuses only on the evaluation

of basic IR models, and is referred to as PPE-M.

41

Figure 4.2: System Architecture

PPE-M is a web service with a typical client/server architecture. It hosts data

collections on the server, and enables users to implement and submit their codes of

retrieval models. Figure 4.7 shows the architecture of the implemented system. Once

a code is uploaded to the server, it will be executed to retrieve documents from the

collections. The retrieval results will be evaluated at the back end, the evaluation

results based on standard measures such as MAP will be returned to the user for

each data collection. The system is available at http://xxx.yy.z (anonymized for blind

reviewing).

The front end of the system is a web form, which allows the users to upload

a Java source code file that includes the implementation of a retrieval function. The

screenshot of the code submission interface is shown in Figure 4.3. Users can first

select which task to participate, and then upload the source code as well as the data

file (if necessary). The task could be ad hoc retrieval task, recency-based retrieval

task, etc. The source code includes the implementation of a retrieval function in

Java. The data file is optional, and it could include some prior information. Since the

code will be executed on the server, it has to follow some conventions on accessing the

42

Figure 4.3: Screenshot of code submission interface

Figure 4.4: Screenshot of the result page

collection statistics and calling external functions. To help users get familiar with these

conventions, a user guide and example codes are provided. The user guide includes a

list of currently supported collection statistics that can be accessed by the code as well

as a list of utility functions that the code can call. The restrictions posed on the codes

are to prevent potential malicious attack from outsiders while making it possible for

users to leverage the provided statistics to evaluate their models.

The core component of the PPE-M system is the Java source code package. It

consists of several modules, and each of them is responsible for a functionality. The

code compilation module takes the uploaded code of retrieval, compile it and execute it

on the virtual machines. After the code execution, the system computes the relevance

43

scores of documents and generates the ranking list for each document. This process

is done by the result generation module. The collection process module is used to

pre-process documents in the collection, and the pre-processing could be tokenization,

stop words removal, stemming, etc. The evaluation module takes the ranking list and

then generate the evaluation results based on various measures. Such a modularized

architecture offers flexibility in the implementation of the framework since each module

could be re-implemented and tested independently.

The system returns the evaluation results to users through an interface as shown

in Figure 4.4. If the code can be compiled and executed correctly, the evaluation

results will be returned, as shown in the last column. Otherwise, error messages will

be displayed. Users are able to see how well their ranking models perform over each

available data set. Moreover, they are able to see the evaluation results of codes

submitted by others. In the future, we plan to further enhance the interface with a

leader-board that sort and display all the submitted runs based on their performance.

The PPE-M system is implemented and designed in the above way for the fol-

lowing reasons. First, the system preserves the privacy of the industry data collections.

The data collections are not distributed to users but are stored on the server. Users’

code may only access certain type of information about the collection and use them

to compute the relevance scores, but the collection information would not be passed

to the client side. Second, the system is configurable based on the level of the privacy

concerns about the data collections. For example, if more information can be released

about a data collection, users can use the information in their codes or access more

information from the evaluation results. Finally, the system can be easily generalized

to evaluate other tasks in IR such as recency-based retrieval and click-prediction.

A new industry data set is available for evaluation through PPE-M. This data

set has been routinely used in an industry lab. The data set contains 3,274 news-related

queries and 71,406 articles. The queries were collected across a few months. For each

query, around 20 documents are selected from all the news articles based on the ranking

produced by a very simple retrieval method. For each query, editors manually assign

44

Table 4.1: Statistics of Test Collections

Collections IC ROBUST04 WT2G GOV2

#queries 3,274 250 50 150
avg(ql) 2.80 2.73 2.44 3.11

avg(idf(qt)) 13.75 11.50 9.81 13.49
#documents 71,406 528,155 247,491 25,205,179

avg(dl) 583.44 467.55 1057.59 937.25

each document with a relevance label (1-Bad, 2-Fair, 3-Good, 4-Excellent).

4.1.4 Experiments

We conduct preliminary experiments using the data set provided in PPE-M

system to verify observations about basic retrieval models that people have made pre-

viously on TREC data sets. As the results will show, the new data set is useful since

it can provide new insights on existing retrieval models.

4.1.4.1 Experiment Design

We denote the industry data set described earlier as IC. In addition to this data

set, we also report results on a few representative TREC collections: ROBUST04,

WT2G and GOV2. These data sets are selected to cover different types and sizes of

the collections. The statistics of all the collections are summarized in Table 5.2.

We compare three representative retrieval functions: (1) Okapi BM25 (BM25)

[87]: a function derived from the classic probabilistic model; (2) Pivoted document

length normalization (Piv) [92]: a function derived from the vector space model; and

(3) F2EXP (F2EXP) [33]: a function derived using axiomatic approaches. These three

functions are selected because they are among the most effective retrieval functions

based on the evaluation over multiple TREC collections. F2EXP, in particular, has

been shown to be more robust than existing retrieval functions with comparable optimal

performance. The main difference between F2EXP and other retrieval functions lies in

its different implementation of IDF and document length normalization parts.

45

Table 4.2: Optimal Performance Comparison (MAP). Optimal parameter settings are
reported in parenthesis.

Model IC ROBUST04 WT2G GOV2
BM25 0.8687 0.2478 0.3152 0.2970

(0.35) (0.20) (0.15) (0.35)
PIV 0.8693 0.2206 0.2945 0.2536

(0.20) (0.05) (0.05) (0.05)
F2EXP 0.8595 0.2512 0.2973 0.2828

(0.00) (0.30) (0.25) (0.25)

0.00 0.25 0.50 0.75 1.00
Parameters

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

M
AP

BM25

WT2G
IC
ROBUST04
GOV2

0.00 0.25 0.50 0.75 1.00
Parameters

0.0

0.2

0.4

0.6

0.8

Pivoted

WT2G
IC
ROBUST04
GOV2

0.00 0.25 0.50 0.75 1.00
Parameters

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
F2EXP

WT2G
IC
ROBUST04
GOV2

Figure 4.5: Parameter Sensitivity (MAP)

4.1.4.2 Retrieval Performance Comparison

We compare the optimal performance of the retrieval functions over all the data

sets and summarize the results in Table 4.2. Figure 4.5 shows the parameter sensitivity

curves.

In general, the results on the IC data set are consistent with those on the TREC

collections. Specifically, the optimal performance of the three functions are comparable.

The optimal parameters are also within the reasonable range as mentioned in the

previous study [30]. However, there are also a few new interesting observations that

we can make based on the results from the industry data set.

The first interesting observation is that the evaluation results on the IC data

set are much higher than on the TREC collections. This is not surprising since the

46

0.0 0.5 1.0
0.84

0.85

0.86

0.87

M
AP

LV1(IC)

102 105

0.860

0.865

0.870
TN1(IC)

102 105
0.82

0.83

0.84

0.85

0.86

TG3(IC)

0.0 0.5 1.0
k/β

0.200

0.225

0.250

0.275

M
AP

LV1(gov2)

102 105

k/β

0.20

0.25

TN1(gov2)

102 105

k/β

0.1

0.2

TG3(gov2)

BM25
F2EXP
Pivoted

Figure 4.6: Results of perturbation tests

IC data set is constructed by pooling top ranked documents for each query based

on a simple ranking method while the documents of TREC collections are selected

independently to the queries. Since most Web search engines now adapt a multi-level

ranking strategy [101], the IC data set actually represents a more realistic problem

setup.

The second interesting observation is about the F2EXP function. Although

F2EXP has been shown to be robust in terms of the parameter values, its optimal

parameter value is always larger than 0. However, its optimal parameter value is equal

to 0 for the IC data set, which indicates that its length normalization part is not very

effective. This is something that we have never observed based on the results for TREC

collections.

47

4.1.4.3 Further Analysis

So far, we have demonstrated that the PPE-M system is able to evaluate retrieval

models without releasing the data set. One new discovery made using this data set is

about the “unusual” optimal parameter value in the F2EXP function.

To look into the reason behind this observation, we conduct more analysis using

diagnostic evaluations [30]. The diagnostic evaluation methodology was proposed to

identify the weaknesses and strengths of retrieval functions based on the perturbation

of collections [30]. Each perturbation is designed to test a specific aspect of a retrieval

function. Some perturbations can be done by changing simple statistics, while others

may require additional information about the collections. In this paper, we only apply

perturbation tests that can be implemented using the available statistics provided by

the PPE-M system. These tests include two length variance sensitivity tests, one term

noise resistance test and three TF-LN balance tests.

Figure 4.6 shows the perturbation results. The plots on the first row are for the

IC data set, and those on the second row are for the GOV2 data set. Due to the space

limit, we only show the results of the tests that are different on the two sets, so that

we can focus on new insights gained by using the industry data set.

The first perturbation test is the length variance reduction test (LV1). We

prefer curves that are lower because they indicate the functions would have more gain

on length normalization part. Two plots on the first column in Figure 4.6 indicate

that F2-EXP has less gain on length normalization part for the IC data set, which is

something we fail to observe from the TREC data set.

The second test is the term noise resistance test (TN). The curves that are

higher means that they penalize long documents more appropriately. The plots on

the second column in Figure 4.6 suggest that F2-EXP did a poor job to penalize long

documents with more noisy terms on the IC data set. However, such a trend is not

clear based on the results from the TREC data set.

The third test is the all query term growth test (TG3). We prefer curves that

are higher since it means the corresponding function can balance TF and LN more

48

appropriately. The last column in Figure 4.6 indicates that F2-EXP did a better job

to avoid over-penalize long documents with more query terms on the IC data set. And

this is something we can not see based on the results on the TREC data set.

In summary, our preliminary study has demonstrated the possibility of using

the implemented PPE-M to evaluate IR models using a real world industry data set.

More interestingly, we are able to gain new insights about existing retrieval functions

by using the industry data.

4.2 RISE - A Reproducibility Platform for Retrieval Models

To reproduce the results of retrieval models, we implement a web-based Re-

producible Information retrieval System Evaluation (RISE) platform. The platform

is designed to provide a well-controlled environment for the users to implement and

evaluate retrieval functions. Figure 4.7 shows the architecture of RISE. RISE is basi-

cally a web service built on top of a modified version of the Indri1 toolkit. RISE hosts

data collections on the server side, processes documents, and builds the indexes. Users

need to upload their own implementations of retrieval functions based on the provided

templates. After the code is uploaded, RISE automatically compiles it and evaluates

it over the selected data collections. The evaluation results of the retrieval function

will then be added to the score boards and thus be available for comparison.

Any registered users can contribute the implementation of a retrieval model to

the system. Users are expected to be familiar with C++ but not necessarily familiar

with Indri, as we provide detailed instructions with sample codes on how to access the

statistics from the indexes and how to implement ranking models with the provided

statistics. Moreover, RISE is an open system which allows any user to view any other

users’ implementations of the models. This functionality makes it possible for a user to

easily try different variants of existing retrieval functions. The modified version of the

Indri toolkit provides various statistics that are not available in the original version.

1 http://sourceforge.net/projects/lemur/

49

Figure 4.7: System Architecture

These new statistics include query term frequency, average document term frequency,

etc.

After the code is submitted to the server and successfully compiled, a Docker

container is temporarily initiated on top of the static Docker image. (Docker container

is like a sandbox which provides an isolated environment acting like an operating

system. For more information please refer to https://www.docker.com/) The Docker

image includes the indexes built from data collections and the modified Indri toolkit

that will be used as the facility to run the model and generate the ranking list. A

Docker image can be utilized by several Docker containers at the same time while

keep the same underlying view of index and thus is the ideal choice for the system.

Several Docker containers can be initiated in parallel so that multiple models can

be compiled, run and evaluated at the same time. Moreover, by carefully setting the

Docker container we can control the CPU and memory usage as well as security related

50

settings (e.g. network, 3rd party libraries) so that the system is more robust against

malicious/careless usage. The running Docker container compiles the codes, generate

the ranking list, then evaluate the results. After that, the performance is rendered to

the users and users can opt to choose other models to compare with.

There are several major benefits of the developed RISE platform. (1) The data

collections are kept on the server side to preserve the data privacy. (2) The platform

uses Docker to control the evaluation environment, which is more secure, faster and

more reliable. (3) The platform provides a repository of the implementation of various

retrieval functions. Registered users can upload their own codes, and these codes

can be reused by other users. Such a repository could eliminate redundant efforts of

implementing baseline methods among IR researchers. (4) The platform maintains the

scores for each implemented retrieval function over all available data sets. The score

boards could become a valuable reference when a new retrieval function needs to be

evaluated and compared with the state of the art methods.

4.2.1 Reproduced Retrieval Functions

With the developed RISE platform, we conduct a reproducibility study of IR

models with 21 representative retrieval functions. These retrieval functions include the

representative ones from the vector space models [77,92], the classic probabilistic mod-

els [87], the language modeling approaches [117,118], the divergence from randomness

models [1], the axiomatic models [33,69], and the information theory based models [21].
Let us first explain the notations used in the paper.

• |q|: the number of terms in query q

• cqt : the number of occurrences of term t in query q

• cdt : the number of occurrences of term t in document d

• ld: the length of document l

• cd: the number of unique terms in document d

• Ft: the total number of term t in collection

• Nt: the number of documents containing term t

51

Table 4.3: Retrieval functions that are reproduced in our study (Part 1)

Okapi BM25 and its variants

BM25
∑

t∈q
(k3+1)·cqt
k3+c

q
t
· (k1+1)·cdt
cdt+k1·(1−b+b·

ld
L
)
· ln
(
N−Nt+0.5
Nt+0.5

)
F2EXP

∑
t∈q

cdt

cdt+s+s·
ld
L

·
(
N+1
Nt

)k
F2LOG

∑
t∈q

cdt

cdt+s+s·
ld
L

· ln
(
N+1
Nt

)
BM3

∑
t∈q

(k3+1)·cqt
k3+c

q
t
· (k1+1)·tfn

k1+tfn
· ln
(
N−Nt+0.5
Nt+0.5

)
tfn =

cdt+µ·
Ft
|C|

ld+µ
· µ

BM25+
∑

t∈q
(k3+1)·cqt
k3+c

q
t
·
[

(k1+1)·cdt
cdt+k1·(1−b+b·

ld
L
)

+ δ
]
· ln(N+1

Nt
)

Pivoted and its variants

PIV
∑

t∈q
1+ln(1+ln(cdt))

(1−s)+s· ld
L

· ln
(
N+1
Nt

)
F1EXP

∑
t∈q (1 + ln(1 + ln(cdt))) · L+s

L+s·ld
·
(
N+1
Nt

)k
F1LOG

∑
t∈q (1 + ln(1 + ln(cdt))) · L+s

L+s·ld
· ln
(
N+1
Nt

)
PIV+

∑
t∈q

[
1+ln(1+ln(cdt))

(1−s)+s· ld
L

+ δ
]
· ln
(
N+1
Nt

)
NTFIDF

∑
t∈q

[[
ω · f

(
cdt

ld/cd

)
+ (1− ω) · f

(
cdt · log2

(
1 + L

ld

))]
·
[
ln
(
N+1
Nt

)
· f
(
Ft
Nt

)]]
ω = 2

1+log2(1+|q|) , f(x) = x
1+x

• |C|: the number of terms in collection

• N : the number of documents in collection

• L: the average document length in collection

We now provide more details about the retrieval functions that are included in

the reproducibility study. All the implemented functions are summarized in Table 5.1

and Table 4.4.

4.2.1.1 Okapi BM25 and Its Variants

Okapi BM25 is one of the representative retrieval functions derived from the

classical probabilistic retrieval model. It was first proposed at TREC-3 [87], and has

become one of the most commonly used baseline retrieval functions. This function is

denote as BM25 in the paper.

52

Axiomatic approaches was first applied to Okapi BM25 to develop new retrieval

functions [33] in 2005. The basic idea is to search for a retrieval function that can

satisfy all reasonable retrieval constraints. Instead of blindly search for the function,

one strategy is to start with an existing retrieval function, such as Okapi BM25, find its

general form, and use the retrieval constraints to find different instantiations that can

satisfy more retrieval constraints. The previous study derived two variants based on

Okapi BM25, and they are referred to as F2EXP and F2LOG in the paper. Compared

with the original BM25 function, these two variants have different implementations for

both term frequency (TF) normalization part and the inverse document frequency

(IDF) part.

Another variant of BM25 came from the study of Dirichlet Priors for term

frequency normalization [43]. This variant, denoted as BM3, replaces the original

TF normalization components in the BM25 function with the Dirichlet Priors TF

normalization component.

Following the axiomatic methodology, Lv and Zhai [69] revealed a deficiency

of the BM25 in its TF normalization component, i.e., the TF normalization compo-

nent is not lower-bounded properly. To fix this problem, a variant of BM25, denoted

as BM25+, was proposed. The main change is to add a lower bound to the TF

normalization part.

4.2.1.2 Pivoted Normalization Function and Its Variants

Pivoted normalization method, denoted as PIV, is one of the most representa-

tive retrieval functions derived from the vector space model [92]. It can be regarded as

one of the best-performing TF-IDF retrieval functions.

Axiomatic approaches were also applied to derive variants of the pivoted normal-

ization method [33]. The two variants are denoted as F1EXP and F1LOG. Compared

with the original function, the two variants are different in their implementations of

IDF and TF normalization.

53

Similar to BM25, low-bounding term frequency normalization has also been

applied to the pivoted function. The variant is denoted as PIV+, and it differs from the

original function in having a lower bound added to the TF normalization component.

A novel TF-IDF term weighting scheme was proposed in 2013 to capture two

different aspects of term saliency [77]. In particular, its TF component is a combination

of two normalization strategies, in which one prefers short documents while the other

prefers long documents. Its form is quite different from the pivoted normalization

function. We include it as one of the variants for the pivoted normalization function

because it uses a novel TF-IDF weighting strategy.

4.2.1.3 Language Modeling Approaches

Dirichlet prior method, denoted as DIR, is one of the representative retrieval

functions derived using the language modeling approaches [118]. It uses the Dirichlet

prior smoothing method to smooth a document language model and then ranks the

documents based on the likelihood of the query is generated by the estimated document

language models.

Two-stage language models were proposed to explicitly capture the difference

influences of the query and document collection on the optimal parameter setting [117].

Compared with the Dirichlet prior method, the two-stage smoothing method (denoted

as TSL) interpolates the smoothed document language model with a query background

language model.

Instead of assuming document models take the form of a multinomial distribu-

tion over words, Multiple-Bernoulli language models assume that the document is a

sample from a Multiple-Bernoulli distribution [73]. The retrieval function is denoted

as BLM.

Similar to BM25 and Pivoted, Dirichlet prior method has also been studied

using axiomatic approaches. Two variants derived using the axiomatic approaches [33]

are denoted as F3EXP and F3LOG. The variant derived based on the lower bound

term frequency normalization [69] is denoted as DIR+.

54

4.2.1.4 Divergence from Randomness Models

The PL2 model is a representative retrieval function of the divergence from

randomness framework [1]. It measures the randomness of terms using Poisson distri-

bution with Laplacian smoothing.

The first variant of the PL2 is to replace the original TF normalization com-

ponent with the Dirichlet prior TF normalization [43]. This variant is denoted as

PL3.

The second variant of the PL2 considered in this paper is to apply the lower

bound term frequency normalization [69]. It is denoted as PL2+.

4.2.1.5 Information-based Models

A family of information-based models was proposed for ad hoc IR [21]. These

models focused on modeling relevance based on how a word deviates from its average

behavior. Two power law distributions (e.g., a smoothed power-law distribution and

log-logistic distribution) were used, and the corresponding functions are denoted as

SPL and LGD.

4.2.2 Experiments

We now describe the experiment design and results for our reproducibility study.

The first set of experiments mainly focuses on whether we can reproduce the retrieval

results that have been reported in the previous studies and whether the reproduced

results are consistent with that have been reported. The second set of experiments aims

to examine how well the retrieval functions perform on the newly released data sets

and checks whether the conclusions are consistent with the previous findings. Finally,

we also provide reference performance for all the reproduced retrieval functions over a

wide range of TREC collections including the newly released ClueWeb collections.

55

4.2.2.1 Reproducibility Study

4.2.2.2 Experiment Design

For the reproducibility experiments, we conduct experiments over 11 data sets

that have been used in the ad hoc retrieval task at TREC-1, TREC-2, TREC-3, TREC-

6, TREC-7, TREC-8; the small web track at TREC-8; the terabyte track at TREC

2004-2006; and the robust track at TREC 2004. The statistics of the data collections

are summarized in Table 4.5.

All the collections are stemmed using Porter’s stemmer. We mainly focus

on the title part of the query topics. If the performance of title query is not re-

ported by the original paper, then we use whatever query (e.g. description part or

title+description+narrative) that was originally used. Please note that for some pa-

pers the authors reported the performances on the combination of multiple query topic

sets, e.g. TREC678 as one query set. For this kind of query we treat the three years’

topics as one query set like what the original authors did.

We evaluate the retrieval functions over these data collections and compare our

results with what have been reported in the previous studies. The results are evaluated

with MAP@1000, and the evaluation results are computed using trec_eval2.

4.2.2.3 Results

We evaluate the retrieval performance for each of the 21 retrieval functions

described in the previous section over all the data collections mentioned in Table 4.5.

We then compare our reproduced results of a retrieval function with the original results

reported in the paper that proposed the function. Due to the space limit, we can not

report all the reproduced results, so we summarize a few main findings here.

WT2G and disk4&5 are the two commonly used document collections in the

previous study. We summarize the performance comparison between the reproduced

results and the original results on these two data sets in Table 4.6 and Table 4.7

2 http://trec.nist.gov/trec eval/

56

respectively. Note that disk4&5 refers to all the data sets that use disk 4 and 5

as document collections, and it includes TREC6, TREC7 and TREC8. Let us first

explain the notations in the two tables. The orig. column lists the originally reported

results. The repd. column are the reproduced results. Either positive or negative

difference between orig. and repd. is shown as percentage w.r.t the orig. in column

diff.. The free parameter(s) used by the original paper are reported in column para.

where ∗ means the parameter is not explicitly reported in the original paper and we

just pick the optimal one by grid search. The original paper of BM25 and PIV did not

report the performances on the collections that we select. Instead, we use what were

reported in [43,69] for these two models as their orig. results. Note that some retrieval

functions are missing from the table because their original papers did not report the

performance on the corresponding collection.

The results show that the performance differences with respect to the original

performance, i.e, diff., are small. Most of them are in the range of [−5%,+5%]. This

indicates that we are able to successfully reproduce the retrieval performance for these

functions.

To gain a better understanding of the reproduced results for all retrieval func-

tion, we summarize the performance difference (both mean and standard deviation)

between the original and reproduced results for each of the retrieval function. The

results are shown in Table 4.8. Although the reproduced results are not exactly the

same as what were reported, the differences are generally small. We do not have the

results for BLM because the authors of that paper did not report the performances on

any collection that we have selected.

Among all the retrieval functions, PL2 has the largest standard deviation for

the performance differences, and NTFIDF has the largest mean performance difference.

We provide more detailed reproduced results for these two functions in Table 4.9. It

is clear that the performance differences are consistent over almost all the collections.

One possible explanation is that these two functions were originally implemented using

57

the Terrier3 retrieval system as opposed to Indri used in our paper. As pointed out

in the previous study [74], using different toolkits could lead to different evaluation

results.

4.2.2.4 Performance Comparison on Web Search Collections

Not only can the RISE system provide a platform to reproduce the results of

existing IR models, but also minimize the efforts when evaluating IR models over

new collections. Whenever there is a new data collection available, the RISE system

can easily run all the implemented retrieval functions on the new data collection and

generate evaluate results for each function.

