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ABSTRACT 

 

A New Approach to Elicit Continuous Attribute Values Using an Immersive 

Simulation Environment: Offshore Energy Production and Mid-Atlantic Beach 

Visitation 

Abstract: This research proposes a new approach to measuring and estimating 

willingness-to-pay for the class of nonmarket amenities with spatially explicit 

components. The continuous variation of attributes present in many nonmarket goods 

is used to collect information on consumer choices related to land use at a higher 

resolution than is available through standard dichotomous choice questions. Our study 

gathers the information in an immersive simulation environment without directly 

asking participants to form explicit valuations, an unfamiliar and cognitively 

challenging task for most consumers. The resulting data can be estimated with a 

duration or survival model consistent with random utility theory, recovering an 

expression for willingness-to-pay as a function of the continuous attribute. We apply 

this approach to estimate beach visitors’ visual disamenity associated with the 

presence of offshore wind turbine and oil platform installations.  

  



 xi

Cost-Effective Conservation when Using Benefit Metrics 

Abstract: There has been a recent push for conservation organizations adopt 

project selection approaches such as binary linear programming. The metrics used to 

measure the benefits of a project however, are poorly defined in that they do not 

directly compute a value. These scores represent normalized measurements of 

underlying values that are likely log-normally distributed. We propose the log-normal 

distribution of values as this is well recognized as the distribution underlying most of 

the natural processes that are relevant to conservation programs, such as nutrient and 

contaminant distribution and species abundance. This tendency towards log-normal 

distribution arises from basic thermodynamic properties of chemical and biophysical 

systems, when the maximum entropy principle is applied to a dynamic system of 

positive, conserved quantities. Applying such metrics in optimization will tend to 

undervalue high-benefit projects and select a suboptimal portfolio of projects relative 

to simpler approaches. This suboptimal performance can lead to losses in efficiency as 

high as 30 percent. We propose a hybrid optimization heuristic that can improve 

performance. 

  

Protecting the Coastline—Optimal Coastal Inundation Adaptation Mechanisms 

Abstract: People living in coastal areas are deeply concerned about the impact 

of rising sea levels along with the increase in extreme storms that could lead to more 

frequent coastal inundation events. In addition to physical damage from the initial 

storm surge, other consequences are likely, including contamination of drinking water, 



 xii

alteration of soil and water chemistry in forest and wetland ecosystems, mobilization 

of previously stable chemical contaminants in industrial sites, and severe deterioration 

of agricultural soil quality. There are a number of coastal infrastructure options 

available to planners including dikes and levees, surge barriers, wetlands, and dune 

enhancement. Many landowners and communities have been reluctant to adopt these 

technologies because of expense or alteration of the landscape. This, along with spatial 

externalities can lead to an under provisioning of coastal infrastructure, and an 

opportunity for policy to improve infrastructure development.    

 This research uses laboratory experiments to test bed different policies 

in a public good context with payoff dynamics that are explicitly based on realistic 

hydrological transport dynamics. The experiments include three policy treatments – no 

mechanism, conditional fixed payment, or a Vickery-Clark-Groves based reverse 

auction – under both constant and uncertain inundation dynamics. They are designed 

to test the relative effectiveness of the two policy mechanisms in this context, how 

changes in the inundation dynamics consistent with sea level rise and increased 

extreme events affects the mechanisms, and how effective the mechanisms are at 

increasing coordination in investment decisions. Interestingly, the fixed payment is 

effective primarily in the constant inundation case, while the VCG mechanism is 

primarily effective in the random inundation case. Unfortunately, neither mechanism 

was very effective at increasing coordination. 
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Chapter 1  

A NEW APPROACH TO ELICIT CONTINUOUS ATTRIBUTE VALUES 

USING AN IMMERSIVE SIMULATION ENVIRONMENT: OFFSHORE 

ENERGY PRODUCTION AND MID-ATLANTIC BEACH VISITATION 

Introduction    

Convention characterizes approaches to the valuation of non-market amenities 

and disamenities in terms of Stated Preference (SP) and Revealed Preference (RP).  

Historically, SP has been the primarily been the domain of survey-type instruments 

like contingent valuation and choice experiments, while RP approaches, like hedonic 

and travel cost studies have relied more on directly observed or calculated market 

data. Recently, both lab and field experiments have crept into both RP and SP 

literature both as a way of testing the validity of SP methodologies, and as using a 

high degree of control and precise value elicitation mechanisms to create preference 

revealing “markets” that would not otherwise exist. This research proposes a novel 

elicitation and estimation approach that draws from SP surveys, RP data, and lab 

experiment design. It uses a continuous variation in an attribute of a non-market 

amenity to generate a very data efficient estimate of the value of that attribute as a 

function of the variation.  We apply this approach to estimate the effect of distance of 

offshore wind turbines and oil platforms from the beach on travelers’ value for a beach 
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vacation – an issue that has been of increasing interest, yet has received only modest 

attention (Landenburg, 2009; Landry et al., 2012).  This approach integrates baseline 

RP travel cost data, and uses highly realistic, controlled and replicable, lab experiment 

style simulation that allows users to vary distance from shore of both wind turbines 

and oil platforms, in response to price signal. The data generated by this allows for 

estimation in a duration model context, from which WTP as a function of distance 

may be recovered.  

Past efforts combining both SP and RP into a single analysis have taken many 

approaches, which are reviewed in Whitehead, et al. (2008a). Typical approaches to 

this include “stacking” RP and SP data with identical structures into a pooled dataset 

to extend sample size, or estimating separate models, often within subjects, to test for 

“convergent validity” or biases in methods. Recent approaches more directly integrate 

RP and SP by taking participants’ observed behavior as a baseline, and then extending 

that with hypothetical variations of attributes (Train and Wilson, 2008; von Haefen 

and Phaneuf, 2008).  This research is similar to this extended RP approach, but is has 

important differences in both the elicitation approach and the analysis. The elicitation 

instrument was designed to facilitate both an immersive decision environment, where 

participants controlled computer simulations involving an environment visually 

replicating the beach that they were visiting while they were taking the survey. The 

response data was structured as “spells”, or adjacent spans of distance over which the 

offshore energy facilities would be acceptable at a given price, instead of the 

customary set of dichotomous choice, or referendum responses. This type of 
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continuous variation is often a component of non-market goods.  Other examples 

include proximity to amenities such as open space and farm land (Ready and Abdalla, 

2005; Bergstrom and Ready, 2009), or protected habitat (Pate and Loomis, 1997; 

Loomis 2000; Neumann, Boyle, and Bell, 2009), or to disamenities, such as 

contaminated sites (Ihlanfeldt and Taylor, 2004; Messer et al, 2006), or the width of 

nourished beaches (Shivlani, Letson, and Theis, 2003; Whitehead, et al.; 2008b, 

Parsons, et al., 2013).  

Dichotomous choice questions have been the de facto elicitation format for 

environmental valuation studies since Arrow et al.’s (1995) report to the National 

Oceanic and Atmospheric Administration (NOAA) on contingent valuation endorsed 

it as the standard for such work. This referendum-style choice format has persisted for 

two decades through the extensions of contingent valuation into the science of choice 

modeling. This contrasts with direct response formats such as open-ended -elicitation 

questions that seek responses in terms of willingness-to-pay (WTP) given a set of 

attributes. The upside of questions that directly measure WTP is precise observations, 

generally either points or small intervals. Dichotomous choice responses offer only 

yes/no responses at a few fixed prices so studies that use them typically require much 

larger samples to obtain a similar level of accuracy (Cameron and Quiggin, 1994). 

However, as consumers, research participants typically are much more familiar with 

posted-price decision-making. They are comfortable assessing whether they would be 

willing to accept an offered deal. The question of exactly how much they would be 

willing to pay for a hypothetical package of attributes is a far less familiar task and 
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thus is more cognitively taxing. It is possible that studies of willingness-to-pay for a 

bundle of a large number of attributes are prone to bias (Balistreri et al., 2001). 

Exactly how substantial such bias may be is the subject of debate and likely depends 

on how familiar the situations presented and the design of the elicitation instrument 

are to participants. 

Attempts have been made to improve the efficiency of dichotomous choice 

instruments. A notable example is the double bound (or interval) method, which poses 

a yes/no WTP question at a particular price level and then, depending on the response, 

presents a follow-up question involving a different price level (Albeini, 1995). Thus, 

the decision remains in the posted-price decision space, and the structure considerably 

improves the statistical efficiency of data collected (Hanemann, Loomis, and 

Kanninen, 1991). However, Cameron et al. (1996) observed a degree of inconsistency 

between the distributions of WTP for the initial and follow-up questions and 

speculated that introducing a new price-point may have caused participants to update 

their degree of WTP, which would be consistent with theories of value formation 

(Plott, 1996;  Braga and Starmer, 2005; Kingsley and Brown, 2011). 

In this research, we approach this using computer technology and drawing on 

approaches from lab experiment techniques, we developed a simulation related to 

offshore energy development off the Mid-Atlantic coast in the United Sates in which 

participants respond to the level of attribute provided at a given price. The simulation 

can be repeated using various price levels and attributes to obtain a series of observed 

intervals of attribute acceptance, which can be modeled with standard duration (or 
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survival) models that estimate effects on the time required to achieve an event. When 

time is replaced by cost, duration models generate estimates of demand curves 

(Steinberg and Carson, 1989). Duration models are commonly used to estimate WTP 

from both payment-ladder valuation data (Wang and He, 2011) and medical treatment 

data (Luchini, Daoud, and Moatti, 2007). The approach recovers WTP as functions of 

attribute levels at the mean, at the median, or for a specific consumer when the model 

is specified in terms of attribute level with cost as a covariate. 

Duration models offer new options in addressing issues like censoring and 

modeling unobserved heterogeneity. As shown below, they are consistent with the 

random utility model, the approach that motivates empirical analyses of dichotomous 

choice data, while also providing greater statistical power in the face of data collection 

constraints. We use a Monte Carlo experiment to compare estimates of WTP 

recovered from a duration model to WTP estimated from a simulation experiment 

involving multiple dichotomous choices using a logit model. We find a significant 

difference between the two sets of estimates. With small sample sizes, the difference is 

quite large, while even with “moderately” sized samples in the 50 to 100 respondent 

range, the magnitudes of the standard errors produced by the duration model are on the 

order of half of those of the dichotomous choice data. We then apply the two models 

to data collected from beach visitors to estimate the value of the visual disamenity 

generated by offshore energy production (wind turbines and drilling platforms).  

Data were collected from an intercept survey of visitors at two popular 

Delaware beaches. Respondents reported information on their trip costs and then were 
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asked to participate in a computer-simulation choice environment, involving a picture 

of the same beach on which they were standing with computer-generated wind 

turbines or oil platforms superimposed on the horizon. Participants were asked to 

adjust (i.e., enlarge or bring closer) the location of the turbines or platforms until they 

would no longer be willing to visit the beach despite several randomly assigned price 

discount. The distance choice data allowed estimation of a model of visitor attrition 

based on proximity to energy generation infrastructure using co-varying costs of the 

trip, type of energy generated, and demographic characteristics. Results show that 

beach visitors are relatively indifferent to wind turbines that are at least two to three 

miles offshore, are less accepting of oil platforms, and have a smaller price elasticity 

of demand for drilling platforms than for turbines. 

Methods  

As in a double-bound design, the model uses a dichotomous-choice 

referendum (accept or reject) for a fixed attribute bundle.1 In this study, however, 

participants may adjust their bundles after making an initial choice by decreasing the 

bundle to indifference, i.e., the point at which they would no longer make the same 

choice and thus equivalent to reducing their surplus to zero. Thus, instead of making 

decisions based on the price they are willing to pay, participants face a fixed price and 

instead “choose” by adjusting a continuously varying attribute to achieve a fixed 

                                                 
 
1 An obvious extension of this work would be a multivariate choice model. 
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(reservation) level of utility. For concreteness, one can think of the “attribute” as 

distance of a group of wind turbines from shore, though this could be generalized to 

many other settings. Then, this process would be to fix the price at the cost of a 

vacation, and adjust the distance of the turbines from shore until the visual disamenity 

has absorbed the entire surplus.  The exercise then repeats with different fixed prices.  

By observing several price/distance pairs at the reservation utility level, we can 

trace the shape of an indifference curve through the reservation utility and locate it in 

the price/distance space. The survey instrument allowed participants to adjust the 

distance and gave them a realistic visual depiction of the results of their choices. As a 

result, the decision environment was more concrete than decisions made in terms of 

hypothetical monetary values. 

By observing several price/distance pairs at the reservation utility level, we can 

trace the shape of an indifference curve through the reservation utility and locate it in 

the price/distance space. The survey instrument allowed participants to adjust the 

distance and gave them a realistic visual depiction of the results of their choices. As a 

result, the decision environment was more concrete than decisions made in terms of 

hypothetical monetary values. 

Estimation Approach  
Consider individual i’s choice of an outcome from a set of several options. 

According to the random utility model, individuals choose an outcome of interest, 

j = 1, when they believe that the utility associated with outcome j = 1 exceeds the 
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utility of all other outcomes and the outcome of their next best option, j = –1, in 

particular. 

��,� ≥ ��,�� 

The indirect utility functions for both j = 1 and j = –1 are a function of the price 

associated with the outcome, pi,j, and a vector of other individual, outcome-specific 

attributes, zi,j. Suppose that outcome j = 1 includes turbine distance, which can take a 

value within a set range, �� ∈ [�,�], that has an effect on the utility of the outcome 

but not on utility of the other alternatives.2 In our case, if we assume that the utility of 

the beach visit is linear in wd, then 

��,� = 	����,�, ��,�� − 	α�� + ε�,�, 

��,�� = 	����,��, ��,��� +	ε�,��. 
The probability of an individual choosing option j = 1 can be expressed as: 

Pr���,���� > ��,�����, ��� = Pr�����, ��� − α�� + ε�,� > ����, ��� + ε�,�����, ��� 
= Pr  1

α �����, ��� − ����, ��� + ε�,� − ε�,�� > ���"��, ��# 
= Pr
�∗ > ��|��, ��� 
= &���� 

conditional on the alternatives’ prices and the attributes. 

