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Abstract. We prove that a Gaussian monopole, also known as the Lamb-Oseen vortex, is the
only localized, rotating, self-similar solution to the two-dimensional, incompressible Navier-Stokes
equations where level sets of vorticity and corotating streamfunction coincide. Our definition of
self-similarity is restricted to the natural linear combination of space, time and viscous diffusion. We
arrive at this conclusion by analytically determining the azimuthal Fourier modes for all possible
solutions to this problem and then proving that the amplitude of all but the first (axisymmetric)
is zero. Since coherent vortex multipoles are observed to be in a state where lines of vorticity and
corotating streamfunction correspond, this casts doubt on the existence of any self-similar asymptotic
structure other than the monopole.
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1. Introduction. A fundamental problem in two-dimensional, high-Reynolds
number flows is the characterization of coherent vortical structures. The term coher-

ent structure refers to a localized region of vorticity that retains its properties, such
as physical appearance or certain integral quantities, for an extended or an infinite
period of time. It has long been observed that the vorticity fields of initially energetic
disorganized two-dimensional flows rapidly relax into a collection of isolated coherent
vortical objects in a process known as the “inverse cascade” [13, 23, 24, 25, 34]. In
this paper, we study the mathematics underlying the inverse cascade by searching
for self-similar attractors to a broad category of coherent objects. In doing so, we
reduce the problem to a system of two linear partial differential equations with an
unusual nonlinear constraint: The level sets of the solutions must coincide. By char-
acterizing these attractors, it is possible to draw inferences about the ultimate fate of
two-dimensional decaying turbulence.

The understanding of two-dimensional, high Reynolds number flows is crucial in
many geophysical, aerospace and industrial applications. Vorticity in the form of
monopoles, dipoles and other multipoles commonly form in the oceans near coastlines
through boundary interactions and jet instabilities. Once created, vortical structures
in the oceans, sometimes referred to as “gyres,” can survive in the mostly irrotational
ocean for years before interacting with a coastline or another structure [24, 34]. In
impulsively started free jets and wall jets, transient monopoles form above the outlet
and remain as coherent structures for extensive time periods [33, 41]. These repre-
sent a few of many important applications where coherent vortical structures play
a central role. This article establishes that two-dimensional, self-similar (using the
natural scaling presented in §3), multipolar, localized, rotating, vortical structures
do not exist. This result, together with the linear stability of the Lamb-Oseen vor-
tex established by Bernoff & Lingevitch [3], suggests that all self-similar multipolar
structures, while they may be long-lived on an intermediate timescale, evolve toward
monopolar attractors.

Numerical simulations of two-dimensional decaying turbulence indicate that under
a broad range of circumstances, initially energetic flows relax rapidly into a system
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of coherent vortical structures separated by vast expanses of nearly irrotational fluid.
McWilliams observed that these structures evolve toward collections of monopoles
and dipoles [25] while the results of Gama & Frisch as well as Legras, Santangelo &
Benzi indicate the existence of other more exotic structures such as vortex tripoles [13,
23]. Interestingly, none of these investigations simulate the Navier-Stokes equations.
McWilliams, Legras et. al. as well as Gama & Frisch use hyperviscosity (artificial
diffusivities of the form (−1)p+1νp∇

2pω, p > 1) in their spectral calculations. Since
viscosity plays a role in small scale mixing during the axisymmetrization process,
hyperviscosity is not likely to provide insight into the long-time relaxation of coherent
vortical structures. Also, Gama & Frisch simulated the Navier-Stokes Kuramoto-
Sivashinsky system that induces a large-scale instability to the flow [13]. Finally,
Carnevale et. al. proposed a scaling theory of the density of systems of isolated
vortices [5].

Rather than studying the inverse cascade problem directly, some investigators
have dedicated their efforts toward the understanding of large regular arrays of vor-
tex structures. Fine et. al. have investigated the formation of lattices of vortex
monopoles, called vortex crystals, in magnetized electron columns where electron
densities are analogous to vorticity in the Euler equations with an extremely low
dissipation [11, 16]. Like the others, they find that disorganized distributions of elec-
tron densities rapidly relax into robust arrays of coherent maxima embedded in a low
background field. Taken as a whole, a localized, crystal lattice can be considered a
single coherent structure. Regardless of issues surrounding the form or expression
of the dissipation or forcing in any of the experiments noted above, they capture
the large-scale formation and relaxation of coherent structures from initially random,
broadband vorticity fields. On a similar front, Chow, et. al. have derived exact, glob-
ally smooth, steady solutions to the 2D Euler equations from solitary wave theory
[8, 9]. These solutions are periodic in either one or both cardinal directions. Some
correspond to arrays of oppositely-signed vortex monopoles while others have a more
intricate structure. While these exact solutions bear some resemblance to the “vortex
lattice” experiments discussed above, the solutions if considered coherent structures
would extend to infinity since they are periodic arrays.