We conduct experiments to evaluate the performance of retrieval functions over

5 data sets used in the Web track from TREC 2010 to TREC 2014. The Web track

at TREC 2010 to TREC 2012 used the ClueWeb094 as the document collection. Each

year’s Web track has 50 topics. Since the entire ClueWeb09 collection is too big to

host on our server, we used the category B colleciton, which contains a subset of about

50 million English pages. The Web track at TREC 2013 to TREC 2014 used the

ClueWeb125 as the document collection. Each data set has 50 topics developed by

NIST. Again, due to the huge size of the original ClueWeb12 data set, we evaluate

the retrieval functions over a subset of collection. The subset is generated by sampling

documents from the raw collection. We use Indri default query likelihood baseline

to retrieve top 10,000 documents for each query and make these documents as the

sampled collection. Following the measured used at the TREC Web track, ERR@20 is

used to evaluate the performance for these data sets. Due to the space limit, instead

of reporting the performance over each Web track data set, we report the performance

based on the document collection used. For example, CW09 corresponds to the data

3 http://terrier.org/

4 http://lemurproject.org/clueweb09/

5 http://lemurproject.org/clueweb12.php/

58

Figure 4.8: Optimal Performances on ClueWeb Collections

0.00

0.02

0.04

0.06

0.08

0.10

0.12
E

R
R

@
20

BM25 and its variants

BM25
F2EXP

F2LOG
BM3

BM25+

PIV and its variants

PIV
F1EXP

F1LOG PIV+

DIR and its variants

DIR
TSL

F3EXP
F3LOG

DIR+

PL2 and its variants

PL2 PL3 PL2+

CW09

(a) Performances of selected models on CW09

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

E
R

R
@

20

BM25 and its variants

BM25
F2EXP

F2LOG
BM3

BM25+

PIV and its variants

PIV
F1EXP

F1LOG PIV+

DIR and its variants

DIR
TSL

F3EXP
F3LOG

DIR+

PL2 and its variants

PL2 PL3 PL2+

CW12

(b) Performances of selected models on CW12

set combining data used in the Web track at TREC 2010-2012. Similarly, CW12

corresponds to the data set combining data used in the Web track at TREC 2013-

2014.

As discussed in the previous section, many variants have been proposed to im-

prove the performance of representative retrieval functions such as BM25, PIV, DIR

and PL2. All those studies were conducted over the traditional TREC collections.

Thus, it would be interesting to see whether the improvement would still exist on the

new Web collections.

Figure 4.8 shows the optimal performance comparison of the representative re-

trieval functions with their variants on the new Web collections. We can make a few

interesting observations. First, it is interesting to see that most variants can outper-

form their original retrieval functions. For example, all the variants of BM25 performs

59

better than BM25 on both collections. The only exception is the PIV function. PIV

performs really well on the two new collections. Second, divergence from random-

ness models do not perform as well as other retrieval functions. Finally, the optimal

performances of the BM25 variants, PIV variants and DIR variants are comparable.

4.2.2.5 Summary

To serve as a future reference, we summarize the optimal performance of all the

retrieval functions over all the data sets in Table 4.10. Due to the space limit, the data

sets are categorized based on the collections used, so data sets used in multiple tracks

might be grouped into one because they used the same document collections. For each

retrieval function, the free parameters are tuned via grid search and the parameter

ranges are summarized in Table 4.11.

The optimal performances for the selected retrieval models on all collections are

shown in Table 4.10. To the best of our knowledge this is the first time of reporting

such large scale and comprehensive performances of retrieval models.

4.3 Summary and Future Work

We have shown the level-based privacy preserved evaluation systems. The ad-

vantage of such systems include the erase of redistribution of private data collections

and standard evaluation environment. We have described two proposed systems: PPE

and RISE. The former is a standard practice for industrial data sets and the latter

provides unified evaluation environment for the IR research community.

For future work, we think level 1 and level 3 implementation of the PPE systems

should be promising. Level 1 introduces great challenge which needs the rethinking of

the whole IR system – from indexing to evaluation. Level 3 implementation is obviously

a good example to promote IR techniques to non-experts.

60

Table 4.4: Retrieval functions that are reproduced in our study (Part 2)

Language modeling approaches

DIR
∑

t∈q ln
(
cdt+µ·

Ft
|C|

ld+µ

)
TSL

∑
t∈q ((1− λ) ·

cdt+µ·
Ft
|C|

ld+µ
+ λ · Ft|C|)

BLM
∑

t∈q
cdt+µ·

Ft
|C|

ld+
|C|
Ft

+µ−2

F3EXP
∑

t∈q (1 + ln(1 + ln(cdt))) ·
(
N+1
Nt

)k
− (ld−|q|)·|q|·s

L

F3LOG
∑

t∈q (1 + ln(1 + ln(cdt))) · ln
(
N+1
Nt

)
− (ld−|q|)·|q|·s

L

DIR+
∑

t∈q

[
ln
(

1 +
cdt

µ· Ft|C|

)
+ ln

(
1 + δ

µ· Ft|C|

)]
+ |q| · ln µ

ld+µ

Divergence from Randomness Models

PL2

∑
t∈q

tfn·log2(tfn·λ)+log2e·(1
λ
−tfn)+0.5·log2(2π·tfn)

tfn+1

tfn = cdt · log2
(

1 + c · L
ld

)
PL3

∑
t∈q

tfn·log2(tfn·λ)+log2e·(1
λ
−tfn)+0.5·log2(2π·tfn)

tfn+1

tfn =
cdt+µ·

Ft
|C|

ld+µ
· µ

PL2+

∑
t∈q,λ>1

[
tfn·log2(tfn·λ)+log2e·(1

λ
−tfn)+0.5·log2(2π·tfn)

tfn+1
+

δ·log2(δ·λ)+log2e·(1
λ
−δ)+ log2(2πδ)

2

δ+1

]
tfn = cdt · log2

(
1 + c · L

ld

)
Information-based Models

SPL

∑
t∈q−ln

(
λ

ndt
ndt+1

t −λt
1−λt

)
λt = Ft

N
and ndt = cdt + ln

(
1 + c · L

ld

)
LGD

∑
t∈q−ln

(
λt

ndt+λt

)
λt and ndt as shown above

61

Table 4.5: Data collections used for the reproducibility study

Topics Doc. collection #documents avdl
ad hoc task at TREC-1 51-100

disk1&2 741,856 412.89ad hoc task at TREC-2 101-150
ad hoc task at TREC-3 151-200
ad hoc task at TREC-6 301-350

disk4&5
528,155 467.553

ad hoc task at TREC-7 351-400
ad hoc task at TREC-8 401-450

robust track at TREC 2004 601-700
small web task at TREC-8 401-450 WT2G 247,491 1057.59

terabyte track at TREC 2004 701-750
GOV2 25,205,179 937.252terabyte track at TREC 2005 751-800

terabyte track at TREC 2006 801-850

62

Table 4.6: Performance comparison of reproduced and original results on WT2G

Models orig. repd. diff. para.

BM25 and its variants
BM25 0.310 0.315 +1.61% b = 0.2
F2EXP 0.289 0.297 +2.77% s = 0.2∗

F2LOG 0.295 0.301 +2.03% s = 0.3∗

BM3 0.316 0.295 -6.65% µ = 2700

BM25+ 0.318 0.318 +0.00%
b = 0.2
δ = 1.0

PIV and its variants
PIV 0.292 0.295 +1.03% s = 0.1
F1EXP 0.288 0.278 -3.47% s = 0.0∗

F1LOG 0.288 0.277 -3.82% s = 0.0∗

PIV+ 0.295 0.299 +1.36%
s = 0.01
δ = 0.4

Language modeling approaches
DIR 0.294 0.310 +5.44% µ = 3000

TSL 0.278 0.312 +12.23%
µ = 3500∗

λ = 0.0∗

F3EXP 0.288 0.290 +0.69% s = 0.05∗

F3LOG 0.290 0.293 +1.03% s = 0.05∗

DIR+ 0.312 0.312 +0.00%
µ = 3000∗

δ = 0.01

Divergence from Randomness Models
PL3 0.293 0.288 -1.71% µ = 9700

PL2+ 0.326 0.327 +0.31%
c = 23
δ = 0.8

63

Table 4.7: Performance comparison of reproduced and original results on disk4&5

RM orig. repd. diff. para.

BM25 and its variants
BM25 0.254 0.247 -2.76% b = 0.4
BM3 0.251 0.238 -5.18% µ = 950

BM25+ 0.255 0.249 -2.35%
b = 0.4
δ = 1.0

PIV and its variants
PIV 0.241 0.221 -8.30% s = 0.05

PIV+ 0.246 0.238 -3.25%
s = 0.5
δ = 0.01

Language modeling approaches

DIR+ 0.253 0.252 -0.40%
µ = 1000∗

δ = 0.01

Divergence from Randomness Models
PL3 0.230 0.239 +3.91% µ = 1600

PL2+ 0.254 0.255 +0.39%
c = 9
δ = 0.8

Information-based Models
LGD 0.250 0.251 +0.40% c = 2.0
SPL 0.254 0.251 -1.18% c = 9.0

64

Table 4.8: The mean and standard deviation of the performance difference between
the reproduced and original results

Functions Mean Std.

BM25 and its variants
BM25 -2.08% 4.11%
F2EXP +0.68% 2.18%
F2LOG +0.22% 1.63%
BM3 -5.92% 0.74%
BM25+ -0.67% 1.19%

PIV and its variants
PIV -3.64% 4.67%
F1EXP -6.62% 2.23%
F1LOG -7.76% 2.79%
PIV+ -0.94% 2.31%
NTFIDF -17.08% 4.71%

Language modeling approaches
DIR +1.03% 3.26%
TSL +4.09% 6.18%
F3EXP -2.65% 2.72%
F3LOG -4.11% 3.74%
DIR+ -0.20% 0.20%

Divergence from Randomness Models
PL2 +5.54% 17.73%
PL3 +0.59% 2.41%
PL2+ +0.35% 0.04%

Information-based Models
SPL -4.60% 3.42%
LGD -2.04% 2.45%

Table 4.9: Reproduced performance comparison for PL2 and NTFIDF

Functions collections orig. repd. diff. para.

PL2 TREC1 0.207 0.257 +24.46% c = 1.0
TREC2 0.238 0.285 +19.60% c = 1.0
TREC3 0.271 0.327 +20.89% c = 1.0
TREC6 0.257 0.233 -9.30% c = 1.0
TREC7 0.221 0.196 -11.39% c = 1.0
TREC8 0.256 0.228 -11.01% c = 1.0

NTFIDF TREC678 0.234 0.209 -10.64%
ROBUST04 0.302 0.245 -18.84%

GOV2 0.317 0.248 -21.77%

65

Table 4.10: Optimal MAP/ERR@20 for all collections. ∗ indicates the model is signif-
icant better than the base model in its category (always the first one). † indicates the
model is the best performed in its category. ‡ indicates the model is significant better
than all other models in its category. All significant tests are at p = 0.05 by a paired
one-tailed t-test.

RM disk12 disk45 WT2G GOV2 CW09 CW12

BM25 and its variants
BM25 0.204 0.248 0.315 0.297 0.089 0.128
F2EXP 0.228∗ 0.251 0.297 0.284 0.099∗ 0.139†

F2LOG 0.231∗ 0.252† 0.302 0.297 0.100∗ 0.137
BM3 0.234∗ 0.241 0.296 0.283 0.098∗ 0.130
BM25+ 0.235∗† 0.249 0.318† 0.301† 0.102∗† 0.137

PIV and its variants
PIV 0.201 0.221 0.294 0.254 0.104 0.137
F1EXP 0.198 0.221 0.278 0.240 0.100 0.135
F1LOG 0.200 0.217 0.277 0.255 0.104 0.137
PIV+ 0.207∗† 0.239∗‡ 0.299∗ 0.265∗ 0.113† 0.141†

NTFIDF 0.205∗ 0.213 0.307∗† 0.296∗‡ 0.097 0.129

Language Modeling Approaches
DIR 0.227 0.252† 0.312 0.299 0.090 0.134
BLM 0.208 0.233 0.314† 0.222 0.072 0.113
TSL 0.228† 0.252 0.312 0.300† 0.090 0.134
F3EXP 0.205 0.234 0.290 0.250 0.101∗ 0.138
F3LOG 0.203 0.232 0.293 0.263 0.109∗† 0.138†

DIR+ 0.227 0.252 0.312 0.299 0.090 0.134

Divergence from Randomness Models
PL2 0.228 0.252 0.325 0.303† 0.089 0.116
PL3 0.228† 0.241 0.290 0.269 0.093† 0.117
PL2+ 0.214 0.255∗‡ 0.328∗‡ 0.301 0.089∗ 0.119∗†

Information-based Models
LGD 0.215† 0.251† 0.320† 0.300† 0.086 0.131†

SPL 0.213 0.251 0.313 0.299 0.093† 0.130

66

Table 4.11: Free Parameters used in Parameter Tuning

Model Para. Range Incr.
BM25 b ∈ [0, 1] 0.05

PIV, F1EXP, F1LOG,
s ∈ [0, 1] 0.05F2EXP, F2LOG,

F3EXP, F3LOG
DIR, BLM, µ ∈ [500, 5000] 500

TSL
µ ∈ [500, 5000] 500
λ ∈ [0, 1] 0.1

PL2 c ∈ [0.5] ∪ [1, 25] 1

BM3, PL3
c ∈ [0.5] ∪ [0.75] ∪ [1, 9] 1

µ ∈ [500, 5000] 500
BM25+ b ∈ [0, 1] 0.05
PIV+ s ∈ [0, 1] 0.05
DIR+ µ ∈ [500, 5000] 500
PL2+ c ∈ [0.5] ∪ [1, 25] 1

BM25+, PIV+,
δ ∈ [0.0, 1.5] 0.1

DIR+, PL2+

67

Chapter 5

TOOLS FOR UNDERSTANDING THE EXISTING IR RANKING
MODELS AND KEYWORD QUERIES

Various information retrieval models have been studied for decades. Most tra-

ditional retrieval models are based on bag-of-term representations, and they model the

relevance based on various collection statistics, e.g. Term Frequency (TF), Inverted

Document Frequency (IDF), Document Length (DL). Bag-of-term document repre-

sentation and the statistics could be treated as the context of such ranking models.

Despite these efforts, it seems that the performance of “bag-of-term” based retrieval

functions has reached plateau, and it becomes increasingly difficult to further improve

the retrieval performance. Thus, one important research question is whether we can

provide any theoretical justifications on the empirical performance bound of basic re-

trieval functions.

In our work, we start with single term queries, and aim to estimate the perfor-

mance bound of retrieval functions that leverage only basic ranking signals. Specifically,

we demonstrate that, when only single term queries are considered, there is a general

function that can cover many basic retrieval functions. We then propose to estimate the

upper bound performance of this function by applying a cost/gain analysis to search

for the optimal value of the function.

It is well known that query formulation could affect retrieval performance. Em-

pirical observations suggested that a query may contain extraneous terms that could

harm the retrieval effectiveness. This is true for both verbose and title queries. Given a

query, it is possible that using its subqueries can generate more satisfying search results

than using the original query. Although previous studies proposed method to reduce

verbose queries, it remains unclear how we could reduce title queries given the short

68

Table 5.1: Instantiations of the general retrieval form

Retrieval Functions g(·) α c1 γ β c2

DIR 1 1 µ · p(t|C) 0 1 µ

BM25 & BM25+ 1 k1 + 1 0 1
k1·b
avdl

k1 · (1− b)
PIV & PIV+ 1 + ln(1 + ln(·)) 1 0 0 s

avdl
1− s

F1EXP & F1LOG 1 + ln(1 + ln(·)) avdl + s 0 0 s avdl
F2EXP & F2LOG 1 1 0 1 s

avdl
s

BM3 1 1 µ · p(t|C) µ k1 k1 · µ + µ2 · p(t|C)

DIR+ 1 µ · p(t|C) + δ µ2 · p2(t|C) + δ · µ · p(t|C) 0 µ · p(t|C) µ2 · p(t|C)

length of the title queries. In this thesis, we focus on identifying the best performed

subqueries for a given query. In particular, we formulate this problem as a ranking

problem, where the goal is to rank subqueries of the query based on its predicted re-

trieval performance. To tackle this problem, we propose a set of novel post-retrieval

features that can better capture relationships among query terms, and apply a learning-

to-rank algorithm based on these features. Empirical results over TREC collections

show that these new features are indeed useful in identifying the best subqueries.

5.1 Performance Bound Analysis for Single Term Queries

5.1.1 Introduction

Developing effective retrieval models has been one of the most important and

well-studied topics in Information Retrieval (IR). Various retrieval models have been

proposed and studied [87,92,118]. Many of them are based on “bag-of-term” represen-

tation and leverage only basic ranking signals such as TF, IDF and document length

normalization [29]. Although more advanced ranking signals, such as term proxim-

ity [94] and term semantic similarity [29, 66], have been integrated into the retrieval

functions to improve the retrieval performance, it remains unclear whether we have

reached the performance upper bound for retrieval functions using only basic ranking

signals. If so, what is the upper bound performance? If not, how can we do better?

To find the performance upper bound is quite challenging: although most of the

IR ranking models deal with basic signals, how they combine the signals to compute the

relevance scores are quite diverse due to different implementations of IR heuristics [29].

This kind of variants makes it difficult to generalize the analysis. Moreover, typically

69

there are one or more free parameters in the ranking models which can be tuned via

the training collections. These free parameters make the analysis more complicated.

This thesis aims to tackle the challenge through the simplest problem setup. In

particular, we focus on single-term queries and study how to estimate the performance

bound for retrieval functions utilizing only basic ranking signals. With only one term

in a query, many retrieval functions can be greatly simplified. For example, Okapi

BM25 and Pivoted normalization functions have different implementations for the IDF

part, but this part can be omitted in the functions for single-term queries because it

would not affect the ranking of search results. All the simplified functions can then

be generalized to a general function form for single-term queries. As a result, the

problem of finding the upper bound of retrieval function utilizing basic ranking signals

becomes that of finding the optimal performance of the generalized retrieval function.

We propose to use cost/gain analysis to solve the problem [10,11,28]. As the estimated

performance upper bound of simplified/generalized model is in general better than the

existing ranking models, our finding provides the practical foundation of the potentially

more effective ranking models for single term queries.

5.1.2 A General Form of Retrieval Functions for Single-Term Queries

The implementations of retrieval functions are quite diverse, and it is often

difficult to develop a general function form that can cover many retrieval functions.

However, if we consider only single-term queries (i.e,. those with only one query term),

the problem can be greatly simplified.

Let us start with a specific example. Dirichlet prior function is one of the rep-

resentative functions derived using language modeling approaches [118], and is shown

as follows:

f(Q, d) =
∑
t∈Q

ln

(
c(t, d) + µ · p(t|C)

|d|+ µ

)
, (5.1)

where c(t, d) is the frequency of term t in document d, |d| is the document length;

p(t|C) is the maximum-likelihood of the term frequency in the collection and µ is the

70

model parameter. When a query contains only a term t, the retrieval function can be

simplified to:

f({t}, d) =
c(t, d) + µ · p(t|C)

|d|+ µ
(5.2)

Note the natural logarithm function in Equation (5.1) is omitted since it is

a monotonically increasing function and would not affect the ranking results. Since

p(t|C) is a collection-dependent constant, the function can be further simplified as:

f(t, d) =
c(t, d) + c1
|d|+ c2

. (5.3)

Similarly, Okapi BM25 [87] can be simplified to:

f(t, d) =
(k1 + 1) · c(t, d)

c(t, d) + k1 · (1− b+ b · |d|/avdl)

=
α · c(t, d)

c(t, d) + β · |d|+ c2
,

(5.4)

where α absorbs k1 + 1, and β = k1 · b/avdl is a collection-dependent variable and

c2 = k1 · (1− b) is a parameter.

Furthermore, the pivoted normalization function (PIV) [92] can also be simpli-

fied to:

f(t, d) =
1 + ln(1 + ln(c(t, d)))

(1− s+ s · |d|/avdl)

=
g(c(t, d))

(β · |d|+ c2)
,

(5.5)

where g(·) = 1 + ln(1 + ln(·)) and can be further generalized as an arbitrary non-linear

function. β = s/avdl is a collection related variable and c2 = 1− s is a parameter.

All of the above three simplified functions (i.e., Eq. (5.3), Eq. (5.4) and Eq.

(5.5)) can be generalized as the following form:

F (c(t, d), |d|) =
α · g(c(t, d)) + c1

γ · c(t, d) + β · |d|+ c2
, (5.6)

where g(·) is an arbitrary non-linear function and α, β, γ, c1, c2 are free parameters. This

generalized function form is essentially a linear transformation of a non-linear trans-

formation of term frequency divided by a linear transformation of document length.

71

The denominator optionally adds adjusted term frequency as a method to dampen the

impact of increasing term frequency. Note that IDF is not part of the function because

it would not affect the document ranking for single-term queries.

In fact, we find that the generalized retrieval function as shown in Eq. (5.6) can

cover at least 11 retrieval functions. In addition to the above three retrieval functions,

the following functions can also be generalized: (1) F1EXP, F1LOG, F2EXP and

F2LOG from the axiomatic retrieval models [33], (2) BM3 derived from the Dirichlet

Priors for term frequency normalization model [43], and (3) BM25+, DIR+, PIV+

derived from the lower bounding term frequency normalization models [69]. Table 5.1

summarizes the instantiations for each of the retrieval functions.

5.1.3 Upper Bound Estimation for MAP

Given the general form as shown in Equation (5.6), one straightforward solution

to estimate the performance bound for single-term queries would be to simply try all

possible values/instantiations for the parameters and functions and then report the

best performance. Thus, the problem of estimating performance bound boils down

to the problem of searching for optimal parameter settings in terms of the retrieval

performance. More specifically, given Eq. (5.6), we need to find parameter settings for

α, β, γ, c1, c2 that can optimize the retrieval performance measured (i.e., MAP in this

thesis). We do not consider the instantiation of g(·) here, and leave it as our future

work.

Since it is infeasible to try all possible parameter values and find the optimal

setting, we propose to apply the cost/gain analysis to find the optimal parameter

setting.

Let us explain the notations first. di and dj are a pair of documents. Given

a query, si = f({t}, di) and sj = f({t}, dj) denote the relevance score of these two

documents computed using a retrieval function.

For a given query, each pair of documents di and dj with different relevance labels

(currently we only consider the binary case, i.e. whether the document is relevant or

72

non-relevant) a ranking model computes the scores si = f(di) and sj = f(dj). Follow

the previous studies about RankNet [10,11], we define the cost function as the pairwise

cross-entropy cost applied to the logistic of the difference of the relevance scores:

Cij =
1

2
(1− Sij)σ(si − sj) + log(1 + e−σ(si−sj)) (5.7)

where Sij ∈ {0,±1} denotes the ground-truth ranking relationship of document

pair di and dj: 1 if di is relevant and dj is non-relevant, -1 if di is non-relevant and dj

is relevant, 0 if they have the same label. The gradient of the cost function is then:

∂Cij
∂si

= σ

(
1

2
(1− Sij)−

1

1 + eσ(si−sj)

)
= −∂Cij

∂sj
(5.8)

If we only consider the total cost of ranking non-relevant documents before the relevant

documents, Sij is always 1. We will always consider that di is relevant and dj is non-

relevant from now on. The Eq. (5.8) is then simplified as:

∂Cij
∂si

=
−σ

1 + eσ(si−sj)
(5.9)

The upper bound of the performance is then obtained when the cost is minimized by

parameters optimization. The parameters pk ∈ R used in the ranking model could be

updated so as to reduce the cost via stochastic gradient descent:

pk → pk − η
∂C

∂pk

= pk − η
(
∂C

∂si

∂si
∂pk

+
∂C

∂sj

∂sj
∂pk

)
(5.10)

Unfortunately, the cost defined in Eq. (5.9) is actually the “optimization” cost

instead of the target cost (the actual cost) [11] and thus minimizing the cost may not

necessarily lead to the optimal MAP. However, MAP is either flat or non-differentiable

everywhere which makes the direct optimization toward it difficult [116]. To overcome

this we modify Eq. (5.9) by multiplying the derivative of the cost by the size of the

change in MAP gain from swapping a pair of differently labeled documents for a given

query q. The pairwise λ (we change cost C to λ and λ is the gain instead of cost) can

be written as:

λij =
σ

1 + eσ(si−sj)
1

|R|

(∣∣∣∣ nrj − m

ri

∣∣∣∣+

ri−1∑
k=rj+1

I(k)

k

)
(5.11)

73

Table 5.2: collections and queries

disk12 Robust04 WT2G GOV2

#queries 4 11 3 2

qid 57,75,77,78
312,348,349,364,367,379,
392,395,403,417,424

403,417,424 757,840

where ri and rj are the ranking positions of di and dj; m and n are the number of

relevant documents before position ri and rj; I(k) = 1 if the document at kth position

of the ranking list is relevant and 0 otherwise; |R| is the number of relevant document

for the query. The model parameters are adjusted based on the aggregated λ for all

pairs of documents for the query using a small (stochastic gradient) step.