                                                 
 
2 In this case, we assume that decreasing values of attribute w have a negative effect 
on utility. The opposite could be easily accommodated by switching signs in the 
derivation of WTP from the hazard functions specified. 
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Ui,–1 thus acts as a reservation utility with the distribution Ui,–1 | pi,zi inherited 

from εi,–1. U 
* is a random variable representing a scaled premium in utility for j = 1 

when wd is at the furthest bound of its range, �. This U 
* will be a random variable 

with a cumulative distribution of	'���� = 	( )�*�+*,- . The function S(wd) is nearly 

identical to the survival function used in duration analysis except that in this case it is 

a function of wd instead of time. An instrument that can solicit participant decisions in 

terms of a “withdrawal point” can be used to estimate the random utility model under 

a duration approach using standard econometric software. It is also useful to consider 

the hazard function: λ(wd) = f(wd) / S(wd). The survival function, S(wd), indicates the 

probability that an individual will continue to choose outcome j = 1 for w < (wd) while 

λ(wd) indicates an instantaneous likelihood of switching to the next best option at wd. 

The distribution of U * | pi,zi—and hence the parametric specification of the 

duration model—depends on the distributions of εi,1 and εi,–1. Under the common 

assumption that these are both extreme value type I (EVI) distributions, U * | pi,zi will 

be logistic and the estimated duration model will be log-logistic. If we assume that 

both are normal distributions, U * | pi,zi will be normal, and the estimated duration 

model will be log-normal. If we assume that the disturbance on the utility of outcome 

j = 1 is EVI while the reservation utility is normal, then the difference will be an 

extreme value distribution, and the duration model can be specified as a Weibull 
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model.3 In practice, the choice between these models is often guided by the data, 

either through parameter significance tests for nested distributions (several of the 

distributions used in duration analysis are exponential and nested through restrictions 

on estimated parameters) or, more generally, through comparisons of Akaike 

information criteria (AICs).  

 A hazard model generally can be easily recovered from an estimated duration 

model. When the results are specified in hazard form, WTP is calculated from the 

estimation by calculating the payment required to maintain the hazard level for a 

change in attributes, as follows. With payment included as a covariate in the model, 

the fully augmented hazard function is λ(wd; pi,zi). At which point the compensation 

required to maintain the probability of a switch to the alternative—and hence the same 

level of utility–solves λ��;	��, ��� = 	λ���; 	��� + 0�, ���. A solution for C as a 

function of wd will depend on the distribution assumptions. Notably, if we consider X 

to be the full covariate vector, β to be the vector of the regression coefficients, βp to be 

the price coefficient, ρ to be the shape parameter of the Weibull distribution, and γ to 

be the shape parameter of the log-logistic distribution, then 

for a Weibull model, the hazard ratio is 

λ��; 1� = ρ345�6�� 

and WTP will satisfy 
                                                 
 
3 A Weibull specification is a more commonly used formulations in duration analysis 
and has the advantage of a relatively clean hazard function, and a resulting WTP 
function that depends only on p and w.  
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0���; β8, ρ, �� = 9ρ − 1−β8 : ln 9��� :. 
 

for a log-logistic model, the hazard ratio is 

λ��; 1� = 	 345��> ?@ A>�
γ[1 + 3C�45 D@ E�C�DE] 

and WTP will satisfy 

0���; 1, β, γ, �� = γβ8 ln F9��� :C�D��E 91 + 3�4GD ��D: −  ���D# �e�I5�J .	
Note that C in the case of the Weibull distribution is a function only of the price 

parameter and will be constant across the population; for the log-logistic distribution, 

C is a function of the full parameter vector and individual attributes so it will vary 

across individuals. Therefore, we must consider C functions for a given, mean, or 

median individual. The functions will describe iso-payment lines that maintain a given 

level of utility. Based on the WTP function for a particular (or average) participant, 

one can add a constant to satisfy a cost/distance point, again using a mean, median, or 

particular individual. 

Estimator Efficiency 
 

This approach is an alternative to dichotomous-choice/mixed-logit estimations 

because the data per observation have a higher resolution and thus should provide 
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greater efficiency in terms of the ratio of sampling effort to statistical power. We test 

this hypothesis using a Monte Carlo experiment using realistic data generated based 

on data from beach visitors, described in the next section, similar to the approach in 

Kumioff, Parmeter and Pope (2010). 

In this study, true parameters are assumed to represent individual participants’ 

price and attribute parameters in the indirect utility function for the outcome of interest 

and for distributions for individuals’ costs, disturbances on the utility function, and 

reservation utilities (see Table 1). The values were chosen reflect a distribution of 

costs, and a proportion of decisions that was similar to the data collected from on-site 

experiments with Delaware beach visitors, as described in the next section. The utility 

parameters and trip costs are used to describe the particular individual and the cost 

factors and attribute levels describe the points used in sampling.  

Using these values, a sample of n participants is drawn. For each participant, 

we calculate a reservation utility, �KL~N�0, 1�, and a utility level for each combination 

of sampling Dj and Wk: 

��,P,Q = α + 	β0�RP + 	γSQ +	ε� 
 

where Ui,j,k is the level of utility associated with the cost for the participant, Ci. 

Ci is a multiple of the cost for observation, Dj, and a value for the continuous attribute 

for the observation, which is represented by Wk. We then calculate nine responses 

from a dichotomous choice experiment using a response variable of YDC;i,j,k = 1 if 
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��,P,Q > �KL  and YDC;i,j,k = 0 otherwise. Using the response variable, the cost, and 

sampling variables, we estimate a fixed effects logit model and WTPDC, which 

represents the marginal WTP for the attribute under the dichotomous model. We then 

calculate the 95% confidence interval and standard error using a parametric bootstrap 

method (Krinsky-Robb, 1986). 

After estimating WTPDC, we calculate the continuous response that will be 

modeled with a Weibull specification YW; i, j) by solving for the value of Wk that 

satisfies ��,P,Q = �KL for each value of Dj: 

TU;�,P = 1γ [�KL − 	α − 	β0�RP −	ε�]. 
This calculation generates three observations whereas the dichotomous choice 

experiment generated nine. We use these three observations to estimate a Weibull 

duration model and WTP under that model, designated as WTPW, using the same 

system as for WTPDC. Standard errors for the Weibull estimate are calculated using 

the delta method. This procedure repeats 10,000 times for each value of n.  

Figure 1 displays the results of our calculations in terms of standard errors as a 

function of sample size for the dichotomous choice (WTPDC) and continuous response 

(WTPW) estimates. Based on the parameterization, the true WTP is 120. Consequently, 

WTPW consistently generates smaller standard errors but the standard errors appear to 
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converge as sample size increases.4 At n = 20, WTPW is significantly greater than zero 

at a 95% significance level. WTPDC does not achieve that level of significance until 

40 < n < 50. If we consider a “moderate” sample size of n = 100, WTPW has a standard 

error of about 9.5. WTPDC does not achieve that standard error until n > 150. Thus, if 

we consider a typical sample range for this case, WTPW requires a sample size one-half 

to two-thirds of the sample size required by WTPDC to achieve a given level of 

precision. 

Application: Offshore Energy Production and Beach Tourism in the Mid-

Atlantic 

To reduce dependence on fossil fuels, agencies in many coastal areas have 

proposed offshore wind projects as alternative sources of energy. An issue that arises 

for virtually all wind projects is whether wind turbines disfigure the natural seascape, 

thereby reducing residents’ utility and tourism. A typical offshore wind project can 

include more than 100 turbines, each more than 400 feet tall, within sight of the shore. 

Similarly, oil platforms generate domestic fossil fuel, such as those established about 

one mile off the Gulf of Mexico’s coast, and are visible from the shore. The potential 

disamenity impact of both structures drives some opposition to offshore energy 

projects. Perhaps the best-known conflict involves the Cape Wind project in 

Nantucket Sound off Cape Cod in Massachusetts. It was delayed for more than a 

                                                 
 
4 In general, the ratio of standard errors, rs, will converge to some c ≤ 1. In this case, c 

= 0.75. It achieves rs > 0.74 at around n = 200. 
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decade because of objections from local residents whose ocean views would be 

interrupted. Similar objections to the appearance of wind turbines have recently been 

raised for by resort developers off the coast of Scotland, and as a potential keystone 

campaign issue by UK prime minister David Cameron and the conservative party.  

One proposed solution is to locate such projects far enough away to alleviate 

the visual disamenity. The visibility driver of the conflict can be resolved entirely if 

the structures can be placed beyond the view of the horizon. Unfortunately, 

constructing turbines farther away increases capital and maintenance costs because the 

depth to the ocean floor increases. In addition, the cost of delivering the energy 

generated rises farther from the coast.  

We estimate visual externalities associated with wind turbines and drilling 

platforms and investigate how such costs are affected by placing the structures farther 

from the shore. In the Mid-Atlantic, opening the state’s coastline to offshore oil 

exploration also has been given consideration, and a recently proposed offshore wind 

projects has generated controversy. Thus the problem setting is rooted in live, recent 

debates.   

Ladenburg (2009) provides an overview of the literature on amenity valuation 

related to wind projects, with more recent contributions from Gee (2010) and Landry 

et al. (2012).  Less work has focused on the visual impacts of offshore oil and natural 

gas production (Nassuaer and Benner, 1984 being a notable counterexample), even 

though many of the same coastal areas that have considered adapting wind energy 

have been also considered for fossil fuel exploration (US MMS, 2010). Of particular 
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interest, Krueger, Parsons, and Firestone (2011) studied offshore wind projects and the 

effect of how distant they would be from the coast in Delaware using a stated 

preference choice experiment involving projects situated 0.9, 3.6, 6.0, and 9.0 miles 

offshore for inland, bay, and ocean projects. Their results showed a disamenity value 

for beach residents of $19, $9, $1, and $0, respectively. Given that the value of a 

beach visit varies continuously with respect to the distance of such structures from 

shore and that the marginal social cost of moving a project back is of direct interest in 

determining optimal siting, this setting provides a useful application of our 

methodology. 

Design  
Iterative survey design occurred over two years, first, with semi-structured 

testing with a focus group composed of administrative staff members at a large public 

university in the Mid-Atlantic and, second, with an on-site pilot survey conducted with 

beachgoers at Rehoboth Beach, Delaware. These efforts produced feedback that led to 

refinements of instrument format and wording, but also allowed for testing the 

usability of the computer interface to ensure that subjects found the interface usable 

and unbiased. On-site beach intercept sessions with a four mobile computer interfaces 

produced many practical challenges (especially, sun, heat, and dust), which required 

significant time and effort to overcome.  

The final version of the survey consisted of a computer exercise and a written 

survey instrument. The computer portion of the session elicited travel cost information 
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and presented images of the beach that participants were at with realistic wind turbines 

or oil platforms on the horizon. Participants were able to adjust the distance of these 

objects from shore, in response to variations in price, implemented as a discount on 

the cost of their trip. Participants first responded to onscreen questions about the 

various costs associated with their vacation at the beach, including travel, food, 

lodging, retail spending, and amusements. This was similar in design to a revealed 

preference travel cost study. For each category of costs, respondents were provided 

with a pull-down list of values ranging between $0 and $5,000 in $50 increments. The 

sum of the cost responses (using midpoints of the $50 increments) from each category 

was calculated. Respondents were shown this total on their computer screen and could 

either accept it as reasonably accurate or adjust it to better represent the trip’s total 

cost.  

Final enumeration occurred with visitors to two popular Delaware beaches, 

Rehoboth Beach and Cape Henlopen (Figure 2), on July 12 through 15 and July 29 

through August 1, 2012. Rehoboth Beach is a resort town with a beach and boardwalk 

while Cape Henlopen is a less developed, more natural beach in a state park. Rehoboth 

Beach is highly developed with hotels fronting on a boardwalk, restaurants, and other 

attractions. It mainly draws visitors from Delaware, Maryland, and the Washington 

DC metro area. A fenced-off dune area punctuated by intermittent access walkways 

separates the boardwalk from the beach. A large public parking lot serves as the 

primary spot for beach access to at Cape Henlopen as foot traffic is funneled on a 

single boardwalk a public bathhouse and small concession stand. 
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In both settings, enumerators approached the lead adult individual in every 

third group of visitors entering the beach on an access path and asked this individual to 

participate in a twenty-minute survey about his or her beach experiences. Pilot 

experiments showed a high refusal rate because of the high time commitment. So, in 

the final survey, those who declined were offered the opportunity to participate in a 

short two-minute survey about their opinions regarding a series of images of wind 

turbines and platforms offshore at various distances. The data from the short survey 

were used to test for any indication of nonresponse bias (see further discussion in the 

section below). Individuals who agreed to take the full survey proceeded to a tent 

containing four survey stations and were offered a bottle of water. To ensure privacy, 

the stations were placed several feet apart and had privacy screens, which also helped 

mitigate glare.  

Participants were seated and instructed to put on headphones. They then 

watched a two-minute video demonstrating the interface and showing the full range of 

possible placements for offshore turbines and oil platforms on their computer screen. 

Respondents then answered onscreen questions about the costs associated with their 

beach visit. The final computerized section of the survey showed each participant a 

photo of the beach they were visiting with either 100 wind turbines or two oil 

platforms (thus providing equivalent amounts of energy) on the horizon. Figure 3 

shows examples of images used in the research.  

Using cursor keys, participants could scroll to change the size of the energy 

structures in intervals small enough to be essentially continuous (on the order of 
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several feet). The program allowed participants to locate the turbines/platforms 

anywhere between ten miles (the farthest distance at which they can still be seen from 

the beach on an average day) and one-quarter mile (a function of the image of the 

structures remaining mostly contained within the computer screen). The starting spot 

for the turbines/platforms observed by the participants was varied randomly to avoid 

potential anchoring effects. The administrator asked each participant to use the 

computer interface to relocate the turbines/platforms to the point at which they would 

not have visited the beach.  

Respondents were then asked to consider a scenario in which the local 

chamber of commerce offered travel discounts to increase tourism after construction 

of the energy project, thus reducing the cost of their trips, and were asked to move the 

turbines/platforms to make their proximity consistent with the discounted trip cost. 

Finally, participants repeated the exercise in response to a second discount, generating 

three price-level observations per object per participant. The potential discounts (25%, 

37%, 48%, 58%, 67%, 75%, 82%, 88%, 93%, and 97%) were drawn at random 

without replacement, and the higher of the two discounts selected was offered first. 

Participants completed the process for one type of project and then repeated it for the 

other installation type. The type of installation (wind turbines or oil platforms) shown 

first was alternated each day. The same two discounts applied to both wind turbines 

and oil platforms. Once they finished the computer survey, participants filled out a 

written survey (see the Appendix) that requested demographic and attitude 

information measured. 
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Results  
The full survey results were compared to those of the abridged survey to test 

sample response validity. In both, participants were shown wind turbines and oil 

platforms at random distances from the shoreline and asked if those structures would 

have enhanced, detracted, or made no difference to their beach experiences. Figure 4 

displays the results of this comparison. The distributions of attitudes for the two 

samples are similar and are not statistically different.  