Many groups have studied isolated vortices in more detailed laboratory and com-
putational experiments centered on the structure itself rather than large scale inter-
actions between coherent structures. Ikeda found that perturbed, slightly elliptical
vortices would evolve toward tripolar vortices under certain conditions [15]. Similarly,
Swenson came to the same conclusions while studying modon-with-rider solutions to
barotropic equations [34]. Van Heijst and various collaborators have performed de-
tailed experiments of tripolar vortices in stratified tanks in stationary and rotating
frames [12, 18, 19, 39]. This group has also studied the stability of a tripole model con-
sisting of point vortices. Polvani & Carton have studied tripolar solutions to the Euler
equations and Navier-Stokes equations with hyperviscosity, and investigate their for-
mation through a variety of mechanisms [29]. Orlandi & van Heijst simulated tripoles
arising from dipole collisions [28]. Morel and Carton have studied a wide range of
two-dimensional, multipolar objects that can arise from perturbations of an axisym-
metric state known as a shielded vortex [26]. In each case, they studied structures
consisting of central regions of vorticity surrounded by two or more satellites with
oppositely signed vorticity, and found some to be more robust than others. Carton
& Legras studied the full development and evolution of a tripole from its generation
as a shielded axisymmetric vortex until the central core vortex erodes and is stripped
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away by the satellites [7]. Voropayev studied vortex dipoles and quadrupoles result-
ing from dipole collisions, and derived a self-similar equation for a vortex quadrupole
[40]. Rossi, Lingevitch & Bernoff found that monopoles subjected to a moderate
amplitude quadrupolar perturbation rapidly evolve toward a tripolar configuration
whereas a weak perturbation will evolve back into a monopole [31]. The strength
of the perturbation plays an important role because the satellites marginally create
islands within the flow trajectories that preclude all but diffusive mixing between re-
gions of oppositely signed vorticity. In these experiments where the central region of
vorticity is relatively strong, they observed a steady erosion of the satellites as the
tripole evolves though it is not possible to conclude whether or not the asymptotic
structure will be a tripole or a monopole. More recently, Crowdy has determined a
class of localized vortex solutions to the Euler equations [10]. Also, Kloosterziel and
Carnevale studied isolated vortical structures using a projection method and found a
variety of long-lived vortex multipoles [17].

Other progress has been made toward understanding general properties of coher-
ent vortical structures. Turkington applied variational and asymptotic techniques to
studying the evolution of inviscid states characterized by regions of positive vorticity
and zero vorticity [36, 37, 38]. In particular, he focused on the limit as the initial
vorticity approaches a system of singular vortices (i.e., point vortices). Turkington’s
work also included solid boundaries rather than unbounded or periodic solutions as
others have studied. In this article, we restrict ourselves to unbounded flows, but
include viscous diffusion. Ting & Klein have written a monograph on the asymptotic
properties of viscous vortical flows [35]. In particular, they find that the Lamb-Oseen
monopole is “optimal” among two-dimensional structures in the sense that it approx-
imates the core structure of a coherent vortex to an extra order of accuracy in their
two-time analysis. More recent work includes that of Bassom & Gilbert and Le Dizes.
Bassom and Gilbert demonstrated that vortical structures tend toward axisymmetry
in the weak sense, meaning that if a non-axisymmetric perturbation of the vorticity
field is integrated against a test function, the result decays [2]. Le Dizes analyzed
non-axisymmetric vortices from perturbed Gaussian monopoles subject to an exter-
nal multipole straining field, or from unstrained monopoles with steep edge gradients.
The latter study focuses on the formation and growth of these structures rather than
their fate [21].

While not addressing the inverse cascade problem directly, research into the large-
time properties of solutions to Navier-Stokes contributes to our understanding of many
questions surrounding the fate of coherent structures. For instance, Carpio proves
under quite general conditions that all solutions of the two-dimensional Navier-Stokes
equations behave asymptotically like solutions of the heat equation in the sense that
‖h(t) − u(t)‖q tends to zero faster than u(t) for large q. Here h is the solution of
the heat equation and u the solution of the Navier-Stokes equations with the same
initial divergence-free velocity distribution. This is consistent with our result since the
Lamb-Oseen monopole does indeed satisfy the heat equation [6]. On a similar tack,
Oliver and Titi have calculated lower bounds on higher derivatives of Navier-Stokes
under the assumption that solutions to Navier-Stokes are close to solutions to the
heat equation, asserting that some sort of large-time structure persists in decaying
flow [27].

The observed formation and evolution of the multipolar vortices guides this anal-
ysis into properties of an asymptotic state. In the laboratory and numerical ex-
periments noted above, investigators observe that concentrated regions of vorticity
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rapidly reorganize, usually into an axisymmetric state, due to purely inviscid mecha-
nisms. After this rapid reorganization, vortical structures can undergo shear-diffusion
mixing wherein gradients of vorticity are amplified across streamlines. If Re is the
Reynolds number expressing the dimensionless ratio of inertial to viscous forces in a
fluid, shear-diffusion mixing occurs on the Re1/3 timescale, much more rapidly than
the action of diffusion which one would expect to evolve on the Re timescale [3, 30].
Thus, it is natural to expect that an asymptotic structure would exist only in a state
where level sets of vorticity and streamfunction coincide, inhibiting shear-diffusion.
Here, it is important to distinguish between an asymptotic structure and a coherent
structure. A coherent structure, as discussed earlier, may have very lively dynam-
ics and exist for a long but finite time while an asymptotic structure is a coherent
structure that exists forever. The Lamb-Oseen vortex is an example of an asymptotic
state.

