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ABSTRACT

Neutron scattering experiments and molecular dynamics simulations are the

most effective tools to explore the dynamics of hydrogen in proteins. The mean square

displacement (MSD) of hydrogen (H ) in proteins has been extensively measured using

neutron scattering and calculated using molecular dynamics simulations. A small MSD

is observed at low temperatures and the slope of the MSD significantly increases at a

specific temperature TD. This increase in the slope of the MSD is identified as a dy-

namical transition, and the temperature it takes place at a specific temperature which

is denoted a dynamical transition temperature TD. The observed MSD in neutron

scattering experiments depend on the energy resolution of the instrument.

In this thesis, we first focus on the resolution dependent of the observed MSD

⟨r2⟩exp in neutron scattering experiments. We propose a method for obtaining the

intrinsic MSD ⟨r2⟩ of H, which is independent of the resolution of the instrument

employed, in proteins. The intrinsic MSD is defined as the infinite time value of MSD

which appears in the well-known Debye-Waller factor. In this method, a model of

the resolution broadened elastic incoherent dynamic structure factor SR(Q, ω = 0) is

developed to extract the intrinsic MSD from the resolution dependent data. The model

contains the intrinsic MSD, the instrument resolution width and a relaxation frequency

characterizing the motions of H in proteins. The model of SR(Q, ω = 0) is fitted to

the resolution broadened DSF data already published in the recent literature and the

intrinsic MSD in three proteins was successfully obtained.

Later, we constructed a model for the incoherent intermediate scattering func-

tion I(Q, t) to obtain the intrinsic, long-time MSD of H in proteins from finite time

molecular dynamics simulations. In the literature, the simulated MSD increases with

increasing time and does not reach a certain limiting value at even 10 ns. The infinite
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time MSD, ⟨r2⟩, is the long time value of the simulated MSD. The model I(Q, t) fits

to the simulated Iinc(Q, t) to obtain the intrinsic long-time MSD ⟨r2⟩ which is as a

parameter in the model I(Q, t). The intrinsic MSD ⟨r2⟩ of hydrated lysozyme powder

(h = 0.4 g water/g protein) over a temperature range between 100 K and 300 K ob-

tained from data out to 1 ns and to 10 ns is found to be the same. The intrinsic ⟨r2⟩ is

approximately twice the value of the MSD that is reached in simulations after times

of 1 ns. The simulated MSD in 1 ns corresponds to the observed MSD measured by

neutron scattering instruments having 1 µeV energy resolution width.

The observed MSD ⟨r2⟩exp extracted from an elastic dynamical structure factor

measured in neutron scattering experiments is also found to be Q-dependent. In the

second part of this thesis, we analyse the possible origins of the Q-dependence of the

observed MSD ⟨r2⟩exp. We show that this dependence does not arise from the Gaussian

approximation, commonly used in the analysis of the neutron scattering data. The

Q-dependence of the MSD is the artificial consequence of neglecting the dynamical

diversity in the model that are used to analyse the data.

Finally, we illustrate the dynamical transition in proteins by reproducing the

change in the slope of MSD versus temperature at TD within a simple model of vi-

bration, a single particle in an anharmonic potential. Using Self-Consistent-Harmonic

theory, we investigate dynamics of a particle in different potential models. A simple

Gaussian potential or a potential containing a hard wall and a soft wall is particularly

effective to reproduce the change in the slope of MSD versus temperature. The MSD

data of myoglobin and purple membrane in the literature is reproduced well using a

potential containing hard wall and a Gaussian potential.
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Chapter 1

INTRODUCTION

Proteins are large biological molecules comprised of twenty species of amino

acids. Their study is a major research area for physics, chemistry and biology. Each

protein has a unique tertiary structure, which can be determined using X-ray crytal-

lography and nuclear magnetic resonance (NMR). In the last decades, many researches

have been devoted to the dynamics of proteins which is of essential interest in bio-

physics. It is commonly accepted that the function of proteins is related to their

three-dimensional structure and dynamics. The internal motions in proteins is essen-

tial for their dynamics [25, 35, 65, 91]. The dynamics of proteins is investigated as

a function of temperature, pressure and hydration levels and it is strongly affected

by the viscosity of the solvent [11, 25, 33, 34, 76, 77, 79, 83, 100, 110]. Relaxation

processes which describe the internal motion in biomolecules have been analyzed us-

ing NMR, Mossbauer spectroscopy, neutron scattering, and molecular dynamics (MD)

simulations [8, 9, 16, 36, 81, 89]. Despite significant efforts in experimental and com-

putational biophysics, our knowledge of dynamics of proteins remains limited even on

a qualitative level.

Incoherent neutron scattering and MD simulation are useful and effective tech-

niques for studying the dynamics of proteins in the picosecond to nanosecond time

scale [8, 9, 21, 22, 25, 26, 33, 43, 42, 41, 40, 50, 73, 90, 91, 88, 109]. The mean square

displacement (MSD) in proteins is a fundamental dynamical quantity which is com-

monly investigated in neutron scattering experiments [20, 25, 26, 23, 36, 66, 109]. The

average MSD in proteins is typically determined from the elastic component of the

incoherent dynamic structure factor (DSF). At low temperatures, a protein is essen-

tially harmonic and a small MSD is observed. The MSD sharply increases at a specific
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temperature TD. The marked increase in the slope of the MSD taking place at TD is

denoted as the dynamical transition, and TD as the dynamical transition temperature

[3, 6, 7, 25, 26, 33, 35, 47, 54, 84, 88, 92, 109, 111]. Above TD, additional motions appear,

and a large MSD is observed. The large MSD suggests that proteins are more flexible

and that nuclei in proteins sample new environments, for example; hydrogens make

contact with different parts of a protein at large distances. The significant increase

in MSD at TD is related to the onset of function in proteins. The dynamical transi-

tion in myoglobin at around 200 K was first observed using Mössbauer spectroscopy

by Parak et al [80]. Since then, it has also been observed by neutron scattering for

several hydrated protein powders [25, 77, 88, 87, 50] and membranes [33, 106]. Several

studies have investigated the relation between dynamics of proteins and enzymatic

activity in proteins [16, 25, 33, 35, 79, 109]. It is strongly believed that the onset

of biological activity in proteins takes coincides with the dynamical transition at TD

[7, 25, 33, 35, 76, 79, 84, 109, 111]. However, some exceptions have been observed

[18, 27]. It is noted that the dynamics of proteins has been found to depend on the

enzyme and its catalytic mechanism [33, 84].

The increase in the slope of the MSD at TD has been observed by experiments

and predicted by computer simulations for hydrated proteins, DNA and RNA [10, 25,

33, 34, 76, 79, 81, 99, 100]. Typical examples are hydrated lyzozyme [54], myoglobin

[25] and purple membrane bacteriorhodopsin [88, 107]. The impact of the hydration

water on the dynamics of proteins is significant. These studies have revealed that

MSD varies linearly with temperature up to 300 − 350 K in dry proteins and up

to 200 − 230 K with a dynamical transition at T ≃ 200 K in hydrated proteins

[16, 33, 94, 100]. The possible explanations for the dynamical transition in proteins

have been investigated in the literature. The sudden change in the slope of the MSD

at TD has been interpreted using several different models, jumping between minima

[25, 26, 28, 35, 60, 93], including diffusion [25, 53, 56] and “effective force constant”

[6, 109]. According to these models, the dynamical transition in MSD at TD has been

attributed to a “glass” transition in the protein [25, 26, 93], to the onset of thermally
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activated transitions and diffusion that modify the trapping cages [25, 53] and to a

change in the “effective elasticity” of the protein [109]. Notwithstanding, many studies

have broadly expressed the view that the dynamical transition of protein is strongly

coupled to the onset of translational motions of hydration water [98, 99, 100]; there

is an ongoing discussion about the dynamical transition [3, 13, 15, 17, 31, 32, 54]. As

discussed in these studies, two possible origins of the dynamical transition in proteins

are (1) a consequence of the coupling of the dynamics of water to the dynamics of the

proteins [13, 15, 58] and (2) a consequence of a “time-window” effect which is defined an

artificial result of the energy resolution of the employed instrument [3, 18, 17, 31, 32, 54].

In the latter, it is believed that the dynamical transition does not arise from any

intrinsic biological transition in proteins.

In neutron scattering experiments, the observed data Sexp
R (Q, ω) is the elas-

tic resolution broadened DSF. The scattering cross section of the hydrogen nucleus is

larger than that of other nuclei in proteins. Hence the main contribution to the ob-

served DSF data Sexp
R (Q, ω) comes from hydrogens in proteins. Hydrogens in proteins

effectively reflect the global motions of whole protein in the time and length scale of

the experiments. In the data analyses, the observed MSD ⟨r2⟩exp is calculated from

the slope of the observed DSF Sexp
R (Q, ω)

⟨r2⟩exp = −3
d lnSexp

R (Q, ω = 0)

dQ2
. (1.1)

The observed Sexp
R (Q, ω) only includes motions up to τR ∼ 1/W where W is the energy

resolution width of the instrument employed. Hence the observed MSD ⟨r2⟩exp depends

on the energy resolution width of the instrument used to measure the observed DSF

Sexp
R (Q, ω). Different MSDs ⟨r2⟩exp are extracted from Sexp

R (Q, ω) observed on different

instruments. In order to illustrate the impact of the energy resolution, some groups

have measured the MSD of the same protein under the same conditions using neutron

scattering instruments having different energy resolutions [50, 73, 106]. The ⟨r2⟩exp is

the MSD including motions over a limited time, 0 < t < τR, where τR is set by the width

of the energy resolution of instrument. Hence, a high energy resolution corresponding to
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a small energy resolution width is needed to observe all the motions that contribute to

the MSD, including the slow, long time motions. Neutron scattering instruments which

are typically used at present have an energy resolution in the range 100 µeV > W >

1µeV which corresponds to the evolution times 10 ps < τR< 1 ns. Over this time range

(up to τR), the observed ⟨r2⟩exp is still increasing. This indicates that the intrinsic, long

time (τR→ ∞) value of ⟨r2⟩ has not been observed [16, 50, 73, 106]. The dependence

of the observed MSD ⟨r2⟩exp on the energy resolution width of the instrument is shown

in Fig. 1.1. The apparent temperature TD of the dynamical transition also depends on

the resolution width of the employed instrument. The smaller the energy resolution

width, the larger the observed MSD and the lower the apparent dynamical transition

temperature TD. A large MSD including the contribution of all the motions is observed

with an instrument which has a high energy resolution. W = 1 µeV is the smallest

energy resolution width available.

Our goal in this thesis is to clarify what is measured in neutron scattering

experiments. We also aim to obtain instrument independent MSD values that are in-

trinsic to the protein. We present a method for analysis of the incoherent observed

DSF Sexp
R (Q, ω = 0) and for extracting the intrinsic MSD of hydrogen in the proteins

from the resolution dependent data in Chapter 2 [102]. This method includes a fit

of the model of the resolution broadened DSF SR(Q, ω = 0) to the observed DSF

Sexp
R (Q, ω = 0). We constructed a simple model of the resolution broadened DSF

SR(Q, ω = 0) which corresponds to the measured data in neutron scattering experi-

ments. The model of the SR(Q, ω = 0) consists of the intrinsic MSD ⟨r2⟩, the relaxation

frequency λ, which describes the motional processes, and the energy resolution width

W . The most significant advantage of this method is that it allows us to obtain the

intrinsic MSD which is independent of the energy resolution width, W of the neutron

scattering instrument. The intrinsic MSD ⟨r2⟩ appears in the full Debye-Waller fac-

tor, and includes motions up to t = ∞, ⟨r2(t = ∞)⟩ = ⟨r2⟩ . It is the MSD that

would be observed on an instrument with zero energy resolution width, W → 0. The

model of the resolution broadened DSF SR(Q, ω = 0) is fitted to the observed DSF
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Figure 1.1: MSD of hydrogen in proteins observed on neutron scattering instruments
having different energy resolution widths, W: (a) in hydrated Ribonu-
clease A observed by Wood et. al [105] on IN16 (W = 1 µeV) and
IN5 (W = 100 µeV), (b) in hydrated heparan sulphate (HS-0.4) ob-
served by Jasnin et. al [50] on IN16 (W = 1 µeV), IN13 (W = 10 µeV)
and IN6 (W = 100 µeV), and (c) in hydrated Staphysloccal Nuclase
(SNase) observed by Nakagawa et. al [73] on IN10 (W = 1 µeV), IN13
(W = 10 µeV), HER (W = 100 µeV) and GP-TAS (W = 1 meV).
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data Sexp
R (Q, ω = 0) already published in the literature to obtain the intrinsic MSD

⟨r2⟩ and the relaxation frequency λ as free fitting parameters. The observed DSF

Sexp
R (Q, ω = 0) measured by neutron scattering instruments that have different energy

resolution widths is chosen from the literature [50, 73, 77, 106]. The intrinsic MSD for

four proteins, lysozyme, heparan sulphate (HS-0.4), Ribonuclease A and Staphysloccal

Nuclase (SNase), was successfully obtained.

An expression for the resolution broadened MSD ⟨r2⟩R is also obtained by sub-

stituting the model SR(Q, ω = 0) in Eq. (1.1) to clarify the impact of a finite energy

resolution width of instruments on a MSD in proteins. The ⟨r2⟩R depends on the

resolution width W and is equivalent to the observed MSD ⟨r2⟩exp in neutron scatter-

ing experiments. The intrinsic MSD ⟨r2⟩ for glutamate deydrogenase are successfully

obtained from the fit of the model ⟨r2⟩R to the observed MSD ⟨r2⟩exp measured by

instruments having different energy resolution widths. For a finite energy resolution

width, the resolution broadened MSD ⟨r2⟩R always lies below the intrinsic MSD ⟨r2⟩.

The fitting method can be used by anyone to obtain the intrinsic MSD using their

data and presents an approach to obtain uniform and consistent values of MSDs and

TD in proteins. We show that the dynamical transition does not arise from the “time-

window” issue and TD is influenced by the energy resolution of instruments. TD shifts

to the higher temperatures with increasing energy resolution width.

MD simulation is effective for studying protein dynamics and is complementary

to neutron scattering. Similar to neutron scattering experiments, some MD studies

have been performed to understand the dynamics of proteins and its relation as a

function of temperature and pressure, and hydration [8, 9, 21, 22, 40, 63, 69, 70].

The energy barriers between conformational substates do not change with pressure,

however the curvature of the local harmonic potential increases. This suggests that

the vibrations in substates is pressure-dependent, but dynamical transition is not [70].

It is also noted that the dynamics of proteins slows with increasing pressure [8, 9] and

with increasing viscosity of the solution [21, 22, 63].

Molecular dynamics is concerned with time dependent motions in molecular
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systems. Each motion (i.e., dynamical process) has a characteristic time-scale. Proteins

particularly display a broad range of characteristic motions. Fig. 1.2 shows type of

motion with some examples and time scale. Local motions, such as atomic fluctuations

or side chain motions, are very fast and very localized and observed in femtosecond

(fs)- picosecond (ps) time scale. Medium motions, such as loop motions are observed

in nanosecond (ns)- microsecond (µs) time scale. The length scale is less than 1Å−1

for motions in fs - ps time scale and around 1-5Å−1 for motions in ns - µs time scale.

Slow, long-time motions such as folding or unfolding occur on the scale of the whole

molecule.

Figure 1.2: Type of motion in proteins with some examples in different time scales

The data measured in neutron scattering experiments such as the incoherent

ISF, incoherent DSF and susceptibility spectrum can be reproduced well from MD sim-

ulation trajectories [54, 47, 46, 87, 91, 97, 108]. The contributions of time dependence,

of non-Gaussian behavior and of dynamical heterogeneity to elastic scattering on the

ps-ns timescales have been also investigated in MD studies. It is used to clarify the ori-

gin of the measured data in neutron scattering experiments [4, 3, 43, 42, 41, 71, 68, 108].

One of the important quantities calculated from MD trajectories is the average MSD

of hydrogen in proteins. The MSD is proportional to the average over time of the

position difference of the hydrogen in proteins between reference time t and 0, ∆2(t) =

⟨(r(t) − r(0))2⟩. Although these studies have made a significant contribution to the
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understanding of the dynamics of proteins in different environmental conditions, sim-

ulations are limited to simulation times of no longer than 10−9 s. The simulated MSD

∆2(t) is found to be strongly time-dependent and does not reach a converged value

at even 1 ns [108]. In contrast to these results, it is expected that folded proteins in

well-defined three-dimensional structures have a well defined long time, intrinsic MSD.

That is, the internal MSD arising from internal motions in proteins should converge

to a plateau as a function of time. An intriguing question has arisen as to whether

simulated intrinsic, long time ⟨r2⟩ can be obtained by fitting a model to incoherent

intermediate scattering function (ISF) Iinc(Q, t) calculated finite time simulation.

In MD studies, the resolution broadened MSD ⟨r2⟩R can be calculated in the

same way as it is obtained from experiment [42, 87, 96, 106]. The resolution broadened

incoherent DSF SR(Q, ω = 0) is calculated using the simulated Iinc(Q, t) and a resolu-

tion function, which could be chosen as a Gaussian function or a Lorentzian function,

for an energy resolution width, W. After SR(Q, ω = 0) has been evolved for a specific

time τR set by W , the MSD is obtained using the calculated resolution broadened

SR(Q, ω = 0) in Eq. 1.1. At small Q, the resolution broadened MSD ⟨r2⟩R is effec-

tively compared with the observed MSD ⟨r2⟩exp. Simulated MSD obtained in this way

strongly agrees with observed MSD [87, 102]. This supports the question mentioned

above: Could a model be constructed to obtain the intrinsic-long time MSD ⟨r2⟩ in

finite time simulations?

In this case, we modify the model of incoherent ISF I(Q, t) constructed in the

method which is used to obtain the intrinsic MSD ⟨r2⟩ from observed DSF Sexp
R (Q, ω =

0) in neutron scattering experiments [103]. In modified model of the I(Q, t), the mo-

tions in proteins are defined with a simple representation including several diffusion

processes instead of a single one. Our aim in this part of thesis is to propose a method

for obtaining an intrinsic, long time, t → ∞, value of the MSD from finite-time sim-

ulations. The intrinsic MSD appears as a parameter in the model I(Q, t). We fit the

model of the ISF I(Q, t) to the Iinc(Q, t) calculated from the finite time simulations.

Explicitly, the Iinc(Q, t) observed in neutron scattering experiments and calculated

8



from simulations are in a good agreement each other [86]. We treat the ⟨r2⟩ in the

model as a free fitting parameter. In this way we obtain an infinite time value of the

MSD ⟨r2⟩ from fits to simulation data at finite t.

In Chapter 3, we obtain the intrinsic long-time MSD of lysozyme by fitting the

model I(Q, t) to the Iinc(Q, t) calculated up to t = 1 ns and 10 ns from simulations in

100 ns and 1 µs time lengths. The intrinsic MSD ⟨r2⟩ obtained from two simulations

having different time scale is the same. This result is consistent with ⟨r2⟩ representing

a time-independent, long time MSD. The resolution broadened ⟨r2⟩R is calculated

using the calculated SR(Q, ω = 0) in Eq. (1.1) for different energy resolution widths.

The intrinsic ⟨r2⟩ is approximately twice the resolution broadened MSD ⟨r2⟩R that

is calculated for motions up to 1.5 ns corresponding to W = 1 µeV. The intrinsic

MSD ⟨r2⟩ of lysozyme has a break in the slope at 140 K due to activation of the

methyl group rotations and a second dynamical transition at TD = 220 K due to a

dynamical transition, as has been observed and calculated for proteins experimentally.

According to this model, the dynamical transitions are intrinsic properties of proteins.

The transitions are not a consequence of the experimental time window, however the

dynamical transition temperature TD may be modified by it.

It is important to clarify the measurements and calculations involved with the

MSD in proteins. Hydrogens in proteins which are dominant in the data measured in

neutron scattering experiments has a wide distribution in proteins. The model of the

elastic DSF which is commonly used to analyse the experimental data is SR(Q, ω =

0) = exp(−1/3Q2⟨r2⟩) corresponding to the ⟨r2⟩exp in Eq. (1.1). The model SR(Q, ω =

0) is identified within the Gaussian approximation and neglects the dynamical diversity

of hydrogens in proteins. The impact of the distribution of hydrogens in proteins

has been investigated by using different models, including three scattering centers

[29], including continuum distribution (a Weibull distribution function) [68], including

a correction to fourth order in Q that can be used to extract the variance of the

distribution of mean-square displacements [4, 108].

MSD in proteins determined from substituting the elastic component of the
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Figure 1.3: Upper : Elastic component (ω = 0) of the dynamical structure factor
S(Q, ω = 0), as a function of wave vector Q of glutamate dehydrogenase
observed by Daniel et al. [17] (e.g. reproduced in Becker et al. [4]).
The solid lines are a guide to the eye. Lower: An MSD, obtained from
fitting to a simulated value of S(Q, ω = 0) in lysozyme by Calandrini et
al., which shows a strong Q dependence [8]). The solid circles and open
squares represent the MSD for p = 0.1 MPa and p = 300 MPa.

incoherent DSF Sexp
R (Q, ω = 0) in Eq. (1.1) is found to depend on the wave vector

Q. In the literature, it is generally found that lnSexp
R (Q,ω = 0) versus Q2 is not a

straight line and that the extracted MSD, even from simulations, is Q dependent

[8, 25, 62, 73, 77, 78]. An example for lnSexp
R (Q, ω = 0) versus Q2 and for Q-dependent

MSD are shown in Fig. 1.3. The values of the observed MSD at the low Q and high

Q values are significantly different. The lower the Q-values, the larger that MSD

⟨r2⟩exp observed. It is currently believed that the Q-dependence of MSD is an artificial

consequence of neglecting the heterogeneity or of using Gaussian approximation in the
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analysis.

The aim, broadly stated, is to investigate possible origins of the Q-dependence

of the global MSD in Chapter 4. The incoherent ISF Iinc(Q, t) is a collection of scat-

tering from a large number of dynamically diverse scatters (H ) in the protein. In the

current analysis of the neutron scattering experiments, the incoherent ISF Iinc(Q, t) is

represented by a global I(Q, t) in which a single scattering center represents whole

protein. The Q-dependence of the MSD could arise from (i) using Gaussian approx-

imation in the model of global ISF I(Q, t); the whole expression of the incoherent

ISF Iinc(Q, t) includes all cumulant terms, whereas the model of I(Q, t) includes only

the first cumulant term, and (ii) neglecting dynamical diversity, heterogeneity; whole

expression of the incoherent ISF Iinc(Q, t) is calculated as sum over hydrogens in pro-

teins, the scattering from different hydrogens is represented by a single scatter in the

model of I(Q, t). The Q-value is the length scale of the motions in proteins, hence the

low Q values lead to observe long-distance motions. In addition to these commonly

discussed two reasons, there could be an intrinsic Q dependence in the MSD, i.e. at

low Q motions over a longer distance are included which leads to a larger MSD at low

Q. The impact of the higher cumulants which may contribute significantly to ISF and

DSF is investigated by comparing the MSD obtained by fitting the model of I(Q, t)

to the whole expression of the incoherent ISF Iinc(Q, t) and the incoherent ISF includ-

ing only the first cumulant term, IiG(Q, t). As stated above, the dynamical diversity

studied by different groups in the literature [4, 43, 68, 74, 106, 108] makes a significant

contribution to the ISF Iinc(Q, t). Neglecting the dynamical diversity in the model

of I(Q, t) could lead to a Q-dependence. The model of the I(Q, t) is applied to the

simulated ISF data Iinc(Q, t) for individual hydrogen to investigate the impact of the

heterogeneity on the MSD.

As discussed before, the dynamical transition could have arisen with “ effective

elasticity” which is investigated with “effective force constant” model [6]. In this model,

the increase in the slope of the MSD at TD suggests the different force constants at

low and high temperatures. In the classical limit and in a harmonic approximation,
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the MSD arising from vibration is defined as ⟨u2⟩ = kBT/ϕ where kB is the Boltzmann

constant, T is the temperature and ϕ is a harmonic force constant. The MSD linearly

increases with temperature at low temperatures, then the sharp increase in MSD is

observed at a specific temperature TD. This suggests that the force constant at low

temperatures is large and decreases at TD. The linear increase in MSD continues with

lower force constant at higher temperatures.

In this context, a specific goal of this part of the thesis is to present a simple

model to illustrate that a marked change in the slope of ⟨u2⟩ with T can arise from

vibrational dynamics of a particle in an anharmonic potential well [101]. The self-

consistent harmonic (SCH) theory is used to obtain the MSD of a single particle in

1D well [14, 37, 38, 57]. In SCH theory, the harmonic force constant ϕ is obtained as

the second derivative of the potential averaged over the vibrational distribution of a

particle in the well. We construct our model by starting from a harmonic potential

to obtain the force constant at low temperatures, then apply our model to different

potentials, a Gaussian potential, symmetric potentials and asymmetric potentials, to

reproduce the ⟨u2⟩ versus temperature data in the literature. In a Gaussian potential

well, the force constant decreases with increasing temperature and this provides that

the increase in slope of MSD with T is gradual. Using a Gaussian potential model, the

⟨u2⟩ versus temperature data for purple membrane is successfully reproduced [106, 107].