Table 2 offers some basic summary statistics of participants that completed the 

full exercise. On average participants were slightly older and wealthier than national 

medians, which is not surprising for a sample of beach visitors. The general 

impressions of the initial images shown to participants were surprisingly similar for 

wind turbines and oil platforms. For both structures, around of participants 50% report 

that it would not make a difference to their beach experience, and about 25% say that 

while it would detract it would not cause them to alter their vacation plans. Only about 

15% said it would have caused them not to have visited that beach. In spite of the 

similarity in stated attitude, when asked to move the structure to the point at which 

they would not have been willing to visit at their current trip price (before any 

discount was offered), the average placement for wind turbines was between 2.5 and 3 

miles from shore, while the average initial placement for oil platforms was about 5.9 

miles from shore. Figure 5 shows the distribution of participants’ initial (pre-discount) 

placement of the turbines/platforms relative to the cost of their trips. Note that 

placement of both turbines and platforms spikes at ten miles. This indicates censoring 
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because respondents were not allowed to place the structures more than ten miles from 

the shore. The spike is significant for both structures but was much larger for oil 

platforms (22.3% of all responses) than wind turbines (8.9% of all responses). For the 

uncensored observations, oil platforms are fairly uniformly distributed throughout the 

distance range while turbines are generally clustered within three miles of the shore, a 

result that is consistent with Krueger, Parsons, and Firestone’s (2011) finding that 

disamenity values for offshore ocean wind turbines decreased drastically between 4 

and 6 miles from the beach.  

Figure 6 depicts keneral-smoothed hazard curves that represent the relative 

probability of a visitor choosing an alternate travel destination at a given distance of 

the structures from the shore. Figure 7 shows Kaplan-Meier survival curves that 

represent the share of visitors who would continue to visit the beach at a given 

distance for the structures.  The curves show a greater hazard and a smaller beachgoer 

population for oil platforms than for wind turbines. Again, the results illustrate the 

dramatic increase in attrition of visitors in response to structures placed within two to 

three miles of the shore. 

We estimate the full duration model as a multi-sequential event model 

(Andersen-Gill, 1982). Duration models represent data as “spells”, or logged distance 

between (possibly censored) staring points and events.  Sequential event models 

control for endogenous starting points when there are a series of events, such that each 

spell begins when the proceeding one ends (i.e. after the initial placement of wind 

turbines or oil platforms by participants, the distance spell for each price level begins 
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at the end of the prior price spell). Table 3 shows the results of the estimates, with 

coefficients reported in standard, instead of exponentiated (or hazard ratio) form. The 

coefficients represent the effect of the covariates on the acceptable placement of the 

structure relative to the horizon, with negative numbers indicating movement closer to 

the beach. The significant negative constant for wind turbines indicate a baseline 

acceptance significantly closer than the horizon, while the coefficient on oil platforms 

is not significant, indicating a baseline placement at the horizon line. The coefficients 

can be interpreted as marginal movements toward the shore and away from the 

horizon. So, for instance those who do not own beach property will be willing to have 

oil platforms closer than individuals that do own beach properties. Age, trip cost, and 

visitors to the less developed destination tend to push oil platforms towards the 

horizon, while there is a small and borderline significant marginal increase in 

acceptance of platforms for males. Individuals with higher incomes are generally more 

willing to allow wind turbines closer to shore. The estimated shape parameter, rho, is 

important in recovering WTP estimates, and serves as a test of specification versus an 

exponential model when rho equals 1 (or ln(rho) equals 0). The primary parameter of 

interest from is model is the elasticity of distance with respect to trip cost. This is very 

significant for both wind turbines and oil platforms. It is also negative for both, 

indicating a percentage movement closer per percentage point trip discount.  

Figure 8 shows our estimates of the total surplus of a beach trip with either 

wind turbines or oil platforms on the horizon for the mean beach visitor. Note that the 

distance intersections at about three and six miles denote the point at which such a 
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visitor would choose an alternate destination over visiting the beach. As miles from 

shore increases, each curve approaches the “over the horizon” value for each 

installation type.  The difference between the two curves at around 10 miles would 

indicate the baseline difference in disamenity value for each type being off-shore, 

capturing thing like concern for a relatively higher environmental risk from the oil 

platforms.  

Conclusions 

 

This research proposes a new approach to valuing some kinds of nonmarket 

goods by taking advantage of continuous variation in attributes of those goods. 

Observations from a continuous variation model typically are more precise than 

observations from dichotomous choice surveys and avoid some cognitive challenges 

associated with approaches that ask consumers how much they are willing to pay for a 

good. Our approach provides a series of “spell” data over the continuous attribute for 

different price levels that can be estimated using a duration model. A Monte-Carlo 

simulation demonstrates that the approach can reduce standard errors by 50% for 

small to moderate sample sizes relative to dichotomous choice questions with a gap in 

efficiency persisting asymptotically.  

We applied our approach to a survey of visitors to Mid-Atlantic beaches to 

value the visual disamenity of potential offshore wind turbine and oil drilling projects. 

In the study, a computer simulation allowed beachgoers to adjust the distance between 
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the beach and turbines/platforms based on the disamenity of the structures for several 

trip costs. The majority of the beach visitors were generally indifferent to the 

appearance of wind turbines that were at least two miles from shore and were more 

resistant to oil platforms. The disamenity associated with the oil platforms is also less 

price-elastic. 

This simulation based continuous attribute acceptance elicitation approach 

could potentially be applied to any number of non-market valuation scenarios. 

Possibilities include physical distance related attributes like beach width and 

proximity to hazardous sites; however the approach can also be extended to other 

amenities or disamenities that could be presented and adjusted in a simulation 

environment, like water turbidity, traffic or recreational congestion, view impediments 

like haze or development, or even noise pollution.     
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Table 1.Monte Carlo Parameters 

Variable Description Value 

Α U Intercept 15 

Β U Cost Parameter -1.2 

Γ U Attribute Parameter -0.01 

Ci Individual’s Trip Cost Normal(500, 1000) 

Dj Price Factor {0.5, 0.75, 1} 

Wk Sampling Values for the Continuous 

Attribute 

{6, 12, 18} 
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Table 2. Descriptive Statistics  

  Sample Means of Participant Characteristics 

    Rehoboth   Cape Henlopen 

Sample Size 126   98 

Age 43 49 

Income (Median) $55,001-$65,000 $55,001-$65,000 

Percent Male 50.8 44.9 

Total Trip Cost 996 416 

Initial Impression (at random distance from shore) 

Wind Turbines 

Enhance  0.143 0.143 

No difference 0.508 0.408 

Detract - Would still visit 0.206 0.265 

Detract - Would not still visit 0.143 0.184 

Initial placement (miles from 

shore) 2.52 3.06 

Oil Platforms 

Enhance  0.063 0.102 

No difference 0.525 0.470 

Detract - Would still visit 0.254 0.265 

Detract - Would not visit 0.158 0.163 

  

Initial placement (miles from 

shore) 5.87   5.89 
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Table 3. Sequential Event Weibull Regressions 

Miles from horizon (β < 0 => closer to shore)  Wind 
Turbines  

Oil Platforms  

 
Constant 

-6.825*** 
(1.652) 

-2.435 
(1.587) 

 
Percent Trip Discount 

-0.0227*** 
(0.0048) 

-0.0178*** 
(0.0056) 

 
Primarily Water Activities 

0.137 
(0.245) 

-0.061 
(0.280) 

 
Primarily Sand Activities 

0.225 
(0.255) 

0.362 
(0.303) 

 
Own Property at DE Beaches 

0.242 
(0.325) 

1.356*** 
(0.387) 

 
Income ($10,000) 

-0.019** 
(0.009) 

0.008 
(0.009) 

Years of Education 0.008 
(0.029) 

-0.029 
(0.046) 

 
Age 

0.008 
(0.006) 

0.014** 
(0.007) 

 
Male 

0.125 
(0.174) 

-0.287* 
(0.204) 

 
Trip Cost ($100) 

-0.003 
(0.006) 

0.017** 
(0.007) 

 
Turbines First 

0.179 
 (0.163) 

0.109 
(0.227) 

 
Henlopen 

-0.005 
(0.176) 

0.378** 
(0.171) 

Ln(Rho) 1.065*** 
(0.258) 

0.599** 
(0.301) 

N  112 112 
Note: *, **, and *** represent significance at a 10%, 5%, and 1% level. Standard errors are clustered by 
participants. Controls for survey recruiter and day were included but are not reported.  

 
  



 28

Figure 1 Results of Monte-Carlo Experiment 
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Figure 2 Map of Survey Sites  
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Figure 3 Images of Wind Turbines and Oil Platforms at 5 miles used in the 
Interface 
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Figure 4 Basic Attitudes in Survey and Validation Samples 
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Figure 5 Histogram of Participants’ Initial Placement at Reported Trip Costs
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Figure 6 Average Smoothed Hazard Functions at Reported Trip Cost 
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Figure 7 Kaplan-Meier Survival Curves at Reported Trip Cost 
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Figure 8 WTP as a Function of Distance  
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Chapter 2 

COST-EFFECTIVE CONSERVATION WHEN USING BENEFIT METRICS 

Introduction    

 

This study considers measurement of benefits of conservation projects in the 

context of the broad literature associated with applying optimization to the process of 

targeting conservation efforts. Typically, measurements of project quality available to 

conservation programs do not represent the true value of a project; instead, they are 

indexes or other proxies for a difficult-to-measure objective. In the best case, they may 

be thought of as an apparently benign transformation of the underlying distribution of 

available benefits. However, we show that applying mathematical programming 

techniques to such proxy measurements can result in selection of a portfolio that falls 

substantially short of the total benefits available for a given budget. This outcome 

seems to be inconsistent with the intuition that the solution of an optimization problem 

would be invariant to monotonic transformations of the objective function. The 

problem in this case arises from the discrete nature of the solution set combined with a 

typically log-normal or otherwise skewed distribution of the biological, geological, 

and other environmental attributes across the landscape. Many standard measures of 

conservation value and environmental impairment, which include the U.S. Department 
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of Agriculture’s (USDA’s) environmental benefit index (EBI), the U.S. Environmental 

Protection Agency’s (EPA’s) index of biotic integrity (IBI), and a host of state- or 

program-specific project-ranking tools, tend to normalize the benefits, which leads to 

over-selection of relatively low-value projects. 

The tendency for environmental scoring systems to normalize measured 

benefits of conservation can be illustrated by drawing from the literatures on both 

economics and natural sciences. Additionally, we explore the implications of this 

tendency using a Monte Carlo simulation and find that ill-applied mathematical 

programming can decrease the overall conservation benefit achieved by as much as 30 

percent. There are several ways to potentially solve this problem. We propose a hybrid 

optimization (HO) heuristic that would select a user-defined number of projects that 

score highest in a conservation-benefit ranking before applying optimization to select 

the rest of the portfolio of projects. This system would intentionally over-select 

otherwise-underrepresented high-benefit parcels and could recapture up to two-thirds 

of the lost conservation value. This novel approach is robust to positive correlations 

between benefits and costs. In addition, HO is likely to be more attractive to 

conservation professionals because it offers them the best of both worlds. They can 

pre-select several high-profile “signature” projects that offer exceptional benefits and 

then take a cost-effective approach with the funds that remain.5 

                                                 
 
5 One of the few conservation programs that has adopted binary linear programming, 
Baltimore County’s Agricultural Protection Program (as documented in Kaiser and 
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Conservation Optimization and Environmental Benefits  

 

Over the last three decades, a vast sum of both public and private funds has 

been devoted to environmental conservation. In 2010, for example, USDA’s 

Conservation Reserve Program alone budgeted $1.8 billion for payments for 

retirement of farm land (USDA, 2009), and between 1998 and 2003, states and 

counties spent $31 billion on agricultural land protection (American Farmland Trust, 

2010). In spite of this massive spending, most organizations do not have enough funds 

to take advantage of all of the conservation opportunities available and must carefully 

choose a handful of projects that they expect will maximize the amount of 

conservation achieved within the limits of their budget. A rigorous approach to this 

problem grew out of work using cost-efficiency measures (Babcock, et al., 1997) for 

policy decision-making and mathematical programming models to formulate and solve 

biological reserve selection as minimal-set and maximum-covering problems 

(Underhill, 1994; Ando, et al., 1998; Polasky, Camm, and Garber-Yonts, 2001; Wu, 

Adams, and Boggess, 2000; Azzaino, Conrad, and Ferraro, 2002; Messer and Allen, 

2010). The strategic approach advocated in the literature uses “conservation 

optimization” approaches that explicitly acknowledge programs’ budgetary 

constraints—binary linear programming (BLP) or benefit-cost-ratio prioritization 

(Babcock, et al., 1997). 

                                                                                                                                             
 
Messer, 2011), has at times selected one or two of the highest scoring projects before 
turning to the optimization results to select parcels. 
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However, most conservation programs continue to use a benefit-targeting (BT) 

(also referred to as rank-based) approach that ignores costs and focuses solely on 

conservation benefits. We can formally express the BT approach with the following 

model. Suppose there are N proposed conservation projects in the form of parcels 

submitted to a funding organization. We represent the value of the benefits available 

from conservation of parcel n as vn and the cost of conservation of that parcel as cn. 

When the organization has a conservation budget of G and xn is a binary variable with 

value of 1 if a parcel is chosen for funding and 0 otherwise, the BT algorithm can be 

expressed as 

Declare array of structures (vn, cn, xn) sorted such that b0 > b1 > . . . > bN–1. 

For i from 0 to N – 1: 

 If ci ≤ G – ∑ YPZP�P[\ , then xi := 1 

 Else, xi := 0 

End 

The BLP problem is commonly stated as 

(P-1) 

max` a Y�b�c
�[�  

 *d. a Y�Z� ≤ ec
�[�  

Y� ∈ f0,1g. 
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Solving this problem would typically be approached with a branch-and-bound 

algorithm (Land and Doig, 1960) or one of a number of heuristics developed to 

approximate this problem. 

An issue with both formulations is the assumption that we have good 

measures—a well-defined “conservation value”—of the benefits provided by 

conservation of each parcel. Ideally, conservation programs would have a way of 

measuring such benefits that perfectly captures the social value of each parcel under 

consideration (Duke, Dundas, and Messer, 2013). However, agencies and conservation 

organizations often do not collect this information, in part due to its expense and lack 

of staff economists that can do this work. Consequently, conservation programs 

typically adopt scoring systems that may not adequately capture variability in each 

parcel’s underlying value for conservation. A study by Master (1991) considered 

conservation prioritization ranking schemes used by biodiversity programs in a 

number of states and found that many of them were “semi-quantitative rankings” that 

were largely “subjective” and “misleading” from a scientific perspective. Metrick and 

Weitzman (1996) found that government land-conservation selections tended to be 

driven more by “visceral” subjective factors such as the number of acres and habitats 

provided for “higher life forms” than by any “relevant and measurable” component.  