The optima are local optima with 99% of the confidence by following the Monte-

Carlo method with model parameters chosen from 459 random directions [28].

5.1.4 Experiments

5.1.4.1 Testing Collections

We use four TREC collections: disk12, Robust04, WT2G and Terabyte (GOV2)

to conduct the experiments. For the queries, only the title fields of the query topics

with only one query term are used (20 in total). We use Dirichlet language model with

default µ = 2500 to retrieve at most top 10,000 documents as the documents pool

for the pairwise comparison for each query. For relevance labels that less or equal to

zero is treated as non-relevant and labels greater than zero are treated as relevant. An

overview of the involved collections and queries are listed in Table 5.2.

5.1.4.2 Experiment Setup

We tested both using the cost function only and using the cost function together
with λ component of MAP. The results are very close and the cost with λ seems to be
a little bit superior so we just report that part of the results. We basically tried several
different models based on Eq. (5.6):

• DIRU : Dirichlet Language Model, denoted as
c(t,d)+µ·p(t|C)

|d|+µ

• TFDL1U : which only contains c1 and c2 as model parameters, denoted as c(t,d)+c1
|d|+c2

74

Table 5.3: Upper Bound of MAP

disk12 Robust04 WT2G GOV2

DIR 0.4009 0.3823 0.3660 0.2083
Models BM25 0.4016 0.3824 0.4038 0.2896

with PIV 0.3987 0.3812 0.4038 0.3079
Basic F2EXP 0.4000 0.3682 0.3183 0.1950

Signals BM3 0.4015 0.3823 0.3792 0.2554
DIR+ 0.4009 0.3823 0.3794 0.2083

Upper DIRU 0.4244† 0.4136† 0.4055 0.2724
Bounds TFDL1U 0.4273† 0.4209† 0.4095 0.3193†

TFDL2U 0.4273† 0.4209† 0.4095 0.3255†

• TFDL2U : which takes α, β, c1, c2 as parameters, denoted as α·c(t,d)+c1
β·|d|+c2

For other possible format of Eq. (5.6) they are essentially covered by TFDL2U so we

do not report the results for them1.

For all of our experiments, we varied the learning rate η between 100 to 1010 with

step size 10 times to previous value. We have found that optimal learning rate brings

marginal gain in terms of overall performance. So we just report the performance on

the optimal learning rate. For the starting point, we choose α, β, c1, c2 from [0.1, 10000]

with step size 10 times to previous value. We set the learning iteration at most 500

epochs and it stops if the gain was constant over 20 epochs.

5.1.4.3 Results

Table 5.3 lists both the optimal performances of previously proposed ranking

models with optimal parameters chosen from a wide range (e.g. for DIR and DIR+

µ ∈ [0, 5000] with step size 500; for BM25, BM3, PIV, F2EXP b or s ∈ [0, 1] with

step size 0.1) and optima of proposed models. The values listed in the table are the

MAPs of single term queries only (not the whole set of the queries). It is shown

that the generalized models are better than classic ranking models for the most cases

(indicated by the † which means the two-tailed paired t-test at p value of 0.05 comparing

1 Actually they are possibly covered by Eq. (5.6). But if we choose wide spectrum of
the starting points then they are covered by large chance.

75

Table 5.4: Parameters

Model Paras disk12 Robust04 WT2G GOV2

DIRU µ 4.66e3 3.54e7 1.43e6 0
TFDL1U c1

c2
2.49e-3 1.0 6.87e-5 6.0e-1

TFDL2U
c1
c2

1.55e-2 5.86e-2 1.08e1 1.39e-1
α
β

1.37e-4 1.43e-2 1.01e-2 1.13e-2

with the optimal performances of selected models which are boldfaced). Furthermore,

different collections have different gains. Robust04 has the largest gain between the

two results which indicating that possibly the previously proposed ranking models do

not capture the critical ranking signals well or the statistics they use contradicts with

the actual properties of relevant documents. Also, for WT2G we get very little gain

by applying our analysis (the performances are even not significant better than the

selected models). This probably means that if we would like to further improve the

performance on WT2G we need to find other forms of the ranking models which may

look different than Eq. (5.6).

5.1.4.4 Parameters

Next, we would like to investigate the parameters that lead to the optima for

the proposed models. The parameters are worthy to look at since they might inspire

or provide intuition of better performing models in the future. Table 5.4 lists those

parameters. As we can see, for DIRU the optimal parameters µ obtained for Robust04

and WT2G are much larger than 103 which is suggested value by the original authors

of DIR [118]. For TFDL1U we choose to report the ratio c1
c2

. The values vary between

collections. For example, the optimal values for Robust04 is 1.0 which indicates that

the better performed models would have larger dampen factor for document length

than other collections. For TFDL2U both c1
c2

and α
β

are reported. We find that α

is in several magnitude levels smaller than β. But this is not always the truth for

c1
c2

. We would expect more impact on α
β

than c1
c2

and the values of α
β

could be better

incorporated by better performing models in the future.

76

5.2 Reducing the Keyword Queries

5.2.1 Introduction

The retrieval performance is closely related to the quality of a query. Not all

query terms in a query are equally important, and sometimes removing a term from

the query might lead to better retrieval performance.

The problem of query reduction has been studied intensively for verbose queries

(i.e., those are formulated based on the description of TREC topics) [5,31,52]. Previous

studies showed that although a subquery does not always perform as well as the original

query, the best subquery could be much better – 23% improvement in terms of MAP for

verbose queries [5,52]. However, reducing keyword queries (e.g. those formulated based

on the title of TREC topics) has drawn less attention than its counterpart. Previous

study [31] showed that title queries can also be reduced to obtain better performances

on ClueWeb collection. We made similar observations based on the results on other

TREC collections too. Table 5.5 compares the performance when using the original

keyword queries with those using the best performed subqueries. Although the table

only contains the queries with length 3, it can be seen that the performance of using

the best subqueries has more than 10% of gain in terms of the effectiveness. It is clear

that reducing keyword queries could lead to better performance, but the problem is how

to identify the best-performed subquery for a given query when we do not have any

information about the relevance judgments.

Reducing keyword queries is a challenging task. Given a keyword query is

already very short, how can we ever remove terms from that? One simplest solution

would be to remove the terms based on their IDF values. Unfortunately, it does not

work well. Let us consider query “pheromone scents work” (from WT10G). Among

all the query terms, “work” has the lowest IDF. However, removing “work” from the

query would not achieve our goal since the best-performed subquery for this query is

“pheromone work”. Similarly, other features, such as mutual information and clarity

score, which were successfully applied in reducing verbose queries, are not as useful as

what is shown in the previous work [52].

77

In this thesis, we focus on the problem of identifying best-performed subquery

for a given keyword query. In particular, we formulate the problem as ranking all the

subqueries of a keyword query based on their predicted performance. To tackle this

problem, we propose a set of novel features that can better capture the relations among

query terms, and then apply a learning-to-rank algorithm to rank the subqueries based

on these new features as well as some existing ones.

All the proposed new features are post-retrieval ones, meaning that they are

computed based on the retrieval results. These features are designed to capture dif-

ferent relationships among query terms from different aspects: query term proximity,

the aggregated ranking scores of query terms, and the compactness and position of

term tensors. Specifically, term proximity based features are designed to capture the

intuition that some query terms should be viewed as phrases as opposed to individual

terms. Let us consider query “family leave law”. Its best subquery is “family leave”,

which is a law code. And only when the two terms occur next to each other and in

the right order in a document, we are sure that the document is relevant. To cap-

ture this intuition, we propose to compute the statistics of the ranking scores that are

computed based on term dependency model [72] for each subquery, and also based on

the correlations between these ranking scores with the ranking scores of the original

query. Furthermore, we proposed another set of term score based features that are de-

signed to measure the balance between TF and IDF weighting [30]. These features are

computed based on different ways of aggregating the term scores of individual query

terms. The assumption is that these statistics could capture the key properties of the

best subquery at the term score level and thus are useful. Finally, we proposed a set

of features based on the compactness and positions of the term score tensors. For this

set of features , we investigate the spatial properties of the term scores. We view the

term scores from top ranked documents as tensors in the multi-dimensional space and

then compute the compactness and the position of the tensors cluster.

Empirical results show that the proposed new features are effective in identifying

the best-performed subquery. Moreover, we intensively analyze the important features

78

Table 5.5: Comparison of the MAP between using original queries and optimal sub-
queries. Only queries of length 3 are shown and the ranking function is BM25

Collection Original Upper Bound Diff.

Disk12 0.2597 0.2880 +10.9%
Disk45 0.2399 0.2772 +15.5%

AQUAINT 0.2107 0.2426 +15.1%
WT2G 0.3285 0.3580 +9.0%
WT10G 0.1720 0.2051 +19.2%
GOV2 0.3060 0.3221 +5.3%

by comparing the performance difference between the subset of features and all features.

The results validate the utility of the proposed new features.

5.2.2 Subquery Ranking Details

In this section we present details of how we identify the best-performed subquery

for a give keyword query by ranking all possible subqueries.

5.2.2.1 Problem Setup

The best-performed subquery identification problem can be formally defined as

follows. Given an arbitrary query Q = {t1, t2, ..., t|QL|}, let PQ denote the power set of

Q. Let f be a retrieval function used for ranking the documents in the collection for

any query in P . Let m(P, f) denote a metric for the ranking effectiveness of retrieval

function f using query P . The best-performed subquery identification problem aims

at finding a subquery P ∗ = arg maxP∈PQm(P, f).

5.2.2.2 Subquery Ranking

We formulate the best-performed subquery identification problem as a sub-

queries ranking problem. The ranking is based on the predicted performance of the

subqueries without prior knowledge of relevance. We feed the features of the sub-

queries to the state-of-the-art learning-to-rank algorithm LambdaMART [10] where

the ranking of the subqueries is obtained and the best subquery is identified.

79

5.2.2.3 Subquery Ranking Features

Term Relationship Features

We introduce the newly proposed features that can better capture the relations among

query terms – the motivation behind them as well as the detailed steps to compute

them. These features are designed to capture different relationships among query

terms from different aspects: query term proximity, the aggregated ranking scores of

query terms, and the compactness and position of term tensors. The above mentioned

features are post-retrieval features where we explore the scores in the ranking list of

the subquery and generate the features from that. The variables and the notations

that will be used in the following sections are summarized in Table 5.6.

Term Proximity Based Features (PXM)

Term proximity based features are mainly inspired by the term dependency

model [72]. The intuition is that some query terms should be treated as phrases

instead of separated terms. Consider the original query Q = {family leave law} (RO-

BUST04,qid:648), the best subquery of it is P ∗ = {family leave}. In this example,

“family leave” is supposed to refer the law code and only when the two terms occur

together and in the exact order in a document, the document is possibly relevant. We

propose to leverage the ranking scores which are computed using the term proxim-

ity model from top ranked documents and extract the high level statistics from the

scores. Presumably, the term proximity model introduce more restrict requirement

of the matching documents than the original query and thus the ranking list might

contain fewer documents. By only looking at the top ranked documents we increase

the probability of having the same number of documents in the ranking list for all

subqueries. Also, based our experience the ranking scores of term proximity model

usually have larger standard deviation.

For detailed steps, we first rank the documents in the collection using our cus-

tomized term proximity models (see example query below). We have tried three models

- unordered window model (UW), ordered window model (OW) and the combination

80

Table 5.6: Notations and Explanations

Notations Explanations

Q = {t1, t2, ..., t|QL|} The original query and its terms
|QL| Query length

PQ = {q1, q2, ..., qi, ...}
The power set of Q which
contains all subqueries

q
The general notation for any
subquery including the
original query.

c Ranking list cutoff position
di Document i in the ranking list
dsq,i Ranking score of document

i for query q

Lq,c(f) = {d1, ..., dc}
Ranking list of q using model f
cutoff at c.

~SLq,c(f) = {dsq,1, ..., dsq,c} Ranking scores in Lq,c(f).

~tq,di(f) = {ft1,di , ..., ftn,di}
Terms scores of di for query q
computed by model f . n = |QL|.

~TLti,c(f) = {fti,d1 , ..., fti,dc}T Column term scores for ti.

MLq,c(f) = { ~tq,d1(f), ..., ~tq,dc(f)} Terms scores matrix of Lq,c(f).

g(~x), h(~x) ∈ <

Feature function. One of MIN,
MAX, MAX-MIN (difference),
MAX/MIN (division),
SUM, MEAN,
STD (standard deviation),
GMEAN (geometric mean)

of the two models (UWOW). The window parameter (i.e. terms must appear with at

most how many terms between each) wd is set to 4 · (|QL| − 1). The sample query of

UWOW using Indri query language would be

#combine(#uw4(family leave) #ow4(family leave))

Then we extract the high level statistics from the document scores at cutoff c as the

features by applying the feature functions h(~x) to the scores. The feature function h is

defined in Table 5.6 and it consists of a set of statistical functions that can be applied

to a vector of values such as summation and standard deviation. The use of feature

function was shown to be beneficial in order of aggregating the raw values in previous

81

works [8, 23]. Formally, we have

PXM(w)h = h(~SLq,c(w)) (5.12)

where w ∈ UW,OW,UWOW and ~SLq,c(w) is the documents scores vector of the

term proximity model. Only focusing on the properties of the ranking scores of term

proximity model may not be enough – it is probably beneficial to also consider the the

normal (no term proximity involved) ranking scores of the original query as well. By

comparing the the scores in the two ranking lists we might have more insights about the

subqueries. Presumably, if a specific subquery performs much better than the original

query because of the subquery is the key phrase in the original query then the scores of

the two ranking lists should be different from each other. Take our previous subquery

“family leave” for example, our method assumes that this subquery (actually the term

proximity model) should have different ranking scores from the original query “family

leave law” ranking scores and we are expected to capture such feature. Based on the

above reasoning we measure the correlation between the documents scores of the term

proximity model of the subquery and the regular ranking scores of the original query

Q using Kendall's Tau (τB) and Pearson's r. Formally,

PXM(w)corr = Corr(~SLQ,c(w), ~SLqi,c(w)) (5.13)

where Corr ∈ {τB, ρ}.

Term Score Based Features (TS)

For this set of features, we continue to explore the ranking list of the subqueries –

the scores of individual query terms instead of the score of the document. The intuition

of TS is originated from the term frequency constraint and the term discrimination

constraint from previous work [30]. The constraint essentially introduces the balance

between document term frequency (TF) and inverted document frequency (IDF). This

really inspires us that there should be some interesting properties in the term score of

top ranked documents. Instead of separately considering the TF and IDF we choose to

directly look at the individual term score computed by any ranking function that has

82

reasonable TF and IDF components (please refer to [30] for a more comprehensive list

of the reasonable ranking functions) for two reasons: (1) the ranking list is determined

by the scores computed by the ranking function, and (2) the ranking function has the

TF and IDF components and thus it already naturally adopts the constraint mentioned

in [30]. We wonder, for instance, do the top ranked documents have more balanced

term scores or do they have highly skewed term scores? Or is the performance of

subquery related to the minimum of the term scores in the top ranked documents?

Figure 5.1 illustrates the intuition: the two subfigures are the term scores computed

by BM25 model for the two queries for TREC keyword topics. From the figures we

find two distinct patterns: for query “cult lifestyle” its relevant documents have higher

probability along the y-axis indicating that “cult” is more important than “lifestyle” for

this query. But for query “home schooling” the term scores are more balanced. For TS

features we calculate the score for each subquery term in the top ranked documents

using any ranking function that has reasonable TF and IDF components (for both

document and term), e.g. BM25 or language model with Dirichlet. We then generate

high-level statistics from the term scores.

The TS features are then computed as follows: we first generate the ranking

list ~Lq,c(f) for subquery q using any ranking function that has reasonable TF and TD

components. For each document di in ~Lq,c(f) we compute the score for each individual

term. This would generate the term scores vector ~tq,di(f) for di. We then apply the

feature function h to ~tq,di(f) to get the aggregated statistics for di as h(~tq,di(f)). The

result of this step is a list of statistics with each element corresponding to one document.

We then apply the feature function g again to each column of the previously generated

list h(~tq,di(f)) to generate the final TS features. Formally, TS is computed as:

TS(f, h, g) = g(h(~tq,di(f))) (5.14)

For example, TS(BM25,MEAN,STD) for query “home schooling” first rank the

documents in the collection using BM25 function and then we compute the terms

scores for “home” and “schooling” for each document in the ranking list again using

83

Figure 5.1: Individual term scores. Term scores are computed using BM25 model.
Colors of the dots are the probability of relevant document at that point. Axis labels
show the IDF values computed by logN

df
.

0 5 10lifestyles:4.37
0

2

4

6

8

10
cu

lt:
5.
55

325:cult lifestyles

0.2

0.4

0.6

0.8

1.0

(a) AQUAINT QID:325

0 2 4home:1.78
0

1

2

3

4

5

sc
ho

ol
in
g:
2.
36

394:home schooling

0.2

0.4

0.6

0.8

1.0

(b) AQUAINT QID:394

BM25 function. The average value of terms scores for each document in the ranking

list is then calculated and this results in a list of average values. Finally the standard

deviation of the average values is computed and the value is served as the feature.

Compactness and Positions of Term Score Tensors (TCP)

Document score in the ranking list as the query prediction feature was previously

proposed in [90]. In their work, the feature Normalized Query Commitment (NQC)

which is essentially defined as the standard deviation of document scores in the ranking

list was used as a post-retrieval feature to predict the query performance. Higher

deviation value was correlated with potentially lower query drift, and thus indicating

the better effectiveness [90]. We also find the deviation and other statistics of ranking

scores are indeed useful. However, our proposed features are different from that of [90]

in the sense that we focus on the term level scores instead of document level scores.

Figure 5.2 shows two example queries from WT10G and ROBUST04 respec-

tively. The x-axis and y-axis are the term scores computed by BM25 model2 and only

2 Using Dirichlet language model would get the similar conclusion albeit the values

84

Figure 5.2: Terms scores (computed by BM25) of the top 50 ranked documents in the
list. The numbers in the titles are the Average Precision of the corresponding subquery.
Green dots are relevant documents and red dots are non-relevant documents. For each
query only the optimal subquery and the original query are shown.

(a) WT10G QID:530

(b) ROBUST04 QID:648

the top 50 ranked documents are included in the figures. For both queries, the best

subqueries are the queries with fewer query terms, i.e. not the original query. We

find the similarity and difference for the chosen queries. First, it can be seen that

for both best subqueries the term scores from top ranked documents are more com-

pactly clustered. Second, the two queries are different in the sense that the term scores

clusters are located at the different position in the two dimensional space. Such dif-

ference indicates that for the best subquery the ranking model has its own preference

are negative.

85

among query terms. For WT10G-530 “pheromone” receives much higher score. But

for ROBUST04-648 both query terms receive similar scores. We name this category

of features as compactness and positions of term score tensors since we intensively

compute the all kinds of distances in the multi-dimensional term space and the term

scores from the documents are essentially N dimensional vectors. We formally define

three types of features in this category as follows:

• Tensor Compactness (TCP(TC)): The average and the standard deviation of the
distances for the tensors to their centroid. This feature captures the compactness
of the tensors cluster.

TCP (TC)µ =

∑
d∈Lq,c(f) ||

~tq,di(f), ~tq,dµ(f)||
c

(5.15)

TCP (TC)σ =

√√√√1

c

∑
d∈Lq,c(f)

|| ~tq,di(f), TCP (TC)µ||2 (5.16)

where f is BM25 ranking model, ||TA, TB|| is the distance between tensor A and
tensor B, ~tq,dµ is centroid of all the tensors in the list which is essentially

~tq,dµ(f) =

(∑ ~TLt1,c(f)

c
,

∑ ~TLt2,c(f)

c
, ...

)
(5.17)

• Tensor Closeness to Diagonal (TCP(CDG)): The distance from the tensors
centroid to the diagonal line in multi-dimensional space, the average and the
standard deviation of the distances from the tensors to the diagonal line in multi-
dimensional space. These features capture part of the position information of the
tensors.

TCP (CDG)c = || ~tq,dµ(f), ldg|| (5.18)

TCP (CDG)µ =

∑
d∈Lq,c(f) ||

~tq,di(f), ldg||
c

(5.19)

TCP (CDG)σ =

√√√√1

c

∑
d∈Lq,c(f)

|| ~tq,di(f), TCP (CDG)µ||2 (5.20)

where ldg is the diagonal line in the multi-dimensional space and ||T, l|| is the
distance from tensor T to line l.

86

• Tensor Closeness to Nearest Axis (TCP(CNA)): We compute the distance from
the tensors centroid to its nearest axis, the average/standard deviation distance
from the tensors to the nearest axis in multi-dimensional space. TCNA and TCD
together define the position property of the tensors.

TCP (CNA)c = || ~tq,dµ(f), lna|| (5.21)

TCP (CNA)µ and TCP (CNA)σ can be computed similarly with Equation 5.19
and 5.20 with replacement of ldg to lna where lna is the nearest axis to the centroid
of all tensors and is computed as:

lna = min
1≤i≤N

|| ~tq,dµ , li|| (5.22)

where li is ith-axis and N is the number of the dimensions.

We first computed the tensor closeness related features for the terms in the

subquery qi. Later on we found that it is beneficial to compute the tensor closeness

related features for all the terms in the original query Q. We apply this in all our

experiments.

Basic Features

Besides the aforementioned features (PXM, TS, TCP) we also applied other

features proposed by others which we will further refer as “basic features”.

Mutual Information (MI)

This feature was proposed by Kumaran et al. [50, 52]. In their original works

the MI is computed by first construct a graph for each subquery using the constituent

terms as vertexes, and the mutual information between the terms as the weighted edges.

“Average” weight is gained after the maximum spanning tree algorithm is applied. We

instead propose to compute the MI by first counting the co-occurrence of pairwise terms

within N terms window in the matching documents. Then the value is normalized by

the product of the DFs of the two terms. Finally we apply all possible feature functions

h to the the pairwise terms list. We have

MI = h(I(x, y)) = h

(∑
O(x,y)
T

O(x)
T
· O(y)

T

)
(5.23)

87

where O(x, y) is the number of times term x and term y co-occur within a window

of 50 terms in each matched documents, O(t) is the total occurrence of term t in the

collection and T is the total number of terms in the collection.

Collection Term Frequency (CTF)

The collection level term frequency of term t. Then we apply feature function

h to the list of CTFs as h(CTFq).

Document Frequency (DF)

This is simply the document frequency for each term in the subquery qi,j. Then

we apply feature function h to the terms DFs as h(DFq).

Inversed Document Frequency (IDF)

The IDF here is the modified log(IDF) component used in the modified BM25

model [29]:

IDFt = log
N + 1

DFt

where N is the number of documents in the collection. We then apply the feature

function h to the list of IDFt as h(IDFq).

Min Document Term Frequency (MINTF) and Max Document Term Fre-

quency (MAXTF)

MINTF is the minimum term frequency in the collection and is computed as:

MINTFt = min
1≤i≤DFt

TFt,di

Similarly

MAXTFt = max
1≤i≤DFt

TFt,di

Final features are masked using feature function as h(MINTFq) and h(MAXTFq).

Average Document Term Frequency (AVGTF) and Standard Deviation

Document Term Frequency (STDTF)

This AVGTF applies to each individual term as:

AV GTFt =

∑DFt
i=1 TFt,di
DFt

88

The STDTF is the standard deviation of AV GTFt. We apply feature function masks

to both features as h(AV GTFq) and h(STDTFq).

Average Document Term Frequency with IDF (AVGTFIDF) and with Col-

lection Occurrence Probability (AVGTFCOP)

Inspired by BM25 model and Dirichlet Language Model we incorporate the

average document term frequency with IDF and collection occurrence probability to

capture the term salience in the collection. Formally we have:

AV GTFIDFt = AV GTFt · IDFt

AV GTFCOPt = AV GTFt + µ · p(t|C)

where p(t|C) is the probability of term t occurred in the whole collection and is com-

puted as p(t|C) = CTFt
|C| . |C| is the total number of terms in the collection. We choose

µ = 1000 from the empirical study.

Simplified Clarity Score (SCS)

This feature was firstly proposed by He and Ounis [42] to reduce the computa-

tional cost of original query clarity and it was used as a pre-retrieval query performance

predicator. It is computed as:

SCSq =
∑
t∈q

p(t|q) · log2
p(t|q)
p(t|C)

where p(t|q) is the probability of term occurred in the query q.

