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ABSTRACT

Experimental images of the tear film have been found to contain areas of rough

texture. For long interblink times, the rough areas become more pronounced. We

model tear film dynamics during the interblink. As the film thins to a critically low

thickness, tear breakup (TBU) occurs. We hypothesize that the rough areas in experi-

mental imaging are artifacts of the corneal surface, visible during TBU. To explore our

hypothesis, we use one-dimensional thin film equations to model tear film fluid flow,

and model the corneal surface as a sinusoidal function to account for its roughness. We

use Fourier spectral methods to discretize in space and solve the resulting differential

algebraic system using backward differentiation methods in Matlab. We parametri-

cally study the effect of corneal surface features and of wetting forces on the tear film

dynamics at TBU. Our results suggest that tear film rippling occurs at, but not before,

TBU, and they support the interpretation of rough texture in experimental imaging as

evidence of corneal surface roughness appearing during TBU.
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Chapter 1

INTRODUCTION

The tear film is a multilayered thin fluid that covers and protects the surface of

the eye. The anterior layer is a lipid layer which slows evaporation of the aqueous layer

[3]. The aqueous layer constitutes the majority of the tear film and lies posterior to

the lipid layer. Posterior to the aqueous layer is the glycocalyx, a forest of transmem-

brane mucins protruding from the ocular surface into the aqueous layer [4]. The ocular

surface, specifically of the cornea, comprises multiple layers of epithelial cells. These

cells vary in width and height, forming a rough surface [5, 6, 7]. Figure 1.1, from [8],

contains a diagram of the tear film.

Figure 1.1: Diagram of the tear film. The region labeled “Mucin Layer” is what we

refer to as the glycocalyx.
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Maintaining a healthy tear film thickness is critical for proper vision. Early

measurements of the aqueous layer estimated it to be 7 microns thick [9]. However,

recent studies with more accurate measurements have estimated an average healthy

aqueous layer to be between 1.5−4.7µm thick, with an average of 3µm [10]. When the

tear film thins to a critically small thickness, tear break-up (TBU) occurs. [11]. TBU

is a common phenomenon associated with dry eye, a condition that affects over three

million Americans per year [12]. The causes of TBU are not very well-understood,

and may be a result of a variety of mechanisms including increased evaporation and

the Marangoni effect [13]. Initial studies investigating the effect of evaporation on

tear film thinning determined that evaporation speed was not adequately fast to result

in TBU [3]. However, such studies were based on the assumption that the aqueous

layer is 7 microns thick, and were conducted using experimental goggles which may

inadvertently slow evaporation. Given the newer and lower aqueous layer thickness

estimate, along with proposed faster evaporation in outside air without experimental

goggles, evaporation becomes a plausible candidate for the mechanism behind TBU

[1, 2, 14, 15].

The role of evaporation in TBU is linked to the health and function of the lipid

layer. During a blink, the upper eyelid drives fluid flow of the tear film and redistributes

the lipid layer across the film [1]. In a healthy tear film, the lipid layer maintains a

thickness of about 0.1 microns [9]. The lipid layer slows evaporation of the aqueous

layer so that the tear film maintains a sufficient thickness between blinks [3]. When

the lipid layer develops a thin region, which we call a hole, evaporation increases in

the problematic region and drives local thinning of the film [16]. We explore herein the

situation in which TBU occurs due to increased evaporation as a function of a hole in

the lipid layer.

We are particularly interested in building on the work of Braun et al. in [1],

in which tear film dynamics during the blink cycle are modeled using a rough corneal

2



surface. The blink cycle consists of four parts: the downstroke during which the supe-

rior lid moves towards the inferior lid, the turning point where the superior lid stops,

the upstroke during which the superior lid moves away from the inferior lid, and the

interblink period in between the previous upstroke and next downstroke. Braun et al.’s

research suggests that the ocular surface roughness is visible in the tear film during

a blink based on the fluid motion over the ocular surface. Experimental images and

model results show matching of peak to valley in the tear film and ocular surface based

on the direction the fluid is moving over the surface [1]. Their work was motivated

by images of the tear film taken during and between blinks, such as figure 1.2. These

images were taken using interferometry, a technique which uses the phase difference

between different reflections of light off the tear film surfaces to measure lipid layer

thickness. The thickness is then represented with a color spectrum scale. Figure 1.2 is

a grayscale of the original interferometric image.

3



Figure 1.2: Panel of images of the tear film before and after blinks. In panel A, before

downstroke the authors use arrows to highlight abnormalities, which are

likely bubbles, in the lipid layer. Panel B is taken during the downstroke

and four dots appear in the rectangle. In panel C, another downstroke

about one minute later, we observe the four dots again in the same posi-

tion as in panel C, suggesting they are an artifact of the corneal surface.

Panel D is taken during upstroke and the four dots are in the same posi-

tion but with flow on the opposite side from panels B & C. From figure

4 of [1].

While [1] modeled the effect of corneal surface roughness on tear film dynamics

during a blink, we aim to understand the effect of corneal surface roughness on tear film

dynamics during interblink, and more specifically at TBU. Images such as figure 1.3

motivate our work; such images capture a rough texture on localized regions of the

tear film. In figure 1.3, King-Smith et al. [2] took monochrome, narrow band laser

interferometric images of the tear film during the interblink phase. Ripples in the tear

film are also visible in images such as figure 1.4, which measure changes in tear film

slope by a light that enters the eye [1]. The changes in slope are then integrated to

4



obtain a thickness measurement. The rough texture observed in such images during

interblink serves as a motivation for our model.

Figure 1.3: Rough texture visible in interferometric imaging of the lipid layer. We
focus on the type of roughness visible in the streaks (arrowhead). Other
types of roughness visible in this image are small spots (arrows) and
larger patches (asterisk). From figure 3 of [2].

In order to effectively model the tear film, we introduce several simplifications to

its physiology while capturing the key components of the system. We simplify the tear

film to be a single aqueous layer and model it in one spatial dimension. As previously

stated, a hole in the lipid layer corresponds to heightened evaporation at the location

of the hole. Thus we account for the protective effect of a healthy lipid layer using

an evaporation function with a small background evaporation rate and a localized in-

creased evaporation rate. Many previous models assume the corneal surface to be flat

[17], with the effect of curvature negligible because the thickness of the local segment

of tear film is two orders of magnitude smaller than the tear film diameter [18]. This

5



Figure 1.4: Rough texture visible in retroillumination imaging of the lipid layer. The
roughness becomes stronger as the interblink time increases. From figure
26 of [1].

modeling simplification is justified when exploring the tear film in general, as the effect

of the corneal surface roughness is trumped by the free surface curvature in the case of

a healthy film thickness. But when the tear film thins in the case of TBU, conjoining

pressure pushes the fluid-solid interface away from the fluid-air interface, resulting in

the spread of the film over the corneal surface. Moreover, as we will show in the results

section, there is no substantial change in pre-TBU thinning rate between the case of a

flat or rough corneal surface. However, given that we are investigating the roughness

visible in TBU images, we choose to model the corneal surface as a sinusoidal func-

tion and parameters to account for the variation in epithelial cells and ocular surface

roughness.

Our use of a sinusoidal function for surface roughness builds on previous work

in flow over topography [19]. Kalliadasis et al. [20] develop a model for thin film flow

over a step, demonstrating how the film forms a capillary ridge immediately before the

step drops down in height. The stability of such results and the justification of using a

lubrication approximation for the thin film equations in the case of a rough topography

has been explored as well [21]. The work of [20, 21] has been extended to the case of

6



a sinusoidal substrate in [22], which we also use.