There are many examples of the scoring/ranking systems used by 

conservationists in recent case studies. Two such studies involved conservation in 

Costa Rica. Wünscher, Engel, and Wunder (2006) offered a caveat of “coarse data and 

arbitrary assumptions” in developing a benefit score based on five normalized index 
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scores, and Barton et al. (2003) acknowledged a dearth of biodiversity data and thus 

used a composite index of “surrogate indicators.” Alix-García et al. (2005) 

recommended optimization of Mexico’s program of payment for hydrological 

environmental services of forests; however, Muñoz-Piña et al. (2008) described the 

program’s ranking system as based on simple grades assigned informally by program 

administrators. The scoring system used by the USDA Forest Service’s Forest Legacy 

Program, which was incorporated into a multiple-objective optimization problem by 

Fooks and Messer (2012) employs an average of percentage grades (from 0% to 100% 

with an average in the 80% range) assigned by state forestry officers. Even USDA’s 

EBI, which is used to rank Conservation Reserve Program applicants, involves the 

sum of six attribute scores that do not appear to give a true objective measure of the 

benefits achieved by preservation of a parcel (Farm Services Agency, 2011). 

Beyond the question of the quality of the measures used to value projects, there 

is a more subtle issue. Even if we assume that the conservation organization has a 

calculated metric that is based on easily observed characteristics and is a good proxy 

(i.e., the metric is highly correlated with the underlying value), the tendency for 

scoring systems to normalize the data remains. Normalization here refers to a scoring 

system which translates difficult to quantify value into a familiar frame of reference, 

such as percent grades or ranking scales, which try to approximate the ordinal relation 

of the data. This normalization will tend to compress variability and decrease skew 

and occurs for a variety of reasons, including limited variability within the grading 

scale, a tendency of programs to “curve” when assessing a subjective, and numerical 
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transformation that is implicit in the measurement process. When the underlying 

conservation values are relatively normally distributed, the difference between 

solutions obtained by optimizing over quality and over value will be small. However, 

it becomes a more important issue when the underlying distribution is skewed and it is 

most problematic when there are a few high-cost, signature (also sometimes referred 

to as “crown jewel”) projects and a larger number of less valuable projects that are 

close substitutes. A rank- or grade-based quality measure tends to reduce or eliminate 

this skewness (Solomon, 2008), and an optimization algorithm applied to such a set of 

parcels will under-weight the high-value parcels and identify a suboptimal portfolio of 

conservation projects. 

Existing theory and prior empirical studies suggest that biological and 

environmental data are typically log-normally distributed while human willingness-to-

pay values for ecosystem services are typically log-logistic. These two distributions 

present similar densities and behaviors for typical parameterizations (Ashkar and 

Aucoin, 2012) so we focus on the log-normal distribution since it is the de facto 

distribution for modeling natural attributes relevant to conservation (Limpert, et al., 

2001).  

A random variable, X, is log-normally distributed if ln(X) is normally 

distributed. A normal distribution is generated from the sum of independent random 

variables and has a confidence interval in a plus-or-minus form: x ± c.  A log-normal 

distribution arises from the product of independent random variables and the 

confidence interval takes a multiplied or divided form: x ×/÷ c. These distributions 
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typically have a large degree of skewness. Log-normal distributions arise in settings 

that include either a constant growth rate or some other multiplicative process 

combined with other random variation. Such settings are common in biological (Koch, 

1966) and geological (Krieg, 1966) processes. Well-documented examples of 

quantities that occur in log-normal distributions include concentrations of elements in 

soil (Ahrens, 1954; Krieg, 1966), quantities of rainfall (Biondini, 1976), levels of 

environmental contaminants (Ott, 1978), and abundance of species (Magurran, 1988). 

In general, if we believe that the value that conservation secures is generated as 

the result of some quantifiable property of parcels that has a non-negative value that 

results from a physical process, this property will be distributed as (Koch, 1966) or 

well approximated by (Koch, 1969) a log-normal distribution. Basic chemical process, 

as well as the more complex compound processes that underlie biophysical systems 

such as proliferation, differentiation, expansion, energy intake, adaptation and 

maturation can be formulated in thermodynamic terms using the statistics of open 

systems (Sharma and Annila, 2007). This generates a probability distribution over 

possible states of the system, and according the principle of maximum entropy, the 

process will evolve towards more probable states over time. When the system is 

representative of conserved, non-negative values (i.e. matter and energy), the 

distribution of this system will approach log-normal (Grönholm and Annila, 2007). 

Therefore, any case in which the conservation benefits in question are represented by 

the abundance of some physical quantity such as minerals, nutrients, or species, the 

benefits will tend to be log-normally distributed. 
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There are many examples of the tendency of scoring mechanisms to decrease 

skew and variation in data. EBI scores from applicants in recent rounds of selection 

for the Conservation Reserve Program have displayed a skewness of less than 0.5 

(USDA, 2014) while many components of soil quality exhibit skewness that is 

significantly greater than 1.5. According to Good, Harms, and Ruckelshaus (2003) 

(see Figure 1), misuse of checklist assessments in targeting endangered species for 

recovery efforts “seriously compromises” the adequacy of such efforts. Note in Figure 

1 that the composite values (which were based on careful quality assessments of the 

sites for salmon habitat) reflect the long right tail associated with a log-normal value 

distribution while the index scores normally used for targeting conservation efforts are 

much more symmetrical. A similar result is seen in Duke et al. (forthcoming), which 

compares values for multiple parcels of agricultural land in Sussex County, Delaware. 

Dundas (2011) compared conservation values calculated from geographic 

characteristics, economic data, and information on the degree of development threat 

(see Figure 2) with two scoring metrics, land evaluation and site assessment (LESA) 

and natural resource scores. Once again, the computed conservation values show a 

large skew while the scoring metrics commonly used by conservation programs are 

much more symmetric. 
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Methodology 

 

In this study, we use Monte Carlo simulations to investigate the implications of 

a transformed, observed conservation benefit measure of the unobserved value of the 

conservation benefit in BLP and HO contexts. Note that we refer to “value” as the 

unobserved value of conservation and “measurement” as the observed, transformed 

conservation value.  

We draw a sample of prospective parcels for funding from specified population 

distributions. From that sample, three subsets are selected: (i) the potential optimal set 

generated by applying BLP using the (unobserved) benefit values as the objective 

function; (ii) the BLP-achieved set generated by applying BLP to the observed benefit 

measure; and (iii) the HO-achieved set generated by applying BLP to the observed 

benefit measure. The potential optimal set serves as an unachievable (under benefit 

information constraints) benchmark against which to compare the sets selected by the 

BLP-achieved and HO-achieved algorithms. This process is repeated 10,000 times for 

each parameterization, and we then compare the distributions of total achieved benefit 

values for the two approaches to the benchmark and to each other. 

To generate a set of parcels, we assume that parcel n has an unobserved 

conservation value, vn, that is randomly drawn from a log-normal distribution with 

scale and shape parameters (µ, σ). The unobserved conservation value is the actual 

benefits that accrue to society from conservation of parcel n. The observed benefit 

measure, mn, is generated through an observation function: 
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 mn(vn) = B0 + B1evn. (1) 

The exponential function transforms the log-distributed values to a linear scale 

and a symmetrical distribution while the parameters (B0, B1) allow for shifting and 

scaling of the distribution of the observed benefit measure. We parameterize the 

distribution of values so that it always generates a mean of 30.6  We consider several 

levels of σ with µ calculated as 

 μ�σ� = k l m n-
opq q@ r (2) 

to maintain a mean of 30 for any given value of σ. The observation function is 

parameterized with B0 = 50 and B1 = 50, which establishes a range for the scores of 0 

to 300, which is similar to the range in the EBI. 

The shape parameter (σ) of the value distribution is varied to take on values of 

0.25, 0.50, 0.75, 1.00, 1.25, and 1.50. The corresponding scale parameters (µ) 

generated from equation 2 are 3.3699, 3.2762, 3.1199, 2.9012, 2.6199, and 2.2762. 

Figure 3 displays the density of each distribution. A value of σ = 0.25 corresponds 

with a nearly symmetrical distribution of values that has a mean of 30.0, a median of 

29.1, a mode of 27.3, and skewness of 1.92. Skewness increases with σ, and the 

distribution corresponding to σ = 1.50 has a mean of 30.0, a median of 9.7, a mode of 

                                                 
 
6 The selection of the value of 30 is just for demonstration purposes and could be 
thought of as pounds of nitrogen per acre per year. In this example, this level is 
consistent with reductions in pounds of nitrogen per acre per year achieved by 
establishing riparian buffers on agricultural land in the Mid-Atlantic coastal plain 
(Dosskey, 2001). 
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1.0, and skewness of 21.5. Figure 4 compares each distribution of value with the 

corresponding distribution of the benefit measurements generated by equation 1. Note 

that all of the distributions maintain their means across all of the parameterizations. 

However, while the skewness of the value distribution increases and the medians and 

modes shift to the left as the value of the shape parameter increases, the skewness, 

medians, and modes of the measurement distribution remain symmetric; only the 

degree of variance increases. 

We generate per-parcel conservation costs from random draws from a uniform 

distribution and initially assume that the conservation cost is independent of the 

benefit value and of the benefit measurement. However, prior studies have suggested 

that owners of parcels that have significant conservation value can inflate the price of 

the offer and extract surplus rent (Kirwan, Lubowski, and Roberts, 2005; Arnold, 

Duke, and Messer, 2013). Thus, to allow the cost of procuring environmental services 

from landowners to be arbitrarily correlated with the parcels’ observable quality, we 

calculate the cost of protecting parcel n, cn, as 

Zc�sc� =  0- + 0�
ρ × uv
uL +  �cw1 − ρx�. 

In this expression, zi is a random draw from a uniform [0,1] distribution, 

C = (C0, C1) represents the lower bound and total range of costs, ρ is the level of 

correlation between the parcel’s quality and the cost to enroll it, and yL  is the mean 
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benefit measurement. For the initial estimates, we use values of C = (200, 800) and 

ρ = 0.7 

A set of 30 realizations of (vi, zi) generates a sample of realized benefit values 

and costs. Using that sample, we consider the problem of a conservation professional 

who knows the true conservation value of each potential parcel and aims to optimize 

the provision of benefits by the portfolio of parcels selected subject to a budget 

constraint. We assume that the budget, G, is half of the sum of all of the offers: 

G = [(C0 + C1) × N] / 4. When the actual benefit values are known, the 

conservationist can select the optimal set of projects using BLP as stated in P-1. The 

vector that solves this problem, xP, is the potential optimal set. This solution would 

procure a total benefit of VP = Σ(vi × xiP ): the benchmark potential total benefit. 

When actual benefit values, vi, are not known but the benefit measurements, 

mi, are observed, the conservation organization can still apply BLP but must optimize 

over mi: 

max` a Y�y�
c
�[�  

 *d. a Y�Z� ≤ ec
�[�  

Y� ∈ f0,1g. 
 

                                                 
 
7 These values roughly represent an average per-acre cost to implement a riparian 
buffer best management practice contract in the Mid-Atlantic coastal plain (Lynch and 
Tjaden, 2000). 
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The solution to this problem, xBLP, is the BLP-achieved solution and the total 

benefit achieved by this set of parcels, VBLP = Σ(vi × xi,BLP) is the achieved total 

benefit by BLP. Note that the solution is calculated using the observed measure, mi, 

while VBLP is calculated using the unobserved values, vi. Thus, VBLP measures the 

value that actually accrues to society from applying BLP to the observed measure. 

Both VP and VBLP are calculated using the same vi while VP is calculated using the 

vector xP, which maximizes vi; thus, VP ≥ VBLP. We compare the difference in total 

benefit produced by comparing distributions of BLP’s benefit shortfall—the percent of 

the total (optimal) potential benefit that is achieved by the BLP solution: SBLP = 

(VP – VBLP) / VP. 

For small values of σ, the distribution of the actual values is approximately 

symmetric. Thus the measurements will be an approximately linear transformation of 

the values, VBLP will be close to VP, and SBLP will be small. As σ gets larger, most 

of the mass of parcels will be clustered around the mode and the parcels become 

perfect substitutes. In that case, xP will select a set of parcels that is similar to the set 

selected solely by a cost-minimizing criterion. And while VP will always be smaller 

than VBLP, the difference may be minor. However, the difference becomes 

problematic as σ increases and marginal differences in the benefits dominate marginal 

differences in the costs. In that case, the set selected by xP will approach the set 

selected by a BT mechanism, VBLP can grow arbitrarily larger than VP, and SBLP 

can be very large. 
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Since determining the true value of conservation of a parcel is often difficult, 

expensive, and/or technically infeasible, a heuristic approach to parcel selection is 

desirable when there is likely to be a large skew in the underlying benefit distribution. 

In general, any solution aimed at improving the benefit achieved given a particular 

budget will tend to shift selection into the right tail of the benefit distribution. One 

imprecise but intuitive way to tackle this problem is to combine the BT selection 

approach with BLP. That would, in short, force the parcels with the highest observable 

quality ratings into the selection set, after which BLP could be used to optimize 

selection of the rest of the parcels from the remaining budget. This hybrid process 

would combine the most attractive elements of each procedure to “protect the best and 

optimize the rest.” The BT/BLP hybrid model is intuitive and relatively easy to 

implement and explain, and it will be the most effective selection method when there 

is a poorly measured distribution of benefits with a long upper tail. 

We can include this approach as a constraint by defining a hybrid variable: 

ℎ��y�� = {1 |) y ≥  y�Q�
0 |) y� < y�Q�  

where m(k) is the measured quality of the kth-highest-measured parcel. Then, 

the HO problem can be expressed as 

max` a Y�~�
c
�[�  

 *d. a Y�Z� ≤ ec
�[�  
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a Y�ℎ� = �c
�[�  

Y� ∈ f0,1g. 
 

The HO-achieved solution to this problem is indicated by the vector xHO, and 

the total benefit achieved by this set, VHO = Σ(vi × xiHO), is the achieved total 

benefit by HO. As in the VBLP case, VP is always equal to or greater than VHO. We 

similarly define the shortfall of HO relative to the optimal ideal solution as SHO = 

(VP – VHO) / VP. Of specific interest are the relative magnitudes of VBLP and 

VHO.8 Next, we specifically explore the relative performance of the BLP and HO 

approaches. We vary the distribution of the underlying values and allow for 

correlation between a parcel’s quality and the cost to protect it as in Ferraro (2003).9 

Using the preceding definitions, we generate 10,000 pseudo-random samples 

to construct distributions of VP, VBLP, VHO, SBLP, and SHO. We also consider 

percentage-point differences in the benefit achieved by BLP (BA,BLP) or HO 

(BA,HO) relative to the first best solution (BP): SBLP – SHO. A positive difference 

                                                 
 
8 One might also be interested in considering the benefit achieved by a selection based 
on benefit-cost ratios (BCRs). Note, however, that the BCR benefit will always be less 
than or equal to BLP benefit, so conclusions on relative differences versus the HO 
benefit will be similar. 