In an anharmonic potential with hard wall and soft wall components, the sharp change

in ⟨u2⟩ with temperature can be obtained. As the ⟨u2⟩ increases, the force constant,

ϕ, decreases. This decrease leads to an increase in slope of ⟨u2⟩ with temperature at

TD as is observed. The ⟨u2⟩ versus temperature data for myoglobin is also illustrated

by using an anharmonic potential with hard wall and soft wall components [101, 25].

The details of this discussion is presented in Chapter 5.

1.0.1 Neutron Scattering

Neutron Scattering is useful tool to determine the the relative positions and

motions of atoms in a sample. Neutrons have no charge, and their electric dipole
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moment is too small to measure. For these reasons, neutrons can penetrate matter far

better than charged particles. Furthermore, neutrons interact with atoms via nuclear

rather than electrical forces. Hence, neutrons can travel large distances through most

materials without being scattered or absorbed.

Neutrons used in scattering experiment has the wavelength, L, which is usually

between 0.1 nm and 1 nm. Often, studies have been done in terms of the neutron

wavevector k which is a vector of magnitude 2π/L that points along the neutrons

trajectory. The magnitude of the wavevector, k, is related to the neutron velocity,

k = 2πmv/h, where h is Planck’s constant and m is the mass of the neutron. The

scattering of a neutron by a free nucleus can be described in terms of a cross section,

σ, that is equivalent to the effective area presented by the nucleus to the passing

neutron. If the neutron hits this area, it is scattered isotropically, that is, with equal

probability in any direction. The scattering is isotropic because the range of the nuclear

interaction between the neutron and the nucleus is tiny compared with the wavelength

of the neutron, so the nucleus essentially looks like a point scatterer.

Figure 1.4: The neutron scattering model where Ei is the initial energy of neutrons,
ki is the state vector of neutrons, θ is the scattering angle of neutrons,
Ef is the energy of neutrons after scattering, and kf is the state vector
of neutrons after scattering.
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An idealized model of neutron scattering is shown in Fig. 1.4, where Ei is the ini-

tial energy of neutrons, ki is the initial wave vector of neutrons, θ is the scattering angle

of neutrons, Ef , is the energy of neutrons after scattering, and kf is the wave vector of

neutrons after scattering. As can be seen in Fig. 1.4, neutrons are scattered by atomic

nuclei. The scattering intensity is the sum of intensities scattered by individual nuclei.

It is analysed by a neutron spectrometer in terms of energy, ~ω, and of momentum ~
−→
k ,

(in terms of frequency and scattering state vector). Energy transfer (~ω = ~ωi − ~ωf )

and momentum transfer (~
−→
Q = ~

−→
k i−~

−→
k f ) give information about the structural and

dynamic properties of the sample (protein). The quantity Q = ki−kf is known as the

scattering vector, and the vector relation between Q, ki and kf is shown in Fig 1.5.

The scattering is elastic for ω = 0 and energy transfer does not occur between incident

neutrons and the target. This means that incident and scattering neutrons have the

same energy. For (ω ̸= 0), inelastic neutron scattering occurs, and there are energy

transfers between incident neutrons and target. Elastic scattering changes direction

but not the magnitude of the wave vector, but both direction and magnitude of the

neutron wave vector in inelastic scattering.

There are two type of neutron scattering. These are coherent and incoherent

neutron scattering. In coherent scattering, neutron waves scattered from different nu-

clei interfere with each other. This type of scattering depends on the distances between

atoms and on the scattering vectorQ, and it thus gives information about the structure

of a sample. In incoherent scattering, waves scattered by different nuclei do not inter-

fere with each other, so elastic incoherent neutron scattering reflects the displacement

of individual atoms in the picosecond to nanosecond time range, depending on the

energy resolution of the spectrometer. In biological macromolecules, ∼ 50% the atoms

are hydrogen. The cross-section for incoherent scattering by nuclei of hydrogen atoms

in much larger than the coherent or incoherent scattering by nuclei of most elements

present in biological matter. Thus, incoherent neutron scattering is used to analyse

the motion hydrogen atoms which have a large incoherent area [25]. This method

helps explain the dynamics of proteins because the distribution of hydrogens in protein
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Figure 1.5: Scattering triangles for (Upper) an elastic scattering in which the neutron
is deflected but does not gain or lose energy and (Lower) an inelastic
scattering in which the neutron either loses energy or gains energy.

consistent.

Neutron scattering experiments measure the number of neutrons scattered by a

sample as a function of the wave vector and the energy change of the neutron. Neutron

for scattering experiments can be produced either by nuclear fission in a reactor or by

The commonly used neutron scattering instruments to work on biological samples are

IN16, IN13, IN10, IN6 and IN5. IN16, IN13 and IN10 are backscattering spectrom-

eters, and IN5 and IN6 time of flight spectrometer. Neutron scattering instruments

characterized by their energy resolution width W and Q-range. Q-range defines the

”space window” with 1/Q. The energy resolution of instruments, which is the energy

width of the elastic peak, defines the ”time window” 1/W . The resolution function of

the neutron scattering instrument is a Gaussian, Lorentzian and triangle energy reso-

lution as depending on the instruments type. For example, the resolution function for
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IN5 is a Gaussian resolution function.

In neutron scattering, sample has to be large around ∼ 100 mg. In incoherent

neutron scattering, it is preferred a sample does not include crystalline structure. Be-

cause, a sample including crystalline structure give large coherent peak to the observed

intensity. In the analysis of biological samples, powder sample is commonly used ma-

terial. Powder samples are non-crystalline aggregates of low water content. In neutron

scattering experiments, hydration values for powder sample is around h = 0.4 − 0.5

gwater/gprotein which covers small global proteins by one hydration level.
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Chapter 2

INTRINSIC MEAN SQUARE DISPLACEMENTS IN PROTEINS

The global, observed mean square displacement (MSD), ⟨r2⟩exp, of hydrogen

(H ) in proteins increases linearly with temperature at low temperatures. At a specific

temperature, the temperature dependence increases markedly. The marked increase in

slope is denoted as the dynamical transition (DT) and the temperature of the change,

the DT temperature TD. The MSD observed with neutrons is found to depend on

the energy resolution of the neutron scattering instrument. The higher the instrument

resolution, the larger is the observed MSD, ⟨r2⟩exp.

In this chapter, we introduce a method to extract the intrinsic MSD ⟨r2⟩ from a

resolution broadened dynamic structure factor (DSF). The intrinsic MSD defined in the

full Debye-Waller factor includes slow (long-time) and fast (short-time) motions, and it

is independent of the energy resolution of the instrument. It is the MSD that would be

observed on an instrument which has perfect resolution (zero energy resolution width,

W → 0). Here, we construct a simple model for the elastic resolution broadened DSF

SR(Q, ω = 0) that is equivalent to what is measured in neutron scattering experiments.

The model SR(Q, ω = 0) is fitted to the elastic resolution broadened incoherent DSF,

Sexp
R (Q, ω = 0), to obtain the intrinsic MSD ⟨r2⟩. Then, an expression for the resolution

broadened MSD ⟨r2⟩R is obtained using the model of the SR(Q, ω = 0) to clarify the

difference between the intrinsic MSD ⟨r2⟩ and the resolution broadened MSD ⟨r2⟩R.

The resolution broadened MSD ⟨r2⟩R is equal to the observed MSD ⟨r2⟩exp. The

⟨r2⟩ can be also obtained by fitting the model ⟨r2⟩R to the observed ⟨r2⟩exp. This

fitting method provides us a way to extract the resolution independent MSD from the

resolution dependent data.
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2.1 The Resolution Broadened Incoherent DSF SR(Q, ω)

In neutron scattering experiments, neutrons interact with and scatter from the

nuclei in the proteins. The hydrogen nucleus has a large, incoherent scattering cross-

section for neutrons, 82 barns, much larger than other nuclei. Because of this, scattering

from hydrogen dominates on the observed scattering intensity. The observed scattering

intensity is proportional to the incoherent DSF, Sinc(Q, ω),

Sinc(Q, ω) =
1

2π

∫ ∞

−∞
dt exp(iωt)Iinc(Q, t). (2.1)

In Eq. (2.1), ~Q and ~ω are the momentum and energy, respectively, transferred from

the neutron to the protein in the scattering. In Eq. (2.1), the incoherent intermediate

scattering function (ISF) is

Iinc(Q, t) =
1

N

N∑
i=1

b2i ⟨exp(−iQ · ri(t)) exp(iQ · ri(0))⟩, (2.2)

where ri(.) represents the position of nucleus i at reference time t and 0, and bi is

the incoherent scattering length of nucleus i. In Eq. (2.2), ⟨.⟩ is the ensemble average

and N is the number of scatterers in the sample. As stated above, the bi of hydrogen

is more than 20 times larger than the bi of other nuclei in proteins. The incoherent

ISF, which contains the contribution from N different scattering centers, is represented

as an average over the N self correlation functions of each individual nuclei. In the

analysis of data, it is common to represent the ISF, Iinc(Q, t), in Eq. (2.2) summed

over all nuclei by a global I(Q, t),

I(Q, t) = ⟨exp(−iQ · r(t)) exp(iQ · r(0))⟩, (2.3)

in which a single scatterer center represents the whole protein. The self correlation

function of r(t) in Eq. (2.3) is an average correlation function containing all time

scales, short and long, over nuclei in the protein. The global incoherent DSF S(Q, ω)

of protein is

S(Q, ω) =
1

2π

∫ ∞

−∞
dt exp(iωt)I(Q, t). (2.4)
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The instruments used in neutron scattering experiments have an energy resolu-

tion function, which is denoted here by R(ω). The observed function SR(Q, ω) is the

resolution broadened DSF. This is a convolution of the incoherent DSF S(Q, ω) and

the resolution function of instrument R(ω),

SR(Q, ω) =

∫ ∞

−∞
dω′S(Q, ω′)R(ω − ω′)

=
1

2π

∫ ∞

−∞
dt exp(iωt)I(Q, t)R(t). (2.5)

A perfect resolution function would be R(ω) = δ(ω). For perfect resolution, the

energy resolution width is zero (W = 0) and the observed data only includes the elastic

component of the scattering intensity (ω = 0). For a finite energy resolution width W ,

the resolution function R(ω) could be represented as a Lorentzian function

R(ω) =
1

π

W

W 2 + ω2
. (2.6)

Fourier transform of R(ω) in Eq. (2.6) is R(t) = exp(−Wt). Another representation

for the resolution function R(ω) with a finite resolution width is a Gaussian function.

For the resolution function in Eq. (2.6), the resolution broadened DSF becomes

SR(Q, ω) =
1

2π

∫ ∞

−∞
dt exp(iωt)I(Q, t) exp(−Wt). (2.7)

In neutron scattering experiments, the elastic component of the incoherent

SR(Q, ω), which includes zero energy transfer ω = 0, is commonly measured data.

The elastic incoherent DSF SR(Q, ω = 0), is written as

SR(Q, ω = 0) =
1

2π

∫ ∞

−∞
dtI(Q, t) exp(−Wt). (2.8)

In Eq. (2.8), long time processes in I(Q, t) are not observable in SR(Q, ω = 0) because

it is cut off by the resolution function after at time τR ∼ 1/W . The energy resolution

width of instruments determines which motions are observed in SR(Q, ω = 0). The

resolution broadened DSF SR(Q, ω = 0) includes only processes observed up to time

τR. The higher the instrument resolution, the longer the time in I(Q, t) that can be
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observed in SR(Q, ω = 0). For a perfect resolution (no resolution width, W = 0)

(e.g. R(ω) = δ(ω)), all long-time and short-time motions in I(Q, t) are observed in

SR(Q, ω = 0).

In the neutron scattering experiments, the observed resolution broadened DSF

Sexp
R (Q, ω) includes the desired elastic component Sexp

R (Q, ω = 0) plus inelastic com-

ponents around ω = 0 covering an energy range W/2 < ω < W/2. it is often assumed

that the observed resolution broadened DSF is given by Sexp
R (Q) = exp(−1

3
Q2⟨r2⟩).

Specifically, the observed MSD ⟨r2⟩exp is typically obtained from the observed incoher-

ent DSF, Sexp
R (Q, ω = 0). The observed MSD ⟨r2⟩exp = −3d lnSexp

R (Q, ω = 0)/dQ2 is

obtained as a function of wave vector transfer, Q. If the data is fitted to or analyzed as

if only the purely elastic component i.e SR(Q, ω = 0) = I(Q, t = ∞) is observed, then

the observed MSD ⟨r2⟩exp depends on the resolution width, W, of the instrument. The

resolution dependence of the ⟨r2⟩exp has been extensively investigated [50, 73, 106]. In

Table 2.1, the resolution width and the observation time of the commonly used neutron

scattering instruments are shown. The observation time τR for a Gaussian resolution

function is calculated in Appendix A.

2.2 The Model for the Incoherent Resolution Broadened DSF SR(Q, ω = 0)

We aim to construct a simple model for the elastic resolution broadened inco-

herent DSF SR(Q, ω = 0). With this model, our goal is to extract the intrinsic MSD

⟨r2⟩ from the data measured by neutron scattering. The intrinsic MSD consists of

the contributions from all motions, including long time motions and is defined in the

Debye-Waller factor. The Debye-Waller factor is the infinite time value of the incoher-

ent ISF Iinc(Q, t = ∞). The model SR(Q, ω = 0) is composed of the model I(Q, t)

and a resolution function R(ω). The model of SR(Q, ω = 0) can fit to data to obtain

the intrinsic MSD ⟨r2⟩.

We start with the physical properties of the incoherent ISF to construct a simple

model for I(Q, t). I(Q, t) is separated into two parts,

I(Q, t) = I(Q, t = ∞) + I ′(Q, t), (2.9)

20



Table 2.1: The energy resolution width, W in units µeV and THz, the observation time, τR =
(8 ln 2)1/2~/W and τR ∝ W−1 of neutron scattering instruments.

Instrument W (µeV) W (THz) τR = (8 ln 2)1/2~/W (ns) τR ∝ W−1 (ns)

IN16 ∼1 ∼ 0.00025 ∼ 1.5 ∼4

IN10 ∼1 ∼ 0.00025 ∼ 1.5 ∼4

IN13 ∼10 ∼ 0.0025 ∼ 0.15 ∼0.4

IN6 ∼100 ∼ 0.025 ∼ 0.015 ∼0.04

IN5 ∼100 ∼ 0.025 ∼ 0.015 ∼0.04

HER ∼100 ∼ 0.025 ∼ 0.015 ∼0.04

GP-TAS ∼1000 ∼ 0.25 ∼ 0.0015 ∼0.004

where I ′(Q, t) is a time dependent part and I∞(Q) = I(Q, t = ∞) is a time independent

part. I∞(Q) is a constant and time independent value that I(Q, t) reaches at time

t = ∞. From Eq. (2.3), I∞(Q) = I(Q, t = ∞) is written as (see Appendix B)

I∞(Q) = I(Q, t = ∞) = ⟨exp(−iQ · r(∞)) exp(iQ · r(0))⟩

= ⟨exp(−iQ · r(∞))⟩⟨exp(iQ · r(0))⟩

= ⟨exp(−iQ · r(0))⟩⟨exp(iQ · r(0))⟩

= exp(−1

3
Q2⟨r2⟩+O(Q4)). (2.10)

In order to obtain the expression in Eq. (2.10), we make three assumptions. These

are (1) r(∞) and r(0), the position of global scatterer center at t = ∞ and t = 0,

are completely uncorrelated so that the averages of them are independent (for the

second line), (2) the system is translationally invariant in time (no center of mass (CM)

motion) so that r(∞) = r(0) (for the third line) and (3) in a cumulant expansion of

⟨exp(−iQ ·r)⟩, cumulants beyond the second cumulant are negligible (for the last line).
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The last assumption is valid if Q is small or if the distribution over r is approximately

a Gaussian distribution. The cumulants beyond the second term are small for small Q

and are negligible. They vanish exactly for all Q if the distribution over r is exactly

Gaussian.

We take ⟨r2⟩ in I(Q,∞) in Eq. (2.10) as the definition of the intrinsic, long time

value of MSD in the protein that includes all motional processes. The intrinsic MSD

⟨r2⟩ is equal to the ⟨r2⟩exp that would be observed with an infinitely high resolution

instrument, R(ω) = δ(ω). The definition of the intrinsic MSD ⟨r2⟩ is the well-known

Debye-Waller factor;

I∞(Q) = I(Q, t = ∞) = exp(−1

3
Q2⟨r2⟩). (2.11)

The ISF I(Q, t) has the limits

I(Q, t) =

 1 t = 0

I∞ t = ∞.

These limits allow us to determine the limits for the time dependent part I ′(Q, t) in

I(Q, t),

I ′(Q, t) = I(Q, t)− I∞ =

 1− I∞ t = 0

0 t = ∞.

In respect to these limits, I ′(Q, t) is modelled as

I ′(Q, t) = (1− I∞)C(t), (2.12)

where the limits of C(t) are

C(t) =

 1 t = 0

0 t = ∞.

As an example, C(t) is chosen as a simple exponential decay function,

C(t) = exp(−λt), (2.13)
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where λ = 1/τ represents the decay constant of correlations in the protein, and τ is

the relaxation time of the protein. The model of I(Q, t) is constructed as

I(Q, t) = I∞(Q) + (1− I∞(Q))C(t), (2.14)

which has the correct limits at t = 0 and t = ∞. Eq. (2.14) is a conceivable represen-

tation of the incoherent ISF with a single motional decay process. An example for a

single decay process could be diffusion.

Substituting the model of I(Q, t) in the observed elastic DSF SR(Q, ω = 0) in

Eq. (2.8), the elastic resolution broadened DSF SR(Q, ω = 0) becomes

SR(Q, ω = 0) =
1

2π

∫ ∞

−∞
dtI(Q, t) exp(−Wt)

=
1

2π

∫ ∞

−∞
dtI(Q,∞) exp(−Wt)

+
1

2π

∫ ∞

−∞
dt(1− I(Q,∞)) exp(−λt) exp(−Wt)

= I∞
1

πW
+ (1− I∞)

1

π(W + λ)
. (2.15)

The data measured in neutron scattering experiments in the literature is gen-

erally presented as the “normalized” SR(Q, ω = 0). The model of the elastic DSF

SR(Q, ω = 0) in Eq. (2.15) is divided to SR(Q = 0, ω = 0) at Q = 0 to obtain the

expression for the “normalized” SR(Q, ω = 0). From Eq. (2.15), the SR(Q = 0, ω =

0) = (πW )−1 and “normalized” SR(Q, ω = 0) is

SN
R (Q, ω = 0) = I∞ + (1− I∞)

W

(W + λ)
+ A. (2.16)

Here, A is a constant. A is added to Eq. (2.16) since the data for different Q values

are sometimes separated from one another in a figure by a constant for clarity.

The simple model for the observed elastic DSF SN
R (Q, ω = 0) includes three

fitting parameters; the intrinsic MSD ⟨r2⟩, the relaxation frequency λ and a constant

A. The model of SN
R (Q, ω = 0) in Eq. (2.16) is fitted to data for a given W to

determine the best fit value of the ⟨r2⟩, λ and A. The parameter A plays no role. By
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fitting the model SN
R (Q, ω = 0) to data, we determine the intrinsic long time value of

⟨r2⟩ and λ. It is expected that the intrinsic ⟨r2⟩ is found to be independent of W . The

intrinsic MSD ⟨r2⟩ can be compared with the observed MSD ⟨r2⟩exp which depends on

the resolution width of instrument employed.

A model for the resolution broadened MSD ⟨r2⟩R can be obtained using the

model of the SN
R (Q, ω = 0) in Eq. (2.16) instead of Sexp

R (Q, ω = 0) in the slope

expression in Eq. (1.1),

⟨r2⟩R = −3
d lnSN

R (Q, ω = 0)

dQ2

= ⟨r2⟩/[1 + W

I∞λ
]. (2.17)

In Eq. (2.17), the ⟨r2⟩R depends on the ⟨r2⟩, λ and W . The ⟨r2⟩R is the model

that is equivalent to ⟨r2⟩exp. This depends on the instrument resolution width W since

SN
R (Q, ω = 0) depends on W . From Eq. (2.17), it is shown that the ⟨r2⟩R depends on

the ratio of W/λ. If W ≪ λ, then the instrument resolution is high enough to catch all

the decay of I(Q, t), and the resolution broadened MSD reaches to the intrinsic long

time value (⟨r2⟩R −→ ⟨r2⟩). The good fit of the model SN
R (Q, ω = 0) to data shows

that λ and ⟨r2⟩ in Eq. (2.16) are well determined. In this case, we expect that the

⟨r2⟩R, obtained using the best fit values of the ⟨r2⟩ and λ in Eq. (2.17), reproduces

well the observed ⟨r2⟩exp.

For zero energy resolution widthW , the scattering intensity at ω = 0 is observed.

In this case, the observed MSD ⟨r2⟩exp given by Eq. (1.1) is equal to the actual ⟨r2⟩ of the

protein, and SR(Q, ω = 0) reduces to S(Q, ω = 0). SR(Q, ω = 0) is well approximated

by its time independent part I∞(Q) given by Eq. (2.10) for W = 0. When W is finite,

the scattered intensity at ω = 0 and around ω = 0 is observed in SR(Q, ω = 0). Hence,

the ⟨r2⟩exp is found to be dependent on the resolution width W . More precisely, the

ratio of W and λ controls the motions in the protein contributing to the ⟨r2⟩exp. For a

finite energy resolution width, the ⟨r2⟩exp extracted from Eq. (1.1) is smaller than the

intrinsic MSD ⟨r2⟩.
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2.3 Results

The simple models of the normalized resolution broadened DSF SN
R (Q, ω = 0)

and of the resolution broadened MSD ⟨r2⟩R are defined in Sec. 2.2. In order to test

the method in Sec. 2.2, we fit the observed, resolution broadened elastic incoherent

DSF model SN
R (Q, ω = 0) given by Eq. (2.16) to data in the literature. The goal is

to determine the intrinsic MSD ⟨r2⟩ in specific proteins and obtain a value for the

relaxation parameter λ which characterizes the motions contributing to the intrinsic

MSD ⟨r2⟩.

In this chapter, the observation time τR ∼ 1/W shown in Table-1 is used in

applications of the method.

2.3.1 The Application of the model of SN
R (Q, ω = 0)
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Figure 2.1: (a) Elastic DSF, SN
R (Q, ω = 0), observed by Paciaroni et al. [77] on IN13

(open circles) and fit of model Eq. (2.16) to the normalized Sexp
R (Q, ω =

0). (b)-(c) The best fit values of ⟨r2⟩ and λ.

In Fig. 2.1a, the model SN
R (Q, ω = 0) is fitted to the normalized Sexp

R (Q, ω = 0)

observed for lysozyme in pure glycerol by Paciaroni et al. [77] to test the model.

Sexp
R (Q, ω = 0) is observed on IN13 instrument which has an energy resolution, W =

10 µeV. The open circles represent data for Sexp
R (Q, ω = 0) at five temperatures.
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Figure 2.2: MSD, ⟨r2⟩exp, in lysozyme observed Paciaroni et al. [77] on IN13(open
squares). The intrinsic ⟨r2⟩ (solid circles) are the intrinsic MSD obtained
by fitting the model Eq. (2.16) to data shown in Fig. 2.1. The solid line is
a guide to the eye through the intrinsic ⟨r2⟩. The ⟨r2⟩R (open circles) are
the MSD calculated from Eq. (2.17) which should be similar to ⟨r2⟩exp.

Temperatures from top to bottom are 100, 200, 240, 260 and 300 K. The solid lines

represent the fit of the model SR(Q, ω = 0) to data and the fits for all temperatures are

good. Fig. 2.1b and c show the values of the ⟨r2⟩ and λ in the model SN
R (Q, ω = 0) that

give the best fit. The best fit value of the ⟨r2⟩ increases with temperature, and marked

change is observed at T ≃ 250 K. The relaxation frequency λ is not well determined as

shown in Fig. 2.1c. Fig. 2.2 compares the intrinsic MSD ⟨r2⟩, the resolution broadened

model MSD ⟨r2⟩R and the observed MSD ⟨r2⟩exp in lysozyme. The solid points are

the intrinsic ⟨r2⟩ obtained from the fits in Fig. 2.1a and the solid line is a guide to

the eye through the intrinsic MSD ⟨r2⟩. The ⟨r2⟩exp is the MSD extracted from the

DSF data Sexp
R (Q, ω = 0), measured by Paciaroni et. al [77], using Eq. (1.1), and it is

represented by open squares. The ⟨r2⟩R is obtained using the best fit values of the ⟨r2⟩

and λ in Eq. (2.17). The good agreement between the ⟨r2⟩R and ⟨r2⟩exp shows that

the fit to the data is precise.