In this paper, we explore the existence of asymptotic states where, in a frame
rotating with the steady vortical structure, lines of constant vorticity and constant
corotating streamfunction coincide. The corotating streamfunction is a streamfunc-
tion in a rigidly rotating reference frame. Within this corotating frame, vorticity is not
convected across corotating streamlines, thus the self-similar structure evolves slowly
through viscous diffusion. We investigate whether these conditions permit solutions
other than a Gaussian distribution of vorticity (ie the Lamb-Oseen monopole) and
find that the Lamb-Oseen monopole is the only solution with these properties. This
proof is limited to one self-similar scaling, though this scaling, also used by Ting &
Klein and Voropayev, is the natural one that gives rise to the Lamb-Oseen monopole
[35, 40]. The final result of this work is stated as follows.

Theorem 1.1. Let ω(~x, t) be a function of two space dimensions and time with

the following properties:

(i) ω is a self-similar solution to the Navier-Stokes equation on R2,

∂tω +

([
∂yψ
−∂xψ

]
· ∇

)
ω =

1

Re
∇2ω,

∇2ψ = −ω,

satisfying

ω(~η, t) =
1

t
f(~η),

~η =
~xRe

1
2

t
1
2

.

(ii) ω is localized so that ω → 0 as |~x|2 → ∞.

(iii) There is a number Ω̂ such that level sets of ω and ψ + 1

2

Ω̂

t |~x|
2 coincide.

Then, ω has the form

ω =
C1

4π(C2 + t
Re

)
exp

(
−

|~x|2

4(C2 + t
Re

)

)

where C1 and C2 are arbitrary constants.

This theorem is a direct result of classical analysis of the underlying partial dif-
ferential equations constrained by the coincidence of level sets of the solutions. In
fact, we were surprised that we did not find a similar result in the literature either
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as a general property of partial differential equations or as a result of relevance to
coherent structures and mixing in fluids.

If one assumes that asymptotic vortical structures are self-similar, this theorem,
together with the linear stability of the Lamb-Oseen vortex [3], strongly suggests that
the multipoles observed in laboratory and numerical experiments are evanescent and
will eventually relax into Gaussian monopoles. In other words, this is evidence that
the only possible rotating attractor is the Lamb-Oseen vortex. For instance, multi-
poles are commonly observed in computations and experiments to have a central core
with oppositely-signed satellites. The assumptions of Theorem 1.1 apply to structures
of this form and many others as well. Reflecting upon related work suggesting the
existence of a steady viscous tripole, it should be noted that Orlandi & van Heijst
used periodic boundary conditions for their numerical experiments so these structures
would not satisfy condition (ii). Also, Kloosterziel & Carnevale reported the existence
of a steady tripole using their projection method. However, this remarkable struc-
ture is not self-similar, but rather it retains the same spatial distribution while its
amplitude decays [17].

2. Governing equations. We are seeking self-similar solutions to the 2D, in-
compressible Navier-Stokes equations expressed in terms of vorticity:

∂tω +

([
∂yψ
−∂xψ

]
· ∇

)
ω =

1

Re
∇2ω, (2.1)

∇2ψ = −ω. (2.2)

Here, ψ is the stream function (u = ψy and v = −ψx), and u and v are the horizontal
and vertical components of the velocity field, respectively. With this structure,

∇ ·

[
u
v

]
= 0,

so the velocity field is automatically incompressible. Level curves of ψ, called stream-
lines, are everywhere tangential to the velocity field so that material elements in the
flow remain on these streamlines. The domain is unbounded. Equation (2.1) should
be considered nondimensionalized, and Re is assumed to be large. If the rotation
rate of the structure is Ω (we shall see later that Ω actually decreases like 1/t), we
seek a vorticity field ω and a stream function ψ = ψrot − 1

2
Ω|~x|2 satisfying (2.1) and

(2.2). The function ψrot is called the corotating streamfunction and represents ma-
terial paths in a rotating reference frame. We seek solutions such that level sets of
ψrot and ω coincide as observed in the previously noted laboratory and numerical
experiments, so that vorticity is not mixed along corotating streamlines:

∂tω +

(
Ω

[
−y
x

]
· ∇

)
ω =

1

Re
∇2ω, (2.3)

∇2ψrot = −(ω − Ω). (2.4)

Of course, viscosity will act to diffuse vorticity across corotating streamlines. Next,
we seek self-similar solutions to Equation (2.3).

3. Rescaling. An example of a self-similar solution is the Lamb-Oseen monopole

ω(~x, t) =
1

4π(t/Re)
exp

(
−

|~x|2

4(t/Re)

)
. (3.1)
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(See [20, 32] for further discussion and properties of this example.) Like solutions are
obtained by translating (3.1) in time or space, or multiplying by a constant. If Re is
infinite, then there are entire classes of solutions of the form

ψ = λω (3.2)

which constitute steady solutions where the vorticity field is constant on streamlines
and there is no viscous diffusion across streamlines. A classic example of these is the
Lamb dipole [20]. In the Lamb-Oseen monopole, we know that the net circulation at
a fixed distance from the origin will decay like 1

t so that we expect certain monopolar
solutions, particularly the tripole, to exhibit similar behavior. Thus, we anticipate
Ω = Ω̂/t where Ω̂ is a constant, and ψrot = ψ̂rot/t.