9 We also considered measurement error in the benefit-observation function, which 
would lead to noise in the specification of the optimization as in Jansson (2007) and to 
variations in parameterization of the observation function. This alternative model did 
not yield any significant insights and thus the results are not reported. However, the 
code for all of those simulations is available from the authors. 
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indicates the amount (in percentage points) by which BLP outperforms HO. A 

negative difference describes the amount by which HO outperforms BLP in 

percentage points. 

Results 

 

We begin by documenting the BLP shortfall, SBLP = (VP – VBLP) / VP, 

when only the benefit measure is available. Table 1 reports average potential benefits 

achieved by BLP when optimizing over (1) the (unobserved) value of benefits (VP) 

and (2) the (observed) benefit measure (VBLP) plus the percent shortfall (SBLP) for 

every value of σ. When σ is small, the shortfall is extremely small, less than 1%. As σ 

gets larger, the difference increases, reaching a maximum of about 12% when σ = 1. 

Figure 5 illustrates the distributions of the shortfall for each value of σ. Note how the 

figures have a heavy right tail that tends to increase as the skew of the underlying 

benefit distribution increases, which indicates that the amount of benefit achieved 

using observed measurements quickly degrades relative to the potential benefits 

available under full value information. 

Since BLP leaves a substantial number of potential benefits on the table when 

applied to observed quality measures, we want to know if the proposed HO heuristic 

can do better. Table 1 reports the average benefit (VHO) achieved and the shortfall 

(SHO) that results when the HO approach is applied to observed benefit measures. 

The shortfall under HO is markedly smaller than the shortfall under BLP; it never 
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exceeds 1.5%. The percentage-point difference between the two is maximized when 

σ = 1; HO recovers 10.87 points of the 12.10% shortfall that results from BLP. 

A key issue in the implementation of HO to conservation optimization is the 

choice of k, the degree of quality that defines signature parcels. To some extent, the 

choice is a function of the skew in the underlying distribution. In Table 2, we illustrate 

HO for each shape parameter (σ) for values of k from 0 to 12, which represents 

between 0% and 40% of the 30 available parcels. In this case, k = 0 represents a 

standard BLP approach. And since the available conservation budget is half of the cost 

to preserve all 30 parcels, values of k of  12 through 15 would generally represent a 

full BT approach. Values of k greater than 13 or 14 typically are not feasible because 

the budget is not sufficient to preserve that number of parcels. Higher values of k 

represent greater percentage-point differences in the shortfall—in how much 

improvement HO offers over BLP. When σ is small, there generally is a relatively 

small difference between the results achieved by the two techniques, and the 

performance of HO relative to BLP is maximized when k represents 10% to 30% of 

the total project pool. As σ increases, the optimal level of k stabilizes at about 30% of 

the project pool. Of course, in an actual application, the true level of σ would not be 

known. However, HO offers decision-makers the ability to parametrically vary k to 

provide a “menu” of possible conservation sets that can inform them about the choices 

and tradeoffs they face. 

A natural extension in this context is the effect of ρ—the correlation between a 

parcel’s quality and the cost of preserving that parcel (Ferraro, 2003). Table 3 shows 
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average BLP shortfalls for ρ = 0, 0.3, 0.6, and 0.9 and Table 4 shows the percentage-

point differences in the shortfalls between BLP and HO. We find that high levels of 

correlation between costs and benefits tend to further decrease the effectiveness of 

BLP when applied to measurements rather than to true values. Since settings in which 

benefits and costs are positively correlated are relatively common, this result raises a 

concern about the ability of BLP alone to make the most cost-effective selection. It 

appears that the shortfall recovered by HO increases as the effectiveness of HO 

declines, which increases the advantage of HO over BLP to some extent. It is not 

clear, however, whether the benefits recovered by HO are increasing or decreasing 

relative to the shortfall from BLP. 

Conclusion 

 

We consider a previously overlooked issue that is critical to the efficiency of 

applying selection techniques such as BLP and benefit-cost-ratio prioritization to 

conservation settings: implications of the imperfect quality metrics used by 

conservation groups to measure the value of benefits delivered by potential projects. 

We demonstrate that the portfolios selected by both approaches can fall short of the 

maximum possible benefit by as much as 30% if the grading metric tends to normalize 

scores from a skewed distribution of underlying value. The problem is most acute 

when some of the potential projects offer a large, signature-level of benefit but also are 

expensive. 
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To address this challenge, we introduce a new hybrid optimization heuristic 

that is intuitive, is easy to implement, and recovers a substantial amount of 

conservation value relative to standard approaches. Monte Carlo simulations 

demonstrate reasonable situations in which the HO recovers 20 percentage points or 

more of the shortfall by BLP relative to a full-information benchmark. We consider 

several variations of the assumptions underlying the HO approach, including 

correlation between the cost and benefit of preserving a parcel. HO typically performs 

as well as or better than BLP under relaxations of our initial assumptions. 

As the state of the art of cost-effective conservation selection progresses and 

conservation professionals explore various optimization tools, effective 

communication and implementation of such tools will be essential to their becoming 

effective and enduring practices. Thus, it is important to recognize that mathematical 

optimization will not perform well, perhaps not as well as older approaches, when 

applied to ill-posed benefit metrics. Techniques such as hybrid optimization 

potentially offer methods for parcel selection that are both attractive to conservation 

professionals because of their flexibility and effective in procuring the best possible 

conservation outcomes from limited budgets. 

 

 



 

 

Table 4. Average Achieved Total Benefits by BLP and HO Given Different Levels of σ. 

 

   Binary Linear 

Programming 
 

 Hybrid Optimization  

Percentage Point 

Difference in 

Shortfall 

 

σ 
Potential 

Benefits (VP) 

 Achieved 

Benefits 

(VBLP) 
Shortfall 

(SBLP) 

 Achieved 

Benefits 

(VHO) 
Shortfall 

(SHO) 

 

0.25 538.22  534.97 0.60%  535.81 0.44%  0.16 

0.50 588.95  559.52 5.01%  580.88 1.41%  3.59 

0.75 662.29  600.01 9.34%  653.15 1.42%  7.92 

1.00 709.86  624.07 12.10%  701.53 1.23%  10.87 

1.25 761.13  689.25 9.64%  753.58 1.05%  8.59 

1.50 828.66  772.15 7.23%  823.11 0.81%  6.43 
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Table 5. Percentage Point Difference in Shortfall Given Different Selections of k for Hybrid Optimization.  

Top k Top % σ = 0.25 σ = 0.50 σ = 0.75 σ = 1.00 σ = 1.25 σ = 1.50 

0 0% 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

1 3% 0.0025 0.0119 0.0286 0.0303 0.0197 0.0086 

2 7% 0.0036 0.0221 0.0439 0.0531 0.0323 0.0175 

3 10% 0.0063 0.0324 0.0612 0.0702 0.0539 0.0290 

4 13% 0.0010 0.0356 0.0782 0.0856 0.0636 0.0356 

5 17% –0.0017 0.0422 0.0833 0.0976 0.0756 0.0485 

6 20% –0.0086 0.0416 0.0913 0.1123 0.0908 0.0544 

7 23% –0.0153 0.0424 0.0985 0.1146 0.0963 0.0596 

8 27% –0.0271 0.0430 0.0986 0.1278 0.1076  0.0690 

9 30% –0.0432 0.0354 0.1000 0.1269 0.1073 0.0665 

10 33% –0.0615 0.0215 0.0989 0.1283 0.1141 0.0709 

11 37% –0.0764 0.0104 0.0766 0.1214 0.1086 0.0653 

12 40% –0.0828 0.0008 0.0701 0.0995 0.0985 0.0591 
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Table 6. Average Benefit Shortfall from BLP with Cost/Benefit Correlation ρ. 

  σ = 0.25 σ = 0.50 σ = 0.75 σ = 1.00 σ = 1.25 σ = 1.50 

ρ = 0 0.0072 0.0477 0.0934 0.1164 0.1027 0.0700 

ρ = 0.3 0.0145 0.0934 0.1766 0.2169 0.2181 0.1886 

ρ = 0.6 0.0229 0.1227 0.2206 0.2908 0.3012 0.2625 

ρ = 0.9 0.0113 0.1166 0.2180 0.2856 0.3081 0.2534 
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Table 7. Average Percentage Point Difference between V
BLP

 and V
HO

 in Benefit Shortfall with Cost/Benefit Correlation ρ. 

  σ = 0.25 σ = 0.50 σ = 0.75 σ = 1.00 σ = 1.25 σ = 1.50 

ρ = 0 0.16 3.58 7.92 10.87 8.59 6.43 

ρ = 0.3 0.31 4.18 10.53 10.82 10.31 12.38 

ρ = 0.6 0.98 5.64 10.84 13.39 19.64 15.08 

ρ = 0.9 0.28 9.97 18.51 21.52 21.38 17.90 
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Figure 9 Contrasting Index and Ecological Measurements of Habitat Quality (from Good, et al. 2003).

 

Figure reproduced from (Good, Harms, and Ruckelshaus 2003).  
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Figure 10 Histograms of Farm Land Conservation Value vs. Score Assessments in Sussex County, Delaware  

 

  
Histogram of Parcel WTP Reproduced from Dundas (2011). 
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Figure 11 Density of Value Distributions of Conservation Benefits 
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Figure 12  Density of Value Distributions of Conservation Benefits 

   
σ = 0.25 σ = 0.5 σ = 0.75 

 

   
σ = 1 σ = 1.25 σ = 1.5 

 

6
3
 



 

Figure 13  Histograms of Benefit Shortfall of BLP 
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Chapter 3 

PROTECTING THE COASTLINE—OPTIMAL COASTAL INUNDATION 

ADAPTATION MECHANISMS 

Introduction    

  

More than half of the people in the United States in 2010 lived in coastal areas. 

It is expected that this number will increase by 8% by 2020 (Woods & Poole and 

NOAA, 2011). The US mid-Atlantic coastal zone area is emblematic of issues that 

arise in these areas, being comprised of low-lying, densely populated coastal plain 

with a broad mix of land uses. This region is subject to the effects of climate change, 

which include sea level rise and more frequent and extreme weather events that have 

the potential for devastating economic impacts. The “isotactic rebound” effect, or a 

seesawing of tectonic plates from the retreat of inland glaciers after the last ice age, 

exacerbates this, effectively doubling the rate of sea level rise in some areas (Leorri, et 

al. 2011). Beach tourism, industrial production, and agriculture are all important 

industries in the region that are located in areas predicted to be subject to increased 

flooding as a result of climate change. Flooding generates not only local property 

damage caused by storm surges but also contamination of drinking water, alteration of 

soil and water chemistry in forest and wetland ecosystems, mobilization of previously 
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stable chemical contaminants like arsenic and chromium, and increased salinity in 

productive agricultural soils. 

Coastal infrastructure can ameliorate the effects of coastal inundation. 

Landowners and local authorities can choose from a variety of built structures, like 

levees and breakwaters, and natural protective systems, like marsh and beach 

nourishment, to offer protection to their property. In spite of this, there has been a 

historical reluctance to invest in such protections. After the devastating effects of 

Hurricane Sandy, many residents of New Jersey’s beach communities objected to 

development of coastal barriers because they would interrupt their views of the beach. 

In their eyes, it seems, the scenic cost of such infrastructure improvements exceeds 

their perception of the risk of future damage. The cost of this damage, however, is 

borne in large part by taxpayers who subsidize flood insurance and pay for recovery 

expenses. The losses can also spill over to neighboring communities that are willing to 

develop infrastructure barriers for themselves but are exposed to overflow from less 

risk-averse communities.  

Due to the public good nature of coastal protection, recent policy efforts have 

explored subsidizing investments in protective infrastructure. Notable examples of 

these, including New Jersey’s Blue Acres Program, and Maryland’s Shore Erosion 

Control program, model their implementation after conservation easement and Best 

Management Practice cost share programs traditionally applied in the context of 

ecosystem service provisioning. As such, they demonstrate issues similar to those 

studied in the land conservation context, including private landowner information 
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about heterogeneous costs, as well as spatially non-linear externalities.  This research 

explores the spatial complexity of policy design in the coastal infrastructure 

environment. Specifically, models of water flow and energy transport suggest that the 

damage minimizing infrastructure design would be symmetric development levels for 

all landowners, and that a deviation from symmetric development by one or more 

landowners could lead to potentially large external damages. The heterogeneity of 

landowner costs, on the other hand, would lead to non-symmetric private production 

decisions. Therefore, a social planner is in the position of trading off between 

increasing total damages from heterogeneous production, and pushing additional costs 

onto private landowners.  Lab experiments implement no policy, fixed payment, and 

reverse auction based mechanisms in a public goods game with the payoff function 

based on a realistic coastal wave flow model with both constant and stochastic 

inundation dynamics. Results show that there is evidence of strategic play in the 

reverse auction setting; however, it is effective in increasing total welfare in the 

stochastic sea level rise setting. Fixed payments on the other hand, are effective in in 

increasing welfare under constant sea level rise dynamics, but lead to a net negative 

effect under stochastic dynamics. Interestingly, even though these policies are at least 

somewhat productive in increasing protective infrastructure development, they are not 

effective at increasing coordination of investment at a symmetric level. 
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Background 

 

There is a growing literature on the optimal provision of ecosystem services in 

a spatially explicit ecosystem benefit functions. Experiments with both students and 

farmers/landowners as subjects have tested the effectiveness of various policy 

mechanisms discussed in the literature on land conservation policies and economics. 