5.2.3 Experiments and Results

In this section we test our subquery ranking method using TREC collections

and topics. We will describe the details of the experiment setup as well as the analysis

of the results.

5.2.3.1 Experiment Setup

We use six TREC Ad-hoc/Web collections in our experiments: Disk12, Disk45

with ROBUST04 query set, AQUAINT News Collection with ROBUST05 query set

89

Table 5.7: Collections and Queries

Collection #qry |QL| = 2 |QL| = 3 |QL| = 4

Disk12 150 30(20%) 37(25%) 41(27%)
Disk45 250 75(33%) 147(59%) 17(7%)

AQUAINT 50 21(42%) 27(54%) 1(2%)
WT2G 50 24(48%) 23(46%) 0(0%)

WT10G 100 30(30%) 25(25%) 20(20%)
GOV2 150 44(29%) 65(43%) 35(23%)

(ROBUST04 hard queries), WT2G, WT10G and GOV2. The title part of the query

topics is used to test the proposed subquery ranking method. Stopwords are removed

from both the collections and the queries and porter stemmer is applied to the indexes.

Table 5.7 lists the details of the collections and the corresponding queries. As we can

see that for most title topics their lengths are within 2 to 4.

Since we are targeting the subquery ranking, single term queries will not be

included 3. Lots of features can not be directly applied to the queries of length 2 such

as MI since the subqueries are single term query (other than the original query) and

thus we separate the queries by their lengths. In our experiments we focus on queries

of length 2 and 3 since even for queries of length 4 AQUAINT and WT2G do not have

enough queries for both training and testing. When tested on one collection, queries

from other 5 collections are used together as training examples. All the features are nor-

malized to the range [0, 1] before being fed to the learning algorithm. LambdaMART

is leveraged to rank the subqueries based on their features and the average precision

of the subquery is used as the labels. Since LambdaMART favors the scalar labels we

convert the AP values to integers based on the relative AP values distribution. The

relative AP values are the differences between the AP of a subquery and the AP of the

best subquery. The mapping from AP to integer should reflect the relative importance

of a query whose best subquery performs much better than the rest of its subqueries.

3 [110] provided the performance upper bound for single term queries

90

We do not show the actual distribution here but the rule of the mapping is:

Label(qi) =

4, if APqi = maxAPqi

3, if APmax qi − APqi ≤ 0.1

2, if APmax qi − APqi > 0.1 ∩maxAPqi − APqi ≤ 0.3

1, if APmax qi − APqi > 0.3 ∩maxAPqi − APqi ≤ 0.5

0, otherwise

Basically we only care about which subquery should be labeled as the best-performed

subquery thus the metric for LambdaMART is set to nDCG@1. The number of leaves

for each tree is chosen from [2, 10] and the best performance averaged among all

collections is reported. When generating the ranking list or compute the features

like TS and TCP where ranking function is needed we always apply BM25 4 with

optimal parameter b (k1 = 1.2 always) set based on the results reported in [111]. For

performance metrics we report the accuracy and MAP. We also compare the MAP of

best-performed subqueries identified by our method with the theoretical upper bound.

5.2.3.2 Results of Subquery Ranking

The results of subquery ranking (SR) using all features (mentioned in Section

5.2.2.3 and normalized) for queries of length 2 and 3 are listed in Table 5.8. The

accuracy is computed as the number of queries whose best-performed subqueries are

correctly identified divided by the total number of queries. MAP is computed by

first picking the best subqueries identified by our model and then taking the average

precision for these best subqueries. It can be seen that our SR method is better than

using original query for most of the collections. The only exception is the GOV2 with

queries of length 2 where the upper bound of the optimal performance is almost the

same with the performance of using original queries. We also find that in general the

our model performs better with queries of length 3 than the queries of length 2 in

4 We also tried using Dirichlet language model and found using BM25 leads to slightly
better performance.

91

Table 5.8: Results of using all features. OG represents the original query. SR repre-
sents our subquery ranking model. UB represents the upper bound where the optimal
subquery for each original query is picked.

|QL| Collection Accuracy
MAP

OG SR UB

2

Disk12 90% 0.3216
0.3309 0.3372

+2.89% +4.85%

Disk45 82% 0.2506
0.2566 0.2662

+2.39% +6.23%

AQUAINT 76% 0.2063
0.2091 0.2184

+1.36% +5.87%

WT2G 83% 0.2983
0.2983 0.3083

+0.00% +3.35%

WT10G 83% 0.2544
0.2663 0.2738

+4.68% +7.63%

GOV2 96% 0.2912
0.2911 0.2913
-0.03% +0.03%

3

Disk12 92% 0.2597
0.2833 0.2880

+9.09% +10.90%

Disk45 89% 0.2399
0.2643 0.2772

+10.17% +15.55%

AQUAINT 88% 0.2107
0.2323 0.2426

+10.25% +15.14%

WT2G 90% 0.3285
0.3380 0.3580

+2.89% +8.98%

WT10G 94% 0.1720
0.1949 0.2051

+13.31% +19.24%

GOV2 95% 0.3060
0.3113 0.3221

+1.73% +5.26%

terms of percentage improvement. This is mainly because some features such as MI

and PXM simply can not be applied to the queries of length 2.

Figure 5.3 shows the length distribution of the best subqueries for the queries of

length 3. Basically it shows how many queries of which its best subquery of length N.

For example, for Disk12 there are 6 queries whose best subquery are of length 1 and 23

of the queries have their optimal subquery length of 2. From the figure we can see that

in general our model has balanced number of best subqueries in different length and

the numbers are very close to the upper bound. We also find that our model slightly

92

Figure 5.3: Optimal Subqueries Lengths of queries with 3 terms. UB-1 denotes the
number of ground truth best subqueries that has 1 term. SR-1 denotes the number of
subquery ranking model ranked best subqueries that has 1 term. UB-2, UB-3, SR-2,
SR-3 follow the same notation.

Disk12 Disk45 AQUAINT WT2G WT10G GOV2
0

10

20

30

40

50

60

70

80

S
u
b
q
u
e
ry
 L
e
n
g
th
 C
o
u
n
ts

UB-1

SR-1

UB-2

SR-2

UB-3

SR-3

favors the original queries as the number of best queries that have three terms in our

model is always larger than the values of the upper bound.

5.2.3.3 Feature Importance Analysis

In order to quantify the feature importance we set up another experiment in

which a subset of features are taken off from the the feature space and the performance

difference between using all features and using the subset of features is compared. The

results are in Table 5.9 and we only show the results of queries of length 3.

In Table 5.9 there are two main sections: the top important features from basic

features are on the left and the detailed feature importance of terms relationship fea-

tures on the right. For basic features the features with the largest performance drops if

they were removed from the feature space are listed. For terms relationship features we

present the details of PXM, TS and TCP by showing the importance of the sub-features.

Sub-features are the features like PXM(w)h and TCP (CDG) which essentially reflect

93

specific intuitions of the newly proposed features. First, we notice that in general the

terms relationship features have the performance drop larger than -13%. Comparing to

the top basic features where two of them have the performance drop below than -13%

it validates the utility of these features. Second, Detailed collection-wise performance

drop indicates different features contribute differently for the collections. For example,

AVGTFCOP is important to AQUAINT while TS(SUM,SUM) is specifically useful for

WT2G. Third, detailed analysis on terms relationship features reveal that: for PXM

PXM(w)h is better than PXM(w)corr. For TS features TS(SUM,SUM) which is ac-

tually the sum of the top ranked documents scores (the first sum of all query terms

equals to the document score) is more vital. For TCP features the TCP(CNA) which

captures the position of the terms scores tensors and the TCP(TC) which captures the

tensors compactness are all important with performances drops larger than -14% and

this validates the utility of such features.

5.3 Summary and Future Work

We have discussed about the tools to analyze the traditional ranking models –

their performance upper bound and the possible best subqueries for keyword query. We

find that classic ranking models such as BM25 and Dirichlet language model are quite

close to the practical performance upper bound for single-term queries. We further

notice that for keyword queries the best subqueries can achieve better performance.

By exploring the post-retrieval features like term proximity, term score and scores

tensor properties we can reach the projected performance.

As for future work, there are two interesting directions. The first one is to

continue on the features so that the identification of the best subquery can be further

improved. For example, the semantic features would be the promising perspective.

Incorporating the outside resources as the potential feature source would be another

choice. The second direction is to leverage the terms relationship features and the ex-

perimental results presented in this thesis to do more theoretical studies. For example,

94

we could get inspiration from the features and try to prove the performance upper

bound of multiple-terms queries.

95

Table 5.9: Feature importance analysis for queries of length 3, the lower the bet-
ter. The lowest value of each collection is bolded. TS1: TS(MAX/MIN,SUM); TS2:
TS(SUM,SUM); TS3: TS(GMEAN,MEAN)

(a) Top Basic Features

Collection
Top Basic Features

AVGTFCOP SCS CTF PXM(w)h PXM(w)corr

Disk12 0.2399 0.2497 0.2445 0.2535 0.2497
0.2833 -15.3% -11.9% -13.7% -10.5% -11.9%
Disk45 0.2292 0.2293 0.2224 0.2306 0.2354
0.2643 -13.3% -13.2% -15.9% -12.8% -10.9%

AQUAINT 0.1882 0.1999 0.2003 0.1974 0.1970
0.2323 -19.0% -13.9% -13.8% -15.0% -15.2%
WT2G 0.2561 0.2756 0.2853 0.2785 0.2760
0.3380 -24.2% -18.5% -15.6% -17.6% -16.3%
WT10G 0.1587 0.1643 0.1663 0.1454 0.1510
0.1949 -18.6% -15.7% -14.7% -25.4% -22.5%
GOV2 0.3040 0.2990 0.3029 0.2989 0.3025
0.3113 -2.3% -4.0% -2.7% -4.0% -2.8%

AVG 0.2294 0.2363 0.2370 0.2341 0.2364
0.2707 -15.5% -12.9% -12.7% -14.2% -13.3%

(b) TS and TCP Features

Collection
Features

TS1 TS2 TS3 TCP(TC) TCP(CDG) TCP(CNA)

Disk12 0.2532 0.2536 0.2536 0.2374 0.2492 0.2498
0.2833 -10.6% -10.5% -10.5% -16.2% -12.0% -11.8%
Disk45 0.2294 0.2313 0.2313 0.2330 0.2337 0.2267
0.2643 -13.2% -12.5% -12.5% -11.8% -11.6% -14.2%

AQUAINT 0.2029 0.1949 0.1949 0.1884 0.2005 0.1999
0.2323 -12.7% -16.1% -16.1% -18.9% -13.7% -13.9%
WT2G 0.2641 0.2191 0.2191 0.2828 0.2826 0.2795
0.3380 -21.9% -35.2% -35.2% -16.4% -17.3% -18.3%
WT10G 0.1671 0.1617 0.1617 0.1589 0.1435 0.1441
0.1949 -14.3% -17.0% -17.0% -18.5% -26.4% -26.1%
GOV2 0.2857 0.2927 0.2947 0.3046 0.3087 0.2990
0.3113 -8.2% -6.0% -5.3% -2.2% -0.8% -4.0%

AVG 0.2337 0.2256 0.2259 0.2342 0.2359 0.2329
0.2707 -13.5% -16.2% -16.1% -14.0% -13.6% -14.7%

96

Chapter 6

CONTEXTUAL SUGGESTION

The increasing use of mobile devices enables an information retrieval (IR) sys-

tem to capitalize on various types of contexts (e.g., temporal and geographical infor-

mation) about its users. Combined with the user preference history recorded in the

system, a better understanding of users’ information need can be achieved and it thus

leads to improved user satisfaction. More importantly, such a system could proactively

recommend suggestions based on the contexts.

In this chapter, we first introduce our effort on developing the context tracking

mobile application called UDTracker. UDTracker can silently track the user’s location

and the current time which enables the precise capture of the context of the users.

User profiling is essential and is the key to success in contextual suggestion.

Since user’s preference is always modeled as long-term and static we include it as

part of the context of this problem. Given most users’ observed behaviors are sparse

and their preferences are latent in an IR system, constructing accurate user profiles is

generally difficult. In our work, we focus on location-based contextual suggestion and

propose two approaches to construct user profiles.

The first approach uses the categories and/or descriptions from users’ activities

history to build user profile. The rationale here is that users are at a better chance to

favor the places that are similar to what she liked before in terms of the category/de-

scription of the places. In reality, one user would typically have several positively rated

and also several negatively rated suggestions in the past. We compute the similarity

of category/description between each candidate suggestion and all places in the user’s

activity history and combine the averages of both positive and negative scores.

97

Figure 6.1: Data is immediately encrypted and uploaded. Encryption uses AES, RSA
with salt.

The second approach leverages the users’ opinions to form the user profiles.

By assuming users would like or dislike a place with similar reasons, we construct

the opinion-based user profile in a collaborative way: opinions from the other users

are leveraged to estimate a profile for the target user. Candidate suggestions are

represented in the same fashion and ranked based on their similarities with respect to

the user profiles.

Moreover, we also develop a novel summary generation method that utilizes the

opinion-based user profiles to generate personalized and high-quality summaries for the

suggestions.

Experiments conducted over three standard TREC Contextual suggestion col-

lections and a Yelp data set show the advantage of our approaches and the system

developed based on the proposed methods have been ranked as top 1 in both TREC

2013 and 2014 Contextual Suggestion tracks.

6.1 Mobile Context Tracking Application

We first introduce our effort of developing the mobile context tracking appli-

cation called UDTracker. UDTracker is an Android application which requires user’s

permission to passively collect the information such as geo-location, time from users.

The main concern of the application, however, lies in the security of the application due

98

to the sensitivity of the data we collect from the user. The strategy is to directly en-

crypt the collected data on user’s phone and then transfer the encrypted and archived

data to the secure server where the data is uncompressed and decrypted. After the

data is decrypted we can do our analysis of the data. The design phlogsoly can be

found in Figure 6.1.

6.2 Problem Formulation of Contextual Suggestion

The problem of contextual suggestion can be formalized as follows. Given a

user’s contexts (e.g., location and time) and the her/his preferences on a few example

suggestions, the goal is to retrieve candidate suggestions that can satisfy the user’s

information need based on both the context and preferences. For each returned can-

didate suggestion, a short description may also be returned so that the user could

decide whether the suggestion is interesting without going to its website. For example,

assume that a user liked “Magic Kingdom Park” and “Animal Kingdom”, but disliked

“Kennedy Space Center”. If the user is visiting Philadelphia on a Saturday, the sys-

tem is expected to return a list of suggestions such as “Sesame Palace” together with a

short summary of each suggestion, e.g., “Sesame Place is a theme park in Langhorne,

Pennsylvania based on the Sesame Street television program. It includes a variety of

rides, shows, and water attractions suited to very young children.”

Since our paper focuses on user modeling, we assume that we have filtered out

the suggestions that do not meet the context requirement and the remaining suggestions

only need to be ranked based on the relevance to user preferences. Note that the

filtering process based on contexts can be achieved by simply removing the suggestions

that do not satisfy the contextual requirements, such as the ones that are either too

far away from the current location or those that are currently closed.

The remaining problem is essentially a ranking problem, where candidate sug-

gestions need to be ranked based on how relevant the suggestions are with respect to

a user’s interest. Formally, let U denote a user and CS denote a candidate sugges-

tion, we need to estimate S(U,CS), i.e., the relevance score between the user and the

99

suggestion.

It is clear that the estimation of the relevance score is related to how to rep-

resent U and CS based on the available information. Let us first look at what kind

of information we can gather for U and CS. For each user U , we know the user’s

preferences (i.e., ratings) for a list of example suggestions. We denote an example sug-

gestion ES and its rating given by user U as R(U,ES). For a suggestion (either CS or

ES), we assume that the following information about the suggestion is available: the

text description such as title and category and online opinions about this suggestion.

Note all the information can be collected from online location services such as Yelp

and Tripadvisor.

6.3 Category and Description based User Profile Modeling

6.3.1 Ranking Based on User Profiles

We first describe our framework of how to rank candidate suggestions based on

user profiles. How to use the category and description to build user profile will be

introduced later. The profile of each user consists of the user’s preferences for example

suggestions. The suggestions that a user likes are referred to as “positive user profile”,

and those disliked by the user are referred to as “negative user profile”. Intuitively, the

relevance score of a candidate suggestion should be higher when it is similar to positive

user profile while different from the negative user profile.

Formally, we denote U as a user and CS as a candidate suggestion. Moreover,

let U+(U) denote positive user profile, i.e., a set of places that the user likes, and U−(U)

denote negative user profile, i.e., a set of places that the user dislikes. The relevance

score of CS with respect to U can then be computed as follows:

S(U,CS) = ϕ× SIM(U+(U), CS) + (1− ϕ)× SIM(U−(U), CS) (6.1)

= ϕ×
∑

e∈U+(U) SIM(e, CS)

|U+(U)|
+ (1− ϕ)×

∑
e∈U+(U) SIM(e, CS)

|U+(U)|
(6.2)

where ϕ ∈ [0, 1] regularizes the weight between the positive and negative similarities.

When ϕ = 1, the highly ranked suggestions would be those similar to the suggestions

100

Table 6.1: Examples of Categories in Example Suggestions

NAME Categories

HoSu Bistro SushiRestaurant→Restaurants;
KoreanRestaurant→Restaurants;
JapaneseRestaurant→Restaurants

The Rex JazzBlues→MusicVenues→Arts
St. Lawrence Market Grocery→Shopping;

FarmersMarket→Shopping
... ...

that the user likes. When ϕ = 0, the highly ranked suggestions would be those different

from the suggestions that the user dislikes. SIM(U+(U), CS) measures the similarity

between the positive user profile and the candidate suggestion, and we assume that it

can be computed by averaging the similarity scores between each positive example and

the candidate suggestion. |U+(U)| corresponds to the number of positive examples in

the user profile. It is trivial to explain the corresponding symbols for negative one.

Thus, it is clear that the problem of computing the relevance score of a candidate

suggestion with respect to a user can be boiled down to the problem of computing the

relevance score between a candidate suggestion and a place mentioned in the user

profile, i.e., SIM(e, CS), where e is an example from the user profile. We explore the

following two types of information to compute SIM(e, CS): (1) the category of a place;

and (2) the description of a place.

6.3.1.1 Category-based Similarity

Category is a very important factor that may greatly impact user preferences.

However, the categories of the suggestions are often in hierarchical format. Here is

an example category, [History Museum→Museum→Arts]. The categories becomes

more general from the left to the right. In this example, Arts is the most general

category while History Museum is the most specific category. Note that we represent

the hierarchical categories as a set of categories in this paper.

101

We can compute SIM(e, CS) based on the category similarities between e and

CS as follows:

SIMC(e, CS) =

∑
ci∈C(e)

∑
cj∈C(C)

|Intersection(ci,cj)|
max(|ci|,|cj |)

|C(e)| × |C(C)|
(6.3)

where C(e) denotes the set of categories of location e and |Intersection(ci, cj)| is the

number of common categories between ci and cj. Recall that we crawled the candidate

suggestions from two online sources. Table 6.1 shows some example categories of the

suggestions.

6.3.1.2 Description-based Similarity

In example suggestions, each suggestion has its unique description which typi-

cally is at a short length. We want to learn how the descriptions can affect people’s

decision on different places. By comparing the descriptions of training suggestions with

textual web sites of testing suggestions we may find some interesting connections. We

use textual web sites of testing suggestions because we believe that textual web sites

are more reliable than descriptions especially when we rank candidate suggestions. The

similarity used function is the F2EXP ranking function [33] since it has been shown to

be effective for long queries [33]. So, we have

F2EXP(a, b) =
∑
t∈a∩b

c(t, b)

c(t, b) + 0.5 + 0.5·|b|
avdl
· (N+1

df(t))
)0.35

(6.4)

Thus, we compute the similarity scores as follows:

SIMD(e, CS) = F2EXP(DES(e), DES(CS)) (6.5)

where DES(e) is a description of the example place e.

6.4 Opinion-based User Profile Modeling

6.4.1 Basic Idea

In our problem setup, the available information for a user U includes the user’s

preferences for a set of example suggestions. Existing studies often estimated user

102

profiles based on the descriptive information of the example suggestions such as their

names, descriptions and web sites [7, 46, 49, 85, 105–107]. However, one limitation of

this approach is that such descriptive information could be very specific for one sugges-

tion and might not be useful at all to infer the user’s preferences on other suggestions.

Categories of the suggestions were then used by some methods to overcome the limita-

tion [88, 105, 115]. Although this method improves the performance, the improvement

is often limited since category information might be too general to capture the reasons

behind the user preferences.

Instead of simply capturing what a user likes or dislikes, i.e. the descriptive

information of example suggestions, we propose to model the user profile based on the

user’s opinions about the example suggestions. The opinions about a suggestion is

defined as the 〈 rating, review text 〉 pairs in our paper. When determining whether

an opinion is positive or negative, we rely on the numeric rating rather than the review

text. More details about this are described in Section 6.6.2.1.

We now motivate the opinion-based user modeling through an example as shown

in Figure 6.2. Assume that we know a user’s preferences for the first four suggestions

and want to infer the user preference for the last one. Neither description-based nor

category-based methods are effective here. For example, the category of the candidate

suggestion is “hotel”, which does not match with the categories of all the example

suggestions. Moreover, the descriptions of these example suggestions are very specific,

making it difficult to find their commonalities. However, if we are able to know the

user’s preference and review for each example suggestion, it would be possible for us to

more accurately infer why the user liked or disliked these places. For example, it seems

that the two suggestions that the user liked (i.e., example suggestions 1 and 3) are

“clean” while the places that the user disliked (i.e., example suggestions 2 and 4) are

both “dirty”. Thus, we may infer that the user prefers places that are “clean”. Now if

we know that a candidate suggestion is well known for its “cleanness” based on online

reviews, we could safely infer that the user would like this candidate suggestion. Clearly,

opinion- based user profile modeling should be more effective than the category- based

103

and description-based methods since it can capture user preferences more accurately.

One challenge of using opinions to model user profile is that users may not share

their opinions explicitly by writing the reviews for each example suggestion. To address

the challenge, we propose to leverage opinions from similar users. More specifically,

we assume that users who rate a suggestion similarly would share the similar opinions

about the suggestion. If a user likes a suggestion, we could identify all other users

who also like this suggestion and leverage their reviews about the suggestion as part

of the user’s positive profile, i.e., the profile about what the user likes. We can build

the negative profile in a similar way.

Specifically, we use positive reviews of the example suggestions that the user

likes to build his or her positive user profile, and use negative reviews of example

suggestions that the user dislikes to build negative user profile. The basic assumption

is that the opinion of a user about a place can be inferred by the opinions of the users

who share the same preference as the target user to the same place.

Formally, a user U ’s positive profile U+(U) can be estimated as follows:

U+(U) =
⋃

∀i,R(U,ESi)=POS

REP+(ESi), (6.6)

where ESi is an example suggestion and R(U,ESi) is the rating of ESi given by user

U . The ratings could be binary or within a specified range, but they can be mapped

to either positive (i.e., POS) or negative (i.e., NEG). We will provide more details

on these mappings in our experiment setup. REP+(ESi) is the positive opinion based

representation for ESi and we will provide more details about the representation in

the following subsection (i.e., Section 6.4.2).

Similarly, a user U ’s negative profile U−(U) can be estimated as:

U−(U) =
⋃

∀i,R(U,ESi)=NEG

REP−(ESi), (6.7)

where REP−(ESi) is the negative opinion based representation for ESi.

104

6.4.2 Opinion-based Representation for Suggestions

We now discuss how to generate opinion-based representations for the sugges-

tions (CS or ES). Given an ES, we need to construct two profiles: (1) positive profile,

i.e., REP+(ES), based on all the positive reviews of ES; and (2) negative profile, i.e.,

REP−(ES) based on all negative reviews of ES.

Now the remaining challenge is how to construct these two profiles based on the

reviews. For example, do we include every term from the reviews? Or shall we only

include important terms from the reviews? If so, how to select the important terms

and what are the impact of the selected terms? In order to answer all these questions,

we explore the following four strategies to construct REP+(ES) and REP−(ES) based

on the reviews. All of these strategies are based on “bag-of-terms” representations but

they are different in which terms from the reviews are used in the representations.

• Full reviews (FR): The simplest approach is to take all terms occurring in the
review text to build the profile. For example, when estimating REP+(ES), we
take all the positive reviews about ES and use bag of terms representations for
these reviews. We can estimate REP−(ES) in a similar way using negative re-
views. Despite its simplicity, this representation may cause the efficiency concern
because when more reviews are available, the size of the profiles could be fairly
large.