We quantitatively investigate the presence or absence of roughness in the tear

film before and during TBU. Parameters that we explore include corneal epithelial

cell height, cell thickness, and wetting forces. We present the problem formulation in

chapter 2, outlining the theoretical framework of our model. In chapter 3, we describe

the process of numerical discretization and the numerical methods used to approximate

model solutions. We present results in chapter 4, quantifying roughness of the tear film

at TBU. Finally, we end with discussion and conclusions in chapter 5.
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Chapter 2

PROBLEM FORMULATION

2.1 Modeling Assumptions

In order to obtain a simplified model, we must make some assumptions about

the tear film. When functioning properly, the lipid layer retards evaporation of the

aqueous layer. A common cause of tear film thinning is the presence of a relatively

thin area of the lipid layer, which we call a hole [16]. Therefore, when modeling the tear

film as a single aqueous layer, we account for the protective function of the lipid layer,

along with holes in the lipid layer, by introducing a smooth evaporation function with

peak evaporation in the center of the domain and a slower background evaporation rate

elsewhere. Moreover, we assume that the aqueous layer of the tear film is Newtonian,

in other words, that its viscous stresses are linearly proportional to the strain rate. We

also assume that the aqueous layer is incompressible; that is, it has constant density ρ.

We begin by defining characteristic parameters relevant to our model, first with

those that have been calculated or derived experimentally. Let d = 3.5µm be the

characteristic thickness in the spatial variable z′, based on the experimental average

tear film thickness [10]. Furthermore, we assume that the tear-air interface has constant

surface tension σ0 = 0.045N/m, µ = 1.3×10−3Pa·s is the constant viscosity of the tear

film, and v0 = 20µm/min is the characteristic peak thinning rate [23, 24, 25]. We

define a dimensionless parameter

S =
σ0ε

4

µv0
(2.1)

8



which provides a ratio of surface tension to viscosity, so that choosing S = 1 balances

surface tension and viscous effects. Finally, we define ε = d/L to be the ratio of char-

acteristic height to length scale in the lateral direction. We solve for the characteristic

length scale when S = 1 to obtain that

L = (σ0/µv0)
1/4d. (2.2)

The resulting value for L ≈ 350µm in the spatial variable x′. We then choose the

dimensional length scale to be xLL, where xL = 8, chosen large enough to capture a

centered region of increased evaporation with slower evaporation on the sides.

We provide an illustration of the model set-up and domain in figure 2.1.

Figure 2.1: A schematic of the problem set-up, with dimensional variables indicated

by primes. The thickness of the aqueous layer is h′, the corneal surface

is modeled by z′c, and evaporation is given by J ′.

9



2.2 Governing Equations Overview

We present a list of the governing equations which we will use to derive our model

PDEs. Primes denote dimensional variables. In the sections that follow, we describe

these equations in greater detail and nondimensionalize them. Let u′ = (u′, w′) denote

velocity in the x′ and z′ direction, respectively, and p′ be a scalar function representing

pressure.

2.2.1 Equations for Interior

We conserve momentum and mass using the incompressible Navier-Stokes equa-

tions [26], namely

ρ
∂u′

∂t′
+ u′ · ∇u′ = −∇p′ + µ∇2u′, (2.3)

∇ · u′ = 0. (2.4)

2.2.2 Boundary Conditions at Corneal Surface

The no slip and impermeability conditions are

u′ · t′c = 0, (2.5)

u′ · n′c = 0. (2.6)

2.2.3 Boundary Conditions at Free Surface

Tangential immobility, the kinematic condition, and the normal stress condition

are, respectively,

u′ · t′ = 0, (2.7)

ρ(u′ − u′I) · n′ = J ′, (2.8)

−p′v − n′ ·T′ · n′ = σ0∇′ · n′ − Π′(h′). (2.9)

10



2.3 Equations for Interior

We assume that the tear film is incompressible, which we express with the

equation

∇ · u′ = 0. (2.10)

In Cartesian coordinates, (2.10) is written as

∂u′

∂x′
+
∂w′

∂z′
= 0. (2.11)

We note that (2.11) conserves mass. Moreover, the tear film is viscous so we can apply

the Navier-Stokes equations to describe the fluid motion and conserve momentum:

ρ
∂u′

∂t′
+ u′ · ∇u′ = −∇p′ + µ∇2u′. (2.12)

In Cartesian coordinates, the components of (2.12) become

ρ
∂u′

∂t′
+ u′

∂u′

∂x′
+ w′

∂u′

∂z′
= −∂p

′

∂x′
+ µ

∂2u′

∂x′2
+ µ

∂2u′

∂z′2
, (2.13)

ρ
∂w′

∂t′
+ u′

∂w′

∂x′
+ w′

∂w′

∂z′
= −∂p

′

∂z′
+ µ

∂2w′

∂x′2
+ µ

∂2w′

∂z′2
. (2.14)

We nondimensionalize as follows:

u = u′ε/v0, w = w′/v0, p = (p′ − p′v)/p0, where p0 =
v0µ

ε2d
, (2.15)

t = t′v0/d, x = x′/L, and z = z′/d.

In 2.15, p′v is the reference environmental vapor pressure. Values for the dimensional

parameters in (2.15) can be found in table 2.1. Additionally, we introduce a dimen-

sionless parameter ε := d/L This is the aspect ratio, which is small (see table 2.2).

We begin the process of nondimensionalization with (2.11):

v0
d

∂u

∂x
+
v0
d

∂w

∂z
= 0. (2.16)

Dividing by v0
d

, we obtain that

∂u

∂x
+
∂w

∂z
= 0. (2.17)
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Table 2.1: Dimensional Parameters

Parameter Definition Value Source
µ Viscosity 1.3× 10−3Pa·s [24]
ρ Density 103kg·m-3 Water
σ0 Surface Tension 0.045N/m [23]
v0 Peak Thinning Rate 20 µm/min [25]
v1 Background Thinning Rate 1 µm/min [25]
d Characteristic Thickness 3.5× 10−6m [10]

L (σ0/µ/v0)
1/4d 3.5× 10−4m Calculated

A∗ Hamaker Constant 6π × 3.5× 10−19m3Pa [27]
z′a Epithelial Cell Height 0.25× 10−6m [7]
λ′ Epithelial Cell Width 35× 10−6 m [6]

Table 2.2: Dimensionless Parameters

Parameter Definition Value
ε d/L 9.9× 10−3

Re ρv0d/(ε
2µ) 9.1× 10−3

k L/λ′ 10
A A∗/(6πµv0L

2) 9.9× 10−3

S σ0ε
4/(µv0) 1

12



Next, we write (2.13) in terms of dimensionless variables, noting that

∂p′

∂x′
=

∂

∂x′
(p′ − p′v) (2.18)

since p′v is a constant. This allows us to substitute the dimensionless pressure into the

following momentum equation:

ρ

(
v20
εd

∂u

∂t
+
v20
dε

∂u

∂x
+
v20
dε

∂u

∂z

)
= −p0

L

∂p

∂x
+
µv0
εL2

∂2u

∂x2
+
µv0
εd2

∂2u

∂z2
. (2.19)

Multiplying by d2

v0εµ
, and using the fact that Re = ρv0d

ε2µ
, we have

Re

(
∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z

)
= − 1

ε2
∂p

∂x
+
∂2u

∂x2
+

1

ε2
∂2u

∂z2
. (2.20)

Multiplying by ε2, we obtain the following dimensionless PDE for u:

ε2Re

(
∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z

)
= −∂p

∂x
+ ε2

∂2u

∂x2
+
∂2u

∂z2
. (2.21)

We now write (2.14), the other component of the momentum equation, in terms

of dimensionless variables:

ρ

(
v20
d

∂w

∂t
+
v20
εL
u
∂w

∂x
+
v20
d
w
∂w

∂z

)
= −p0

d

∂p

∂z
+ µ

(
v0
L2

∂2w

∂x2
+
v0
d2
∂2w

∂z2

)
. (2.22)

We multiply by d4/L2(= ε2d2):

ρv20ε
2d

(
∂w

∂t
+ u

∂w

∂x
+ w

∂w

∂z

)
= −p0ε2d

∂p

∂z
+ µv0

(
ε4
∂2w

∂x2
+ ε2

∂2w

∂z2

)
. (2.23)