This includes work on network optimization and reserve topology targeting (Williams, 

ReVelle, and Levin, 2005; Malcolm and ReVelle, 2002) and on targeted bonus 

structures to induce coordination among landowners (Parkhurst et al., 2002; Parkhurst 

and Shogren, 2007).  Fooks, et al. (2014) includes treatments that offer conservation 

contracts through a reverse combinatorial auction with a spatially weighted benefit 

function and a reverse auction with bonus payments for spatially valuable parcels. One 

of the key insights of this work focused attention of the interaction between targeting 

and bonus payments in coordinating behavior and exploiting this coordination through 

proper targeting. In retrospect, this scheme is very much in the spirit (if not a 

technically precise implementation) of a reverse generalized Vickery-Clark-Groves 

(VCG) mechanism in which public goods are optimally procured and the agents who 

successfully execute contracts receive an additional subsidy based on the marginal 

value of their participation. This research specifically extends those experiments by 

formulating a realistic spatial objective functions, and precisely implemented policy 

mechanisms.  
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 In terms of policy application, this research falls within the field of 

“conservation optimization,” which involves applying mathematical programming and 

optimization to problems faced by environmental and conservation planners, 

especially studies that have investigated realistic and spatially explicit environmental 

or ecosystem dynamics. Works that have considered how to target and select projects 

in a conservation effort include Wu and Boggess (1999), which considered the impact 

of ecological nonlinearities in benefits. That study showed that, under variations in 

information, funding, and benefit structures, the distribution of funds can be highly 

inefficient under targeting mechanisms that are theoretically optimal. Wu and Skelton-

Groth (2002) applied this idea to trout habitat conservation in Oregon and showed that 

targeting schemes that consider threshold effects are far more productive than those 

that do not. Considerable effort has been devoted to establishing mathematical 

programming as a tool for spatially targeted conservation efforts (for example, 

Babcock, Camm and Garber-Yonts, 1997; Polasky, et al., 2001; Wu, Adams and 

Boggess, 2000). Zabel and Roe (2009) is one of several works that considered how 

results for targeted efforts and flat rate conservation payments compare and the 

tradeoff between performance and moral hazard that results. It discusses several ways 

to address the problem, including bonuses, threshold payments, and relative 

performance payments. Messer and Allen (2010) compared the discount auction 

format used in Delaware to alternate selection approaches and found that selection 

methods that emphasized cost-effectiveness performed best under budget constraints. 
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Recent experiments that have focused on behavioral dynamics in conservation 

auctions include Cason and Gangadharan (2004), which focused on the benefits 

generated by information effects for discriminative and non-discriminative pricing 

schemes. Those results indicated that participants’ strategic behavior increased with 

the information available to them, expanding the rents they were able to extract. 

Schilizzi and Latacz-Lohmann (2007) compared fixed price schemes and auctions 

over several repeated rounds that were independent and in which parcel endowments 

were shuffled between rounds. Auctions initially performed better but decreased in 

effectiveness over time. Rolfe et al. (2009) considered experiments involving multi-

round auctions for conservation contracts; with a primary focus on learning. In that 

case, there was a substantial learning effect over the first three rounds but little 

evidence of strategizing. 

Agglomeration bonuses have been proposed to improve coordination of 

landowners’ acre-retirement selections across parcel borders to target optimal spatial 

distributions. Those studies were subsequently extended in an effort to improve the 

spatial distribution of habitat in wildlife conservation programs by inducing 

coordination of landowner entry over time. This approach was first developed by 

Smith and Shogren (2002) to offer landowners with adjacent parcels an incentive to 

coordinate the retirement of acres across fences. The bonus structure offers incentives 

to landowners who retired parcels adjacent to their neighbor’s property. This approach 

has been the subject of several experiments that assessed its feasibility and concluded 

that it showed promise (Parkhurst et al., 2002; Parkhurst and Shogren, 2007).  



 71

Research Design 

The Decision Environment 
 

Participants representing coastal landowners or townships arranged in a linear 

array of parcels (Figure 1) are the decisions makers in this framework. Their decision 

is similar to the classic public good game, where they have an initial balance, out of 

which they must choose to allocate some amount to a public protection fund. After 

funds are allocated, each parcel receives damage as determined by a level of 

inundation, the amount of public investment by each parcel, and a coastal water-

flooding model. They receive a total profit from each round based on their initial 

balance, minus their contribution to protection, minus their damage. The agents have 

heterogeneous privately known infrastructure development functions, which determine 

the amount of protection they get for their contribution to the public protection fund. 

The level of inundation can be thought of as either literal floodwater depth, or, if the 

rounds are thought of in terms of expected values of decisions made over time, time 

until the next extreme flooding event. In each round, the level of flooding was either 

constant, or a known distribution of values.  

This setting is a variation on the canonical linear public good experiment 

setting has been well studied in the literature. Surveys of this literature (Ledyard, 

1995; Zelmer, 2003) characterize common themes in the design of such experiments 

to include group size, round length and learning, nature of subjects, heterogeneity in 

marginal per capita return (or payout rate) and endowment, punishment, 
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communication, and framing. Results that have consistently emerged include the 

positive effect of increases in marginal per capita return, communication, and 

endowment heterogeneity, and framing in determining the level of contribution to the 

public good, while increasing group size tends to have a negative effect, though only 

to a point (Zelmer, 2003). The role of learning, repetition, and dynamics are 

acknowledged as important, but a clear consensus has yet to emerge on the precise 

implications of these factors (Zelmer, 2003; Duffy, et al., 2007).  Generally, however, 

the belief is that with reputation contribution rates tend to deteriorate, either because 

of learning effects, strategic issues, or punishment (Ledyard, 1995).  

A ground-water flow model served as the basis for transport of damage from 

flooding between parcels and offshore. Since there is transport between parcels, there 

is the potential for a spatial externality. Consequently, landowners may under-develop 

protective infrastructures relative to the efficient level, and there may be a place for 

policy to improve the social outcome. We assume that there is a policymaker with a 

fixed budget. The planner may offer subsidies for the improvement of coastal 

protection, analogous to many of the existing coastal infrastructure development 

programs.  

Groundwater flow dynamics will be based on KINEROS2, the “Kinematic 

Runoff and Erosion Model,” which is a kinematic routing model developed by the 

U.S. Department of Agriculture (USDA) that is widely used in flood and runoff 

modeling. It is based on a one dimensional simplification of de Saint Venant shallow 

wave partial differential equations: 
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�ℎ�d + �yℎu�� �ℎ�Y = ~�Y, d�ℎ�0, d� = Z  

where h is the volume of water, x is linear distance, t is time, q is the lateral 

transport rate, c is a constant rate of drainage, and α and m are parameters related to 

the land surface. This has a first-order approximation in finite differences: 

ℎ������ − ℎ���� + ℎ���� − ℎ�� + x∗���` ��,���������ℎ�������u��> − ������ℎ�����u��>� +
�1 − �,������� �ℎ���� �u� − ����ℎ���u��� − 	Δd�~���� + ~��� = 	0. 

The initial condition for h is based on the floodwater depth, minus flooding 

prevented through protective infrastructure: 

ℎ-� = 	) −	b�   
Where f is the floodwater depth, and b�	is the allocation to public protection by 

parcel i.  

 This process is approximated using the classical Runge-Kutta method, 

and allowed to run until the total volume of floodwater drains below a small fraction 

of the initial amount, so that the final period, T satisfies:  ∑ ℎ��� ≤ 0.0001 ∗ ∑ ℎ-�� 	.  
The total damage to each parcel is defined as the sum of volume in that parcel over the 

total process: R� =	∑ ℎ����[- , while total overall damage is the sum of damages to each 

parcel: R = 	∑ R�� . A notable result in this context is the effect of “coastal profile”, or 

structural variability on the coast on the flow of an inundation event. Coastal 

engineering studies (Lynett, et al, 2012; Park, et al, 2013) have found that a structural 

variability in coastal infrastructure can create sheltering and funneling effect that can 
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amplify the forces from inundation water traveling through gaps in coastal 

infrastructure by 80 to 100 times. To test for this effect in this model, specify a 

representation of protection investment in terms of deviation from the mean: b� =
	b̅ +	bK� . Then, the “roughness” of a given investment set is the sum of absolute 

deviations: � = 	∑ �bK� �� . We can test the effect of roughness on damage in this model 

by simulating a sample of investment/damage sets, and estimating: 

ln�RQ� = �- + �� ln�b̅Q� + �x ln��Q� + �Q. 
Table 1 reports results for this for a sample of 10,000 simulated observations. 

In general, increasing the average level of infrastructure by 1% decreases damage by 

1.48%, however increasing roughness, or variation in levels of investment, by 1% 

increases damage by 0.26%. Ideally, a policy subsidizing infrastructure development 

should aim to increase the overall level of investment, while at the same time 

decreasing the level of variation between parcels’ investment development.  

This research considers three policy arrangements under both constant and 

random inundation level treatments. The first policy is a No Policy baseline case in 

which agents independently choose their investments in infrastructure to maximize 

their personal outputs. The second is a Fixed Payment Provision Point Mechanism, 

which offers a fixed subsidy as long as protection meets a minimum investment 

threshold. Here, damage is specifically targeted for the payment threshold instead of a 

metric of infrastructure production. There are a couple of reasons for this. The first is a 

matter of practicality of implementation; given the damage dynamics, it is not obvious 
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if a minimum protection level, average protection level, roughness, some combination 

of these, or some other target would best achieve an efficient level of protection, while 

targeting damage allows landowners to figure out the optimal approach to reduce 

damage to the target level. Secondly, this approach of tying payment to damage 

reduction is increasingly the approach that the National Flood Insurance Program is 

taking with programs like the Community Rating System, Hazard Mitigation 

Assistance Program, and Construction Best Practices Manuals tying payments and 

premium subsidies to effective implementation of damage reduction measures 

(FEMA, 2011).   

The third policy is a Reverse Combinatorial Vickery-Clarke-Groves (VCG) 

Mechanism (Varian and MacKie-Mason, 1995). First, funding agency observes the 

landowners’ initial level of protection built. Then, the landowners may submit 

proposals consisting of an additional level of protection and a minimum payment 

amount. If a proposal is selected for funding, the landowner must construct the 

additional level of protection at their private cost. They receive a payment equal to 

their reported minimum payment, plus a bonus equal to the external value of their 

participation. For a potential set of projects, with parcel i offering a minimum payment 

of pi. Call the damage achieved if all projects are funded D*, and the damage if all 

parcels besides i are funded Di. The bonus for parcel i is calculated by finding the 

damage to all other parcels if the full set of projects is funded: R��∗ = ∑ R∗,PP�� , and 

the damage to all other parcels if all projects except for i's are funded:	R��� = ∑ R�,PP�� .  
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Then the total payment for parcel i, if that set is selected is ��∗ =	�� + �R��∗ −
R��� �.		The funding agency solves the combinatorial selection problem to choose a 

subset of parcels which maximizes damage reduction, subject to the total payments 

(minimum payment plus bonus for all selected projects) being less than their budget.  

Since the calculation of the payment for each parcel depends upon the other parcels 

selected, and the full inundation dynamics must be simulated for each possible 

combination considered, this is extremely computationally intensive. In the context of 

the experiment, this was solved using a branch and bound algorithm that could be 

efficiently run on a computer with the capacity to execute several thousand 

simulations in parallel.  

Experimental Design   
 

Table 2 provides an outline of the experimental design. Six sessions were 

conducted, with twelve participants in each session, making 40 decisions each.  

Participants were recruited from University of Delaware undergraduate business 

majors. Session took about two hours, about 40 minutes of which were instructions 

and practice. Subjects averaged $35 in compensation, based on their performance in 

the experiment. The sessions took place at the Laboratory for Applied and 

Experimental Economics at the University of Delaware. The subject interface was 

programed with the software zTree (Fischbacher, 2007), with the background 
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calculations being done in NumPy, a numerical analysis extension to the programing 

language Python.  

The experiment was designed to test several hypotheses, listed in Table 10. 

The design is a two-by-three within subject design which incorporates two types of 

inundation settings along one dimension, and three policy arrangements along the 

other. The two inundation settings are constant inundation, in which there is a certain 

inundation level of 50 in every round, and random inundation, in which there will be 

inundation of 50 with probability of .5, inundation of 75 with probability of .3, and 

inundation of 100 with probability of .2. Note that the random inundation differs from 

the constant inundation in expected value.  This is meant to specifically evoke the 

scenario of increasing strength or frequency of extreme events, and to see if this 

specific effect causes behavior changes in strategic responses to the policy 

mechanisms. However, it must be kept in mind when interpreting the effects of this 

treatment that there is both an increase in expected value, and the introduction of 

uncertainty, and that these two cannot be disentangles when attributing any effect of 

the treatment.  

The three policy treatments are no policy, a fixed payment mechanism, and an 

auction like VCG mechanism. In the no policy setting each participant’s problem is 

simply to optimize their own profit, given their own, privately known cost. Given the 

external damage that each parcel imposes on its neighbors when it receives inundation, 

the expectation is that this will be below the socially optimal level. The provision 

point mechanism pays each participant $13 conditional on the total damage across all 
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parcels being less than $75. A well-structured provision point mechanism can offer 

incentive compatible implementation of the public optimum, however has been shown 

to lead to over-contribution to the public good (Cadsby and Maynes, 1999). The third 

mechanism is an auction for provisioning contracts based on the VCG mechanism. 

Participants first announce the amount of infrastructure they will develop without 

subsidization. They then submit proposals for the development of additional 

infrastructure, along with a reservation price. The proposals are chosen for funding 

based on maximizing the total damage reduction of a set of funded proposals, subject 

to the total cost of funding the proposals being less than $80. If a proposal is funded, 

the participant implementing the proposal receives a payment equal to their 

reservation price, plus the value of the external damage their additional infrastructure 

prevented. This type of funding mechanism is also incentive compatible, however is 

more complex than the provision point, which can lead to more mistakes on the part of 

participants (Varian and MacKie-Mason, 1995). Additionally, the “auction” format 

could lead to additional rent seeking by participants.  

The first set of hypothesis listed in Table 10 considers the total welfare effect 

of the program settings within and across inundation dynamics. It is expected that the 

constant inundation setting will generally achieve higher welfare than the random 

inundation, and that the policy mechanisms will achieve greater welfare then the no 

policy setting. I suspect that the VCG mechanism will perform better than the 

provision point mechanism, though this is uncertain. The second set of hypotheses 

considers protection built my mechanism. Due to the tendency of provision point 
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mechanisms to lead to over provision, it is expected that the provision point will lead 

to the highest (perhaps higher then efficient) level of investment, with the VCG being 

the intermediate and no policy having the lowest level of investment. The last two sets 

of hypotheses consider protection investment across inundation types, and the 

differential effect of inundation types on the mechanisms. It is expected that generally 

the random inundation setting will lead to higher levels of infrastructure development, 

both on average and across mechanisms as the random inundation setting has an 

increase in uncertainty, as well as the expected level of inundation.  

Participants were assigned to parcels in one of two groups of six. The parcels 

will be adjacent to other participants’ parcels, although the adjacency relationships 

were not known and subjects. Communications between participants was not allowed. 