We seek a similarity variable

~η =

[
ηx

ηy

]

to replace ~x and t:

~xRe
1
2

t
1
2

→ ~η =

[
ηx

ηy

]
,

∇~x =
Re

1
2

t
1
2

∇~η,

∇2
~x =

Re

t
∇2

~η ,

∂

∂t
= −

~η

2t
· ∇~η . (3.3)

This is the same rescaling used by Ting & Klein and also Cannone & Planchon, and
represents a natural recombination of the relevant variables [4, 35]. We further assume
that there is a solution of the form

ω(~η, t) =
1

t
f(~η). (3.4)

Thus, Equation (2.3) reduces to an equation for f alone,

Ω̂(ηy∂ηx
f − ηx∂ηy

f) = f +
1

2
(~η · ∇~η)f + ∇2

~ηf (3.5)

If ~η is expressed in polar coordinates, we obtain

−Ω̂∂θf = f +

(
r

2
+

1

r

)
∂rf + ∂rrf +

1

r2
∂θθf. (3.6)

The coincidence of f and ψ̂rot (or ω and ψrot) is not built into the above equations.
Even if one can find solutions to these equations, it remains to be seen if they satisfy
the coincidence constraint.

To summarize, we are studying solutions ω with the following properties:
(i) ω solves (2.1-2.2) AND

(ii) Level sets of ω and ψrot coincide where ψrot is defined in (2.4), but Ω̂ is a
parameter that can be chosen freely AND

6



(iii) ω is a self-similar solution described by (3.3) and (3.4). Given (i) and (ii)
above, this is equivalent to saying that f solves (3.6).
The last two conditions are not necessary to describe or rescale the problem, but they
will become necessary in §4 and §5. During these steps in the analysis, it is sufficient
for their Fourier series to converge absolutely so that we can interchange summations.
Also, we will need to expand the azimuthal Fourier series coefficients for f in a Taylor
series in r near the origin. These restrictions are fairly general, and the regularity
of solutions to the two-dimensional vorticity equations has been established beyond
these requirements for a broad category of initial conditions [14].

4. Properties of unconstrained self-similar solutions. In this section, we
examine the properties of solutions to (3.6) and their corresponding streamfunctions.
We seek families of solutions with the minimal amount of regularity discussed in the
previous section. Once found, we investigate the possibility that a subset of these
solutions can satisfy the nonlinear coincidence constraint.

4.1. Fourier series solution for f . If we express the azimuthal portion of f
in a Fourier series,

f(r, θ) = a0(r) +

∞∑

n=1

an(r)einθ + CC, (4.1)

where CC represents the complex conjugate portion of the complex Fourier series,
and substitute this expression into (3.6), we obtain an ordinary differential equation
(ODE) for the coefficients

r2a′′n + (r +
1

2
r3)a′n + (λnr

2 − n2)an = 0, λn = 1 + inΩ̂. (4.2)

Since f is twice differentiable in the θ direction, the Fourier series for f converges
absolutely.

Only one solution of (4.2) is regular at the origin and it behaves like rn there.
We shall see later in this section that this particular solution decays in the far field as
one would expect for a localized structure. We define ãn to be the solution satisfying
(4.2) and

lim
r→0

ãn

rn
= 1, (4.3)

and then every regular solution has the form

an(r) = c0nãn(r) (4.4)

where c0n is a complex number and is the first term of the power series representation
of an(r). Also, we see that a0 is proportional to the Lamb-Oseen vortex, given in
(3.1). As an aside, the restriction on the far field can be relaxed for the n = 0
mode without changing anything that follows in this paper so that these results are
applicable to the observed vortex crystal structures. In other words, one could add a
constant background vorticity to (3.1). The remainder of this paper, unless otherwise
noted, will focus on nonaxisymmetric (n 6= 0) modes of f .

Since we seek localized solutions, we must establish that ãn remains bounded as
r → ∞ for n 6= 0. By transforming (4.2) as

r2

4
= s,

an(r) = s−1/2e−s/2A(s), (4.5)
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we obtain

A′′ +

(
−

1

4
+
λn − 1/2

s
+

1/4− n2/4

s2

)
A = 0. (4.6)

Equation (4.6) is the Whittaker equation with solutions that can be written in terms
of confluent hypergeometric functions:

A(s) = s
n+1

2 e−
s
2M

(n
2
− λn + 1, n+ 1, s

)
, (4.7)

A(s) = s
n+1

2 e−
s
2U
(n

2
− λn + 1, n+ 1, s

)
, (4.8)

and returning to the original variables

an(r) = rne−
r2

4 M

(
n

2
− λn + 1, n+ 1,

r2

4

)
, (4.9)

an(r) = rne−
r2

4 U

(
n

2
− λn + 1, n+ 1,

r2

4

)
. (4.10)

