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ABSTRACT 

 

Posterior Capsular Opacification (PCO) is the major complication after cataract 

surgery. PCO occurs when residual lens cells (LCs) remaining following cataract surgery 

undergo a wound healing response producing a mixture of αSMA expressing 

myofibroblasts and lens fiber cells which impair vision. Prior investigations have 

proposed that integrins play a central role in PCO while my data indicated that αV 

integrin and its interacting β-subunits; β1, β5, β6, β8 along with α-smooth muscle actin 

(αSMA) are upregulated in residual lens epithelial cells in a mouse model of cataract 

surgery. To test the hypothesis that αV integrins are functionally important in PCO 

pathogenesis, I created mice lacking the αV integrin subunit in all lens cells using a 

conditional knockout approach. Adult lenses lacking αV integrins were analyzed for 

function and cellular organization by grid analysis, conventional light, confocal and 

scanning electron microscopy. At three months of age, fiber cells were surgically 

removed from αV integrin null and control lenses and the extent of EMT post-surgery 

was measured by QRT-PCR and immunofluorescent detection of EMT markers. 

Lenses lacking αV integrin subunits are transparent and show no apparent 

morphological abnormalities when compared to control lenses. When challenged with 

surgery/injury, control lenses developed LC multilayering along with upregulation of 

αSMA, β1-integrin, fibronectin, vitronectin, tenascin-C and TGF-β induced protein 

within 48hrs. In contrast, LECs lacking αV integrins showed no increase in LC 

multilayering with little to no upregulation of αSMA, fibronectin, vitronectin, and TGF-
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β induced protein 48hrs post-surgery. In addition, I saw a significant increase in the 

mRNA expression of αSMA, fibronectin, tenascin-C and TGF-β induced protein 24hrs 

post-surgery in control lenses with no significant increase in lenses lacking the αV 

integrin subunit.  

This effect appears to result from the known roles of αV integrins in latent TGF-

β activation since αV integrin null lenses do not exhibit detectable SMAD-3 

phosphorylation after surgery, while this occurs robustly in control lenses, consistent 

with the known roles for TGF-β in fibrotic PCO as well as Anterior Subcapsular 

Cataracts (ASC). To look further into whether αV integrins play a role in the TGF-β 

associated fibrotic lens EMT, I utilized mice homozygous for a 12 nucleotide deletion 

in the βB2-crystallin gene (Crybb2Phil/Phill), which have been previously demonstrated in 

our lab to undergo a juvenile lens epithelium EMT as early as four weeks postnatal, 

leading to ASC which is followed by the development of severe lens abnormalities. At 

2 months age, Crybb2Phil/Phil demonstrates identical EMT characteristics as seen in 

wildtype mice at 48hrs post-surgery. Their lens epithelium becomes multilayered and 

upregulates αSMA, fibronectin, vitronectin, TGF-β induced protein and phosphorylated 

SMAD-3. Moreover, a SuperArray RT-PCR gene expression analysis on mRNA 

expression of TGF-β associated genes showed that, while all TGF-β ligands 1, 2 and 3 

and the vast majority of the down-stream canonical TGF-β signaling associated players, 

including SMAD, 2, 3 or 4 were not upregulated in Crybb2Phil/Phil epithelium, TGF-β 

receptor II, TGF-βi and Follistatin which are genes known to upregulate in the aftermath 

of TGF-β signaling, were significantly upregulated. These findings suggested that the 
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Crybb2Phil/Phil epithelium was undergoing an extreme unregulation of TGF-β signaling 

which seem to be regulated mainly at the TGF-β activation level point. This was attested 

by an active TGF-β assay which confirmed that Crybb2Phil/Phil lenses had four times the 

amount of active TGF-β as compared to wildtype lenses. In addition, αV integrins were 

found to upregulate at both the mRNA and protein level in Crybb2Phil/Phil lens epithelium 

EMT similar to that seen in the lens post-surgery suggesting that βB2-crystallin may 

have a non-refractive function in maintaining lens epithelial integrity which will be a 

topic for future investigations.  

Overall, while αV integrin only subtlety regulates the development and function 

of the lens, it is involved in regulating the phenotypic alterations in lens epithelial cells 

that occurs following lens injury/cataract surgery leading to PCO. This is the first study 

to examine the roles of αV integrins in lens development, refractive functions and the 

pathogenesis of PCO/ASC. These data suggest that therapeutics antagonizing αV 

integrin function could be used to prevent TGF-β fibrotic PCO following cataract 

surgery as well as ASC development. 
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Chapter 1 

GENERAL INTRODUCTION 

1.1 The Lens: Structure and Function  

The mammalian lens, also known as the crystallin lens, is a transparent avascular 

tissue located between the aqueous and vitreous humors in the anterior half of the eye. 

The main function of the lens is to focus light onto the retina where further vision 

processing occurs. (Land 1988). It provides almost 33% of the eye’s refractive power 

with the remaining 66% coming from the cornea (Hung 2001). 

Figure 1.1: Eye Anatomy. Image adapted from NEI Catalog number NEA09 
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The entire lens is encapsulated by a basement membrane, also known as the lens 

capsule, which compartmentalizes lens cells from the rest of the eye (Danysh and 

Duncan 2009). The lens is composed of two types of cells, a monolayer of cuboidal lens 

epithelial cells (LECs) on the anterior face and concentric elongated layers of fiber cells 

that are formed continuously by the differentiation of the epithelium making up the vast 

majority of the lens. To further enhance transparency, fiber cells in the center of the lens 

degrade their nuclei and most of their organelles (Bassnett and Mataic 1997). Fiber cells 

contain high concentrations of water soluble crystallin proteins, with the lens’ protein 

concentration twice that of other body tissues; about 30-35% w/w compared to an 

average of 15% w/w (Purves, Sadava et al. 2004, Hoehenwarter, Klose et al. 2006). This 

high concentration of crystallins provides the lens with a high refractive index while 

maintaining its transparency throughout life (deJong, Lubsen et al. 1994).  

Most of the crystallins found in the mammalian lens belong two super families, 

α and β/γ crystallins (Andley 2007). They make up about 90% of the proteins found in 

the lens and are distinguished by their high intrinsic stability against stress and thermal 

stability, which is a hallmark sign of lifelong function (Donaldson, Kistler et al. 2001). 
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Figure 1.2: Lens anatomy showing it is an epithelial tissue. (Image adapted from 
Danysh and Duncan 2009) 

1.2 Lenticular Crystallins 

1.2.1 α-crystallins 

α-crystallins are expressed in both lens epithelial and fiber cells. Structurally, 

they are often compared to small heat shock proteins and recent studies have come to 

an agreement that they function as chaperones in lens (Horwitz 2003, Bloemendal, de 

Jong et al. 2004). α-crystallin’s chaperone activity (or that of its subunits) can suppress 

the aggregation of proteins denatured by oxidation, heat, and other stressors hence 

maintain lens transparency (Horwitz 1992). However, in order to maintain this 

chaperone activity, α-crystallins must remain dynamic throughout life, with its subunits 
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constantly disassociating and reassociating (Harding 2002). If this vital process is 

impaired, whether due to changes that are associated with aging or inherited genetic 

defect, it can impair lens transparency (Wistow, Slingsby et al. 1981, Oyster 1999). In 

addition to their chaperone activity, the α-crystallins also play central roles in conferring 

the lens’ high refractive index due to their high concentration.  

There are two α-crystallin genes, α-A, and α-B (Wistow, Slingsby et al. 1981). 

αA crystallin is found mainly in the lens, with trace amounts in other tissues, while αB 

is essentially considered to be a ubiquitous protein (Bhat and Nagineni 1989, Iwaki, 

Kume-Iwaki et al. 1990). Approximately two decades ago, several studies begin to show 

that α-crystallins are expressed in diverse tissues such as the spleen and the heart, 

suggesting important non-refractive functions for this protein (Srinivasan, Nagineni et 

al. 1992). Not long after, several investigations began highlighting α- crystallin 

activities’ beyond the lens (Jaenicke and Slingsby 2001, Narberhaus 2002, Horwitz 

2003). Ultimately, α-crystallins, which were for so many years thought to only play 

refractive roles in the lens, became recognized for their chaperone activity functions in 

lens (Horwitz 1992, Bloemendal, de Jong et al. 2004, Koteiche and McHaourab 2006). 

Concomitantly, there were also multiple reports of αB crystallin involvement in various 

non ocular activities, especially in neurological diseases such as Creutzfeldt-Jacob, 

Alzheimer's, Alexander’s disease, Amyotrophic lateral sclerosis (ALS) and Parkinson's 

disease (van Rijk and Bloemendal 2000). Altogether, it is now well accepted that α-

crystallins have important cellular functions outside of the lens.    
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1.2.2    β/γ-crystallins  

The other members of the lenticular crystallins are the β and γ crystallin 

superfamily. They are characterized by the Greek key motif: four continuous anti-

parallel β-strands (Slingsby and Clout 1999). They are distinguished by their βγ-

crystallin fold which is a double domain structure containing a series of four highly 

stable “Greek key” motifs (Hutchinson and Thornton 1993). See (Figure 1.3).  These 

Greek key motifs are super-secondary protein structural folds that are evolutionarily 

conserved from bacterial through vertebrate species that offers the crystallins structural 

compactness necessary for stability (Lapatto, Nalini et al. 1991, Wistow, Wyatt et al. 

2005). Both β and γ crystallins share similar secondary structures, however, β-

crystallins associate into hetero-and homotypic dimers and large oligomers in solution, 

while γ-crystallins remain as monomers (Sathish, Koteiche et al. 2004).   

For the past two decades, there has been an evolution in the understanding β-

crystallins’ function in the mammalian lens (Slingsby, Wistow et al. 2013), some of 

which suggest non-refractive roles in lens epithelial cell differentiation, maintenance 

and survival (Boyle and Takemoto 2000, Xi, Bai et al. 2003, Wang, Garcia et al. 2004, 

Morozov and Wawrousek 2006). Recent studies are proposing more possible non-

refractive roles for β-crystallins, particularly in the ocular stress response (Sakaguchi, 

Miyagi et al. 2003), lysosomal activities (Zigler, Zhang et al. 2011), anoikis, and even 

in extracellular signal-regulated kinase pathways (Ma, Sen et al. 2011). 
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More than one study found that β-crystallins upregulate dramatically in diverse 

retina damage conditions such as mechanical injury, light injury and even diabetic 

retinopathy (Sakaguchi, Miyagi et al. 2003, Vazquez-Chona, Song et al. 2004, Kumar, 

Haseeb et al. 2005). A very recent study done on rats showed that βA3/A1-crystallin, a 

crystallin belonging to the β-crystallin family, functions as a lysosomal protein in retinal 

pigmented epithelium (RPE), essential for degradation of phagocytosed material 

(Zigler, Zhang et al. 2011). Furthermore, βA3/A1-crystallin has also been shown to play 

a role in anoikis via the mediation of insulin-like growth factor-II, (PI3K)/AKT/mTOR 

and extracellular signal-regulated kinase pathways (Ma, Sen et al. 2011). However, 

despite speculation that the β-crystallins’ might have non-refractive functions, the 

precise mechanisms of their functions in the lens beyond refraction, are not well 

understood. 
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Figure 1.3: Schematic diagram of protein folds that involve Greek key domains 
(Jaenicke and Slingsby 2001). 

1.2.3    βB2-crystallins 

 β-crystallins are primarily known for their refractive functions by providing the 

lens with a high protein concentration necessary for light refraction (Ueda, Duncan et 

al. 2002, Sathish, Koteiche et al. 2004). Six different β-crystallins exist in the lens and 

are classified as acidic or basic molecules resulting from dissimilarities between their 

N- and C-terminal regions. βB2-crystallin, a member of the basic group, can form large 

oligomeric complexes and it is the most abundant protein in adult human lens fiber cells 

(Slingsby and Clout 1999).  
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Despite the fact that β-crystallins are extremely resistant to protein modifications 

(Zhang, David et al. 2001), their N- and C-terminal extensions are vulnerable to post-

translational modifications and oxidative damage; both of which can interfere with their 

correct folding, causing insolubility and protein aggregation that can impair lens 

transparency (Bloemendal, de Jong et al. 2004, Sathish, Koteiche et al. 2004). Further, 

studies have shown that proteolytic and oxidative damage to βB2-crystallins can disrupt 

folding patterns and specific protein-protein interactions, leading to the accumulation of 

light-scattering aggregates (Matsushima, David et al. 1997, Slingsby and Clout 1999).  

Different studies have unanimously established that βB2-crystallin malfunctions 

whether due to genetic and non-genetic causes, lead to cataract development in both 

mice (Uga, Kador et al. 1980, Chambers and Russell 1991, Zhang, Li et al. 2008) and 

humans (Fujii, Kawaguchi et al. 2011, Wang, Wang et al. 2011).  However, although 

this is widely accepted, the precise molecular mechanisms responsible for this 

pathology are not well known. Similar to other lenticular crystallins, non-refractive roles 

of ββ2-crystallin are also starting to emerge with multiple reports proposing βB2-

crystallin’s roles outside the eye. For example, studies on mice either lacking or mutant 

in the βB2-crystallin gene reported a reduced fertility due to disordered proliferation 

and apoptosis of germ cells in the testis (Duprey, Robinson et al. 2007, Xiang, Cui et al. 

2012). Furthermore, βB2-crystallin upregulates in the axonal elongation of retinal 

ganglion cells during retinal regeneration (Bohm, Melkonyan et al. 2013), suggesting 

potential roles in neurodegenerative diseases (Liedtke, Schwamborn et al. 2007). Then 

again, the mechanisms behind these findings are not well understood.  
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1.3 Cataract 

Cataract is a clouding of the ocular lens which is the most common cause of 

blindness in the world (Asbell, Dualan et al. 2005) with 43% of the 44.8 million blind 

suffering from cataract (WHO). There are several factors known to cause cataracts 

ranging from trauma to the lens (Call, Grogg et al. 2004), oxidative stress (Thiagarajan 

and Manikandan 2013), metabolic dysfunction, loss of ion/water balance(Donaldson, 

Chee et al. 2009), Ultraviolet Radiation (UVR) exposure (McCarty and Taylor 2002, 

Varma, Hegde et al. 2008), genetic defects such as mutation of lenticular proteins 

(Andley, Hamilton et al. 2008, Wang, Wang et al. 2011) as well as other non-genetic 

defects that can occur during lens development (Firtina, Danysh et al. 2009, Yi, Yun et 

al. 2011) and simple aging (Hejtmancik and Kantorow 2004). 

Figure  1.4: (A) Adult eye showing a hypermature age-related cortico-nuclear 

cataract with a brunescent (brown) nucleus. (B) Infant eye showing 

a white congenital cataract. Images adapted 

from http://www.nei.nih.gov/photo. 
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1.3.1 Congenital vs. age-related cataracts 

Although treatable, a congenital cataract requires immediate treatment since 

infants who undergo late treatment may develop other visual impairments such as 

deprivational amblyopia which is a neurodevelopmental disorder of vision resulting 

from the brain not knowing how to perceive vision (Mansouri, Stacy et al. 2013). 

Congenital cataracts cause visual impairment and blindness during infancy with an 

estimated prevalence of up to 6 cases per 10,000 live births (Figure 1.4: B) (Santana and 

Waiswo 2011). Since the lens formation results from a series of inductive complex 

process, it is not surprisingly that up to fifty percent of all congenital cataracts are due 

to genetic causes (Santana and Waiswo 2011).  Studies done on hereditary congenital 

cataract have led to the identification of several vital candidate genes that encode 

proteins such as crystallins, lens specific connexins, aquaporin-0, cytoskeletal structural 

proteins, and other developmental regulators that are essential for lens development (Yi, 

Yun et al. 2011). Since the transparency and high refractive index of the lens highly 

depend on the precise architecture of the fiber cells and the homeostasis of the lens 

proteins in terms of their concentration, stability, and organization, some of the findings 

from congenital cataract studies also aided in the identification of genetic modifiers that 

are responsible for age-related cataract (Figure 1.4: A). However, unlike congenital 

cataracts, age-related cataract also depends on environmental factors in addition to the 

identified genetic modifiers (Benedek 1997, Bloemendal, de Jong et al. 2004, Asbell, 

Dualan et al. 2005). Studies in age related cataract have shown that simple aging, 

Ultraviolet Radiation (UVR), injuries, lifestyles choices such as cigarette smoking and 
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disorders such as obesity, uncontrolled blood glucose levels, corticosteroid exposure, as 

well as alcohol consumption, can play a role in triggering age-related cataract onset 

(Hejtmancik and Kantorow 2004). Besides, inherited genetic abnormalities can still 

stand alone as risk factors for age-related cataract (Benedek 1997). 

1.3.2 Lenticular crystallins and cataracts  

As lens proteins, α-, β- and γ– crystallins undergo very little turnover, however, 

they do undergo a number of modification during aging such as truncation, oxidation, 

deamidation (Zhang, Smith et al. 2003), and disulfide bond formation (Hanson, Smith 

et al. 1998), all of which induce a high degree of crystallin proteolysis, fragmentation 

and aggregation leading to  cataractogenesis (Bloemendal, de Jong et al. 2004). Since 

proper subunit interaction between crystallins is necessary to prevent the formation of 

light-scattering aggregates of crystallins (Delaye and Tardieu 1983), these 

modifications, whether induced by age-related changes or other mechanisms, may affect 

the short-range interactions among α-, β- and γ– crystallins.  This increased 

homoaggregation of proteins can induce fluctuations in protein densities that are 

sufficient to cause increased light scattering which eventually leads to the development 

of cataracts (Delaye and Tardieu 1983, Takemoto and Sorensen 2008).  

In addition, genetic and non genetic crystallin abnormalities play a major role in 

age-related cataract. For example, the loss of α-crystallin’s chaperone activity due to 

simple aging plays a major role in human cataracts (Horwitz 1992, Rao, Huang et al. 

1995). Notably, the lens has a refractive index gradient that increases as you move 
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towards the central part of the lens (the lens nucleus) (Donaldson, Kistler et al. 2001). 

This refractive index gradient is created continuously as the lens grows by tightly 

compacting fibers cell in the center of lens compared to those on the periphery. This 

results in the lens nucleus being the most water-insoluble part of the lens. Added to that, 

normally 50% of the lens proteins become water-insoluble at around the average age of 

55yrs old (Wistow, Slingsby et al. 1981). Thus, this gradual insolubilization increases 

faster as we age, resulting in an extremely water-insoluble lens nucleus consequently 

leading to light-scattering properties and eventually cataracts (Benedek 1997, Hains and 

Truscott 2007, Harrington, Srivastava et al. 2007). Not surprisingly, mutations in either 

α-crystallin subunit, αA- and αB-crystallin alone, have been associated with a number 

of adult-onset cataracts (Brady, Garland et al. 1997, Andley, Hamilton et al. 2008, 

Hayes, Devlin et al. 2008, Xi, Bai et al. 2008). 

βB2-crystallin is the major β-crystallin in the lens and is thought to play a major 

role in hetero-oligomer formation in the lens (Lampi, Ma et al. 1997). Since it is the 

least modified crystallin during aging (Zhang, David et al. 2001), βB2-crystallin is most 

soluble of the β-crystallins, remaining relatively more soluble during aging (Feng, Smith 

et al. 2000). In rats, βB2-crystallin is detected in the lens at birth but its expression 

increases dramatically after birth and peaks at about 2 months postnatally (Aarts, 

Lubsen et al. 1989), a similar expression pattern is seen in mice (Decker 2008). Since 

the vast majority of nuclear lens fibers cells are synthesized during embryonic stages, 

this explains why nuclear lens fibers contain less βB2-crystallin than the newly formed 

postnatal differentiated fiber cells at the periphery of the lens. Furthermore, this 
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phenomenon contributes to a more water-insoluble lens nucleus (Wistow, Slingsby et 

al. 1981). Since there is a tendency for other β-crystallins to precipitate when separated 

from βB2-crystallin, it is proposed that βB2 in maintains the solubility of other β-

crystallins that are heavily modified during aging and is needed to maintain the 

solubility of beta-crystallin aggregates (Bateman and Slingsby 1992, Zhang, David et 

al. 2001). 

Other investigations have proposed that βB2-crystallins’ play a role in 

maintenance and calcium lens homeostasis by acting as a calcium buffer in the lens, 

actively protecting the lens from calcium-induced cataract, suggesting additional non 

refractive roles for the crystallin (Jobby and Sharma 2007). Not surprising, impairments 

of βB2-crystallins’ structure are known to contribute to both age-related and inherited 

progressive cataract conditions (Chambers and Russell 1991, Graw, Klopp et al. 2001, 

Graw, Loster et al. 2001, Ueda, Duncan et al. 2002, Duprey, Robinson et al. 2007)..  

1.3.3 Antioxidants and free radicals role in cataracts 

The lens is constantly exposed to oxidative stress from reactive oxygen species 

(ROS) such as H2O2 and hypochlorous acid (HClO) and other xenobiotics; thus, it has 

to constantly protect its susceptible proteins from oxidation (Lou 2003). For example, 

the lens has the highest levels of reduced glutathione (GSH), a major antioxidant 

molecule, of all mammalian tissues (Giblin 2000). Studies have shown that GSH-

deficient mice, which lack glutathione from the lens, undergo DNA strand 

fragmentation upon exposure to H2O2 (Kleiman and Spector 1993, Reddy, Lin et al. 
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1997). Unfortunately, the  synthesis and recycling of GSH falls as we  age, leading to a 

progressive loss of GSH and a rise in its oxidized form (GSSG) (Spector 1995). With 

the increasing levels of oxidative stress that occur during aging, lens proteins become 

thiolated by GSSG to form the mixed disulfides which may be further oxidized to form 

protein–protein disulphides (PSSPs) leading to an increase in the intramolecular 

disulfide bonding of lenticular crystallins during aging and eventually cataract 

formation (Takemoto 1996, Lou 2003). 

On the other hand, both ultraviolet-A (UV-A) and UV-B radiation have been 

shown in many studies to be a major contributor in age-related cataract (Taylor, West 

et al. 1988, McCarty and Taylor 2002). UVR is a risk factor for retina damage in 

children as well as the cause of many other diseases, while exposure to intense ambient 

radiation can pose additional ocular hazards particularly to individuals who are over 40 

years of age (Roberts 2011). This is due to the ability of UVR to catalyze the generation 

of ROS which can induce oxidative stress in the lens leading to disruption of lens fiber 

cells and finally cataracts (Wang, Lofgren et al. 2010).  

Although it is well known that free radicals play a major role in age-related 

cataracts, the question to whether antioxidant supplementation will protect the lens 

against exogenous and endogenous ROS are still not conclusive (Varma, Hegde et al. 

2008, Thiagarajan and Manikandan 2013). Thus, despite the current understanding of 

cataract pathogenesis, the complexity of the pathology, whether due to genetics or the 

current known and unknown risk factors, have led to a failure to prevent cataract despite 

numerous clinical trials over the past 30 years (Kinoshita, Fukushi et al. 1979).  Thus, 
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the need for surgical procedures to treat cataract will continue to increase along with the 

aging population (Erie, Baratz et al. 2007). 
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Figure  1.5: Light rays entering the eye are focused onto the retina to initiate 

clear vision (A, C). Cataract is associated with poor vision due to 

light scatter away from the focal point (B). Light rays entering the 

eye are scattered by the cloudy hardened lens (D). Image adapted 

from http://www.ynewyorkeyedoctor.com 
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1.4 Cataract Treatment  

Cataracts are treated by an outpatient surgical procedure that involves 

extracapsular cataract extraction (ECCE) followed by implantation of an artificial 

intraocular lens (IOL) (Steinberg, Javitt et al. 1993, Laroche 2013). This procedure takes 

an average of 40 minutes to one hour, and is the most commonly performed outpatient 

surgery performed in the USA.  Since its development in the late 1970s, ECCE with 

IOL implantation has successfully restored the vision of over 30 million cataract patients 

in the USA alone. It is projected that 30 million cataract surgeries per year will be done 

globally by the year 2020 (Foster 2001). However, this surgical volume means that even 

low complication rates have a significant societal impact, due to increased medical 

costs, aging population and other related visual disabilities expenses. 