Participants received written instructions (Appendix), and then were shown a brief 

recorded presentation explaining the main points of their decisions. They were then 

allowed to ask questions, and given several practice rounds to familiarize themselves 

with the software. To aid them in forming strategies, they also had an inundation 

calculator which allowed them to calculate the damage for different hypothetical 

production sets.  

These parcel assignments rotated between treatments. Participants could have 

one of three costs of protection: High, Medium, or Low. They submitted their 

decisions in terms of the amount of their $100 initial balance they would invest in 

protection. This achieved a level or protection based on their cost, as shown in Figure 

2.  
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After each session, subjects received payment based on the total amount of 

output they produced plus any transfers from the mechanism. This was be multiplied 

by a factor to convert from experimental outcome units to real US dollars.  

Results  

 

Data from the experiments was collected at two levels: for the individual 

parcel choices (including levels of productive and infrastructure investment, offers 

made to the funding agency, the timing and results of those offers) and at aggregate 

group level, including the amount of total damage and payments from the agency. 

Table 10 reviews the specific design hypothesis, and presents conclusions based on the 

results. The welfare results are mixed, and indeed present some interesting puzzles. In 

terms of the effectiveness of mechanisms in increasing provision, there is evidence 

that the mechanisms perform as expected in the random inundation treatment, but not 

in the constant inundation treatments. There is an increase in overall protection levels 

and in differential protection investment in random inundation (recall that the random 

inundation represents not only the introduction of uncertainty, but also an increase in 

expected value of damages. Of particular interest, we see that the mechanisms do not 

appear to perform as expected in the constant inundation case, and that the provision 

point mechanism decreases net welfare in the random inundation case. In analyzing 

the results, we will pay particular attention to possible explanations for these 

quandaries.  
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We will focus first on the bottom line – the total welfare effectiveness of the 

two policy settings as defined as decrease in damage relative to no policy, minus 

payments from the program. Then we will look more closely at individual investment 

and bidding behavior to understand how differences in behavior between treatments 

affect outcomes. 

Figure 3 shows the average profit achieved per parcel between the treatments. 

In comparing the no mechanism cases between the two inundation settings, we see a 

slight decrease in profit obtained, which is expected given the increase in expected 

inundation. The effect on the treatments between the two settings is much larger, with 

the effects going in opposite directions between the mechanisms. It is not obvious that 

that should be the case. Some much of the remained of this section explores possible 

reasons for this. Table 3 tests the net welfare effect, defined here as the average 

increase in landowner profit from the program, minus program expenditures. We see a 

similar split pattern between policy and inundation treatments. The fixed payment 

mechanism has a significant positive effect in the constant inundation setting, but a 

marginal negative effect in the random inundation setting. On the other hand, the VCG 

mechanism did not have a significant welfare effect in the constant setting, but did 

have a significant effect in the random setting.  

Table 4 compares the effectiveness of the mechanisms in terms increasing 

investment protection level, average protection level and increasing coordination in 

terms of average absolute deviation of individual protection from the average. We do 

see in the second column that the VCG mechanism is significantly effective at 



 82

increasing the production of protective infrastructure, in both the constant case, and 

even more so in the random inundation case. The fixed payment mechanism, on the 

other hand, has a borderline negative effect in the constant case, but a significant 

positive effect in the random case. Interestingly, considering the first column, the fixed 

payment seems to be responding directly to changes in investment, while the VCG is 

demonstrating an increase in protection produced without a significant increase in the 

amount of money invested. This suggests that the increase in the level or protective 

infrastructure is coming from increased efficiency in the distribution of investment 

spending among cost types. In examining the third column it was hoped that there 

would be some negative effects, suggesting a decrease the deviation from average 

production, and hence an increase in coordination as a result of the mechanisms. 

Unfortunately, exactly the opposite seems to be happening, with the mechanisms 

leading to larger dispersion of infrastructure production from the mean.  

Table 5 specifically examines bidding and rent extraction behavior across 

inundation treatment and parcel cost type in the VCG setting. Looking at the rent 

demanded in the first column, we do see evidence consistent with strategic rent 

extraction in the constant inundation setting, with low cost parcels seeking the highest 

levels of rent. This appears to be less systematic in the random inundation setting, with 

rent demanded decreasing for all cost types, with the exception of high cost parcels. 

Why they would be the exception is not clear, though some may be seeing it as 

offering them increased market power. These effects largely vanish for successful 

bids, indicating that the strategic rent seekers are largely off margin. The exception is 
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that medium cost parcels were quite successful at demanding additional rent in their 

bids in the random inundation case, perhaps because they tended to be most strongly 

on the margin. In terms of total rent extracted, including both the requested minimum 

payment bid as well as the bonus paid in addition to the bid,  it appears that the high 

cost parcels were successful at extracting rent in the constant inundation setting. This 

is likely because they would have the lowest baseline level of development, so would 

tend to receive high bonuses if their proposals were selected.   

Conclusion 

 

This paper considered the problem of optimally allocating funds to incentivize 

the development of infrastructure to prevent damages from storm surges, tsunamis, 

and other coastal inundation events. This problem is interesting because of both 

asymmetric cost information on the part of landowners, and because of the natural 

dynamic underlying the externality, which tends to localize damages, and to increase 

damages if there are large differences in levels if infrastructure development. Using 

lab experiments, we tested a conditional fixed payment mechanism, and well as a 

Vickery-Clark-Groves reverse auction mechanism in settings with both constant, and 

random inundation dynamics. The particular questions of interest were the relative 

effectiveness of these two mechanisms in this context, how changes in the inundation 

dynamics consistent with sea level rise and increased extreme events affects the 
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efficacy of these two mechanisms, and how effective the mechanisms are at increasing 

coordination in investment decisions.  

Fixed payment has a positive effect on welfare in the constant inundation case, 

but a substantial negative effect in the random inundation case, largely due to 

overinvestment in protective infrastructure.  The VCG mechanism, on the other hand 

did not have a significant effect in the constant inundation case, but had a large 

positive effect in the random inundation case. This difference in performance 

apparently stems from a reduction in rent seeking behavior under random inundation. 

Unhappily, none of these instruments was effective in increasing coordination towards 

symmetric investment. This could partially be because of the relatively low cost of 

coordination failure, relative to the benefits of increased overall investment.  

There are several interesting aspects to this problem left unexplored. An 

obvious extension is varying the parameters of the water flow dynamics to see if 

changing the balance of the effect of average infrastructure level versus deviation from 

the average level on damages impacts the ability of these mechanisms to incentivize 

coordination. Also, this experiment was framed as a static experiment, in that the 

rounds are independent. Coastal development tends to be a much more dynamic 

process. Relevant issues like infrastructure accumulation and deterioration, as well as 

irreversible decisions like strategic retreat lead to dynamics that are obscured in the 

static, independent round setting (Fooks, et al., forthcoming). Additionally, the 

dynamic environment offers the ability to explore several recent trends in the 

mechanism design literature, including robust and Bayesian mechanism design 
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(Bergemann and Morris,2005; Hartline and Lucier, 2010) and adaptive mechanism 

design (Pardoe et al., 2006). 
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Table 8. Average Effect of Non-symmetric Infrastructure Investment on Damage 

ln(Total Damage)    

 
Constant 

4.68*** 
(0.029) 

 
ln(Average Protective Infrastructure) 

-1.48*** 
(0.006) 

 
ln(Total Absolute Deviation from Average) 

0.26*** 
(0.005) 

N  10,000 

R2 0.85 
Note: *, **, and *** represent significance at a 10%, 5%, and 1% level. 
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Table 9: Experimental Design Summary 

6 Sessions, 12 participants per session, 40 decision rounds per session 
Average time: 2 hrs (~40 mins instructions) 
Average earnings $35 
Public Good Game Variation: 
      Groups of 6 parcels 
      Initial balance of $100, choose how much to invest in protection 
      After investment there is a flood event 
      Heterogeneous private investment costs 
      Payoff = $100 – Protection Investment – Damage 
      Damage is calculated based on 1D shallow wave propagation: �ℎ�d + �yℎu�� �ℎ�Y = ~�Y, d�ℎ�0, 	d� = Z  

Within subject treatments: 
       Mechanism: None, Provision Point, Reverse Subsidy VGC  
       Storm Surge: Constant, Random 
             “Provision point”/Conditional Insurance: Payment of $13 to all in the 
group if     
                 damage is below threshold 
              Reverse VCG: Submit proposal for additional investment at minimum 
payment    
                  – if chosen receive payment + “bonus” 
             Constant surge: 50 units w/ prob = 1 
             Random Surge: 50 w/ P = .5, 75 w/ P = .3, 100 w/ P = .2. 
             Order varied between sessions in block Latin squares 

 No Mechanism Provision Point Reverse VCG 

Constant Surge A B C 

Random Surge D E F 
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Table 10. Hypothesis Table 

Topic Hypothesis Result 

Welfare H0: 
1. WelfareA = WelfareB = WelfareC 

2. WelfareD = WelfareE = WelfareF 

3. WelfareA = WelfareD 
4. WelfareB = WelfareE 
5. WelfareC = WelfareF 

1.Fail to  Reject H0 
2.Reject H0 
3. Reject H0 
4. Fail to Reject H0 
5. Reject H0 

HA: 
1. WelfareC > WelfaceB > WelfareA 
2. WelfareF > WelfareE > WelfareD 
3. WelfareA > WelfareD 
4. WelfareB > WelfareE 
5. WelfareC > WelfareF  

Cross-
Mechanism 
Development 
Effects 

H0:  
1.ProtectionA = ProtectionB = ProtectionC 
2. ProtectionD = ProtectionE = ProtectiontF 

1. Fail to Reject H0 

2. Reject H0 

HA: 
1. ProtectionB > ProtectionC > ProtectionA 
2. ProtectionE > ProtectionD > ProtectionF 

 

Cross-Dynamics 
Investment 

H0: ProtectionA,B,C = ProtectionD,E,F Reject H0 

HA: Protection D,E,F = ProtectionA,B,C 

Differential 
Dynamic Effect 

H0: 
1. ProtectionA = ProtectionD 
2. ProtectionB = ProtectionE 
3. ProtectionC = ProtectionF 

1.Reject H0 
2.Reject H0 
3. Reject H0 
 

HA: 
1. ProtectionA < ProtectionD 
2. ProtectionB < ProtectionE 
3. ProtectionC < ProtectionF 

Subscripts indicate treatment as listed in Table 9. 
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Table 11. T-Tests for Net Welfare Effects 

 Fixed Payment VCG 

Constant Inundation Positive*** None 

Random Inundation Negative* Positive *** 
               Note: *, **, and *** represent significance at a 10%, 5%, and 1% level.  
  



 

Table 12. Increased Protection vs. Coordination of Protection  

 Average Investment 
in Protection 

Average Protection 
Built 

Absolute Deviation 
from Average 

Protection 

 
Constant 

27.86*** 
(0.791) 

49.02*** 
(1.888) 

35.69*** 
(4.020) 

 
Fixed Payment 

-5.31*** 
(1.407) 

-6.14* 
(3.191) 

1.55 
(6.795) 

VCG 
-0.596 

(1.408) 
7.24** 
(3.360) 

25.45*** 
(7.154) 

Random Inundation -0.544 
(1.251) 

7.46** 
(2.985) 

3.92 
(6.356) 

Random Inundation  * Fixed Payment 
10.09*** 

(1.924) 
22.09*** 

(4.593) 
16.03*** 
(10.268) 

Random Inundation * VCG 
1.923 

(0.791) 
82.60*** 

(4.822) 
56.04*** 
(10.966) 

N  9600 240 240 

R2 0.07 0.39 0.10 

Note: *, **, and *** represent significance at a 10%, 5%, and 1% level. Standard errors are clustered by session. 
  

9
0
 



 

Table 13. Bidding Behavior and Rent Extraction 

 Rent Demanded Rent Demanded – 
Successful Bids 

Rent Extracted 

 
Constant 

12.38*** 
(1.647) 

-2.45*** 
(3.692) 

5.40 
(6.872) 

 
High Cost 

-13.47*** 
(2.329) 

8.39* 
(4.686) 

19.10** 
(8.928) 

Medium Cost 
-5.34** 
(2.329) 

5.54 
(4.686) 

1.91 
(8.723) 

Random Inundation 
-11.95*** 

(2.197) 
0.08 

(4.459) 
12.57 

(8.299) 

Random Inundation  * High Cost 
19.73*** 

(3.190) 
-5.02 

(6.032) 
-22.44** 
(11.229) 

Random Inundation * Medium Cost 12.54 
(3.128) 

16.43*** 
(5.975) 

-15.52 
(11.123) 

N  864 203 203 

R2 0.10 0.39 0.09 

Note: *, **, and *** represent significance at a 10%, 5%, and 1% level. Standard errors are clustered by session. 
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Figure 14 Layout of parcels in experiment.  
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Figure 15 Heterogeneous Costs of Protection 
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Figure 16 Total Profit between Treatments 
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Appendix A 

PAPER SURVEY OF BEACH VISITORS 

Please answer the following questions. Your responses will be kept confidential. Please do 

not put your name on any of  the materials. Any questions may be addressed to the study 

administrator. 

 

1. Please indicate your sex. 

_______M  ________F 

 

2. In what year were you born?______________ 

 

3. What is the zip code at your primary residence? _________ 

 

4. How would you describe your area of  residence? 

_______Urban  ________    Suburban________Rural 

 

5. How years of  formal schooling do you have? (Completed high school = 12 

years)?__________ 
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6. Are you currently…? 

_______Employed Full Time  ________Employed Part Time  

 _______Self  Employed 

_______ Student  ________ Homemaker _______ Retired 

_______ Unemployed 

 

7. What is your total household gross annualincome? 

_______ Less than$25,000 _______ $95,001-$105,000 _______ $175,001-

$185,000 

_______ $25,001-$35,000 _______ $105,001-$115,000 _______ $185,001-

$195,000 

_______ $35,001-$45,000 _______ $115,001-$125,000 _______ $195,001-

$205,000 

_______ $45,001-$55,000 _______ $125,001-$135,000 _______ $205,001-

$215,000 

_______ $55,001-$65,000 _______ $135,001-$145,000 _______ $215,001-

$225,000 

_______ $65,001-$75,000 _______ $145,001-$155,000 _______ $225,001-

$235,000 

_______ $75,001-$85,000 _______ $155,001-$165,000 _______ Greater 

than $235,000 

_______ $85,001-$95,000 _______ $165,001-$175,000 _______ Prefer not 
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to say 

 

8. Do you own property in a Delaware beach community (within 5 miles of  an 

ocean beach)? (Exclude investment properties) 

 _______Yes, my primary residence  

                            Yes, my secondary residence 

 ________No 

 

9. Which activities are most important to you when visiting anocean beach or beach 

community in Delaware? (If  you engage or more than one, pick the one that is 

most important.) 