The latter solution, (4.10), must be discarded because the confluent hypergeometric
function U behaves like r−n as r → 0 so for this solution of an, an(r)einθ would not
be analytic at the origin. The former solution (4.9) behaves like rn as r → 0 because
M
(

n
2
− λn + 1, n+ 1, 0

)
→ 1. It follows that the first nonzero power series coefficient

for the right hand side of (4.9) is 1, so this is precisely ãn(r). The asymptotic behav-
ior of confluent hypergeometric functions is well known, and it is a straightforward
exercise to establish that

ãn(r) =
Γ(n+ 1)

Γ
(

n
2

+ 1 − λn

)2n+2λnr−2λn
[
1 +O(r−2)

]
, r → ∞ (4.11)

(see [1] for example), and therefore

ãn(r) → 0 as r → ∞. (4.12)

Thus, (4.9) remains a viable solution satisfying the differential equation (4.2) with
the appropriate decay at infinity.

4.2. Fourier series solutions for ψ̂rot. At the same time, we can express ψ̂rot

in terms of its Fourier series:

ψ̂rot(r, θ) = b0(r) +

∞∑

n=1

bn(r)einθ + CC. (4.13)

Again, the Fourier series for ψ̂rot converges absolutely as it did for f . Since

∇2ψ̂rot = −f + Ω̂, (4.14)

then

1

r
(rb̃′0)

′ = −ã0 + Ω̂ (4.15)

1

r
(rb̃′n)′ −

n2b̃n
r2

= −ãn. (4.16)
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Again, we seek the special solution b̃n(r) that corresponds to ãn(r), understanding
that linearity permits the construction of a whole family of solutions bn(r) by vary-
ing c0n. As we shall see momentarily, there is another constant corresponding to a
homogeneous solution to (4.16) that can also be varied. Also, we seek solutions with
sufficient smoothness at the origin,

b̃n(r) → rn as r → 0. (4.17)

The general solution to (4.15) is

b̃0(r) = − ln r

∫ r

0

ã0(s)sds+

∫ r

0

s ln sã0(s)ds+ h0 + l0 ln r +
Ω̂

4
r2. (4.18)

The expression for b̃0 immediately leads to the observation that l0 = 0 because we
seek a streamfunction that is smooth at the origin. Furthermore, we can set h0 = 0
without loss of generality for this problem. To find a general solution for (4.16), we
multiply both sides by rn+1 and integrate once:

∫ r

0

(
sn+1b̃′′n(r) + snb̃′n(r) − n2sn−1b̃n(r)

)
ds = −

∫ r

0

sn+1ãn(s)ds. (4.19)

After integrating by parts on the left side and applying the boundary conditions
(4.17).

rn+1b̃′n(r) − nrnb̃n(r) = −

∫ r

0

sn+1ãn(s)ds,

or

d

dr

(
b̃n(r)

rn

)
= −

1

r2n+1

∫ r

0

sn+1ãn(s)ds. (4.20)

Again, we integrate from 0 to r to obtain

b̃n(r)

rn
− lim

r→0

b̃n(r)

rn
= −

∫ r

0

1

t2n+1

∫ r

0

sn+1ãn(s)dsdt

= −

∫ r

0

sn+1ãn(s)

∫ r

s

1

t2n+1
dtds. (4.21)

The term

B̃n = lim
r→0

b̃n(r)

rn
(4.22)

is a free parameter corresponding to the homogeneous solution to (4.16), and we find

b̃n(r) = B̃nr
n +

1

2n

(
r−n

∫ r

0

sn+1ãn(s)ds− rn

∫ r

0

s1−nãn(s)ds

)

= r−n 1

2n

∫ r

0

sn+1ãn(s)ds+ rn

(
B̃n −

1

2n

∫ r

0

s1−nãn(s)ds

)
. (4.23)

The first term on the right is O(rn+2) as r → 0, and as we shall see later is O(1) as
r → ∞. The second term is O

(
rn+2

)
as r → 0, but is unbounded as r → ∞ unless

B̃n =
1

2n

∫
∞

0

s1−nãn(s)ds. (4.24)
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This assures us that the streamfunction remains bounded though possibly non-axisym-
metric in the far-field.

To determine B̃n, we use (4.9) and the integral form of the confluent hypergeo-
metric function:

B̃n =
1

2n

∫
∞

0

s1−nsne−
s2

4 M

(
n

2
− λn + 1, n+ 1,

s2

2

)
ds

=
1

2n

∫
∞

0

se−
s2

4
e

s2

4

B
(

n
2
− λn + 1, n

2
+ λn

)
∫ 1

0

e
ts2

4 t
n
2
+λn−1(1 − t)

n
2
−λndtds

=
1

2n

1

B
(

n
2
− λn + 1, n

2
+ λn

)
∫ 1

0

t
n
2
+λn−1(1 − t)

n
2
−λn

∫
∞

0

se
ts2

4 dsdt

=
1

2n

1

B
(

n
2
− λn + 1, n

2
+ λn

)
∫ 1

0

t
n
2
+λn−2(1 − t)

n
2
−λndt

=
1

2n

B
(

n
2
− λn + 1, n

2
+ λn − 1

)

B
(

n
2
− λn + 1, n

2
+ λn

) (4.25)

where B(x, y) is the Beta function [22]. The change in the order of integration in
(4.25) is justified because <