1.4.1 Extracapsular Lens Extraction 

There are two main types of extracapsular lens extraction surgeries: 

Phacoemulsification and conventional extracapsular cataract extraction (ECCE) 

(Pershing and Kumar 2011). In phacoemulsification (Figure 1.6: A), which is the current 

standard of care, the surgeon begins the procedure by making a 2-3mm incision on the 

peripheral side of the cornea or sclera followed by a gentle tear of the lens capsule, a 

procedure referred to as capsulorhexis (Chercota 2005). Following the incision, the 

surgeon inserts a tip of a hand set piece device called a Phacoemulsifier, which vibrates 

at an ultrasonic frequency of around 40,000 Hz which is capable of breaking down the 

opacified lens into microscopic fragments (Hsu and Wu 2005). In addition, the 
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Phacoemulsifier device has a suction mechanism, which allows it to simultaneously 

emulsify and aspirate the resulting lens fragments through the incision while leaving 

behind an intact elastic lens capsule (Nishi 1988). Unlike phacoemulsification, ECCE 

method requires manual removal of the natural crystalline lens through a larger (10-

12mm) insertion (Ohrloff 1990). Due to the large incision size, ECCE usually requires 

a cornea suture after completion and it now only used when phacoemulsification is a 

problem; for example in patients with a very hard cataract or in third world countries 

where Phacoemulsification is not feasible due to cost or unavailability of the equipment 

(Ohrloff 1990, Pershing and Kumar 2011). In both cataract treatments, refraction is 

restored by implantation of a foldable Intraocular Lens (IOL) (Figure 1.6: B) into the 

remaining capsular bag (Riaz, Mehta et al. 2006).  
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Figure 1.6: (A) Phacoemulsification procedure used during extracapsular lens 

extraction to remove a cataractous lens.  (B) Completion of surgery 

showing the inserted IOL implant sitting at the position of the 

natural lens and surrounded by an intact elastic lens capsule. 

Images adopted from http://www.ocuclinic.com and 

http://www.jirehdesign.com. 

1.4.2 Intraocular lenses 

The technology involved in cataract treatment has evolved dramatically, 

especially the design of IOLs, which currently do not only restore vision at the time of 

surgery but also may reduce complications that may occur following surgery (Lichtinger 

and Rootman 2012). The Monofocal IOL is the most commonly used implant, with the 

IOL power chosen for optimum distance vision (Lindstrom 1993). Although this IOL is 

effective, it requires reading glasses for efficient near vision (Kirschfeld and Land 

2011).  To solve the problem, Multifocal IOLs have been designed however, the main 

problem with this IOL is the reduction in contrast sensitivity and formation of glare and 
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haloes due to the multiple concentric focusing powers within it (Haring, Dick et al. 

2001, Chiam, Chan et al. 2006, Terwee, Weeber et al. 2008). 

On the other hand, accommodating IOLs have also been designed and marketed 

(Findl and Leydolt 2007, Nishi, Mireskandari et al. 2009). For example, some of these 

IOLs have several unique features, including a hinge to allow its lens to move via the 

contraction of the ciliary muscle during accommodation, and hence restoring 

accommodating abilities (Strenk, Semmlow et al. 1999, Cumming, Colvard et al. 2006, 

Menapace, Findl et al. 2007). Although, in order to achieve these capabilities, the IOL 

must sit in a completely ideal position in the capsular bag and any slight differences in 

its position will impact its accommodating ability (Menapace, Findl et al. 2007). 

Since most IOL designs are implanted within the lens basement membrane (lens 

capsule) to fix the IOL in the optical path; most of the lens capsule is left intact in the 

eye (Menapace, Findl et al. 2007). However, it is not possible to completely remove the 

lens epithelial cells (LECs) attached to the intact lens capsule, and these residual lens 

cells (LCs) undergo a wound healing response that includes cell proliferation, migration, 

and epithelial-mesenchymal transition (EMT) into migratory myofibroblasts, while 

others undergo lens fiber cell differentiation in an attempt to regenerate the lens (de 

Iongh, Wederell et al. 2005, Wormstone, Wang et al. 2009). If these LCs, which at this 

point of time are no longer phenotypically normal LECs, remain outside of the visual 

axis, a Soemmering’s ring results, which can stabilize some of the current IOL designs 

within the eye (Werner, Tassignon et al. 2010).  However, if they migrate along the lens 
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capsule into the visual axis, posterior capsular opacification (PCO) results, leading to 

impairment of vision (Awasthi, Guo et al. 2009). 

1.5 The Problem: Posterior Capsular Opacification (PCO)  

The most common negative outcome of cataract surgery is PCO or secondary 

cataract which is reported to occur following 3%-100% of cataract surgeries within 

months to 6 years post-surgery depending on numerous factors including patient age, 

surgical method, type of IOL implanted, and post-surgical follow up time (Apple, 

Escobar-Gomez et al. 2011). Substantial efforts have been made to prevent and treat 

PCO, leading to a reduction of its incidence shortly following cataract surgery (Dewey 

2006). However, longer term, PCO, is still a major barrier to the long-term restoration 

of high acuity vision in cataract patients (Apple, Escobar-Gomez et al. 2011). In 

addition, PCO also stands as a barrier towards the successful use of the next generation 

accommodating IOLs. This is because PCO is generally associated with 

wrinkling/contraction of the posterior capsule as well as increases in cell aggregation 

on the peripheral capsule, which can substantially reposition the IOL or limit the 

movement of the postoperative capsule hence impairing the efficiency of 

accommodating IOLs (Kappelhof, Vrensen et al. 1987, McDonald, Croft et al. 2007, 

Wormstone, Wang et al. 2009).   

Despite efforts to eradicate PCO, such as by designing improved IOLs that can 

trap migrating lens cells at the lens equator; majority of these attempts only reduce PCO 

but do not eradicate the problem (Bertelmann and Kojetinsky 2001). The current, most 
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successful means to alleviate PCO is by the quick outpatient procedure, Nd-YAG 

(neodymium-yttrium-aluminum-garnet) laser capsulotomy. This procedure uses a 

quick-pulsed Nd:YAG laser to apply a series of focal ablations in the posterior capsule, 

creating a small circular opening in the visual axis, hence reestablishing visual acuity 

(Aron-Rosa, Aron et al. 1980). In the USA, Nd-YAG laser capsulotomy is the seventh 

most common outpatient surgery performed on the elderly 

(www.cms.hhs.gov/Medicare). Unfortunately, Nd-YAG laser capsulotomy can cause 

damage to intraocular lenses (Newland, McDermott et al. 1999) or IOL dislocation 

(Framme, Hoerauf et al. 1998). Moreover, up to 2.5 % of patients who undergo Nd-

YAG laser capsulotomy develop cystoid macular edema (Bath and Fankhauser 1986), 

up to 2.0% develop retinal detachment (Ranta, Tommila et al. 2000), and about 0.2% 

develop a new onset of glaucoma (Bath and Fankhauser 1986). Moreover, retinal 

detachment and cystoid macular edema often develops several months after the 

capsulotomy procedure, therefore requiring ongoing medical observation to detect and 

treat these serious complications (Steinert R.F., Puliafito C.A. et al. 1991, Steinberg, 

Javitt et al. 1993). Overall, Nd-YAG laser capsulotomy restores patient’s vision it does 

not eradicate the problem (Gillies, Brian et al. 1998). 

Thus, understanding the molecular mechanisms mediating lens epithelial cell 

responses to cataract surgery leading to PCO is important to understand the mechanism 

behind ASC, improve visual outcomes and retaining accommodation following cataract 

surgery or other surgical treatments that require lens extraction and replacement (Dewey 

2006).  
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1.6  Epithelial Mesenchymal Transition 

Epithelial-mesenchymal transition (EMT) is defined as the loss of epithelial 

characters such as apical-basolateral polarity, cell–cell communication mediated by 

tight and adherens junctions, and the ability to synthesize basement membranes. 

Concomitantly, these cells develop a fibroblastic morphology by rearranging their actin 

cytoskeleton, become migratory by forming filopodia and lamellopodia, interact with 

stromal extracellular matrices (ECM) due to changes in cell surface matrix receptors 

such as integrins, begin direct synthesis of stromal ECM and become contractile 

myofibroblasts (Hay 1995, Kalluri and Neilson 2003, Thiery JP, Acloque H et al. 2009 

). However, due to its functional diversity and complexity, scientists have long 

disagreed on its clear definition and thus have now classified EMT into three different 

types: Type-1, Type-2 and Type-3 (Kalluri and Weinberg 2009, Zeisberg and Neilson 

2009). Type-1 EMT occurs during the earliest stages of development, for example, 

during implantation and embryogenesis. Type-2 EMT is defined as that which occurs 

in more mature epithelial tissues. In contrast to Type-1 EMT, Type-2 EMT can be 

triggered by inflammation or wound-healing responses and may lead to fibrosis. Finally, 

Type-3 EMT is the loss of epithelial and the gain of mesenchymal characters associated 

with cancer progression and metastasis. Thus, lens EMT that occurs either post-surgery 

or after ocular injury is a Type-2 EMT, resulting from a wound healing response that 

involves myofibroblast transdifferentiation, increased proliferation, and migration of 

residual LECs (Marcantonio and Vrensen 1999, de Iongh, Wederell et al. 2005). 
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Figure 1.7: Epithelial mesenchymal transition (EMT) occurs when epithelial 

cells lose their epithelial cell characteristics and become 

mesenchymal. Mesenchymal cells can return to an epithelial 

phenotype, a process called mesenchymal-epithelial transition 

(MET). Type-1 EMT: During embryogenesis, the primitive 

epithelium (the epiblast) undergoes EMT forming primary 

mesenchyme that can migrate and undergo MET to form secondary 

epithelia that differentiate into new epithelial tissues. Type-2 EMT: 

In mature or adult tissues, epithelial cells can also undergo EMT 

following stress, inflammation or wounding but fail to undergo 

MET leading to fibroblast production and finally fibrosis. Type-3 

EMT: Epithelial cancer cells can undergo EMT to acquire a more 

migratory mesenchymal phenotype that allows them to invade 

secondary epithelia and proliferate as secondary tumors. Green 

(epithelial cells), Pink (mesenchymal), Yellow (primary tumor, Red 

(secondary tumor).  Adapted from (Mamuya and Duncan 2012) 
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1.7 Transforming Growth Factor-beta Induced EMT 

Evidence suggests that Transforming Growth Factor-beta (TGF-β) can drive all 

three classes of EMT (Bhowmick, Ghiassi et al. 2001, Strutz, Zeisberg et al. 2002, 

Nawshad, LaGamba et al. 2005). Further, TGF-β also regulates a wide array of other 

cellular processes including cell division, differentiation, motility, apoptosis and tumor 

suppression (Taipale, J. Saharinen et al. 1998, Yue and Mulder 2001). There are three 

known isoforms of TGF-β in mammals, TGF-β1, TGF-β2 and TGF-β3 (Derynck, 

Lindquist et al. 1988). The expression and function of these three isoforms varies 

dramatically among tissues and can also vary from species to species (Massague, 

Cheifetz et al. 1992, Massagué 2008); this makes the mechanism by which TGF-β 

function is regulated and its signals transmitted within cells very complex. TGF-β is 

synthesized within the secretory pathway as a precursor molecule, which is cleaved to 

form the functional 25kDa TGF-β homodimer and the latency-associated peptide 

(LAP). While in the secretory pathway, LAP and TGF-β homodimer remain associated 

forming a non-covalent complex known as the small latent complex (SLC). The SLC 

remains in the secretory pathway until it is bound by Latent TGF-β-Binding Protein 

(LTBP) to form the Large Latent Complex (LLC). The LLC is secreted and bound either 

covalently or non-covalently to the ECM (Nunes, Gleizes et al. 1997, Chen, Sivakumar 

et al. 2007).  In most cases, the LLC will remain in the ECM until it is further processed 

to release active TGF-β ligand (Annes, Munger et al. 2003). This process is referred to 

as TGF-β activation. Upon its release, the active TGF-β cytokine ignites TGF-β 

signaling by first binding to the type II TGF-β receptor, inducing a conformational 
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change in its serine/threonine kinase domain. The type II TGF-β receptor recruits the 

type I TGF-β receptor to form the active receptor complex. Once the receptor complex 

is formed, the type II receptor kinase phosphorylates multiple serine and threonine 

residues in the TTSGSGSG sequence of the cytoplasmic GS region of the type I 

receptor, leading to the activation of TGF-β induced signaling (Shi and Massagué 2003). 

Figure 1.8: TGF-β signaling can instigate a TGF-β induced EMT via both 

canonical (SMAD dependent) and non-canonical (SMAD 

independent pathway by repressing epithelial makers gene 

expression while activation mesenchymal marker gene expression. 

Adapted from (Mamuya and Duncan 2012) 
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The best studied pathway mediating TGF-β function is the SMAD dependent 

(canonical) pathway which initiates when receptor-regulated SMAD2 and/or 3 (r-

SMAD2/3) is recruited to the activated TGF-β receptor by the SMAD anchor for 

receptor activation (SARA) (Wu, Chen et al. 2000). The type I TGF-β receptor then 

phosphorylates r-SMAD2/3 inducing a conformational changes in the MH2 domain of 

r-SMAD2/3 and its subsequent dissociation from the receptor complex. Once 

phosphorylated and released, the phosphorylated r-SMAD2/3 attains a high affinity 

towards the co-SMAD (SMAD4) and binds to it (Souchelnytskyi, Rönnstrand et al. 

2001). The complex formed by r-SMAD2/3 and co-SMAD4 translocates to the nucleus 

where, in the case of EMT, it represses epithelial gene transcription while 

transcriptionally activating the expression of mesenchymal genes as well as other 

transcription factors capable of regulating EMT, such as members of Snail, ZEB, and 

bHLH families (Peinado, Olmeda et al. 2007, Massagué 2008). This canonical pathway 

can also induces EMT via cross talk with other signaling pathways. For instance, 

SMAD-mediated TGF-β signaling can activate integrin linked kinase (ILK) which 

allows ILK to phosphorylate GSK-3β and Akt, leading to β-catenin nuclear 

translocation and activation of other transcription factors, resulting in EMT of renal 

tubular epithelial cells (Delcommenne, Tan et al. 1998, Li, Tan et al. 2009). TGF-β can 

also mediate EMT through its non-canonical (SMAD independent) pathways (Derynck 

and Zhang 2003). For instance, TGF-β induced activation of Erk/MAP kinase, Rho 

GTPase and the PI3 kinase/Akt pathways can result in all three EMT types (Zavadil, 

Bitzer et al. 2001, Xu, Lamouille et al. 2009).  
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Not surprisingly, more non-canonical pathways and additional levels of TGF-β 

regulation are still being discovered (Zhang 2009). Recently it was shown that TGF-β 

signaling can regulate the expression of microRNAs which play a crucial role in 

regulating EMT (Zavadil, Narasimhan et al. 2007). MicroRNAs belonging to the miR-

200 and miR-205 family can prevent EMT by downregulating the EMT associated 

transcription factors ZEB1 and SIP1 (Gregory, Bert et al. 2008). Since miR-200 and 

miR-205 expression is reduced upon TGF-β stimulation, this suggests that TGF-β is a 

key regulator of the expression of microRNAs that block EMT (Pandit, Corcoran et al. 

2010). It is likely that other microRNAs either synergize or antagonize TGF-β signaling 

during TGF-β induced EMT. Thus, investigating different pathways of how TGF-β 

signaling is regulated will help understanding the mechanism of lens EMT and eventual 

development of PCO therapeutics.  

1.8 Integrins and Their Role in EMT 

Integrins are heterodimeric extracellular matrix (ECM) receptors consisting of 

one α- and one β-integrin subunit, which play major roles in cell proliferation, adhesion 

and migration of numerous cell types (Hynes 1992, Hynes 2002). Interactions between 

cells and ECM are necessary to convey micro-environmental cues essential for 

regulating cell behavior and function (Slavkin 1982, Lukashev and Werb 1998). 

Integrins play this role by linking the cytoskeleton to the ECM components influencing 

a number of cell signaling cascades ranging from cell proliferation, differentiation, 

adhesion to cell migration. They are encoded by 18 α-subunit and 8 β-subunit genes that 
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can only function as paired α-β heterodimers. There are at least 24 different functional 

integrin heterodimers (Hynes 1992, Hynes 1996, Hynes 2002). These heterodimers are 

specific in function making integrins one of the most diverse types of cell receptors 

(Hynes 2002). Not surprisingly, with such a complex repertoire, integrins can recognize 

diverse components of the ECM including laminin, collagen, heparan sulfate 

proteoglycans, vitronectin, fibronectin, osteopontin, bone sialoprotein, 

thrombospondin, fibrinogen, von Willebrand factor and tenascin (Ruoslahti 1996, 

Desgrosellier and Cheresh 2010).  
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Figure  1.9: (Right) A schematic diagram showing a α- and β-integrin subunit 

interaction forming a non-covalently bound transmembrane 

receptor heterodimer. (Left) A schematic diagram showing α- and 

β-integrin subunit dimerization preferences (Images adapted from 

Pearson Education, Inc. copyright © 2009). 

Intracellular cues resulting from different cell signaling pathways can activate 

integrin associated proteins affecting their affinity to extracellular ligands, a process 

known as inside-out signaling (Anthis and Campbell 2011). Changes in ECM 

composition, such as the increased expression of fibronectin, vimentin, vitronectin or 

collagen seen during EMT, can also activate integrins by increasing their ligand binding 

affinity state (Boudreau and Jones 1999, Imamichi and Menke 2007). In result, this can 

induce an outside–in integrin signaling, mediated via adaptor proteins such as ILK, 

paxillin, FAK and PINCH which bind to the cytoplasmic tail of integrins (Giancotti and 

Ruoslahti 1999). Thus, in the case of EMT, ECM microenvironment perturbations or 

intracellular cues can persuade integrins to dictate adhesion changes between cells and 

the ECM or cells to cells which in favorable conditions can induce the disassembly of 

tight and adherens junctions, dissolution of desmosomes, actin reorganization and loss 

of epithelial apical-basal polarity leading to EMT. In extremis, these changes can initiate 

focal adhesion complex formation leading to cell migration and invasion (Yilmaz and 

Christofori 2009). Further, integrins can also facilitate changes in cell-ECM contacts 

during EMT by the co-localizing proteases such as membrane type matrix 

metalloproteinase (MMPs) (Gonzalo, Moreno et al. 2010). This ability of integrins to 
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simultaneously bind ECM proteins and recruit MMPs is essential in the activation of 

latent TGF-β, a cytokine that not only executes EMT but also regulates the transcription 

of genes that encode numerous integrin subunits; this is discussed in the next section. 

1.9 Activation of Transforming Growth Factor-beta by Alpha V Integrins   

TGF-β is secreted in a latent form that must be activated extracellularly to 

efficiently trigger receptor-mediated TGF-β signaling. Diverse activation mechanisms 

have been demonstrated which allow for regulation of TGF-β function in different 

cellular/tissue contexts. (Miyazono and Heldin 1991). Among the three TGF-β 

isoforms, only the LAPs of TGF-β1 and TGF-β3 contain an integrin-binding motif, 

arginine–glycine–aspartic acid (RGD). Notably, many αV integrins including αVβ1, 

αVβ3, αVβ5, αVβ6 and αVβ8 can interact with this RGD sequence resulting in activation 

of TGF-β1 and TGF-β3 (Munger, Huang et al. 1999, Annes, Rifkin et al. 2002, Mu, 

Cambier et al. 2002, Ludbrook, Barry et al. 2003, Annes, Chen et al. 2004). Not 

surprisingly, mice with a nonfunctional variant of the RGD sequence in their TGF-β1 

LAP express normal levels of latent TGF-β1, but display features similar to that of TGF-

β1 knockouts (Munger, Huang et al. 1999, Yang, Mu et al. 2007). Moreover, mice 

lacking αVβ6 and αVβ8, phenocopy TGF-β1 and TGF-β3 knockouts confirming the 

importance of αV integrins in TGF-β1 and TGF-β3 activation (Aluwihare, Mu et al. 

2009). Furthermore, antibody-mediated blockade of αV integrin function, particularly 

αVβ6, downregulates the TGF-β induced EMT and inflammation known to causes 

fibrosis, metastasis and cancer (Bates, Bellovin et al. 2005, Wang, Dolinski et al. 2007, 
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Horan, Wood et al. 2008, Koopman Van Aarsen, Leone et al. 2008). Two different 

models of how αV integrins can activate TGF-β are proposed, both of which have 

significant experimental support. It appears that the choice of TGF-β activation 

mechanism is cell type specific and influenced by whether the appropriate integrin is 

expressed and the specific cell physiological context. However, it is not known whether 

the use of a particular TGF-β activating mechanism influences the resulting TGF-β 

signaling. 

1.9.1 Conformational change activation mechanism:   

Upon binding to the LAP of TGF-β1 and TGF-β3, αV integrins can exert 

adhesion-mediated cell forces inducing conformational changes of the LAP, which 

results in structural deformation of the latent complex and liberation of active TGF-β 

(Munger, Huang et al. 1999). Drugs that block myofibroblast contraction such as ML-

7, blebbistatin, cytochalasin D and the α-SMA contraction inhibitor SMA-FP, also 

inhibited activation of TGF-β1 by contraction-inducing drugs (Hinz, Gabbiani et al. 

2002, Wipff, Rifkin et al. 2007). Analogously, studies that inhibited αVβ5 integrin 

function by forming αvβ5 -Thy1 complexes also inhibit contraction-induced latent 

TGF-β1 activation (Zhou, Hagood et al. 2010). Since TGF-β signaling induces a 

contractile cytoskeleton along with α-SMA expression during EMT, this can result in 

further TGF-β activation (Kurosaka, Kato et al. 1995). While this direct activation does 

not require proteolysis of either the LAP or LTBP, it does require a mechanically stiff 
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ECM and contractile cytoskeleton, which provides sufficient forces to liberate TGF-β 

from its latent complex (Annes, Munger et al. 2003, Wipff and Hinz 2008).  

1.9.2 Conformational change activation mechanism with proteolysis:  

Not all integrin interactions with the LAP directly activate TGF-β, particularly 

in the absence of a stiff ECM. Moreover, active TGF-β must be physically proximal to 

a type II TGF-β receptor for activation of TGF-β signaling.  Notably, several MMPs 

such MMP-9 and MMP-2 can proteolytically cleave the LAP and/or LTBP to liberate 

TGF-β from its ECM bound stores (Yu and Stamenkovic 2000, Dallas, Rosser et al. 

2002). Further, αV integrins can interact with MMPs, such as MMP2 and MMP9, to 

tether them to the cell surface (Brooks, Stromblad et al. 1996, Rolli, Fransvea et al. 

2003). Thus, in certain physiological contexts, αV integrins can simultaneously promote 

proximity of MMPs to the LAP and sequester the LLC close to the type II TGF-β 

receptor. Depending on the cell/tissue type, this mechanism can function without 

significant cell traction (Yu and Stamenkovic 2000, Wipff and Hinz 2008), although a 

contractile cytoskeleton and a mechanically resistant ECM can also participate (Wipff, 

Rifkin et al. 2007, Wipff and Hinz 2008). 