In order to show that the intrinsic MSD is obtained to be independent of the
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Figure 2.3: Upper frame: Elastic DSF, Sexp
R (Q, ω = 0), observed by Wood et al.

[106] on IN16 and IN5 (open circles) and fit of model Eq. (2.16) to the
normalized Sexp

R (Q, ω = 0). Lower frames: the best fit values of ⟨r2⟩ and
λ. The solid line is a guide to the eye to the best fit ⟨r2⟩, the same line
for both instruments.

resolution of the instrument, the normalized Sexp
R (Q, ω = 0) observed on two instru-

ments, IN16 and IN5, by Wood et al. [106] are chosen. The upper frame of Fig. 2.3

shows the fit of the model SN
R (Q, ω = 0) in Eq. (2.16) to the measured normalized

Sexp
R (Q, ω = 0) in Ribonuclease A observed by Wood et. al [106]. The fits are good

except that there is significant scatter in the data taken on IN5. The best fit values

of the ⟨r2⟩ and λ are shown in the middle and lower frames of Fig. 2.3. The best fit

values of the intrinsic ⟨r2⟩ is independent of the instrument energy resolution width

W , and increases with temperature. The marked change in the ⟨r2⟩ is observed at

temperatures above T ≃ 250 K. The solid line, which is a guide to the eye through the

27



50 100 150 200 250 300

0.0

0.2

0.4

0.6

0.8

 <r2>
 <r2>R

 <r2>exp

M
S

D
 (Å

2 )

Temperature (K)

IN16  (W = 1 eV)

0 50 100 150 200 250 300
0.0

0.2

0.4

0.6

0.8

M
S

D
  (

Å
2 )

Temperature (K)

IN5  (W = 100 eV)

Figure 2.4: MSD, ⟨r2⟩exp, in hydrated Ribonuclease A observed by Wood et al. [106]
on IN16 and IN5 (open squares). The intrinsic MSD ⟨r2⟩ (solid circles)
are obtained by fitting the model Eq. (2.16) to the data shown in Fig. 2.3.
The solid line is a guide to the eye to the intrinsic MSD, the same for both
instruments. The MSD ⟨r2⟩R (open circles) is calculated from Eq. (2.17).

intrinsic ⟨r2⟩, is the same for both instruments. In Fig. 2.4, the intrinsic ⟨r2⟩ is com-

pared with the resolution dependent observed ⟨r2⟩exp obtained from the slope of the

measured data with Q2 and the resolution broadened MSD ⟨r2⟩R. The ⟨r2⟩exp is very

different for the two instruments displaying the dependence of ⟨r2⟩exp on the resolution

width W . The ⟨r2⟩exp and ⟨r2⟩R are agree well for IN5 and IN16. In addition to this,

the ⟨r2⟩exp observed on IN16 agrees well with the intrinsic ⟨r2⟩. This agreement could

arise from that the observed MSD ⟨r2⟩exp could reach its final, equilibrium value in a

time period, τ ∼ 1/W ns, observable on IN16.

In a similar way, we fit the model SN
R (Q, ω = 0) to the normalized Sexp

R (Q, ω = 0)

observed in heparan sulphate (HS-0.4) by Jasnin et al. [50]. The top frame of Fig. 2.5

shows the fit of the model SN
R (Q, ω = 0) to the observed normalized Sexp

R (Q, ω = 0).

Sexp
R (Q, ω = 0) is observed on three instruments which have different energy resolutions,

W = 1, 10 and 100 µeV. There is data for Sexp
R (Q, ω = 0) at seven temperatures, the

lowest temperature at the top. The fits are generally good but some data points lie
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Figure 2.5: Upper frame: Elastic DSF, Sexp
R (Q, ω = 0), of H in heparan sulphate

observed by Jasnin et al. [50] (open circles) and fit of model Eq. (2.16)
to the normalized Sexp

R (Q, ω = 0). Lower frames: the best fit values of
the intrinsic ⟨r2⟩ and λ. The solid line is a guide to the eye for ⟨r2⟩, the
same line for all three instruments.

off the fitted line. The middle and bottom frames in Fig. 2.5 show the values of the

⟨r2⟩ and λ in the model SN
R (Q, ω = 0) that give the best fit. The best fit value of the

⟨r2⟩ increases with temperature, markedly for temperatures above T ≃ 230 K. There

is some scatter in the ⟨r2⟩ which arises from the uncertainty in the fit. Similar to

Fig. 2.1c and the lower frame in Fig. 2.3, the scatter or uncertainty of λ is particularly

large showing that the data is relatively insensitive to the value of λ. On the other

hand, the data is not very discriminating or sensitive to the time dependence of C(t) in

the model. In spite of these scatters in the ⟨r2⟩, it is important that the ⟨r2⟩ obtained

from the fit is independent of the resolution width, W . The solid black line in the

middle frame of Fig. 2.5 is a guide to the eye through all the ⟨r2⟩, the same line for
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Figure 2.6: MSD, ⟨r2⟩exp, in hydrated HS-0.4 observed Jasnin et al. [50] on IN16,
IN13 and IN6 (open squares). The intrinsic ⟨r2⟩ (solid circles) are the
intrinsic MSD obtained by fitting the model Eq. (2.16) to data shown
in Fig. 2.6. The solid line is a guide to the eye through the intrinsic
⟨r2⟩, the same for all instruments. The ⟨r2⟩R (open circles) are the MSD
calculated from Eq. (2.17) which should be similar to ⟨r2⟩exp.

all instruments. This indicates that the average ⟨r2⟩ is obtained as independent of

the instrument resolution width W by using the model Eq. (2.16), even if there is

substantial fluctuations in the individual values of the ⟨r2⟩.

Similarly, Fig. 2.6 compares the intrinsic ⟨r2⟩, the model ⟨r2⟩R and the observed

⟨r2⟩exp in hydrated HS-0.4. The solid points are the intrinsic ⟨r2⟩ emerging from the

fits in Fig. 2.5 and the solid line is again a guide to the eye through these ⟨r2⟩. The

⟨r2⟩exp is the MSD obtained by Jasnin et al. from the slope of their data using Eq. (1.1).

The ⟨r2⟩R is obtained using Eq. (2.17) and the best fit values ⟨r2⟩ and λ in Fig. 2.5.

If the fit to the data is precise, the ⟨r2⟩R and ⟨r2⟩exp should agree. This is the case for

IN13 and IN6 but less so for the IN16. When the instrument resolution W is small,

we expect ⟨r2⟩R to coincide with the intrinsic ⟨r2⟩. This is the case for IN16 where the

⟨r2⟩R (open circles) lie on top of the ⟨r2⟩ (black dots). For IN16, the ⟨r2⟩R and ⟨r2⟩exp
differ somewhat for T > 250 K. This indicates that there is not a good fit at higher

temperatures, as can be seen in the upper frame of Fig. 2.5. The essential point of

Fig. 2.6 is that the intrinsic ⟨r2⟩ is independent of W and that ⟨r2⟩ shows a marked

increase at temperature, TD ≃ 230 K, the intrinsic DT temperature of HS-0.4.

As a final example, we fit the model SN
R (Q, ω = 0) to the normalized Sexp

R (Q, ω =
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Figure 2.7: Upper frame: Elastic DSF, Sexp
R (Q, ω = 0), of H in Staphysloccal Nuclase

(SNase) by Nakagawa et al. [73] (open circles) and fit of model Eq. (2.16)
to the normalized Sexp

R (Q, ω = 0).

0) observed Staphysloccal Nuclase (SNase) by Nakagawa et al. [73] in Fig. 2.7. Sexp
R (Q, ω =

0) is observed on four instruments which have different energy resolutions, W = 1, 10,

100 and 1000 µeV. There is data for Sexp
R (Q, ω = 0) at temperatures, 50, 130, 210 and

300 K, the highest temperature at the bottom. Fig. 2.8 shows the best fit values of the

⟨r2⟩ and λ in the model SN
R (Q, ω = 0). The best fit ⟨r2⟩ increases with temperature,

and a significant increase is observed at T ≃ 200 K. There is substantial scatter in the

⟨r2⟩, specially for the ⟨r2⟩ obtained from the fit of the SN
R (Q, ω = 0) to data measured

by HER (W = 1000 µeV) and GP-TAS (W = 1000 µeV). In spite of scatter in ⟨r2⟩,

an intrinsic ⟨r2⟩, which is independent of the instrument resolution width W , can be

obtained by fitting the model to the observed SN
R (Q,ω = 0). Similar to λ in Fig. 2.6,
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Figure 2.8: The best fit values of the intrinsic ⟨r2⟩ and λ obtained from the fits in
Fig. 2.7.

the scatter or uncertainty of λ is particularly large in Fig. 2.8.

Fig. 2.9 compares the intrinsic ⟨r2⟩, the resolution broadened MSD model ⟨r2⟩R
and the observed ⟨r2⟩exp in SNase. The solid points are the intrinsic ⟨r2⟩ emerging

from the fits in Fig. 2.7 and the solid line is again a guide to the eye through all the

⟨r2⟩. The ⟨r2⟩exp is the MSD obtained by Nakagawa et al. from the slope of their data

using Eq. (1.1). The ⟨r2⟩R is obtained from the expression in Eq. (2.17) using fitting

parameters, ⟨r2⟩ and λ. Although there is substantial scatter in the ⟨r2⟩, ⟨r2⟩R and

⟨r2⟩exp agree well for all four instruments (four different resolution widths).
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Figure 2.9: MSD, ⟨r2⟩exp, of the hydrated SNase observed by Nakagawa et al. [73]
on IN10 (W = 1 µeV), IN13 (W = 10 µeV), HER (W = 100 µeV) and
GP-TAS (W = 1000 µeV) (open squares). The intrinsic MSD ⟨r2⟩ (solid
circle) is obtained the fit in Fig. 2.7. The solid line is a guide to the
eye to the ⟨r2⟩, the same for all instruments. The ⟨r2⟩R (open circles) is
calculated from Eq. (2.17).

2.3.2 The Application of the Expression of ⟨r2⟩R and Dynamical Transition

The origin of the DT has been investigated by experimental and theoretical

studies during decades. It has been interpreted as a sudden change of effective elasticity

in proteins [109], the onset of motions of specific side groups [61], a glass transition

or a phase transition in the hydration water [23, 13], and an artificial effect of a finite

instrument resolution width [17, 3, 54, 32]. It has been still debated.

In this part of Sec. 2.3, we focus on the energy resolution dependence of the

DT temperature, TD. The DT temperature, TD, is the temperature at which ⟨r2⟩exp
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increases markedly with temperature. It appears to be dependent on the energy reso-

lution of the instrument employed. Using the model of the ⟨r2⟩R given by Eq. (2.17),

an intrinsic ⟨r2⟩ and TD are obtained to be independent of instrument resolution. The

observed MSD ⟨r2⟩exp of H in glutomate dehydrogenase observed on IN16 and IN6 is

shown on the LHS in Fig. 2.10. The ⟨r2⟩exp is obtained as usual from the slope of the

observed, elastic DSF Sexp
R (Q, ω = 0) versus Q2 by using the expression in Eq. (1.1). In

this example, on IN16 the apparent TD is TD ≃ 150 K while on IN6 that is TD ≃ 230

K. The TD obtained from Sexp
R (Q, ω = 0) data measured by an instrument which has

a larger energy resolution width is higher. The model ⟨r2⟩R in Eq. (2.17) is fitted to

the observed MSD ⟨r2⟩exp in Fig. 2.10 to determine the intrinsic ⟨r2⟩ and TD for this

protein. The ⟨r2⟩R in Eq. (2.17) is the model which is equal to ⟨r2⟩exp in Eq. (1.1).

Specially, at each temperature we determine the two parameters ⟨r2⟩ and λ by setting

⟨r2⟩R in Eq. (2.17) equal to the ⟨r2⟩exp of Fig. 2.10 for each instrument. The fitting

values of ⟨r2⟩R are shown as the solid lines through the data points on the LHS in

Fig. 2.10. The best fit values of the ⟨r2⟩ and λ are on the RHS in Fig. 2.10.

The intrinsic MSD ⟨r2⟩ is greater than the ⟨r2⟩exp measured by IN16 and IN6.

The ⟨r2⟩exp measured by IN6 is equal to the half of the ⟨r2⟩, and the ⟨r2⟩ is 20% larger

than the ⟨r2⟩exp measured by IN16. The intrinsic TD for glutamate dehydrogenase is

observed to be TD ≃ 150 K. The temperature dependence of the intrinsic MSD ⟨r2⟩ is

similar to that of the observed MSD ⟨r2⟩exp on IN16. The intrinsic TD is also very

close to the TD observed on IN16 where W = 1 µeV. At temperatures higher than 200

K, an unexpected temperature dependence in the ⟨r2⟩ is observed. The ⟨r2⟩ decreases

with increasing temperature for T & 200 K. The value of the intrinsic MSD ⟨r2⟩ at for

T & 200 K is larger than that for T & 250 K. This is unphysical. In order to analyse this

effect, the intrinsic ⟨r2⟩ is kept constant at its 200-K value for temperatures T & 200

K. This ⟨r2⟩ is shown on the RHS in Fig. 2.11. Using the ⟨r2⟩ on the RHS in Fig. 2.11,

we again set the ⟨r2⟩R to the observed MSD ⟨r2⟩exp to obtain the appropriate λ. On the

LHS in Fig. 2.11, the solid line represents the ⟨r2⟩R obtained using ⟨r2⟩ held constant

for T > 200 K. In this case, the ⟨r2⟩R for W = 1 µeV (IN16) continues to increase
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Figure 2.10: (LHS) MSD, ⟨r2⟩exp, of glutamate dehydrogenase in CD3OD/D2O ob-
served by Daniel et. al [17] on IN16 (W = 1 µeV) (triangles) and IN6
(W = 100 µeV) (squares). Eq. (2.17) for ⟨r2⟩R is fitted to the observed
⟨r2⟩exp and the fitted ⟨r2⟩R is shown as a solid line. (RHS) The intrinsic
⟨r2⟩ and λ obtained from the fit. The extracted intrinsic ⟨r2⟩ decreases
above T = 220 K.
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Figure 2.11: The MSD as in Fig. 2.9. In this case the intrinsic MSD ⟨r2⟩ is arbitrarily
held constant at temperatures T > 200K. The solid lines show the
values of ⟨r2⟩R obtained for IN16 and IN6 when the ⟨r2⟩ is held constant
for T > 200K. The expected ⟨r2⟩R continues to increase above 200 K.
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above T = 200 K, and reaches a plateau value above 250 K. This plateau of the ⟨r2⟩

at higher temperature appears to be unique for H in glutamate dehydrogenase. This

result suggests that there is an issue with the sample or data on IN16 for T > 200 K.

The apparent TD seen in the ⟨r2⟩exp is significantly affected by the energy reso-

lution of the instrument employed. As shown in Figs. 2.10 and 2.11, it moves to higher

temperatures for larger W . This property of the TD is also shown in Sec. 2.3.1. The

data in Fig. 2.9 shows that the larger the W , the higher the temperature that is needed

to observe a marked increase in ⟨r2⟩exp. The apparent TD is TD ≃ 220 K on IN10 while

that on HER is TD ≃ 260K and no dynamical transition on by GP-TAS. In respect to

these results, the intrinsic ⟨r2⟩ is always greater than the ⟨r2⟩R at a given temperature.

For the large W , the ⟨r2⟩R is suppressed below the intrinsic ⟨r2⟩. Similarly, the intrinsic

TD obtained from the intrinsic ⟨r2⟩ is always lower than the observed TD. For a finite

energy resolution width W , the apparent TD is shifted to a higher temperature above

the intrinsic TD. This suggests that the higher temperatures is needed to observe the

DT on the MSD for a large energy resolution width W .
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Figure 2.12: The resolution broadened MSD, ⟨r2⟩R, for different resolution widths,
W obtained from Eq.(2.17) illustrating the dependence of the apparent
TD on W. The intrinsic ⟨r2⟩ and λ of glutamate dehydrogenase, obtained
from the fits to data by Daniel et al. [17] shown in Fig. 2.10, are used
in Eq.(2.17).
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The model ⟨r2⟩R in Eq. (2.17) may be used to clarify the dependence of the

⟨r2⟩R and the TD on the instrument resolution width, W . In order to illustrate, the

resolution dependence of the ⟨r2⟩R and TD, the ⟨r2⟩R is calculated using by Eq. (2.17).

Fig. 2.12 shows the ⟨r2⟩R versus temperature for different energy resolution widths,

W = 1, 10, 100 µeV. The intrinsic ⟨r2⟩ of glutamate dehydrogenase shown in Fig. 2.11

is extrapolated to the higher temperature values and used as input in Eq. (2.17). A

reasonable λ similar to that Fig. 2.11 is also used. Solid line in Fig. 2.12 represents the

⟨r2⟩R which is equal to the intrinsic MSD ⟨r2⟩. This intrinsic ⟨r2⟩ has an intrinsic TD ≃

150 K. The larger the energy resolution widthW , the smaller the ⟨r2⟩R obtained and the

higher the TD observed. For a finite energy resolution width, the ⟨r2⟩R always lies below

the intrinsic MSD ⟨r2⟩. Similar to results in Figs. 2.10 and 2.11, the TD moves to higher

temperatures with increasing energy resolution width W in Fig. 2.12. Equivalently, the

shift in the TD could be explained as a ⟨r2⟩R that lies below ⟨r2⟩ at a given temperature.

Hence, the reduction in ⟨r2⟩R and the apparent increase in TD with increasing W are

the same effect.

2.3.3 Sensitivity of ⟨r2⟩ to the model C(t)

In order to test the impact of the model of C(t) and of the shape of the in-

strument resolution, we changed C(t) from C(t) = exp(−λt) to a Gaussian C(t) =

exp(−λ2t2/2), and the resolution function from R(ω) = 1
π

W
W 2+ω2 to a Gaussian R(ω) =

exp(−ω2/2W 2)/
√
2πW 2. Using Gaussian C(t) and R(ω), an analytic expression for

SN
R (Q, ω = 0) is again obtained in Appendix C. Fig. 2.13 shows the comparison of the

intrinsic ⟨r2⟩, obtained from the fit of the SN
R (Q, ω = 0) model in Eq. (D.5) to the

normalized Sexp
R (Q, ω = 0) data of hydrated SNase observed by Nakagawa et al. [73],

with the resolution broadened MSD ⟨r2⟩R and the observed MSD ⟨r2⟩exp. The solid

dots represent the intrinsic MSD ⟨r2⟩ and this is greater than the ⟨r2⟩R and ⟨r2⟩exp.

The agreement between the ⟨r2⟩R and ⟨r2⟩exp shows that the fit to data is precise. The

⟨r2⟩ in Figs. 2.9 and 2.13 are barely distinguishable. This indicates that intrinsic ⟨r2⟩,

which is obtained from the fit of the model to the experimental data, is not sensitive
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Figure 2.13: MSD, ⟨r2⟩exp, of the hydrated SNase observed by Nakagawa et al. [73]
on IN10 (W = 1 µeV), IN13 (W = 10 µeV), HER (W = 100 µeV)
and GP-TAS (W = 1000 µeV)(open squares). The intrinsic MSD ⟨r2⟩
(solid circle) is obtained by fitting the observed DSF equation, where the
Gaussian C(t) = exp(−λ2t2/2) and R(ω) = exp(−ω2/2W 2)/

√
2πW 2

are used, to the elastic intensity data observed Nakagawa et al. [73]. The
solid line is a guide to the eye to the ⟨r2⟩, the same for all instruments.
The ⟨r2⟩R(open circles) is calculated from the Q2 dependence of the
observed DSF.

to the form of C(t) and R(ω) used in the model at the present level of precision of the

data.

As stated in Sec 2.2, the impact of a finite resolution width W is also seen in

I(Q, t) given by Eqs. (2.8) and (2.16). The ratio of W to λ determines which motions

contribute to the integral in the expression of Iinc(Q, t) in Eq. (2.8). The impact of the

ratio of W to λ could be analysed in two limits : (i) λ >> W ⇒ τ = 1/λ << τR ∼

1/W ; the intrinsic correlations in the protein (in C(t)) decay rapidly in shorter time

than τR, and all correlations in C(t) are included in the integral expression of Iinc(Q, t)
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in Eq. (2.8), (ii) λ << W ⇒ τ = 1/λ >> τR ∼ 1/W ; the integral in the expression

of Iinc(Q, t) in Eq. (2.8) is cut of after time τ which is shorter than τR. In the case

λ << W , the intrinsic correlations in the protein (in C(t)) decay slowly, then only

the short time correlations in C(t) are included in Eq. (2.8). Hence, Iinc(Q, t) is still

dependent on W . The relaxation time τ = 1/λ changes from protein to protein, so

that we expect the impact of finite resolution width W to vary from protein to protein.

The resolution broadened DSF SN
R (Q, ω = 0) in Sec. 2.2 is a very simple model.

In this model, we neglect the contribution comes from ballistic propagation or vibration

in C(t), and a simple representation C(t) = exp(−λt) is used to describe the relaxation

of correlations in the protein. This C(t) is appropriate for a single diffusion process.

In order to improve the model, a stretched exponential C(t) = exp(−(λt)β) which

represents several diffusion mechanisms contributing to C(t) is used instead of a simple

decay function C(t) = exp(−λt). Then, we fit the model of SN
R (Q, ω = 0) with a

stretched exponential C(t) = exp(−(λt)0.5) to the observed normalized Sexp
R (Q, ω = 0)

in literature. However, we found that the experimental data was not significantly

precise to distinguished between a simple exponential C(t) = exp(−λt) and a stretched

exponential C(t) = exp(−(λt)β). For these two C(t) functions, which are a stretched

exponential function and a simple exponential function, the intrinsic ⟨r2⟩ obtained are

the same.
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Chapter 3

LONG-TIME MEAN SQUARE DISPLACEMENTS IN PROTEINS

Building upon our work on proteins in Chap. 2, we expand our research to obtain

the intrinsic long-time MSD from molecular dynamics (MD) simulations. This is the

intrinsic long-time MSD that is independent of the simulation time. MD simulation

is an important technique used to investigate the dynamics of proteins in ps-ns time-

scale. Several MD simulations have been performed to understand the origin of elastic

neutron scattering [3, 4, 41, 42, 43, 68, 71, 108]. As stated in Chap. 1, the contribution

of time-dependent inelastic scattering to elastic scattering is one of the issues studied

using MD simulation. The studies of the time-dependence of the elastic scattering

opens the question whether an intrinsic long-time MSD, which is independent of the

simulation time, can be obtained from simulations.

Our goal in this chapter is to propose a method to obtain the intrinsic long-

time value of the MSD from finite-time simulations. The method used in this chapter

is the same as that in Chap. 2. However, we modified the model for the global ISF

I(Q, t) which is constructed in Chap. 2. The intrinsic long-time MSD ⟨r2⟩ is defined

in the model I(Q, t). We fit the model I(Q, t) to the incoherent ISF Iinc(Q, t) which

is observed in neutron scattering experiments and calculated from simulations.

3.1 MD Simulation and MD Simulation System

MD simulation is used to study systems which have a large number of particles

such as proteins, polypeptides and membranes. The MD simulation calculates the

time-dependent behaviour of a molecular system. The particles are allowed to interact

for a given time period. These interactions provide a view of the motions of particles

and gives the configuration of the system in different time steps for a period of time.
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In MD simulations, the trajectories of particles are determined by numerically solving

Newton’s equations of motions for a system of interacting particles. A force field is

required to determine the forces between particles and the potential energy. Force

fields are defined as a summation of bonded and non-bonded forces. Bonded forces are

chemical bonds, bond angles and bond dihedrals, non-bonded forces are van der Wall

forces and electronic charges.

It is not possible to find the properties of a large system analytically, but MD

simulations eliminate this problem by using numerical methods. Hence, MD simulation

is one of the principal tools in the theoretical study of a large system like a protein.

It is also important to understand the origin of experimental results. Calculating

experimental data using MD simulation is useful to understand what is measured in

neutron scattering experiments. Although MD simulation does not have the limitation

of resolution which exists in neutron scattering experiments, it has a time limitation.

Figure 3.1: Two lysozyme molecules of random relative orientation selected by GRO-
MACS.

We simulated a hydrated powder of the protein lysozyme. A configuration of

a system which includes molecular positions and a potential function is required for

a MD simulation. The system was simulated using GROMACS 4.5.1, the MD engine

[45]. In GROMACS, pdb2gm, genbox, editconf and genion commands are used to

generate the topology and coordinates files. The pdb file for lysozyme is obtained from

Protein Data Bank (protein databank code: 1AKI[1]). As shown in Fig.3.1, the system
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simulated consisted of two randomly oriented lysozyme molecules designed by using

pdb2gm command.

However, the configuration of the system obtained from pdb2gm command does

not include any solvent (water). The system including two lysozyme molecules was

placed in a simulation box of dimensions 6.5 nm×3.4 nm×3.6 nm and surrounded

by 636 water molecules, which corresponds to the hydration level h = 0.4 g water/g

protein, by using genbox command. Editconf command edits the simulation system.