(
n
2

+ λn − 2
)
> −1 and <

(
n
2
− λn

)
> −1 implying that

the integral converges absolutely. Applying the identity

B(x, y − 1) =
x+ y − 1

y − 1
B(x, y), (4.26)

(see [22] for example) we conclude that

B̃n =
1

2

1
n
2

+ λn − 1
. (4.27)

To understand the behavior of the streamfunction as r → ∞, we study b̃n(r) in
this limit. Substituting (4.27) into (4.23), we see that

b̃n =
1

2n

(
r−n

∫ r

0

sn+1ãn(s)ds+ rn

∫
∞

r

s1−nãn(s)ds

)
. (4.28)

If we fix R > 0 and substitute (4.11) into (4.28), we see that

b̃n(r) =
1

2n

Γ(n+ 1)

Γ
(

n
2

+ 1 − λn

)2n+2λn

(
1

2 − 2λn + n
−

1

2 − 2λn − n

)
r2−2λn +

O
(
r−2λn

)
+O

(
r−n

)
. (4.29)

Since λn = 1 + inΩ̂, this expression establishes that b̃n ∼ O(1) as r → ∞.
To summarize, using (4.2) and (4.16) together with physically relevant boundary

conditions, we have determined the following when n 6= 0:
1. There is a localized family of solutions to (4.2) given by Equation (4.9).
2. The corotating streamfunction Fourier modes corresponding to (4.9) are

given by Equation (4.23) and the constant for the homogeneous part is given by
(4.27).

3. The corotating streamfunction Fourier modes are O(1) as r → ∞.
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4. A countably infinite number of independent free parameters c0n are avail-
able to meet the nonlinear constraint corresponding to the coincidence of corotating
streamlines and lines of constant vorticity.
Of course, the n = 0 modes correspond to the Lamb-Oseen vortex as one might
expect.

5. The coincidence of streamlines and vorticity contours. In the previous
section, we established the existence of Fourier modes with the appropriate behavior
near the origin and at infinity which satisfy the linear constraints on this problem. In
this section, we discuss the nonlinear constraint that lines of constant vorticity and
corotating streamlines coincide. We examine these constraints as power series near
the origin. From Frobenius theory, we know that exactly one solution to (4.2) satisfies
the appropriate conditions at the origin. If n > 0 and

an(r) =

∞∑

k=0

cknr
n+2k (5.1)

then we obtain the appropriate recurrence relation

ckn = −
1

2
(2k + n− 2) + λn

4k(k + n)
ck−1
n , k ≥ 1. (5.2)

Thus, if n is even (odd), an(r) is even (odd). The first coefficient c0n is the free
parameter discussed in the previous section.

However, it follows that if

bn(r) = Bnr
n +

∞∑

k=0

dk
nr

n+2+2k (5.3)

where

Bn = c0nB̃n (5.4)

then we can determine the coefficients dk
n in terms of ckn from (4.23):

dk
n = −

ckn
4(k + 1)(n+ k + 1)

. (5.5)

Imposing the coincidence of streamlines and vorticity contours yields nonlinear
constraints on an(r) and bn(r). In particular, if the streamlines and vorticity contours
coincide, then

∇ψ̂rot · R(∇ω) =
1

r

(
−∂rψ̂

rot∂θω + ∂θψ̂
rot∂rω

)
= 0 (5.6)

where R is a standard π/2 rotation. Expressing ψ̂rot and f in terms of their Fourier
expansions yields

∞∑

n=0

{[
∑

k+l=n

i

r
(−kakb

′

l + la′kbl)

]
einθ + CC

}
= 0 (5.7)

where a−k = ak. Gathering terms in this way is justified because the constituent
Fourier series are absolutely convergent. Thus, finding self-similar, viscous, rotating
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vortical structures is equivalent to finding a set of functions {an} satisfying (4.9) and
{bn} satisfying (4.23) such that

∑

k+l=n

(−kakb
′

l + la′kbl) = 0 (5.8)

for every n.
To classify this set of functions, we focus on the case when n = 0 and study (5.8)

for each power of r. If n = 0, l = −k so we only need focus on odd powers of r.
Collecting terms, we obtain

∞∑

k=1

[
k
(
−akbk

′

− a′kbk + akb
′

k + ak
′bk

)]
= 0, (5.9)

which can be simplified as

∞∑

k=1

k=
[
(akbk)′

]
= 0. (5.10)

Clearly, there is no information about the k = 0 mode from this expression.
We observe that the nonzero terms in the power series of (akbk)′ correspond to

odd powers, and that the lowest power of (akbk)
′

is r2k−1. Examining the coefficients
term by term, we see that

akbk = c0kBkr
2k +

∞∑

m=k

[(
m−k∑

i=0

cikd
m−k−i
k

)
+ cm−k+1

k Bk

]
r2m+2. (5.11)

Substituting (5.11) into (5.10), we see that

∞∑

k=1

k=
[
(akbk)

′
]

=

∞∑

k=1

k=
{
2kc0kBkr

2k−1+

∞∑

m=k

(2m+ 2)