 

1.10 Overall 

Upon cataract surgery, lens epithelial cells (LECs) that left behind in the 

capsular bag will perceive the surgery as a wound, inducing a wound-healing response 
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which drives these cell into a migratory myofibroblast or lens fiber cell regeneration 

phenotype associated with, deposition of mesenchymal proteins and cell migration 

across the posterior capsule (Cobo, Ohsawa et al. 1984, Zhu 1990).  

It is known that TGF-β plays a central role in the cell biology of PCO. However, 

as elaborated earlier on this chapter, TGF-β is a multifunctional growth factor with a 

wide range of opposing effects on cellular processes (Massague, Cheifetz et al. 1992). 

Thus the precise mechanism of how it regulates PCO is not well understood. Similarly, 

TGF-β signaling has also been associated with Anterior Subcapsular Cataract (ASC) 

(Hales, Chamberlain et al. 1995, Hales, Chamberlain et al. 1997). ASC is a condition 

that results from aberrant growth and differentiation of LECs to form fibrotic plaques 

that obscure vision (Pau, Novotny et al. 1985). Unlike PCO, ASC occurs following 

ocular trauma, from unrelated eye surgery, or can result from diseases such as atopic 

dermatitis (Novotny and Pau 1984, Sasaki, Kojima et al. 1998). However, in ASC, the 

lens epithelial cells undergo similar morphological and molecular changes to those 

occurring during PCO (Ishibashi, Hatae et al. 1994, Saika, Kawashima et al. 1998). 

Furthermore, in vitro and in vivo rodent cataract models used to study ASC are also 

useful for investigating the molecular and cellular basis of PCO and vise versa (de 

Iongh, Wederell et al. 2005, Martinez and de Iongh 2010).   

There has been speculation that integrins play a role in PCO and several studies 

have reported integrin overexpression as LECs undergo EMT.  Further these studies 

also showed that integrin antagonists can attenuate lens EMT (Zuk and Hay 1994, 

Sponer, Pieh et al. 2005, Walker and Menko 2009). However, the identity of the 
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particular integrins involved and their function still remains uncertain. αV integrins can 

activate TGF-β and trigger a TGF-β induced EMT, which in return can upregulate more 

αV integrin gene expression as well as creating a mesenchymal microenvironment ideal 

for further unregulated TGF-β activation resulting in pathological TGF-β induced EMT 

(Mamuya and Duncan 2012). Since therapeutics targeting αV integrins have been 

developed and are in clinical trials for other diseases (Nemeth, Nakada et al. 2007), 

further understanding of these unknown complex mechanisms it executes will be 

essential in developing  therapeutics for lens EMT and other associated TGF-β-EMT 

pathologies. 
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Chapter 2 

MATERIALS AND METHODS 

2.1 Animals 

All the experiments conducted conform to the ARVO Statement for the Use of 

Animals in Ophthalmic and Vision Research and were approved by the University of 

Delaware Institutional Animal Care and Use Committee. All mice were bred and 

maintained under pathogen free conditions at the University of Delaware animal facility 

under a 14/10-hour light/dark cycle. 

2.1.1 αV integrin conditional knockout mice 

C57BL/6 mice carrying an αV integrin allele with loxP sites flanking exon 4 

(αV [+/flox]) (McCarty, Lacy-Hulbert et al. 2005) were obtained from Adam Lacy-Hulbert 

(Harvard School of Medicine, Boston, MA). FVB/N mice expressing cre recombinase 

in all lens cells from the lens vesicle stage onward (MLR10-cre) (Zhao et al., 2004) 

were obtained from Michael L. Robinson (Miami University, Oxford, OH) and 

backcrossed 10 generations to C57BL/6<har> mice to create a congenic line. 

Homozygous male FVB/N mice carrying a cre recombinase gene under the control of 

the adenovirus EIIA-promoter, EIIa-cre/EIIa-cre (TgN(EIIa-Cre)C5379Lmgd) (Lakso, 

Pichel et al. 1996), were obtained from The Jackson Laboratories, Bar Harbor, Maine. 

Heterozygous αV integrin flox mice (αV [flox/+]) were mated to EIIa-cre/EIIa-cre mice 

to generate mice carrying a germline αV integrin null allele αV [-/+]. These animals were 

mated to αV [flox/flox] to generate αV [-/flox] mice. αV [-/flox] were mated to MLR10-cre mice 
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to generate mice lacking αV integrin in their entire lens αV [-/flox]; MLR10-cre 

(αVMLR10).  All control mice used in the αV integrin study are αV [flox/flox] that lack a 

cre-recombinase expressing transgene.  All embryos were staged based on E0.5 being 

the day that a vaginal plug was found in the dam. 

2.1.2 Mutated βB2-crystallin mice 

Mice homozygous for the mutated βB2-crystallin gene STOCK Crybb2Phil 

(Phy/Phy) mice on a Swiss Webster derived background were obtained from the 

National Institutes of Health, Animal Genetics Resource, Veterinary Resources 

Program (Bethesda, MD). Swiss-Webster and C57Bl/6NHsd mice were acquired from 

Harlan-Sprague Dawley (Indianapolis, IN). The Crybb2Phil allele was moved onto the 

C57Bl/6NHsd genetic background by over 10 generations of backcrossing to establish 

mice carrying βB2-crystallin mutation in a C57Bl/6NHsd genetic background 

Crybb2Phil/Phil (homozygous) and Crybb2+/Phil (heterozygous). 

2.2 DNA Isolation  

DNA was isolated from tail snips or whole lenses using PureGene Tissue and 

Mouse Tail kit (Gentra Systems, Minneapolis, MN). Briefly, 0.5cm length of mouse tail 

or one whole mouse lens was immersed in a microfuge tube containing 600µl of 

PureGene cell lysis solution cocktail containing Ethylenediaminetetraacetic Acid 

(EDTA), Tris[hydroxymethyl]aminomethane (Tris), Sodium Dodecyl Sulfate (SDS) 

and 5µl of 20mg/ml Proteinase K solution (Life Technologies, Grand Island, NY).  
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The microcentrifuge tube was inverted several times and incubated at 55°C 

overnight (or for two nights if isolating DNA from the lens) in a gentle shaking water 

bath. After incubation, 200µl of protein precipitation solution [ammonium acetate] was 

added to the cell lysate solution and vortexed at high speed for about 20 seconds 

followed by 6 minutes of centrifugation at 14,000 rpm. The supernatant containing the 

DNA was separated from the precipitated protein pellet and poured into a 

microcentrifuge tube containing 600µl of 100% isopropanol, mixed by inverting 25 

times, and centrifuging at 14,000 rpm for 1 minute. The supernatant was carefully 

discarded and 600µl of 70% ethanol was added to the microfuge tube containing the 

DNA pellet, washed by inverting the tube several times followed by a 1 minute 

centrifugation at 14,000 rpm. The ethanol was carefully discarded without disturbing 

the pelleted DNA. The microcentrifuge tube containing the pelleted DNA was left open 

to air dry in room temperature for 2 hours or till completely dry. Once dry, the pelleted 

DNA was rehydrated with 100µl of pureGene DNA hydration solution or by nuclease 

free molecular grade water and incubated overnight at room temperature. Hydrated 

DNA was stored temporarily at 4°C or at -20°C for storage longer than a week.  

2.3 PCR and Genotyping  

Polymerase Chain Reaction (PCR) was performed using a Taq DNA Polymerase 

Kit (QIAGEN Inc., Valencia CA). Briefly, the isolated genomic DNA was quantified in 

ng/µl using the Nanodrop (ND-1000 spectrophotometer) (Thermo Fisher) and diluted 
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down to about a 100-150ng/µl final concentration. DNA was stored at 4°C or PCR was 

carried out as follow. A 25µl  PCR mix cocktail containing 1µl of the 100-150ng/µl 

DNA, 1µl of each desired primer (Table 2.1), 10µl  of Taq PCR Master Mix and 7µl of 

water was added to a 0.2ml PCR tubes and mixed gently by pipetting while kept on ice 

at all times. PCR was carried out with an Eppendorf Mastercycler® PCR Cycler – 

(model #5333 000.018). The cycling conditions for all genotyping primers used were 5 

minutes at 95 °C, 30 seconds at 94 °C, 58 °C for 45 seconds, 72 °C for 90 seconds, 

repeat the cycle 33 times followed by 72 °C for 10 minutes and hold at 4°C. PCR product 

bands were analyzed by 2.5% agarose gel electrophoresis with ethidium bromide 

concentration of 0.5µg/ml ran at 150V for 1.25 hours and examined under UV 

transilluminator. For the βB2-crystallin mutants, the 120-nucleotide product of the 

Crybb2Phil allele and 132-nucleotide product of the wildtype allele was resolved by 

electrophoresis on a 10% polyacrylamide gel ran at 150V for 2 hours or until the gel 

front reached the bottom of the gel.   

2.4 RNA Isolation 

RNA for reverse-transcription PCR was isolated from either two whole frozen 

lenses or least 5-pooled capsule bags collected at different times post-surgery using the 

SV Total RNA Isolation System (Promega, Madison, WI). Due to their smaller size, 

four or six whole lenses were used for 2-month or 4-month-old 

Crybb2Phil/Phil respectively. Briefly, fresh or frozen lenses stored at -80°C were 

immediately submerged in 175µl of RNA Lysis buffer and the mixture was 
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homogenized. 350µl of SV RNA Dilution Buffer was added to the lysate, mixed by 

inversion and followed by incubation in a 70°C water bath for exactly 3 minutes. The 

lysate was centrifuged at 13000 rpm for 10 minutes to pellet protein. The supernatant 

was transferred to a fresh microcentrifuge tube, and 200µl of 95% ethanol was added 

and mixed by flicking the tube.  

The resulting mixture was transferred to a spin column assembly containing a 

silica glass membrane that can bind RNA attached to a collecting tube. The spin column 

was centrifuged at 13000rpm for 1 minute.  600µl of SV RNA Wash solution was added 

to the spin column and centrifuged for another 1 minute at 13000 rpm. The spin column 

was incubated at room temperature with a DNase solution containing: 40µl Yellow Core 

Buffer; 5ul 0.09M MnCl2; and 5µl DNase I enzyme. After exactly 15 minutes of 

incubation, 200µl of SV DNase Stop Solution was added to the spin column, and 

centrifuged at 13000rpm for 1 minute. The spin column membrane was washed with 

600µl SV RNA Wash solution, centrifuged for 1 minute, rewashed again with 250ul SV 

RNA Wash solution. Through every each step, liquid collected in the spin column 

collecting tube was discarded. Finally, RNA was eluted from the membrane with 30ul 

of nuclease free molecular grade water. Isolated RNA was stored at -80°C and the final 

concentrations were quantified before further use. The total RNA eluted from at least a 

pool of five capsular bags collected post-surgery, ranged between 450 to 900ng of total 

RNA. 
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2.5   cDNA Synthesis 

cDNA was synthesized using a The RT² First Stand Kit (catalog #330401 , 

QIAGEN Inc., Valencia CA ) under a RNase free environment. RNA was thawed on 

ice and quantified by ND-1000. The RT² First Stand Kit can work with initial total RNA 

ranging from 25ng to 5µg. To make sure that all the samples in one experimental set 

had similar RNA concentrations, all eluted RNA concentrations were diluted down to 

match the sample that had the lowest eluted RNA concentration. After matching the 

RNA concentrations between samples, 8µl of each sample and 2µl of 5× gDNA 

Elimination Buffer were added to a microcentrifuge tube and mixed gently with a 

pipettor followed by short centrifugation. The microcentrifuge tubes were incubated at 

42ºC for 5 minutes. The reverse transcriptase cocktail solution was made as described 

in the RT² First Stand Kit manual and 10µl was added to each sample and incubated at 

42ºC for exactly 5 minutes. The samples were incubated at 95ºC for 5 minutes to stop 

the reaction. 91µl of nuclease free molecular grade water to each 20µl of cDNA 

synthesis reaction mixture, mixed well and stored at -20°C. 

2.6  RT2 ProfilerTM PCR Array 

Megan Fisher used the RT2 ProfilerTM PCR Array System (SA Bioscience) to 

investigate the expression of 84 genes involved in TGF-β signaling in the 

Crybb2Phil/Phil and wildtype 3-month-old lenses (Fisher 2009). Briefly, an experimental 

reaction mixture of 1275µl of Master Mix, 8µl of cDNA and 1194µl of nuclease free 
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molecular grade water was prepared.  25µl of this experimental reaction mixture was 

added to all 96 wells of the SuperArray plate. The real-time PCR reaction was 

performed using an ABI7300 Real-Time PCR system (Applied Biosystems, Foster City, 

CA). The following cycling conditions were used: 1 cycle of 10 minutes at 95°C; 40 

cycles of 15 seconds at 95°C followed by 1 minute at 60°C. Results were analyzed using 

the data analysis program provided on the SA Bioscience website 

(http://www.SABiosciences.com/pcrarraydataanalysis.php). This program analyzes the 

data obtained from multiple plates and calculates the relative expression of genes in two 

sample groups. The program uses the ΔΔCT method described to calculate the relative 

expression of 84 genes involved in TGF-β signaling. 

2.7  Primer Design  

Primers for Quantitative Real-Time PCR (QRT-PCR) were designed using the 

Primer3 program at (http://bioinfo.ut.ee/primer3/). Suitable target areas were 

determined using exon sequences found in the Ensembl Genome Database 

(http://www.ensembl.org) and analyzed by the San Diego Supercomputer Center 

Biology Work Bench database (workbench.sdsc.edu/). The optimal product size for 

each primer was set to 100-200 base pairs and the optimal primer size was set to 21 base 

pairs. Primer specificity was checked using NCBI’s Primer BLAST function 

(http://blast.ncbi.nlm.nih.gov). 
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2.8 Quantitative Real-Time PCR 

Real-time PCR was performed using a QuantiTect SYBR Green PCR Kit 

(QIAGEN Inc. Valencia CA) using an ABI Prism 7300 Real-Time PCR system 

(Applied Biosystems, Foster City, CA) using a standard cycle temperature set of 50 °C 

for 2 minutes, 95°C for 10 minutes, 95°C at 15 seconds for 45 cycles followed by 60°C 

for 1 minute.  mRNA levels for each gene were normalized to the expression levels of 

the housekeeping gene β2-microglobulin (β2M) or hypoxanthine phospho-ribosyl-

transferase-1 (HPRT-1). Table 2.1 shows a list of all primers used. Relative expression 

was calculated by ΔCT
experimental - ΔCT

wild type at 0hrs post-surgery. The fold difference was 

obtained by the following equation: 2ΔΔCT. 
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Table 2.1. List of all primers used for both PCR and QRT –PCR used in this study  

 Gene/cDNA detected Forward primer Reverse primer 

1 αV integrin [null allele] 5’-GGTGACTCAATCGACCTTCAGC 5’-CAGAAATCAAGGACCAAACTGAG 

2 αV  integrin [floxed] 5’-TTCAGGACGGCACAAAGACCGTTG 5’-CACAAATCAAGGATGACCCTGAG 

3 αV integrin [qrt-pcr] 5’-GATGCAGTGTGAGGAACTGGT 5’-GAGTGAACTGGTTCAGGATGG 

4 αSMA 5’-GCACAGCTTCTCCTTGATGTC 5’-5’CCGAGATCTCACCGACCT 

5 β2M 5’-TACGCCTGCAGAGTTAAGCAT 5’-TCAAATGAATCTGAGCATCA 

6 β1 integrin 5’-TCCTTCAATTGCTCACCTTGT 5’-GCGCACTGCTGACTTAGGAAT 

7 β5 integrin 5’-AGGATCTACGGACCTTTCTGC 5’-CATTTGCATTCTCCACAGTGA 

8 β6 integrin 5’-GCAGAACGCTCTAAGGCCAA 5’- AAAGTGCTGGTGGAACCTCG 

9 β8 integrin 5’-AAGCAAAGGCTGTCCAGTTG 5’-TCCACGGGGTATTTCTTCAG 

10 Cre-recombinase 5’-ATGCTTCTGTCCGITTGCCG 5’-CTTGTTTTGCACGTTCACCG 

11 Fibronectin 5’-CTGGAGTCAAGCCAGACACA 5’-CGAGGTGACAGAGACCACAA 

12 Tenascin -C 5’-AAAGTAACCACAACCCGCCT 5’-AGGTGATCAGTGCTGTGGTG 

13 TGF-β induced protein 5’-CCTCACCTCCATGTACCAGAA 5’-TGGAAATGACCTTGTCAATGAG 

14 Vitronectin 5’-CAAAGCTCGCACTGACA 5’-CCCCTGAGGCCCTTTTTCATA 

15 Col1α1 5’-AGGAGCTAGAGGCTCTGAAGG 5’-AGCAATACCAGGAGCACCATT 

16 Crybb2 5’-AGGACAGACTCCCTCAGCTCT 5’-GGCACATCGTCGTCTACAATC 

17 Crybb2Phil/Phil 5’-CTACCGTGGGCTGCACCTGC 5’-GTGGAAGGCACCTCGCTGGTGC 

18 FST 5’-TGGATAGCCTATGAGGGAAAG 5’-GACACAGCTCATCGCAGAGA 

19 IGF-bp3 5’-CTAAGCGGGAGACAGAATACG 5’-GTCACAGTTTGGGATGTGGAC 

20 TGF-bi 5’-CCTCACCTCCATGTACCAGAA 5’-TGGAAATGACCTTGTCAATGAG 

21 TR2 5’-TGTGTGCCTGTAACATGGAAG 5’-GGTGGACACGGTAGCAGTAGA 

22 Hprt1 
 

5’-CAAGGGCATATCCAACAACA 
 

5’-CAAACTTTGCTTTOCCTGGT 
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2.9 Morphology, Size and Optical Analysis  

Three and six month-old mice were sacrificed with carbon dioxide followed by 

cervical dislocation. Eyes were removed and lenses were dissected. Lens transparency 

was assessed by placing lenses in Medium 199, (Mediatech Inc, Manassas VA) at 37°C 

to prevent cold cataract formation and photographs taken under both bright-field and 

dark-field conditions using a Cannon digital camera A420 mounted on a Zeiss Stemi 

SV 11 Apo Stereo Microscope (Zeiss, Thornwood, NY). For optical analysis, fresh 

lenses were placed on a 200-mesh electron microscopy grid and photographed as 

previously described (Shiels, King et al. 2007). The ratio between wet and dry lens 

weight, fresh lenses were weighed and placed in an aseptic 50°C oven for 96hrs to dry, 

and then reweighed.  

2.10 Scanning Electron Microscopy 

Eyes were immersion fixed in 0.08M Sodium Cacodylate buffer pH 7.4 

(Electron Microscopy, Hatfield, PA), 1.25% glutaraldehyde (Electron Microscopy, 

Hatfield, PA), and 1% paraformaldehyde (Electron Microscopy, Hatfield, PA) for five 

hours. The lens was excised and transferred to fresh fixative for an additional 48 hours.  

After fixation, lenses were washed in 1× phosphate buffered saline (PBS). The lens 

capsule was peeled and the superficial fiber cell layers were removed with fine forceps 

to expose the cortical fiber cells, some lenses were peeled further to expose the nuclear 

fiber cells. Peeled lenses were subjected to an ethanol dehydration series (25%, 50%, 

75%, 100%) followed by overnight incubations in fresh 100% ethanol followed by an 
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additional two 2.5-hour 100% ethanol incubation.  Finally, the dehydrated, peeled lenses 

were dried using hexamethyldisilazane (HMDS) (Electron Microscopy, Hatfield, PA) 

as previously described (Duncan et al., 2000), mounted on aluminum stubs and coated 

with gold/palladium for 2.5 minutes. Samples were viewed with a Field Emission 

Scanning Electron Microscope (FE-SEM) Hitachi S-4700 (Tokyo, Japan).  

For hematoxylin and eosin (H&E) staining, mice were euthanized, the eye 

excised, immersed in fixed in Pen-Fix (Richard Allan Scientific, Kalamazoo Michigan) 

for four hours, then stored in 70% ethanol prior to paraffin embedding. Six-micrometer 

sections were cut and stained by H&E by standard methods to visualize cellular 

morphology. 

2.11 Surgical Removal of Lens Fiber Cells 

The effect of cataract surgery on lens cells was modeled in living mice by 

surgical removal of lens fiber cells as previously described (Call, Grogg et al. 2004, 

Desai, Wang et al. 2010). Briefly, 3-month-old mice were anesthetized with 

ketamine/xylazine and their pupils were dilated with 1% tropicamide and 2.5% 

phenylephrine hydrochloride ophthalmic solution (Schein). Using an ophthalmic knife, 

a 3mm central corneal incision was made extending into the lens. A balanced salt 

solution was used to separate the lens capsule from the lens fiber cells and the entire 

lens fiber cell mass was removed by a sharp forceps, leaving behind an intact lens 

capsule. The corneal incision was closed with a single 10-0 nylon corneal suture and 

normal saline was injected to inflate the eye back to its normal shape. Erythromycin 
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ophthalmic ointment was applied topically and the mice were allowed to awaken from 

anesthesia. For analysis, mice were sacrificed with carbon dioxide following by cervical 

dislocation at various time intervals after surgery ranging from 24-hours to 5-days. Time 

zero controls were obtained by re-anesthesizing previously operated mice and the 

extracapsular lens extraction procedure was performed in the contralateral eye from the 

first surgery just prior to sacrifice. This minimized the number of animals used for these 

experiments.  We did not observe any changes in expression for the markers used in this 

study comparing time zero samples obtained from naïve mice and those whose other 

eye had previously undergone lens fiber cell removal.  At least 5 -10 independent 

animals were used for each analysis described here. 

2.12 Immunofluorescence  

All immunofluorescence analyses were carried out as previously described 

(Reed, Oh et al. 2001). Briefly, to confirm αV integrin deletion, heads were removed 

from embryos, and eyes removed from postnatal mice, and embedded directly in OCT 

(Sakura). For analyzing post-surgery samples, whole eyes containing capsular bags 

collected at different times post surgery were carefully embedded in TissueTek OCT 

Compound in 10mm x 10mm x 5 mm TissueTek Crymold Biopsy molds and 

immediately stored at -80ºC.  16μm sections were collected on Fisher Colorfrost/Plus 

slides using a Leica CM3050 S Cryostat at -15ºC to -17ºC and stored at -80ºC. 