Next, we divide by µv0:

ρv0ε
2d

µ

(
∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂z

)
= −p0ε

2d

v0µ

∂p

∂z
+ ε4

∂2w

∂x2
+ ε2

∂2w

∂z2
. (2.24)

Noting that p0 = v0µ
ε2d

, the coefficient of ∂p
∂z

simplifies greatly. Moreover, with

Re = ρu0L
µ

= ρv0d
ε2µ

, we obtain

ε4Re

(
∂w

∂t
+ u

∂w

∂x
+ w

∂w

∂z

)
= −∂p

∂z
+ ε4

∂2w

∂x2
+ ε2

∂2w

∂z2
. (2.25)
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We note that ε� 1 from table 2.2. Thus we can apply lubrication theory, which

provides a method for simplifying thin film flows in general and for free boundary thin

film problems in particular [28]. The lubrication approximation is given by expanding

about ε and discarding terms beyond leading order. Applying lubrication theory to

(2.17), (2.21), and (2.25), we obtain the following system of equations:

∂u

∂x
+
∂w

∂z
= 0, (2.26)

−∂p
∂x

+
∂2u

∂z2
= 0, (2.27)

−∂p
∂z

= 0. (2.28)

2.4 Equation for Corneal Surface

We define the dimensional corneal surface to be

z′c(x
′) = z′a + z′a sin

(
2πx′

λ′

)
, (2.29)

where z′a is the epithelial cell height (default z′a = 0.25µm) and λ′ is the epithelial cell

width (default λ′ = 35µm). Since z′c and z′a measure heights, we introduce the following

dimensionless variables and parameters:

zc = z′c/d, and za = z′a/d. (2.30)

Moreover, we define the wavenumber to be k = L/λ′ and x = x′/L based on the

characteristic length scale. Then

dzc(x) = dza + dza sin(2πkx). (2.31)

Dividing by d, we have that

zc(x) = za [1 + sin(2πkx)] . (2.32)
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2.5 Boundary Conditions

2.5.1 Corneal Surface

At z′ = z′c(x
′), we have no slip boundary conditions; that is, the fluid has zero

velocity relative to the boundary. Thus

u′ · t′c = 0, (2.33)

where

t′c =

(
1, ∂z

′
c

∂x′

)
√

1 +
(
dz′c
dx′

)2 (2.34)

is the unit tangent vector to the corneal surface. Then expanding (2.33)

0 = u′ · t′c =
u′√

1 +
(
dz′c
dx′

)2 +
w′ dz

′
c

dx′√
1 +

(
dz′c
dx′

)2 (2.35)

=
v0
ε
u√

1 + ε2
(
dzc
dx

)2 +
v0wε

dzc
dx√

1 + ε
(
dzc
dx

)2 . (2.36)

Multiplying by ε, we have that

v0u+ v0wε
2 dzc
dx√

1 + ε2
(
dzc
dx

)2 = 0. (2.37)

We note that ∣∣∣∣dzcdx
∣∣∣∣ ≤ 2πkza, (2.38)

so ε2
(
dzc
dx

)2
= O(ε2). Applying lubrication theory, we discard terms beyond leading

order ε and are left with

v0u = 0 ⇒ u = 0. (2.39)

We also have impermeability at the corneal surface. That is,

u′ · n′c = 0, (2.40)

where

n′c =

(
−dz′c
dx′
, 1
)

√
1 +

(
dz′c
dx′

)2 (2.41)
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is the unit normal vector to the corneal surface. Expanding, we have

0 = u′ · n′c =
−u′ dz

′
c

dx′√
1 +

(
dz′c
dx′

)2 +
w′√

1 +
(
dz′c
dx′

)2 (2.42)

=
−v0

ε
uεdzc

dx√
1 + ε2

(
dz′c
dx′

)2 +
v0w√

1 + ε2
(
dz′c
dx′

)2 . (2.43)

Dropping terms of order ε2 or higher, we are left with

v0

(
u
∂zc
∂x

+ w

)
= 0. (2.44)

But we have already found that u = 0 at z = zc(x) from (2.39). Then dividing by v0,

we obtain a dimensionless impermeability condition of

w = 0. (2.45)

From 2.39 and 2.45 we have that there is no movement of the fluid at the corneal

surface.

2.5.2 Free Surface

Let h′(x′, t′) be the thickness of the aqueous layer at width x′ and time t′. Then

we define

H ′(x′, t′) = h′(x′, t′) + z′c(x
′) (2.46)

to be the dimensional equation describing the position/height of the fluid-air interface,

or free surface of the tear film. At z′ = H ′(x′, t′), we must satisfy the following

conditions: tangential immobility, kinematic condition, and normal stress balance. We

introduce the dimensionless variables

h = h′/d, H = H ′/d, J = J ′/(ρv0), and Π = Π′/p0, (2.47)

where

Π′ =
A∗

6π
h′
−3

(2.48)
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represents the van der Waals’ wetting forces [27]. In chapter 4 we vary Π, using (2.48)

as the default. We derive dimesionless equations for each of the boundary conditions

below. Typical parameter values can be found in table 2.1.

Tangential Immobility

First, we consider tangential immobility; that is,

u′ · t′ = 0 (2.49)

where

t′ =
(1, ∂H

′

∂x′
)√

1 +
(
∂H′

∂x′

)2 (2.50)

is the unit tangent vector of the free surface. We compute the dot product in (2.49) to

obtain
u′√

1 +
(
∂H′

∂x′

)2 +
w′ ∂H

′

∂x′√
1 +

(
∂H′

∂x′

)2 = 0. (2.51)

Nondimensionalizing, we have that

v0
ε
u√

1 + ε2
(
∂H′

∂x′

)2 +
v0wε

∂H
∂x√

1 + ε2
(
∂H′

∂x′

)2 = 0. (2.52)

We multiply (2.52) by ε/v0:

u√
1 + ε2

(
∂H′

∂x′

)2 +
ε2w ∂H

∂x√
1 + ε2

(
∂H′

∂x′

)2 = 0. (2.53)

Discarding terms of order ε2 or greater (from lubrication theory), we obtain

u = 0. (2.54)

Kinematic Condition

The kinematic condition conserves mass at the free surface. We begin with the

dimensional mass balance equation, as given in [27]:

ρ(u′ − u′I) · n′ = J ′ (2.55)
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where

u′I =

(
0,
∂H ′

∂t′

)
(2.56)

is the interface velocity at the free surface, J ′(x′) is the dimensional evaporation func-

tion given by

J ′(x′) = ρv1 + ρ (v0 − v1) exp

[(
−x

′ − xL/2
xw

)2
/

2

]
, (2.57)

and

n′ =
(−∂H′

∂x′
, 1)√

1 + ∂H′

∂x′
2

(2.58)

is the outward unit normal at the free surface. In (2.57), xw = 1.2 is the typical

evaporation width that we use, xL = 8 is the domain length, and typical values for ρ,

v0, and v1 are found in table 2.1. From (2.58), we have that (2.55) becomes

ρ

(
u′, v′ − ∂H ′

∂t′

)
·
(
−∂H

′

∂x′
, 1

)
= J ′

√
1 +

(
∂H ′

∂x′

)2

. (2.59)

Expanding the dot product, we have

ρ

(
−∂H

′

∂x′
u′ + v′ − ∂H ′

∂t′

)
= J ′

√
1 +

(
∂H ′

∂x′

)2

. (2.60)

Given that H ′ = h′ + z′c, we have that

ρ

(
−∂h

′

∂x′
u′ − dz′c

dx′
u′ + v′ − ∂h′

∂t′

)
= J ′

√
1 +

(
∂h′

∂x′
+
dz′c
dx′

)2

. (2.61)

We now nondimensionalize:

ρ

(
− d
L

v0
ε

∂h

∂x
u− d

L

v0
ε

dzc
dx

u+ v0w −
dv0
d

∂h

∂t

)
= ρv0J

√
1 +

(
d

L

∂h

∂x
+
d

L

dzc
dx

)2

. (2.62)

Given that ε = d/L, we discard terms beyond leading order and obtain

ρv0

(
−∂h
∂x
u− dzc

dx
u+ w − ∂h

∂t

)
= ρv0J. (2.63)

Dividing by ρv0 and using that H = h+ zc, we have that at z = H(x, t),

w = J + u
∂H

∂x
+
∂H

∂t
. (2.64)
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Normal Stress Balance

We begin with the normal stress balance

−p′v − n′ ·T′ · n′ = σ0∇′ · n′ − Π′(h′) (2.65)

where

T′ = −p′I + µ
[
∇′u′ + (∇′u′)T

]
(2.66)

is the Newtonian stress tensor and σ0 is the surface tension constant. Enumerating the

vectors and stress tensor, we obtain

−p′v −
(
−∂H′

∂x′
, 1
)

1 +
(
∂H′

∂x′

)2
 −p′ + 2µ∂u

′

∂x′
∂w′

∂x′
+ ∂u′

∂z′

∂w′

∂x′
+ ∂u′

∂z′
−p′ + 2µ∂w

′

∂z′

 −∂H′

∂x′

1

 (2.67)

= σ0

(
∂

∂x′
,
∂

∂z′

)
·


− ∂H′

∂x′√
1+( ∂H′

∂x′ )
2

1√
1+( ∂H′

∂x′ )
2

− Π′(h′).

Now we perform the matrix and vector multiplications to obtain the following equation:

−p′v−
1

1 +
(
∂H′

∂x′

)2
[(
−1−

(
∂H ′

∂x′

)2
)
p′ − 2µ

∂u′

∂x′

(
∂H ′

∂x′

)2

− 2
∂w′

∂x′
∂H ′

∂x′
− 2

∂u′

∂z′
∂H ′

∂x′
+ 2µ

∂w′

∂z′

]
(2.68)

=
σ0

1 +
(
∂H′

∂x′

)2
−

√
1 +

(
∂H ′

∂x′

)2
∂2H ′

∂x′2
+
∂H ′

∂x′

2∂2H ′

∂x′2
1√

1 +
(
∂H′

∂x′

)2
− Π′(h′).

We expand the term involving p′ to obtain

−p′v + p′ − 2

1 +
(
∂H′

∂x′

)2
(
−µ∂u

′

∂x′

(
∂H ′

∂x′

)2

− ∂w′

∂x′
∂H ′

∂x′
− ∂u′

∂z′
∂H ′

∂x′
+ µ

∂w′

∂z′

)
(2.69)

=
−σ0 ∂

2H′

∂x′2(
1 +

(
∂H′

∂x′

)2)3/2 − Π′(h′).
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We now nondimensionalize:

−v0µ
ε2d

p− 2

1 +
(
ε∂H
∂x

)2
(
−µε

(
∂H

∂x

)2
v0
L

∂u

∂x
− εv0

L

∂H

∂x

∂w

∂x
− v0

d

∂H

∂x

∂u

∂z
+
µv0
d

∂w

∂z

)
(2.70)

= −σ0ε
L

∂2H
∂x2(

1 + ε2
(
∂H
∂x

)2)3/2 − v0µ

ε2d
Π(h).

We divide by v0µ
ε2d

:

p− 2

1 +
(
ε∂H
∂x

)2
(
−ε4

(
∂H

∂x

)2
∂u

∂x
− 1

µ
ε4
∂H

∂x

∂w

∂x
− 1

µ
ε2
∂H

∂x

∂u

∂z

)
(2.71)

= −σ0ε
4

v0µ

∂2H
∂x2(

1 + ε2
(
∂H
∂x

)2)3/2 − Π(h). (2.72)

Since the domain length L is given by (2.2), then we obtain that

ε4 =
v0µ

σ0
. (2.73)

Substituting this expression for ε4, we obtain

p− 2

1 +
(
ε∂H
∂x

)2
(
−ε4

(
∂H

∂x

)2
∂u

∂x
− 1

µ
ε4
∂H

∂x

∂w

∂x
− 1

µ
ε2
∂H

∂x

∂u

∂z

)
(2.74)

=
−∂2H

∂x2(
1 + ε2

(
∂H
∂x

)2)3/2 − Π(h).

Now applying lubrication theory, given ε� 1, we discard terms of order ε2 or higher.

Then the equation simplifies to

p = −∂
2H

∂x2
− Π(h). (2.75)

2.6 Governing Equations in Thin Film Limit

We summarize the equations we have derived.
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Interior

In zc(x) < z < h(x, t) + zc(x), we have

∂u

∂x
+
∂w

∂z
= 0, (2.76)

−∂p
∂x

+
∂2u

∂z2
= 0, (2.77)

−∂p
∂z

= 0. (2.78)

Corneal Surface

On z = zc(x), we obtained

u = 0, (2.79)

w = 0. (2.80)

Free Surface

On z = h(x, t) + zc(x), we have

u = 0, (2.81)

w =
∂h

∂t
+ u

(
∂h

∂x
+
dzc
dx

)
+ J, (2.82)

p = −∂
2h

∂x2
− d2zc
dx2
− Π(h). (2.83)

2.7 Reduction

With a lubrication approximation, we will reduce the above system of free

boundary PDEs to a single PDE for the thickness of the aqueous layer. From (2.83),

and (2.78), we obtain that

p = p(x). (2.84)
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Now we combine (2.84) with (2.77) and integrate twice, using dummy variables as

placeholders for z:

0 =

∫ z ∫ s [
−∂p
∂x

+
∂2u

∂r2

]
drds (2.85)

=

∫ z [
−∂p
∂x
s+

∂u

∂s
− c1

]
ds (2.86)

= −1

2

∂p

∂x
z2 + u− c1z − c2. (2.87)

Rearranging terms in (2.87), we obtain the following equation for u:

u =
1

2

∂p

∂x
z2 + c1z + c2. (2.88)

We now apply the boundary conditions to solve for c1 and c2: At the corneal surface,

we have

u(x, zc, t) =
1

2

∂p

∂x
zc(x)2 + c1zc(x) + c2, (2.89)

and at the free surface,

u(x, h+ zc, t) =
1

2

∂p

∂x
[h(x, t) + zc(x)]2 + c1 [h(x, t) + zc(x)] + c2. (2.90)

We subtract (2.89) from (2.90) to obtain

u(x, h+ zc, t)− u(x, zc, t) =
1

2

∂p

∂x

[
h2(x, t) + 2h(x, t)zc(x)

]
+ c1h(x, t). (2.91)

But we note from (2.79) and (2.81) that u = 0 on the corneal surface and the free

surface, so the left-hand side is equal to zero and we obtain that

c1 = −1

2

∂p

∂x
[h(x, t) + 2zc(x)] . (2.92)

Now we substitute the given value of c1 into (2.89) in order to find c2:

1

2

∂p

∂x
zc(x)2 − 1

2

∂p

∂x
[h(x, t) + 2zc(x)] zc(x) + c2 = 0, (2.93)

so that

c2 =
1

2

∂p

∂x

[
h(x, t)zc(x) + z2c (x)

]
. (2.94)
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Substituting c1 and c2 into (2.88), we have

u(x, z, t) =
1

2

∂p

∂x

{
z2 − [h(x, t) + 2zc(x)] z + h(x, t)zc(x) + zc(x)2

}
. (2.95)

Next we integrate (2.76) along our domain with respect to z:∫ H

zc

(
∂u

∂x
+
∂w

∂z

)
dz = 0; (2.96)

w(H)− w(zc) +

∫ H

zc

∂u

∂x
dz = 0; (2.97)

w(H) +

∫ H

zc

∂u

∂x
dz = 0. (2.98)

From (2.82), we have that

w(H) =
∂H

∂t
+ u(H)