Periodic boundary conditions can not handle with a system which is electrically un-

stable. Hence, genion command is used to add chlorides (CL−) ions to make the

simulation system which has zero ionic states. For our system, eighteen (16) CL− are

substituted with water molecules to the simulation system.

The box was replicated using periodic boundary conditions to mimic the en-

vironment of an experimental powder sample. Hence, every molecule can move and

cross over from top to bottom and from left to right. Similar simulation systems are

discussed in the literature [47, 46, 59, 75, 21, 97]. After the configuration of the system

is designed, two commands, grompp and mdrun, are used to run simulations. Grompp

command makes a binary file as a run input file from the input files of configuration

and topology file. The main calculation procedure in GROMACS is run by mdrun

command. It performs a simulation based on the binary file generated from grompp.

Output file obtained from mdrun command is trajectory file.

The pdb file, 1AKI.pdb, includes only the information about protein, but not

any potential and energy related information. The OPLS-AA force field [52] was used

for the protein and the TIP4P force field [49] for the water. These force fields are used

to reproduce the experimental self-diffusion coefficient of protein hydration water by

Lagi et al. [59]. To have a higher computational speed, a set cuttoff radii is available

in MD simulations. The van der Waals interaction was truncated at 1.4 nm, and

the electrostatic interaction was represented using the Particle Mesh Ewald method

[30] with a real-space cutoff of 0.9 nm. All bonds including hydrogen bonds were

constrained with a linear constraints solver algorithm (LINCS) [44]. The energy of
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the system was first minimized using 50000 steepest descent steps. The system was

then equilibrated in the NVT (number of particles-volume-temperature) ensemble at

each temperature investigated for 10 ns and in the NPT (number of particles-pressure-

temperature) ensemble at 1 bar for 10 ns. The Nose-Hoover algorithm [48] with a

coupling time τ = 1 ps and the Parrinello-Rahman algorithm [82] with a coupling time

τ = 3 ps were used for the temperature coupling and pressure coupling, respectively.

Simulations of 100 ns length were performed at 18 different temperatures be-

tween 80 K and 300 K. Simulations of 1 µs were made at 5 temperatures, at 100 K and

then in steps of 50 K to 300 K. The data was collected every 10 ps at each temper-

ature for both simulations. Simulation trajectories at each temperature includes the

coordinates of nuclei in proteins at each 10 ps. In the data presented here, the protein

coordinates were superimposed onto the starting structure before analysis to remove

the global translation of the protein molecule in the 1 µs simulation data, but not in

the 100 ns simulation data presented in this chapter.

3.2 The model of the ISF I(Q, t)

In neutron scattering experiments, the observed data was not sufficiently precise

to distinguish between a simple and a more sophisticated model. In contrast, data

calculated in MD simulation is discriminative. This requires some changes in the time-

dependent part in the model. In Chap. 2, the model of the incoherent ISF I(Q, t)

is constructed. Here, we modify the model of I(Q, t) as defined in Eq. (2.14). A

stretched exponential function C(t) = exp(−(λt)β) is used instead of a simple decay

function C(t) = exp(−λt) to improve the model. A stretched exponential function

C(t) = exp(−(λt)β) represents several diffusion mechanisms contributing to C(t). The

model of I(Q, t) in Eq. (2.14) becomes

I(Q, t) = I∞(Q) + (1− I∞(Q)) exp(−(λt)β), (3.1)

which is a representation of several motional decay processes and has the correct limits

at t = 0 and t = ∞. Similar to the model I(Q, t) in Chap. 2, the intrinsic, long-time
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MSD ⟨r2⟩ is defined in the infinite time limit of the incoherent ISF, I∞(Q) = I(Q, t =

∞) = exp(−1
3
Q2⟨r2⟩).

Then, we calculate the incoherent ISF, Iinc(Q, t), defined in Eq. (2.2). The

positions ri(t) of each nucleus i in the protein are used as inputs in Eq. (2.2). The ri(t) is

generated in the two MD simulations described in Sec. 3.1, one of length 100 ns and the

other 1 µs. Using the ri(t) as an input parameter in SASSENA [www.sassena.org], the

Iinc(Q, t) is calculated directly for times out to 100 ns and 1 µs, respectively. To improve

statistics, each simulation trajectory is divided into segments. The maximum segment

number is 9000 for the 100 ns MD simulation and 90000 for the 1 µs MD simulation.

Then, Iinc(Q, t) is recalculated as an average over Iinc(Q, t) in these segments. In this

way, Iinc(Q, t) was calculated out to 1 ns from the 100 ns MD simulation data and out

to 10 ns from the 1 µs MD simulation data.

3.3 Application of the model of the ISF I(Q, t)

In this section, our goal is to apply a method proposed in Sec. 3.2 to obtain

the intrinsic, long-time MSD in proteins from finite time simulations. The method

consists of calculating the ISF Iinc(Q, t) from a simulation and fitting a model I(Q, t) to

the calculated Iinc(Q, t). The model of I(Q, t) includes three fitting parameters: the

intrinsic MSD, ⟨r2⟩, defined in Eq. (2.11), the relaxation parameter λ and the stretched

exponential parameter β which are both defined in Eq. (3.1). In Sec. 3.3.1 and Sec.

3.3.2, our goal is to determine the intrinsic MSD ⟨r2⟩ of H in lysozyme and to obtain

values for the relaxation parameters λ and β. Thus, we fit the model I(Q, t) given by

Eq. (3.1) to the ISF data, Iinc(Q, t), calculated using the 100 ns and 1 µs simulation

data.

3.3.1 100 ns MD simulation

We calculate the ISF, Iinc(Q, t), in the time range 0 < t < 1 ns using the 100 ns

simulation data as an input in Eq. (2.2). Fig. 3.2 shows the fit of the model of I(Q, t) to
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Figure 3.2: The intermediate scattering function (ISF), Iinc(Q, t), for 0 < t < 1 ns
of hydrated lysozyme (h = 0.4) obtained from a 100 ns MD simulation
(open red circles) and fits of the model I(Q, t) in Eq. (3.1) (blue solid
lines) to the Iinc(Q, t) at 100 K, 150 K, 200 K, 250 K and 300 K. From
top to bottom, Q: 0.1, 0.2, 0.3, 0.4, 0.6, 0.8, 1, 1.2, 1.4 and 1.6 Å−1.

the calculated ISF, Iinc(Q, t). The red open circles represent the Iinc(Q, t) data. Al-

though Iinc(Q, t) was calculated at 18 temperatures, only 5 temperatures are shown

in Fig. 3.2. Iinc(Q, t) data is presented for 10 different Q values for each temperature.

The Q values from top to bottom are 0.1, 0.2, 0.3, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4 and 1.6

Å−1. The solid lines are the fits of the model I(Q, t) to the calculated Iinc(Q, t). The

fits are good, except low temperatures. At low temperatures, the Iinc(Q, t) changes

slightly with time so that the small β values is used to have better fits. Because of the

poor fits, the parameters λ and β that appear in the relaxation function C(t) are not

well determined at temperatures below approximately 170 K.

Fig. 3.3a shows that the best fit values of the fitting parameter ⟨r2⟩ versus Q
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Figure 3.3: Parameters of the model I(Q, t) of Eq. (3.1) obtained from fits of the
model to the simulations shown in Fig. 3.2: (a) The intrinsic MSD,
⟨r2⟩ and (b) the relaxation parameter, λ, versus Q at temperatures 100
K to 300 K.

for six different temperatures. Temperatures from bottom to top are 100, 150, 200,

220, 250, 280 and 300 K. The intrinsic MSD ⟨r2⟩ is found to be Q-dependent. The

Q-dependence of the ⟨r2⟩ is much stronger at higher temperatures. The ⟨r2⟩ is larger

and approximately independent of Q at low Q. This Q dependence is similar to the Q-

dependence of the observed ⟨r2⟩exp, which arises from the Q-dependence of the observed

data Sexp
R (Q,ω = 0). The origin of the Q-dependence of the MSD will be discussed in

Chap. 4.

Figs. 3.3b and 3.4a show the best fit values of the fitting parameter λ versus Q

and T, respectively. In Fig. 3.3b, we see that λ is also Q dependent and increases with

increasing Q. λ is approximately proportional to Q2, and is similar to the Q-dependence

of λ that is observed in other simulations [12, 97]. The stretched exponential parameter

β defined in Eq. (2.1) is weakly dependent on Q. For the fits in Fig. 3.2, β is averaged

over several Q values with some adjustments to obtain smooth behavior as a function

of temperature. Fig. 3.4b shows the β values which we used versus temperature. As
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Figure 3.4: As Fig. 3.3 for (a) the relaxation parameter λ and (b) the stretched
exponential parameter β versus temperature. From bottom to top, Q:
0.4, 0.6, 0.8, 1, 1.2, 1.4 and 1.6 Å−1.

stated above, the λ and β are not well determined at temperatures below approxi-

mately 170 K. The reason is the time dependence of the Iinc(Q, t) at low temperatures;

Iinc(Q, t) decreases rapidly over a short time t and thereafter changes slowly. In spite

of the uncertainties in the λ and β, the ⟨r2⟩ is well determined at low temperatures.

The ⟨r2⟩ represents the value of Iinc(Q, t) at long t.

The intrinsic MSD ⟨r2⟩ obtained from the fits in Fig 3.2 versus temperature

at Q = 0.2 Å−1 is shown Fig. 3.5. The red solid circles represent the ⟨r2⟩ and the

dashed line guides the eye through the ⟨r2⟩. The ⟨r2⟩ versus temperature shows a

clear break in slope at around T = 140 K and T = 220 K. The break at around

140 K has been seen previously in simulations. This break arises from the activation

of the dynamics of hydrophobic groups, i.e. the onset of proline puckering and the

rotation of methyl groups at around 140 K [87, 71]. A break in slope of ⟨r2⟩ versus

temperature near 140 K has also been observed in several proteins. A second break

in slope indicates a dynamical transition (DT), at TD ≃ 220 K, associated with the

onset of new larger amplitude motions of hydrophilic groups in which the hydration

water plays a determining role. The intrinsic, long time ⟨r2⟩ shows the onset of both
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Figure 3.5: The intrinsic MSD, ⟨r2⟩, defined in Eq. (2.11), obtained from fits of the
model I(Q, t), Eq. (3.1) to simulations of Iinc(Q, t) at Q = 0.2 Å−1. The
intrinsic ⟨r2⟩ shows a break in slope at T ≃ 140 K and T ≃ 220 K.

hydrophobic and hydrophilic (DT) motions.

3.3.2 1 µs MD simulation

Next, we focus on the MD simulation which is ten times longer. Similarly the

previous section, the incoherent ISF, Iinc(Q, t), is calculated using the ri(t) generated

in the 1 µs simulations in Eq. (2.2). The 1 µs simulation is performed at five different

temperatures; 100, 150, 200, 250 and 300 K. Fig. 3.6 shows the fit of the model of

I(Q, t) to the calculated ISF, Iinc(Q, t), 0 < t < 10 ns. The red open circles represent

the Iinc(Q, t) data at five different temperatures. For each temperature, there are

Iinc(Q, t) data for 10 different Q values; 0.1, 0.2, 0.3, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4 and 1.6

Å−1. The solid lines in Fig. 3.6 are again the fits of the model I(Q, t) given by Eq. (3.1)

to determine ⟨r2⟩ and λ as free fitting parameters. β values is chosen as similar to the

β in Fig. 3.4. The fits are better at the higher temperatures, specially at 200 and 250

K. In the fits to Iinc(Q, t) for times out to 10 ns, we see that the fit is better at 200 K

than at 300 K.

Fig. 3.7 shows the best fit values of the intrinsic MSD ⟨r2⟩ and λ versus Q,
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Figure 3.6: The calculated Iinc(Q, t), for 0 < t < 10 ns of hydrated lysozyme obtained
from a 1 µs MD simulation (open circles) and fits of the model I(Q, t) in
Eq. (3.1) to the data (solid lines) at 100 K, 150 K, 200 K, 250 K and 300
K. From top to bottom, Q: 0.1, 0.2, 0.3, 0.4, 0.6, 0.8, 1, 1.2, 1.4 and 1.6
Å−1.

which we obtained from the fits in Fig. 3.6. Similar to Fig. 3.3a, the ⟨r2⟩ decreases

with increasing Q. At 300 K, the ⟨r2⟩ at Q = 0.1 Å−1 is almost twice of the ⟨r2⟩ at

Q = 1.6 Å−1, however this difference decreases with increasing temperature. It is also

noted that the Q-dependence significantly decreases at low Q-values, except at 300 K.

λ is approximately proportional to Q2 as found in the shorter simulation. For the 1

µs simulation, one of the important differences which we observed is that the absolute

values of λ obtained from the longer time (10 ns) are significantly smaller than those

obtained from the shorter time (1 ns) (compare Figs. 3.3b and 3.7b). For example,

the value of λ at Q = 1.6 Å−1 and at 300 K is 0.008 ps−1 in Fig. 3.7b and 0.02 ps−1 in

Fig. 3.3b.

The best fit values of the fitting parameter λ and β versus temperature are shown
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Figure 3.7: Parameters of the model ISF, Eq. (3.1), obtained from the fits of I(Q, t) to
the calculated Iinc(Q, t), for 0 < t < 10 ns shown in Fig. 3.6: (a) the
intrinsic MSD, ⟨r2⟩, and (b) the relaxation parameter, λ, versus Q at five
temperatures: 100 K, 150 K, 200 K, 250 K and 300 K.
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Figure 3.8: Parameters of the model ISF, Eq. (3.1), obtained from the fits of I(Q, t) to
the calculated Iinc(Q, t), for 0 < t < 10 ns shown in Fig. (3.6): (a) the
relaxation parameter, λ, and (b) the stretched exponential parameter, β,
versus temperatures. The Q values from bottom to top is 0.4, 0.6, 0.8,
1.0, 1.2, 1.4 and 1.6 Å−1.

in Fig. 3.8. Ten times longer simulation allows to determine the fitting parameter λ well,

even at temperatures below approximately 170 K. This suggests that Iinc(Q, t) data in
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longer time is required to determined the small λ values in the model I(Q, t). However,

we still use small β values at 100 K to have a better fit. The values of β are similar for

the two simulation times as shown in Figs. 3.4b and 3.8b.
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Figure 3.9: The intrinsic MSD ⟨r2⟩ versus temperature obtained from fits to the
Iinc(Q, t) at Q = 0.2 Å−1 obtained from (1) 100 ns (solid circles) and (2)
1 µs MD simulations (solid squares). The ⟨r2⟩ is largely independent of
the simulation time fitted.

The absolute values of the ⟨r2⟩ are also consistent with those obtained from the

100 ns simulation except, possibly, at 100 K. Fig. 3.9 compares the values of the ⟨r2⟩

obtained from the fits to Iinc(Q, t) for times t out to 1 ns and 10 ns. The red solid circles

and the blue squares represent the intrinsic MSD ⟨r2⟩ obtained from the fit of the model

I(Q, t) in Fig. 3.2 and Fig. 3.6, respectively. The values of the ⟨r2⟩ obtained from the

1 µs simulation are consistent with those obtained from the 100 ns simulation, except

at 100 K. This consistency indicates that new motional process does not observed the

simulations between 100 ns and 1 µs. These results also show that (i) ⟨r2⟩ is a long

time (t → ∞) intrinsic MSD and is independent of the time interval of the data, and

(ii) the DT is observed at around 220 K although the ⟨r2⟩ is independent of simulation

time and energy resolution. This suggests that a DT is not simply an artificial result of

finite instrument resolution and of time window limitation. In respect of these results,
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it can be said that the DT which is observed in the ⟨r2⟩ at 220 K is an intrinsic property

of lysozyme.

3.4 Mean Square Displacement

We compare the intrinsic MSD ⟨r2⟩ obtained from the fit of the model I(Q, t) with

the simulated MSD ∆2(t)/2 and the resolution broadened MSD ⟨r2⟩R to clarify the dif-

ference between them. In Sec. 3.4.1, we focus on the temperature and time dependence

of the simulated MSD. In Sec. 3.4.2, we compare the ⟨r2⟩ with the resolution broadened

MSD ⟨r2⟩R of lysozyme obtained previous researches.

3.4.1 Simulated Mean Square Displacement

The simulated MSD is one of the important quantities which can be calculated

directly from simulations. The simulated MSD is calculated from

∆2(t) = ⟨[r(t)− r(0)]2⟩ ≡ 1

N

N∑
i=1

⟨[ri(t)− ri(0)]
2⟩, (3.2)

where ri(t) is the position of nucleus i in the protein at time t. The ∆2(t) depends on

the time, and increases with increasing time. The correlation between the positions of

nuclei, ri(t) and ri(0), decreases with time and vanishes in longer times, t → ∞. In

this case, ⟨ri(t)ri(0)⟩ goes to zero and the expression ∆2(t) in Eq. (3.2) reduces to

∆2(t → ∞) = ⟨r2(∞)⟩+ ⟨r2(0)⟩ = 2⟨r2⟩MD. (3.3)

By using the ri(t) generated by MD simulation as an input in Eq. (3.2), an

∆2(t) for H in proteins can be defined and calculated. We calculated the simulated

MSD, ∆2(t), of lysozyme for 18 different temperatures out to 1ns for the 100 ns MD

simulation, and for 5 different temperatures out to 10 ns for the 1 µs MD. It is noted

that the ⟨r2⟩MD in Eq. (3.3) is not the same as the intrinsic ⟨r2⟩ defined in terms of

I(Q, t) in Eq. (2.11) (see Appendix D). As stated in Chap. 2, the largest contribution

to the calculated ISF Iinc(Q, t) comes from H nuclei in proteins. Hence, the simulated

MSD of lysozyme is only calculated for the non-exchangeable H nuclei in the lysozyme.
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The non-exhangeable H does not exchange position with H in the hydration water.

In the simulated MSD calculations, we excluded the H in the hydration water and

the H in the protein that can exchange positions with H in the hydration water (the

exchangeable H ) from the sum in Eq. (3.2). The time dependence of the ∆2(t) are

compared with the intrinsic MSD ⟨r2⟩ defined in Eq. (2.11). In the model I(Q, t), we

neglect the dynamical diversity of H in proteins. Thus, the ⟨r2⟩ and ∆2(∞)/2 will

be the same only if all H are in identical environments in the protein. If there is a

dynamical heterogeneity, the ⟨r2⟩ and ⟨r2⟩MD = ∆2(∞)/2 will differ.
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Figure 3.10: The MSD ∆2(t)/2 defined in Eq. (3.2) of non-exchangeable hydrogen
versus time at five different temperatures, 100 K to 300 K (a) for 100 ns
MD simulation (b) 1 µs MD simulation. The dots are the corresponding
intrinsic MSD ⟨r2⟩ at each temperature.

Fig. 3.10 shows ∆2(t)/2 versus time obtained from the 100 ns and 1 µs simu-

lations. The ∆2(t)/2 is calculated out to t = 1 ns from 100 ns simulation and out to

t = 10 ns from 1 µs simulation. The solid circles represent the intrinsic MSD ⟨r2⟩ at

Q = 2 Å−1. The ⟨r2⟩ from the 1 µs simulation is slightly larger at 100 K and 150 K

(see Fig. 3.9). Fig. 3.10b shows that the ∆2(t) appears to have converged after 10 ns,

and the ∆2(t = 10 ns) and the ⟨r2⟩ is quite similar at T = 100 K. In contrast, at higher

temperatures, the ∆2(t) has clearly not reached its terminal value (t = ∞) after 10
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ns. For example, at T = 300 K, the intrinsic ⟨r2⟩ is approximately 40 − 50 % larger

than ∆2(t = 1ns)/2 and 30 − 40 % larger than ∆2(t = 10ns)/2. Similarly, the results

of previous simulations show that the ∆2(t) does not reach to a constant, infinite time

value within accessible simulation times of 1 to 100 ns [43, 40, 8]. The reason of this

is that the correlation ⟨r(t)r(0)⟩ does not have vanished. The infinite time value of a

simulated MSD ⟨r2⟩MD= ∆2(t → ∞)/2 cannot be calculated within currently acces-

sible simulation times. These results indicate that the ⟨r2⟩ is the intrinsic long time

value of the MSD (t = ∞).
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Figure 3.11: Comparison of the intrinsic MSD ⟨r2⟩ at Q = 0.2 Å−1 and the MSD
∆2(t)/2 out to times (a) 0.01, 0.1, 0.5 and 1 ns obtained from the 100
ns MD simulation and (b) out to times 0.1, 1, 5 and 10 ns, obtained
from the 1 µs MD simulation.

Furthermore, we compare the intrinsic MSD ⟨r2⟩ at Q = 0.2 Å−1 with the

∆2(t)/2 at different times t obtained from the 100 ns (Fig. 3.11a) and 1 µs (Fig. 3.11b)

simulations. The error bars on the ∆2(t)/2 in 1 ns in Fig. 3.11a and in 10 ns Fig. 3.11b

correspond to 80% confidence intervals of the ∆2(t)/2 calculated in 100 different seg-

ments in the simulations. The ∆2(t)/2 lies well below the intrinsic ⟨r2⟩, especially

at high temperature. At 300 K, the ∆2(t)/2 in 1 ns in Fig. 3.11a is almost half of

the intrinsic long-time MSD ⟨r2⟩, and the ⟨r2⟩ is 30-40% larger than the ∆2(t)/2 in
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Figure 3.12: The MSD ∆2(t)/2 of non-exchangeable hydrogen versus time up to 1
ns as calculated from MD simulations of 100 ns (red solid squares)and
1 µs (blue solid triangles) at (a) 300 K and (b) 200 K.

10 ns in Fig. 3.11b. Similar to Fig. 3.10, it is clearly seen that the ∆2(t) does not

reach its long-time converged value after t = 10 ns, specially at higher temperatures in

Fig. 3.11. For example, at 300 K the increase in the ∆2(t)/2 between 1 ns and 10 ns is

approximately the same as between 0.1 ns and 1 ns and this suggests that convergence

is very slow.

Fig. 3.12 shows the comparison of the ∆2(t) over the time range 0 < t < 1 ns

which is calculated from the 100 ns and 1 µs simulations, at 200 K and 300 K. The

∆2(t) obtained from data taken out to 1 µs is somewhat smaller than that obtained

from the 100 ns simulation, approximately 5-10% small. This suggests that there may

be a structural change in the time scale between 100 ns and 1 µs. However, these small

differences do not appear to affect Iinc(Q, t) nor the fitted intrinsic ⟨r2⟩ significantly.

The consistency between the two intrinsic ⟨r2⟩ obtained from the 100 ns and 1 µs

simulations supports this result.
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3.4.1.1 Center of mass (CM) effect on simulated data

In Sec. 3.4.1, the ⟨r2⟩, which is obtained from a fit of the model I(Q, t) to the

calculated Iinc(Q, t) including all nuclei, is compared with the ∆2(t)/2, which is cal-

culated for only the non-exchangeable H nuclei. The difference between the ⟨r2⟩ and

∆2(t)/2 could be minimal if we fit the model I(Q, t) to a calculated Iinc(Q, t) which in-

cludes only the non-exchangeable H nuclei to obtain the ⟨r2⟩. We expect that diffusion

at low temperatures is less important than that at high temperatures. Hence, we find

that the ∆2(t)/2 appears to have converged after 10 ns and approaches the ⟨r2⟩ rea-

sonably well, at low temperatures, but it lies below the ⟨r2⟩ at high temperatures (e.g.

250 K). From these comparisons it would be interesting to evaluate ∆2(t) out to longer

times to determine whether it converges and to reveal the dynamics contributing. For

example, at 300 K, nearly translational diffusion may be possible for some H in the

protein that are near the surface or near hydration water. It would be interesting to

exclude these H from ∆2(t). In this regard, it is also important to exclude the center of

mass (CM) motion which becomes important at higher temperature and longer times.
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Figure 3.13: The incoherent ISF I(Q, t) with and without the CM motion subtracted
after t = 10 ns at 300 K and at Q = 1.6 Å−1K, obtained from 1 µs MD
simulation.
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Figure 3.14: The MSD ∆2(t)/2, with and without the CM motion subtracted after
t = 1 ns at 300 K, (a) 100 ns MD simulation and (b)1 µs MD simulation.

Fig. 3.13 shows that the incoherent ISF Iinc(Q, t) at 300 K and Q = 1.6 Å−1

(blue line) with and (black line) without CM motion subtracted. In the 100 ns MD

simulation, the impact of the CM motion is negligible, so that the CM effect is not

subtracted in the incoherent ISF data in Fig. 3.2. However, it is significant for the

longer simulation as shown in Fig. 3.13. For the incoherent ISF data in Fig. 3.6, the

CM effect is subtracted by superimposing the protein coordinates onto the starting

structure before analysis. Similarly, the simulated MSD ∆2(t) versus time in Fig. 3.14

shows that the impact on the CM motion is more significant on the results obtained

from the 1 µs MD simulation. The difference between the ∆2(t) with CM motion (solid

triangles) and without CM motion (solid circles) is approximately 5% for the 100 ns

MD simulation and 20% for the 1 µs MD simulation.