Immunostaining were carried out under different conditions depending on the primary 

antibody. Briefly, 1:1 acetone:methanol fixation at −20°C for 20 minutes or in 4% 
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paraformaldehyde fixation for 30 minutes at room temperature. Appropriate blocking 

sera were diluted in either 1×PBS or 1×Tris-buffered saline (TBS) and slides were 

blocked for one hour at room temperature. Primary antibodies were diluted in blocking 

serum (see Table 2.2 for antibodies and dilutions used) and applied onto the slides and 

incubated in a humid chamber at room temperature for another one hour or overnight at 

4°C. Three, 10-minute washes were performed with either 1×PBS or 1×TBS at room 

temperature. For secondary antibody staining, slides were stained with 100ul cocktail 

containing 1:2000 dilutions of DRAQ5™ (Biostatus, Leicestershire, United Kingdom), 

1: 250 dilution of αSMA (Sigma-Aldrich, St. Louis, Missouri USA) and 1:200 dilution 

of the appropriate AlexaFluor 568 labeled secondary antibodies (Invitrogen, Carlsbad, 

California). The slides were incubated for one hour at room temperature in a dark humid 

chamber followed by another three, 10-minute washes with either 1×PBS or 1×TBS in 

dark at room temperature. Excess solution surrounding the tissue was wiped with a 

Kimberly-Clark® Kimwipes and approximately 150 - 200ul of mounting media was 

pipetted over the tissue and carefully sealed with a coverslip (Fisher).  The slides were 

stored at -20°C and analyzed not later than two weeks.   
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2.13 Antibodies  

Table 2.2. List of all antibodies used in this study  

Primary antibody 
name 

1hr room temperature 
blocking conditions 

Primary 
Antibody  

Company and 
Location 

αSMA 
Clone 1A4, F3777 

1% BSA in PBS 1 hour @ RT 
1:250 dilution 

Sigma-Aldrich 
(St. Louis, MO) 

αV integrin 
AB1930 

5% Horse Serum + 5% 
Goat Serum in PBS 

Overnight @ 4°C 
1:400 dilution 

Millipore 
(Billerica, MA) 

β1 integrin 
clone MB1.2,1997 

1% BSA in PBS 1 hour @ RT 
1:250 dilution 

Millipore 
(Billerica, MA) 

β5 integrin 
AB 1925 

1% BSA in PBS 1 hour @ RT 
1:200 dilution 

Chemicon 
(Temecula, CA) 

β6 integrin 
(H-1100): sc-15329 

5% Goat Serum in PBS Overnight @ 4°C 
1:100 dilution 

Santa Cruz 
(Santa Cruz, CA) 

β8 integrin 
Pro Sci Xw 7802 

1% BSA in PBS 1 hour @ RT 
1:200 dilution 

Chemicon 
(Temecula, CA) 

 
Phospho-SMAD 3 

Clone EP823Y 

10min wash in 5% BSA 
followed by 5% Goat 

Serum + 10% Horse Serum 
in PBS  

 
Overnight @ 4°C 

1:100 dilution 

 
Epitomics 

(Burlingame, CA) 

TGF-β -induced 
(H58) sc-28660 

5% Goat Serum in PBS 1 hour @ RT 
1:100 dilution 

Santa Cruz 
(Santa Cruz, CA) 

Fibronectin 
Ab23750 

1% BSA in PBS 1 hour @ RT 
1:400 dilution 

abcam 
(Cambridge, MA) 

Vitronectin 
Ab28023 

10% Goat Serum in TBS 1 hour @ RT 
1:500 dilution 

abcam 
(Cambridge, MA) 

Tenascin C 
AB19011 

5% Goat Serum in PBS Overnight @ 4°C 
1:400 dilution 

Millipore 
(Billerica, MA) 

Prox 1 
Duncan et al., 2002 

1% BSA in PBS 1 hour @ RT 
1:500 dilution 

University of Delaware 
(Newark, DE) 

cMaf 
sc7866 

1% BSA in PBS 1 hour @ RT 
1:100 dilution 

Santa Cruz 
(Santa Cruz, CA) 

Caspase -3 
(Asp175)# 8120 

5% Goat Serum in TBS Overnight @ 4°C 
1:50 dilution 

Cell signaling 
(Danvers, MA) 

βB2-crystallin 
takemlj@ksu.edu 

10% Goat Serum in TBS 1 hour @ RT 
1:250 dilution 

Larry Takemoto, 
(Manhattan, KS) 

Pax-6 
PRB-278B-Covance 

5% Goat Serum in PBS 1 hour @ RT 1:150 
dilution 

Santa Cruz (Santa Cruz, 
CA) 

 49 

http://www.sciencedirect.com/science/article/pii/S0012160607007646%23bib18
mailto:takemlj@ksu.edu


 

2.14 Confocal Microscopy 

After staining, slides were washed, cover slipped, and stored at −20°C or directly 

imaged with a Zeiss LSM 780 Confocal Microscope (Carl Zeiss, Inc., Gottingen, 

Germany) equipped with a 405 nm diode laser, an Argon laser with 458/488/514 nm 

lines, DPSS 561 nm and HeNe 633 nm laser. All comparisons of staining intensity 

between specimens were done on sections stained simultaneously and the imaging for 

each antibody was performed using identical laser power and software settings to ensure 

validity of intensity comparisons.  In some cases, images were processed post-imaging 

to optimize brightness and contrast for viewing on diverse computer screens.  In all 

cases, such manipulations were applied identically to experimental and control images. 

Some image comparisons were quantitatively analyzed using the open-source 

application Fiji controlled with a custom Java code (Schindelin, Arganda-Carreras et al. 

2012).  

2.15 EdU Click-it Proliferation Assay 

The number of LECs in DNA synthesis or S-phase of the cell cycle at different 

times post-surgery was determined by 5-ethynyl-2´-deoxyuridine (EdU) click-it 

proliferation assays (Invitrogen, need location). EdU is a nucleoside analog of 

thymidine that is incorporated into DNA during DNA synthesis (Warren, Puskarczyk et 

al. 2009, Kotogany, Dudits et al. 2010). Briefly, mice were injected intraperitoneally 
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with 400μg of EdU for 25g of mouse body weight (16μg per 1g body weight) dissolved 

in normal saline. Two hours later, the animals were sacrificed, eyes were removed, 

ocular tissue was embedded in OCT. 16µm frozen sections were obtained by cryostat 

and mounted on glass slides. Specimen slides were stored at −80°C or right away fixed 

by 4% paraformaldehyde for 30 minutes at room temperature followed by methanol 

fixation at −20 °C for 10 minutes. Sections were allowed to air dry, then blocked with 

3% BSA in 1×PBS, for 15 minutes. The EdU click-it reaction cocktail was prepared as 

instructed in the Click-it reaction kit protocol (Warren, Puskarczyk et al. 2009, 

Kotogany, Dudits et al. 2010). Excess blocking solution surrounding the tissue was 

wiped with a Kimberly-Clark® Kimwipes and the appropriate amount of the 100µl of 

the EdU click-it reaction cocktail was added to the slides and incubated for 30min at 

room temperature in a dark humid chamber. After the click-it reaction slides were 

washed with 1% BSA in 1x PBS for 15 minutes followed by a counterstain with 100µl 

cocktail of 1:2000 dilution of DRAQ5™ and 1: 250 of αSMA for one hour at room 

temperature in a dark humid chamber. Slides were washed, mounted media and 

coverslip was applied as described above. 

2.16 Active TGF-β Assay  

2.16.1 Lens extract preparation for TGF-β assay  

Four, fresh 3-month-old lenses were placed in a 24 well plate. All 4 lenses were 

dissected and the lens capsule and fiber cells were carefully separated. 500µl of DMEM/ 
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0.1% BSA (DMEM/BSA) was added and while pipetting up and down 15 times. The 

mixture was incubated at 37o C for 30min. The supernatant (lens extract) was carefully 

pipetted out and transferred to a microfuge tube. The remaining lens materials were 

discarded. The lens extract (which had few loose precipitates) was stored at -80o C until 

needed or on ice and continued with assay to the final stage.  

2.16.2 Acid activation of lens extracts for TGF-β assay 

For acid activation assay, 40µl of 1N HCl was added to 200ul lens extract and 

rocked for 10min at room temperature. Samples were neutralized by adding 40µl 1.2N 

NaOH containing 0.5 M HEPES. (After neutralizing, the tubes had very thick viscous 

precipitate). The acid treated tubes were centrifuge for 5 minutes at 4oC at full speed 

and 200µl of clear supernatant was transferred into new microfuge tube and continued 

with assay to the final stage.  

2.16.3 TGF-β Assay with MLECs 

Mink Lung Epithelial Cells (MLEC) stably transfected with Plasminogen 

Activator Inhibitor-1 promoter (PAI-1)/luciferase construct (Khan, Joyce et al. 2012), 

were cultured in minimum essential medium (MEM) (ATCC, Manassas, VA) 

supplemented with 10% fetal bovine serum containing 250ug/ml Geneticin (Invitrogen 

Life Technologies, Carlsbad, CA). For assays, cells were trypsinized and approximately 

4x104 MLEC were plated in each of the desired number of wells in a 96-well plate and 

allowed to settle for 3 hours in a 37oC incubator.  
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After the cells were allowed to attach, the medium was removed and replaced 

with assay media (see below).  To obtain a standard luciferase activity curve in response 

to bioactive TGF-β1, different concentrations (25, 50, 75 and 100pg/ml) of human 

recombinant TGF-β1 solution (Roche Diagnostics Corporation, Indianapolis, IN) in 

200µl of DMEM/BSA containing 250µg/ml Geneticin was added to the wells 

containing attached MLEC in triplicate. For the active TGF-β in lens assay, 100µl of 

each prepared lens extract (discussed in section 2.3.1) was added to the well of a 96-

well plate containing MLEC in duplicate. Similarly, 100µl of each acid activated sample 

(discussed in section 2.3.2) was added to the well of a 96-well plate containing MLEC 

in duplicate. The final volume in the plate was made up to 200µl with DMEM/BSA 

containing 250µg/ml Geneticin and cells were incubated for 20h at 37oC then harvested 

for luciferase assay.  

Once the media was removed, the wells were washed with 200µl of 1× PBS 

twice. 30ul of 1x passive lysis buffer ((Promega, Madison, WI)) was added and the plate 

was placed on shaker for 5min.  The plates were stored at –80oC overnight and thawed 

at 37oC for 5-10 minutes and placed on shaker for 5 minutes. 100ul of luciferase assay 

reagent (Promega, Madison, WI) was added per well by injector and the relative 

luciferase unit (RLU) was read on a 2030 Multilabel Reader (Perkin Elmer, Waltham 

MA). Corresponding TGF-β levels were calculated by subtracting the RLU of control 

from the RLU of study samples because MLEC itself has some endogenous TGF-β 
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activity. The TGF-β concentration was calculated with a standard curve using straight-

line formula.  
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Chapter 3 

THE ROLE OF ALPHA V INTEGRINS IN LENS EPITHELIAL TO 
MESENCHYMAL TRANSTIONS AND POSTERIOR CAPSULAR 

OPACIFICATION   

3.1 Introduction 

Posterior capsular opacification (PCO) is the most common negative outcome 

of cataract surgery triggered by residual lens (LCs) cells wound healing responses after 

cataract surgery (Apple, Escobar-Gomez et al. 2011). It is characterized by LCs 

proliferation, migration, and epithelial-mesenchymal transition (EMT) into migratory 

myofibroblasts, while others LCs undergo lens fiber cell differentiation in an attempt to 

regenerate the lens (de Iongh, Wederell et al. 2005, Wormstone, Wang et al. 2009). If 

these LCs, which at this point of time are no longer phenotypically normal LECs, remain 

outside of the visual axis, a Soemmering’s ring results, which can stabilize some of the 

current IOL designs within the eye (Werner, Tassignon et al. 2010).  However, if they 

migrate along the lens capsule into the visual axis, PCO results, leading to impairment 

of vision (Awasthi, Guo et al. 2009).  In the last three decades, substantial efforts have 

been made to prevent and treat PCO, leading to a reduction of its incidence shortly 

following cataract surgery (Dewey 2006). This includes but not limited to, improved 

surgical techniques and improved IOLs that are capable of trapping residual lens 

epithelial cells to prevent their migration to the posterior capsule, However, in spite of 

such efforts, longer term, PCO is still a major barrier to the long-term restoration of high 

acuity vision in cataract patients (Apple, Escobar-Gomez et al. 2011). 
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Integrins are expressed by both lens epithelial and fiber cells and play major 

roles in lens development and epithelial cell survival (Simirskii, Wang et al. 2007, 

Walker and Menko 2009). There is also some descriptive evidence that integrins play a 

major role in lens EMT and thus PCO pathogenesis.  This suggests that integrin 

antagonists can ameliorate PCO (Zuk and Hay 1994, Kim, Lee et al. 2002, Sponer, Pieh 

et al. 2005, Walker and Menko 2009). Not surprisingly, several integrin subunits, 

including β1-integrin, are highly overexpressed in LECs undergoing EMT, while 

blocking of β1-integrin function using anti-β1 integrin antibodies also blocked this EMT 

(Zuk and Hay 1994). Analogously, treatment of LECs with salmosin, a disintegrin 

derived from snake venom, significantly decreased PCO both in vivo and in vitro (Kim, 

Lee et al. 2002). Further, studies on human lens capsule cultures revealed that the 

residual LECs, which give rise to PCO, highly overexpressed αVβ6 integrin shortly after 

lens extraction (Sponer, Pieh et al. 2005). Thus, it is compelling to hypothesize that 

integrins play a role in the lens EMT that leads to PCO development, however, the 

identity of the particular integrins involved and the mechanistic function that integrins 

adapt to participate in PCO was not known prior to this dissertation.  

With at least 24 different functional integrin heterodimers encoded by 18 α-

subunits and 8 β-subunits (Hynes 2002, Desgrosellier and Cheresh 2010), a clear 

understanding of which integrins are expressed after cataract surgery and the possible 

mechanism involved during the process will open a door towards the elucidating 

molecular signaling pathways responsible in driving LECs EMT and towards PCO 

development. However, mechanistic studies into these observations are yet to be done.  
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Numerous studies suggest that TGF-β signaling is crucial for the pathogenesis 

of fibrotic PCO (Hales, Schulz et al. 1994, de Iongh, Wederell et al. 2005). However, 

less is known about how cataract surgery initiates TGF-β mediated EMT since high 

levels of latent TGF-β are constitutively present in the ocular fluids (Cousins, McCabe 

et al. 1991). Further, mesenchymal ECM ligands such as type I collagen, tenascin-C, 

vitronectin, and fibronectin are known to upregulate during PCO and their 

overexpression has been often used as markers for LECs undergoing EMT (Colitz, 

Malarkey et al. 2000, Latvala, Uusitalo et al. 2000, Wunderlich, Pech et al. 2000). 

Concomitantly, it is well established that αV-β integrins’ interactions with 

mesenchymal ECM ligands, can activate integrin signaling leading to TGF-β induced 

EMT (Breuss, Gillett et al. 1993, Breuss, Gallo et al. 1995, Boudreau and Jones 1999, 

Munger, Huang et al. 1999, Guo and Giancotti 2004, Hazelbag, Kenter et al. 2007, 

Imamichi and Menke 2007, Honda, Yoshida et al. 2010, Mamuya and Duncan 2012).  

In order to test the hypothesis that αV integrins are functionally important in 

PCO pathogenesis, I created mice lacking the αV integrin subunit in all lens cells using 

a conditional knockout strategy. The phenotype of these mice was characterized and 

their lenses were subjected to a mouse model of cataract surgery that is routinely 

performed in our lab. Following surgery, the residual lens epithelium was examined   for 

markers of EMT and lens fiber regeneration known to occur during PCO onset. 

Furthermore, since αV integrins are proposed to modulate TGF-β leading to TGF-β 

induced EMT activation in other system, I also examined the expression pattern of 

known TGF-β signaling markers, especially those reported to occur during the PCO 
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development. These results will support the hypothesis that the loss of αV integrin 

function in lens attenuates the molecular pathways provoked by TGF-β during PCO 

pathogenesis. 
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3.2 Results 

3.2.1 αV integrin and its interacting β-subunits are overexpressed 48hrs 

post-surgery in lens 

It has been previously postulated that integrins play a major role in the 

development of lens EMT and thus PCO (Walker and Menko 2009). Although little 

experimental evidence for this idea has been reported, post-operative studies on human 

residual lens epithelial cells (LCs) suggested that integrins, especially those belonging 

to the αV family, are significantly upregulated during PCO (Sponer, Pieh et al. 2005, 

Walker and Menko 2009). Thus, in order to characterize the distribution pattern of 

integrin expression in LCs after a lens injury similar to cataract removal, I used a mouse 

surgical model of extracapsular cataract extraction (ECCE) that is routinely performed 

in our laboratory by Dr. Yang Wang. This mouse surgical model was first reported by 

Call and collaborators (Call, Grogg et al. 2004) and refined as described by Desai 

(Desai, Wang et al. 2010). 

By immunofluorescence, I found that the αV integrin subunit is only modestly 

expressed in LCs at the time of surgery, but its levels upregulated dramatically by 48 

hours post-surgery in cells that exhibit the multilayering and increased αSMA 

expression associated with PCO (Figure 3.1: A-C). In addition to the αV integrin 

subunit, four of αV integrin’s interacting β subunits: β1, β5, β6 and β8 integrin subunits 

were also overexpressed by 48 hours post-surgery (Figure 3.1:  1D-O).   In contrast, the 

levels of α5 and α6 integrin were only slightly upregulated, while α1, α2, α3, β2 and β3 
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integrin protein levels did not change or were undetectable over this time frame (data 

not shown). 
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Figure 3.1: Immunofluorescent analysis showing that αSMA and αV-β integrin 

levels increase in wildtype residual lens cells (LC) at 48hrs post-

surgery (A) αV integrin + αSMA expression, 0hrs post-surgery. (B) 

αV integrin expression at 48hrs post-surgery. (C) αV integrin + 
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αSMA expression, 48hrs post-surgery. (D) β1 integrin + αSMA 

expression, 0hrs post-surgery. (E) β1 integrin expression, 48hrs 

post-surgery. (F) β1 integrin + αSMA expression, 48hrs post-

surgery. (G) β5 integrin + αSMA 0hrs post-surgery. (H) β5 integrin 

expression at 48hrs post-surgery. (I) β5 integrin + αSMA 

expression at 48hrs post-surgery. (J) β6 integrin + αSMA 

expression 0hrs post-surgery. (K) β6 integrin expression at 48hrs 

post-surgery. (L) β6 integrin + αSMA expression 48hrs post-

surgery. (M) β8 integrin + αSMA expression 0hrs post-surgery. 

(N) β8 integrin expression at 48hrs post-surgery. (O) β8 integrin + 

αSMA expression, 48hrs post-surgery. Scale bar = 35µm, 

red=integrin; blue=nucleus; green = αSMA, LC = residual lens 

cells, C= lens capsule. Adapted from (Mamuya, Wang. et al. 2014) 

Figure 3.1 

It should be noted that the upregulation of αV integrin expression was only seen 

at the protein level, as the mRNA levels for αV integrin and its interacting β-integrins 

either did not change significantly or decreased significantly by 48hrs post-surgery 

(Figure 3.2: A).  I believe this effect could be mediated by microRNAs since miR31, a 

microRNA known to negatively regulate integrin translation as well as mRNA stability 

(Valastyan, Reinhardt et al. 2009, Augoff, Das et al. 2011), did down regulate 

significantly by 24hrs post-surgery (Figure 3.2: B). 
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Figure 3.2: (A) RT-PCR quantification of integrin mRNA levels in wildtype 

residual lens cells (LC) at 0hrs, 24hrs and 48hrs post-surgery 

normalized to β2-microglobulin n=4. αV integrin subunit mRNA 

expression appeared attenuated at 24hrs but this did not reach 

significance (P=0.083). β5 integrin subunit mRNA expression was 

significantly reduced at both 24hrs and 48hrs post-surgery 

(**P=0.001). No significant changes were observed in β1 or β6 

integrin subunit mRNA expression post-surgery. β8 integrin 

subunit mRNA appeared to increase slightly at 24hrs although the 

difference was not significant. Its abundance did significantly fall 

at 48hrs post-surgery (*P=0.014). (B) Quantification of miR-31 

mRNA levels in wildtype LCs at 24hrs post-surgery normalized to 

snoRNA202 levels (**P=0.0087, n=5). The miRNA data was 

courtesy of Joceyln Zajac. All fold changes post-surgery were 

calculated by setting values obtained at 0hrs post-surgery in each 

specific group to one. Values are expressed as mean ± S.E.M. 
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Asterisks (*) indicate statistically significant fold changes from 

0hrs post-surgery. Adapted from (Mamuya, Wang. et al. 2014). 

Figure 3.2 

3.2.2 Deletion of αV integrin from the developing lens  

In order to study the role of αV integrin in the lens during its development and 

in PCO, I created mice lacking αV integrin solely in the lens using MLR10-cre 

conditional knockout approach whose activity is first detected in the lens beginning 

around embryonic day 10.5 (the lens vesicle stage) (Zhao et al., 2004). PCR analysis of 

genomic DNA isolated from adult 3-month-old lenses showed that the deletion of the 

floxed region of the αV integrin gene is nearly complete (Figure 3.3: A-B) and 

immunofluorescence analysis revealed significant reduction of αV integrin protein 

beginning at about 12.5 dpc (data not shown) with the near total loss of the protein in 

adult αV [-/flox]; MLR10-cre (αVMLR10) lenses when compared to αV [flox/flox] 

(wildtype) (Figure 3.3: C-D). 
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Figure 3.3: αV integrin gene deletion analysis. (A) Diagram of the αV integrin 

locus showing the position of the PCR primers and the loxP sites 

(McCarty, Lacy-Hulbert et al. 2005). (B) PCR results from DNA 

obtained from 3-month-old lenses demonstrating successful 

deletion of exon 4 in mice lacking αV integrin in all lens cells αV 
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[-/flox]; MLR10-cre (αVMLR10). (C) Immunofluorescence 

showing αV integrin protein expression in a 3-month-old wildtype 

lens. (D) Immunofluorescence showing αV integrin protein 

expression in a 3-month-old αVMLR10 lens Key: Scale = 35µm. 

Red = αV integrin, blue = nucleus, e = epithelial lens cells, f= lens 

fiber cells and c= lens capsule. Adapted from (Mamuya, Wang. et 

al. 2014) Figure 3.3 

3.2.3 αV integrin null lenses are morphologically and optically 

indistinguishable from wildtype 

To my surprise, lenses lacking αV integrin were morphologically normal and 

did not show any abnormalities. They appeared transparent under dark field imaging 

(Figure 3.4: A-B) and refracted a hexagonal grid similar to wildtype lenses (Figure 3.4: 

B-C), suggesting that αV integrin is not important for the transparency or refractive 

properties of the lens.  At the light level, I found both wildtype and αVMLR10 lenses 

exhibit similar morphology (Figure 3.4: E-F) and no obvious defects in lens fiber cell 

structure were observed by scanning electron microscopy (Figure 3.4: G-H).  
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Figure 3.4:  Morphological analysis of αV integrin null lenses. (A) A dark field 
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image showing a 3-month-old wildtype lens. (B) A dark field 

image showing a 3-month-old αVMLR10 lens. (C) A 200-mesh 

electron microscopy grid analysis of a 4-month-old wildtype lens. 

(D) A 200-mesh electron microscopy grid analysis of a 4-month-

old αVMLR10 lens. (E) Hematoxylin and eosin (H&E) staining 

showing 4-month-old wildtype lens (F) H&E staining showing 4-

month-old αVMLR10 lens. (G) SEM analysis of the fiber cell 

organization of a 4-month-old wildtype lens. (H) SEM analysis of 

the fiber cell organization of a 4-month-old αVMLR10 lens fiber 

cell organization. SEM analysis courtesy of David Scheiblin. Scale 

bar for (A, B) = 1.0mm, (C, D) = 0.5mm, (E, F) = 0.5mm and (G, 

H) = 4.0µm. e =lens epithelium, f = lens fiber cells. Adapted from 

(Mamuya, Wang. et al. 2014). Figure 3.4 

Unexpectedly, I found that αVMLR10 null lenses weighed significantly more 

than controls at three months of age. Although by six months, this difference was no 

longer statistically significant (Table 3.1). However, the basis for this observation is 

unclear since the ratio of wet lens to dry lens weight between αVMLR10 and wildtype 

is unchanged (Table 3.1) and no differences in cell proliferation were detected (data not 

shown).  
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Table 3.1. Lens wet and dry weight comparison between 4-month-old αV [-/flox]; 

MLR10-cre (αVMLR10) lenses and wildtype lenses. αVMLR10 lenses are 

significantly heavier than wildtype at three months of age (P = 0.02; n = 8).  

However, by six months of age, these lenses were no longer significantly 

different in size (P = 0.30, n = 6). In addition, the ratio of wet lens to dry lens 

between wildtype and αVMLR10 lenses was similar. All results are 

expressed on a per lens basis Table from (Mamuya, Wang. et al. 2014). 