∂H

∂x
+ J. (2.99)

Substituting this value for w(H), we obtain

∂H

∂t
+ u(H)

∂H

∂x
+

∫ H

zc

∂u

∂x
dz = −J. (2.100)

Next we apply the Leibniz integral rule, which states that given a function f with

continuous partial derivative with respect to t, then

d

dt

(∫ b(t)

a(t)

f(x, t)dx

)
=

∫ b(t)

a(t)

∂f

∂t
dx+ f(b(t), t)

db

dt
− f(a(t), t)

da

dt
. (2.101)

Applying (2.101) to (2.100), we have

∂H

∂t
+ u(H)

∂H

∂x
+

∂

∂x

∫ H

zc

udz + u(zc)
∂zc
∂x
− u(H)

∂H

∂x
= −J. (2.102)

Given the no slip boundary condition (2.79) on the corneal surface, we are left with

−J =
∂H

∂t
+

∂

∂x

∫ H

zc

udz. (2.103)

Now we substitute for u and integrate with respect to z:

−J =
∂H

∂t
+

∂

∂x

∫ H

zc

1

2

∂p

∂x

(
z2 − (h+ 2zc)z + hzc + z2c

)
dz (2.104)

=
∂H

∂t
+

∂

∂x

{
1

2

∂p

∂x

[
1

3
z3 − 1

2
(h+ 2zc) z

2 + (hzc + z2c )z

]}∣∣∣∣H
zc

(2.105)

=
∂H

∂t
+

∂

∂x

{
1

2

∂p

∂x

[
1

3
(H3 − z3c )−

1

2
(h+ 2zc) (H2 − z2c ) + (hzc + z2c )(H − zc)

]}
.

(2.106)
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After expanding and canceling terms, we are left with

∂H

∂t
+

1

2

∂

∂x

(
−1

6

∂p

∂x
h3
)

= −J. (2.107)

Since H = h+ zc and zc = zc(x), then ∂H
∂t

= ∂h
∂t

and the PDEs we are left to solve are

∂h

∂t
− 1

12

∂

∂x

(
h3
∂p

∂x

)
= −J, (2.108)

p = −∂
2h

∂x2
− d2zc
dx2
− Π(h), (2.109)

where

J(x) =
v1
v0

+

(
1− v1

v0

)
· exp

(
−
(
x− xL

2

)2
2x2w

)
, (2.110)

zc(x) = za [1 + sin(2πkx)] , (2.111)

Π(h) = Ah−3, (2.112)

0 ≤x ≤ xL, t ≥ 0. (2.113)

We impose flat initial conditions:

h(x, 0) = 1− zc(x)− za, (2.114)

p(x, 0) = −Π(h(x, 0)). (2.115)
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Chapter 3

NUMERICAL DISCRETIZATION

The PDE we derived in the previous section is nonlinear first order in time and

fourth order in space, which contributes to its lack of a closed form analytical solu-

tion. Therefore, we turn to numerical methods for approximating a solution. We first

discretize spatially, to obtain a system of differential-algebraic equations (DAE). Then

we solve the DAE system in Matlab [29]. In this chapter, we explain the process by

which we discretize and approximate the PDE solution.

We recall that the problem is defined on a localized region of the eye, with

characteristic length scale of about 350 microns. At such a length scale, we have the

liberty of modeling a localized region of particular interest. We consider a section of

the eye that does not share a boundary with the eyelid, perhaps the center of the eye.

This allows us to enforce periodic boundary conditions at x = 0 and x = xL. That is,

h(0, t) = h(xL, t) for all t. With periodic boundary conditions, we can apply Fourier

spectral methods for spatial discretization. We apply Fourier spectral methods using

differentiation matrices as derived by [30], and due to periodicity we do not impose a

separate case for boundary conditions. We choose the number of gridpoints to be

N = 10xLk (3.1)

to ensure that the grid captures the intricacies of the ocular surface. The gridpoints

xi are evenly spaced and given as

xi =
xL
N
i =

1

10k
i, for i = 1, · · · , N. (3.2)
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Numerical testing on the second derivative d2zc/dx
2 ensures that we obtain accurate

derivatives with such grid spacing.

Applying Fourier spectral methods in space, we obtain discrete variables for p,

h, and zc as defined below:

hi(t) = h(xi, t), pi(t) = p(xi, t), and zci = zc(xi) for i = 1, · · · , N. (3.3)

Then the PDE reduces to a system of DAEs:

∂hi
∂t

= f(pi(t), hi(t)), (3.4)

0 = g(pi(t), hi(t), zci), (3.5)

with initial conditions

hi(0) = 1− za − zci, (3.6)

pi(0) = −Π(hi(0)). (3.7)

Note that (3.6) ensures a flat initial condition, for a tear film of characteristic

thickness. Given this DAE system, we use Matlab’s built-in ode15s solver to find an

approximate numerical solution [29]. This is a stiff solver which we choose due to the

varying rates of decay from the fourth order spatial derivative and first order time

derivative [31]. When running ode15s, we implement a stopping criterion based on a

minimum thickness of h. In our results, we predominantly use two different stopping

criteria. One case is when the tear film stops as it reaches the glycocalyx. In that

case, we stop when minx′ h
′(x′, t′) = 0.25µm dimensionally, or minx h(x, t) = 1/14.

We employ this case when studying the effect of ocular surface features on tear film

dynamics. In other instances, when we explore the effect of conjoining pressures for

the film at low thicknesses, we use the stopping criterion minx′ h
′(x′, t′) = 0.035µm

dimensionally, or minx h(x, t) = 10−2. Given the height of the glycocalyx of 0.2−0.5µm

[4], this stopping criterion implies that the aqueous layer can thin below the glycocalyx.
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Due to evidence that the glycocalyx helps maintain the aqueous layer covering of the

corneal surface [32], thinning of the film in the model may be have implications of a

dysfunctional glycocalyx or that there is some compliance of the glycocalyx.
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Chapter 4

RESULTS

In the first section, we study the tear film dynamics at TBU by varying the pa-

rameters of the corneal surface function and use a stopping criterion of minx h(x, t) =

1/14. In the second section, we explore the tear film dynamics at TBU with dif-

ferent functions for conjoining pressure and wetting forces, which create a repulsive

force between the free surface and ocular surface, and use a stopping criterion of

minx h(x, t) = 0.01.

4.1 Effect of Corneal Surface Features

By introducing a sinusoidal function at the boundary between the tear film and

the ocular surface, we observe different tear film dynamics than in the case of a flat

tear film/ocular surface boundary. Figure 4.1 compares and contrasts the model with

a rough (sinusoidal) corneal surface on the left and flat corneal surface on the right.

The initial conditions in each plot are h(x, 0) = 1− zc(x)− za. In the rough case, zc(x)

is given by (2.32) and za = 1/14 (dimensionless amplitude). For the flat ocular surface,

zc(x) = 0 and za = 0. We observe the same qualitative behavior in the plots of the

first four displayed time values, while the tear film is thinning before it reaches TBU.

However, at the final timestep, we observe different behavior in each model. In the

model with the rough corneal surface, the tear film has ripples at the region of TBU.

In the smooth corneal surface model, TBU occurs but with no wrinkling of the tear

film. The contrasting plots of figure 4.1 illustrate the importance of the ocular surface

in determining tear film dynamics at TBU. We now focus our attention on the case

of a rough corneal surface, and study how variations in the surface influence tear film

dynamics.
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Figure 4.1: Time series plots of aqueous layer thickness with sinusoidal corneal sur-

face (left) vs. flat corneal surface (right). The model exhibits the same

behavior up until time t = tend (dimensionless 1.07; dimensional 11.24s),

at which time the film anterior to the rough surface develops ripples at

TBU. The film anterior to the flat corneal surface also reaches TBU, but

with no ripples.