• Selective term based reviews (SR): To reduce the computational cost, one possi-
bility would be to construct the profile based on a set of selected terms. Terms
could be selected using different criteria, and we include the most frequent terms
in the profiles. Specifically, top 100 most frequent terms in the review text are se-
lected and their frequencies are set to 1 after being selected. This strategy would
be less computational expensive than the FR method, but it may not perform as
well since using only frequent terms might not be the best way of representing
opinions.

• Noun based reviews (NR): Another strategy that we have explored to generate
concise profiles based on reviews is to only use the nouns from the review text.
The rationale is that nouns often correspond to important aspects of a sugges-
tion, and nouns are less noisy than the frequent terms. Thus, we expect better
performance of this method compared with SR.

• Review summaries (RS): Finally, we leverage the Opinosis algorithm [37], an
unsupervised method that generates concise summaries of reviews, to construct
the profiles. The algorithm first generates a textual word graph (called the

105

Opinosis-Graph) of the input data, where each node represents a word, and
an edge represents the link between two words. Using three unique properties
of the graph data structure (redundancy capture, collapsible structures, gapped
sub-sequences), various promising sub-paths in the graph that act as candidate
summaries are scored and ranked. The top candidate summaries are then used
to generate the final Opinosis summaries. In this work, we first concatenate all
the reviews and then generate the review summary using the Opinosis algorithm.

Figure 6.3 shows an example of the original review and the results of different

opinion-based representations. When building user profile models, we perform the

following simple pre-processing on the original reviews: 1) converting terms into lower

cases; and 2) removing punctuations and stop words.

6.4.3 Candidate Suggestions Ranking

We now describe how to rank candidate suggestions based on the user profiles.

As described in the previous section, we can estimate a user’s profile based on the user’s

preferences on the example suggestions as well as the reviews of the example sugges-

tions. In particular, the profile of user U can be represented with U+(U) and U−(U).

Similarly, a candidate suggestion CS can be represented based on its positive and neg-

ative reviews, i.e., REP+(CS) and REP−(CS). Thus, the relevance score S(U,CS)

should be related to the similarities between the positive/negative user profiles and the

positive/negative representations of candidate suggestions.

In order to compute S(U,CS), we investigate two possible ways of combining

these similarities: linear interpolation and learning-to-rank.

6.4.3.1 Linear Interpolation

Linear interpolation is a simple yet effective method to combine multiple scores

into one. The main idea here is to linearly combine the similarity scores between

user profiles (i.e., U+(U), U−(U)) and the candidate profiles (i.e., REP+(CS) and

REP−(CS)).

106

In the previous section, we have discussed how to construct these profiles, now

we discuss how to compute their similarities. Our basic idea is illustrated in Fig-

ure 6.4. Intuitively, a user would prefer suggestions with the properties that the

user likes or those without the properties that the user dislikes. This means that

the relevance score S(U,CS) should be positively correlated with the similarity be-

tween two positive profiles and two negative profiles, i.e., SIM(U+(U), REP+(CS)) and

SIM(U−(U), REP−(CS)). Similarly, a user would not like suggestions with the proper-

ties that the user dislikes or suggestions without the properties that the user likes, which

means S(U,CS) should be negatively correlated with the similarity between positive

and negative profiles, i.e., SIM(U+(U), REP−(CS)) and SIM(U−(U), REP+(CS)).

Following the above intuitions, we can estimate the similarity between a user

and a candidate suggestion as follows:

S(U,CS) = α× SIM(U+(U), REP+(CS))− β × SIM(U+(U), REP−(CS))

− γ × SIM(U−(U), REP+(CS)) + η × SIM(U−(U), REP−(CS))
(6.8)

where α, β, γ and η are parameters that balance the impact of the four components

to the final similarity score. All of their values are between 0 and 1. SIM(a, b) could

be any text similarity measure. In this paper, we used an axiomatic retrieval function

F2EXP [33] since it has been shown to be effective for long queries [33]. So, we have

SIM(a, b) =
∑
t∈a∩b

c(t, b)

c(t, b) + 0.5 + 0.5·|b|
avdl
· (N+1

df(t))
)0.35

(6.9)

where c(t, b) is the occurrences of term t in b and |b| is the number of terms in b. avdl

is the average length of all the candidate suggestion representations, N is the number

of candidate suggestions in the collection, and df(t) is the number of candidate sug-

gestion representations that contain term t. Note that there are two collections for the

candidate suggestion representations, i.e, positive one vs. negative one. Depending on

whether b is a positive or negative representation, the last three statistics are computed

based on the corresponding collection.

107

6.4.3.2 Learning to Rank

Machine learning is another way of combining multiple features. And learning

to rank has been proven to be effective in information retrieval area [65,70].
For our task, we can first compute the similarity scores

SIM(U+(U), REP+(CS)), SIM(U−(U), REP−(CS)),
SIM(U+(U), REP−(CS)) and SIM(U−(U), REP+(CS)) which is exactly the same as
what we do in linear interpolation method (Section 6.4.3.1). After having these similar-
ities at hand, we can use the similarities as features and use learning-to-rank methods
to compute the ranking score for each candidate suggestion. The following learning-
to-rank methods are considered:

• MART, which is also known as Gradient Boosted Regression Trees. It generates
a set of weighted regression trees that aim to predict the scores of training data
[36]. The regression tree learned at each iteration only needs to focus on the
difference between the target label and the prediction of previous trees. The
number of trees can be tuned via the validation data.

• LambdaMART, which also applies boosted regression trees, but the training
of the trees consider numeric measurements (such as NDCG and ERR) to obtain
the gradient of the surrogate loss function between pairs of documents [9]. Like
MART, the number of iterations can also be tuned via the validation data. It is
denoted as LMART in the paper.

• LinearRegression, which views the target label as a linear combination of the
attributes. The goal is to search for parameters so that the sum of the squares
of differences between target label and the predicted label is minimized. It is
denoted as LR in the paper.

6.5 Structured Summary Generation

Here we discuss how to generate a personalized and structured summary for a

candidate suggestion. A straightforward solution is to apply existing text summariza-

tion techniques and extract important information from the website of a suggestion [25].

The result would be similar to the search snippets generated by Web search engines

for the suggestion’s website. For example, the snippet of Olive Room 1 is “The Olive

Room, French Restaurant in Montgomery. See the menu, 49 photos, 1 blog post and

34 user reviews. Reviews from critics, food blogs and fellow ...”

1 http://www.theoliveroom.com

108

Although this strategy would work, it might not be optimal for the following

reasons. First, the summary comes from only a single information source, i.e., the web-

site of the suggestion, which may lead to incomplete or even biased information about

the suggestion. Second, the summary is not personalized. The lack of personalization

might not effectively convince every user.

To overcome these limitations, we propose a novel summarization method for

contextual suggestions that leverages the user profile as well as the information from

multiple sources about the suggestions to produce personalized and structured sum-

maries.

Given a suggestion, we could collect a wide variety of information about the

suggestion, which includes the category of the suggestion, website of the suggestion as

well as the reviews of the suggestion. Note that the category and reviews of a suggestion

can be downloaded from the third party websites such as Yelp and Tripadvisor. Recall

that the user profiles we have estimated can tell us what makes a user like or dislike

a suggestion. Thus, it would be interesting to study how to leverage user profiles

to generate summaries that are more convincing. Now, the key challenge is how to

synthesize the information from various sources and generate a coherent personalized

summary.

To tackle this problem, we propose to generate a structured summary. In par-

ticular, the summary consists of multiple fields, and each field aims to provide infor-

mation about a unique aspect of the suggestion. All the fields together would offer

a more complete information about the suggestion as well as arguments on why the

suggestion would be appealing to a particular user.
The structured summary consists of the following four components:

• An Opening Sentence: It provides a high-level introduction in one sentence.

• An “official” introduction: It provides more detailed information about the
suggestion by extracting information from the website of the suggestion.

• Highlighted reviews: This component explains why other people like this sug-
gestion based on the information extracted from the reviews.

109

• A concluding sentence: This component explains why this suggestion is rec-
ommended to the user.

We now provide more detailed information on how to generate the above struc-

tured summary.

An opening sentence. The opening sentence serves as a high-level introduc-

tion sentence. Sometimes people can even hardly know what kind of the suggestion it

is by looking at its name. For instance, we might guess that “Zahav” is related to food,

but what kind of food? Intuitively, the opening sentence should clearly explain what

this suggestion is. And the category information of this suggestion could be a good

choice. Our opening sentence then is of the form: suggestion’s name followed by the

fine category of that suggestion. For example, “The big fish grocery is a shopping store

especially for seafood.” If the fine category of candidate suggestion is not available, we

show its coarse category like “The DCM is a museum.” The fine and coarse category

can be obtained from the data sources such as Yelp and Google Place.

The “official” introduction. The “official” introduction consists of useful

sentences extracted from the web site of the suggestion. Generally speaking, we cannot

rely on the HTML DOM structure to extract the well crafted description for two

reasons: (1) there might not be dedicated field to store such information, even in the

meta data; (2) even if we can find a short summary in the meta data, the information

might be too general and does not match user interests well. To address this challenge,

we propose to leverage reviews to identify important information from the websites.

Specifically, we first extract nouns with high frequency from the suggestion opinions.

After that, we use these nouns to identify the sentences from the web site of the

candidate suggestion. All the identified sentences are ranked based on the number of

distinctive/total positive adjectives. Only top 5 ranked sentences are used due to the

length of the summary.

The highlighted reviews. The highlighted reviews are the sentences extracted

from the positive reviews of the suggestion. The process is very similar with the extrac-

tion of “official” introduction. We use the most frequent nouns as a guide to extract

110

sentences from positive reviews. Sentences with more distinct positive adjectives are

chosen.

The concluding sentence. The concluding sentence is the last sentence in the

structured description. Here we customize it to specific user. The concluding sentence

is of the form: “We recommend this suggestion to you because you liked abc and xyz

in example suggestions.” abc and xyz are example suggestions that have the same fine

category as the candidate suggestion.

As an example, here is the generated summary for a candidate suggestion,

i.e., Olive Room. ”The Olive Room is a bar. HERE ARE THE DESCRIPTIONS

FROM ITS WEBSITE: Here at the olive room, you will receive the finest cuisine

montgomery has to offer, hands down. HERE ARE REVIEWS FROM OTHER PEO-

PLE: If you are looking for a unique dining experience, with excellent food, service,

location, and outstanding ambiance, look no further! THIS PLACE IS SIMILAR TO

OTHER PLACE(S) YOU LIKED, i.e. Tria Wine Room.”

6.6 Experiments

We conduct experiments to evaluate the proposed category-based, description-

based and opinion-based candidate ranking methods as well as the summarization

method.

6.6.1 Data sets

To evaluate the effectiveness of the proposed methods, we conduct experiments

over two types of data sets: (1) the data set used in the TREC Contextual Suggestion

track [27]; and (2) a data set crawled from Yelp2.

• TREC data set: The TREC Contextual Suggestion Track [27] provides an
evaluation platform for the problem of contextual suggestion. We use the officially
released collections from 2012 to 2014, and denote them as CS2012, CS2013 and
CS2014 respectively. Each collection consists of a set of example suggestions and
user profiles. User profile includes the ratings for each suggestion given by each

2 http://www.yelp.com

111

Table 6.2: Statistics of the three TREC collections

Collection Num. of Users Num. of Suggestions the range of ratings
CS2012 34 49 [-1,1]
CS2013 562 50 [0,4]
CS2014 299 100 [0,4]

user. The information provided about each example suggestion includes its name,
a short description and the URL to its webpage. To gather the opinions for each
suggestion, we crawl the ratings and text reviews of the suggestions from Yelp.
The statistics of these three TREC collections are summarized in Table 6.2.

• Yelp data set:3 For the TREC collections, all users rated the same number of
suggestions, which might not be the case in reality, e.g., sparse observations of
users’ preferences. To assess the proposed methods in a more realistic setting,
we construct another evaluation data set based on Yelp reviews. Specifically, we
randomly picked 100 Yelp users, and crawled the information about suggestions
they had rated as example suggestions in one month period (from January 15,
2013 to February 14, 2013). Note that, for each suggestion, we have its name but
do not have the short description as in the TREC collection. The total number
of crawled suggestions is 13,880. All the opinions (i.e., ratings and text reviews)
about each suggestion are also crawled. The users ratings are in the range of
[1,5].

These two evaluation data sets have distinct characteristics. In the TREC col-

lections, there is a fixed set of example suggestions, and all the users provide their

ratings on those suggestions. On the contrary, in the Yelp collection, different users

would rate different sets of suggestions, where the overlapped suggestions are small

and the number of rated suggestions per user also varies. The average number of rated

suggestions per user is around 200.

6.6.2 Experiments on Candidate Suggestion Ranking

6.6.2.1 Experiment Design

In all the collections, for each user, we need to split the suggestions that rated

by this user into development set and test set. The suggestions in the development

set are used to construct user profile while those in the test set are used as candidate

3 available at https://s3.amazonaws.com/irj2014 yelp data/irj2014 yelp.tar.gz

112

suggestions that need to be ranked. For each user, we randomly select 50% of the

suggestions from each category at each rating level to build the user profile, and use

the remaining ones as the test set. We will discuss the impact of the size of development

set for user profile construction in Section 6.6.2.3.

As discussed in Section 6.6.1, user rating values in different evaluation collections

are different. We need to map them into either POS (i.e, positive) or NEG (i.e.,

negative) as described in Equation 6.6. In the CS2012 data set, the rating of 1 is

mapped to POS and the ratings of -1,0 are mapped to NEG. In the CS2013 and

CS2014 data sets, the ratings higher than 2 are mapped to POS while those lower than

2 are mapped to NEG. In the Yelp data set, the ratings higher than 3 are mapped

to POS while those lower than 3 are mapped to NEG. Note that the reviews assigned

with the middle rating are not included in the mapping because it is difficult to directly

classify them into positive or negative opinions without looking at the text reviews.

The evaluation measures for candidate suggestion rankings are P@5 (precision

at top 5 results) and ERR@20 (expected reciprocal rank at top 20 results) [17]. P@5 is

the official measure used in the TREC contextual suggestion track. Since the relevance

judgement of a candidate suggestion is graded and P@5 cannot capture the graded

relevance, we use ERR@20 as an additional measure.

6.6.2.2 Results of candidate suggestion ranking

We first conduct experiments to evaluate the proposed methods when using

linear interpolation. The results of using 5-fold cross validation are shown in Table

6.3. The Yelp data set does not have description for each suggestion to build the user

profile, so the description-based method is not applicable for this data set.

We can see that opinion-based methods have better performances over category-

based or description-based methods over both measures and all the collections. These

results show that it is more effective to model user preferences using the opinions about

the suggestions than using the categories or the descriptions of the suggestions. In

particular, the improvement is larger on the Yelp data collection. This indicates that

113

the opinion-based methods can capture the user preferences in a more general way.

Moreover, the evaluation results of all the opinion-based methods are quite similar;

among them, NR seems to be the most stable one.

There are four parameters in the linear interpolation methods as described in

Section 6.4.3. We find that the optimal parameter setting is as follows: α = 1.0, β =

0.0, γ = 0.9, η = 0.1, which indicates both positive and negative user profiles are

important. It verifies our hypothesis that it is necessary to capture both what a user

likes and what a user dislikes in contextual suggestion. Furthermore, we can find that

the positive candidate suggestion representation is more useful than the negative one.

Table 6.4 shows the performance of learning-to-rank methods. All the models

are trained on 60% of the data, validated on 20% of the data, and then tested on

the remaining data. This process is repeated 5 times and the average performance is

reported. We can see that the opinion-based user profiling is still consistently better

than the description or category-based methods. Among the three learning-to-rank

methods, LMART and MART performed much better than the linear regression meth-

ods, and MART was the best. Among different representations, the performance is

still similar, and NR remains to be a reasonable choice.

Based on the results of these two tables, it seems that the best strategy is to

use NR for opinion-based representation and use MART to combine the similarities.

6.6.2.3 In-depth Analysis

We first conduct experiments to analyze how the size of development set used

to build the user profile affects the performance of these methods. In the previous ex-

periments, for each user, we used 50% of the suggestions rated by the user to build user

profiles. It is necessary to verify how the performance changes when fewer suggestions

are used. The results are shown in Figure 6.5. The X axis indicates the percentage

of suggestions used to build the profile, and the Y axis corresponds to the ranking

performance. It is clear that the performance of the opinion-based method (i.e., NR)

114

is more robust with respect to the quality of the user profile. Even when we use fewer

number of suggestions to build the profile, the performance remains robust.

Previous results show that NR seems to be more robust and effective than the

other profile representations. Our result analysis suggests that the better performance

may be related to the fact that the NR-based profiles contain fewer noisy terms. Here,

we use an example pair i.e., user (uid:918) and candidate suggestion (id:107), to illus-

trate it. Table 6.5 shows the most frequent terms in the positive user profiles and the

positive representation of the candidate suggestion. We can see that the candidate is

about a place that selling “breakfast items” while the user seems to like “beers” and

“chicken wings”. Comparing these different profiles, it is clear that the profiles gen-

erated by NR contain fewer noisy terms than others. When computing the similarity

between the user profile and candidate suggestions, these noisy terms could mistakenly

boost the ranking of the candidate suggestion. This effect has been shown in Table

6.6. We use KL-Divergence to measure the difference between the user profile from

the candidate representation. It is clear that NR is able to capture difference between

the user profile and the candidate suggestion and rank the suggestion at the seventh

place. On the other hand, the other representations are more similar to the candidate

suggestion and incorrectly rank it at a higher place.

6.6.3 Experiments on Summary Generation

We conduct two sets of experiments to evaluate the proposed structured sum-

mary generation method.

We first evaluate the quality of the summaries generated by the proposed method.

The baseline method is the snippet generation method developed by Yelp, and this

method was used in one of the top ranked TREC runs [26]. To compare the results of

the two methods, we develop an annotation interface as shown in Figure 6.6. There are

2,109 unique suggestions from the TREC 2013 and 2014 contextual suggesion tracks,

and we generate the summary for each of them using the two methods. For each

suggestion, the annotation system would present the summary generated by the two

115

methods, and annotators are expected to read the results and decide which one is bet-

ter or choose “Hard or Impossible to Decide”. Two annotators are hired for this task,

and they are assigned to judge 1,300 and 1,209 suggestions respectively. There are

suggestions judged by both assessors so that we can see whether judgements between

the two assessors are consistent.

The comparison results are shown in Table 6.7. Among the overlapped sug-

gestions, both annotators think that our method performs better than the baseline

method for over 70% of the suggestions. Similar observations can be made for the

non-overlapped suggestion set as well. Thus, it is clear that our structured summary

generation method is more effective than the state of the art baseline method.

Since each structured summary contains multiple components, we also conduct

experiments to evaluate the effectiveness for each component. Note that the last com-

ponent is personalized and it is trivial to evaluate its effectiveness, so we focus on

evaluating the first three components, i.e, opening, official introduction and review.

We recruit three annotators (two of whom are the same ones as in the previous task)

to assess the quality of the structured summaries. Following the same judgement strat-

egy used by TREC, there are 5 rating levels, and 0,1,2 are mapped to non-relevant and

3,4 are mapped to relevant. The interface of the annotation system is shown in Figure

6.7. Again, there are 2,109 suggestions, and we split the job among three annotators.

There are 200 suggestions assessed by all the three assessors to measure the agreement.

The results are evaluated with accuracy, i.e,. the number of relevant summaries divided

by the number of summaries.

Table 6.8 shows the accuracy of each section for the overlapped suggestions. It

is clear that all sections have high accuracy. Among them, it seems that the official

introduction are less relevant than the other two components. We also measure the

agreement among the three assessors, and the agreement is around 0.5 for the official

introduction, 0.7 for the opening, and 0.6 for the review component. Furthermore,

Table 6.9 shows the accuracy of each component for all suggestions including the ones

shared among annotators. If a suggestion is from the overlapped set, i.e., having

116

more than one annotation, the relevance status of a component is determined by the

majority vote. Since all the suggestions are from the pool of either TREC 2013 CS

track or TREC 2014 CS track, we report the accuracy for each collection separately.

The observation here is similar to what we observed in the overlapped set. It is clear

that both opening and review components are useful and more relevant.

6.7 Summary and Future Work

In this chapter, we have described our Android application which can track the

user’s context information – the location and the time. After that, we introduced our

efforts on the contextual suggestion where the places and events are provided to the

user based on user’s preference history and the current context. We have tried two

user profiling methods: using categories/ descriptions and using opinions from self and

other users. The results confirm the utility of both approaches.

In the future, we think the online learning is the trend. Now our system needs

to collect much opinions as the starting point. It is better to feed the algorithm

once the review is available. We also would like to compare our method with general

collaborative filtering. Because of the setup of the problem, we believe our method is

a complementary part to CF approach where ample reviews are available.

117

Category Description (web site) Review Preference

Example
Suggestion

1
Museum

The A Museum is the
oldest Holocaust
museum in the United
States...

A small and clean
museum that will
take you less than an
hour to see
everything...

Example
Suggestion

2
Hotel

The B Hotel is just
moments from all
tourists attractions and
exciting things to do in
Los Angeles both for
business and pleasure....

Dirty hotel, the room
itself was filthy...

Example
Suggestion

3
Restaurant

The ambiance at C is
palpable. Inside our old
roadhouse, you feel like
you are back in the old
west with our long, long
“did I say” long
bar….rustic décor and
welcoming taff. Makes
you feel right at home
the minute you walk in
the door… warm and
friendly like!

“Good food, clean
restaurant” - My
daughter and I
enjoyed the corn
dog... Women's
bathroom was very
clean, much
appreciated.

Example
Suggestion

4
Food

Country-style comfort
food including all-day
breakfasts & hearty
lunches served in a
homey space.

Awful in every
conceivable way.
Bad service, dirty
environment, and
tasteless slop. 2 stars
for a sort of decent
beer selection.

Candidate
Suggestion

Hotel

Hotel Z features an
outdoor pool for hotel
guests only and
indoor/outdoor private
event space...

Great hotel! clean
and modern...

?

Figure 6.2: An example scenario when we know the user’s preferences for some sug-
gestions and want to predict the preference for the unknown one

118

Funky little spot with a and good chow. The chile sauce had plenty of flavorlaid-back vibe
and kick, and everything seemed fresh. Service was friendly and reasonably quick, and
the prices were reasonable. A bit expensive but and a great ambiance.I had thegreat food
club sandwich with green chile and it was delicious. Very, very good. Party of 6 - huevos
rancheros, veggie burrito, steak tacos, Mac and cheese with . Topped off bygreen chile key
lime pie. All servings enjoyed by all. If you want ambience skip. If you want a quick,
good, no frills meal, this place is for you. The Ive had in a long time.best Mexican food
The Blue Corn Enchiladas with Green Chilis were fantastic.

best santa fe; green chile; key lime pie; great food; back vibe.

RS:

Original Review:

The same as the the raw opinion sentences above except with removal of stop words.

FR:

chile want vibe veggie time tacos steak spot skip servings seemed sauce sandwich
reasonably reasonable rancheros prices plenty place pie off no meal long huevos...

SR:

chow sauce plenty flavor kick everything Service prices bit food ambiance club
sandwich chile Party burrito steak tacos Mac cheese chile lime pie servings...

NR:

Figure 6.3: An example results of different opinion-based representations

Example
Suggestions

Positive Profile

U
pos

Candidate
Suggestions

Positive Reviews

CS
pos

Negative Profile

U
neg

Negative Reviews

CS
neg

+

+

-
-

What makes the user
likes a suggestion

What makes the user
dislikes a suggestion

What other users dislike
about this suggestion

What other users like
about this suggestion

SIM (similarity)

Figure 6.4: The linear interpolation method

119

Table 6.3: 5-fold cross validation results using linear interpolation method. ∗ (or †)
indicates the improvement over the category-based (or description-based) method is
statistically significant.