Lens age and  
Genotype 

Average wet 
lens weight (mg) 

Average dry lens 
weight (mg) 

Wet lens /dry lens  
ratio 

3 month old αVMLR10 lenses  
 

7.78 ± 0.35* 
 

3.54 ± 0.24 
 

2.26 
 
3 month old wildtype lenses 

 
7.26 ± 0.42* 

 
3.29 ± 0.18 

 
2.21 

 
6 month old αVMLR10 lenses 

 
8.67 ± 0.30 

 
4.12 ± 0.19 

 
2.10 

 
6 month old wildtype lenses 

 
8.44 ± 0.49 

 
3.91 ± 0.20 

 
2.16 

 

3.2.4 LCs from lenses lacking αV integrin do not elevate cell 

proliferation and αSMA expression 48hrs post-surgery 

Since the absence of αV integrin from lens did not obviously affect normal lens 

development, morphology or function, I took this outcome as an advantage and utilized 

the  αVMLR10 mice as a model to study the role of αV integrin in the cellular and 

molecular changes that occur in LCs after lens injury/during PCO.  As expected, 

immediately after fiber cell removal, the LCs in both wildtype (Figure 3.5: A) and 

αVMLR10 mice (Figure 3.5: B) exhibit neither appreciable cell proliferation nor do 

they express the EMT marker, αSMA.  However, 48 hours later, the LCs of wildtype 

lenses proliferate (Figure 3.5: C, E) and initiate robust αSMA expression (Figure 3.5: 
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G). In contrast, I found that the residual LCs remaining in αVMLR10 capsule after fiber 

cell removal exhibit very little cell proliferation (Figure 3.5: D, F) and do not 

appreciably upregulate αSMA expression by 48 hours after surgery (Figure 3.5: H).  In 

addition, there was a question to whether the absence of residual lens epithelial cells in 

the αVMLR10 was due to an induction of cell death; however, apoptosis, as assayed by 

active caspase-3 levels, was not detected in either wildtype nor αVMLR10 lenses after 

lens fiber cell removal (data not shown).  
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Figure 3.5: Immunohistochemistry analysis of αSMA expression and EdU (5-

ethynyl-2´-deoxyuridine) click-it labeling of wildtype and 

αVMLR10 residual lens cells (LC) post-surgery. (A) EdU labeling 

+ αSMA expression in wildtype LCs at 0hrs post-surgery. (B) EdU 
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+ αSMA expression in αVMLR10 LCs at 0hrs post-surgery. (C) 

EdU staining of proliferating wildtype LCs at 48hrs post-surgery. 

(D) EdU labeling of αVMLR10 LCs at 48hrs post-surgery. (E) 

EdU labeling alone in proliferating wildtype LCs at 48hrs post-

surgery. (F) EdU labeling alone in αVMLR10 LCs at 48hrs post-

surgery.  (G) αSMA expression in wildtype LCs at 48hrs post-

surgery. (H) αSMA expression on αVMLR10 LCs at 48hrs post-

surgery. Scale bar (A, B, C, D, E, & F) = 70µm, (G, H) = 35µm. 

Red = EdU positive (Proliferating LCs), blue = nucleus, green = 

αSMA, LC = residual lens cells, C= lens capsule. Adapted from 

(Mamuya, Wang. et al. 2014). Figure 3.5  

3.2.5 αVMLR10 lenses do not upregulate EMT markers in LCs 

remaining in the eye after fiber cell removal  

The expression levels of αSMA (Figure 3.6: A), fibronectin (Figure 3.6: B) and 

tenascin-C (Figure 3.6: C) upregulate significantly in wildtype LCs during lens EMT as 

previously reported in human PCO (Tanaka, Saika et al. 2002, Tanaka, Sumioka et al. 

2010, Eldred, Dawes et al. 2011). Interestingly, I found that αSMA mRNA levels did 

not increase in αVMLR10 lenses 24hrs post-surgery (Figure 3.6: A) while the extent of 

fibronectin (Figure 3.6: B) and tenascin-C (Figure 3.6: C) upregulation was greatly 

attenuated in lenses lacking the αV integrin gene. In contrast though, the mRNA levels 

of the αV integrin ligand vitronectin did not change significantly post-surgery. 

Compared to wildtype, vitronectin mRNA levels were initially lower in αVMLR10 
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lenses and increased slightly at 24hrs post-surgery, however, none of these changes were 

statistically significant (Figure 3.6: D). 
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Figure 3.6: RT-PCR quantification of mRNA expression levels in wildtype and 

αVMLR10 residual lens cells on capsular bags collected at 0hrs 

and 24hrs post-surgery. For each gene, mRNA expression was 

normalized to β2M and fold-change were calculated based on the 

mean 0hrs post-surgery wildtype mRNA level equated to 1. (A) 

αSMA relative mRNA expression post-surgery, *P=0.02. There 

was no significant changes in αSMA mRNA levels between 0hrs 
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and 24hrs αVMLR10 post-surgery lenses, P=0.54 (B) Fibronectin 

relative mRNA expression post-surgery, **P = 0.001. There was 

no significant changes in fibronectin mRNA levels between 0hrs 

and 24hrs αVMLR10 post-surgery lenses, P=0.90 (C) Tenascin-C 

relative mRNA expression post-surgery ***P = 0.0001. There was 

no significant increase in tenascin-C mRNA expression in 

αVMLR10 24hrs post-surgery lenses, P=0.08 (D) No significant 

changes were observed in vitronectin relative mRNA expression in 

any group post-surgery when compared to wildtype 0hrs, P=0.21. 

The decrease in vitronectin mRNA expression in wildtype at 24hrs 

post-surgery was not significant, P = 0.79; neither was the slight 

increase in vitronectin mRNA expression in αVMLR10 at 24hrs 

post-surgery, P=0.41. All experiments had n=5. Values are 

expressed as mean ± S.E.M. Asterisks (*) indicate statistically 

significant fold changes from 0hrs post-surgery. Adapted from 

(Mamuya, Wang. et al. 2014). Figure 3.6 
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By immunofluorescence, I found that fibronectin, tenascin-C and vitronectin 

proteins were nearly undetectable in both wildtype (Figure 3.7: A-C) and αVMLR10 

(Figure 3.7: D-F) LCs immediately and even 24 hours following surgery (data not 

shown here). However, all were upregulated 48hrs post-surgery in wildtype (Figure 3.7: 

G-I) Further, this upregulation was observed highly in LCs that overexpressed αSMA 

(Figure 3.7: J-L). However, αVMLR10 LCs show mild to almost no upregulation of 

fibronectin, tenascin-C or vitronectin (Figure 3.7:  M-O) and showed a much less robust 

αSMA elevation as compared to wildtype lenses 48 hours post-surgery (Figure 3.7: P-

R).   

Immunofluorescence analysis also revealed that fibronectin, which is normally 

present in the lens capsule of both wildtype (Figure 3.7: A) and αVMLR10 (Figure 3.7: 

D) lenses prior to surgery, is not obviously elevated around LCs at 24 hours post-surgery 

(not shown) but is deposited around LCs expressing αSMA by 48hrs post-surgery 

especially on the leading LCs in wildtype lenses (Figure 3.7: G). However, I did not 

observe such extensive fibronectin deposition in αVMLR10 LCs (Figure 3.7: M). 

Surprisingly though, unlike the QRT-PCR results, vitronectin protein levels were 

upregulated at 48 hours surgery in wildtype (Figure 3.7:  I&L) but not in αVMLR10 

lenses (Figure 3.7: O&R). 
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Figure 3.7: Immunofluorescent analysis of fibronectin, tenascin-C and 

vitronectin deposition in wildtype and αVMLR10 residual lens 
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cells (LC) post-surgery. (A) Fibronectin + αSMA expression in 

wildtype LCs at 0hrs post-surgery. (B) Tenascin-C + αSMA 

expression in wildtype LCs at 0hrs post-surgery. (C) Vitronectin + 

αSMA expression in wildtype LCs at 0hrs post-surgery. (D) 

Fibronectin + αSMA expression in αVMLR10 LCs at 0hrs post-

surgery. (E) Tenascin-C + αSMA expression in αVMLR10 LCs at 

0hrs post-surgery. (F) Vitronectin + αSMA expression in 

αVMLR10 LCs at 0hrs post-surgery. (G) Fibronectin expression in 

wildtype LCs 48hrs post-surgery with arrowheads showing 

fibronectin deposition on the leading LCs. (H) Tenascin-C 

expression alone in wildtype LCs at 48hrs post-surgery. (I) 

Vitronectin expression alone in wildtype LCs at 48hrs post-

surgery. (J) Fibronectin + αSMA expression in wildtype LCs at 

48hrs post-surgery.  (K) Tenascin-C + αSMA expression in 

wildtype LCs at 48hrs post-surgery. (L Vitronectin + αSMA 

expression in wildtype LCs at 48hrs post-surgery. (M) Fibronectin 

expression in αVMLR10 LCs at 48hrs post-surgery. (N) Tenascin-

C expression alone in αVMLR10 LCs at 48hrs post-surgery. (O) 

Vitronectin expression in αVMLR10 LCs at 48hrs post-surgery. 

(P) Fibronectin + αSMA expression in αVMLR10 LCs at 48hrs 

post-surgery. (Q) Tenascin-C + αSMA expression in αVMLR10 

LCs at 48hrs post-surgery (R) vitronectin + αSMA expression in 

αVMLR10 LCs at 48hrs post-surgery. Scale bar = 60µm. Red = 

Fibronectin, tenascin-C or Vitronectin, blue = nucleus, green = 

αSMA. LC = residual lens cells, C= lens capsule. Adapted from 

(Mamuya, Wang. et al. 2014). Figure 3.7  
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3.2.6 Lens fiber differentiation markers still upregulate post-surgery in 

the absence of αV integrin  

After cataract surgery/lens injury, LCs do not exclusively undergo EMT.  

Instead, some LCs begin to express lens fiber cell markers, presumably in an attempt to 

regenerate the injured lens (Gwon 2006, Awasthi, Guo et al. 2009, Wormstone, Wang 

et al. 2009).  At five days post-surgery in the mouse model used here, the residual 

wildtype LCs are found in cell clusters either expressing EMT markers such as αSMA 

(Figure 3.8: C, G) or lens fiber cell markers such as cMaf (Figure 3.8: A,C) or Prox1 

(Figure 3.8: E,G).  However, similar to the results at 48 hours post-surgery, αVMLR10 

LCs do not express appreciable αSMA (Figure 3.8: D, H), although they do begin to 

express both cMaf (Figure 3.8: B, D) and Prox1 (Figure 3.8: F, H) similar to wildtype.   
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Figure 3.8: Immunohistochemistry of αSMA and the lens fiber differentiation 

markers Prox-1 and cMaf in wildtype and αVMLR10 residual lens 

cells (LC) from capsular bags collected at 5 days post-surgery. (A) 

cMaf expression alone in wildtype LCs at 5 days post-surgery. (B) 
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cMaf expression alone in αVMLR10 LCs at 5 days post-surgery. 

(C) cMaf + αSMA expression in wildtype LCs at 5days post-

surgery. (D) cMaf + αSMA expression in αVMLR10 LCs at 5days 

post-surgery. (E) Prox-1 expression alone in wildtype LC at 5 days 

post-surgery. (F) Prox-1 expression alone in αVMLR10 LCs at 5 

days post-surgery. (G) Prox-1 + αSMA expression in wildtype LCs 

at 5days post-surgery. (H) Prox-1 + αSMA expression in 

αVMLR10 LCs at 5 days post-surgery. Scale bar = 35µm. Red = 

Prox-1 and cMaf, blue = nucleus, green = αSMA, LC = residual 

lens cells, C= lens capsule. Adapted from (Mamuya, Wang. et al. 

2014). Figure 3.8: 

3.2.7 αVMLR10 lenses fail to upregulate SMAD-3 phosphorylation post-

surgery.  

Many studies have demonstrated that TGF-β signaling plays a central role in 

fibrotic PCO/LEC EMT and previous work in an in vivo lens injury model has shown 

that phosphorylation of SMAD-3 is central to this process (Saika, Kono-Saika et al. 

2004, de Iongh, Wederell et al. 2005).  Consistent with these reports, I detected SMAD-

3 phosphorylation in wildtype LCs by 48hrs after surgery (Figure 3.9: A, C). I also 

noticed that these SMAD-3 phosphorylation levels are greatly elevated by five days 

post-surgery, especially in cells expressing αSMA (Figure 3.9: E, G).  However, 

αVMLR10 LCs do not exhibit elevated levels of phosphorylated SMAD-3 at either 48 

hours (Figure 3.9: B, D) or five days (Figure 3.9: F, H) after surgery. 
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Figure 3.9: Immunofluorescent analysis of αSMA and phospho-SMAD-3 in 

wildtype and αVMLR10 residual lens cells (LC) from capsular 

bags collected at 48 hrs and 5 days post-surgery. (A) Phospho-
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SMAD-3 expression alone in wildtype LCs at 48 hrs post-surgery. 

(B) Phospho-SMAD-3 expression alone in αVMLR10 LCs at 48 

hrs post-surgery. (C) Phospho-SMAD-3 + αSMA expression in 

wildtype LCs at 48 hrs post-surgery. (D) Phospho-SMAD-3 + 

αSMA expression in αVMLR10 LCs at 48 hrs post-surgery. (E) 

Phospho-SMAD-3 expression alone in wildtype LCs at 5 days 

post-surgery. (F) Phospho-SMAD-3 expression alone in 

αVMLR10 LECs at 5 days post-surgery. (G) Phospho-SMAD-3 + 

αSMA expression in wildtype LCs at 5 days post-surgery. (H) 

Phospho-SMAD-3 + αSMA expression in αVMLR10 LCs at 5 

days post-surgery. Scale bar = 35µm. Red = phospho-SMAD-3, 

blue = nucleus, green = αSMA, LC = residual lens cells, C= lens 

capsule. Figure 3.9: 

3.2.8 TGF-β induced protein is not deposited in αVMLR10 ECM 48hrs 

post-surgery  

TGF-β induced protein (TGF-βi) is an ECM molecule and αV integrin ligand 

(Nam, Kim et al. 2003), whose expression and ECM deposition robustly upregulate in 

response to TGF-β signaling (Jeon, Kim et al. 2012).  Consistent with this, I found that 

TGF-βi mRNA is robustly upregulated in the remnant LCs of wildtype mice by 24 hours 

after fiber cell removal (Figure 3.10: A), and obvious TGF-βi protein deposition is 

detectable around wildtype LCs by 48 hours after surgery (Figure 3.10: D, F).  In 

contrast, despite a significant TGF-βi mRNA upregulation in αVMLR10 LCs, such 

upregulation was significantly lower (P=0.001) than that observed in wildtype (Figure 

 83 



.10: A); moreover, TGF-βi protein deposition was not detected in αVMLR10 LCs at 48 

hours after lens fiber cell removal (Figure 3.10: E, G).  
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Figure 3.10:  (A) RT-PCR quantitation of TGF-βi mRNA levels in wildtype and 

αVMLR10 mice residual lens epithelial cells (LCs) on capsular 

bags collected at 0hrs and 24hrs post-surgery showing almost no 

expression of TGF-βi mRNA at 0hrs post-surgery in both wildtype 

and αVMLR10 LCs but a significant increase in mRNA levels in 

both wildtype and αVMLR10 LCs ***P=0.0001. TGF-βi mRNA 

levels in wildtype LCs at 24hrs post-surgery was significantly 

higher than that of αVMLR10 LCs at 24hrs post-surgery 

(***P=0.001). mRNA expression was normalized to β2M and fold 

change differences were calculated based on 0hrs post-surgery 

wildtype mRNA expression. All experiments had n=5. Values are 

expressed as mean ± S.E.M. Asterisks (*) indicate statistically 

significant fold changes from 0hrs post-surgery. (B) 

Immunohistochemistry results showing TGF-βi protein expression 

0hrs post-surgery in wildtype LCs and (C) αVMLR10 LCs. (D) 

TGF-βi expression in wildtype LCs at 48hrs post-surgery. (E) 
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TGF-βi expression in αVMLR10 LCs at 48hrs post-surgery. (F) 

TGF-βi expression alone in wildtype LCs at 48hrs post-surgery. 

(G) TGF-βi expression alone in αVMLR10 LCs at 48hrs post-

surgery. Scale bar 35µm. Red = TGF-βi, blue = nucleus, LC = 

residual lens cells, C= lens capsule. Adapted from (Mamuya, 

Wang. et al. 2014). 
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3.3 Discussion 

3.3.1 αV integrin is not necessary for the latter stages of lens 

development, morphology or the maintenance of lens optical 

quality  

Integrins are heterodimeric transmembrane proteins best known as cellular 

receptors for diverse extracellular matrix proteins (Hynes 2002).  In the normal lens, the 

expression of αV integrin and its beta integrin partners have been previously reported, 

while mice lacking both α3 and α6 integrin (De Arcangelis, Mark et al. 1999) or β1 

integrin from the lens (Simirskii, Wang et al. 2007) have profound lens epithelial 

defects; zebrafish lacking α5 integrin have lens fiber cell(Hayes, Hartsock et al. 2012).  

After a careful analysis of αV integrin protein expression during development, I found 

out that, despite the fact that the protein is detectable in the lens, particularly along the 

lateral membranes of both adult (Figure 3.3) and embryonic (not shown) lens fibers, 

lenses lacking αV integrins are transparent and morphologically normal when examined 

by both light and scanning electron microscopy.. However, αVMLR10 (αV [-/flox]; 

MLR10-cre) lenses were significantly larger than wildtype lenses in early adulthood, 

although this difference disappeared by six months of age.  Further investigation on this 

lens size difference implied that the larger size of αVMLR10 lenses was not the result 

of misregulation of water homeostasis as has been seen in some lens pathologies (Shiels, 

Bassnett S et al. 2001) since the dry/wet lens ratio is unchanged.  Instead, it is likely that 
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αV integrin plays a subtle role in regulating lens growth that was not revealed by 

proliferation analyses.   

3.3.2 αV integrin proteins are upregulated in residual LCs by 48 hours 

after lens fiber cell removal  

αV integrin is the only α- integrins subunit that is known to dimerize with more 

than two β−integrin subunits, making a class of six distinct heterodimeric proteins αVβ1, 

αVβ3, αVβ5, αVβ6 and αVβ8, which are known as promiscuous receptors for diverse 

ECM proteins associated with mesenchymal cells including fibronectin, vitronectin, 

tenascin C and TGF-βi (Kerr, Slee et al. 2002). αV integrins commonly upregulate 

during EMT/tissue fibrosis and cancer and have been proposed to play diverse roles in 

this process in multiple cell types (Nemeth, Nakada et al. 2007).  I found that the proteins 

levels of αV integrin and four of five of its β-integrin partners (β1, β5, β6 and β8) are 

upregulated in LCs following fiber cell removal while β3 integrin was expressed at very 

low levels both before and after surgery.  While few prior investigations of αV integrin 

expression in the lens have been published, my findings are consistent with prior reports 

of elevated αVβ5 expression in an established human lens epithelial cell line treated with 

TGF-β, and elevated αVβ6 expression in post-operative human lens capsule and human 

primary LEC explants induced to undergo EMT in an in vitro PCO model (Sponer, Pieh 

et al. 2005, Dawes, Elliott et al. 2007).   

However, while the protein levels of αV integrins were robustly upregulated by 

48 hours after lens fiber cell removal, the levels of αV integrin mRNA and that of its β-
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subunits were not, suggesting that this phenomenon is regulated at the level of either 

protein translation or protein stability.   

miR-31 is a microRNA known for its ability to negatively regulate invasion-

metastasis cascades in cancer progression by repressing the expression of proteins 

important for this process (Valastyan, Reinhardt et al. 2009, Sossey-Alaoui, Downs-

Kelly et al. 2011). I found abundant miR-31 in the lens epithelium consistent with a 

prior report (Karali, Peluso et al. 2010). Adding to these findings, a recent study 

demonstrated that miR-31 can repress αV integrin translation by directly binding to the 

3’UTR of the αV integrin mRNA (Augoff, Das et al. 2011). Since miR-31 levels 

decrease more than 50% by 24hrs post-surgery in wildtype mice (Figure 3.2: B), it is 

possible that the upregulation of αV integrin protein levels by 48 hours after surgery is 

regulated via this downregulation of miR-31.  This postulate can be tested in the future 

to gain insight into the earliest events occurring in LCs following lens fiber cell 

removal/cataract surgery.  

3.3.3 αv integrin plays a crucial role in fibrotic type but not Pearl type 

PCO development  

Clinically, two different types of PCO occur following cataract surgery, the 

‘fibrotic type’ and the ‘pearl type’ (Figure 3.11). The fibrotic type is typically attributed 

to the migration of LCs into the optical path concomitant with their EMT resulting in 

these cells overexpressing αSMA, depositing mesenchymal ECM proteins and 

contraction of the posterior capsule leading to light scatter and visual disability 
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(Wormstone, Wang et al. 2009, Eldred, Dawes et al. 2011, van Bree, van der Meulen et 

al. 2011). In “pearl type" PCO, the LCs which migrate onto the posterior capsule enter 

the fiber cell differentiation pathway, presumably in an attempt to regenerate the lens. 

However, since they do not form the correct cellular organization for transparency, they 

instead induce light scattering (Dewey 2006). Finally, many designs of intraocular lens 

implants used in cataract surgery seek to trap residual lens epithelial cells at the lens 

equator, and these cells also often attempt to undergo lens fiber differentiation to form 

an opacity outside of the visual axis known as Soemmering’s ring (Kappelhof, Vrensen 

et al. 1987, Huang and Xie 2007) (Figure 3.11). Therefore, it is apparent that PCO arises 

from two distinct cellular responses to cataract surgery, with some LCs undergoing 

EMT, while others attempt fiber cell regeneration. (Marcantonio and Vrensen 1999, de 

Iongh, Wederell et al. 2005).  

Since αV integrins are upregulated following fiber cell removal in a mouse 

model (Figure 3.1), I tested the response of αVMLR10 LCs to fiber cell removal.  In 

wildtype mice, I noticed a robust increase in residual epithelial cell proliferation along 

with a significant increase in αSMA expression by 48 hours post-surgery. αSMA is often 

used as a hallmark marker for LCs undergoing EMT. In addition, wildtype LCs 

upregulate a number of TGF-β associated mesenchymal ECM proteins particularly 

fibronectin, tenascin-C, vitronectin and TGF-βi. Since all four ECM proteins have been 

reported to be ligands for αV integrins, these data suggest that a functional αV integrin/ 

ECM ligand network upregulates in LCs by 48 hours of surgery in this model.  In 

contrast, αVMLR10 lenses, which lack αV integrins, do not exhibit robust LC 
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proliferation, do not upregulate αSMA expression and have greatly attenuated 

expression of the mesenchymal ECM molecules.  These data suggest that αV integrins 

play an essential role in the early regulation of the EMT that occurs during the 

development of fibrotic PCO. 

Figure 3.11: (A) IOL inside a human capsular bag attached to the zonular fibers 

as observed from the posterior side of the eye showing an extensive 

Soemmering’s ring (B) The image of the IOL inside a human lens 

capsule after it was removed/detached from the zonular fibers.  