Effect of Wavenumber on Roughness

Our model uses a default wavenumber of 10 (i.e. 10 periods per unit length),

based on the average experimental epithelial cell width [6]. This number is merely an

29



average, and experimental studies have observed great variability in corneal surface

features among human subjects [5, 7]. The corneal epithlium continuously undergoes

changes, losing cells to cell death and gaining new cells through cell division [33]. We

incorporate such biological processes into our model by varying the wavenumber. For

example, a wavenumber less than 10 may represent clumping of cells due to epithelial

erosion, and a wavenumber greater than 10 reflects smaller cells created during cell

division, along with intracellular variation [33]. In model simulations with different

wavenumbers, we observe fewer and deeper grooves with lower wavenumber, and a

flatter tear film comprising shallower grooves with a higher wavenumber; see figure 4.2

for a comparison.
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Figure 4.2: Comparison of tear film dynamics with varying corneal surface wavenum-

ber. The first three subplots contain numerical results for k = 5, k = 10,

and k = 20, respectively, with the corneal surface plotted at the bottom

of each figure in blue. Solution curves represent the location of the free

surface at each time step. Time starts at t = 0, increasing by 0.1 until

final time t = 0.8821. As t increases, h+zc decreases monotonically. The

final figure compares the tear film at TBU with each wavenumber.

Figure 4.2 gives us a preliminary notion of the effect of wavenumber on tear

film rippling. With such intuition, we aim to quantify the variation in the rippling by
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computing an approximate amplitude of the tear film; refer to figure 4.3 for a sketch

of the procedure.

Figure 4.3: Procedure for finding the approximate tear film amplitude.

We begin by numerically finding the absolute minimum of h + zc where TBU

occurs, and then finding the local maxima adjacent to this minimum. We choose the

larger of the maxima, and then compute the difference from peak to valley, dividing

by 2 for consistency with a sinusoidal amplitude. We call this quantity hamp, the tear

film amplitude. Next we compute the ratio of tear film amplitude to corneal surface

amplitude za, r = hamp/za and plot this ratio r versus the wavenumber k. Note that

we use integer wavenumbers to ensure periodicity for a given domain length, which

is required for use of Fourier spectral methods. Figure 4.4 displays the ratio versus

wavenumber.
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Figure 4.4: Ratio of the tear film amplitude to the corneal surface amplitude as a
function of corneal surface wavenumber. Tear film roughness decreases
as the wavenumber increases. At the default wavenumber k = 10, the
ratio is less than 0.06. At k = 5, the TBU tear film amplitude to corneal
surface amplitude is its highest at almost 0.2.

Quadratic Fit of Wavelength Variation

Based on the results of figure 4.4, we attempted to fit a polynomial to the data

but that did not yield a strong fit. In attempt to find a better fit, we made a change

of independent variable to model the ratios as a function of dimensionless wavelength

λ = λ′

L
= 1

k
. Making such change of variables gives the ratio as an increasing function

of wavelength, rather than the decreasing behavior of figure 4.4. We use Matlab’s

polyfit function, which yields a best fit in terms of least squares, to fit the model

values to a quadratic polynomial. We obtain the following polynomial to estimate r:

r̂ = 3.3122λ2 + 0.3957λ− 0.0175, (4.1)
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where r̂ is the approximated ratio of tear film amplitude to ocular surface amplitude,

and λ is the dimensionless wavelength. Figure 4.5 shows the values computed from the

thin film model (circles) and the polynomial fit (curve).
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Figure 4.5: Quadratic polynomial fit, given by (4.1) (red curve) plotted with sim-
ulation data for the wavelengths corresponding to integer wavenumbers
(blue circles).

Using (4.1), we obtain a good fit for the dimensionless wavelength values of

interest, which vary from λ = 0.05 to λ = 0.2. The polynomial fit has residual sum of

squares

RSS =

length(r)∑
i=1

(ri − r̂i)2 = 1.983× 10−5. (4.2)

The smallest wavelength 0.05, at the left of the plot, corresponds to wavenumber

k = 20, where the tear film only exhibits about 1% the amplitude of the corneal

surface. The largest wavelength 0.2 corresponds to wavenumber k = 5, where the tear

film exhibits almost 20% the roughness of the corneal surface.

34



Effect of Amplitude on Roughness

Equation (2.32) for the corneal surface is governed by two parameters: wavenum-

ber and amplitude. In the previous section, we established a quadratic dependence of

tear film roughness on the wavelength of the corneal surface. The biological processes

outlined in the previous section may also have an effect on ocular surface amplitude,

e.g. an increased amplitude due to gaps formed by epithelial erosion. In this section,

we explore the effect of the corneal surface amplitude on the tear film roughness, with

several cases based on different fixed wavenumbers. We calculate the tear film rough-

ness using the same procedure as before, this time normalizing with the appropriate

ocular surface amplitude for each simulation. First, we consider the case when k = 10

(default wavenumber). Using linear least squares, we find that the model values are

nearly proportional to 1/za, with log-log slope −.9912. We use a nonlinear curve fitting

tool in Matlab to find the curve of best fit

r̂ = .0038 +
.0034

za
. (4.3)

The error is given by

RSS =

length(r)∑
i=1

(ri − r̂i)2 = 7.3458× 10−5. (4.4)

Figure 4.6 displays the curve along with the simulation values.
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Figure 4.6: Nonlinear curve fit of the ratio values plotted as the red line, with the

ratio values plotted as blue circles.

We observe from figure 4.6 that the relative roughness r decreases as we increase

the ocular surface amplitude, with the highest value of r occurring when za = 0.025.

Since r = hamp/za, both numerator and denominator vary in the case of varying corneal

surface amplitude. For lower values of za, we note that hamp need not be as large as

in the case of higher values of za to obtain a large value of r. We therefore explore

whether the largest r and largest hamp correspond to the same value of za. The results

for hamp with varying za are displayed in figure 4.7.
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Figure 4.7: Amplitude of the tear film versus the amplitude of the corneal surface

when k = 10. We obtain the largest amplitude for the default ocular

surface amplitude za = 1/14, contrasting with the relative amplitude

case in which the largest r value occured at za = 0.025.

When we varied wavenumber in the previous section, we found the largest tear

film amplitude when k = 5. For this wavenumber, we vary the ocular surface amplitude

and calculate the relative amplitude r and dimensionless amplitude hamp of the tear film

at TBU. Figures 4.8 and 4.9 display the results. In both the k = 10 and k = 5 cases, we

find that r is a monotonically decreasing function of za, and can reasonably approximate

the relationship with a function of the form r = c1 + c2/za. When calculating hamp,

however, we find that the largest value of hamp shifts from occurring at za = 1/14 for

k = 10 to za = 3/20 for k = 5. Commensurate with the results on varying wavenumber,

we obtain higher values of roughness when k = 5 than when k = 10 for varying za. We
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use the same procedure to find the log-log slope of r versus za for k = 5 as in the case

with k = 10, to find a log-log slope of −.8613. Although we do not expect as accurate

a fit since this slope is further from −1, we fit to a function of the form c1 + c2/za. We

find the curve of best fit

r̂ = .0404 +
.0098

za
. (4.5)

The error is given by

RSS =

length(r)∑
i=1

(ri − r̂i)2 = 1.9× 10−3. (4.6)

Figure 4.8 displays the curve along with the simulation values.
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Figure 4.8: Nonlinear curve fit of the ratio values plotted as the red line, with the

ratio values plotted as blue circles.

We observed the same behavior in figure 4.8 as in the k = 10 case, where that

the relative roughness r decreases as we increase the ocular surface amplitude, with the
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highest value of r occurring when za = 0.025. We again explore whether the largest r

and largest hamp correspond to the same value of za. The results for hamp with varying

za are displayed in figure 4.9.
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Figure 4.9: Amplitude of the tear film versus the amplitude of the corneal surface

when k = 5. We obtain the largest amplitude for the ocular surface

amplitude za = 0.15.