 _______Activities in or on the water 

_______Activities on the sand 

_______Activities at the boardwalk or in town 

 

10. Are you staying here for more than one night on your current trip? (Please skip if  

your primary residence in a Delaware beach community) 

 _______Yes  ________No 

If yes, for how many nights are you staying? _______ 

11. How many hours do you expect to spend on the beach and boardwalk today? 

________ 

 



 117

12. Including yourself  how many people are you traveling with? ________ 

- How many children under age 18? _______ 

 

13. How many days have you spent on Delaware’s ocean beaches (including time on 

the beach as well as in the community) since Memorial Day? (Please skip if  your 

primary residence in a Delaware beach community) 

(Days on the beach since May 28th)? _______ 

 

14. How many more days do you expect to spend on Delaware’s ocean beaches 

before Labor Day  

(Day on the beach between now and Sept. 3th)? _______ 

 

15. Are these primarily day trips or overnight trips? 

_______ Day  _______ Overnight 

 

16. How many years have you been coming to Delaware’s ocean beaches? _______ 

 

17. What would you most likely do with your time if  the beach you were visiting on 

your current trip was closed for some reason for an extended period of  time? 

_______ Visit another beach in Delaware 

_______ Visit the same beach community in Delaware but not go on the 

beach 
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_______ Visit a beach in Maryland  

_______ Visit a beach in Virginia  

_______ Visit a beach in New Jersey 

_______ Visit a beach outside the mid-Atlantic (not MD, VA, NJ pr DE) 

_______ Visit a bay beach in Delaware 

_______ Engage in some other non-beach recreation 

_______ Stay home 

_______Other: _______________________________ 

 

18. On a scale of  1 to 5, how favorable are you toward the development offshore 

wind power in the Mid-Atlantic region? 
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On a scale of  1 to 5, how favorable are you toward the development of  offshore oil 
production in the Mid-Atlantic region?  
Rank your level of  agreement with each of  the following 
statements based on the this scale: 

STRONGLY   MILDLY                         MILDLY      
STRONGLY 
AGREE        AGREE       UNSURE   DISAGREE    
DISAGREE 

19. How aware are you of  the proposed wind 
farms off  the coast of  Delaware? 

1             2            3         4          5 

20. How aware are you of  oil drilling 
regulations on the Atlantic Outer 
Continental Shelf ? 

1             2            3         4          5 

21. Wind power is a financially viable energy 
source for our country. 

1             2            3         4          5 

22. Offshore oil is a financially viable energy 
source for our country. 

1             2            3         4          5 

23. Wind turbines have a negative impact on 
the landscape. 

1             2            3         4          5 

24. Offshore oil platforms have a negative 
impact on the landscape. 

1             2            3         4          5 

25. When humans interfere with nature it often 
produces disastrous consequences. 

1             2            3         4          5 

26. Human ingenuity will insure that we do 
NOT make the earth unlivable. 

1             2            3         4          5 

27. Humans are severely abusing the 
environment. 

1             2            3         4          5 

28. The earth has plenty of  natural resources if  
we just learn how to develop them. 

1             2            3         4          5 

29. Plants and animals have as much right as 
humans to exist. 

1             2            3         4          5 

30. The balance of  nature is strong enough to 
cope with the impacts of  modern industrial 
nations. 

1             2            3         4          5 

31. Despite our special abilities humans are still 
subject to the laws of  nature. 

1             2            3         4          5 

32. The so-called “ecological crisis” facing 
humankind has been greatly exaggerated. 

1             2            3         4          5 

33. The earth is like a spaceship with very 
limited room and resources. 

1             2            3         4          5 

34. Humans were meant to rule over the rest 
of  nature. 

1             2            3         4          5 

35. The balance of  nature is very delicate and 
easily upset. 

1             2            3         4          5 

36. Humans will eventually learn enough about 
how nature works to be able to control it. 

1             2            3         4          5 

37. If  things continue on their present course, 1             2            3         4          5 
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we will soon experience a major ecological 
catastrophe. 
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Appendix B 

INSTRUTIONS FOR COASTAL INNUNDATION EXPERIMENT 

Experiment Instructions –  Introduction 

 
Welcome to an experiment in the economics of decision making.  In the course of the 
experiment you will have opportunities to earn money. Any money earned during this 
experiment will initially be recorded as experimental dollars which will be later 
converted into actual US dollars that will be yours to keep. Thus, the more 
experimental dollars you earn, the more US dollars you will receive. At the end of the 
experiment your earnings will be converted at a rate of $100 Experimental = $1 US. 
Please read these instructions carefully and do not communicate with any other 
participants during the experiment.  
  
Protection and Profit 

 
In today’s experiment, you will participate in a number of parts. Each part will have 
10 rounds. Each round is independent; decisions during a round do not affect future 
rounds, and each round starts off with zero for all values, except for your total profit. 
Throughout the experiment, you will be in a 
group of six participants. You and everyone 
else in your group will be managing a piece 
of oceanfront land. We will call this your 
parcel. Parcels will be labeled number one 
through six, and are arranged as shown in the 
image to the right. Which group you are in, and which parcel you have may change 
from part to part. 
 
In each round you and everyone else in your group will have an initial balance of 
$100. You must decide how much of these funds to invest in protection from flood 
damage from storm surges, such as those that come from hurricanes or tsunamis, 
which can damage your parcels. In each round, you will receive profit equal to your 
initial balance, minus the amount you invest in protection, minus the flood damage to 
your parcel: 

 
Profit = $100 – Protection Investment – Damage. 
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How much protection you receive from your 
investment depends on the condition of the 
shore of your parcel.  You will invest some 
amount of dollars in protection, for which 
you will receive some units of protection, 
called you level of protection. Your parcel 
may have a low cost of protection, a 
medium cost of protection, or a high cost of 
protection. The graph to the right shows how 
much it will cost for each type of parcel to 
receive a certain level of protection. For 
instance, if you wanted a level of protection 
of 30 units (at the dashed vertical line), you 
would need to invest about $20 in protection 
if your parcel was low cost, $27 in protection 
if your parcel was medium cost, and $38 in 
protection if your parcel was high cost.   
 
Storm Surges and Damage 
 
In each round, you will be subject to a storm 
surge which may cause flooding on your parcel. 
Once a parcel is flooded, this flood water will 
continue to flood neighboring parcels causing 
damage to these parcels. The storm surges will 
be of different sizes. The figure below displays 
the damage on each parcel from different levels 
of storm surge if all parcels have zero units of 
protection. With a storm surge of 50 units, if 
there is no protection, each parcel will face damage of just over $50. This rate also 
rises such that a storm surge of 100 units with zero units of protection will cause $200 
in damages 

 
Your protection can absorb some or all 
of the storm surge at your parcel. If 
you have a protection level less than 
the size of the storm surge, your parcel 
will be flooded by the excess amount. 
For instance, if there is a storm surge 
of size 50 units, and you have a 
protection level of 30 units, you will be 
flooded by 20 units. If your protection 
level is equal to or exceeds the size of 
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the storm surge you will not have any amount of flooding from the surge. Throughout 
the parts in today’s session, the storm surge will be a minimum of 50 units, though it 
may be more in some parts. For each part you will be told what kind of storm surge to 
expect.  
   
Since the flood water moves across neighboring 
parcels, the damage to your parcel depends on 
both the amount of flooding on your parcel as 
well as the amount of flooding on all of the 
other parcels. For instance, suppose all of the 
parcels had protection levels of 50 units or 
more except for parcel 3, which invested in 
zeros units of protection. Parcel 3 will flood 
with 50 units, and then the flood water will 
flow from parcel 3 to parcel 2 and parcel 4, 
which will then flow to parcel 1 and parcel 5, 
and so forth. The corresponding damage is 
listed under Example 1 in the table below. 
  
If there is flooding on multiple parcels, the 
pattern of damage may be more complex as 
water spreads from multiple points in wave 
patterns. For instance, if parcel 3 and parcel 5 
invest in zero units of protection while all other structures have a protection level of 50 
or more units, the flood waters will both run towards parcel 4, and combine dealing 
parcel 4 more damage than either parcel 3 or parcel 5. Some of that water will be 
reflected back over parcel 3, then parcel 2 and parcel 1, causing more damage to them 
then in the prior case. The corresponding damage is listed under Example 2 on the 
table below. 
     

 Example 1  Example 2 

Parcel Protection Damage  Protection Damage 

1 50 Units $2  50 Units $2 
2 50 Units $4  50 Units $4 
3 0 Units $11  0 Units $13 
4 50 Units $4  50 Units $15 
5 50 Units $2  0 Units $13 
6 50 Units $1  50 Units $4 

 
The experiment software also includes a calculator to help you figure out the damage 
that will be caused by different sets of production decisions. You must put in 
protection level values for each parcel, and the water level, and then click the 

            

Storm Surge 

            

Storm Surge 
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Calculate button. This will calculate the damage that will be received by each parcel 
for you.  
    

 
 
 
After everyone has had a chance to read these instructions, an administrator will 

provide additional explanations and you may ask questions.  
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Experiment Instructions 

  
The storm surge will be 50 units in every round of this part. 
 
This part of the experiment will be exactly as described in the introduction. Your 
profit will be calculated as:  
 
                  Profit = $100 – Protection   – Damage 
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Experiment Instructions 

  
The storm surge will be 50 units in every round of this part. 
 
In this part of the experiment there will be a development agency that is offering 
payments to everyone in your group for investing in protection. This payment will be 
$13 for each parcel; however it will only be paid if the total damage to all parcels is 
less than $75. For example, if all of the parcels had protection levels so that each had 
damage of $10, the total damage would be $60, which is less than $75. In this case, 
each parcel owner would receive a payment of $13. If each parcel had total damage of 
$15, the total damage would be $90, which is greater than $75. Thus, in this case, 
there would be no payment.  
 
Profit if total damage is less than $75: 
   
                 Profit = $100 – Protection– Damage + $13 
  
Profit if total damage is greater than $75: 
   
                 Profit = $100 – Protection– Damage 
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Experiment Instructions 

  
The storm surge will be 50 units in every round of this part. 
 
In this part of the experiment there will be a development agency that is offering 
grants for developing protection. To receive a grant, you must submit a proposal. A 
proposal made up of two parts, (1) an amount of additional investment in protection, 
and (2) the minimum payment you would need to receive to make that additional 
investment.  By submitting a proposal, you are offering to increase your investment in 
protection by the additional investment, in exchange for being paid at least the 
minimum payment.  
  
The development agency has a limited budget of $80 in each round, so may not be 
able to fund all proposals. The agency will accept proposals to achieve the maximum 
amount of damage reduction that they can afford given their budget.  
 
If your proposal is accepted: 
 

-You will have to make that additional investment in protection at your 
parcel’s cost level.  
-You will receive a total payment as additional profit. This total payment will 
be equal to the minimum payment from your proposal, plus a bonus, based 
on the amount of damage reduction from the additional investment.   
-The damage reduction is the amount of damage that other parcels would have 
received in this round, that is prevented by you additional protective 
investment.  
 

                  Profit = $100 – Protection – Damage – Additional Investment + Total Payment 
 
Profit if your proposal is not accepted: 
     
 -You will not make the additional investment 

-You will only receive your normal profit.  
  

Profit = $100 – Protection – Damage 
 
. 
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Experiment Instructions  

 
The storm surge in this part will have one of three randomly determined possible 
values: 50% of the time (or about 1 out of every 2 rounds) the storm surge will be 50 
units, 30% of the time (or about 3 out of 10 rounds) the storm surge will be 75 units, 
and 20% of the time (or about 1 out of 5 rounds) the storm surge will be 100 units.  
  
This part of the experiment will be exactly as described in the introduction. Your 
profit will be calculated as:  
 
                  Profit = 100 – Protection– Damage. 
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Experiment Instructions  

  
The storm surge in this part will have one of three randomly determined possible 
values: 50% of the time (or about 1 out of every 2 rounds) the storm surge will be 50 
units, 30% of the time (or about 3 out of 10 rounds) the storm surge will be 75 units, 
and 20% of the time (or about 1 out of 5 rounds) the storm surge will be 100 units.  
 
In this part of the experiment there will be a development agency that is offering 
payments to everyone in your group for investing in protection. This payment will be 
$13 for each parcel; however it will only be paid if the total damage to all parcels is 
less than $75. For example, if all of the parcels had protection levels so that each had 
damage of $10, the total damage would be $60, which is less than $75. In this case, 
each parcel owner would receive a payment of $13. If each parcel had total damage of 
$15, the total damage would be $90, which is greater than $75. Thus, in this case, 
there would be no payment.  
   
Profit if total damage is less than $75: 
   
                 Profit = $100 – Protection– Damage + $13 
  
Profit if total damage is greater than $75: 
   
                 Profit = $100 – Protection– Damage 
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Experiment Instructions 

  
The storm surge in this part will have one of three randomly determined possible 
values: 50% of the time (or about 1 out of every 2 rounds) the storm surge will be 50 
units, 30% of the time (or about 3 out of 10 rounds) the storm surge will be 75 units, 
and 20% of the time (or about 1 out of 5 rounds) the storm surge will be 100 units.  
  
In this part of the experiment there will be a development agency that is offering 
grants for developing protection. To receive a grant, you must submit a proposal. A 
proposal made up of two parts, (1) an amount of additional investment in protection, 
and (2) the minimum payment you would need to receive to make that additional 
investment.  By submitting a proposal, you are offering to increase your investment in 
protection by the additional investment, in exchange for being paid at least the 
minimum payment.  
  
The development agency has a limited budget of $80 in each round, so may not be 
able to fund all proposals. The agency will accept proposals to achieve the maximum 
amount of damage reduction that they can afford given their budget.  
 
If your proposal is accepted: 
 

-You will have to make that additional investment in protection at your 
parcel’s cost level.  
-You will receive a total payment as additional profit. This total payment will 
be equal to the minimum payment from your proposal, plus a bonus, based 
on the amount of damage reduction from the additional investment.   
-The damage reduction is the amount of damage that other parcels would have 
received in this round, that is prevented by you additional protective 
investment.  
 

                  Profit = $100 – Protection – Damage – Additional Investment + Total Payment 
 
Profit if your proposal is not accepted: 
     
 -You will not make the additional investment 

-You will only receive your normal profit.  
  

Profit = $100 – Protection – Damage 
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Appendix C 

IRB LETTER OF EXEMPTION FOR OFFSHORE ENERGY EXPERIMENT 
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Appendix D 

IRB APPROVAL LETTER FOR COASTAL INUNDATION EXPERIMENT 

 