Fig. 3.15 shows that values of the ∆2(t) obtained from the 1 µs simulation with

and without the CM motion subtracted. The contribution of the CM motion to the

∆2(t) is small. Values of ri(t) corrected for CM motion were used to calculate Iinc(Q, t).
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Figure 3.15: The MSD ∆2(t)/2, with and without the CM motion subtracted after
t = 1 ns (100 ns MD simulation) and t = 10 ns (1 µs MD simulation).

3.4.2 Resolution Broadened Mean Square Displacement ⟨r2⟩R

We calculated the resolution broadened MSD ⟨r2⟩R to compare with the intrinsic

MSD ⟨r2⟩ obtained from the fit of the model I(Q, t) in Sec. 3.3. A resolution broadened

⟨r2⟩R defined in Chap. 2 is an MSD that includes the contribution of motions over

a finite time only. This finite time, τR, corresponds to the resolution width W as

τR = (8 ln 2)1/2~/W for a Gaussian resolution function. The smallest full-width half-

maximum (FWHM) readily available today is W = 1 µeV which corresponds to τR =

1.5 ns. In order to analyse the impact of a finite resolution width on the MSD, we

show the intrinsic MSD ⟨r2⟩ and the resolution broadened MSD ⟨r2⟩R using the 100 ns

MD simulation.

In the MD studies, the observed MSD ⟨r2⟩exp is usually compared with the res-

olution broadened MSD ⟨r2⟩R which is calculated over the same time period which the

observed MSD having [96, 87, 106]. This provides a way to have an excellent agree-

ment between a simulated and an observed MSD. Specifically, the resolution broadened

MSD, ⟨r2⟩R is obtained from the slope expression in Eq. (1.1) which is used to obtain

the observed MSD ⟨r2⟩exp in neutron scattering experiments. In the calculation of

the ⟨r2⟩R, we replacing Sexp
R (Q, ω = 0) with the calculated resolution broadened DSF
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Figure 3.16: (Upper) The Gaussian resolution function R(t) = exp(−t2/2τ 2R) for
τR = 15, 5, 1.5, 0.15, 0.015 ns corresponding to W =0.1, 0.3, 1, 10, 100
µeV. (Lower) SR(Q, t) = I(Q, t)× R(t) is shown in the lower frame in
Fig. 3.16 for W =0.1, 1, 100 µeV at 300 K.

SR(Q, ω = 0),

⟨r2⟩R = −3
d lnSR(Q, ω = 0)

dQ2
. (3.4)

From Eq. (2.5), the observed, elastic resolution broadened DSF, SR(Q, ω = 0) is

SR(Q, ω = 0) =
1

2π

∫
dtI(Q, t)R(t). (3.5)

Here, R(t) is Fourier transform of the instrumental resolution function R(ω) in time.

For the Gaussian resolution function R(ω), R(t) is typically a Gaussian, R(t) =

exp(−t2/2τ 2R) shown in the upper frame in Fig. 3.16. The resolution function cuts

off I(Q, t) after a time τR = (8 ln 2)1/2~/W for the Gaussian resolution function (see

Appendix A). I(Q, t) is calculated using the fitting parameter in Fig. 3.3 in our model

I(Q, t) in Eq. (3.1). Although SR(Q, t) = I(Q, t)×R(t) was calculated for five different
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Figure 3.17: SR(Q, ω = 0) for W =0.1, 1, 100 µeV at 100, 150, 200, 250 and 300 K.

energy resolution widths, only three energy resolution widths are shown in the lower

frame in Fig. 3.16 as an example. The energy resolution width from left to right is

W = 0.1, 1, 100 µeV. Fig. 3.17 shows SR(Q, ω = 0), which is calculated from Eq. (3.5),

using the calculated I(Q, t) and the Gaussian resolution function, for W =0.1, 1, 100

µeV. Here, we obtain SR(Q, ω = 0) by inserting the calculated ISF in Eq. (3.5) and

then the ⟨r2⟩R is again obtained using the calculated SR(Q, ω = 0) in Eq. (3.4). In

this way an ⟨r2⟩R that has evolved over to a time τR is compared with the observed

MSD ⟨r2⟩exp and the intrinsic MSD ⟨r2⟩.

The intrinsic ⟨r2⟩ and the resolution broadened ⟨r2⟩R of lysozyme are compared

in Fig. 3.18. The resolution broadened MSD ⟨r2⟩R is calculated for five different reso-

lution width. The resolution width from bottom to top is 100, 10, 1, 0.3 and 0.1 µeV.

The ⟨r2⟩R lies below the intrinsic MSD ⟨r2⟩, even for W = 0.1 µeV, corresponding to

τR = 15 ns, a resolution approximately ten times higher than that available today. For

a resolution width W = 1 µeV (τR = 1.5 ns), the ⟨r2⟩ is found to be approximately

twice the ⟨r2⟩R. At temperatures lower than 150 K, the difference between the ⟨r2⟩ and

⟨r2⟩R is negligible. The ratio ⟨r2⟩/⟨r2⟩R is approximately independent of temperature

for T > 150 K. If the relaxation time τ = λ−1 of the protein is less than the resolution

time τR, the significant difference between ⟨r2⟩ and ⟨r2⟩R is not observed. We expect

that ⟨r2⟩R lies below ⟨r2⟩ if τR is less than τ , and ⟨r2⟩R reaches ⟨r2⟩ if τR is longer

than τ . The relaxation time of lysozyme corresponding the relaxation parameter λ of
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Figure 3.18: The present intrinsic MSD ⟨r2⟩ atQ = 0.2 Å−1 and resolution broadened
MSD ⟨r2⟩R calculated from the same model for the energy resolution
widths, W , 0.1, 0.3, 1, 10 and 100 µeV.

lysozyme shown in Figs. 3.3 and 3.7. From these results, we can say τ = λ−1 ≥ 1 ns at

low Q and temperatures above 170 K. It is noted that the the reason of observing the

longer τ at low temperature could be that the system has lower energy at low temper-

atures. In respect of these results, resolution broadening is important at W = 1 µeV.

The functional form of C(t) in the model I(Q, t) is also important for the sensitivity

of the resolution broadening. The sensitivity of the C(t) function will be discussed in

Sec. 3.5.

In Fig. 3.19, the intrinsic MSD ⟨r2⟩ and the resolution broadened MSD ⟨r2⟩R are

compared with previous simulated values of ⟨r2⟩R for lysozyme, calculated by Roh et

al. [87]. The ⟨r2⟩R at low Q (Q = 0.2 Å−1) and W = 1 µeV is calculated from

their simulations of lysozyme which is hydrated to h = 0.43. In Fig. 3.19, the solid

circles and squares represent the intrinsic MSD ⟨r2⟩ in Sec. 3.3, the open and solid

triangles represent the ⟨r2⟩R at Q = 0.2 Å−1 and W = 1 µeV for h = 0.40 and h =

0.43, respectively. The resolution broadened MSD ⟨r2⟩R lies below the intrinsic MSD

⟨r2⟩. The excellent agreement is observed between the resolution broadened MSDs. As

expected, the ⟨r2⟩R for h = 0.43 is larger than the ⟨r2⟩R for h=0.4 due to the sensitivity
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Figure 3.19: The present intrinsic MSD ⟨r2⟩ at Q = 0.2 Å−1 (obtained from fits to
(1) 100 ns (solid squares) and (2) 1 µs MD simulations (solid circles))
and the present resolution broadened MSD ⟨r2⟩R (W = 1 µeV)(open
triangles) for lysozyme at h = 0.40 compared with simulated ⟨r2⟩R at
W = 1 µeV by Roh et al. 2006 [87] for lysozyme at h = 0.43 (solid
triangles).

to hydration level.

In order to clarify the sensitivity to hydration level, we used the observed MSD

⟨r2⟩exp data which is taken from Reff. [87] in Fig. 3.20. Similar to Fig. 3.19, we compare

the present intrinsic ⟨r2⟩ with the ⟨r2⟩exp observed experimentally in lysozyme using

an energy resolution width W = 1 µeV in Fig. 3.20. The observed ⟨r2⟩exp of lysozyme

at four hydration levels, h = 0.05, 0.18, 0.3 and 0.45, and the present ⟨r2⟩ are shown

in Fig. 3.20. The observed ⟨r2⟩exp are very sensitive to the hydration level for T > TD.

In Fig. 3.20, the ⟨r2⟩ for h = 0.4 lies above but close to the observed ⟨r2⟩R for h = 0.45

and significantly higher than the observed ⟨r2⟩exp for lower hydrations, as expected.

Comparing the calculated ⟨r2⟩R in Fig. 3.19 with the observed ⟨r2⟩exp in Fig. 3.20,

we see that the calculated ⟨r2⟩R lies somewhat below but close to the experimental

values for similar levels of hydration. Broadly the agreement between the resolution

broadened ⟨r2⟩R and observed ⟨r2⟩exp is very good, both in terms of the absolute value

and in the temperature dependence.
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Figure 3.20: The present intrinsic MSD ⟨r2⟩ at Q = 0.2 Å−1 for lysozyme (h = 0.4),
as in Fig. 3.13, compared with the experimental resolution broadened
MSD ⟨r2⟩exp for W = 1 µeV for lysozyme at different hydration levels
(h) observed by Roh et al. 2006 [87].

3.4.2.1 Dynamical transition

Similar to Sec. 2.3.2, we discuss the impact of a finite energy resolution width

W of employed instrument on the DT temperature TD. Fig. 3.21 shows the DT tem-

perature on the intrinsic MSD ⟨r2⟩ and the resolution broadened MSD ⟨r2⟩R. The

intrinsic MSD ⟨r2⟩ for lysozyme is obtained from the fit of the model I(Q, t) to the

calculated Iinc(Q, t) in Sec. 3.3. The intrinsic MSD shown in Figs. 3.5 and 3.9 displays

a clear DT at a transition temperature, TD, 220 K. It is a long-time, equilibrium MSD

that reflects the energy landscape of lysozyme, so that this indicates that the DT is

an intrinsic property of the protein rather than being simply a time window effect.

Fig. 3.21 shows that the resolution broadening shifts the DT temperature TD to higher

temperatures, similar to previous researches [73, 50, 106, 16].

For a finite resolution width W , motions in the protein in a limited time τR =

(8 ln 2)1/2~/W contribute to the resolution broadened MSD ⟨r2⟩R. The intrinsic MSD

⟨r2⟩ is the resolution broadened MSD ⟨r2⟩R calculated for zero resolution width. For

a zero resolution width, even slow, long time motions are contributed to the MSD, so
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Figure 3.21: The intrinsic MSD (W = 0) and resolution broadened MSD ⟨r2⟩R for W
= 1 µeV and W = 100 µeV with TD identified. The MSD are obtained
from fits to experiment in Ref. [102] using a model I(Q, t) that has a
simple exponential decay function C(t) = exp[−λt].

that ⟨r2⟩R for a finite resolution width is always smaller than ⟨r2⟩ at a given tempera-

ture. Slow motions observed longer time than τR does not contribute to the resolution

broadened MSD ⟨r2⟩R. τR corresponds to the energy resolution width W , hence the

DT is shifted to higher temperatures for higher energy resolution widths. In Fig. 3.21,

the impact of the resolution width on the TD is illustrated by comparing the intrinsic

MSD ⟨r2⟩ with the ⟨r2⟩R for resolution widths W = 1 eV and W = 100 eV and TD is

explicitly identified. The TD for the ⟨r2⟩ is 220 K and shifts to 240 K for the energy

resolution width W = 100 µeV, corresponding to τR = 15 ps.

The degree of impact of W on ⟨r2⟩R depends on the rate at which correlations

decay in the protein. In the model I(Q, t), the decay rate depends on the functional

form of C(t). In Eq. (3.1), C(t) is chosen as a stretched exponential function which

has a long time tail, particularly for small β. This indicates that the reduction of

⟨r2⟩R is significant for small energy resolution width W , corresponding to long τR. But

the rate of change of ⟨r2⟩R with W is gradual. However, for a simple decay function

C(t) in Chap. 3 [102], the reduction of ⟨r2⟩R below ⟨r2⟩ begins at a larger value of
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W and thereafter the reduction increases rapidly with increasing W . The lower the

resolution, the larger the apparent TD. Using this simple model, the increase of the

apparent TD with increasing W can also be readily understood. From Eq. (2.17), the

ratio between ⟨r2⟩R and ⟨r2⟩ becomes

⟨r2⟩R
⟨r2⟩

= [1 +
W

I∞λ
]−1 ≃ [1− W

I∞λ
+ ...]. (3.6)

With increasing temperature, the λ increases, as shown in Fig. 3.4 and Fig. 3.8, and

the ratio W/(I∞λ) decreases for a given W . At higher temperatures, the impact of the

resolution width is significant, thus ⟨r2⟩R is decreased least by a finite resolution and

the larger ⟨r2⟩R/⟨r2⟩ is observed.

3.5 Sensitivity of the model to C(t)
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Figure 3.22: Comparison of relaxation functions: a simple exponential (blue dashed
dotted line), a stretched exponential with β = 0.5 (green dashed line), a
stretched exponential with β = 0.21 (black dotted line) and the Mittag-
Leffler function (red solid line).

In Sec. 2.3.3, we used a Gaussian C(t) and a Gaussian resolution functions in

our model to investigate the sensitivity of our results. Here, we compare four forms

of C(t), simple exponential function, stretched exponential function with β = 0.5
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and β = 0.23, and the Mittag-Leffler function [8], in Fig. 3.22. In Sec. 3.2, C(t) in

Eq. (3.1) provides a reasonable fit of the model I(Q, t) to the calculated Iinc(Q, t) is the

stretched exponential function with a small β, i.e. β = 0.23. As shown in Fig. 3.22, the

simple exponential function has a short tail, and the tail of the stretched exponential

function becomes longer with decreasing β value. For the simple exponential function

used in Chap. 2, the correlations decreases rapidly on a time scale τ = λ−1. It was

not possible to obtain a good fit to Iinc(Q, t) using a simple exponential function or

a stretched exponential function with large β. Similar to the stretched exponential

function for a small β, the Mittag-Leffler function [8] has a long range tail reaching out

to times a factor of ten beyond t = λ−1. This indicates that correlations in proteins

continue for times well beyond τ = λ−1. For this reason, when a stretched exponential

function with a small β is used, we expect that ⟨r2⟩ lies above ⟨r2⟩R even when λ−1 ≃

τR.

3.6 Discussion

We have proposed a fitting method to obtain the intrinsic long-time MSD in

proteins from finite time simulations. The intrinsic MSD is uniform and consistent

value of MSD. The intrinsic MSD represents the equilibriumMSD as would be predicted

by statistical mechanics and the energy landscape, assuming the protein does not go

through major structural changes. The intrinsic MSD of lysozyme is obtained from

the fit of the ISF model to calculated data from simulations of 100 ns and 1 µs. The

perfect agreement between intrinsic MSDs obtained from simulations of 100 ns and 1

µs is observed. The intrinsic, long time MSD of lysozyme is found to be approximately

twice the MSD that develops after a time of 1.5 ns, as would be observed using neutron

instruments with an energy resolution width of W = 1 µeV. The intrinsic MSD shows

a break in slope with temperature at 220 K as does the finite time MSD. The break

at 220 K which is arisen from additional motions at high temperatures is denoted as

dynamical transition. These results indicate that the intrinsic MSD is independent of

simulation time, and that the dynamical transition is not just a time window effect.
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Chapter 4

MOTIONAL DISPLACEMENT IN PROTEINS, THE ORIGIN OF Q
DEPENDENT VALUES

As stated in previous chapters, the MSD of nuclei in proteins is extensively

investigated using neutron scattering methods. Observed is the elastic scattering (ω =

0) component of the dynamical structure factor (DSF), Sexp
R (Q, ω = 0), where Q is

the wave vector transfer in the scattering. The data is typically analysed assuming

that S(Q, ω = 0) = exp(−1
3
Q2⟨r2⟩) where ⟨r2⟩ is an average MSD of the nuclei in the

protein. Since hydrogen (protons) have a large incoherent scattering cross, 10-20 times

that of other nuclei in the protein, the average MSD ⟨r2⟩ is dominated by that of H

in the protein (and in its associated hydration water if any). The MSD ⟨r2⟩ is equal

to the the observed MSD ⟨r2⟩exp in Chap. 2 and Chap. 3. Typically, the MSD ⟨r2⟩ is

extracted from the observed DSF Sexp
R (Q, ω = 0) in the usual way as in Eq. (1.1).

The MSD obtained using Eq. (1.1) typically depends on the value of Q at which

the derivative is taken. In short, the observed ⟨r2⟩ is Q dependent. The dependence

is unlikely to be physical but rather arises from some over simplification or error in

the analysis of the data. Our goal in this chapter is to determine the origin of this Q

dependence. It is to propose methods to obtain Q-independent average ⟨r2⟩ and to

use the observed Q dependence to provide information on the distribution of the MSD

within the protein.

The upper frame in Fig. 1.3 shows the lnSexp
R (Q, ω = 0) versus Q2 observed by

Daniel et al. in glutamate dehydrogenase [17]. The lines are a guide to the eye through

the observed lnSexp
R (Q, ω = 0). Clearly a straight line versus Q2 is not observed as

is required to obtain a Q independent ⟨r2⟩. The observed ⟨r2⟩ generally decreases

with increasing Q. The lower frame in Fig. 1.3 shows a Q-dependent ⟨r2⟩ = ⟨x2⟩
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obtained from a simulated value of SR(Q, ω = 0) in lysozyme by Calandrini et al.

at ambient temperature [8]. In addition to these examples, Fig. 3.7a shows values

of ⟨r2⟩ obtained by us from fits of a model I(Q, t) that contains I(Q, t = ∞) =

exp[−1
3
Q2⟨r2⟩] to simulated Iinc(Q, t) for lysozyme. The fitted values of ⟨r2⟩ clearly

decrease with increasing Q as do observed values, specially at high temperature.

The dependence of ⟨r2⟩ on Q could arise from three sources. Firstly, the

S(Q, ω = 0) normalized by S(Q = 0, ω = 0) is the infinite time limit of the inco-

herent intermediate scattering function (ISF), I(Q, t) = ⟨exp[−iQ · [r(t)− r(0)]⟩, i.e.

S(Q, ω = 0)

S(Q = 0, ω = 0)
= I(Q, t = ∞)

= ⟨exp(−iQ · r(∞))⟩⟨exp(iQ · r(0))⟩

= ⟨exp(−iQ · r)⟩⟨exp(iQ · r)⟩

= ⟨exp[−⟨[Q · r]2⟩+ 1

12
(⟨[Q · r]4⟩ − 3⟨[Q · r]2⟩2) + · · · ].

The expression S(Q, ω = 0) = exp[−1
3
Q2⟨r2⟩] for the normalized DSF is ob-

tained by neglecting all the higher order cumulants beyond the second order Gaussian

cumulant and assuming cubic or spherical symmetry so that ⟨[Q.r]2⟩ = 1
3
Q2⟨r2⟩. The

Q dependence could arise from making the Gaussian approximation to I(Q, t = ∞).

Secondly, a protein contains over a thousand H in a variety of environments having

wide spectrum of MSD. We approximate this diverse

I(Q, t) =
N∑
j=1

⟨exp(−iQ · (rj(t)− rj(0))⟩ (4.1)

by a single I(Q, t) = ⟨exp[−iQ · [r(t) − r(0)]⟩ when we use Eq. (1.1). That is, we

ignore the dynamical diversity of the H in protein and represent all the H by a single

scatterer. Thirdly, there could be a genuine dependence on Q. That is a specific Q

implies that length scales up to L = 2π/Q only can be sampled. If the motional

displacement ⟨r2⟩1/2 is longer than L, the observed ⟨r2⟩1/2 could limited to L. For

example, Q = 2 Å−1, ⟨r2⟩ could limited to lengths of order ⟨r2⟩ < π2 Å2. From this

argument we expect only very large MSD to limited by using a Q of say 2 Å−1.
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In the following sections we investigate the impact of making the Gaussian ap-

proximation, of neglecting dynamical diversity and of possible limits to ⟨r2⟩ at specific

Q values. We do this by simulating the protein lysozyme and calculation Iinc(Q, t) aris-

ing from all H in lysozyme and then making and not making the above approximations

in the analysis of Iinc(Q, t).

4.1 Possible origins of Q-dependent MSD

In Chap. 3, we propose a method to extract the intrinsic, long time MSD

⟨r2⟩ from the simulated incoherent intermediate scattering function (ISF), Iinc(Q, t).

The incoherent ISF Iinc(Q, t) is observed in neutron scattering experiments and calcu-

lated from simulations. From Eq. (2.2), the full ISF for only H is written as

Iinc(Q, t) =
1

N

N∑
i=1

⟨e−iQ·ri(t)eiQ·ri(0)⟩, (4.2)

where the sum is over H in the protein. In the classical limit, Iinc(Q, t) in Eq. (4.2)

becomes

Iinc(Q, t) =
1

N

N∑
i=1

⟨eiQ·(ri(t)−ri(0))⟩ = 1

N

N∑
i=1

⟨eiQ·∆i(t)⟩, (4.3)

where ∆i(t) = ri(t) − ri(0). In the analysis of neutron scattering experiments, it is

usual to represent the ISF in Eq. (2.2), which is summed over all nuclei, by a global

I(Q, t) as shown in Eq. (2.3). Following the same procedure we construct a model of

I(Q, t) in Chap. 2 and modify this model replacing the stretched exponential function

C(t) = exp(−(λt)β) with simple exponential function C(t) = exp(−(λt)) in Chap. 3. In

the model I(Q, t) in Eq. (3.1), we define the intrinsic, long-time MSD as the ⟨r2⟩ that

appears in the ∞-time limit of I(Q, t).

As stated in Chap. 3, two assumptions in the model of I(Q, t) in Eq. (3.1) are

made. (1) The cumulant expansion ⟨exp(iQ · r)⟩ is

⟨exp(iQ · r)⟩ = exp[−1

2
⟨[Q · r]2⟩+ 1

4!
[⟨[Q · r]4⟩ − 3⟨[Q · r]2⟩2] + · · · ]. (4.4)

In the model I(Q, t), we keep only the first term and neglect the higher cumulant

terms. This is denoted the Gaussian approximation. (2) Iinc(Q, t) arising from H in a
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diverse range of environments can be represented by a global I(Q, t) in which a single

scattering center represents whole protein. This indicates that dynamical diversity is

neglected in the model I(Q, t). The dynamical diversity of H in proteins is denoted

heterogeneity. We analyse the data Iinc(Q, t) using a I(Q, t) which is valid for a single

scatterer.

In regards of these assumptions, the Q-dependence of the global MSD ⟨r2⟩ could

arises from three possible reasons. (1) Gaussian approximation; In the cumulant

expansion, the incoherent ISF Iinc(Q, t) in Eq. (4.3) is written as

Iinc(Q, t) =
1

N

N∑
i=1

e−
1
2
⟨[Q·∆i(t)]

2⟩+ 1
4!
[⟨[Q·∆i(t)]

4⟩−3⟨[Q·∆i(t)]
2⟩2]+···. (4.5)

where ∆i(t) = ri(t) − ri(0). The model of the ISF in Eq. (3.1) includes only the

Gaussian or lowest order (Q2) term in a cumulant expansion of I(Q,∞) (see Appendix

B),

I(Q,∞) = e−⟨[Q·r]2⟩+ 1
12

[⟨[Q·r]4⟩−3⟨[Q·r]2⟩2]+..., (4.6)

with ∆2(t) = 2⟨r2⟩ and ⟨[Q · r]2⟩ = 1
3
Q2⟨r2⟩ for a cubic or spherically symmetric

system. The whole expression of the incoherent ISF Iinc(Q, t) includes all cumulant

terms, whereas the model of I(Q, t) includes only the Gaussian cumulant term. If

the fourth cumulant (Q4) in Eq. (4.5) is significant and neglected then a Q dependent

⟨r2⟩exp would be obtained when we use the I(Q, t) modelincludes only the Gaussian

term.

The importance of fourth cumulant is explained in Appendix E. The magnitude

of the fourth cumulant can be characterized by the kurtosis of the motional distribution,

γα = [⟨r4α⟩−3⟨r2α⟩]/⟨r2α⟩2 when Q is chosen along the α axis, α = x, y, z. In the cumulant

expansion of exp(iQ · (ri(t)− ri(0))), we keep the first two terms

⟨exp(iQ ·∆i(t))⟩ = exp(−1

2
µ2 +

1

4!
µ4), (4.7)
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where ∆i(t) = ri(t)− ri(0),

µ2 = m2,

µ4 = m4 − 3m2
2,

m2 = ⟨(Q ·∆i(t))
2⟩,

m4 = ⟨(Q ·∆i(t))
4⟩. (4.8)

The kurtosis, that shows the contribution of the fourth cumulant term, is

γα =
µ4α

µ2
2α

=
m4α

m2
2α

− 3, (4.9)

where m2α = ⟨[Qα ·∆i(t)]
2⟩, m4α =

∑
i⟨[Qα ·∆i(t)]

4⟩ and Qα = Qα, α = x, y, z.