[(
m−k∑

i=0

cikd
m−k−i
k

)
+ cm−k+1

k Bk

]
r2m+1

}

=

∞∑

k=1

2k2=
(
c0kBkr

2k−1
)

+

∞∑

m=1

{
(2m+ 2)r2m+1

m∑

k=1

k=

[(
m−k∑

i=0

cikd
m−k−i
k

)
+ cm−k+1

k Bk

]}

=

∞∑

k=1

2k2|c0k|
2r2k−1=

(
B̃k

)
+

∞∑

m=1

{
(2m+ 2)r2m+1

m∑

k=1

k=

[(
m−k∑

i=0

cikd
m−k−i
k

)
+ cm−k+1

k Bk

]}

=0. (5.12)

We shall prove that an(r) = 0 for n ≥ 1 by strong induction. From (5.2), it
suffices to prove that c0n = 0. (It follows from (5.5) that d0

n is also zero.)
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If we examine O(r) terms in Equation (5.12), we see that only the first term in
the first summation makes any contribution, so that

2|c01|
2r=

(
B̃1

)
= 0. (5.13)

From (4.27), we know that =(B̃1) 6= 0, and therefore c01 = 0.
Now, we assume that c0l = 0 for all l < n. Simplifying (5.12), we have

∞∑

k=n

2k2|c0k|
2r2k−1=

(
B̃k

)
+

∞∑

m=n

{
(2m+ 2)r2m+1

m∑

k=n

k=

[(
m−k∑

i=0

cikd
m−k−i
k

)
+ cm−k+1

k Bk

]}
= 0. (5.14)

The first nonzero term occurs at O(r2n−1) so that

2n2|c0n|
2=
(
B̃n

)
= 0, (5.15)

leaving us to conclude once again that c0n = 0. Thus, by strong induction, c0n = 0 for
all n > 0, and therefore ãn(r) = 0 and b̃n(r) = 0. Of course, the surviving n = 0
component, corresponding to the Lamb-Oseen monopole, automatically satisfies the
coincidence constraint (5.6).

This establishes the theorem stated in §1.

6. Conclusion. We have sought out localized, rotating, self-similar solutions to
the Navier-Stokes equations under very general circumstances and found that they do
not exist except in the form of Gaussians. This result does not imply that coherent
multipoles do not exist on an intermediate timescale. To the contrary, such multipoles
have been observed in laboratory experiments and in nature. Nor does this result
preclude the possibility of a non-self-similar asymptotic structure, but one would
think that this is extremely unlikely.

Thus, this result suggests that the observed multipolar structures are evolving
toward to a monopolar, asymptotic state if not through a dynamic instability, such as
Carton & Legras observed, then through mixing and viscous erosion, such as observed
by Rossi, Lingevitch & Bernoff. Finally, this result is not restricted solely to multipolar
structures consisting of a central core with oppositely signed satellites as have been
studied extensively in the literature. Rather, this result is generally applicable to any
localized, rotating vortical object.

7. Acknowledgments. The authors would like to thank the anonymous referees
for many helpful comments on general issues of clarity as well as connections between
this work and investigations relating the heat equation and Navier-Stokes equation.

REFERENCES

[1] M. Abramowitz and I. A. Stegun, editors. Handbook of mathematical functions. Dover Publi-
cations, Inc., New York, 1970.

[2] A. P. Bassom and A. D. Gilbert. The spiral wind-up of vorticity in an inviscid planar vortex.
J. Fluid Mech., 371:109–140, 1998.

[3] A. J. Bernoff and J. F. Lingevitch. Rapid relaxation of an axisymmetric vortex. Phys. Fluids,
6(11):3717–3723, 1994.

13



[4] M. Cannone and F. Planchon. Self-similar solutions for Navier-Stokes equations in R3. Comm.
in Part. Diff. Eq., 21(1 & 2):179–193, 1996.

[5] G. F. Carnevale, J. C. McWilliams, Y. Pomeau, J. B. Weiss, and W. R. Young. Evolution of
vortex statistics in two-dimensional turbulence. Phys. Rev. Lett., 66(21):2735–2737, 1991.

[6] A. Carpio. Large-time behavior in incompressible navier-stokes equations. SIAM J. Math.
Anal., 27(2):449–475, 1996.

[7] X. Carton and B. Legras. The life-cycle of tripoles in two-dimensional incompressible flows. J.
Fluid Mech., 267:53–82, 1994.

[8] K. W. Chow, N. W. M. Ko, and R. C. K. Leung. Inviscid two dimensional vortex dynamics
and a soliton expansion of the sinh-poisson equation. Phys. Fluids, 10(5):1111–1119, 1998.

[9] K. W. Chow, N. W. M. Ko, and S. K. Tang. Solitons in (2+0) dimensions and their applications
in vortex dynamics. Fluid Dyn. Res., 21:101–114, 1997.

[10] D. Crowdy. A class of exact multipolar vortices. Phys. Fluids, 11(9):2556–2564, September
1999.

[11] K. S. Fine, A. C. Cass, W. G. Flynn, and C. F. Driscoll. Relaxation of 2D turbulence to vortex
crystals. Phys. Rev. Lett., 75(18):3277–3280, 1995.