Collections Methods ERR@20 P@5

CS2012

category 0.79 0.65

description 0.70 0.51

FR 0.80∗† 0.68∗†

SR 0.80∗† 0.66∗†

NR 0.81∗† 0.66∗†

RS 0.81∗† 0.67∗†

CS2013

category 0.66 0.68

description 0.65 0.65

FR 0.72∗† 0.70∗†

SR 0.71∗† 0.69∗†

NR 0.71∗† 0.70∗†

RS 0.69∗† 0.68∗†

CS2014

category 0.72 0.74

description 0.71 0.74

FR 0.73∗† 0.76∗†

SR 0.71 0.77∗†

NR 0.75∗† 0.78∗†

RS 0.75∗† 0.75∗†

Yelp

category 0.70 0.73

description - -

FR 0.81∗ 0.90∗

SR 0.81∗ 0.90∗

NR 0.81∗ 0.91∗

RS 0.81∗ 0.90∗

120

Table 6.4: Performance of learning to rank methods. ∗ (or †) indicates the improvement
over the category-based (or description-based) method is statistically significant.

Collection Feature
ERR@20 P@5

LR LMART MART LR LMART MART

CS2012

category 0.76 0.72 0.76 0.65 0.56 0.66

description 0.68 0.64 0.66 0.48 0.55 0.56

FR 0.66 0.73∗† 0.80∗† 0.52† 0.63∗† 0.64†

SR 0.64 0.75∗† 0.73† 0.47 0.63∗† 0.56

NR 0.64 0.74∗† 0.75† 0.47 0.63∗† 0.61†

RS 0.61 0.80∗† 0.76∗† 0.45 0.67∗† 0.63†

CS2013

category 0.65 0.68 0.66 0.70 0.67 0.68

description 0.65 0.66 0.65 0.62 0.62 0.65

FR 0.65† 0.69∗† 0.72∗† 0.63† 0.68∗† 0.70∗†

SR 0.65† 0.69∗† 0.71∗† 0.57 0.68∗† 0.69∗†

NR 0.65† 0.70∗† 0.71∗† 0.64† 0.68∗† 0.70∗†

RS 0.65† 0.69∗† 0.71∗† 0.59 0.70∗† 0.70∗†

CS2014

category 0.70 0.69 0.71 0.75 0.70 0.75

description 0.71 0.68 0.71 0.74 0.70 0.75

FR 0.67 0.75∗† 0.76∗† 0.66 0.76∗† 0.79∗†

SR 0.62 0.70∗† 0.75∗† 0.60 0.72∗† 0.78∗†

NR 0.67 0.73∗† 0.75∗† 0.68 0.77∗† 0.79∗†

RS 0.66 0.73∗† 0.74∗† 0.63 0.76∗† 0.79∗†

Yelp

category 0.69 0.67 0.68 0.72 0.56 0.72

FR 0.78∗ 0.77∗ 0.78∗ 0.84∗ 0.76∗ 0.89∗

SR 0.77∗ 0.80∗ 0.79∗ 0.85∗ 0.81∗ 0.93∗

NR 0.80∗ 0.76∗ 0.80∗ 0.85∗ 0.77∗ 0.93∗

RS 0.79∗ 0.76∗ 0.79∗ 0.85∗ 0.73∗ 0.92∗

121

0.66

0.68

0.70

0.72

0.74

0.76

0.78

0.80

0.82

C
S
20
12

ERR@20

0.45

0.50

0.55

0.60

0.65

0.70
P@5

0.62

0.64

0.66

0.68

0.70

0.72

C
S
20
1
3

0.58

0.60

0.62

0.64

0.66

0.68

0.70

0.72

0.62

0.64

0.66

0.68

0.70

0.72

0.74

0.76

C
S
20
14

0.66

0.68

0.70

0.72

0.74

0.76

0.78

10 20 30 40 50

p

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Y
el
p

10 20 30 40 50

p

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

CAT DES NR(LI)

Figure 6.5: The performance of using less data to build user profile

122

Table 6.5: Top frequent terms in different user profiles (id:918) and positive candidate
profile (id:107)

Positive User Profiles

NR
place,burg,time,beer,food,chicago,wing,pie,art,chicken,kuma,
view,bar,wait,day,drink,people,friend,table,hour,thing,cheese,
sauce,night,fry

FR
burg,place,go,good,get,wait,time,great,beer,like,just,one,food,
love,chicago,really,best,kuma,order,friend,will,also,
back,bar,wing

SR
order,go,burg,beer,worth,wing,will,went,well,way,want,wait,
visit,view,two,try,time,though,think,take,table,sure,still,
something,service

RS
great,good,place,best,burg,amaze,time,favorite,beer,pie,
chicago,food,art,view,first,nice,ever,delicious,beautiful,fan,
awesome,worth,wait,friend,free

Positive Candidate Profile
Name Little Goat

Description
Upscale diner next to the Little Goat Bakery serving
breakfast items, sandwiches, burgers & more

goat,wait,little,good,food,great,order,place,like,dine,time,go,menu,love,just,
try,back,friend,get,really,delicious,also,one,breakfast,sandwich,cheese,got,
table,pork,service,will,pancake,come,serve,coffee,well,can,amaze,definite,bread

Table 6.6: KL divergence between positive user profile (id:918) and positive candidate
profile (id:107)

Representations KL Div. Ranking

NR 1.54 7
FR 0.61 2
SR 1.40 2
RS 0.95 5

123

Figure 6.6: Screen shot of the web-based annotation system to compare two summary
generation methods

Table 6.7: Comparison of results summarization methods

Overlapped Suggestions
Annotator#1 Annotator#2

Our method is better than the baseline. 71% 86%
Our method is worse than the baseline. 20% 11%
Hard or Impossible to decide 9% 4%

Non-Overlapped Suggestions
Annotator#1 Annotator#2

Our method is better than the baseline. 78% 68%
Our method is worse than the baseline. 15% 32%
Hard or Impossible to decide 7% 0%

Figure 6.7: Screen shot of the web-based annotation system to evaluate the effectiveness
of components

124

Table 6.8: Evaluation results on the overlapped suggestions (measured by accuracy)

Components Annotator #1 Annotator #2 Annotator #3
Opening 0.98 0.81 0.80
“Official” Intro 0.75 0.53 0.78
Review 0.87 0.95 0.99

Table 6.9: Evaluation results on all the suggestions (measured by accuracy)

Components CS2013 CS2014
Opening 0.99 0.83
“Official” Intro 0.56 0.47
Review 0.69 0.77

125

Chapter 7

CONCLUSION AND FUTURE WORK

In this thesis, we have introduced several IR toolkits which are designed to

address the new challenges faced in front of both IR researchers and the crowds.

7.1 Conclusion

VIRLab and Anserini are mainly for IR teaching. Specifically, VIRLab removes

the burden of setting up complex experimental environment to just test a simple rank-

ing model. This greatly promotes the dissemination of IR knowledge with best practice.

Anserini is built on top of Lucene. Lucene is efficient and scalable without compro-

mising effectiveness. Furthermore, Lucene has the benefit of a large user community

and broad adoption in industry. Anserini fills in the “rough edges” of using Lucene

for information retrieval research by providing wrappers and extensions that simplify

common tasks such as indexing large research web collections and performing standard

ad hoc retrieval runs.

We further demonstrated the utility of reproducibility evaluation system in-

cluding PPE and RISE. PPE is a prototype of more general idea of how a unified

evaluation system should be designed, considering various scenarios. RISE is a more

specific platform where different ranking models can be easily implemented, getting

evaluated and compared. As demonstrated in the paper, we have implemented 21 re-

trieval functions and evaluate them over 16 TREC data sets. All the implementations

and the evaluation results are available at the RISE platform1.

As a pure research tool, the performance analysis of ranking models on keyword

queries is proposed in this thesis. The toolkit can provide the practical performance

1 http://rires.info:8080/

126

upper bound of the classical ranking models such as BM25 and Dirichlet language

model for single-term queries based on cost/gain analysis whose idea is borrowed from

learning to rank. The toolkit can also identify best subqueries for any keyword queries

other than single-term queries. This is realized by exploring the post-retrieval features

such as term proximity, term score and term scores tensors properties.

We last effort in this thesis is to provide a tool to enable the “zero query”

mobile search. The aim of this tool is to return satisfying results based on not only

user preference history but also contextual information. For this study, we first build

a Android mobile application to track user’s geographical and temporal information.

Based on the user’s current context, we recommend the interesting places and events

to the user based on user’s preference history. We propose two methods to model

user profile. Category and description are firstly used and opinions are also tested.

Experimental results on TREC collections confirm the utility of both approaches.

7.2 Future Work

Moving forward, we anticipate substantial continued interest at the intersection

of deep learning and information retrieval, and the multi-stage ranking architecture of

Anserini provides a natural integration point for future explorations.

We plan to make the unified reproducibility evaluation system publicly available

as a new IR evaluation platform. All IR researchers are welcome to use the system

to evaluate their models. We also plan to extend the functionality of this system to

support more IR tasks.

For the tool for analyzing the ranking models, since these features for identifying

the best subqueries are post-retrieval, it would inevitably increase the processing time

and make it less practical to apply this method online. We plan to study more efficient

ways of computing features in our future work.

For contextual suggestion, there are many interesting directions that can be

pursued in the future. First, it would be interesting to evaluate the proposed method

in the personalized local search problem. Second, we only focus on the user modeling,

127

and plan to study how to incorporate other context-related factors such as distances

and recency into the ranking process.

128

BIBLIOGRAPHY

[1] Gianni Amati and Cornelis Joost Van Rijsbergen. Probabilistic models of in-
formation retrieval based on measuring the divergence from randomness. ACM
Trans. Inf. Syst., 20(4):357–389, 2002.

[2] Jaime Arguello, Matt Crane, Fernando Diaz, Jimmy Lin, and Andrew Trotman.
Report on the SIGIR 2015 workshop on Reproducibility, Inexplicability, and
Generalizability of Results (RIGOR). SIGIR Forum, 49(2):107–116, 2015.

[3] Timothy G. Armstrong, Alistair Moffat, William Webber, and Justin Zobel.
Improvements that don’t add up: Ad-hoc retrieval results since 1998. In CIKM,
pages 601–610, 2009.

[4] Nima Asadi and Jimmy Lin. Effectiveness/efficiency tradeoffs for candidate gen-
eration in multi-stage retrieval architectures. In SIGIR, pages 997–1000, 2013.

[5] Niranjan Balasubramanian, Giridhar Kumaran, and Vitor R. Carvalho. Ex-
ploring reductions for long web queries. In Proceedings of the 33rd International
ACM SIGIR Conference on Research and Development in Information Retrieval,
SIGIR ’10, pages 571–578, New York, NY, USA, 2010. ACM.

[6] Jie Bao, Yu Zheng, and Mohamed F. Mokbel. Location-based and preference-
aware recommendation using sparse geo-social networking data. In Proceedings
of the 20th International Conference on Advances in Geographic Information
Systems, SIGSPATIAL ’12, pages 199–208, New York, NY, USA, 2012. ACM.

[7] Alejandro Belloǵın, G. Gebrekirstos Gebremeskel, Jiyin He, Jimmy Lin, and Alan
Said. Cwi and tu delft notebook trec 2013: Contextual suggestion, federated web
search, kba, and web tracks. In Proceedings of TREC’13, 2013.

[8] Michael Bendersky and W. Bruce Croft. Discovering key concepts in verbose
queries. In Proceedings of the 31st Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval, SIGIR ’08, pages 491–
498, New York, NY, USA, 2008. ACM.

[9] Christopher J. C. Burges. From RankNet to LambdaRank to LambdaMART:
An overview. Technical report, Microsoft Research, 2010.

[10] Christopher J.C. Burges. From ranknet to lambdarank to lambdamart: An
overview. Technical Report MSR-TR-2010-82, June 2010.

129

[11] C.J.C. Burges, R. Ragno, and Q.V. Le. Learning to rank with non-smooth cost
functions. In Advances in Neural Information Processing Systems 19. MIT Press,
Cambridge, MA, January 2007.

[12] Ben Carterette, Evangelos Kanoulas, Mark Hall, Ashraf Bah, and Paul Clough.
Overview of the trec 2013 session track. In Proceedings of TREC’13, 2013.

[13] Ben Carterette, Evangelos Kanoulas, Mark Hall, Ashraf Bah, and Paul Clough.
Overview of the trec 2014 session track. In Proceedings of TREC’14, 2014.

[14] Ben Carterette, Evangelos Kanoulas, Mark Hall, and Paul Clough. Overview of
the TREC 2014 session track. In TREC, 2014.

[15] Ben Carterette, Virgil Pavlu, Hui Fang, and Evangelos Kanoulas. Million query
track 2009 overview. In Proceedings of TREC’09, 2009.

[16] Marc-Allen Cartright, Samuel Huston, and H Field. Galago: A modular dis-
tributed processing and retrieval system. In SIGIR 2012 Workshop on Open
Source Information Retrieval, pages 25–31, 2012.

[17] Olivier Chapelle, Donald Metlzer, Ya Zhang, and Pierre Grinspan. Expected
reciprocal rank for graded relevance. In Proceedings of the 18th ACM Conference
on Information and Knowledge Management, CIKM ’09, pages 621–630, New
York, NY, USA, 2009. ACM.

[18] Yan Chen and Yan-Qing Zhang. A query substitution-search result refinement ap-
proach for long query web searches. In Proceedings of the 2009 IEEE/WIC/ACM
International Joint Conference on Web Intelligence and Intelligent Agent Tech-
nology - Volume 01, WI-IAT ’09, pages 245–251, Washington, DC, USA, 2009.
IEEE Computer Society.

[19] Benny Chor, Eyal Kushilevitz, Oded Goldreich, and Madhu Sudan. Private
information retrieval. Journal of the ACM (JACM), 45(6):965–981, 1998.

[20] Charles L. A. Clarke, J. Shane Culpepper, and Alistair Moffat. Assessing
efficiency—effectiveness tradeoffs in multi-stage retrieval systems without using
relevance judgments. IRJ, 19(4):351–377, 2016.

[21] Stéphane Clinchant and Eric Gaussier. Information-based models for ad hoc
ir. In Proceedings of the 33rd International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR ’10, pages 234–241, New York,
NY, USA, 2010. ACM.

[22] Kevyn Collins-Thompson, Craig Macdonald, Paul Bennett, Fernando Diaz, and
Ellen M. Voorhees. Trec 2014 web track overview. In Proceedings of TREC’14,
2014.

130

[23] Ronan Cummins, Mounia Lalmas, Colm O’Riordan, and Joemon M. Jose. Nav-
igating the user query space. In Proceedings of the 18th International Confer-
ence on String Processing and Information Retrieval, SPIRE’11, pages 380–385,
Berlin, Heidelberg, 2011. Springer-Verlag.

[24] Adriel Dean-Hall, Charles Clarke, Jaap Kamps, Julia Kiseleva, and Ellen
Voorhees. Overview of the trec 2015 contextual suggestion track. In Proceed-
ings of TREC’15, 2015.

[25] Adriel Dean-Hall, Charles Clarke, Jaap Kamps, Paul Thomas, Nicole Simone,
and Ellen Voorhees. Overview of the trec 2013 contextual suggestion track. In
Proceedings of TREC’13, 2013.

[26] Adriel Dean-Hall, Charles Clarke, Jaap Kamps, Paul Thomas, Nicole Simone,
and Ellen Voorhees. Overview of the trec 2014 contextual suggestion track. In
Proceedings of TREC’14, 2014.

[27] Adriel Dean-Hall, Charles Clarke, Jaap Kamps, Paul Thomas, and Ellen
Voorhees. Overview of the trec 2012 contextual suggestion track. In Proceed-
ings of TREC’12, 2012.

[28] Pinar Donmez, Krysta M. Svore, and Christoper J.C. Burges. On the local
optimality of lambdarank. In SIGIR. Association for Computing Machinery,
Inc., July 2009.

[29] Hui Fang, Tao Tao, and ChengXiang Zhai. A formal study of information re-
trieval heuristics. In Proceedings of the 27th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, SIGIR ’04,
pages 49–56, New York, NY, USA, 2004. ACM.

[30] Hui Fang, Tao Tao, and Chengxiang Zhai. Diagnostic evaluation of information
retrieval models. ACM Trans. Inf. Syst., 29(2):7:1–7:42, April 2011.

[31] Hui Fang and Hao Wu. An exploration of query term deletion. 2011.

[32] Hui Fang, Hao Wu, Peilin Yang, and ChengXiang Zhai. Virlab: A web-based
virtual lab for learning and studying information retrieval models. In Proceedings
of the 37th International ACM SIGIR Conference on Research & Development in
Information Retrieval, SIGIR ’14, pages 1249–1250, New York, NY, USA, 2014.
ACM.

[33] Hui Fang and ChengXiang Zhai. An exploration of axiomatic approaches to in-
formation retrieval. In Proceedings of the 28th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, SIGIR ’05,
pages 480–487, New York, NY, USA, 2005. ACM.

131

[34] Hui Fang and ChengXiang Zhai. Virlab: A platform for privacy-preserving eval-
uation for information retrieval models. In Proceeding of the 1st International
Workshop on Privacy-Preserving IR:, 2014.

[35] Nicola Ferro, Norbert Fuhr, Kalervo Järvelin, Noriko Kando, Matthias Lippold,
and Justin Zobel. Increasing reproducibility in ir: Findings from the Dagstuhl
seminar on “reproducibility of data-oriented experiments in e-science”. SIGIR
Forum, 50(1):68–82, 2016.

[36] Jerome H. Friedman. Greedy function approximation: A gradient boosting ma-
chine. Annals of Statistics, 29:1189–1232, 2000.

[37] Kavita Ganesan, ChengXiang Zhai, and Jiawei Han. Opinosis: A graph-based ap-
proach to abstractive summarization of highly redundant opinions. In Proceedings
of the 23rd International Conference on Computational Linguistics, COLING ’10,
pages 340–348, 2010.

[38] Tim Gollub, Benno Stein, and Steven Burrows. Ousting ivory tower research:
Towards a web framework for providing experiments as a service. In Proceedings
of the 35th International ACM SIGIR Conference on Research and Development
in Information Retrieval, SIGIR ’12, pages 1125–1126, New York, NY, USA,
2012. ACM.

[39] Allan Hanbury and Henning Müller. Automated component-level evaluation:
Present and future. In Proceedings of the 2010 International Conference on Mul-
tilingual and Multimodal Information Access Evaluation: Cross-language Evalua-
tion Forum, CLEF’10, pages 124–135, Berlin, Heidelberg, 2010. Springer-Verlag.

[40] N. Hariri, B. Mobasher, R. Burke, and Y. Zheng. Context-aware recommenda-
tion based on review mining. In Proceedings of the 9th Workshop on Intelligent
Techniques for Web Personalization and Recommender Systems, 2011.

[41] Donna Harman. Overview of the third text retrieval conference (trec-3). In
Proceedings of TREC’94, 1994.

[42] Ben He and Iadh Ounis. Inferring query performance using pre-retrieval predic-
tors. In In Proc. Symposium on String Processing and Information Retrieval,
pages 43–54. Springer Verlag, 2004.

[43] Ben He and Iadh Ounis. A study of the dirichlet priors for term frequency
normalisation. In Proceedings of the 28th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, SIGIR ’05,
pages 465–471, New York, NY, USA, 2005. ACM.

[44] Frank Hopfgartner, Allan Hanbury, Henning Müller, Noriko Kando, Simon
Mercer, Jayashree Kalpathy-Cramer, Martin Potthast, Tim Gollub, Anastasia

132

Krithara, Jimmy Lin, Krisztian Balog, and Ivan Eggel. Report on the evaluation-
as-a-service (eaas) expert workshop. SIGIR Forum, 49(1):57–65, June 2015.

[45] Xiangdong Huang, Ziyang Yan, Senxue Jing, Hongwei Fang, and Li Xiao. Co-
prime sensing-based frequency estimation using reduced single-tone snapshots.
Circuits, Systems, and Signal Processing, 35(9):3355–3366, 2016.

[46] Gilles Hubert and Guillaume Cabanac. Irit at trec 2012 contextual suggestion
track. In Proceedings of TREC’12, 2012.

[47] Samuel Huston and W. Bruce Croft. Evaluating verbose query processing tech-
niques. In Proceedings of the 33rd International ACM SIGIR Conference on
Research and Development in Information Retrieval, SIGIR ’10, pages 291–298,
New York, NY, USA, 2010. ACM.

[48] Niklas Jakob, Stefan Hagen Weber, Mark Christoph Müller, and Iryna Gurevych.
Beyond the stars: Exploiting free-text user reviews to improve the accuracy of
movie recommendations. In Proceedings of the 1st International CIKM Workshop
on Topic-sentiment Analysis for Mass Opinion, TSA ’09, pages 57–64, New York,
NY, USA, 2009. ACM.

[49] Marijn Koolen, Hugo Huurdeman, and Jaap Kamps. University of amsterdam
at the trec 2013 contextual suggestion track: Learning user preferences from
wikitravel categories. In Proceedings of TREC’13, 2013.

[50] Giridhar Kumaran and James Allan. A case for shorter queries, and helping
users create them. In HLT-NAACL, pages 220–227, 2007.

[51] Giridhar Kumaran and James Allan. Effective and efficient user interaction for
long queries. In Proceedings of the 31st Annual International ACM SIGIR Con-
ference on Research and Development in Information Retrieval, SIGIR ’08, pages
11–18, New York, NY, USA, 2008. ACM.

[52] Giridhar Kumaran and Vitor R. Carvalho. Reducing long queries using query
quality predictors. In Proceedings of the 32Nd International ACM SIGIR Con-
ference on Research and Development in Information Retrieval, SIGIR ’09, pages
564–571, New York, NY, USA, 2009. ACM.

[53] Dmitry Lagun and Eugene Agichtein. Viewser: Enabling large-scale remote user
studies of web search examination and interaction. In Proceedings of the 34th
International ACM SIGIR Conference on Research and Development in Infor-
mation Retrieval, SIGIR ’11, pages 365–374, New York, NY, USA, 2011. ACM.

[54] Victor Lavrenko and W. Bruce Croft. Relevance based language models. In
SIGIR, pages 120–127, 2001.

133

[55] Asher Levi, Osnat Mokryn, Christophe Diot, and Nina Taft. Finding a needle
in a haystack of reviews: cold start context-based hotel recommender system. In
Proceedings of the RecSys’12, 2012.

[56] Hanchen Li, Zhen Yang, Yingxu Lai, Lijuan Duan, and Kefeng Fan. Bjut at trec
2014 contextual suggestion track: Hybrid recommendation based on open-web
information. In Proceedings of TREC’14, 2014.

[57] Hua Li and Rafael Alonso. User modeling for contextual suggestion. In Proceed-
ings of TREC’14, 2014.

[58] Jimmy Lin, Matt Crane, Andrew Trotman, Jamie Callan, Ishan Chattopadhyaya,
John Foley, Grant Ingersoll, Craig MacDonald, and Sebastiano Vigna. Toward
reproducible baselines: The open-source ir reproducibility challenge. In Nicola
Ferro, Fabio Crestani, Marie-Francine Moens, Josiane Mothe, Fabrizio Silvestri,
Giorgio Maria Di Nunzio, Claudia Hauff, and Gianmaria Silvello, editors, ECIR,
volume 9626 of Lecture Notes in Computer Science, pages 408–420. Springer,
2016.

[59] Jimmy Lin, Matt Crane, Andrew Trotman, Jamie Callan, Ishan Chattopadhyaya,
John Foley, Grant Ingersoll, Craig Macdonald, and Sebastiano Vigna. Toward
reproducible baselines: The open-source ir reproducibility challenge. In European
Conference on Information Retrieval, pages 408–420. Springer, 2016.

[60] Jimmy Lin and Miles Efron. Evaluation as a service for information retrieval.
SIGIR Forum, 47(2):8–14, January 2013.

[61] Jimmy Lin and Miles Efron. Infrastructure support for evaluation as a service.
In Proceedings of the 23rd International Conference on World Wide Web, WWW
’14 Companion, pages 79–82, New York, NY, USA, 2014. ACM.

[62] Jimmy Lin, Miles Efron, Yulu Wang, and Garrick Sherman. Overview of the
trec-2014 microblog track. In Proceedings of TREC’14, 2014.

[63] Jimmy Lin, Miles Efron, Yulu Wang, Garrick Sherman, and Ellen Voorhees.
Overview of the trec-2015 microblog track. In Proceedings of TREC’15, 2015.

[64] Jimmy Lin, Donald Metzler, Tamer Elsayed, and Lidan Wang. Of Ivory and
Smurfs: Loxodontan MapReduce experiments for web search. In TREC, 2009.