(2)Neglect of dynamical diversity. The full Iinc(Q, t) in Eq. (4.3) is the sum

over thousands of scattering centers (e.g. 1392 H in lysozyme) which have a spectrum

of dynamics and MSDs. In analysis of data or simulation, a model ( e.g. I(Q, t) in

Eq. (3.1)) representing a single scattering center is generally fitted to the Iinc(Q, t).

The model neglects the dynamical diversity in the protein and this could lead to a

Q-dependent MSD. Dynamical diversity has been discussed in Refs. [29, 68, 108].

(3) The lengths observable may be limited by Q . The Q-value represent

the length-scale of motions in proteins. The low Q values leads to observe the long-

distance motion. For example, diffusion up to lengths λ ∼ 2π/Q only can be observed

by a technique that has wave vector Q. At Q ∼ 2 Å−1, large MSDs greater than

⟨r2⟩ & (2π/Q)2 ∼ 9 Å2 would not be observable. This could lead to an apparent MSD

that decreases with increasing Q.

Our goal is to determine which of these approximations leads to an MSD that

depends on Q. To test the Gaussian approximation (GA), we define the Gausssian

approximation to Iinc(Q, t):

IiG(Q, t) =
1

N

N∑
i=1

e−
1
2
⟨[Q·∆i(t)]

2⟩. (4.10)

which includes only the first cumulant, Gaussian, term.
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We calculate the ISF data Iinc(Q, t), includes all cumulants, and the IiG(Q, t),

which is the Gaussian approximation to Iinc(Q, t) and does not include the higher

cumulants, for H only in the sum over j. Then, we fit the model I(Q, t) in Eq. (3.1)

to Iinc(Q, t) and IiG(Q, t) to obtain the intrinsic, long-time MSD from these two data

set. The impact of the higher cumulants which may contribute significantly to ISF and

DSF is investigated by comparing the MSD obtained by fitting the model of I(Q, t) to

the whole expression of the incoherent ISF Iinc(Q, t) and the incoherent ISF including

only the first cumulant term, IiG(Q, t).

As stated above, the dynamical diversity studied by different groups in the liter-

ature [29, 68, 108] may make a significant contribution to the ISF Iinc(Q, t). Neglecting

the dynamical diversity in the model I(Q, t) leads to a Q-dependence. To test the dy-

namical diversity, we evaluated the ISF Iinc(Q, t) in Eq. (4.2) for single protons (single

H ) in lysozyme. We expect that no dynamical diversity for a single H. Then, we ex-

pand our investigation here to single protons having large MSD to test whether ⟨r2⟩

can be limited by the length λ ∼ 2π/Q observable. The Q-value is the length scale of

the motions. Thus, there could be an intrinsic Q dependence in the MSD, i.e. at low

Q motions over a longer distance are included which leads to a larger MSD at low Q.

4.2 The impact of the Gaussian approximation for all H in proteins

To investigate the impact of the higher cumulants in the incoherent Full ISF

Iinc(Q, t) on the Q-dependence of the MSD ⟨r2⟩, we calculate the ISF Iinc(Q, t) (in-

cludes all cumulants), and IiG(Q, t) (i.e keeping only the Gaussian term in Iinc(Q, t))

for all H in hydrated lysozyme. The Iinc(Q, t) in Eq. (4.3) and IiG(Q, t) in Eq. (4.10)

are calculated by using the 100 ns MD simulation at 300 K. To improve statistic, we

divide the trajectory obtained from 100 ns MD simulation to 1000 segment by chang-

ing the starting time. Then, the Iinc(Q, t) and IiG(Q, t) are recalculate averaged over

Iinc(Q, t) and IiG(Q, t) in these segments. The incoherent ISF Iinc(Q, t) in Eq. (4.3)

depends on the Q vector. The Iinc(Q, t) observed in neutron scattering experiments is

averaged over Q vectors which have a same magnitude. In the calculation of Iinc(Q, t),
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Figure 4.1: LHS : Iinc(Q, t) and IiG(Q, t) calculated for all H in lysozyme for 0 < t <
1 ns obtained from a 100 ns MD simulation at 300 K. Comparison of the
Full Iinc(Q, t) (red solid lines) containing all cumulants and the Gaussian
IiG(Q, t) (blue solid lines) containing only second order cumulant term.
RHS : The percentage of the difference between the Full Iinc(Q, t) and
the Gaussian IiG(Q, t). From top to bottom on LHS and from bottom
to top on RHS, Q values are 0.4, 0.8, 1.2, 1.6 and 2 Å−1.

the average is taken over Iinc(Q, t) for different Q vectors having same magnitude (see

Appendix F ). Then, we fit the model of I(Q, t) in Eq. (3.1) to Iinc(Q, t) and IiG(Q, t)

to obtain the intrinsic MSD for each.

The comparison of the Full Iinc(Q, t) and Gaussian IiG(Q, t) for all H at ten

different Q values is shown on the LHS in Fig. 4.1. The Q values from top to bottom

are 0.4, 0.8, 1.2, 1.6 and 2 Å−1. The red and blue solid lines represent the Iinc(Q, t)

and IiG(Q, t), respectively. As shown on the RHS in Fig. 4.1, the difference between

Iinc(Q, t) and IiG(Q, t) is a little, less than 1% at low Q values and increases to 8% at

Q= 2 Å−1. This difference arises from the contribution of higher cumulants.

Fig. 4.2a and Fig. 4.2b show the fit of the model I(Q, t) to the Iinc(Q, t) and to

IiG(Q, t) for all H at 300 K, respectively. β is chosen as 0.24 for these fits. The fits are

good. The best fit values of ⟨r2⟩ and λ in the model I(Q, t) in Eq. (3.1) are shown in

Fig. 4.2c and Fig. 4.2d. The blue solid circles represent the ⟨r2⟩ and λ obtained from
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Figure 4.2: (Upper) The fit of I(Q, t) to (a) Iinc(Q, t) and (b) IiG(Q, t) for 0 < t < 1
ns and for all H with β = 0.24. (Lower)(c) The intrinsic MSD ⟨r2⟩ and
(b)relaxation parameter λ. (Blue solid circles) the parameter obtained
from the fit in (a). (Red solid square) for the fit in (b). The solid lines
are a guide to the eye.

the fit of the model I(Q, t) to IiG(Q, t), and the red solid squares represent the ⟨r2⟩

and λ, obtained from the fit of the model I(Q, t) to Iinc(Q, t). The MSD ⟨r2⟩ obtained

from fitting the single scatterer model of I(Q, t) in Eq. (3.1) to Iinc(Q, t) and IiG(Q, t)

are almost same at low Q value. They differ by approximately 15% at Q = 2 Å−1, but

have effectively the same Q dependence. Both of MSDs ⟨r2⟩ are Q-dependence. This

suggests that the higher cumulants are not significant. The Q-dependence of ⟨r2⟩ does

not arise from using Gaussian approximation (for lysozyme at least).
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4.3 The impact of the Gaussian approximation and dynamical diversity,

heterogeneity for an individual H in proteins

Figure 4.3: Chosen hydrogens in two lysozyme molecules.

In this section, we focus on an individual H in lysozyme. We choose 12 hydro-

gens from our simulation system including randomly oriented two lysozyme molecule.

These 12 hydrogens shown in Fig. 4.3 are non-exchangeable hydrogens in lysozyme. 10

of 12 hydrogens are chosen on sidechain and 2 of them on backbone in lysozyme.

For these single hydrogens in Fig. 4.3, we calculated the ISF Iinc(Q, t) (in-

cludes all cumulants), and IiG(Q, t) (i.e keeping only the Gaussian term in Iinc(Q, t) in

Eq. (4.3)). However, we only show the results for two single hydrogens. The compar-

ison of the Full Iinc(Q, t) and the Gaussian IiG(Q, t) for H in ILE55 and in VAL109

is shown in the upper frame in Fig. 4.4. The Q values from top to bottom are 1, 2,

3 and 4 Å−1 for H in ILE55 and 0.4, 0.8, 1,2 and 1.6 Å−1 for H in VAL109. The red

and blue solid lines represent the Iinc(Q, t) and IiG(Q, t), respectively. The difference

between the Full Iinc(Q, t) and the Gaussian IiG(Q, t) is shown as percentage in the

lower frame in Fig. 4.4. The difference between Iinc(Q, t) and IiG(Q, t) is around 2%
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Figure 4.4: (Upper) The comparison of (red solid line) Iinc(Q, t) and (blue solid line)
IiG(Q, t). (Lower) The difference between Iinc(Q, t) and IiG(Q, t). H in
ILE55 and VAL109.

at Q= 4 Å−1 for H in ILE55, however it reaches 40% at Q= 1.6 for H in VAL109 due

to the contribution of the methyl group rotation.

Fig. 4.5 shows that the best fit values of ⟨r2⟩ and λ for an individual H in ILE55

and in VAL109, respectively. The blue solid circles represent the ⟨r2⟩ and λ, obtained

from the fit of the model I(Q, t) to IiG(Q, t), and the red solid squares represent the

⟨r2⟩ and λ, obtained from the fit of the model I(Q, t) to Iinc(Q, t). The fits are good as

much as the fits in the upper frame in Fig. 4.2. β value which is used in the fits for H

in ILE55 and in VAL109 is 0.148 and 0.29, respectively. The ⟨r2⟩ for H in ILE55 and in

VAL109 remains Q dependent when obtained from a fit to the Gaussian approximation
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IiG(Q, t). They are almost same for H in ILE55 and differ by approximately 40% at

Q = 1.6Å1 for H in VAL109. They also have effectively the same Q dependence.

These results indicates that neglecting higher cumulants in Iinc(Q, t) does not lead to

Q independent ⟨r2⟩. In Fig. 4.5, we see that λ is also Q dependent and increases with

increasing Q2.
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Figure 4.5: (Upper) The parameters, (LHS) ⟨r2⟩ and (RHS) λ, obtained from fits
to the Iinc(Q, t) and IiG(Q, t) in Fig. 4.4a. The MSD remains Q depen-
dent when obtained from a fit to the Gaussian approximation IiG(Q, t).
The blue solid circles represent the parameters obtained from fits to
theIinc(Q, t). The blue solid squares represent the parameters obtained
from fits to the IiG(Q, t). (Lower) Same as Upper frame for Iinc(Q, t) and
IiG(Q, t) in Fig. 4.4b.

Fig. 4.6 shows the intrinsic MSD ⟨r2⟩ obtained from the fit of the model I(Q, t)

to the Full Iinc(Q, t) for an individual H in five different residue in lysozyme. These
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are ALA122, THR40, LYS33, LYS116 and VAL109. For single H that has an average

or smaller MSD, the fitted MSD ⟨r2⟩ is independent of Q, as shown on the LHS in

Fig. 4.6. For hydrogens having large MSD (e.g. ⟨r2⟩ ∼ 5 Å2 at Q → 0) on the RHS

in Fig. 4.6, the fitted ⟨r2⟩ can be somewhat Q dependent. The MSD ⟨r2⟩ is somewhat

smaller at larger Q as if the MSD is limited at large Q. However, the effect is not large.

Also since there are so few H that have large MSD, this effect contributes little to the

global Iinc(Q, t) of the protein. This indicates that the apparent Q dependence of the

MSD ⟨r2⟩ arises from dynamical diversity. It arises from fitting a model ISF I(Q, t)

(or DSF) representing a single scatterer to data which is a collection of scattering from

a large number of dynamically diverse scatters (H ) in the protein. When the same

model is fitted to Iinc(Q, t) of individual H in the protein (no DD), a Q independent

MSD is obtained, specially for hydrogens having an average or smaller MSD.
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Figure 4.6: (LHS) A Q independent ⟨r2⟩ is obtained from simulations of a single
H (no dynamical diversity). The solid circle is H in ALA122, the solid
diamond is H in THR40 and the open star is H in LYS33. RHS : If the
⟨r2⟩ of a single H is large enough some Q dependence can remain but
there are few such H. The solid square is H in LYS116 and the solid
triangle is H in VAL109.

Fig. 4.7 shows that the kurtosis γα along the α axis, α = x, y, z for four individual

H in ILE55, TRP40, ARG68 and VAL109. The kurtosis changes between ±0.2 for H
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Figure 4.7: The kurtosis term γ along x (red open squares), y(open black squares)
and z (blue open triangle) for a single H in lysozyme for 0 < t < 1 ns
obtained from a 100 ns MD simulation at 300 K. H in ILE55, THR40,
ARG68 and VAL109.

in ILE 55, but it changes between around 0 and 3 for H in VAL109. The larger kurtosis

is observed for a single H which has the larger MSD. This result indicates that the

higher order terms are significant for an individual H which has a large MSD.

The ⟨r2⟩ obtained from simulations of the Full Iinc(Q, t) and the Gaussian ap-

proximation IiG(Q, t) from Eq. (4.9) for an individual H in ALA122 and THR40 is

shown on the LHS in Fig. 4.8. The blue solid circles represent the ⟨r2⟩ and λ, obtained

from the fit of the model I(Q, t) to IiG(Q, t), and the red solid squares represent the

⟨r2⟩ and λ, obtained from the fit of the model I(Q, t) to Iinc(Q, t). For H in ALA122

and THR40, the ⟨r2⟩ obtained from the fit of the model I(Q, t) to Iinc(Q, t) somewhat
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Figure 4.8: LHS : The ⟨r2⟩ obtained from the fit of the model I(Q, t) to the Full
Iinc(Q, t) (solid squares)and the Gaussian approximation IiG(Q, t) (solid
circles) for an individual H in ALA122 and THR40. RHS : The dis-
tribution of the MSD of individual H in lysozyme calculated using
∆2(t)/2 = ⟨(r(t) − r(0))2⟩/2 at time t = 1 ns at 300 K. The MSD for a
single H, ∆2(t)/2 = ⟨(r(t)−r(0))2⟩/2, out to time 1 ns is calculated from
a 100 ns MD simulation.

increases with increasing Q-value since the ⟨r2⟩ obtained from the fit of the model

I(Q, t) to IiG(Q, t) decreases with increasing Q-value. They differ slightly at even high

Q values. On the RHS in Fig. 4.8, the distribution of the MSD of individual H in

lysozyme calculated using ∆2(t)/2 = ⟨(r(t) − r(0))2⟩/2 at time t = 1 ns at 300 K is

shown. The distribution is similar to a sum of two Gaussian distribution functions

with different centers. It is noted that most of hydrogens have a MSD between 0.2 and

2, and the number of hydrogens having large MSD is few.

4.4 Discussion

We find that the Gaussian approximation to the elastic incoherent DSF,

S(Q, ω = 0) = I(Q, t = ∞) = exp(−1

3
Q2⟨r2⟩), (4.11)

is an accurate approximation out to Q = 2 - 3 Å for H in lysozyme. The approximation

is tested firstly by calculating the full incoherent function Iinc(Q, t) and the Gaussian
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approximation to it, IiG(Q, t), for all H and showing (1) that the difference between

the two is small and (2) that the MSD ⟨r2⟩ obtained from the two differs insignificantly.

It is secondly tested by calculating the leading term beyond the Gaussian, the fourth

cumulant, and showing that the fourth cumulant is negligible except for a few isolated H

that have very large MSD. The Q dependence of the MSD obtained from experiments

does not arise from making the Gaussian approximation to S(Q, ω = 0).

We find that the apparent Q dependence of observed MSD arises from neglecting

the dynamical diversity of H in a protein in the analysis of data. That is, a model

I(Q, t) or S(Q, ω) representing a single scattering center is fitted to data arising from

thousands of H in diverse dynamical environments having a wide spectrum of MSD

values. It is the use of a single scatterer model to describe a spectrum of scatterers

that leads to a Q dependent average MSD. If the same model is fitted to data arising

from a single H (any single H ), then a Q independent ⟨r2⟩ is obtained.

For a few exceptional individual H that have very large MSD, the extracted

⟨r2⟩ remains somewhat Q dependent. In the these exceptional cases, the observed

length could be limited by Q. There are so few such H that this does not affect the

observed ⟨r2⟩.

The Q dependence can be used to infer and extract some information on dynam-

ical diversity. For example, the Q dependence of the MSD is larger at high temperature

than at low temperature. This shows that the dynamical diversity is larger at high

temperature. This may be expected since the average MSD is larger indicating that

spread of MSDs could be larger. Calculating the histogram of MSDs as a function of

temperature would display the temperature dependence of the dynamical diversity. A

future project is reproduce the Q dependence of the MSD using models of the distri-

bution of MSDs.
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Chapter 5

VIBRATIONAL DYNAMICS OF HYDROGEN IN PROTEINS

As seen in previous chapters the MSD in proteins depends on temperature. At

low temperatures, the MSD increases linearly with increasing temperature. The MSD

arising from vibration is given as

⟨u2⟩ = kBT

ϕ
(5.1)

in the classical limit and in a harmonic approximation [6, 25], where kB is the Boltz-

mann constant, T is the temperature and ϕ is a harmonic force constant. At higher

temperatures, a significant increase in the slope of the MSD is observed which could also

be expressed using Eq. (5.1) using a reduced force constant ϕ at higher temperatures.

In this chapter, our goal is to illustrate that a marked change in the slope of

⟨u2⟩ with temperature can arise from the vibrational dynamics of a particle in an

anharmonic potential well using the self-consistent harmonic (SCH) theory [14, 37, 38,

57]. We consider a single particle in a 1D potential well and investigate the temperature

dependence of the MSD. In the harmonic approximation the force constant ϕ is given

by the second derivative of the potential V (u) evaluated at the bottom of the well,

ϕ = ∂2V
∂u2 |u=0. In the SCH model, the optimum harmonic force constant ϕ is obtained

as the second derivative of the potential averaged over the vibrational distribution of

the particle in the well. In a Gaussian potential, as in most potentials, the second

derivative of V (u) decreases as u increases. In this way SCH model force decreases as

the vibrating particle samples larger values of u in the potential. This reduction in the

force constant suggests a gradual increase in the slope of the MSD with temperature.

An abrupt change in slope of ⟨u2⟩ with temperature can also be obtained if a potential
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which has hard wall and soft wall components in it. In this model, the effective force

constant, ϕ, can be adjusted as decrease with temperature, and this leads to an increase

in slope of ⟨u2⟩ with temperature at TD.

The SCH theory is applied to investigate the dynamics of a single particle in

an anharmonic potential. The aim is to reproduce the change in the slope of MSD

⟨u2⟩ versus temperature taking account of vibration of a single particle in an an-

harmonic potential well alone. The present model does not contain any thermally

activated, transition rate process and any diffusive motion.

5.1 Dynamical Model

We consider the SCH theory [14, 38, 57, 37] for the case with a single particle in

a potential V (u). Note that the SCP theory provides a practical method to determine

the effective harmonic force constant ϕ for a single particle in an anharmonic potential.

The derivation of the SCH theory is given in Appendix G.

The Hamiltonian for the single particle is

H = (− 1

2M
)∇2 +

1

2
V (u), (5.2)

where u is the displacement from the potential minimum. A harmonic model can be

introduced via a harmonic Hamiltonian Hh,

Hh = (− 1

2M
)∇2 +

1

2
uϕu. (5.3)

The usual harmonic force constant is ϕ(u) = (d2V/du2)u=0, the second derivative

of potential at the minimum of the well. In the self-consistent harmonic theory, ϕ(u)

is replaced by the second derivative averaged over the vibrational distribution ρ(u) in

the well:

ϕ =

∫ ∞

∞
duρ(u)

d2V (u)

du2
. (5.4)

The distribution is a Gaussian distribution as found in a harmonic potential,

ρ(u) = [2π⟨u2⟩]−1/2 exp(− u2

2⟨u2⟩
), (5.5)
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where ⟨u2⟩ is the usual harmonic expression of the mean square displacement,

⟨u2⟩ = ~
2Mω

coth(
kBT

~ω
). (5.6)

Here ω2 = ϕ/M=
√

ϕ/m is the harmonic frequency, M is the particle mass and ~ is

Planck’s constant divided by 2π. In the classical limit, T ≥ θE = ~ω/kB, Eq. (5.6)

reduces to

⟨u2⟩ = kBT

ϕ
(5.7)

Eqs. (5.4) to (5.6) constitute the SCH theory. It is implemented by iterating

Eqs. (5.4), (5.5) and (5.6) until consistent beginning, for example, with an estimated

value of ⟨u2⟩. The SCH can be derived by summing a class of anharmonic terms as

well as by minimizing the free energy or ground state energy at T = 0 K.

For asymmetric potentials, the center of the Gaussian distribution function can

also change with temperature. Thus, the Gaussian distribution function in Eq. (5.5)

is replaced by

ρ(u) =
1

(2π⟨u2⟩) 1
2

exp(−1

2

(u−∆)2

2⟨u2⟩
). (5.8)

The ∆ term in Eq. (5.8) is obtained by minimizing the free energy. In the

classical limit the position and momentum are independent variables, so that the kinetic

energy is independent of the potential energy. Free energy minimization reduces to

minimizing the potential energy,

⟨V (u)⟩ =
∫ ∞

−∞
duV (u)ρ(u). (5.9)

⟨V (u)⟩ depends on ∆ and ⟨u2⟩. The SCH equations are iterated for given ∆ and ⟨V (u)⟩

which is minimized with respect to ∆.

To simplify our equations, we normalize parameters to be dimensionless. We

use the SCH theory to determine changes in the mean square vibrational amplitude

with temperature for different potential models. The temperature dependence of the
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mean square vibrational amplitude is well known in a harmonic potential, and hence

we start with it. Then, we extend our investigation to different potentials which are

similar to potentials in proteins.

5.2 Potential Models

5.2.1 Harmonic Potentials

In order to introduce the model of a particle in 1D potential well which repre-

sents an atom in a macromolecule, we begin with a harmonic potential well. At low

temperature, T . 120 K, the observed ⟨r2⟩exp in biological macromolecules increases

linearly with temperature, as in Eq. 5.7. A harmonic potential well is used for deter-

mining a low temperature force constant ϕL to reproduce the observed straight line

for ⟨r2⟩exp versus T at low T . The harmonic potential V (u) = (1/2)ϕLu
2 depends on

a low temperature force constant ϕL and displacement u. In the classical limit, the

⟨u2⟩ is defined in Eq. 5.7 with d2V/du2 = ϕL where the oscillator (SHO) frequency is

ω2 = ω2
L = ϕL/M and a mass is chosen as M = 20 Amu which is intended to represent

hydrogen bonded in a molecule.

We select arbitrarily the observed MSD ⟨r2⟩exp versus T data from literature. A

reference point, (u2
0, T0), is chosen from MSD data, to determine the low temperature

force constant ϕL, where the chosen length u2
0 corresponds to a convenient temperature

T0. The MSD versus temperature data for hydrated myoglobin (h = 0.38 gr protein/gr

water) which is observed by Doster et al. is chosen [25]. A convenient temperature T0,

arbitrarily choosing T0 = 240 K, and the convenient length u2
0 ≡ ⟨r2⟩exp = kBT0/ϕL

is u2
0 = 0.1 Å2 at T0 = 240 K. The low temperature force constant for myoglobin is

obtained from (ϕL/kB) = T0/u
2
0. The MSD for myoglobin at low temperatures is seen

as a straight solid line in Fig. 5.1a.

The low temperature force constant is chosen as (ϕL/kB) for harmonic potential.

For potential wells V (u) which is not harmonic, the parameters in potential well V (u) is

adjusted to obtain a potential function in units of kB, so that the low temperature

force constant is (d2V/du2)u=0 = (ϕL/kB) = T0/u
2
0. This adjustment provides the
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Figure 5.1: (a) The mean square vibrational displacement, (MSD), ⟨u2⟩, given by
(Eq. (5.7)) of an atom in a harmonic well. The slope of ⟨u2⟩ vs. T in
the classical limit, T ≥ θE, is given by ⟨u2⟩ = kBT/ϕL. We choose the
low temperature force constant ϕL in our model so that it reproduces
the observed slope of myoglobin at low temperature, i.e. r20 = ⟨r2⟩exp =
kBT0/ϕL where u2

0 = 0.1 Å2 is the observed MSD at temperature T0 =
240 K. (b) The vibrational distribution ρ(x) in harmonic well υ(x) =
V (u)/kBT0, x = u/u0 at three temperatures.

same initial slope of ⟨u2⟩ versus T at low temperatures for any potential. The force

constant changes according to the potential, at higher temperatures and the change in

the force constant determines the temperature dependence of the ⟨u2⟩.

To simplify the model, the harmonic potential V (u) = (1/2)ϕLu
2 is written

as V (x) = (1/2)ϕLx
2u2

0 in the terms of the dimensionless length x = u/u0. The

harmonic potential in the form υ(x) = V (x)/kBT0 is shown in the inset of Fig. 5.1a.