 

At later times after surgery, wildtype LCs continue to proliferate, forming 

additional αSMA expressing myofibroblasts embedded in an ECM rich in fibronectin, 

tenascin-C and vitronectin (Figure 3.7).  However, by five days post-surgery, not all 

cells express αSMA and islands of cells which instead express fiber cell markers become 
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obvious (Figure 3.8).  Notably, αVMLR10 lenses still begin expressing fiber cell 

markers at this time although they still do not express appreciable levels of fibrotic 

markers.  This suggests that αV integrin does not play a role in regulating the lens 

regenerative pathway which is activated post-surgery (Call, Grogg et al. 2004). This is 

consistent with my observation that αV integrin is also not involved in regulating normal 

lens fiber cell differentiation during development. Overall, these data point to a role for 

αV integrin in regulating pathways that are critical for the establishment of fibrotic, but 

not pearl type PCO.  

3.3.4 The loss of αV integrin impairs TGF-β signaling post-surgery  

Treatment of LCs with TGF-β in vitro can induce most cellular and molecular 

changes associated with fibrotic PCO, including myofibroblast formation, the 

expression of fibrotic ECM proteins and LC proliferation and capsule wrinkling (de 

Iongh, Wederell et al. 2005, Dawes, Sleeman et al. 2009, Wormstone, Wang et al. 2009) 

while transgenic mice overexpressing an active form of TGF-β in lens fiber cells 

develop anterior subcapsular cataracts which share many features with fibrotic PCO 

(Lovicu, Schulz et al. 2002). 

TGF-β can mediate its biological effects via canonical (SMAD2/3 dependent) 

signaling or through non-canonical pathways (SMAD-independent signaling). My 

results show that SMAD-3 activation (SMAD-3 phosphorylation) which has been 

previously shown to be important for LEC EMT in a lens injury model (Saika, Okada 

et al. 2001, Saika, Miyamoto et al. 2002, Saika, Kono-Saika et al. 2004, Wederell and 

 92 



de Iongh 2006, Dawes, Sleeman et al. 2009), is not appreciably detected until 48 hours 

after surgery in our model, coincident with the upregulation of αV integrin protein 

expression. Further, the expression of TGF-βi, a known direct transcriptional target of 

pSMAD-3 (Jeon, Kim et al. 2012), is also upregulated at the protein level around this 

time frame.  The levels of SMAD-3 phosphorylation then continue to increase at later 

times post-surgery consistent with TGF-β activation increasing through five days post-

surgery in wildtype mice.  Notably, no appreciable SMAD-3 phosphorylation is 

detected in LCs lacking αV integrins (Figure 3.9).  Further, while the mRNA levels of 

TGF-βi upregulated to a certain extent in αV integrin null lenses at 24 hours post-

surgery, this upregulation was insufficient to deposit detectable levels of TGF-βi protein 

in the ECM by 48hrs post-surgery, suggesting that αV integrins are playing a 

fundamental role in regulating the TGF-β pathway post lens injury/cataract surgery.  

3.3.5 αV integrins may be playing a role in activating TGF-β signaling 

during lens EMT 

All three isoforms of TGF-β; TGF-β1, 2, and 3 are synthesized by lens cells in 

vivo, and the latent forms of these molecules are abundant in the aqueous and vitreous 

humor of the eye (Lee and Joo 1999). TGF-βs are activated by numerous cellular 

mechanisms, all of which result in liberation of the active TGF-β molecule from its 

latency associated peptide (LAP) /Latent TGF-β binding proteins (LTBPs).  Notably, 

αV integrins can activate latent TGF-β by at least three distinct mechanisms (Wipff, 

Rifkin et al. 2007, Wipff and Hinz 2008, Mamuya and Duncan 2012). αV integrins can 
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bind to an RGD sequence present in the LAP of either TGF-β1 or TGF-β3, inducing 

these molecules to undergo a conformational change to liberate the active TGF-β 

molecule (Munger, Huang et al. 1999, Annes, Rifkin et al. 2002, Ludbrook, Barry et al. 

2003, Annes, Chen et al. 2004). αV integrins can also interact with matrix 

metalloproteases (MMPs), particularly MMP2 and MMP9, which tethers them to the 

cell surface promoting proximity of MMPs to the LAP and sequesters the large latent 

complex (LLC) close to the type II TGF-β receptor (Brooks, Stromblad et al. 1996, Mu, 

Cambier et al. 2002, Rolli, Fransvea et al. 2003).  

Alternatively, cross-talk between TGF-β and αV integrin signaling can occur 

downstream of initial receptor activation and regulate various cellular processes (Cary, 

Han et al. 1999). Signals propagated intracellularly by integrin associated adaptor 

proteins such as ILK, Src, PTKs and FAK can subsequently activate other downstream 

TGF-β induced EMT and cell proliferation players such as MAPK, Ras/Rho, small 

GTPases, PI3K and AKT (Dedhar 1999, Zhang 2009). Altogether, all of these pathways 

may override the normal brakes on TGF-β signaling levels resulting fibrotic PCO. This 

suggests that functional blocking of αV integrins may prevent fibrotic PCO 

pathogenesis and possibly other TGF-β associated lens fibrotic disorders such as ASC. 

This is discussed in chapter five. 
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Figure 3.12: αV integrins recognize a RGD motif present in the LAP of TGF-β. 

This binding induces either adhesion-mediated cell forces and/or 

brings latent TGF-β into the proximity of MMPs, which 

consequently lead to the liberation/activation of the TGF-β 

homodimer from its latent complex (Yu and Stamenkovic 2000, 

Dallas, Rosser et al. 2002). Upon activation, the TGF-β homodimer 

will bind to the Type II TGF-β receptor initiating TGF-β-Smad 

signaling which upregulates the expression of αV integrins in 

addition to that of other EMT markers (Boudreau and Jones 1999, 

Wu, Chen et al. 2000, Imamichi and Menke 2007).  These newly 

formed integrins can liberate more TGF-β from its latent complex; 
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sustaining and reinforcing TGF-β induced EMT progression. This 

cooperative feed forward loop between αV integrins and TGF-β 

can lead to the unregulated TGF-β signaling responsible for a 

number of TGF-β-associated disorders. Adapted from (Mamuya 

and Duncan 2012). 
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Chapter 4 

CHARACTERIZATION OF EMT IN CRYBB2 PHIL MUTANT MICE 

4.1 Introduction 

The mammalian lens, also known as the crystallin lens, is a transparent tissue 

that focuses light onto the retina where further vision processing occurs. In order to 

perform this task, the crystallin lens must maintain a high refractive index and remain 

transparent throughout the lens’ life (Hung 2001). This is achieved by the high 

concentration of water soluble crystallin protein found in the lens (300mg/ml) 

(Fagerholm, Philipson et al. 1981), which is about 30-35% w/w compared to an average 

of 15% (w/w) in other tissues (Donaldson, Kistler et al. 2001, Purves, Sadava et al. 

2004, Hoehenwarter, Klose et al. 2006). In mammals, these proteins mostly belong to 

the two superfamilies of lenticular crystallins, α and β/γ crystallins, which comprise 

about 90% of the proteins found in the lens (Andley 2007). A detailed overview of 

lenticular crystallins is discussed in Chapter 1. 

For the past two decades, there has been much progress made towards 

understanding crystallins’ function in the mammalian lens (Slingsby, Wistow et al. 

2013). Mutations in both αA and αB -crystallins can cause cataract and myopathy 

(Horwitz 2003). They are expressed in both lens epithelial and fiber cells, and were for 

many years thought to only play refractive functions in lens. It is now very well 

established that both αA and αB-crystallins possess chaperone-like functions and are 

members of the small heat-shock protein family (Horwitz 1992). Like any other 
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members of the small heat-shock proteins, they are also found outside the lens having 

an extensive tissue distribution (de Jong, Caspers et al. 1998). Currently, their non-

refractive roles in lens and other tissues are well established (Boyle and Takemoto 2000, 

Xi, Bai et al. 2003, Wang, Garcia et al. 2004, Morozov and Wawrousek 2006).  

However, the majority of lenticular crystallins expressed in the lens are members 

of the β and γ crystallin superfamily. Although both β and γ crystallin proteins have 

been found in other tissues beyond lens, very little is known about their functions 

beyond lens refractive roles (Ueda, Duncan et al. 2002, Sathish, Koteiche et al. 2004). 

Recent studies have proposed possible non refractive roles of β-crystallins, particularly 

in ocular stress response (Bohm, Melkonyan et al. 2013), as they are found to upregulate 

in response to diverse types of retinal damage such as mechanical injury, light injury 

and even diabetic retinopathy (Sakaguchi, Miyagi et al. 2003, Vazquez-Chona, Song et 

al. 2004, Kumar, Haseeb et al. 2005). βA3/A1-crystallin, an abundant β-crystallin 

protein in the lens fibers is also expressed outside of the lens and has been proposed to 

have non-refractive roles (Aarts, Lubsen et al. 1989, Parthasarathy, Ma et al. 2011). A 

spontaneous mutation in the Cryba1 gene, coding for βA3/A1-crystallin, was found to 

inhibit the normal denucleation of lens fibers (Sinha, Hose et al. 2005), while another 

study proposed that βA3/A1-crystallin plays diverse lysosomal functions in the RPE 

(Zigler, Zhang et al. 2011), suggesting essential roles of βA3/A1-crystallin in ocular 

homeostasis and function. βA3/A1-crystallin is also expressed by astrocytes in the 

neural retina where it is believed to play an essential role in the migration, proliferation 

and patterning of retinal astrocytes (Sinha, Klise et al. 2008, Zhang, Asnaghi et al. 
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2011). Furthermore, that loss of βA3/A1-crystallin induces IGF-II and increases cell 

survival by regulating the PI3K/AKT/mTOR and ERK pathways, thereby protecting 

astrocytes from anoikis-mediated cell death (Ma, Sen et al. 2011). 

On the other hand, βB2-crystallin is the most abundant protein in the adult 

mammalian lens (Jobby and Sharma 2007). It is proposed to play a major role in 

maintaining the solubility of other β-crystallins (Bateman and Slingsby 1992, Zhang, 

David et al. 2001). Not surprisingly, βB2-crystallin mutant and knockout mice are 

known to develop cataract (Uga, Kador et al. 1980, Chambers and Russell 1991, Zhang, 

Li et al. 2008). In humans, impairments of βB2-crystallins’ structure are known to 

contribute to both age-related and inherited progressive cataract conditions (Chambers 

and Russell 1991, Graw, Klopp et al. 2001, Graw, Loster et al. 2001, Ueda, Duncan et 

al. 2002, Duprey, Robinson et al. 2007). For example, Q155X mutation is a βB2-

crystallin mutation in the known to cause human cataracts. It is characterized by the 

conversion of 475C  T, which creates a stop codon and prevents the translation of the 

final 51 amino acids of the normal protein (Bateman, von-Bischhoffshaunsen et al. 

2007). The Q155X mutation has been found in several unrelated families, causing a 

variety of cataract phenotypes (Vanita, Sarhadi et al. 2001), with cataract formation 

beginning prenatally or during childhood, but usually becoming severe only during 

adulthood (Litt, Carrero-Valenzuela et al. 1997). 

βB2-crystallin is expressed in lens epithelial and fiber cells, as well as other 

tissues outside the lens where like other crystallins; it is proposed to have functions 

beyond lens refractive (Magabo, Horwitz et al. 2000, Duprey, Robinson et al. 2007, 
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Ganguly, Favor et al. 2008). For example, mice lacking the βB2-crystallin gene 

experience reduced fertility due to disordered proliferation and apoptosis of their germ 

cells in the testis (Xiang, Cui et al. 2012). βB2-crystallin studies outside of lens provide 

substantial evidence of βB2-crystallin roles in axonal elongation in retinal ganglion cells 

during retinal regeneration (Bohm, Melkonyan et al. 2013), suggesting potential roles 

in  neurodegenerative diseases (Liedtke, Schwamborn et al. 2007). Yet again, the 

mechanistic basis of these proposed non-refractive functions, are not well understood 

(Slingsby, Wistow et al. 2013).  

To address the roles of βB2-crystallin, a spontaneous βB2-crystallin mutant 

mouse known as Crybb2Phil/Phil that was first discovered as an autosomal dominant 

cataract mutant have been investigated since the late 1970’s. This mouse harbors a 12-

nucleotide in-frame deletion in the fourth Greek key of the βB2-crystallin locus leading 

to four-amino acid-loss that results in inherited cataract (Chambers and Russell 1991). 

Morphological studies on this βB2-crystallin mutant noted a number of lens defects, 

including failure of lens fiber cells to denucleate during differentiation as well as an 

increase in intercellular space in the posterior fiber cells. Furthermore, Crybb2Phil/Phil is 

characterized by a significant decrease in lens size (Uga, Kador et al. 1980). It was later 

established that this mutation causes destabilization of βB2-crystallin along with 

precipitation of other crystallins in the lens, leading to a more severe phenotype than 

just cataracts (Chambers and Russell 1991).  

Previous students in our lab, Megan Fisher and Corrine Decker, reevaluated the 

Crybb2Phil/Phil cataract phenotype. Unlike many known mutations associated with 
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cataract, they found that Crybb2Phil/Phil cataract is associated with induction of fibrotic 

lens EMT that is very similar to that observed in ASC and PCO (Figure 4.5). Since in 

vitro and in vivo model for ASC have been routinely used in studying PCO (de Iongh, 

Wederell et al. 2005, Martinez and de Iongh 2010), I utilized these mice to further 

understand the role of αV integrins in the TGF-β associated fibrotic lens EMT that leads 

to PCO.  Furthermore, since βB2-crystallin has been proposed to engage functions that 

are beyond lens refraction, these findings may open a door towards the understanding 

of mechanism behind βB2-crystallin’s non-refractive roles. 
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4.2 Results 

4.2.1 Crybb2Phil/Phil adult lenses develop cataracts, significant decrease in 

size and undergo a severe lens epithelium disorganization 

Similar to the previous morphological studies performed on Crybb2Phil/Phil lenses 

(Uga, Kador et al. 1980), we found that Crybb2Phil/Phil lenses are morphologically normal 

and transparent one week after birth and remain transparent until about 2 months of age. 

In order to reevaluate the morphological changes associated with this mutation, 4-

month-old eyes from Crybb2Phil/Phil, Crybb2+/Phil and wildtype were dissected; lenses 

isolated and visualized by dark field microscopy. Both Crybb2Phil/Phil and Crybb2+/Phil 

lenses were significantly clouded by opaque masses in the lens when compared to 

wildtype, while Crybb2Phil/Phil lens also were much smaller than either wildtype or 

Crybb2+/Phil (Figure 4.1. A-C). Notably, H&E staining showed defects in not just the 

lens fibers of the Crybb2Phil/Phil lens, but also severe abnormalities in the lens epithelium. 

Further, similar abnormalities were also found in small focal spots in Crybb2+/Phil lenses 

(Figure 4.1. D-F).   
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Figure 4.1: Gross morphology of 4-month-old adult lenses: (A) Dark field image 

showing a wildtype lens maintaining transparency through 

adulthood. (B) A heterozygous mutant lens (Crybb2+/Phil) showing 

a total cortical cataract associated with a moderately smaller lens 

as compared to wildtype. (C) A Crybb2Phil/Phil lens displaying a 

total cataract and severe reduction in size compared to either 

wildtype or heterozygous mutant lens. H&E staining showing: (D) 

A normal wildtype adult lens showing a normal lens epithelium 

and organized mass of elongated fiber cells (E) A Crybb2+/Phil lens 

disrupted fiber cells organization and a focal abnormality of the 

lens epithelium. (F) Abnormal lens histology of Crybb2Phil/Phil 

showing epithelial fibrosis and disrupted fiber cell organization. 
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Scale A, B, C =1mm. D, E, F = 0.125mm, pink = cytoplasm blue 

= cell nucleus, e = lens epithelium, f = lens fibers. (Image adapted 

from Mamuya, F.A., et al, manuscript in preparation) 

4.2.2 The Crybb2Phil/Phil lenses have abnormal βB2-crystallin expression 

since birth  

QRT-PCR revealed that βB2-crystallin mRNA expression changed as the lens 

ages (Figure 4.2. A). At 1 week of age, βB2-crystallin mRNA was almost undetected in 

wildtype lenses but increased significantly at 3 weeks of age and peaked at 2 months 

postnatal. However, Crybb2Phil/Phil lenses had almost a 30 fold higher than normal βB2-

crystallin mRNA expression at 1 week of age. Although, βB2-crystallin mRNA peaks 

at 2 months postnatally in wildtype mice, in Crybb2Phil/Phil mice, βB2-crystallin mRNA 

levels are almost 10 fold lower than seen in wildtype lenses at the same age. At 4 months 

of age, the levels of βB2-crystallin mRNA expression eventually fall dramatically in 

both wildtype and Crybb2Phil/Phil lenses.  

A previous student in our lab, Ms. Corinne Decker, looked at βB2-crystallin 

protein expression levels at birth. Immunohistochemistry analysis showed that βB2-

crystallin was expressed in the lens fibers of both wildtype and Crybb2Phil/Phil lenses. 

Interestingly, in Crybb2Phil/Phil lenses, the protein was overexpressed in lens fibers as 

well as in lens epithelial cells. (Figure 4.2. B-C). This overexpression of βB2-crystallin 

in Crybb2Phil/Phil lens epithelium is also seen at 2 months of age when most of the lens 

fiber cell βB2-crystallin is comparatively low (Figure 4.2. D-E).   
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Figure 4.2: Relative expression of βB2-crystallin mRNA in lens epithelium over 

time. (A) At 1 week of age, βB2-crystallin mRNA is almost 
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undetected in wildtype lenses but significantly higher in 

Crybb2Phil/Phil lenses, with an almost 40 fold upregulation 

(****p=0.0001). At 3 weeks of age, βB2-crystallin mRNA 

expression in wildtype lenses dramatically increases, surpassing 

that of Crybb2Phil/Phil lenses (*p=0.02). The peak of βB2-crystallin 

mRNA expression in normal lenses is at around 2 months of age 

and is almost 10 fold higher in wildtype lenses compared to 

Crybb2Phil/Phil lenses (***p=0.0001). βB2-crystallin mRNA 

expression eventually begins to falls off at around 4 months of age. 

However, at this time, there was still a significant elevation of 

expression in wildtype lenses (***p=0.006). βB2-crystallin protein 

expression in wildtype and Crybb2Phil/Phil over time: (B) Wildtype 

newborn lens expresses βB2-crystallin only in the fiber cell mass. 

(C) Crybb2Phil/Phil newborn lens expression appears to be 

upregulated and more dispersed in the epithelial cell layer of the 

mutant lens compared to the wildtype lens.  (D) 2-month-old 

wildtype lens showing normal βB2-crystallin expression in both 

lens epithelium and fiber cells (E) 2-month-old 

Crybb2Phil/Phil showing overexpression of βB2-crystallinin the lens 

epithelium will with remote expression in lens fiber cell. Scale bar:  

B-C= 65µm, D-E =38µm, red = βB2-crystallin, green = αSMA, 

blue = cell nucleus, e = lens epithelium, C = lens capsule, f = lens 

fibers. (Image adapted from Mamuya, F.A., et al, manuscript in 

preparation) 
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4.2.3 Collagen 1α1 and αSMA mRNA are overexpressed in Crybb2Phil/Phil 

lens epithelium over time 

In order to confirm that the EMT in Crybb2Phil/Phil lenses is similar to that 

established in ASC, PCO and in our mouse cataract surgery model, which have all 

shown to upregulate αSMA and collagen-1α1gene expression, I performed a QRT-PCR 

analysis to investigate the expression of these two genes in the lens epithelium. I found 

out that αSMA mRNA expression was significantly upregulated in Crybb2Phil/Phil lenses 

as early as 2 months of age. This upregulation remained relatively high throughout 4 

months of age as compared to wildtype lenses (Figure 4.3. A). Further, normal lens 

epithelial cells predominantly deposit type IV collagen, however as they transform to a 

more mesenchymal state, they start to deposit collagen type I (Leask and Abraham 

2004). I found collagen-1 α1, whose mRNA expression was relatively low in both 

wildtype and Crybb2Phil/Phil lenses at 1 week of age, increased dramatically in 2-month-

old Crybb2Phil/Phil lenses and remained significantly high throughout 4 months of age in 

Crybb2Phil/Phil as compared to wildtype (Figure 4.3. B). 
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Figure 4.3: αSMA and Collagen-1α1 mRNA expression in wildtype and 

Crybb2Phil/Phil lens epithelium over time: (A) A graph showing a 

gradual increase in αSMA mRNA expression of in 

Crybb2Phil/Phil lens epithelium. At 1 week of age, αSMA mRNA 

levels in Crybb2Phil/Phil lens is approximately equal to that of 
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wildtype. At 2 months of age, αSMA mRNA levels in 

Crybb2Phil/Phil lenses are significantly higher than wildtype lenses 

(***p=0.0001), and was still significant higher at 4 months of age 

(**p=0.005). (B) A graph showing gradual increase in collagen 

1α1 mRNA expression in Crybb2Phil/Phil lens epithelium. At 1-week 

of age, collagen 1α1 mRNA levels in Crybb2Phil/Phil lenses are 

approximately equal to that of wildtype. By 2 months of age, 

collagen 1α1 mRNA expression in Crybb2Phil/Phil lenses is 

significantly higher (almost 100-fold) when compared to wildtype 

(****p=0.0001), and continue to stay significantly high (almost 

200-fold upregulated) at 4 months of age (**p=0.006). (Image 

adapted from Mamuya, F.A., et al, manuscript in preparation) 

The αSMA upregulation in Crybb2Phil/Phil lenses was also confirmed by confocal 

imunohistochemistry analysis, which showed a completely disorganized Crybb2Phil/Phil 

lens epithelium overexpressing αSMA by 4 months of age. At this age, even the 

Crybb2+/Phil showed a slight increase in αSMA protein expression, although, this was 

only found in small fibrotic plaques (Figure 4.4. A-C). Confocal analysis on whole 

mount 4-month old lens epithelium stained by phalloidin revealed a loss of polymerized 

filamentous F-actin and severe disorganization in Crybb2Phil/Phil lens epithelium. This 

disorganization was mildly seen the Crybb2+/Phil lens epithelium as compared to the 

organized actin filaments seen in the same age wildtype lens epithelium (Figure 4.4. D-

F). Since, LECs undergoing EMT are characterized by their fibroblastic morphology 

(Hales, Schulz et al. 1994, Zuk and Hay 1994), David Scheiblin examined the 
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morphological changes in Crybb2Phil/Phil lenses as they undergo EMT using SEM. We 

saw a progressive lens epithelial cell fibrosis, distortion and some form of multi-layering 

in the Crybb2Phil/Phil as the lens aged which eventually covered the entire epithelium at 

about 4 month of age (Figure 4.4. G –I). 

4.2.4 The lens epithelial cell marker Pax-6 is upregulated in 

Crybb2Phil/Phil EMT. 

Pax-6 is an evolutionarily conserved transcription factor known for its role in 

regulating eye and brain development in humans, mice, zebrafish, and Drosophila 

(Callaerts, Halder et al. 1997). It also controls transcriptional expression of genes 

encoding transcription factors responsible for lens development and maintenance of lens 

epithelial cell morphology (Chauhan, Reed et al. 2002). Notably, Pax-6 is known to 

downregulate as lens epithelial cells lose their epithelial properties during fiber cell 

differentiation (Madhavan, Haynes et al. 2006). We found that the protein is localized 

in the wildtype lens epithelium (Figure 4.5. A-C) but downregulated as epithelial cells 

undergo EMT in at least 3 days post surgery in our mouse model of cataract surgery 

(Figure 4.5. G-I). Immunohistochemistry staining on Pax-6 performed by Corrine 

Decker surprisingly showed that Pax-6 was upregulated in the Crybb2Phil/Phil epithelium 

as early as 4 weeks postnatal in cells overexpressing αSMA (Figure 4.5. D-F). 
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Figure 4.4: Expression of αSMA at 2 months postnatal: (A) 

Immunohistochemistry showing undetected levels of αSMA with 

a maintained epithelial cell organization in wildtype lens. (B) 

Crybb2+/Phil (heterozygote) epithelium shows small fibrotic plaque 

EMT with αSMA expression. (C) Uniformly malformed 

Crybb2Phil/Phil epithelium showing extreme αSMA expression. 