Corneal Surface with both Long and Short Waves

In the previous sections, we considered separately cases of longer or shorter

waves due to cell division and epithelial erosion. Such biological processes may occur

continually and simultaneously [33]. Thus we introduce long and short waves together

in order to more realistically mimic the features of the corneal surface. We use the

following equation for the ocular surface:

zc(x) =
za
2

[2 + sin(2πk1x) + sin(2πk2x)] . (4.7)
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Here k1 = 5 and k2 = 20 represent the long and short waves, respectively. We compute

a numerical solution to the model, with the corneal surface given by (4.7). Figure 4.10

displays the final four time steps of the numerical simulation as the tear film nears

TBU.
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Figure 4.10: Final four time steps (from t = 0.6, increasing by 0.1 until final time of

t = 0.8791) of the tear film in a localized region where TBU occurs, with

decreasing thickness throughout time. The tear film ripples in the final

time step at TBU, with the wavelength appearing to echo the longer

waves (k1 = 5) but not the shorter waves (k2 = 20).

We now solve the PDE for three cases: the two-wave corneal surface, the corneal

surface with long wave wavenumber k = 5, and the corneal surface with short wave

wavenumber k = 20. Additionally, we vary the amplitude ranging from za = .05

to za = .2. Figure 4.10 suggests that the corneal surface acts as a low pass filter,

with the waves in the tear film echoing only the long corneal surface waves but not

the short waves. We quantify this effect by calculating representative amplitudes and
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wavelengths of the tear film at TBU. The calculated amplitude indicates depth of the

tear film ripples, while the calculated wavelength determines whether the long or short

waves are reflected in the tear film. We compute the ratio of the tear film amplitude

to the corneal surface amplitude, and obtain the results displayed in table 4.1.

za k = 5 k = 20 two-wave

0.05 0.2582 0.0188 0.1588

0.0714 0.1925 0.0127 0.1033

0.1 0.1411 0.0085 0.0722

0.2 0.0698 0.0034 0.0311

Table 4.1: Ratio of tear film amplitude to corneal surface amplitude (r = hamp/za)

for various ocular surface functions. The amplitude of the tear film cor-

responding to the two wave corneal surface is larger than the k = 20

amplitude and smaller than the k = 5 amplitude. This further suggests

that the inclusion of shorter waves has a flattening effect.

We also compute an approximate wavenumber of the tear film at TBU to com-

pare it to the wavenumber of the ocular surface. We use the same procedure as pre-

viously outlined to find the absolute minimum of the free surface h + zc and adjacent

local maxima. We then find the x coordinates of the maxima, compute their difference

d, and take the wavenumber to be 1/d. Table 4.2 contains wavenumbers of the tear

film for varying ocular surface wavenumber and amplitude.
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za k = 5 k = 20 two-wave

.05 4.5455 18.7500 4.0541

.0714 4.5455 18.7500 4.8387

.1 4.5455 18.7500 4.8387

.2 4.5455 18.7500 4.8387

Table 4.2: Wavenumber for various ocular surface functions. We note that these

values are approximate due to the numerical discretization process and

the fact that the tear film surface is not truly periodic. We observe a

longer wave for the two-wave case, close to k = 5, and we do not see the

k = 20 wave.

The wavenumber of the tear film at TBU is found to be almost identical to the

wavenumber of the longer wave (k = 5). Therefore, the tear film acts as a low pass

filter, with its ripples showing the longer waves of the corneal surface and filtering out

the shorter waves.

4.2 Effect of Wetting Forces

The fluid pressure is governed largely by the curvature of the fluid surface, given

by the (h + zc)xx term, before the film reaches TBU. This curvature-driven pressure

causes the film to decay smoothly with no artifact of the corneal surface. However,

as the film gets close to TBU, for example less than 100 nm in some cases, there is a

repulsion between the fluid-air interface and the corneal substrate [34, 35]. We describe

this repulsion with wetting forces, as experimental studies have shown that the tear

film typically wets the corneal surface [36, 37], or in some cases is partially wetting

[37]. We account for the wetting forces by including a conjoining pressure function

Π(h), dependent on the thickness of the film. We first consider a standard form used

for van der Waals’ forces; then, we consider two modifications that have been proposed
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for non-flat substrates [35, 38] such as for our case.

The default wetting forces we consider are the van der Waals’ wetting forces, given by

(2.48). These forces describe wetting of a thin film of uniform thickness. Nondimen-

sionalizing (2.48), we obtain

Π(h) = Ah−3, (4.8)

where

A =
A∗

6πµv0L2
. (4.9)

Here A∗ is the Hamaker constant, with value A∗ = 6π× 3.5× 10−19m3Pa [27]. Typical

values of A∗ range from 10−20 to 10−19 m3Pa [34].

In the numerical simulations of this section, we use a stopping criterion of

minx h(x, t) = 10−2. We lower the stopping criterion to better observe the effects

of wetting forces, which become a dominant force in the pressure function closer to

TBU.

Trivial Case: Absence of Wetting Forces

In the case where we do not include a disjoining pressure term, we witness no

roughness in the tear film at any point of the simulation, including at TBU. Figure 4.11

shows the dynamics of the thin film without a disjoining pressure. We note that the

results of this model are commensurate with previous work on flow over topography,

such as [1] and [22] , in which fluid flow is driven by external forces such as gravity or

blinking and thus yields an artifact of the substrate topography.
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Figure 4.11: Left plot: time series plot of film thickness with absence of wetting

forces. Top blue curve is t = 0; bottom teal curve is t = .9291. The

tear film thins until the solver stops it at hmin = 10−2. In this case,

there are no visible ripples in the tear film. Right plot: the same model

simulation, zoomed into the localized region at which TBU occurs.

Van der Waals’ Forces

We run the model with the default van der Waals’ forces given by (4.8). Fig-

ure 4.12 displays the progression of the tear film thickness, using an events function to

stop the solver at dimensionless thickness of 0.01 (dimensional 0.035µm).
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Figure 4.12: Time series plot of film thickness with van der Waals’ wetting forces.

Top blue curve is t = 0; time increases by 0.1 until the bottom purple

curve at t = 1.0015. The tear film thins until the solver stops it at

thickness h = 10−2. The wetting forces cause the tear film to spread

across the corneal surface at TBU, echoing the shape of the surface.

The roughness of the tear film changed as we varied the wavenumber in the

previous section, in the case where the stopping criterion was set minx h(x, t) = 1/14.

We explore the effect of varying wavenumber in figure 4.13 when the stopping criterion

is reduced to minx h(x, t) = 10−2.
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Figure 4.13: Ratio of the tear film amplitude to the corneal surface amplitude as a

function of wavenumber when TBU is defined as minx h(x, t) = 10−2.

Despite variations in the relative amplitude, we note that all plotted values are

in the range of [0.945, 0.985] indicating that the tear film wets the corneal surface,

closely following its shape at TBU. The results we obtain vary by ±.05 based on the

chosen grid spacing, due to numerical error in calculation of local maxima. The number

of gridpoints represented in figure 4.13 is N = 10xLk.

Disjoining Pressure for Nonuniform Thin Films

Although van der Waals’ wetting forces are commonly used in thin film model-

ing, they are derived for films with two parallel interfaces [39]. We now attempt to use

two different disjoining pressure functions that incorporate effects of non-flat surfaces

[35, 38]. Given that the model tear film at TBU has a thinner region in the center

and thicker regions on the ends, we explore the effect of wetting forces for films of
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nonuniform thickness. One such disjoining pressure function for films of nonuniform

thickness is derived by Dai, Leal, and Redondo [35]. Dimensionally, it is given by

Π′(h′) =
A∗

24π
h′
−3

[
4− 3

(
∂h′

∂x′

)2

+ 3h′
∂2h′

∂x′2

]
. (4.10)

We now nondimensionalize (4.10) according to the dimensionless variables established

in chapter 2:

v0µ

ε2d
Π(h) =

A∗

24πd3
h−3

[
4− 3ε2

(
∂h

∂x

)2

+ 3hε2
∂2h

∂x2

]
(4.11)

Multiplying both sides by ε2d
v0µ

, we have that

Π(h) = Ah−3

[
1− 3

4
ε2
(
∂h

∂x

)2

+
3

4
hε2

∂2h

∂x2

]
. (4.12)

If we drop terms of order ε2 or greater, we are left with the same disjoining pressure

function as that of the van der Waals’ forces in (4.8). However, we include the terms

involving ε: due to the effect of the pressure function at very small h values, other

small terms may come into play.