[12] J. B. Flor, W. S. S. Govers, G. J. F. Van Heijst, and R. Van Sluis. Formation of a tripolar
vortex in a stratefied fluid. Applied Scientific Research, 51:405–409, 1993.

[13] S. Gama and U. Frisch. Simulations of two-dimensional turbulence on the connection machine.
Applied Scientific Research, 51:105–108, 1993.

[14] Y. Giga and T. Kambe. Large time behavior of the vorticity of two-dimensional viscous flow
and its application to vortex formation. Commun. Math. Phys., 117:549–568, 1988.

[15] M. Ikeda. Instability and splitting of mesoscale rings using a two-layer quasi-geostrophic model
on an f-plane. J. Phys. Ocean., 11:987–998, July 1981.

[16] D. Z. Jin and D. H. E. Dubin. Regional maximum entropy theory of vortex crystal formation.
Phys. Rev. Lett., 80(20):4434–4437, 1998.

[17] R. C. Kloosterziel and G. F. Carnevale. On the evolution and saturation of instabilities of
two-dimensional isolated circular vortices. J. Fluid Mech., 388:217–257, 1999.

[18] R. C. Kloosterziel and G. J. F. van Heijst. On tripolar vortices. In J. C. J. Nihoul and
B. M. Jamart, editors, Mesoscale/Synoptic Coherent Structures in Geophysical Turbulence.
Elsevier Science Publishers B. V., Amsterdam, 1989.

[19] R. C. Kloosterziel and G. J. F. van Heijst. An experimental study of unstable barotropic
vortices in a rotating fluid. J. Fluid Mech., 223:1–24, 1991.

[20] H. Lamb. Hydrodynamics, Sixth Edition. Cambridge University Press, 1993.
[21] S. le Dizes. Non-axisymmetric vortices. J. Fluid Mech., 406:175–198, 2000.
[22] N. N. Lebedev. Special functions & their applications. Dover Publications, Inc., New York,

1972.
[23] B. Legras, P. Santangelo, and R. Benzi. High-resolution numerical experiments for force two-

dimensional turbulence. Europhys. Lett., 5(1):37–42, 1988.
[24] S. Lichter, J.-B. Flor, and G.-J. F. van Heijst. Modeling the separation and eddy formation of

coastal currents in a stratified tank. Exp. Fluids, 13:11–16, 1992.
[25] J. C. McWilliams. The emergence of isolated coherent vortices in turbulent flow. J. Fluid

Mech., 146:21–43, 1984.
[26] G. Y. Morel and J. X. Carton. Multipolar vortices in two-dimensional incompressible flows. J.

Fluid Mech., 267:23–51, 1994.
[27] M. Oliver and E. S. Titi. Remark on the rate of decay of higher order derivatives for solutions

to the navier-stokes equations for r
n. Journal of Functional Analysis, 172:1–18, 2000.

[28] P. Orlandi and G. F. van Heijst. Numerical simulation of tripolar vortices in 2D flow. Fluid
Dyn. Res., 9:179–206, 1992.

[29] L. M. Polvani and X. J. Carton. The tripole: a new coherent vortex structure of incompressible
two-dimensional flows. Geophys. Astrophys. Fluid Dynamics, 51:87–102, 1990.

[30] P. B. Rhines and W. R. Young. How rapidly is a passive scalar mixed within closed streamlines?
J. Fluid Mech., 133:133–145, 1983.

[31] L. F. Rossi, J. F. Lingevitch, and A. J. Bernoff. Quasi-steady monopole and tripole attractors
for relaxing vortices. Physics of Fluids, 9(8):2329–2339, 1997.

[32] P. G. Saffman. Vortex Dynamics. Cambridge University Press, 1992.
[33] W. Schneider. Decay of momentum flux in submerged jets. J. Fluid Mech., 154:91–110, 1985.
[34] M. Swenson. Instability of equivalent-barotropic riders. J. Phys. Ocean., 17:492–506, 1987.
[35] L. Ting and R. Klein. Viscous Vortical Flows, volume 374 of Lecture Notes in Physics. Springer-

Verlag, 1991.
[36] B. Turkington. On steady vortex flow in two dimensions, I. Communications in Partial

Differential Equations, 8(9):999–1030, 1983.

14



[37] B. Turkington. On steady vortex flow in two dimensions, II. Communications in Partial
Differential Equations, 8(9):1031–1071, 1983.

[38] B. Turkington. On the evolution of a concentrated vortex in an ideal fluid. Archive for Rational
Mech. and Anal., 97:75–87, 1987.

[39] G. J. F. van Heijst, R. C. Kloosterziel, and C. W. M. Williams. Laboratory experiments on
the tripolar vortex in a rotating fluid. J. Fluid. Mech., 225:301–331, 1991.

[40] S. I. Voropayev. Self-similar structures in 2-D turbulence: Experimental and theoretical study
of vortex multipoles. In A. V. Johansson and P. H. Alfredsson, editors, Advances in
Turbulence 3: Proceedings of the Third European Turbulence Conference, pages 359–367,
Berlin, 1991. Springer-Verlag.

[41] E. Zauner. Visualization of the viscous flow induced by a round jet. J. Fluid Mech., 154:111–
119, 1985.

15