Scale bar: (A-C) 75µm,, Green = αSMA, blue = cell nuclei, e = lens 

epithelium, f = lens fibers. Phalloidin staining of a 2-month-old 
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whole mount lens epithelium: (D) Whole mount wildtype lens 

epithelium showing a normal cell shape with uniform F-actin 

organization. (E) Whole mount Crybb2+/Phil lens epithelium 

showing the appearance of fibrotic plaques, misshapen lens 

epithelium and a moderate level of F-actin disorganization. (F) 

Uniformly malformed Crybb2Phil/Phil epithelium showing the 

severity of epithelial fibrosis and F-actin disorganization. Scanning 

Electron Microscopy analysis showing: (G) Wildtype lens anterior 

epithelium. (H)  Crybb2+/Phil lens anterior epithelium with a mild 

abnormality. (I) Crybb2Phil/Phil lens epithelium with progressive 

lens fibrosis and distortion. Scale bar: (D-F) = 30µm, (G-I) =6µm. 

Green = F-actin, blue = cell nuclei. (Image adapted from Mamuya, 

F.A., et al, manuscript in preparation) 
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Figure 4.5: Pax-6 and αSMA expression in the 4-week old lens epithelium and 

in 3-days post-surgery (A model of lens injury response after 

cataract surgery): (A) Wildtype Pax-6 + αSMA +nucleus staining. 

(B) Wildtype Pax-6 alone. (C) Wildtype αSMA alone. (D) 

Crybb2Phil/Phil Pax-6 + αSMA +nucleus staining, Showing 

Crybb2Phil/Phil lens epithelial cells become multilayering as seen in 

wildtype lenses post-surgery. (E) Crybb2Phil/Phil Pax-6 alone, 

showing overexpression of Pax-6 (F) Crybb2Phil/Phil αSMA alone 

showing that Crybb2Phil/Phil lenses undergo EMT similar to that 

observed post-surgery (G) Wildtype lens 3-days post-lentectomy 

Pax-6 + αSMA +nucleus staining. (H) Wildtype lens 3-days post-

lentectomy pax-6 alone (I) Wildtype lens 3-days post-lentectomy 
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αSMA alone. Scale = 38µm. Red = Pax-6, green = αSMA, blue = 

cell nucleus, LC= lens cells, C= lens capsule. (Image adapted from 

Mamuya, F.A., et al, manuscript in preparation) 

4.2.5 Crybb2Phil/Phil lenses have a significantly elevated amount of active 

TGF-β compared to wildtype lenses 

The overexpression of αSMA, collagen 1α1 and lens epithelial cell multilayering 

in Crybb2Phil/Phil lenses confirmed that Crybb2Phil/Phil lenses undergo an epithelial EMT 

similar as that seen in ASC as well as in wildtype lens post surgery.  Since it is well 

established that TGF-β is the key player in lens EMT (de Iongh, Wederell et al. 2005), 

Megan Fisher, a previous student in our lab, used a TGF-β/BMP Signaling Pathway 

RT2ProfilerTM PCR to examine the mRNA expression of TGF-β associated genes 

involved in this EMT pathway between 4-month-old Crybb2Phil/Phil lens EMT compared 

to the wildtype. Her results suggested that a number of TGF-β signaling associated 

genes were upregulated in 4-month-old Crybb2Phil/Phil lenses (Table 4.1). 

To examine whether the Crybb2Phil/Phil lenses have more activated free TGF-β 

ligand than wildtype lenses, I redesigned a bioassay capable of measuring the level of 

active TGF-β signaling in a specific tissue (Khan, Joyce et al. 2012). I found a 

significantly elevated amount of active TGF-β in Crybb2Phil/Phil lens compared to 

wildtype lenses. On average, I found that a single 3-month-old wildtype lens contains 

about 100pg/ml of active TGF-β. In contrast, Crybb2Phil/Phil lens had, on average, almost 

4 times the amount of active of TGF-β compared to the wildtype lens (Figure 4.6. A). 

 114 



In addition, I found a dramatic increase in SMAD-3 phosphorylation in Crybb2Phil/Phil 

3-month-old lenses when compared to wildtype (Figure 4.6. B-C).  

Table 4.1. TGF-β/BMP Signaling Pathway RT2ProfilerTM PCR to examine the 

mRNA expression of TGF-β associated genes involved in this EMT pathway 

between 4-month-old Crybb2Phil/Phil lens EMT compared to the wildtype. 

(Table adapted from Mamuya, F.A., et al, manuscript in preparation) 

 

  Gene name Abbreviation  
Fold change in 
Crybb2Phil/Phil 

pValue vs. 
Widltype 

1  Latent TGF-beta binding protein 4 Ltbp4 26.2 0.00003 

2  Latent TGF-beta binding protein 2 Ltbp2 15.1 0.0006 

3 Transforming growth factor, beta receptor 2  Tgfbr2 12.2 0.02 

4 Plasminogen activator inhibitor-1 PAI-1 11.5 0.004 

5  Latent TGF-beta binding protein 1 Ltbp1 2.7 0.02 

6 Receptor-regulated   SMAD3 Smad3 2.2 0.13 

7 Receptor-regulated   SMAD2 Smad2 1.1 0.80 

8 Common-mediator   SMAD4 Smad4 -3.3 0.02 

9 Transforming growth factor beta-1 Tgfb1 -1.0 0.98 

10 Transforming growth factor beta-2 Tgfb2 -1.4 0.20 

11 Transforming growth factor beta-3 Tgfb3 -1.4 0.80 

12 Transforming growth factor, beta receptor I Tgfbr1 -1.3 0.39 

13 Transforming growth factor, beta receptor 3 Tgfbr3 -6.2 0.06 
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Figure 4.6: (A) Active TGF-β levels in 3-month-old wildtype and 

Crybb2Phil/Phil lens epithelium: On average, a single wildtype lens 

contains about 21 pg/lens of active TGF-β. Crybb2Phil/Phil lens had 

an average of 75 pg/lens of active TGF-β, almost 4 times higher 

than wildtype levels (***P=0.002). All assay experiments had n=4. 

Values are expressed as mean ± S.E.M. Asterisks (*). SMAD-3 

activation in 3-month-old wildtype and Crybb2Phil/Phil epithelium: 

(B) Phosphorylated SMAD-3 protein expression wildtype 

epithelium (C) Phosphorylated SMAD-3 protein expression 

Crybb2Phil/Phil epithelium. Scale bar = 20µm. Red = phospho-

SMAD-3, blue = nucleus, green = αSMA. 
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4.2.6 TGF-β induced EMT associated players are significantly 

upregulated in Crybb2Phil/Phil lenses 

TGF-βi is an ECM molecule whose mRNA expression and ECM deposition 

strongly upregulate in response to TGF-β signaling (Jeon, Kim et al. 2012).  Consistent 

with this, by QTR-PCR, I found that TGF-βi mRNA, which is found to be very low in 

both wildtype and Crybb2Phil/Phil lens epithelium immediately after birth, is robustly 

upregulated in Crybb2Phil/Phil lens epithelium compared to wildtype at 2-months of age, 

and remains high through 4 months of age (Figure 4.7. A). Similarly, QRT-PCR also 

showed that Follistatin, which has been recently reported to play a key role in regulating 

TGF-β induced SMAD-3/AKT/mTOR pathway (Winbanks, Weeks et al. 2012) was 

also significantly upregulated in Crybb2Phil/Phil lens epithelium compared to wildtype at 

2 months of age throughout 4-month of age (Figure 4.7. B). This upregulation of TGF-

βi and Follistatin mRNA was parallel with the overexpression of TGF-β receptor 2 

(TGF-β RII), which was significantly higher in  Crybb2Phil/Phil lens epithelium beginning 

2 month of age and stayed high throughout 4 months of age  (Figure 4.7. C). 
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Figure 4.7: RT-PCR quantitation of mRNA expression levels in wildtype and 
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Crybb2Phil/Phil lens epithelium over time. (A) Crybb2Phil/Phil lenses show 

lower mRNA expression levels of TGF-βi receptor 2 (TGF-β RII) at 1-

week of age. At 2 months of age TGF-β RII mRNA expression 

significantly increases Crybb2Phil/Phil lenses with very low expression in 

wildtype lenses (***p=0.003). At 4 months of age, there is almost no TGF-

β RII mRNA expression in wildtype but high expression of TGF-β RII in 

Crybb2Phil/Phil lenses (**p=0.01). (B) Crybb2Phil/Phil lenses show lower 

mRNA expression levels of TGF-βi at 1 week of age. At 2 months of age, 

TGF-βi mRNA expression significantly increases Crybb2Phil/Phil lenses 

with very low expression in wildtype lenses (*p=0.01). At 4 months of age, 

there is a mild expression of TGF-βi mRNA in wildtype but high 

expression of TGF-βi in Crybb2Phil/Phil lenses (**p =0.002). (C) 

Crybb2Phil/Phil lenses show significantly lower mRNA expression levels of 

Follistatin (FST) at 1 week of age (**p=0.002). At 2 months of age, FST 

mRNA expression levels fall dramatically but significantly increase 

Crybb2Phil/Phil (**p=0.008). At 4 months of age, there is almost no FST 

mRNA expression in wildtype but high expression of TGF-β RII in 

Crybb2Phil/Phil lenses (**p=0.003). Values are expressed as mean ± S.E.M. 

Asterisks (*) indicate statistically significant fold changes from wildtype 

epithelium normalized to Hprt-1 mRNA level, n=4.   
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4.2.7 αV, β1 and β8 integrin subunits and their respective ligands are 

upregulated in Crybb2Phil/Phil EMT 

 Integrins have been reported to play a role in lens EMT leading to PCO 

(Zuk and Hay 1994, Kim, Lee et al. 2002, Sponer, Pieh et al. 2005, Walker and Menko 

2009). In chapter three, I reported that αV integrin and its interacting β-subunits; β1, β5, 

β6, β8 are upregulated concomitant with αSMA and their ligands in lens epithelial cells 

remaining behind in a mouse fiber cell removal model of cataract surgery, suggesting 

the roles of αV integrin in activation the SMAD-3 associated TGF-β induced EMT 

(Leask and Abraham 2004). Similarly, I found αV integrin and its interacting β-

subunits; β1, β5, β6, β8 are also upregulated concomitant with αSMA in 2-month-old 

Crybb2Phil/Phil lens epithelium as compared to wildtype (Figure 4.8) In addition, αV 

integrin ligands, TGF-βi, fibronectin and vitronectin, were also upregulated in 2-month-

old Crybb2Phil/Phil lens epithelium as compared to wildtype (Figure 4.9). In addition, 

QRT-PCR analysis showed αV integrin and its interacting β-subunits, β1 and β8, were 

also up regulated significantly at the mRNA level during the Crybb2Phil/Phil lens 

epithelium EMT around the same age (Figure 4.10). 
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Figure  4.8: Immunofluorescent analysis showing that αSMA and αV-β integrin 

levels increase in wildtype residual lens cells (LC) at 48hrs post-

surgery (A) αV integrin + αSMA expression, in wildtype 

epithelium. (B) αV integrin expression in Crybb2Phil/Phil epithelium. 

(C) αV integrin + αSMA expression, in Crybb2Phil/Phil epithelium. 

(D) β1 integrin + αSMA expression in wildtype epithelium. (E) β1 

integrin expression, in Crybb2Phil/Phil epithelium. (F) β1 integrin + 

αSMA expression in Crybb2Phil/Phil epithelium. (G) β5 integrin + 
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αSMA wildtype epithelium (H) β5 integrin expression in 

Crybb2Phil/Phil epithelium. (I) β5 integrin + αSMA in 

Crybb2Phil/Phil epithelium.  (J) β6 integrin + αSMA expression 

wildtype epithelium (K) β6 integrin expression in 

Crybb2Phil/Phil epithelium. (L) β6 integrin + αSMA expression in 

Crybb2Phil/Phil epithelium. (M) β8 integrin + αSMA expression 

wildtype epithelium. (N) β8 integrin expression in 

Crybb2Phil/Phil epithelium.  (O) β8 integrin + αSMA expression in 

Crybb2Phil/Phil epithelium.  Scale bar = 35µm, red=integrin; 

blue=nucleus; green = αSMA, LC = residual lens cells, C= lens 

capsule. 
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Figure 4.9 Immunohistochemistry analysis of αV integrin ligands, TGF-βi, 

fibronectin and vitronectin deposition in 2-month old wildtype and 

Crybb2Phil/Phil lens epithelium: (A) TGF-βi + αSMA expression in 

wildtype lens epithelium. (B) TGF-βi expression in 

Crybb2Phil/Phil lens epithelium. (C) TGF-βi + αSMA expression in 

Crybb2Phil/Phil lens epithelium. (D) Fibronectin + αSMA expression 

in wildtype lens epithelium (E) Fibronectin expression in 

Crybb2Phil/Phil lens epithelium. (F) Fibronectin + αSMA expression 

in Crybb2Phil/Phil lens epithelium. (G) Vitronectin + αSMA 

expression in wildtype lens epithelium. (H) Vitronectin expression 

in Crybb2Phil/Phil lens epithelium. (I) Vitronectin + αSMA 

expression in Crybb2Phil/Phil lens epithelium. Scale bar = 60µm. Red 
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= TGF-βi or fibronectin or vitronectin, blue = nucleus, green = 

αSMA. LC = residual lens epithelial cells, C= lens capsule.  
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Figure 4.10: RT-PCR quantitation of integrin mRNA levels in 2-month old 

wildtype and Crybb2Phil/Phil lens epithelium normalized to Hprt-1, 

n=4. αV integrin subunit mRNA expression was significantly 

upregulated at 2-month of age in Crybb2Phil/Phil lens epithelium as 

compared to wildtype (**P=0.002). αV integrin β−interacting 

subunits were also significantly upregulated in Crybb2Phil/Phil lens 

epithelium as compared to wildtype, β1−integrin (**P=0.004) and 

β8−integrin (**P=0.035).  No significant changes were observed 

in either β5 or β6 integrin subunit mRNA expression. β6-integrin 

subunit mRNA appeared to decrease slightly in Crybb2Phil/Phil lens 

epithelium although the difference was not significant. All fold 

changes in integrin subunit expression in Crybb2Phil/Phil lens 
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epithelium were calculated by setting values obtained in wildtype 

in each specific subunit group to one. Values are expressed as mean 

± S.E.M. Asterisks (*) indicate statistically significant fold changes 

from wildtype. 

4.2.8 IGFbp-3 is significantly upregulated in Crybb2Phil/Phil mutant lenses  

The TGF-β/BMP Signaling Pathway RT2ProfilerTM PCR performed by Ms. 

Megan Fisher, reveled IGFbp-3 mRNA was highly overexpressed in 

Crybb2Phil/Phil lenses. To further investigate, this I performed QRT-PCR on the 

expression of IGFbp-3 on Crybb2Phil/Phil lens epithelium at different time postnatal. I 

found out that IGFbp-3 mRNA expression, which is almost undetected in wildtype 

lenses, was not only significantly overexpressed in Crybb2Phil/Phil lenses but this 

overexpression increased as the Crybb2Phil/Phil lenses aged (Figure 4.11. A). In addition, 

immunohistochemistry performed by Corrine Decker showed that cleaved caspase-3 

was expressed in 4-month-old Crybb2Phil/Phil lenses. Moreover, this caspase-3 expression 

appeared to be greater in cells lacking nuclear staining in the epithelium fibrotic plaque 

(Figure 4.11. B). No upregulation in cleaved caspase-3 was observed in either wildtype 

(Figure 4.11. C), or Crybb2+/Phil lenses (data not shown here).  Neither of these 

observations have been reported in lens EMT that occurs after surgery nor in lens EMT 

associated with ASC.  
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Figure 4.11: Relative expression of IGFbp-3 mRNA in lens epithelial cells over 

time. (A) Both wildtype and Crybb2Phil/Phil lenses have similar 

mRNA expression levels of IGFbp-3 at 1 week of age. At 3 weeks 

of age, IGFbp-3 mRNA expression significantly falls in wildtype 

lenses (**p=0.002). At 2 months of age, almost no IGFbp-3 mRNA 

expression in wildtype but high expression in Crybb2Phil/Phil lenses 

(****p=0.0001) which continued to increase throughout 4 months 
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of age (**p=0.007). Values are expressed as mean ± S.E.M. 

Asterisks (*) indicate statistically significant fold changes from 

wildtype epithelium normalized to Hprt-1, n=4. Cleaved caspase-3 

expression: (B) Cleaved caspase-3 expression in wildtype lens 

epithelium. (C) Upregulated Cleaved caspase-3 expression in 

fibrotic plaques and fiber cells underling the epithelial layer in 

Crybb2Phil/Phil lens. Scale = 75µm, red = cleaved caspase-3, blue = 

cell nucleus, e = lens epithelium    f = lens fibers. 
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4.3 Discussion 

4.3.1 The βB2-crystallin mutation (Crybb2Phil/Phil) 

There was a drastic difference between the heterozygous and the Crybb2Phil/Phil 

lens’ phenotype. Both the heterozygous and the Crybb2Phil/Phil develop cataracts 

suggesting the important role of βB2-crystallins in lens transparency. However, unlike 

lenses heterozygous for the mutation, which predominately exhibited cortical cataracts, 

the Crybb2Phil/Phil lenses were severely impacted, and underwent a significant reduction 

in lens size. Crybb2Phil/Phil lenses weigh about a 1/4 of heterozygous’ lens weight and 

about a 1/6th of a wildtype lens. In addition, Crybb2Phil/Phil exhibited severe lens epithelial 

distortions. This implies that a functioning βB2-crystallin gene /protein is required to 

maintain lens epithelium morphology.  

I also noticed that Crybb2Phil/Phil lenses had significant higher βB2-crystallin 

mRNA and protein expression 1-week after birth as compared to wildtype. Since βB2-

crystallin is not highly expressed in lens until after birth (Uga, Kador et al. 1980, 

Chambers and Russell 1991, Zhang, Li et al. 2008), this expression pattern suggests that 

the mutant βB2-crystallin protein in Crybb2Phil/Phil lenses induces a positive feedback 

response which signals to make more βB2-crystallin so to compensate for the mutated 

form at birth. As a result, the upregulation of a mutated form of βB2-crystallin could 

disrupt the normal lenticular crystallin ratio, impairing the proper folding of other lens 

crystallin proteins, thus disrupting crystallins’ organization leading to crystallin 

aggregation and hence an early onset cataract as early as five to six weeks after birth. 
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This upregulation of mutant βB2-crystallin may also explain why full βB2-crystallin 

knockouts which do not express βB2-crystallin at all do not develop cataracts until about 

4-6 months of age (Zhang, Li et al. 2008).  

Moreover, unlike wildtype lenses which only express βB2-crystallin protein 

levels in lens fibers cells at birth, Crybb2Phil/Phil lenses overexpressed βB2-crystallin 

protein levels in both lens fiber cells and lens epithelial cells (LECs). This 

overexpression of βB2-crystallin in LECs which normally do not express the protein at 

such an early age may interfere with the normal molecular and physiological pathways 

necessary in maintain lens epithelial integrity. This may explain why Crybb2Phil/Phil 

lenses develop severe lens epithelium abnormalities. 

4.3.2 Crybb2Phil/Phil lens epithelial undergoes and EMT at around 1-2 

months after birth. 

Unlike many mutations that causes cataract, the Crybb2Phil/Phil lens epithelium 

developed severe epithelial EMT by 8 weeks postnatal (Figure 4.12). In conjunction 

with αSMA overexpression, this phenotype also involves an extreme upregulation of 

collagen 1α1 which remained elevated throughout the Crybb2Phil/Phil lenses’ life. Both 

αSMA and collagen-1α1 upregulation have been reported in numerous lens EMT 

studies (Hales, Schulz et al. 1994, Zuk and Hay 1994, Gotoh, Perdue et al. 2007) and 

are considered as hallmark markers for lens EMT. αSMA expression also occurs in 

Crybb2+/Phil lenses, however, only as small focal fibrotic plaques, which again 

reemphasize the fact that the presence of a functional βB2-crystallin is important in 
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maintaining the lens epithelium integrity. In addition to overexpressing lens EMT 

markers, the Crybb2Phil/Phil lens epithelium also becomes uneven and multilayered as 

early as 4 weeks postnatal; phenotype that is similar to the phenotypes seen in PCO and 

ASC. This distortion in epithelial cell shape gets more extreme in the 16-week-old lens, 

with protruding plaques that drastically deform the normally smooth surface of the lens.  
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Figure 4.12: Comparison of Crybb2Phil/Phil cataract to other profound cataract 

mutation known in lens. (A) Dark field image showing Bin-3 

knockout cataract (Ramalingam, Duhadaway et al. 2008).  (B) 

Dark field image showing the collagen IV transgenic mouse 

cataract with significant reduction in size (Firtina, Danysh et al. 

2009). (C) Dark field image showing Crybb2Phil/Phil cataract. (D) 

Immunohistochemistry showing no αSMA expression in Bin-3 

knockout cataract (E) Immunohistochemistry showing no αSMA 

expression in collagen IV mutant cataract but a severe lens capsule 

wrinkling. (F) Immunohistochemistry showing αSMA 

overexpression in Crybb2Phil/Phil cataract with severe lens capsule 

wrinkling. Scale bar: (A-C) =1mm, (D-F) = 140µm. 
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4.3.3 Crybb2Phil lens EMT results from unregulated Transforming 

growth factor-β activation.   

TGF-β regulates a wide array of cellular processes including cell division, 

differentiation, motility, apoptosis and tumor suppression (Taipale, J. Saharinen et al. 

1998, Yue and Mulder 2001). Notably, the TGF-β pathway is well known to play a role 

in lens EMT following cataract surgery leading to Posterior Capsular Opacification 

(PCO) (Saika, Okada et al. 2001, Leask and Abraham 2004, Mamuya and Duncan 2012) 

as well as in ASC (Lovicu, Ang et al. 2004). In vitro and in vivo lens studies have clearly 

shown the effects of TGF-β signaling in lens development, while inappropriate TGF-β 

signaling resulted in lens EMT and cataracts (de Iongh, Wederell et al. 2005). I saw a 

significant increase in SMAD-3 phosphorylation, TGF-β receptor II mRNA 

overexpression as well as TGF-βi and follistatin upregulation, genes known to 

upregulate aftermath of TGF-β signaling, suggesting that Crybb2Phil/Phil epithelium was 

undergoing extreme unregulated TGF-β signaling. This was confirmed when I looked 

at the amount of active TGF-β associated with Crybb2Phil/Phil lenses which were found 

to be about four times higher than the levels found in wildtype lenses. Crybb2Phil/Phil 

lenses had 75 pg/lens of active TGF-β per lens compared to 21 pg/lens in wildtype 

lenses. And this was without taking into account that Crybb2Phil/Phil lenses are almost 4 

times smaller in size as compared to wildtype lenses. In addition, mRNA levels for none 

of the three TGF-β 1, 2 and 3 ligands mRNAs nor SMAD 2 or 3 were significantly 

upregulated in Crybb2Phil/Phil lenses, suggesting that this increase in TGF-β induced 

EMT is regulated mainly at the TGF-β activation level. However, the answer to why 
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mutation of βB2-crystallin leads to unregulated TGF-β activation and EMT will need 

further investigation.  