Upon initial inspection, with the stopping criterion of 10−2, the model with

(4.12) seems to behave the same as the model with equation (4.8). We therefore allow

the solver to run longer, to check whether there are any qualitative changes at even

smaller thicknesses. We reduce the stopping criterion further to minx h(x, t) = 10−4.

In figure 4.14, we display the numerical solutions using (4.12).
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Figure 4.14: Time series plot of film thickness with wetting forces governed by (4.12).

Starting with time t = 0, we increase by 0.1 until the final time of

t = 1.0134. We obtain the same behavior with (4.12) as with (4.8).

The results of figure 4.14 do not differ qualitatively from the results with the van

der Waals’ disjoining pressure equation (4.8). Additionally, each model reaches TBU

at the same time, in dimensionless terms, of t = 1.0134. To quantify the numerical

difference near TBU, we compute the `2 norm and `∞ norm of the difference between

the values of h in each model at both the penultimate and ultimate time step. See

table 4.3 for the values.

Disjoining Pressure with No Movement of Contact Line

An additional physical property to explore with the disjoining pressure is contact

line, which is the line where the aqueous layer, outside air, and ocular surface meet.

Studies have found a contact angle ranging from 0◦ (perfectly wetting) to 16◦ (partial
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t `2 `∞

1 1.5× 10−5 3.3× 10−6

1.0134 1.5× 10−5 3.1× 10−6

Table 4.3: Comparison of van der Waals’ disjoining pressure, and Dai et al.’s disjoin-
ing pressure for films of nonuniform thickness.

wetting) [37]. Here we make an initial exploration into incorporating partial wetting.

For the case of partial wetting, in many instances one wishes to prevent movement of

the contact line due to no-slip conditions at the corneal surface. We incorporate into

our model the following disjoining pressure function, as given dimesionally by Wu and

Wong [38]:

Π′(h′) = Bh′
−3
(
α4 − ∂h′

∂x′

4

+ 2h′
∂h′

∂x′

2∂2h′

∂x′2

)
. (4.13)

We nondimensionalize according to the dimensionless variables given in chapter 2:

v0µ

ε2d
Π(h) = Bd−3h−3

(
α4 − ε4∂h

∂x
+ 2hε4

∂h

∂x

2∂2h

∂x2

)
. (4.14)

Multiplying both sides by ε2d
v0µ

, we obtain the following dimensionless equation corre-

sponding to (4.13):

Π(h) =
B

L2v0µ
h−3

(
α4 − ε4∂h

∂x
+ 2hε4

∂h

∂x

2∂2h

∂x2

)
. (4.15)

We note that for α = 0◦ which represents the perfectly wetting case, we trivially

satisfy the condition of no moving contact line. In this case, the model is virtually

absent of a disjoining pressure, with the exception of terms involving ε4. This absence

of a disjoining pressure is not consistent with the terms required in the model for the

perfectly wetting case. Moreover, when attempting to solve the model numerically at

α = 0◦, the solver breaks before reaching a low enough thickness to observe the effects

of disjoining pressure. When α = 16◦ in the partial wetting case, we face a similar

issue, in which the solver returns erroneous plots once reaching a TBU-level thickness.

Therefore, the effect of (4.15) on our model is inconclusive.
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Chapter 5

DISCUSSION AND CONCLUSIONS

We recall experimental images such as figure 1.3 in which we observe areas of

rough texture. Our work was motivated by the interpretation of such images, and we

put our results in context based on such images. Our results support the interpretation

of rough regions as TBU, given that the model tear film develops ripples at but not

before TBU. These ripples vary in amplitude and wavenumber based on the features

of the ocular surface and glycocalyx. In the case of a healthy glycocalyx, i.e. when the

stopping criterion is set to 0.25µm, the tear film roughness varies from about 1% to 20%

of the amplitude of the corneal surface, with higher amplitude for lower wavenumber

ocular surface. At 20% the amplitude of the corneal surface, the tear film amplitude is

0.05µm, compared to the average epithelial cell height of 0.25µm and average epithelial

cell width of 35µm. When the tear film thins below the glycocalyx to 0.035µm, the

tear film hugs the corneal surface, echoing its amplitude and wavenumber. We also

find that in a corneal surface with long and short waves, the tear film ripples echo

the wavelength of the long waves, with an amplitude between the long and short wave

cases. This suggests that the tear film acts as a low pass filter, only reflecting the shape

of the long waves.

Our results differ qualitatively from previous results involving a rough ocular

surface, such as those of Braun et al. [1]. They modeled tear film dynamics during a

blink with a rough ocular surface, in which case the dynamics were flow-driven by the

moving eyelid boundary. Due to the lateral fluid flow in their model, the shape of the

rough ocular surface was evident even at healthy film thickness. However, we model

dynamics during interblink, when the eyelid does not move and flow is not driven by a
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blink. The curvature of the free surface, which is initialized to be smooth, dominates

the pressure gradient for higher h, or thicker aqueous layer. Only at smaller h, as we

reach TBU, do wetting forces appear strong enough to form ripples in the tear film.

The inclusion of wetting forces at lower aqueous layer thickness was crucial in

the formation of tear film ripples at TBU. With van der Waals’ wetting forces, we

achieved the same behavior as with the wetting forces for films of nonuniform thick-

ness found in [35]. Because of the aspect ratio of our problem, the additional terms

involving the tear film curvature did not come into play in our model. When attempt-

ing to account for no movement of contact line with a conjoining pressure equation

from [38], the solver broke before reaching TBU-level thicknesses. This equation also

was greatly simplified because of the small height to length ratio in our model, which

likely affected the results.

One of the many challenges of our model is the shortage of information about

the corneal surface. While we model tear film roughness based on corneal surface

properties, current imaging techniques do not provide simultaneous data on tear film

thickness and corneal surface features. We therefore combined data such as average

epithelial cell height and width, along with an experimentally-derived standard devi-

ation of 0.129µm for corneal surface roughness [7], to establish an appropriate range

of parameter values in our simulations. If we center the amplitude around the average

epithelial cell height of 0.25µm, then using the standard deviation from [7], we have

that 95% of corneal surface amplitudes will be in the range from 0µm (flat) to 0.508µm.

Our chosen amplitude values vary from a flat corneal surface to 0.7µm, therefore closely

replicating the variance found by [7]. We similarly vary wavenumber centered around

the average epithelial cell width, although we do not have data on the standard devi-

ation of width.

There are several future directions we can take to improve our model. We
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can incorporate properties of experimental imaging into our model, in order to form

a more direct comparison between simulation and experiment. Current models such

as [40] introduce fluorescein concentration as a variable; we can add fluorescein to

our model although we do not expect to observe tear film rippling experimentally

using fluorescein imaging. It would be more appropriate, albeit more challenging, to

incorporate interferometry into our model. Other improvements could be to include

more physical properties of the system, such as osmosis at the corneal surface boundary,

and measuring osmolarity of the aqueous layer. Both osmosis and osmolarity drive fluid

flow and thus may change the tear film dynamics. We can also incorporate the features

of the glycocalyx into our model. The glycocalyx protrudes from the ocular surface into

the aqueous layer; including it in the model will likely influence dynamics at TBU that

are relevant to surface topography. Lastly, we can extend our one-dimensional model

to a model with a two-dimensional ocular surface and two-dimensional tear film.
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