Using ϕL/kB = T0/u
2
0, the potential becomes υ(x) = (1/2)x2. Fig. 5.1a shows the

MSD ⟨u2⟩ of a particle in harmonic potential versus T . The MSD is constant at

temperatures below the Einstein temperature, θE = ~ω/kB, while it increases linearly

with temperature at temperatures above θE. Fig. 5.1b shows the harmonic potential

and vibrational distribution ρ(x) = [2π⟨x2⟩]−1/2 exp [−x2/2⟨x2⟩] at three temperatures,

20, 120 and 240 K, where ⟨x2⟩ = ⟨u2⟩/u2
0. Since d2υ(x)/dx2 = 1 for all x for the
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harmonic potential, the SCH force constant ϕ given by Eq. 5.4 remains ϕ = ϕL at all

T independent of the width of ρ(x). For a harmonic potential, the SCH model is the

same as the harmonic approximation.

5.2.2 Gaussian Potentials

The Gaussian function is a good prediction to reproduce the temperature be-

haviour of the MSD ⟨u2⟩. The inset of Fig. 5.2a shows the Gaussian potential,
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Figure 5.2: (a) The MSD, ⟨u2⟩, of a particle in a Gaussian well, V (x), where x = u/u0.
The slope of ⟨u2⟩ with temperature shows a marked increase at a T ∼ 250
K simulating a dynamical transition at TD ∼ 250 K. (b) The vibrational
distribution ρ(x) in the Gaussian well at three temperatures.

V (u) = −Ae−αu2

, (5.10)

in the form υ(x) = V (x)/kBT0 with the dimensionless length x = u/u0 by adjusting

parameters A and α. In the Gaussian potential, d2V/du2 decreases with increasing

u and the force constant ϕ in Eq. (5.5), decreases with increasing temperature as the

distribution function, ρ(u), broadens. The reduce in the force constant suggests that

the slope of ⟨u2⟩ versus T (⟨u2⟩ = kBT/ϕ) increases with increasing temperature as

shown in Fig. 5.2a. The change in the MSD depends on the chosen parameters in
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the Gaussian potential. Fig. 5.2b shows the distribution function at three different

temperatures, 60, 180 and 240 K. The ρ(x) begins with sample regions of V (x) where

d2V/dx2 is quite small (even negative) at a temperature around 250 K. The distribution

function becomes broader with increasing temperature. Thus the SCH force constant

ϕ decreases rapidly with increasing T at temperatures larger than 250 K, so that the

rapid increase in the slope of the MSD ⟨u2⟩ = kBT/ϕ is observed.
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Figure 5.3: (a) The calculated MSD ⟨u2⟩ for a Gaussian potential well (solid line).
The low temperature force constant ϕL of the Gaussian is set to repro-
duce the low temperature slope of ⟨u2⟩ vs. T in purple membrane (PM).
The calculated ⟨u2⟩ at higher temperature for the Gaussian V (u) repro-
duces the observed ⟨u2⟩ for PM (dashed-dotted line) [106] well at higher
temperature (T & 200 K). The vibrational distribution ρ(x) is shown in
part (b).

In the Gaussian potential, the ⟨u2⟩ changes as depending on the second deriva-

tive of V (u) that changes with u. The significant change in the ⟨u2⟩ is observed

at temperature, TD, when the second derivative of V (u) changes rapidly at energies

V (u) ∼ kBTD. For example, we choose the MSD versus temperature data for purple

membrane (PM) which is observed by Wood et al. [106]. The parameters are adjusted

to obtain the low temperature force constant ϕL. In Fig. 5.3a, solid line represents

the ⟨u2⟩ versus T of a particle in the Gaussian potential in the inset of Fig. 5.3a and
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the dashed line represents the observed MSD ⟨u2⟩ of PM. The reduce in the force con-

stant leads to obtain the broaden distribution function shown in Fig. 5.3b. As shown

Fig. 5.3a, the observed ⟨u2⟩ versus T in PM is reproduced well at low and at high

temperatures using a Gaussian potential.

5.2.3 Symmetric Potentials

We consider a single particle in cases with different symmetric potentials to

investigate the vibrational dynamics of a particle and observe how well a marked change

in the slope of MSD ⟨u2⟩ versus temperature is reproduced. As shown in the inset of

Fig. 5.4a, the symmetric potential is chosen as sum of two harmonic potentials which

have different force constants. Similar to the harmonic potential, the low temperature

force constant is determined using (ϕL/kB) = T0/u
2
0, where u2

0 = 0.1 Å2 and T0 = 240

K is chosen from the observed MSD data for hydrated myoglobin [25]. The MSD for

a particle in the potential is shown in the inset of Fig. 5.4a. The short dashed line in

Fig. 5.4a indicates the slope of ⟨u2⟩ at low temperature which is set by the large force

constant ϕL. At high temperatures the slope of ⟨u2⟩ is set by a much smaller force

constant ϕH that characterizes the shallow harmonic well at large values of x. The

slope of MSD changes at temperature T ∼ 150 K. The long dashed line in Fig. 5.4a

indicates the steeper slope of ⟨u2⟩ at higher temperatures. This temperature depends

on the energy at which the V (x) crosses over from a large force constant ϕL to the

smaller one, ϕH that is determined by adjusting the parameters in potential. Fig. 5.4a

shows the distribution function of the particle in the potential in the inset of Fig. 5.4a.

At higher temperatures, the distribution function ρ(x) becomes more broaden, but it

still continues to sample the steep well potential near x = 0. Therefore, the slope will

always be gradual in the transition from the low (L) to high (H) temperatures.

Fig. 5.5a shows the MSD ⟨u2⟩ for a particle in a potential which is again the sum

of two harmonic components, but a barrier separates the two components as depicted

in the inset of Fig. 5.5a. Modifying the potential in the inset in Fig. 5.4a with a barrier

between two harmonic potential does not lead to a significant change in the MSD ⟨u2⟩.
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Figure 5.4: (a) The ⟨u2⟩ in a potential well composed of two harmonic components
characterized by force constants ϕL and ϕH . The slope crosses over grad-
ually from a low (L) temperature to high (H) temperature value. (b) The
ρ(x) for a potential composed of two harmonic components.
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Figure 5.5: (a)The ⟨u2⟩ for an atom in a potential well composed of two harmonic
components with a barrier separating the two components (see inset).
(b) The ρ(x) for a potential composed of two harmonic components with
a barrier.
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The MSDs ⟨u2⟩ in Fig. 5.4a and Fig. 5.5a have the same basic character. This suggests

that a barrier and displacing the minimum of the shallow potentials to finite of x make

a small difference in ⟨u2⟩. As shown in Fig. 5.5b, the distribution function samples the

steep well potential near x = 0 at even 300 K. For the potentials which are symmetric

about x = 0, the MSD and the distribution function are very similar.

In Sec.5.2.3, we employed the SCH model to two potentials which are symmetric

around x = 0. This allows to reproduce the change in the slope of ⟨u2⟩ versus T at low

temperature, however the significant change at higher temperatures is not observed

because the center of the distribution function around x = 0 does not change with

temperature. Using these potential models with SCH theory is not useful to reproduce

the temperature dependence of the MSD ⟨u2⟩ which is observed in macromolecules.

5.2.4 Asymmetric Potentials

We analyse the dynamics of a single particle in potentials which are asymmetric

with respect to x = 0. Note that the distribution function ρ(x) is not centered around

x = 0 in an asymmetric potential, and this causes a significant change in the MSD

at higher temperatures. To accommodate the change in the center of ρ(x), we use

the distribution function defined in Eq. 5.8. As done before, the SCH ⟨u2⟩ and ϕ are

obtained from Eq. (5.6) and Eq. (5.4), respectively. The ∆ is obtained by minimizing

the potential energy ⟨V (x)⟩ as a function of ∆. Since we are in the classical limit,

minimization of the free energy reduces to minimization of the potential energy.

A double well potential which consists of two harmonic potential wells separated

by a barrier is a good model to investigate the impact of the change in the center of

distribution function on the MSD. The inset of Fig. 5.6a shows the double well potential

which have two harmonic potential wells with the same force constant ϕL. The force

constant of wells is determined from the expression for the low temperature force

constant, (ϕL/kB) = T0/u
2
0, where u2

0 = 0.1 Å2 and T0 = 240 K. Fig. 5.6b shows the

ρ(x) versus x = u/u0 at three different temperatures, 60, 120 and 240 K. The center

of ρ(x) is around x = 0 at 60 K and this indicates that the particle in the double well
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potential is confined to the well centered at x = 0 at low temperatures. At higher

temperatures, the center of the ρ(x) moves to the right as temperature increases until

it reaches the midpoint between two harmonic wells. As shown in Fig. 5.6b, the ρ(x) is

centered symmetrically between the two wells at T = 240 K. In Fig. 5.6a, the change

in the slope of the MSD for a particle in the double well potential does not reproduce

the marked increase in slope of ⟨u2⟩ with increasing temperature well.
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Figure 5.6: (a) The MSD, ⟨u2⟩, for a double well potential. The height of the bar-
rier (at xB = 0.75) between the two wells (see inset) is relatively small,
V (xB)/kBT0 ≃ 0.2. (b) The ρ(x) for a particle in a double well potential.
The center of ρ(x), ∆ moves from one well (∆ = 0) at T = 0 K to the
midpoint between the two wells (∆ = xB) at a relatively low tempera-
ture. The slope at high temperature is set by the harmonic well force
constant (H) at larger x.

We introduce another asymmetric model which is intended to simulate tempera-

ture dependence of the motion of a particle near a surface or a wall as shown in Fig. 5.7.

This asymmetric potential model consists a harmonic potential well, which has a wall

on LHS and a small barrier on the RHS before the second harmonic potential well, cen-

tered at x = 0. The wall on the LHS formed as continuing to high energy (∼ 2kBT0)

has the large low temperature force constant ϕL (near x = 0). The height of the barrier

92



0 100 200 300
0.0

0.2

0.4

0.6

-10 -5 0 5 10 15
0.0

0.5

1.0

1.5

2.0

2.5

 Temperature (K)

 <
u2 > 

 (Å
2 )

H

L

(a) V(x)/k
B
T

0

 x

 

x

H'

L H
WELL CENTER

BARRIER
HEIGHT

-10 -5 0 5 10 15
0.0

0.5

1.0

1.5

2.0

2.5
 V(x)/kBT0

 V
(x

)/k
BT 0

x

120 K

240 K

300 K

(b)

Figure 5.7: (a) The MSD ⟨u2⟩ for a well that has a hard wall component. The ⟨u2⟩ vs.
T shows a large increase in slope at T ≃ 250 K, an increase arising from
the center of ρ(x) moving rapidly away from the wall as T increases as
shown in part (b).

on the RHS is chosen as low. The force constant of the harmonic potential well and of

the wall on the LHS are determined using the expression for low temperature force con-

stant, (ϕL/kB) = T0/u
2
0, and the reference point (u2

0 = 0.1 Å2 and T0 = 240 K) taken

from the MSD data for hydrated myoglobin [25]. The force constant of the well on the

RHS is chosen to be smaller than the ϕL. Fig. 5.7b shows the distribution function

which determines the motion of the particle in the asymmetric potential in the inset

of Fig. 5.7a with temperature. The center of the distribution function is around x = 0

at 120 K, but it moves to the right with increasing temperature after 120 K until the

center of the distribution function reaches to the minimum of the well centered around

x = 3. Thus, the particle moves to the right away from the wall and crosses the barrier

on the RHS when it has enough energy at higher temperatures. This allows that the

MSD ⟨u2⟩ of the particle in the asymmetric potential model increases very rapidly at

higher temperatures as shown in Fig. 5.7a since the particle has enough energy to cross

the barrier on the RHS. At higher temperatures, the slope of ⟨u2⟩ is very steep. The

steep slope is associated with the particle moving rapidly away from the wall as T is
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increased i.e. ∆(T ) increasing rapidly with T at higher temperatures. The potential

shown in Fig. 5.7 is a simple but very flexible potential. It can be use to reproduce a

large or small change in slope of ⟨u2⟩ versus T with the change in slope taking place

at any temperature. It could also describe the eventual instability of a protein even at

higher temperatures.
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Figure 5.8: (a)The MSD ⟨u2⟩ for a well that has a hard wall component. The well
parameters (ϕL, ϕH , barrier height and well center) are adjusted to repro-
duce the ⟨u2⟩ vs. T observed for myoglobin by Doster et al. at low and
high temperature. The observed values of Doster et al. [25] as presented
in Ref.[6]. The calculated ⟨u2⟩ clearly reproduce the observed ⟨u2⟩ for
myoglobin well.(b)The distribution function ρ(x) versus x = u/u0.

As an example, we choose the ⟨u2⟩ observed by Doster et al. [25] for hydrated

myoglobin, presented in Ref. [6]. To reproduce the ⟨u2⟩ for hydrated myoglobin,

we adjust the parameters (barrier height, well center and ϕH) that determine the

asymmetric potential. Similar to Fig. 5.7, the particle moves away from the wall at

higher temperatures which is indicated in the change in the center of the distribution

function ρ(x) shown in Fig. 5.8b. The rate of the change in the slope of ⟨u2⟩ depends

on the rate of the change of ∆(T ) with T rather than the force constant ϕH describing

the potential well on the RHS away wall. In this sense the physical origin of the slope
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of ⟨u2⟩ at higher temperatures is quite different from that obtained for the symmetric

Gaussian potential shown in Fig. 5.2.

The results in Sec. 5.2.2 and 5.2.4 show the temperature dependence of the

⟨u2⟩ reproduced by using the Gaussian potential or an anharmonic potential with hard

wall. In a Gaussian potential, the second derivation of V (u) changes with u, thus

we observe the change in the slope of ⟨u2⟩ versus temperature. If the d2V (u)/du2

changes rapidly at energies V (r) ∼ kBTD, the significant change in ⟨u2⟩ is observed at

a dynamical transition temperature TD. For an anharmonic potential with wall, the

changes in the slope of ⟨u2⟩ depend on the motion of the particle in respect to the

wall. If the particle moves away from the wall at temperature T & TD, the large slope

is observed for T ≥ TD. In a Gaussian potential and an anharmonic potential with

a wall, the parameters are adjusted to reproduce the observed ⟨u2⟩ of myoglobin and

purple membrane.

5.3 Suggested Potential Models in Literature

5.3.1 Two State Model

Two state potential model is introduced by Frauenfelder et al, Keller and De-

brunner, Doster et al. [35, 53, 25]. We investigated the dynamics of a single particle in

a two state potential model which is asymmetric potential around x = 0. The distri-

bution function ρ(x) is not centered around x = 0 in an asymmetric potential. A two

state model consists two harmonic potential wells which are separated by a barrier and

have different force constants. Similar to the previous sections, this potential model is

used for reproducing the observed MSD for myoglobin [25], by adjusting the parameter

in the potential.

The inset of Fig. 5.9a shows the two state model that we used. The force

constant of the well centered x = 0 is determined from the expression for the low

temperature force constant, (ϕL/kB) = T0/u
2
0, where u2

0 = 0.1 Å2 and T0 = 240 K.

The force constant of the harmonic well on RHS is chosen to be smaller than the force

constant of the harmonic well on LHS. Fig. 5.9b shows the ρ(x) versus x = u/u0 at
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Figure 5.9: (a) The MSD, ⟨u2⟩, for a particle in the two state potential well. (b) The
ρ(x) for a particle in the two state potential.

three different temperatures, 40, 120 and 300 K. The center of ρ(x) is around x = 0 at

40 K and this indicates that the particle in the two state potential model is confined

to the well centered at x = 0 at low temperatures. At higher temperatures, the center

of the ρ(x) moves to the right as temperature increases. Fig. 5.9a shows that this

potential coupled with the SCH dynamics does not lead to a ⟨u2⟩ that agrees well

with experiment, essentially because the thermally activated transitions central to this

model are not included.

Our goal is to illustrate that a change in the slope of the MSD ⟨u2⟩ versus

temperature can be obtained within vibration of a mass in an anharmonic potential. It

does not imply that thermally activated processes and diffusion is not important in the

long time dynamics. The various dynamical processes may contribute to the dynamics

of proteins as reviewed in the paper of Doster et al. [24].

5.3.2 Potential for H

The potential energy for H in interfacial water is obtained from the distribution

of hydrogens measured by George Reiter [85]. The potential for hydrogen bond has a
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double minima and it is symmetric. The potential is in unit of meV and distance in Å.

The idea is to compare the experimentally obtained potential with the model potential

that we have used. The theoretical model of potential of hydrogen is described by

V (u). Fig. 5.10a shows that the experimental potential and the theoretical potential

model exactly match. The potential model is

V (u) =


1
2
k(u+ z)2 +D if −∞ < u 6 −z

A exp(− u2

2B2 ) + C if −z 6 u 6 z

1
2
k(u− z)2 +D if z 6 u < ∞

Same as in previous potential models, a reference point is chosen as u2
0 = 0.1 Å2 and

T0 = 240 K. Using x = u/u0 and dividing potential to 1/kBT0, the potential is rescaled
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Figure 5.10: (a)Comparison of the potential of H obtained from numerical data and
modelled potential function. (b) The unitless potential V (x)/kBT0.

υ(x) =
V (x)

kBT0

=


1
2
λ(x+ z′)2 +D′ if −∞ < x 6 z′

A′ exp(− x2

2B′2 ) + C ′ if −z′ 6 x 6 z′

1
2
λ(x− z′)2 +D′ if z′ 6 x < ∞

where z′ = z/u0, B
′ = B/u0, λ =

ku2
0

kBT0
= 32.62, D′ = D

kBT0
= 1.79, A′ = A

kBT0
= 1.69

and C ′ = C
kBT0

= 1.78. As shown in Fig. 5.10b, the magnitude of the potential is too
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large to compare with the mean square displacement of the experimental potential of

hydrogen bond and the mean square displacement of our model, therefore λ is set to

1 and other parameters are adjusted. Fig. 5.11a shows the ⟨u2⟩ versus T of a particle

in the adjusted potential of H in Fig. 5.11b. The vibrational distribution ρ(x) versus

x = u/u0 at three different temperatures, 50, 150 and 300 K is shown in in Fig. 5.11b.

The temperature dependence of MSD ⟨u2⟩ is not well produced at low and at high

temperatures.
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Figure 5.11: (a) The MSD, ⟨u2⟩, for a particle in the potential on RHS. (b) The
vibrational distribution ρ(x).

5.4 Potentials in Proteins

Our aim is to compare the potential models mentioned in Section 5.2 with the

potentials seen by H in proteins. H in proteins is bounded in a wide spectrum of

sites and solvent water. The H potential varies depending on its separation from its

neighbors and the bond angle of H. The model potentials represent an average over

these widely varying potentials and angles of H bonds.

The dynamics of H in an H-bond is governed by the H-bond energy. The

potential energy of H bounded in a single H bond is discussed in Ref. [72]. The single
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H bond consists of a donor atom which denotes some charges to the base H+ (proton)

nuclei. The donor atom has a (-) charge, the H+ still a (+) charge, and the two

terms describe a polar molecule. This D−-H+ polar molecule interacts with another

polar molecule, A−-AB+ covalent bounded pair where A− and AB+ are is called as

an acceptor and acceptor base, respectively. The H potential energy is the potential

energy of the H in a single dimer bond: D−-H+· · ·A−-AB+ as a function of distance

δHA between the H+ and the acceptor A−. The δHA distance denoted by the dotted

line.

The H-bond in a single formamide dimer is a simple example to explain the H

potential energy. The formamide dimer is, for example, an important component of

side chain-side chain bonds. The formamide dimer consists of a tightly bound N−−H+

pair in which hydrogen is bounded to a second pair O− = C+, an acceptor-acceptor

base pair. In the formamide dimer (N−H · · ·O = C), the H-bond is bond indicated by

the dotted line between the H+ (the donor H+) and the acceptor O− in the acceptor-

acceptor base pair. Energy as a function δHA and angles is presented in Ref. [72]. If

we assume that this energy is equal to the potential energy of H (i.e. rigidly bound

to N ), then the H potential energy is clearly anharmonic and asymmetric, and it has

a hard core. The potential energy has an anharmonic shape similar to the potential

models which we used, especially the potential model having a hard wall component

(see Sec.5.2.4).

Fig. 5.12 shows the formamide H-bond energy versus separation r between the

H and the acceptor (O), as calculated by Morozov and Kortemme [72] by using the

density functional theory (DFT))(see Fig. 4 of Ref.[21]). The H-bond energy is divided

by kBT0 = 0.476 kcal/mole = 1.99 kJ/mole where T0 = 240 K and the separation r

by u0 = 0.33 Å (x = r/u0) so that the H-bond energy is in the same unit as the

present model potentials. The DFT energy is very similar to the CHARMM27 H

bond potential [64]. In the CHARMM27 potential, the dependence of the hydrogen

bond potential on separation is represented by a standard 12-6 potential Lennard-

Jones potential [51] plus an electrostatic [64] term or a dipole-dipole term [95]. In
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Figure 5.12: H-bond potential V (r) in a formamide dimer versus H+ to acceptor
(O−) separation, r, from Fig. 4 of Morozov and Kortemme [72]. The
potential is shown in units x = r/u0 where u0 = 0.33 Å and V (x)/kBT0

where T0 = 240 K and kBT0 = 0.476 kcal/mole. Also shown is the
present Gaussian model potential in these units.

Fig. 5.12 the H-bond energy is compared with the present model Gaussian potential.

The Gaussian well minimum is moved to coincide with that of the H-bond potential.

Fig. 5.12 shows that the H-bond potential has clear anharmonic character as

does the model present Gaussian potential. In addition the H-bond potential is asym-

metric around the minimum energy. Both the anharmonic and asymmetric characters

will lead to an increase in slope of ⟨u2⟩ at higher temperatures, as found here in Fig. 5.3

for the model Gaussian potential and in Fig. 5.7 for the model hard walled potential.

As anticipated, the H-bond potential is much narrower and stronger than the model

Gaussian. High frequency, small amplitude motion is expected for H in an H-bond

whereas the Gaussian represents an average for H over all sites.

Hydrogen is also attached to the backbone of proteins. In this position, the H

rides on the backbone and its dynamics is determined by the lower frequency, larger

amplitude dynamics of the backbone. Specifically, H is a component of amino acids

which form the backbone and are attached to the backbone. To describe the dynamics
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of amino acids in the backbone, a simplified potential between amino acids is often

introduced [2, 5]. Each amino acid is approximated by a single (heavy) atom or pseudo-

atom. The effective or coarse-grained (CG) potential between the pseudo-atoms is

obtained using several methods one of which is simulating the amino acids in proteins

using molecular dynamics (MD) and determining the effective interaction between them

which represents their properties. In the MD simulation a potential between all the

atoms in the amino acids is typically used, denoted an all-atom potential. The CG

potential is subsequently used in calculation of the longer time scale dynamics of the

backbone or of larger polypeptides in the protein The dynamics of H in these amino

acids is largely governed by these CG potentials.
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Figure 5.13: Coarse-Grained potential V (r) between two TRP3 amino acids in a
protein from Fig. 3 of Basdevant et al. [2]. The potential is in units of
x = r/r0 and V (x)/kBT0 as in Fig. 5.12 and compared with the present
Gaussian model potential.

Specifically, Basdevant et. al. [2] and Ha-Duong [39] represent the CG potential

by a repulsive (1/r6) term plus a Gaussian attractive term. If the amino acid is charged

there is also an electrostatic term. A representative CG potential between two TRP3

amino acids [2] is shown in Fig. 5.13 and compared with our model Gaussian potential.

The CG potential is again shown with separation divided by u0 = 0.33Å and energy
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Figure 5.14: Coarse-Grained potential shown in Fig. 5.13 compared with the present
Hard Wall model potential.

divided by kBT0 to coincide with the units of our model potentials. The minimum

of our Gaussian model potential has been shifted to coincide with that of the CG

potential. From Fig. 5.13 we see that the CG potential is asymmetric and anharmonic

so a change in the slope of ⟨u2⟩ with increasing temperature can be expected. Indeed

the shape of the CG potential is similar to that of the the present hard wall potential as

shown in Fig. 5.14. The present hard wall model leads to a significant change of slope

of ⟨u2⟩ with increasing temperature as shown in Fig. 5.8 and a similar change can be

expected for the CG potential. From Fig. 5.14 we see that the CG potential is broader

and weaker (on the right side) than our model Gaussian. Thus lower frequency, larger

amplitude motions than average are expected for H riding on amino acids.

In sum, hydrogen in H-bonds and in amino acids see effective potentials that are

anharmonic and similar in character to the model potentials used here. The H-bond

potential is stiffer and the CG potential between amino acids is softer than the present

model potentials which represent an average over a spectrum of potentials seen by H

in proteins.
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5.5 Discussion

Our aim is to illustrate the change in the slope of MSD ⟨u2⟩ versus temperature

at TD within a simple model of vibration, a single particle in an anharmonic potential.