4.3.4 Crybb2Phil/Phil EMT suggests a different pathway from previously 

known lens EMTs 

Both in vitro and in vivo lens studies have clearly shown that inappropriate TGF-

β signaling can result in lens EMT and cataracts (de Iongh, Wederell et al. 2005). The 

vast majority of these studies have shown that lens epithelial cells undergoing EMT, 

especially in PCO and ASC do share very similar characteristics (Leask and Abraham 

2004, Lovicu, Ang et al. 2004). These include but not limited to LECs multilayering, 

upregulation of ECM mesenchymal proteins and a transformation to migratory 

myofibroblasts which do not undergo apoptosis (Lovicu, Steven et al. 2004, Mamuya, 

Wang et al. Submitted 2013).  

When I examined the protein levels of Pax-6, a transcriptional factor that plays 

a major role in maintaining the epithelial phenotype of the lens (Callaerts, Halder et al. 

1997, Chauhan, Reed et al. 2002), I found that Pax-6, which is expressed in normal lens 

epithelium, was downregulated 3-days post-surgery in wildtype mice. Other reports 

from PCO studies have reported similar findings (Mansfield, Cerra et al. 2004, 

Mansfield, Cerra et al. 2004). In contrast, Crybb2Phil/Phil EMT is associated with LECs 

undergoing apoptosis (Figure 4.11 C-D). Moreover, unlike PCO and ASC, Pax-6 is 

extremely upregulated during Crybb2Phil/Phil EMT. Altogether this may suggest that βB2-

crystallin mutations instigate an alternate lens EMT pathway that, although dissimilar 
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to the EMTs seen in PCO and ASC, it is still mediated by unregulated TGF-β signaling. 

Thus, understanding how βB2-crystallin mutations lead to this extreme level of active 

TGF-β in the lens, can be essential in understanding the pathogenesis of PCO and ASC 

which till this day, are not well known. However, a mechanism on how βB2-crystallin 

mutations lead to this extreme level of active TGF-β in the lens is proposed in chapter 

5. 

4.3.5 αV integrins are upregulated in Crybb2Phil/Phil EMT and might be 

playing a role in sustained TGF-β induced EMT 

Due to their function in activating latent TGF-β which triggers a TGF-β-induce-

EMT known to play roles in inflammation, cancer and fibrosis, αV integrins have been 

implicated in many developmental and pathological processes (Munger, Huang et al. 

1999, Ludbrook, Barry et al. 2003, Wipff, Rifkin et al. 2007, Yang, Mu et al. 2007, 

Wipff and Hinz 2008, Mamuya and Duncan 2012, Mamuya, Wang. et al. 2014). I have 

discussed these roles of αV integrins in lens EMT in my 3rd chapter which have also 

been investigated and proposed in several other lens studies and are known to play a 

significant role in both ASC and PCO (Zuk and Hay 1994, Kim, Lee et al. 2002, Sponer, 

Pieh et al. 2005, Walker and Menko 2009). Notably, αV integrins can activate TGF-β, 

provoking a TGF-β-induced-EMT, which in return can further stimulate αV integrin 

gene expression (Munger, Huang et al. 1999, Hazelbag, Kenter et al. 2007, Pandit, 

Corcoran et al. 2010). This phenomenon then creates a positive feed forward loop that 

drives TGF-β-induced-EMT (Mamuya and Duncan 2012, Mamuya, Wang. et al. 2014). 
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I found that both the residual lens cells left after mouse cataract surgery and the 

Crybb2Phil/Phil epithelium deposit fibronectin, tenascin-C and TGF-βi, while 

upregulating αV, β1, β5, β6 and β8 integrin subunit protein levels as they undergo EMT 

and become multilayered. Interestingly, unlike the residual lens cells remaining 48hrs 

after mouse cataract surgery, the Crybb2Phil/Phil lens epithelium also overexpressed αV, 

β1 and β8 integrin subunit mRNA levels. This may be due to the fact that, unlike the 

residual lens left 48hrs post cataract surgery, a time which there is only a small amount 

active TGF-β which is incapable of stimulating αV integrin mRNA expression, by 2 

month of age, the Crybb2Phil/Phil lens epithelium already has elevated levels of active 

TGF-β. This explains why the Crybb2Phil/Phil lens epithelium overexpresses αV, β1 and 

β8 integrin subunit mRNA levels and the post-surgery model failed to do so. However, 

it is unclear whether a functional βB2-crystallin protein is essential in regulating integrin 

function in lens.   

4.3.6 What is the role of IGFbp-3 in lens EMT? 

The roles of IGFbp-3 in lens are yet to be explored. Nonetheless, there was a 

significant upregulation of IGFbp-3 in both the mRNA and protein (data not shown 

here) expression levels throughout the entire life of the Crybb2Phil/Phil lens epithelium. 

In some systems, IGFbp-3 has been shown to promote cell proliferation and metastasis 

(Xi, Nakajima et al. 2006). While in other cases, IGFbp-3 has been associated with 

growth inhibition, proliferation and motility suppression of both epithelial and other cell 

types, alleviating cancer growth and progression. (Huang and Huang 2005) 
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(Ullmannova and Popescu 2007, Fuchs, Goldberg et al. 2008). Interestingly, IGFbp-3 

levels have also been reported to rise in response to TGF-β signaling, and recent studies 

have shown that IGFbp-3 clearly activates the canonical TGF-β -SMAD pathway 

inhibiting proliferation of numerous cell types (Fanayan, Firth et al. 2002, Kuemmerle, 

Murthy et al. 2004, Izumi, Kurosaka et al. 2006, Forbes, Souquet et al. 2010). However, 

similar to TGF-β, the precise mechanisms of IGFbp-3 cross-talk with other signaling 

pathways are not well understood (Baxter 2013). On the other hand, IGFbp-3 has been 

also shown to induce apoptosis in corneal epithelium as well as in other different cell 

types (Butt, Firth et al. 2000, Robertson, Ho et al. 2007). This was either directly or by 

potentiating other apoptotic members (Gill, Perks et al. 1997). Thus, IGFbp-3 

involvement in all these biological processes raises a question, what is its function in 

lens EMT?   

Since, Crybb2Phil/Phil lenses are significantly smaller that wildtype, and show an 

increase in caspase-3 activity, I first thought this might be due to IGF-bp3 growth 

inhibition and apoptotic roles. However, most if not all studies on IGF-bp3 induced 

apoptosis involves the roles of caspase-8 and -9 (Kim, Ingermann et al. 2004, Butt, 

Dickson et al. 2005, Galluzzi, Vitale et al. 2012). Moreover, Crybb2Phil/Phil lens 

epithelium is associated with increase in lens cell multilayering at the beginning, with 

apoptosis only occurring in late stages. This weakened the idea that IGFbp-3 might be 

inhibiting LEC proliferation during Crybb2Phil/Phil EMT. However, IGFbp-3 is 

expression in the Crybb2Phil/Phil lenses is influencing the Crybb2Phil/Phil phenotype raising 

a question on what functions does IGFbp-3 play the lens and whether if whether these 
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function are associated to non-refractive roles of βB2-crystallin.This is a topic of future 

investigation. 

4.4 Conclusion  

Zhang et al. created a systemic βB2-crystallin knockout mouse. Surprisingly, 

this mouse exhibited only mild lens morphological defects at birth.  This can be 

explained by the fact that the majority βB2-crystallin expression does not begin until 

after birth. However, since these full knockouts showed a delayed and milder phenotype 

as compared to the Crybb2Phil/Phil mutants, suggests that early unregulated 

overexpression of the mutated βB2-crystallins protein, impairs lenticular crystallin’s 

organization leading to an early onset cataract. On the other hand, the presence of TGF-

β-induced-EMT in Crybb2Phil/Phil mutant lenses along with loss of polymerized 

filamentous F-actin, apoptosis and severe decrease in lens size, suggest that fully 

functioning β-crystallins proteins are necessary for maintenance of lens epithelial cell 

integrity. Further, the induction of EMT in heterozygous mutant lenses despite of 

possessing one fully functioning βB2-crystallin allele, strongly suggests that mutations 

in βB2-crystallin impair certain specific lens signaling tasks that are beyond refractive 

roles. 
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Chapter 5 

DISCUSSION AND FUTURE PERSPECTIVES  

5.1 Summary  

In this study, I have answered three fundamental questions in regards to the 

functions of αV integrins in the lens. First, I demonstrated that αV integrins are 

necessary for neither lens development, nor the maintenance of lens morphology. 

Secondly, I demonstrated that αV integrins are required for lens epithelial cells to 

undergo EMT following a lens injury or cataract surgery. Further, I suggest that αV 

integrins are required for TGF-β induced EMT signaling following lens injury or 

surgery, perhaps via their known roles in the activation of latent TGF-β.  

While enormous advancements have been made in understanding the 

mechanisms that drive PCO, the precisely mechanisms that drive PCO are not well 

known (Awasthi, Guo et al. 2009). Nonetheless, for almost two decades, considerable 

evidence has been presented confirming that TGF-β signals induce lens epithelial cells 

to undergo an EMT resulting in both ASC and PCO (de Iongh, Wederell et al. 2005, 

Dawes, Sleeman et al. 2009, Wormstone, Wang et al. 2009). Most importantly, αV 

integrins have the capacity to regulate TGF-β which in turn can upregulate the 

expression of more αv integrins creating a positive feed forward loop that stands as a 

continuous driver of EMT (Dawes, Elliott et al. 2007, Mamuya and Duncan 

2012). TGF-β signaling is carried out by a diversity of complex pathways, which, in 

part, contribute to the challenge in understanding how these pathways are integrated to 
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drive lens EMT (Wederell and de Iongh 2006, Dawes, Sleeman et al. 2009). However, 

taking in consideration the fact that integrins have already been implicated to play a role 

in lens EMT (Walker and Menko 2009), my findings along with others that I will briefly 

explain below, strongly suggest that αV integrins play an essential role in driving the 

lens EMT that leads to PCO, and, most likely, the EMT associated with ASC as well. 

Several prior studies support the idea that αV integrin plays an essential role in 

PCO. Prior studies have shown that αV integrins’ ECM ligands such as lumican, 

osteopontin and tenascin-C (Saika, Miyamoto et al. 2003, Saika, Shirai et al. 2007, 

Tanaka, Sumioka et al. 2010) play a major role in PCO development. Knockouts of all 

these three ECM ligands exhibited reduced or delayed EMT as shown by altered 

expression of α-SMA or reduced TGF-β1 expression and SMAD-2/3 activation.  

Likewise, studies on MMP9 and MMP2suggest that TGFβ-induced EMT depends on 

the metalloproteinase functions of MMP9 and MMP2 (Nathu, Dwivedi et al. 2009). 

This importance of MMPs in EMT was strengthened by findings that MMP inhibitors 

(Ilmostat) can prevent ASC formation and capsule contraction in both in vitro and in 

vivo models (Wong, Daniels et al. 2004, Dwivedi, Pino et al. 2006, Morarescu, West-

Mays et al. 2010). Moreover, Ilmostat, a broad-spectrum matrix metalloproteinase 

inhibitor, was also found to significantly decrease LECs migration on the posterior 

capsule (Wong, Daniels et al. 2004). MMP9 and MMP2 are known to activate latent 

TGF-β, and intriguingly, αV integrins have been shown to recruit both MMP9 and 

MMP2, bringing them into closer proximity with latent TGF-β (Brooks, Stromblad et 

al. 1996, Rolli, Fransvea et al. 2003). However, my data also suggest that βB2-crystallin 

 140 



mutations instigate an alternate lens EMT pathway different than that activated in PCO. 

A proposed mechanism of how a non-refractive function for βB2-crystallin may lead to 

an extreme level of TGF activation is discussed in the following section. 

5.2 Crybb2Phil/Phil Lens EMT Might Result From PI3K/AKT/mTOR and ERK 

Cell Survival Pathways 

In addition to βB2-crystallin, βA3/A1-crystallin, an abundant β-crystallin 

protein in the lens fibers, is also expressed outside of the lens and has been proposed to 

have non-refractive roles including  the regulation of  anoikis-mediated cell death 

(Aarts, Lubsen et al. 1989, Parthasarathy, Ma et al. 2011). It has been demonstrated that 

Bit1 (Bcl-2 inhibitor of transcription-1), a mitochondrial protein mediated by its 

upstream regulator protein kinase-D, induces caspase-independent apoptosis upon its 

release into the cytoplasm (Biliran, Jan et al. 2008). Studies have also shown that Bit1 

localizes to the early secretory pathway in the endoplasmic reticulum (ER) where it 

negatively regulates the ERK-MAPK signaling pathway in the Golgi (Zhan, Zhao et al. 

2004, Yi, Nguyen et al. 2010). 

Ma and collaborators showed that βA3/A1-crystallin is required for trafficking 

of Bit1 to the Golgi, which is essential for anoikis-mediated cell death, while the loss 

of βA3/A1-crystallin induces IGF-II expression and increases cell survival by regulating 

the PI3K/AKT/mTOR and ERK pathways. It has also been found that this Bit1 -

mediated cell death is reversed by integrin-mediated cell attachment to fibronectin (Jan, 

Matter et al. 2004), suggesting that the loss of βA3/A1-crystallin indirectly leads to the 
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activation of survival signaling pathways known to induce integrin-mediated cell 

attachment.  My results show that showed that in additional to significant upregulation 

in IGFbp-3, cleaved caspase-3 is also upregulated in Crybb2Phil/Phil EMT. Since both 

situations are not observed in the EMT arising in the post-surgery model, it is possible 

that similar to βA3/A1-crystallin, βB2-crystallin is also involved in the IGF-II mediated 

activation of the PI3K/AKT/mTOR and ERK cell survival pathways. Altogether, this 

suggests that Crybb2Phil/Phil EMT might initiate via PI3K/AKT/mTOR and ERK cell 

survival pathways that are induced by mutations in βB2-crystallin protein. 

5.3 Alpha V Integrin Antagonists as Potential PCO Therapeutics  

Since my findings suggest that the absence of αV integrins abrogate the TGF-β 

induced EMT known to drive PCO after cataract surgery, I propose that blocking of αV 

integrins’ function may interfere with the TGF-β induced EMT known to drive PCO. 

Thus, appropriate αV integrin antagonists, such as the RGD peptide derivatives 

discussed in the next section, may be efficient in the treatment or prevention of PCO, 

ASC and other TGF-β associated ocular fibrotic disorders. 

αV integrin antagonists are currently in clinical trials to treat cancer and other 

TGF-β mediated diseases (Derynck, Akhurst et al. 2001, Derynck and Akhurst 2007, 

Mamuya and Duncan 2012). Notably, a liberated TGF-β ligand has a high affinity for 

its receptors, so, in most cases, once released/active, and as long as TGF-β receptors are 

within reach, it will initiate a TGF-β signaling cascade (Massague 1985). Since different 

cellular functions require distinct levels of TGF-β signaling (Wipff and Hinz 2008), 
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tight regulation of latent TGF-β activation is necessary to prevent diverse diseases 

including inflammation, autoimmune disorders, fibrosis, cancer and cataract (Derynck, 

Akhurst et al. 2001, Roberts and Wakefield 2003, Ulrike, Stefan et al. 2005, Ghannad, 

Nica et al. 2008, Irina, Nevins et al. 2009). Conversely, inadequate levels of active TGF-

β due to mutations of either the TGF-β genes or those for TGF-β activators can lead to 

pathology. For instance, TGF-β1 deficient mice exhibit a multifocal, mixed 

inflammatory cell response and tissue necrosis, leading to organ failure and death 20 

days after birth (Shull, Ormsby et al. 1992, Sterner-Kock, Thorey et al. 2002). In 

humans, inadequate TGF-β signaling can result in various disorders including brain 

hemorrhage and immune system-associated disorders (Cambier S, Stephanie Gline et 

al. 2005, Travis, Reizis et al. 2007).  Notably, restoring normal TGF-β signaling and/or 

inhibiting its inappropriate expression in experimental animals reverses some TGF-β 

associated pathologies and stands as a promising therapeutic approach (See table 5.1).  

TGF-β induced signaling is also known to destabilize E-cadherin mediated cell-

cell adhesion during EMT (Vogelmann, Nguyen-Tat et al. 2005). An important early 

onset event in the EMT that occurs in TGF-β-induced EMT in lens is the induction of 

MMP9 and MMP2, which coincides with cell multilayering seen in PCO and ASC 

development (Nathu, Dwivedi et al. 2009). αV integrins can activate TGF-β by binding 

to its LAP and evidence of such activation has been linked to EMT progression. 

Therefore, blocking the undesirable activities of αV integrins without interfering with 

their beneficial functions could impede EMT progression during PCO, ASC, cancer, 

wound healing and fibrosis.  
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Integrin antagonists show clinical promise for the treatment of TGF-β induced 

EMT associated disorders such as inflammation, fibrosis and cancer (Wang, Chui et al. 

2010). Most of the therapeutic approaches currently under investigation target integrin 

function using anti-integrin agents including both naturally occurring and engineered 

peptides that can mimic their RGD ligand, or antibodies that can act as integrin 

antagonists (Palmade F 1994, Chernousov and Carey 2003, Oharazawa H 2005). For 

example, clinical administration of a peptide antagonist of the αVβ3 receptor 

successfully inhibits pathological angiogenesis seen in cancer, proliferative retinopathy, 

rheumatoid arthritis, and psoriasis (D'Andrea, Del Gatto et al. 2006, Del Gatto, Zaccaro 

et al. 2006). Likewise, TGF-β-mediated enhancement of glioma cell migration via the 

upregulation of αVβ3 integrin expression is abrogated by echistatin, a Arg-Gly-

Asp (RGD) containing snake venom which is a potent antagonist of αVβ3 integrin 

(Platten, Wick et al. 2000). 
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Table 5.1. Attempts to target αV integrin function as a therapeutic strategy to treat 

TGF-β associated disorders Adapted from (Mamuya and Duncan 

2012). 

Integrin 
 

Disorder Experimental findings 

 
αVβ3  
 
 
 
αVβ5 

 
1. Atherosclerosis 

 
2. Rheumatoid 

arthritis 
3. Systemic 

sclerosis 
 

 
1. Blockade of αVβ3 reduced neointima formation by reducing TGF-

β activity (Coleman, Braden et al. 1999) 
2. Integrin αVβ3 as a target for the treatment of rheumatoid arthritis 

and related rheumatic diseases(Wilder 2002). 
3. Increased expression of integrin αVβ5 contributes to the 

establishment of autocrine TGF-β signaling in scleroderma 
fibroblasts.(Asano, Ihn et al. 2005) 
 

 
αVβ6 

 
1. Inflammation 

 
 

2. Carcinoma 
 

3. Fibrosis 
 
 
 
4. Cataracts 
 

 
1. αVβ6 protects against inflammatory periodontal disease through 

activation of TGF-β (Ghannad, Nica et al. 2008). 
2. Blockade of integrin αVβ6 inhibits tumor progression in vivo by a 

TGF-β regulated mechanism (Koopman Van Aarsen, Leone et al. 
2008). 

3. Inhibitors of αVβ6 integrin or TGF-β down-regulate fibrosis 
following acute or ongoing pulmonary, biliary injury, renal injury 
(Wang, Dolinski et al. 2007, Horan, Wood et al. 2008). 

4. αVβ6 was hypothesized to be the main activator of TGF-β1 in the 
lens capsule and represents a possible target for the prevention of 
posterior capsular opacification (Ulrike, Stefan et al. 2005). 

 
αVβ8 

 
1. Immune 

dysfunction 
 

2. COPD 
 
 

3. Brain 
Hemorrhage 

 
1. αVβ8 -mediated TGF-β activation by dendritic cells is essential to 

prevent inflammatory bowel disease and autoimmunity (Travis, 
Reizis et al. 2007). 

2. αVβ8 integrin-mediated TGF-β activation amplifies pathologic 
epithelial-mesenchymal in chronic obstructive pulmonary disease 
patients (Araya, Cambier et al. 2007). 

3. αVβ8 acts as a central regulator of brain vessel homeostasis 
through its regulation of TGF-β activation (Cambier S, Stephanie 
Gline et al. 2005). 

 

Several integrin targeted therapies are in clinical development for the treatment 

of cancer (Nemeth, Nakada et al. 2007). For instance, Cilengitide or EMD12197 (Merck 
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KGaA, Darmstadt, Germany), is a small cyclic RGD designed peptide that selectively 

and competitively antagonizes ligand binding to αVβ3 and αVβ5 (Nisato, Tille et al. 

2003), which is being evaluated in a phase III clinical study for treatment of 

glioblastoma (Tabatabai, Weller et al. 2010). A number of monoclonal antibodies are 

also in clinical development. CNTO 95TM is a fully humanized monoclonal antibody 

targeting αV integrin which shows anti-tumor and anti-metastatic activity in animal 

models and is in a Phase I clinical trial for the treatment of solid tumors (Mullamitha, 

Ton et al. 2007, Chen, Manning et al. 2008). Likewise, VitaxinTM, also known as MEDI-

522 or Abegrin, is also a humanized monoclonal antibody that can block the interaction 

of αVβ3 with various ligands such as osteopontin, latent TGF-β and vitronectin (Wilder 

2002).  VitaxinTM is currently in clinical trials for the treatment of stage IV metastatic 

melanoma and androgen-independent prostate cancer (Tucker 2006).  Notably, 

MedImmune Inc. ended advanced human testing of VitaxinTM to treat rheumatoid 

arthritis and psoriasis in 2004 because it failed to show clinical benefits in initial studies 

(Rosenwald 2004). More recently, it was shown that pre-treament of osteoclasts with 

macrophage colony stimulating factor (M-CSF), which is known to activate αVβ3, 

enhanced Vitaxin’sTM inhibitory effect. Furthermore, the PI3-kinase inhibitor 

wortmannin abolished M-CSF's effects on the action of VitaxinTM suggesting that 

Vitaxin'sTM inhibitory effects require an activated form of αVβ3 integrin and that PI3-

kinase signaling is involved in the process (Gramoun, Shorey et al. 2007). On the other 

hand, numerous studies have shown that PI3K-Akt signaling is involved in TGF-β 

induced EMT and cell migration (Bakin, Tomlinson et al. 2000, Runyan, Schnaper et 
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al. 2004). This exemplifies how understanding the cross-talk between αV integrins 

and TGF-β signaling can enhance the therapeutic potential of not only VitaxinTM, but 

other integrin antagonists as well, to make better and more successful therapeutics.  

 

5.4 Conclusion    

Integrins and their signaling can regulate EMT by both perturbing cell adhesion 

and stimulating EMT associated gene expression. In addition, integrins containing the 

αV subunit can activate latent TGF-β to result in TGF-β induced EMT. Concomitantly, 

TGF-β signaling can activate integrins and also upregulate integrin expression. TGF-β 

signaling can also induce a contractile cytoskeleton and a stiff cellular 

microenvironment to further facilitate latent TGF-β activation by αV integrins. This 

altogether creates a feed-forward circle of cross regulation between αV integrins and 

TGF-β that can drive the EMT responsible for fibrotic PCO.  

Whether the EMT seen in Crybb2Phil/Phil mutant lenses is induced in a similar 

fashion as that occurring post-surgery or via the PI3K/AKT/mTOR and ERK cell 

survival pathways, this requires further investigation. Nonetheless, in this study, I 

demonstrated that integrins belonging to the αV family are not essential for lens 

maturation or homeostasis but are upregulated at the protein level in the LCs remaining 

on the lens capsule in a mouse model of cataract surgery.  Further, LCs lacking the αV 

integrin gene fail/delay entrance into the EMT that is known to cause fibrotic PCO.  

Since therapeutics targeting αV integrins have been developed and are in clinical trials 
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for other diseases (Nemeth, Nakada et al. 2007), my current findings strongly indicate 

that such drugs may also be used as therapeutics for preventing PCO and treating ASC. 
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