[65] Tie-Yan Liu. Learning to rank for information retrieval. Found. Trends Inf.
Retr., 3(3):225–331, March 2009.

[66] Xitong Liu and Hui Fang. Latent entity space: a novel retrieval approach for
entity-bearing queries. Information Retrieval Journal, 18(6):473–503, 2015.

134

[67] Xitong Liu, Peilin Yang, and Hui Fang. Entexpo: An interactive search system
for entity-bearing queries. In European Conference on Information Retrieval,
pages 784–788. Springer International Publishing, 2014.

[68] Xitong Liu, Peilin Yang, and Hui Fang. Entity came to rescue-leveraging entities
to minimize risks in web search. Technical report, DTIC Document, 2014.

[69] Yuanhua Lv and ChengXiang Zhai. Lower-bounding term frequency normaliza-
tion. In Proceedings of the 20th ACM International Conference on Information
and Knowledge Management, CIKM ’11, pages 7–16, New York, NY, USA, 2011.
ACM.

[70] Craig Macdonald, Rodrygo L. Santos, and Iadh Ounis. The whens and hows of
learning to rank for web search. Inf. Retr., 16(5):584–628, October 2013.

[71] Richard McCreadie, Romain Deveaud, M-Dyaa Albakour, Stuart Mackie, Nut
Limsopatham, Craig Macdonald, Iadh Ounis, Thibaut Thonet, and Bekir Taner.
University of glasgow at trec 2014: Experiments with terrier in contextual sug-
gestion, temporal summarisation and web tracks. In Proceedings of TREC’14,
2014.

[72] Donald Metzler and W Bruce Croft. A markov random field model for term
dependencies. In Proceedings of the 28th annual international ACM SIGIR con-
ference on Research and development in information retrieval, pages 472–479.
ACM, 2005.

[73] Donald Metzler, Victor Lavrenko, and W. Bruce Croft. Formal multiple-bernoulli
models for language modeling. In Proceedings of the 27th Annual International
ACM SIGIR Conference on Research and Development in Information Retrieval,
SIGIR ’04, pages 540–541, New York, NY, USA, 2004. ACM.

[74] Hannes Mühleisen, Thaer Samar, Jimmy Lin, and Arjen de Vries. Old dogs are
great at new tricks: Column stores for ir prototyping. In Proceedings of the
37th International ACM SIGIR Conference on Research & Development in
Information Retrieval, SIGIR ’14, pages 863–866, New York, NY, USA, 2014.
ACM.

[75] Hannes Mühleisen, Thaer Samar, Jimmy Lin, and Arjen de Vries. Old dogs are
great at new tricks: Column stores for ir prototyping. In SIGIR, pages 863–866,
2014.

[76] Anastasios Noulas, Salvatore Scellato, Neal Lathia, and Cecilia Mascolo. A ran-
dom walk around the city: New venue recommendation in location-based social
networks. In Proceedings of the 2012 ASE/IEEE International Conference on
Social Computing and 2012 ASE/IEEE International Conference on Privacy,
Security, Risk and Trust, SOCIALCOM-PASSAT ’12, pages 144–153, Washing-
ton, DC, USA, 2012. IEEE Computer Society.

135

[77] Jiaul H. Paik. A novel tf-idf weighting scheme for effective ranking. In Proceedings
of the 36th International ACM SIGIR Conference on Research and Development
in Information Retrieval, SIGIR ’13, pages 343–352, New York, NY, USA, 2013.
ACM.

[78] Jiaul H. Paik and Jimmy Lin. Retrievability in api-based ”evaluation as a ser-
vice”. In Proceedings of the 2016 ACM International Conference on the Theory
of Information Retrieval, ICTIR ’16, pages 91–94, New York, NY, USA, 2016.
ACM.

[79] Jae Hyun Park and W. Bruce Croft. Query term ranking based on dependency
parsing of verbose queries. In Proceedings of the 33rd International ACM SIGIR
Conference on Research and Development in Information Retrieval, SIGIR ’10,
pages 829–830, New York, NY, USA, 2010. ACM.

[80] Jae Hyun Park, W. Bruce Croft, and David A. Smith. A quasi-synchronous
dependence model for information retrieval. In Proceedings of the 20th ACM
International Conference on Information and Knowledge Management, CIKM
’11, pages 17–26, New York, NY, USA, 2011. ACM.

[81] Jan Pedersen. Query understanding at bing. In Invited Talk at SIGIR, 2010.

[82] Jay M. Ponte and W. Bruce Croft. A language modeling approach to information
retrieval. In Proceedings of the 21st Annual International ACM SIGIR Confer-
ence on Research and Development in Information Retrieval, SIGIR ’98, pages
275–281, New York, NY, USA, 1998. ACM.

[83] Rani Qumsiyeh and Yiu-Kai Ng. Predicting the ratings of multimedia items for
making personalized recommendations. In Proceedings of SIGIR’12, 2012.

[84] Sindhu Raghavan, Suriya Gunasekar, and Joydeep Ghosh. Review quality aware
collaborative filtering. In Proceedings of RecSys’12, 2012.

[85] Ashwani Rao and Ben Carterette. Udel at trec 2012. In Proceedings of TREC’12,
2012.

[86] Jinfeng Rao, Jimmy Lin, and Miles Efron. Reproducible experiments on lexical
and temporal feedback for tweet search. In Allan Hanbury, Gabriella Kazai,
Andreas Rauber, and Norbert Fuhr, editors, Advances in Information Retrieval,
volume 9022 of Lecture Notes in Computer Science, pages 755–767. Springer
International Publishing, 2015.

[87] S.E. Robertson, S. Walker, S. Jones, M.M. Hancock-Beaulieu, and M. Gatford.
Okapi at trec-3. pages 109–126, 1996.

[88] Dwaipayan Roy, Ayan Bandyopadhyay, and Mandar Mitra. A simple context
dependent suggestion system. In Proceedings of TREC’13, 2013.

136

[89] Andrew I. Schein, Alexandrin Popescul, Lyle H. Ungar, and David M. Pennock.
Methods and metrics for cold-start recommendations. In Proceedings of the 25th
Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval, SIGIR ’02, pages 253–260, New York, NY, USA, 2002.
ACM.

[90] Anna Shtok, Oren Kurland, David Carmel, Fiana Raiber, and Gad Markovits.
Predicting query performance by query-drift estimation. ACM Trans. Inf. Syst.,
30(2):11:1–11:35, May 2012.

[91] Luo Si and Hui Yang. Privacy-preserving ir: when information retrieval meets
privacy and security. In Proceedings of the SIGIR’14, 2014.

[92] Amit Singhal, Chris Buckley, and Mandar Mitra. Pivoted document length nor-
malization. In Proceedings of the 19th Annual International ACM SIGIR Con-
ference on Research and Development in Information Retrieval, SIGIR ’96, pages
21–29, New York, NY, USA, 1996. ACM.

[93] Xiaoyuan Su and Taghi M. Khoshgoftaar. A survey of collaborative filtering
techniques. Adv. in Artif. Intell., 2009:4:2–4:2, January 2009.

[94] Tao Tao and ChengXiang Zhai. Regularized estimation of mixture models for
robust pseudo-relevance feedback. SIGIR ’06, pages 162–169, New York, NY,
USA, 2006. ACM.

[95] Michael Taylor, Hugo Zaragoza, Nick Craswell, Stephen Robertson, and Chris
Burges. Optimisation methods for ranking functions with multiple parameters.
CIKM ’06, pages 585–593, New York, NY, USA, 2006. ACM.

[96] Andrew Trotman, Antti Puurula, and Blake Burgess. Improvements to bm25 and
language models examined. In Proceedings of the 19th Australasian Document
Computing Symposium, ADCS ’14, Melbourne, VIC, Australia, 2014. ACM.

[97] Andrew Trotman, Antti Puurula, and Blake Burgess. Improvements to BM25
and language models examined. In ADCS, pages 58–65, 2014.

[98] Ellen M. Voorhees. Overview of the trec 2004 robust retrieval track. In Proceed-
ings of TREC’04, 2004.

[99] Ellen M. Voorhees. Overview of the trec 2005 robust retrieval track. In Proceed-
ings of TREC’05, 2005.

[100] Ellen M. Voorhees, Shahzad Rajput, and Ian Soboroff. Promoting repeatability
through open runs. In EVIA, pages 17–20, 2016.

[101] Lidan Wang, Jimmy Lin, and Donald Metzler. Learning to efficiently rank. In
Proceedings of SIGIR’10.

137

[102] Lidan Wang, Jimmy Lin, and Donald Metzler. A cascade ranking model for
efficient ranked retrieval. In SIGIR, pages 105–114, 2011.

[103] Xiaobing Xue, Samuel Huston, and W. Bruce Croft. Improving verbose queries
using subset distribution. In Proceedings of the 19th ACM International Confer-
ence on Information and Knowledge Management, CIKM ’10, pages 1059–1068,
New York, NY, USA, 2010. ACM.

[104] Bishan Yang, Nish Parikh, Gyanit Singh, and Neel Sundaresan. A study of
query term deletion using large-scale e-commerce search logs. In Proceedings
of the 36th European Conference on IR Research on Advances in Information
Retrieval - Volume 8416, ECIR 2014, pages 235–246, New York, NY, USA, 2014.
Springer-Verlag New York, Inc.

[105] Peilin Yang and Hui Fang. An exploration of ranking-based strategy for contex-
tual suggestion. In Proceedings of TREC’12, 2012.

[106] Peilin Yang and Hui Fang. An opinion-aware approach to contextual suggestion.
In Proceedings of TREC’13, 2013.

[107] Peilin Yang and Hui Fang. Opinion-based user profile modeling for contextual
suggestions. In Proceedings of the 2013 Conference on the Theory of Information
Retrieval, ICTIR ’13, pages 18:80–18:83, New York, NY, USA, 2013. ACM.

[108] Peilin Yang and Hui Fang. Exploration of opinion-aware approach to contextual
suggestion. In Proceedings of TREC’14, 2014.

[109] Peilin Yang and Hui Fang. Combining opinion profile modeling with complex
contextfiltering for contextual suggestion. In Proceedings of TREC’15, 2015.

[110] Peilin Yang and Hui Fang. Estimating retrieval performance bound for single
term queries. In Proceedings of the 2016 ACM International Conference on the
Theory of Information Retrieval, ICTIR ’16, pages 237–240, New York, NY,
USA, 2016. ACM.

[111] Peilin Yang and Hui Fang. A reproducibility study of information retrieval mod-
els. In Proceedings of the 2016 ACM International Conference on the Theory
of Information Retrieval, ICTIR ’16, pages 77–86, New York, NY, USA, 2016.
ACM.

[112] Peilin Yang and Hui Fang. Towards privacy-preserving evaluation for information
retrieval models over industry data sets. In Proceedings of the 2017 ACM In-
ternational Conference on the Theory of Information Retrieval, ICTIR ’17, New
York, NY, USA, 2017. ACM.

138

[113] Peilin Yang, Hui Fang, and Jimmy Lin. Reinvigorating the use of lucene for
information retrieval research. In Proceedings of the 40th Annual International
ACM SIGIR Conference on Research and Development in Information Retrieval,
SIGIR ’17, New York, NY, USA, 2017. ACM.

[114] Peilin Yang, Hongning Wang, Hui Fang, and Deng Cai. Opinions matter: a
general approach to user profile modeling for contextual suggestion. Information
Retrieval Journal, 18(6):586–610, 2015.

[115] Andrew Yates, Dave DeBoer, Hui Yang, Nazli Goharian, Steve Kunath, and
Ophir Frieder. (not too) personalized learning to rank for contextual suggestion.
In Proceedings of TREC’12, 2012.

[116] Yisong Yue, Thomas Finley, Filip Radlinski, and Thorsten Joachims. A support
vector method for optimizing average precision. SIGIR ’07, pages 271–278, New
York, NY, USA, 2007. ACM.

[117] ChengXiang Zhai and John Lafferty. Two-stage language models for information
retrieval. In Proceedings of the 25th Annual International ACM SIGIR Confer-
ence on Research and Development in Information Retrieval, SIGIR ’02, pages
49–56, New York, NY, USA, 2002. ACM.

[118] Chengxiang Zhai and John Lafferty. A study of smoothing methods for language
models applied to information retrieval. ACM Trans. Inf. Syst., 22(2):179–214,
April 2004.

139

Appendix

COPYRIGHTS

Please see the following pages for the copyrights of the related contents in this

thesis.

140

ACM Copyright and Audio/Video Release

Title of the Work: Opinion-based User Profile Modeling for Contextual Suggestions

Publication and/or Conference Name: Proceedings of the 2013 International Conference on the Theory of
Information Retrieval Proceedings

Author/Presenter(s): Peilin Yang;Hui Fang

Auxiliary Materials (provide filenames and a description of auxiliary content, if any, for display in the ACM
Digital Library. The description may be provided as a ReadMe file):

I. Copyright Transfer, Reserved Rights and Permitted Uses

* Your Copyright Transfer is conditional upon you agreeing to the terms set out
below.

Copyright to the Work and to any supplemental fi les integral to the Work which are
submitted with i t for review and publication such as an extended proof, a PowerPoint
outline, or appendices that may exceed a printed page limit, (including without
limitation, the right to publish the Work in whole or in part in any and all forms of
media, now or hereafter known) is hereby transferred to the ACM (for Government
work, to the extent transferable) effective as of the date of this agreement, on the
understanding that the Work has been accepted for publication by ACM.

Reserved Rights and Permitted Uses

(a) All rights and permissions the author has not granted to ACM are reserved to the
Owner, including all other proprietary rights such as patent or trademark rights.

(b) Furthermore, notwithstanding the exclusive rights the Owner has granted to ACM,
Owner shall have the right to do the following:

(i) Reuse any portion of the Work, without fee, in any future works written or edited
by the Author, including books, lectures and presentations in any and all media.

(ii) Create a "Major Revision" which is wholly owned by the author

(iii) Post the Accepted Version of the Work on (1) the Author's home page, (2) the
Owner's institutional repository, or (3) any repository legally mandated by an agency
funding the research on which the Work is based.

(iv) Post an "Author - I ze r" link enabling free downloads of the Version of Record in
the ACM Digital Library on (1) the Author's home page or (2) the Owner's institutional
repository;

(v) Prior to commencement of the ACM peer review process, post the version of the
Work as submitted to ACM ("Submitted Version" or any earlier versions) to non-peer
reviewed servers;

(vi) Make free distributions of the final published Version of Record internally to the
Owner's employees, if applicable;

(vii) Make free distributions of the published Version of Record for Classroom and

JavaScript:ColdFusion.Window.show('9')
JavaScript:ColdFusion.Window.show('6')
http://www.acm.org/publications/acm-author-izer-service
JavaScript:ColdFusion.Window.show('10')

Personal Use;

(viii) Bundle the Work in any of Owner's software distributions; and

(ix) Use any Auxiliary Material independent from the Work.

Authors should understand that consistent with ACMs policy of encouraging
dissemination of information, each work published by ACM appears with the ACM
copyright and the following notice:

"Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org."

A. Assent to Assignment. I hereby represent and warrant that I am the sole owner
(or authorized agent of the copyright owner(s)), with the exception of third party
materials detailed in section III below. I have obtained permission for any third-party
material included in the Work.

B. Declaration for Government Work. I am an employee of the National
Government of my country and my Government claims rights to this work, or i t is not
copyrightable (Government work is classified as Public Domain in U.S. only)

 Are any of the co-authors, employees or contractors of a National Government?
Yes N o

Country:

II. PERMISSION FOR CONFERENCE TAPING AND DISTRIBUTION (Check A and, if
applicable, B)
A. Audio /Video Release

I hereby grant permission for ACM to include my name, l ikeness, presentation and
comments in any and all forms, for the Conference and/or Publication.

I further grant permission for ACM to record and/or t ranscribe and reproduce my
presentation as part of the ACM Digital Library, and to distribute the same for sale in
complete or partial form as part of an ACM product on CD-ROM, DVD, webcast, USB
device, streaming video or any other media format now or hereafter known.

I understand that my presentation will not be sold separately by i tself as a
stand-alone product without my direct consent. Accordingly, I give ACM the right to
use my image, voice, pronouncements, l ikeness, and my name, and any biographical
material submitted by me, in connection with the Conference and/or Publication,
whether used in excerpts or in full , for distribution described above and for any
associated advertising or exhibition.

Do you agree to the above Audio/Video Release? Yes N o

Do you agree to the above Audio/Video Release? Yes N o

B. Auxiliary Materials, not integral to the Work

I hereby grant ACM permission to serve files named below containing my Auxiliary
Material from the ACM Digital Library. I hereby represent and warrant that my
Auxiliary Material contains no malicious code, virus, trojan horse or other software
rout ines or hardware components designed to permit unauthorized access or to
disable, erase or otherwise harm any computer systems or software, and I hereby
agree to indemnify and hold harmless ACM from all liability, losses, damages,
penalties, claims, actions, costs and expenses (including reasonable legal expense)
arising from the use of such files.

I agree to the above Auxiliary Materials permission statement

III. Third Party Materials
In the event that any materials used in my presentation or Auxiliary Materials
contain the work of third-party individuals or organizations (including copyrighted
music or movie excerpts or anything not owned by me), I understand that i t is my
responsibi l i ty to secure any necessary permissions and/or l icenses for print and/or
digital publication, and cite or attach them below.

We/I have not used third-party material .
We/I have used third-party materials and have necessary permissions.

IV. Artistic Images
If your paper includes images that were created for any purpose other than this paper
and to which you or your employer claim copyright, you must complete Part IV and
be sure to include a notice of copyright with each such image in the paper.

We/I do not have any artistic images.
We/I have any artistic images.

V. Representations, Warranties and Covenants

The undersigned hereby represents, warrants and covenants as fol lows:

(a) Owner is the sole owner or authorized agent of Owner(s) of the Work;

(b) The undersigned is authorized to enter into this Agreement and grant the
rights included in this license to ACM;

(c) The Work is original and does not infringe the rights of any third party; all
permissions for use of third-party materials consis tent in scope and durat ion with
the rights granted to ACM have been obtained, copies of such permissions have
been provided to ACM, and the Work as submitted to ACM clearly and accurately
indicates the credit to the proprietors of any such third-party materials (including
any applicable copyright notice), or will be revised to indicate such credit;

(d) The Work has not been published except for informal postings on non-peer
reviewed servers, and Owner covenants to use best efforts to place ACM DOI

pointers on any such prior post ings;

(e) The Auxiliary Materials, if any, contain no malicious code, virus, trojan horse or
other sof tware rout ines or hardware components designed to permit unauthor ized
access or to disable, erase or otherwise harm any computer systems or software;
a n d

(f) The Artistic Images, if any, are clearly and accurately noted as such (including
any applicable copyright notice) in the Submitted Version.

I agree to the Representations, Warranties and Covenants

DATE: 0 6 / 2 8 / 2 0 1 3 sent to yangpeilyn@gmail.com at 08:06:21

ACM Copyright and Audio/Video Release

Title of the Work: Retrieval Performance Bound Analysis for Single Term Queries
Submission ID:ictir168s
Author/Presenter(s): Peilin Yang (Univ. of Delaware); Hui Fang (Univ. of Delaware)
Type of material:Short Paper

Publication and/or Conference Name: ICTIR '16: ACM SIGIR International Conference on the Theory of
Information Retrieval Proceedings

I. Copyright Transfer, Reserved Rights and Permitted Uses

* Your Copyright Transfer is conditional upon you agreeing to the terms set out below.

Copyright to the Work and to any supplemental fi les integral to the Work which are
submitted with i t for review and publication such as an extended proof, a PowerPoint outline,
or appendices that may exceed a printed page limit, (including without l imitation, the right
to publish the Work in whole or in part in any and all forms of media, now or hereafter
known) is hereby transferred to the ACM (for Government work, to the extent transferable)
effective as of the date of this agreement, on the understanding that the Work has been
accepted for publication by ACM.

Reserved Rights and Permitted Uses

(a) All rights and permissions the author has not granted to ACM are reserved to the Owner,
including al l other proprietary r ights such as patent or trademark rights.

(b) Furthermore, notwithstanding the exclusive rights the Owner has granted to ACM, Owner
shall have the right to do the following:

(i) Reuse any portion of the Work, without fee, in any future works written or edited by the
Author, including books, lectures and presentations in any and all media.

(ii) Create a "Major Revision" which is wholly owned by the author

(iii) Post the Accepted Version of the Work on (1) the Author's home page, (2) the Owner's
institutional repository, (3) any repository legally mandated by an agency funding the
research on which the Work is based, and (4) any non-commercial repository or aggregation
that does not duplicate ACM tables of contents, i .e. , whose patterns of l inks do not
substantially duplicate an ACM-copyrighted volume or issue. Non-commercial repositories
are here understood as reposi tor ies owned by non-profi t organizat ions that do not charge a
fee for accessing deposited art icles and that do not sell advertising or otherwise profit from
serving articles.

(iv) Post an "Author - Ize r" link enabling free downloads of the Version of Record in the ACM
Digital Library on (1) the Author's home page or (2) the Owner's institutional repository;

(v) Prior to commencement of the ACM peer review process, post the version of the Work as
submitted to ACM (" Submitted Version" or any earlier versions) to non-peer reviewed servers;

(vi) Make free distributions of the final published Version of Record internally to the Owner's
employees, if applicable;

(vii) Make free distributions of the published Version of Record for Classroom and Personal
Use;

(viii) Bundle the Work in any of Owner's software distributions; and

JavaScript:ColdFusion.Window.show('9')
JavaScript:ColdFusion.Window.show('6')
http://www.acm.org/publications/acm-author-izer-service
JavaScript:ColdFusion.Window.show('10')

(ix) Use any Auxiliary Material independent from the Work.

When preparing your paper for submission using the ACM TeX templates, the rights and
permissions information and the bibl iographic s tr ip must appear on the lower lef t hand
portion of the first page.

The new Authorized ACM TeX template .cls version 2.8, automatically creates and posit ions
these text blocks for you based on the code snippet which is system-generated based on
your r ights management choice and this part icular conference.

Please copy and paste the following code snippet into your TeX file between
\begin{document} and \maketitle, either after or before CCS codes.

\CopyrightYear{2016}
\setcopyright{acmcopyright}
\conferenceinfo{ICTIR '16,}{September 12-16, 2016, Newark, DE, USA}
\ isbn{978-1-4503-4497-5/16/09}\acmPrice{\$15.00}
\doi{ht tp: / /dx.doi .org/10.1145/2970398.2970428}

If you are using the ACM Microsoft Word template, or still using an older
version of the ACM TeX template, or the current versions of the ACM SIGCHI,
SIGGRAPH, or SIGPLAN TeX templates, you must copy and paste the following
text block into your document as per the instructions provided with the
templates you are using:

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distr ibuted for profi t or commercial advantage and that copies bear
this notice and the full ci tat ion on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to l ists , requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
ICTIR '16, September 12-16, 2016, Newark, DE, USA
© 2016 ACM. ISBN 978-1-4503-4497-5/16/09…$15.00
DOI: ht tp: / /dx.doi .org/10.1145/2970398.2970428

NOTE: Make sure to include your article's DOI as part of the bibstrip data; DOIs will be
registered and become active shortly after publication in the ACM Digital Library

A. Assent to Assignment. I hereby represent and warrant that I am the sole owner (or

authorized agent of the copyright owner(s)), with the exception of third party materials
detailed in section III below. I have obtained permission for any third-party material
included in the Work.

B. Declaration for Government Work. I am an employee of the National Government of

my country and my Government claims rights to this work, or i t is not copyrightable
(Government work is classified as Public Domain in U.S. only)

 Country:

http://www.acm.org/publications/article-templates/proceedings-template.html

Are you authorized to transfer copyright? Yes N o

II. PERMISSION FOR CONFERENCE TAPING AND DISTRIBUTION

Audio/Video Release
* Your Audio/Video Release is conditional upon you agreeing to the terms set out below.

I hereby grant permission for ACM to include my name, l ikeness, presentation and
comments in any and all forms, for the Conference and/or Publication.

I further grant permission for ACM to record and/or t ranscribe and reproduce my
presentation as part of the ACM Digital Library, and to distribute the same for sale in
complete or partial form as part of an ACM product on CD-ROM, DVD, webcast, USB device,
streaming video or any other media format now or hereafter known.