Using Self-Consistent-Harmonic theory, we investigated dynamics of a particle in dif-

ferent potential models. The SCH vibrational dynamics is also applied the “two-state”

model potential introduced by Frauenfelder et al, Keller and Debrunner and Doster et

al.[25, 53]. For the “two-state” model potential, a change in slope of the MSD ⟨u2⟩ ver-

sus temperature is not illustrated, because the thermally activated transitions central

to this model are not included. It is not stated that thermally activated processes and

diffusion are not important in the long time dynamics of proteins. We successfully re-

produced a break in ⟨u2⟩ with temperature for myoglobin and purple membrane within

vibration alone.
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Chapter 6

CONCLUSION

In this thesis we have investigated and proposed models to describe the mean

square motional displacements (MSD) of hydrogen (H ) in proteins as observed in

neutron scattering experiments. We have developed methods to obtain values of the

MSD, ⟨r2⟩, that are intrinsic to the protein and independent of the instrument settings

used in the experiment. Using the same model and method we can obtain the intrinsic,

long-time MSD from finite time simulations of a protein.

For example, in Chap. 2 we presented a method in which the intrinsic ⟨r2⟩ can

be extracted from data measured by instruments that have different energy resolution

widths W , one that is independent of the instrument resolution. The intrinsic long-

time MSD is defined as an equilibrium MSD which is measured by using an instrument

that has zero energy resolution width W = 0. The method includes the fit of the

model of the resolution broadened dynamical structure factor (DSF), SR(Q, ω), to the

resolution broadened data. The model contains the intrinsic MSD ⟨r2⟩, the instrument

resolution width W and a parameter describing the motional processes that contribute

to the MSD. By fitting the model to data taken on instruments that have different

energy resolutions, we show that an intrinsic MSD ⟨r2⟩ can be obtained, one that is

independent of the resolution width W of the instrument.

An expression for the resolution broadened MSD ⟨r2⟩R which is equal to the

observed MSD ⟨r2⟩exp is also obtained. By fitting the model of ⟨r2⟩R to an observed

MSD ⟨r2⟩exp, we show that the intrinsic MSD ⟨r2⟩ can also be obtained from the

observed MSD data if the observed DSF data Sexp
R (Q, ω = 0) is not available. The

model of ⟨r2⟩R in Eq. (2.17) is useful to clarify the relation between the observed MSD

⟨r2⟩exp and the intrinsic MSD ⟨r2⟩. From the expression for ⟨r2⟩R, it is clearly seen
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that the observed ⟨r2⟩R lies below the intrinsic MSD ⟨r2⟩ for a finite resolution width

W .

The intrinsic MSD ⟨r2⟩ obtained by fitting the model SR(Q, ω = 0) to data is

found to depend on temperature. There is a marked increase in the intrinsic MSD

at a dynamical transition (DT) temperature TD as is observed. The DT temperature

TD is different for different proteins. The energy resolution width W of the instrument

also has an impact on the DT temperature TD. The intrinsic TD which is observed

in the intrinsic MSD ⟨r2⟩ is found to be less than the resolution broadened TD. The

impact of resolution broadening on the DT is to shift the DT temperature TD to higher

temperatures.

We apply our method to existing data in the literature and successfully obtain

the intrinsic MSD of proteins. The intrinsic MSD in proteins shows a clear DT at a

temperature TD = 220 K. Since the intrinsic MSD is a long-time, equilibrium MSD,

this indicates that the DT is an intrinsic property of the protein rather than being

simply a time window effect.

The model of SR(Q, ω = 0) is very simple and has several limitations, such as

using a simple representation C(t) = exp(−λt) to describe the relaxation of correlations

in the protein. This C(t) = exp(−λt) represents only a single diffusion process. We

used this simple exponential function to describe the motional processes because the

experimental data is not significantly precise to distinguish between a simple and more

sophisticated model. However, the model could be improved by using a stretched expo-

nential C(t) = exp(−(λt)β) which represents several diffusion mechanisms contributing

to C(t).

In Chap. 3, we extended our research to extracting the intrinsic long-time MSD

⟨r2⟩ of H in proteins from finite time simulations. In this case the simulated data is

more precise, in contrast experimental data. Thus, our fits to simulations are sensitive

to the model of C(t). In this case, the model of the incoherent ISF I(Q, t) constructed

in Chap. 2 is modified by replacing a simple exponential C(t) by a stretched exponential

function. By fitting the model I(Q, t) to the simulated data, we obtained the intrinsic,
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long-time MSD in proteins from finite time simulations. The intrinsic MSD represents

the equilibrium MSD as would be predicted by statistical mechanics and the energy

landscape, assuming the protein does not go through major structural changes.

In the application of this model, we calculated the incoherent ISF from simu-

lations of 10 ns and 1µs, then applied the method to extract the intrinsic long-time

MSD ⟨r2⟩ of lysozyme from the simulated data. The intrinsic ⟨r2⟩ obtained from data

out to 1 ns and to 10 ns is found to be the same. The ⟨r2⟩ is compared with the

⟨r2⟩R that has developed over a limited time τR ∼ ~/W . The ⟨r2⟩ is found to be inde-

pendent of simulation time, and approximately twice the resolution broadened MSD

⟨r2⟩R that develops after a time of 1.5 ns. The ⟨r2⟩R developed in 1.5 ns corresponds

to an observed MSD ⟨r2⟩exp measured using neutron instruments that have an energy

resolution width of W = 1 µeV. We observe a dynamical transition in the intrinsic

MSD as in the finite time MSD. The DT temperature TD and the difference between

the intrinsic MSD ⟨r2⟩ and the resolution broadened MSD ⟨r2⟩R are sensitive to the

energy resolution width W . In addition to this, the ratio of the intrinsic to finite time

MSD is sensitive to the C(t) function in the model which describes the motions in the

protein. Although we use a stretched exponential function for C(t) in the model of

I(Q, t), our model does not contain ballistic motion and vibrational motion. In future

applications, more sophisticated expressions for C(t) that combine vibrational motion

at short times and diffusion at longer times could be used in the model of I(Q, t).

One shortcoming of measurements in neutron scattering is that the observed

MSD depends on the wave vector (Q) of the neutron data used to obtain the MSD.

Similar to the Q-dependence of the observed MSD ⟨r2⟩exp, the intrinsic MSD ⟨r2⟩ is

found to be dependent of Q. This Q dependence in MSD is often attributed to use

of the Gaussian approximation made to the scattering function in the analysis of the

data. In Chap. 4 we analysed the origin of the Q-dependence of MSD. Possible origins

of a Q-dependent MSD are the Gaussian approximation or the dynamical diversity of

hydrogen in the protein. In the most current methods of data analysis, it is common

to use the Gaussian approximation (GA) in the model and to develop a global model
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to represent whole protein by a single scattering center. In the GA, we keep the lowest

order (Q2) term and neglect the higher order terms. In this case, if the higher order

terms are significant, a Q-dependent MSD could be obtained in the data analysis.

To test the impact of the GA, we have calculated the incoherent ISF, both the

full ISF Iinc(Q, t) and ISF in the GA IiG(Q, t) from simulations of lysozyme. Then

the difference between the ⟨r2⟩ is investigated by fitting the model I(Q, t) to Iinc(Q, t)

and IiG(Q, t). We have found that the MSD extracted from the full ISF and the

Gaussian approximation is the same at low Q-values specially and still Q dependent

in both cases. That indicates that the Gaussian approximation is valid. Also, higher

cumulants, the terms beyond the Gaussian approximation, (e.g. terms in Q4) are not

significant. The other possible origin for the Q-dependent MSD is the neglecting the

dynamical diversity in the model which is used to analyse the data. To test this, we

calculated the incoherent ISF Iinc(Q, t) for an individual hydrogen, because there is

not any dynamical diversity for an individual H. Then, we fit the model I(Q, t) to

Iinc(Q, t) of a single hydrogen. We have found that the apparent Q dependence of the

MSD arises from the “dynamical diversity” of the H in lysozyme. Specifically, if the

ISF of an individual H in the protein is calculated (no diversity), then the MSD is

independent of Q. The Q dependence arises from ignoring the dynamical diversity in

the data analysis.

Finally, in Chap. 5 we have investigated a vibrational model of the temper-

ature dependence of the MSD. Our purpose is simply to illustrate that a break in

⟨u2⟩ with temperature is possible within vibration alone. A change in the slope of

the MSD ⟨u2⟩ versus temperature is illustrated from vibration of a mass in an anhar-

monic potential. We have successfully reproduced the MSD versus temperature data

for myoglobin and purple membrane by using a Gaussian potential and an anharmonic

potential contains hard and soft walls.
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Appendix A

THE OBSERVATION TIME τR IN THE INSTRUMENTS IN NEUTRON
SCATTERING

The resolution broadened DSF SR(Q, ω) is

SR(Q, ω) =

∫ ∞

−∞
dω′S(Q, ω′)R(ω − ω′)

=

∫ ∞

−∞
dt exp(iωt)I(Q, t)R(ω − ω′) (A.1)

where R(ω) is the instrument energy resolution function. Commonly observed is the

elastic component of the resolution broadened DSF,

SR(Q, ω = 0) =

∫ ∞

−∞
dtI(Q, t)R(t). (A.2)

The convolution in time coordinates in SR(Q, ω) is

SR(Q, t) = I(Q, t)R(t). (A.3)

For example, the energy resolution function could be chosen as a Gaussian function,

R(ω) = [2πσ2]−1/2 exp(−1

2

ω2

σ2
) (A.4)

that is normalized to unity, ∫
dωR(ω) = 1. (A.5)

From the shape of a Gaussian, the FWHM of the Gaussian is related to σ by

Wω ≡ FWHM = (8 ln 2)1/2σ, (A.6)

where σ is equal to 1/τR. In units of energy ϵ = ~ω, the FWHM in energy is

W ≡ ~Wω = (8 ln 2)1/2~σ = (8 ln 2)1/2~/τR

τR =
(8 ln 2)1/2~

W
. (A.7)
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where ~ = h
2π

= 4.135
2π

µeV.ns. The R(t) = exp(−t2/2τ 2R), which is a Fourier transform

of the R(ω) in Eq. (A.4), cut off the SR(Q, t) at time τR,

SR(Q, t) = I(Q, t) exp(−t2/2τ 2R). (A.8)
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Appendix B

INTERMEDIATE SCATTERING FUNCTION AT INFINITE TIME
LIMIT

The purpose of this appendix is to derive the expression

I∞(Q) = exp(−1

3
Q2⟨r2⟩), (B.1)

to identify the approximations made to obtain it and to clarify the meaning of ⟨r2⟩.

I∞(Q) is the t → ∞ limit of the intermediate incoherent DSF, I(Q, t) defined in

Eq. (2.3). I(Q,∞) is independent of time t. The Fourier transform of I∞(Q) is there-

fore purely elastic (zero except at ω = 0) and given by Sel(Q, ω) = I∞(Q)δ(ω). This

shows that I∞(Q) arises from structure in the protein since translationally invariant

systems such as gases and liquids that have no structure have no elastic scattering.

Thus the motions that contribute to I∞(Q) and ⟨r2⟩ are therefore vibrations, hin-

dered rotations, restricted diffusion and all motions that in some way are restricted

by or reflect a structure. I∞(Q) is exactly the Debye-Waller factor that appears in

the scattering of X-rays or neutrons from crystals [19, 104, 67]. In crystalline solids,

I∞(Q) is the reduction in intensity of a Bragg peak arising from atomic vibration in the

solid. For H in proteins, I∞(Q) is the reduction in intensity of the incoherent elastic

scattering at any Q value arising from all restricted motions of the H.

To obtain I∞(Q), we begin with Iinc(Q, t) given by Eq. (2.2). The first approxi-

mation is to reduce Eq. (2.2) to Eq. (2.3). If Eq. (2.2) were retained then terms beyond

the Gaussian in Eq. (B.1) will be obtained [68, 55, 108]. Following the arguments below

Eq. (2.10), the t → ∞ limit of Eq. (2.3) is,

I∞(Q) = I(Q, t = ∞) = ⟨exp(−iQ · r(∞)) exp(iQ · r(0))⟩

= ⟨exp(−iQ · r(0))⟩⟨exp(iQ · r(0))⟩. (B.2)
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To arrive at the final line of Eq. (B.2) we have assumed: (1) that the position, r(∞) at t

→ ∞ of each H is uncorrelated with its position r(0) at t = 0 so the expectation values

of r(∞) and r(0) are independent and (2) that the protein properties are independent

of the time when they are observed so that ⟨rn(∞)⟩ = ⟨rn(0)⟩ = ⟨rn⟩. I∞(Q) is the

product of two identical exponentials, one containing i and the other −i.

To proceed we make a cumulant expansion of each expectation value in I∞(Q),

⟨exp(ix)⟩ = exp[
∞∑
n=1

(i)n

n!
µn] (B.3)

where the µn are cumulants and x = ±(Q · r). The cumulants µn are a combination of

moments,

µ1 = ⟨x⟩

µ2 = ⟨x2⟩ − ⟨x⟩2

µ3 = ⟨x3⟩ − 3⟨x2⟩⟨x⟩+ 2⟨x⟩3

µ4 = ⟨x4⟩ − 3⟨x2⟩2 − 4⟨x3⟩⟨x⟩+ 12⟨x2⟩⟨x⟩2 − 6⟨x⟩4. (B.4)

Because of the ±i in the exponentials in Eq. (B.2), the odd cumulants cancel. In

I∞(Q) only even cumulants appear. Thus,

I∞(Q) = ⟨exp(−iQ · r)⟩⟨exp(iQ · r)⟩ = exp[2
∞∑

n even

(i)n

n!
µn]

= exp[−µ2 +
1

12
µ4 −

2

6!
µ6 + ...] (B.5)

We also take ⟨r⟩ = 0. Thus up to fourth order,

I∞(Q) = exp[−⟨[Q · r]2⟩+ 1

12
[⟨[Q · r]4⟩ − 3⟨[Q · r]2⟩2] (B.6)

On neglecting the fourth order cumulant and assuming cubic symmetry so that ⟨[Q ·

r]2⟩ = Q2⟨r2z⟩ = 1
3
Q2⟨r2⟩, where the z axis is chosen parallel to Q, we obtain I∞(Q) in

Eq. (B.1). The fourth order cumulant will be small if Q is small or if the motional

distribution of the H atom is approximately Gaussian.
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Eq. (B.1) defines the intrinsic ⟨r2⟩. This ⟨r2⟩ is the same as that defined in

simulations as the t → ∞ limit of 1
2
⟨[r(t)− r(0)]2⟩ since ⟨r(t) · r(0)⟩ = 0 at t → ∞ and

⟨r2(∞)⟩ = ⟨r2(0)⟩ = ⟨r2⟩. Explicitly, the intrinsic value of ⟨r2⟩ is defined as the value

that appears in the Debye-Waller factor I∞(Q).
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Appendix C

THE MODEL OF SN
R (Q, ω = 0) FOR GAUSSIAN CORRELATION AND
RESOLUTION FUNCTIONS

For the Gaussian C(t) = exp(−λ2t2/2) and the resolution function R(ω) =

1√
2πW 2

e−ω2/2W 2
, the incoherent ISF becomes

I(Q, t) = I(Q, t = ∞) + I ′(Q, t)

I(Q, t) = I∞ + (1− I∞) exp(−λ2t2/2). (C.1)

where I ′(Q, t) = (1−I(Q, t = ∞))C(t). From Eq. 2.15, the elastic resolution broadened

DSF becomes

SR(Q, ω = 0) =
1

2π

∫ ∞

−∞
dtI(Q, t) exp(−λ2t2/2)

=
1

2π

∫ ∞

−∞
dtI(Q,∞) exp(−W 2t2/2)

+
1

2π

∫ ∞

−∞
dt(1− I(Q,∞)) exp(−λ2t2/2) exp(−W 2t2/2)

= I∞

√
1

2πW
+ (1− I∞)

√
1

2π(W 2 + λ2)
(C.2)

The expresion in Eq. (C.2) is divided to SR(Q = 0, ω = 0) at Q = 0 to obtain the the

expression for the “normalized” SR(Q, ω = 0). From Eq. (C.2), the SR(Q = 0, ω =

0) = (2πW )−1/2 and “normalized” SR(Q, ω = 0) is

SN
R (Q, ω = 0) = I∞ + (1− I∞)

W√
W 2 + λ2

, (C.3)

122



The resolution broadened MSD ⟨r2⟩R using the expression in Eq. (1.1) and our

model SN
R (Q, ω = 0) of Eq. (C.3),

⟨r2⟩slope = −3
d log SN

R (Q, ω = 0)

dQ2
|Q=Qexp

= ⟨r2⟩[1 + W

I∞(
√
W 2 + λ2 −W )

]−1. (C.4)
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Appendix D

COMPARISON OF INTRINSIC MSD AND SIMULATED MSD

In neutron scattering experiments, the ISF Iinc(Q, t) is

Iinc(Q, t) =
1

N

N∑
i=1

⟨bi exp(−iQ · ri(t)) exp(iQ · ri(0))⟩, (D.1)

where ri(t) is the position of nucleus i. The incoherent ISF is sum over all nuclei in

protein. The Iinc(Q, t) in Eq. (D.1) is commonly represented by a global I(Q, t). In

the global I(Q, t), we neglect the heterogeneity (which will be discuss in Chap. 5) and

a single scatterer center represents whole protein. The global I(Q, t) is

I(Q, t) = ⟨exp(−iQ · r(t)) exp(iQ · r(0))⟩. (D.2)

The t = ∞ limit value of the incoherent ISF defines the intrinsic MSD ⟨r2⟩;

I(Q, t = ∞) = exp(−1

3
Q2⟨r2⟩). (D.3)

In MD simulations, the simulated MSD is calculated from

∆2(t) = ⟨[r(t)− r(0)]2⟩ ≡ 1

N

N∑
i=1

⟨[ri(t)− ri(0)]
2⟩, (D.4)

where ri(t) is the position of nucleus i which is obtained from simulation. After long

times, ∆2(t → ∞) = 2⟨r2⟩MD.

The MSDs ⟨r2⟩ defined in Eq. (D.3) and ⟨r2⟩MD defined in Eq. (D.4) are not

exactly same. Because ⟨r2⟩ is obtained from Iinc(Q, t) data which is average over ISF

data of each nuclei, since ⟨r2⟩MD is calculated as an average over MSD of each nucleus.

The average over the nuclei in the protein made when the full Iinc(Q, t) is represented

by a global I(Q, t) is not the same as the average over the nuclei made in Eq. (D.4).
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Appendix E

THE IMPORTANCE OF FOURTH CUMULANT TERM

The intermediate scattering function I(Q, t) at infinite time limit (t = ∞) is,

I(Q, t) = I∞ = exp[−⟨[Q · r]2⟩+ 1

12
[⟨[Q · r]4⟩ − 3⟨[Q · r]2⟩2] + · · · ] (E.1)

For Q parallel to direction α

⟨[Q · r]2⟩ = Q2⟨r2α⟩

⟨[Q · r]4⟩ = Q4⟨r4α⟩

I∞ = exp[−Q2⟨r2α⟩+
1

12
Q4[⟨r4α⟩ − 3⟨r2α⟩2]]

= exp[−Q2⟨r2α⟩[1−
1

12
Q2γα⟨r2α⟩]] (E.2)

where γα = ⟨r4α⟩−3⟨r2α⟩2
⟨r2α⟩2

.

The 4th cumulant is significant is the kurtosis γ is large enough that 1
12
Q2γα⟨r2α⟩

is comparable to 1. Note ⟨r2α⟩ ≈ 1
3
⟨r2⟩ e.g. for example γα ∼ 1, ⟨r2⟩ ∼ 2 Å2, Q2 ∼ 4

Å−2 =⇒ 1
12
Q2γα⟨r2⟩ ∼ 4

12
∼ 1

3
.

Thus, for large ⟨r2⟩ ∼ 3 Å2 and γ ∼ 1 − 2, we expect the 4th cumulant to be

significant at Q ∼ 2 Å−1.
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Appendix F

CALCULATING THE FULL ISF AND GAUSSIAN ISF

The incoherent ISF Iinc(Q, t) in Eq. (4.1) depends on the Q vector. The

Iinc(Q, t) observed in neutron scattering experiments is averaged over Q vectors which

have a same magnitude. In the calculation of Iinc(Q, t), the Q vector is chosen as

Q = Qx, Q = Qy and Q = Qz, then we take an average over these three calculations:

Iinc(Q, t) =
1

3
[Iinc(Qx, t) + Iinc(Qy, t) + Iinc(Qz, t)]. (F.1)

where Iinc(Qx, t)), Iinc(Qy, t)) and Iinc(Qz, t)) are calculated from Eq. (4.1). Fig. (F.1)

shows that the Iinc(Q, t) data calculated from Eq. (F.1) for all H is agreed well with

the Iinc(Q, t) data calculated by SASSENA.
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Figure F.1: The comparison of the ISF, Iinc(Q, t), for all H in lysozyme (red solid
lines) calculated from Eq. (F.1) and Iinc(Q, t), for whole lysozyme (black
dashed lines) calculated by using SASENA.
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Similar to the calculation of Iinc(Q, t), IiG(Q, t) is calculated for Q = Qx,

Q = Qy and Q = Qz, then averaged over them:

IiG(Q, t) =
1

3
[IiG(Qx, t) + IiG(Qy, t) + IiG(Qz, t)]. (F.2)

where IiG(Qx, t)), IiG(Qy, t)) and IiG(Qz, t)) are calculated from Eq. (4.9).
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Appendix G

THE SELF CONSISTENT HARMONIC THEORY

In this section we derive the self consistent harmonic theory for a single particle

of mass M in an arbitrary potential, V (u) used in the present article. The particle is

described by the Hamiltonian

Ĥ = K̂ + V (u) (G.1)

where K̂ = −(~2/2M)d2/du2 is the kinetic energy operator. We introduce a model

harmonic Hamiltonian

Ĥh = K̂ +
1

2
ϕu2 (G.2)

and corresponding harmonic density matrix

ρh =
e−βHh

Tr(e−βHh)
(G.3)

where β = (kBT )
−1. Expectation values evaluated using ρh are

⟨Ô⟩h = Tr{ρhÔ} (G.4)

where Ô is any operator. The corresponding model harmonic Helmholtz free energy is

Fh = ⟨Ĥh⟩h − TSh

= ⟨Ĥh⟩+ (kBT )Tr{ρh log ρh}

= kBT log 2 sinh

(
1

2
β~ω

)
(G.5)
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where ω = ( ϕ
M
)
1
2 is the model simple harmonic oscillator frequency. In terms of Ĥh the

particle Ĥ is

Ĥ = Ĥh + V (u)− 1

2
ϕu2. (G.6)

The basic concept is to use ρh as a trial or model density matrix with which to

evaluate the particle free energy. The trial particle free energy is

Ftrial = ⟨H⟩h + (kBT )Tr{ρh log ρh}

= Fh + ⟨V (u)⟩h −
1

2
ϕ⟨u2⟩h. (G.7)

The Ftrial is an upper bound to the exact Helmholtz free energy, the Gibbs-Bogolibov

variational principle. We consider Ftrial as a functional of the model harmonic force

constant ϕ and the MSD ⟨u2⟩h. We minimize the Ftrial with respect to ϕ and ⟨u2⟩h in-

dependently holding the other variable constant to find the optimum ϕ and ⟨u2⟩h. This

variation gives

δFtrial

δ⟨u2⟩h
=

1

2
⟨d

2V (u)

du2
⟩h −

1

2
ϕ = 0 (G.8)

δFtrial

δϕ
=

1

2

(
~

2Mω

)
coth

(
1

2
β~ω

)
− 1

2
⟨u2⟩h = 0 (G.9)

The first term in Eq. G.8 is obtained by making a Taylor’s expansion of ⟨V (u)⟩h in

Eq. G.7 about V (0), V (u) = eu(
d
du

)V (0), and a cumulant expression of the exponen-

tial ⟨eu( d
du

)⟩h. For, a harmonic system with Gaussian distributions, ⟨u⟩h = 0 and all

cumulants beyond the second cumulant vanish so that

⟨V (u)⟩h = ⟨eu(d/du)⟩hV (0)

= e
1
2
⟨u2⟩h(d2/du2)V (0). (G.10)
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Differentiation with respect to ⟨u2⟩h then yields the first term in Eq. G.8 and Eq. G.8

leads immediately to Eq. G.1 with ⟨⟩h expressed as a average in configuration space.

The average in configuration space can be obtained by Fourier transforming V (u) and

again using a cumulant expansion,

⟨∇2V (u)⟩h = ∇2

∫
dqV (q)⟨eiqu⟩h

= ∇2

∫
dqV (q)e−

1
2
q2⟨u2⟩h

=

∫
due−

1
2
u2/⟨u2⟩h∇2V (u) (G.11)

where d/du is denoted by ∇. The first term in Eq. G.9 is obtained by differentiating

Eq. G.5 for Fh with respect to ω using ω2 = ϕ/M . Eq. G.9 leads immediately to

Eq. 5.6. The ϕ represents the optimum harmonic force constant representing a particle

in an anharmonic well V (u) in which the particle has a MSD ⟨u2⟩.
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