I understand that my presentat ion wil l not be sold separately as a s tand-alone product
without my direct consent. Accordingly, I give ACM the right to use my image, voice,
pronouncements, l ikeness, and my name, and any biographical material submitted by me,
in connection with the Conference and/or Publication, whether used in excerpts or in full ,
for distribution described above and for any associated advertising or exhibition.

Do you agree to the above Audio/Video Release? Yes N o

III. Auxiliary Material

Do you have any Auxiliary Materials? Yes No

IV. Third Party Materials
In the event that any materials used in my presentation or Auxiliary Materials contain the
work of third-party individuals or organizations (including copyrighted music or movie
excerpts or anything not owned by me), I understand that i t is my responsibil i ty to secure
any necessary permissions and/or l icenses for print and/or digital publicat ion, and ci te or
at tach them below.

We/I have not used third-party material .
We/I have used third-party materials and have necessary permissions.

V. Artistic Images
If your paper includes images that were created for any purpose other than this paper and to
which you or your employer claim copyright, you must complete Part V and be sure to
include a notice of copyright with each such image in the paper.

We/I do not have any artistic images.
We/I have any artistic images.

VI. Representations, Warranties and Covenants

The undersigned hereby represents, warrants and covenants as follows:

(a) Owner is the sole owner or authorized agent of Owner(s) of the Work;

(b) The undersigned is authorized to enter into this Agreement and grant the r ights

(b) The undersigned is authorized to enter into this Agreement and grant the r ights
included in this license to ACM;

(c) The Work is original and does not infringe the rights of any third party; all permissions
for use of third-party materials consistent in scope and durat ion with the r ights granted
to ACM have been obtained, copies of such permissions have been provided to ACM, and
the Work as submitted to ACM clearly and accurately indicates the credit to the
proprietors of any such third-party materials (including any applicable copyright notice),
or will be revised to indicate such credit;

(d) The Work has not been published except for informal postings on non-peer reviewed
servers, and Owner covenants to use best efforts to place ACM DOI pointers on any such
prior postings;

(e) The Auxiliary Materials, if any, contain no malicious code, virus, trojan horse or other
sof tware rout ines or hardware components designed to permit unauthorized access or to
disable, erase or otherwise harm any computer systems or software; and

(f) The Artistic Images, if any, are clearly and accurately noted as such (including any
applicable copyright notice) in the Submitted Version.

I agree to the Representations, Warranties and Covenants

DATE: 0 7 / 1 1 / 2 0 1 6 sent to franklyn@udel.edu at 23:07:25

ACM Copyright and Audio/Video Release

Title of the Work: A Reproducibility Study of Information Retrieval Models
Submission ID:ictir152
Author/Presenter(s): Peilin Yang (Univ. of Delaware); Hui Fang (Univ. of Delaware)
Type of material:Full Paper

Publication and/or Conference Name: ICTIR '16: ACM SIGIR International Conference on the Theory of
Information Retrieval Proceedings

I. Copyright Transfer, Reserved Rights and Permitted Uses

* Your Copyright Transfer is conditional upon you agreeing to the terms set out below.

Copyright to the Work and to any supplemental fi les integral to the Work which are
submitted with i t for review and publication such as an extended proof, a PowerPoint outline,
or appendices that may exceed a printed page limit, (including without l imitation, the right
to publish the Work in whole or in part in any and all forms of media, now or hereafter
known) is hereby transferred to the ACM (for Government work, to the extent transferable)
effective as of the date of this agreement, on the understanding that the Work has been
accepted for publication by ACM.

Reserved Rights and Permitted Uses

(a) All rights and permissions the author has not granted to ACM are reserved to the Owner,
including al l other proprietary r ights such as patent or trademark rights.

(b) Furthermore, notwithstanding the exclusive rights the Owner has granted to ACM, Owner
shall have the right to do the following:

(i) Reuse any portion of the Work, without fee, in any future works written or edited by the
Author, including books, lectures and presentations in any and all media.

(ii) Create a "Major Revision" which is wholly owned by the author

(iii) Post the Accepted Version of the Work on (1) the Author's home page, (2) the Owner's
institutional repository, (3) any repository legally mandated by an agency funding the
research on which the Work is based, and (4) any non-commercial repository or aggregation
that does not duplicate ACM tables of contents, i .e. , whose patterns of l inks do not
substantially duplicate an ACM-copyrighted volume or issue. Non-commercial repositories
are here understood as reposi tor ies owned by non-profi t organizat ions that do not charge a
fee for accessing deposited art icles and that do not sell advertising or otherwise profit from
serving articles.

(iv) Post an "Author - Ize r" link enabling free downloads of the Version of Record in the ACM
Digital Library on (1) the Author's home page or (2) the Owner's institutional repository;

(v) Prior to commencement of the ACM peer review process, post the version of the Work as
submitted to ACM (" Submitted Version" or any earlier versions) to non-peer reviewed servers;

(vi) Make free distributions of the final published Version of Record internally to the Owner's
employees, if applicable;

(vii) Make free distributions of the published Version of Record for Classroom and Personal
Use;

(viii) Bundle the Work in any of Owner's software distributions; and

JavaScript:ColdFusion.Window.show('9')
JavaScript:ColdFusion.Window.show('6')
http://www.acm.org/publications/acm-author-izer-service
JavaScript:ColdFusion.Window.show('10')

(ix) Use any Auxiliary Material independent from the Work.

When preparing your paper for submission using the ACM TeX templates, the rights and
permissions information and the bibl iographic s tr ip must appear on the lower lef t hand
portion of the first page.

The new Authorized ACM TeX template .cls version 2.8, automatically creates and posit ions
these text blocks for you based on the code snippet which is system-generated based on
your r ights management choice and this part icular conference.

Please copy and paste the following code snippet into your TeX file between
\begin{document} and \maketitle, either after or before CCS codes.

\CopyrightYear{2016}
\setcopyright{acmcopyright}
\conferenceinfo{ICTIR '16,}{September 12-16, 2016, Newark, DE, USA}
\ isbn{978-1-4503-4497-5/16/09}\acmPrice{\$15.00}
\doi{ht tp: / /dx.doi .org/10.1145/2970398.2970415}

If you are using the ACM Microsoft Word template, or still using an older
version of the ACM TeX template, or the current versions of the ACM SIGCHI,
SIGGRAPH, or SIGPLAN TeX templates, you must copy and paste the following
text block into your document as per the instructions provided with the
templates you are using:

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distr ibuted for profi t or commercial advantage and that copies bear
this notice and the full ci tat ion on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to l ists , requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
ICTIR '16, September 12-16, 2016, Newark, DE, USA
© 2016 ACM. ISBN 978-1-4503-4497-5/16/09…$15.00
DOI: ht tp: / /dx.doi .org/10.1145/2970398.2970415

NOTE: Make sure to include your article's DOI as part of the bibstrip data; DOIs will be
registered and become active shortly after publication in the ACM Digital Library

A. Assent to Assignment. I hereby represent and warrant that I am the sole owner (or

authorized agent of the copyright owner(s)), with the exception of third party materials
detailed in section III below. I have obtained permission for any third-party material
included in the Work.

B. Declaration for Government Work. I am an employee of the National Government of

my country and my Government claims rights to this work, or i t is not copyrightable
(Government work is classified as Public Domain in U.S. only)

 Are any of the co-authors, employees or contractors of a National Government? Yes N o

http://www.acm.org/publications/article-templates/proceedings-template.html

Country:

II. PERMISSION FOR CONFERENCE TAPING AND DISTRIBUTION

Audio/Video Release
* Your Audio/Video Release is conditional upon you agreeing to the terms set out below.

I hereby grant permission for ACM to include my name, l ikeness, presentation and
comments in any and all forms, for the Conference and/or Publication.

I further grant permission for ACM to record and/or t ranscribe and reproduce my
presentation as part of the ACM Digital Library, and to distribute the same for sale in
complete or partial form as part of an ACM product on CD-ROM, DVD, webcast, USB device,
streaming video or any other media format now or hereafter known.

I understand that my presentat ion wil l not be sold separately as a s tand-alone product
without my direct consent. Accordingly, I give ACM the right to use my image, voice,
pronouncements, l ikeness, and my name, and any biographical material submitted by me,
in connection with the Conference and/or Publication, whether used in excerpts or in full ,
for distribution described above and for any associated advertising or exhibition.

Do you agree to the above Audio/Video Release? Yes N o

III. Auxiliary Material

Do you have any Auxiliary Materials? Yes No

IV. Third Party Materials
In the event that any materials used in my presentation or Auxiliary Materials contain the
work of third-party individuals or organizations (including copyrighted music or movie
excerpts or anything not owned by me), I understand that i t is my responsibil i ty to secure
any necessary permissions and/or l icenses for print and/or digital publicat ion, and ci te or
at tach them below.

We/I have not used third-party material .
We/I have used third-party materials and have necessary permissions.

V. Artistic Images
If your paper includes images that were created for any purpose other than this paper and to
which you or your employer claim copyright, you must complete Part V and be sure to
include a notice of copyright with each such image in the paper.

We/I do not have any artistic images.
We/I have any artistic images.

VI. Representations, Warranties and Covenants

The undersigned hereby represents, warrants and covenants as follows:

(a) Owner is the sole owner or authorized agent of Owner(s) of the Work;

(b) The undersigned is authorized to enter into this Agreement and grant the r ights

(b) The undersigned is authorized to enter into this Agreement and grant the r ights
included in this license to ACM;

(c) The Work is original and does not infringe the rights of any third party; all permissions
for use of third-party materials consistent in scope and durat ion with the r ights granted
to ACM have been obtained, copies of such permissions have been provided to ACM, and
the Work as submitted to ACM clearly and accurately indicates the credit to the
proprietors of any such third-party materials (including any applicable copyright notice),
or will be revised to indicate such credit;

(d) The Work has not been published except for informal postings on non-peer reviewed
servers, and Owner covenants to use best efforts to place ACM DOI pointers on any such
prior postings;

(e) The Auxiliary Materials, if any, contain no malicious code, virus, trojan horse or other
sof tware rout ines or hardware components designed to permit unauthorized access or to
disable, erase or otherwise harm any computer systems or software; and

(f) The Artistic Images, if any, are clearly and accurately noted as such (including any
applicable copyright notice) in the Submitted Version.

I agree to the Representations, Warranties and Covenants

DATE: 0 7 / 1 1 / 2 0 1 6 sent to franklyn@udel.edu at 23:07:28

ACM Publishing License and Audio/Video Release

Title of the Work: Reinvigorating the use of Lucene for Information Retrieval Research
Submission ID:sp265
Author/Presenter(s): Peilin Yang (Univ. of Delaware); Hui Fang (Univ. of Delaware); Jimmy Lin (Univ. of
Waterloo)
Type of material:Short paper

Publication and/or Conference Name: SIGIR '17: The 40th International ACM SIGIR Conference on Research
and Development in Information Retrieval CD-ROM Proceedings

1. Glossary

2. Grant of Rights

(a) Owner hereby grants to ACM an exclusive, worldwide, royalty-free, perpetual, irrevocable,
transferable and sublicenseable l icense to publish, reproduce and distribute all or any part of
the Work in any and all forms of media, now or hereafter known, including in the above
publication and in the ACM Digital Library, and to authorize third parties to do the same.

(b) In connection with software and "Artistic Images and "Auxiliary Materials, Owner grants
ACM non-exclusive permission to publish, reproduce and distribute in any and all forms of
media, now or hereafter known, including in the above publication and in the ACM Digital
Library.

(c) In connection with any "Minor Revision", that is, a derivative work containing less than
twenty-five percent (25%) of new substantive material, Owner hereby grants to ACM all
rights in the Minor Revision that Owner grants to ACM with respect to the Work, and all
terms of this Agreement shall apply to the Minor Revision.

A. Grant of Rights. I grant the rights and agree to the terms described above.

B. Declaration for Government Work. I am an employee of the national government of my

country and my Government claims rights to this work, or i t is not copyrightable
(Government work is classified as Public Domain in U.S. only)

 Are any of the co-authors, employees or contractors of a National Government? Yes N o

3. Reserved Rights and Permitted Uses.

(a) All rights and permissions the author has not granted to ACM in Paragraph 2 are
reserved to the Owner, including without l imitation the ownership of the copyright of the
Work and al l other proprietary r ights such as patent or trademark rights.

(b) Furthermore, notwithstanding the exclusive rights the Owner has granted to ACM in
Paragraph 2(a), Owner shall have the right to do the following:

(i) Reuse any portion of the Work, without fee, in any future works written or edited by
the Author, including books, lectures and presentations in any and all media.

(ii) Create a "Major Revision" which is wholly owned by the author

(iii) Post the Accepted Version of the Work on (1) the Author's home page, (2) the
Owner's institutional repository, (3) any repository legally mandated by an agency
funding the research on which the Work is based, and (4) any non-commercial

funding the research on which the Work is based, and (4) any non-commercial
repository or aggregation that does not duplicate ACM tables of contents, i .e. , whose
patterns of l inks do not substantially duplicate an ACM-copyrighted volume or issue.
Non-commercial reposi tor ies are here understood as reposi tor ies owned by non-profi t
organizations that do not charge a fee for accessing deposited art icles and that do not
sell advertising or otherwise profit from serving articles.

(iv) Post an "Author-Izer" link enabling free downloads of the Version of Record in the
ACM Digital Library on (1) the Author's home page or (2) the Owner's institutional
repository;

(v) Prior to commencement of the ACM peer review process, post the version of the
Work as submitted to ACM ("Submitted Version" or any earlier versions) to non-peer
reviewed servers;

(vi) Make free distributions of the final published Version of Record internally to the
Owner's employees, if applicable;

(vii) Make free distributions of the published Version of Record for Classroom and
Personal Use;

(viii) Bundle the Work in any of Owner's software distributions; and

(ix) Use any Auxiliary Material independent from the Work.

When preparing your paper for submission using the ACM TeX templates, the rights and
permissions information and the bibl iographic s tr ip must appear on the lower lef t hand
portion of the first page.

The new ACM Consolidated TeX template Version 1.3x automatical ly creates and posit ions
these text blocks for you based on the code snippet which is system-generated based on
your r ights management choice and this part icular conference.

Please copy and paste the following code snippet into your TeX file between
\begin{document} and \maketitle, either after or before CCS codes.

\copyrightyear{2017}
\acmYear{2017}
\setcopyright{acmlicensed}
\acmConference{SIGIR '17}{August 07-11, 2017}{Shinjuku, Tokyo,
Japan}\acmPrice{15.00}\acmDOI{http://dx.doi.org/10.1145/3077136.3080721}
\acmISBN{978-1-4503-5022-8 /17/08}

ACM TeX template .cls version 2.8, automatically creates and positions these
text blocks for you based on the code snippet which is system-generated
based on your r ights management choice and this part icular conference.
Please copy and paste the following code snippet into your TeX file between
\begin{document} and \maketitle, either after or before CCS codes.

\CopyrightYear{2017}
\setcopyright{acmlicensed}
\conferenceinfo{SIGIR '17,}{August 07-11, 2017, Shinjuku, Tokyo, Japan}

http://www.acm.org/publications/proceedings-template

\ i sbn{978-1-4503-5022-8/17/08}\acmPrice{$15.00}
\doi{ht tp: / /dx.doi .org/10.1145/3077136.3080721}

If you are using the ACM Microsoft Word template, or still using an older
version of the ACM TeX template, or the current versions of the ACM SIGCHI,
SIGGRAPH, or SIGPLAN TeX templates, you must copy and paste the following
text block into your document as per the instructions provided with the
templates you are using:

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distr ibuted for profi t or commercial advantage and that copies bear
this notice and the full ci tat ion on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post
on servers or to redistr ibute to l is ts , requires prior specific permission and/or
a fee. Request permissions from Permissions@acm.org.

SIGIR '17, August 07-11, 2017, Shinjuku, Tokyo, Japan
© 2017 Copyright is held by the owner/author(s). Publication rights l icensed
to ACM.
ACM ISBN 978-1-4503-5022-8/17/08…$15.00
h t tp : / /dx .do i .o rg /10 .1145/3077136.3080721

NOTE: Make sure to include your article's DOI as part of the bibstrip data; DOIs will be
registered and become active shortly after publication in the ACM Digital Library

4. ACM Citation and Digital Object Identifier.

(a) In connection with any use by the Owner of the Definitive Version, Owner shall include
the ACM citation and ACM Digital Object Identifier (DOI).
(b) In connection with any use by the Owner of the Submitted Version (if accepted) or the
Accepted Version or a Minor Revision, Owner shall use best efforts to display the ACM
citation, along with a statement substantially similar to the following:

"© [Owner] [Year]. This is the author's version of the work. It is posted here for your
personal use. Not for redistribution. The definitive version was published in {Source
Publication}, http://dx.doi.org/10.1145/{number}."

5. Audio/Video Recording

I hereby grant permission for ACM to include my name, l ikeness, presentation and
comments in any and all forms, for the Conference and/or Publication.

I further grant permission for ACM to record and/or t ranscribe and reproduce my
presentation as part of the ACM Digital Library, and to distribute the same for sale in
complete or partial form as part of an ACM product on CD-ROM, DVD, webcast, USB device,
streaming video or any other media format now or hereafter known.

I understand that my presentat ion wil l not be sold separately as a s tand-alone product
without my direct consent. Accordingly, I give ACM the right to use my image, voice,
pronouncements, l ikeness, and my name, and any biographical material submitted by me, in

pronouncements, l ikeness, and my name, and any biographical material submitted by me, in
connection with the Conference and/or Publication, whether used in excerpts or in full , for
distribution described above and for any associated advertising or exhibition.

Do you agree to the above Audio/Video Release? Yes N o

6. Auxiliary Material

Do you have any Auxiliary Materials? Yes No

7. Third Party Materials
In the event that any materials used in my presentation or Auxiliary Materials contain the
work of third-party individuals or organizations (including copyrighted music or movie
excerpts or anything not owned by me), I understand that i t is my responsibil i ty to secure
any necessary permissions and/or l icenses for print and/or digital publicat ion, and ci te or
at tach them below.

We/I have not used third-party material .
We/I have used third-party materials and have necessary permissions.

8. Artistic Images
If your paper includes images that were created for any purpose other than this paper and to
which you or your employer claim copyright, you must complete Part IV and be sure to
include a notice of copyright with each such image in the paper.

We/I do not have any artistic images.
We/I have any artistic images.

9. Representations, Warranties and Covenants

The undersigned hereby represents, warrants and covenants as follows:

(a) Owner is the sole owner or authorized agent of Owner(s) of the Work;

(b) The undersigned is authorized to enter into this Agreement and grant the r ights
included in this license to ACM;

(c) The Work is original and does not infringe the rights of any third party; all permissions
for use of third-party materials consistent in scope and durat ion with the r ights granted
to ACM have been obtained, copies of such permissions have been provided to ACM, and
the Work as submitted to ACM clearly and accurately indicates the credit to the
proprietors of any such third-party materials (including any applicable copyright notice),
or will be revised to indicate such credit;

(d) The Work has not been published except for informal postings on non-peer reviewed
servers, and Owner covenants to use best efforts to place ACM DOI pointers on any such
prior postings;

(e) The Auxiliary Materials, if any, contain no malicious code, virus, trojan horse or other
sof tware rout ines or hardware components designed to permit unauthorized access or to
disable, erase or otherwise harm any computer systems or software; and

(f) The Artistic Images, if any, are clearly and accurately noted as such (including any

applicable copyright notice) in the Submitted Version.

I agree to the Representations, Warranties and Covenants.

10. Enforcement.

At ACM's expense, ACM shall have the right (but not the obligation) to defend and enforce
the rights granted to ACM hereunder, including in connection with any instances of
plagiarism brought to the attention of ACM. Owner shall notify ACM in writing as promptly
as practicable upon becoming aware that any third party is infringing upon the r ights
granted to ACM, and shall reasonably cooperate with ACM in its defense or enforcement.

11. Governing Law

This Agreement shall be governed by, and construed in accordance with, the laws of the
state of New York applicable to contracts entered into and to be fully performed therein.

Funding Agents

1. Natural Sciences and Engineering Research Council of Canada award number(s):

2. National Science Foundation award number(s):IIS-1423002

DATE: 0 4 / 2 4 / 2 0 1 7 sent to yangpeilyn@gmail.com at 19:04:46

	Table of Contents
	List of Tables
	List of Figures
	Abstract
	1 Introduction
	1.1 Tools for the IR Teaching/Learning
	1.2 Unified Reproducibility Evaluation System
	1.3 Tools for Analyzing the Existing Models
	1.4 Contextual Suggestion Tool
	1.5 Summary

	2 Background and Related Work
	2.1 TREC and TREC Collections
	2.1.1 TREC
	2.1.2 TREC Ad-hoc/Web Collections, Topics, Judgments and Evaluation Metrics

	2.2 Typical Ranking Models and Index Structure
	2.3 IR Toolkits for Teaching and Research
	2.4 Tools for Analyzing the Ranking Models for Keyword Queries
	2.4.1 Performance Upper Bound of Single-Term Queries
	2.4.2 Multiple-Terms Keyword Queries Reduction

	2.5 Contextual Suggestion
	2.5.1 Recommendation Systems

	3 Teaching/Learning Tools for Information Retrieval
	3.1 Virtual IR Lab(VIRLab)
	3.2 Anserini
	3.2.1 Introduction
	3.2.2 Motivation
	3.2.3 Main Components
	3.2.4 Evaluation

	3.3 Summary and Future Work

	4 Unified Reproducibility Evaluation Systems
	4.1 Privacy Preserving Evaluation Platform (PPE)
	4.1.1 Introduction
	4.1.2 A General Framework of Privacy-Preserving Evaluation
	4.1.3 A Specific Implementation
	4.1.4 Experiments
	4.1.4.1 Experiment Design
	4.1.4.2 Retrieval Performance Comparison
	4.1.4.3 Further Analysis

	4.2 RISE - A Reproducibility Platform for Retrieval Models
	4.2.1 Reproduced Retrieval Functions
	4.2.1.1 Okapi BM25 and Its Variants
	4.2.1.2 Pivoted Normalization Function and Its Variants
	4.2.1.3 Language Modeling Approaches
	4.2.1.4 Divergence from Randomness Models
	4.2.1.5 Information-based Models

	4.2.2 Experiments
	4.2.2.1 Reproducibility Study
	4.2.2.2 Experiment Design
	4.2.2.3 Results
	4.2.2.4 Performance Comparison on Web Search Collections
	4.2.2.5 Summary

	4.3 Summary and Future Work

	5 Tools for Understanding the Existing IR Ranking Models and Keyword Queries
	5.1 Performance Bound Analysis for Single Term Queries
	5.1.1 Introduction
	5.1.2 A General Form of Retrieval Functions for Single-Term Queries
	5.1.3 Upper Bound Estimation for MAP
	5.1.4 Experiments
	5.1.4.1 Testing Collections
	5.1.4.2 Experiment Setup
	5.1.4.3 Results
	5.1.4.4 Parameters

	5.2 Reducing the Keyword Queries
	5.2.1 Introduction
	5.2.2 Subquery Ranking Details
	5.2.2.1 Problem Setup
	5.2.2.2 Subquery Ranking
	5.2.2.3 Subquery Ranking Features

	5.2.3 Experiments and Results
	5.2.3.1 Experiment Setup
	5.2.3.2 Results of Subquery Ranking
	5.2.3.3 Feature Importance Analysis

	5.3 Summary and Future Work

	6 Contextual Suggestion
	6.1 Mobile Context Tracking Application
	6.2 Problem Formulation of Contextual Suggestion
	6.3 Category and Description based User Profile Modeling
	6.3.1 Ranking Based on User Profiles
	6.3.1.1 Category-based Similarity
	6.3.1.2 Description-based Similarity

	6.4 Opinion-based User Profile Modeling
	6.4.1 Basic Idea
	6.4.2 Opinion-based Representation for Suggestions
	6.4.3 Candidate Suggestions Ranking
	6.4.3.1 Linear Interpolation
	6.4.3.2 Learning to Rank

	6.5 Structured Summary Generation
	6.6 Experiments
	6.6.1 Data sets
	6.6.2 Experiments on Candidate Suggestion Ranking
	6.6.2.1 Experiment Design
	6.6.2.2 Results of candidate suggestion ranking
	6.6.2.3 In-depth Analysis

	6.6.3 Experiments on Summary Generation

	6.7 Summary and Future Work

	7 Conclusion and Future Work
	7.1 Conclusion
	7.2 Future Work

	Bibliography
	 Copyrights

