
SCATTERING OF TIME-HARMONIC ELECTROMAGNETIC
WAVES BY ANISOTROPIC INHOMOGENEOUS SCATTERERS OR

IMPENETRABLE OBSTACLES

PETER MONK∗ AND JOE COYLE†

Abstract. We investigate an overlapping solution technique to compute the scattering of time-
harmonic electromagnetic waves in two dimensions. The technique can be used to compute waves
scattered by penetrable anisotropic inhomogeneous scatterers or impenetrable obstacles. The major
focus is on implementing the method using finite elements. We prove existence of a unique solution
to the disctretized problem and derive an optimal convergence rate for the scheme, which is verified
numerical by examples.
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1. Introduction. We consider the scattering of time-harmonic electromagnetic
waves by a penetrable anisotropic medium of compact support or by a bounded im-
penetrable obstacle. Scattering by anisotropic media appears in various medical ap-
plications since the body, as a medium, is anisotropic (Colton and Monk [9]). The aim
is to obtain the scattered field given a known incident field and sufficient knowledge of
the scatterer and background in which it is contained. The scattered field propagates
in an unbounded region, which poses a problem when discretizing the equations and
numerically computing the field.

The first step in overcoming this difficulty is usually to introduce an artificial
boundary containing the scatterer. On this boundary, the Dirichlet-to-Neumann map
(Keller and Givoli [12], Masmoudi [21]) then provides a non-local boundary condition
accounting for the infinite domain. There are a variety of ways of implementing these
non-local conditions. For example, boundary integral equations, leading to weakly
singular integrals, can be used to approximate the Dirichlet-to-Neumann map (Chen
and Zhou [4], Hsiao [15, 16], Kirsch and Monk [20]). Alternatively, on a simple
auxiliary boundary, it is possible to use special function series (Keller and Givoli [12],
Kirsch and Monk [19]). An alternate approach is to approximate the Dirichlet-to-
Neumann map using local differential operators to obtain a local absorbing condition.
This is a very popular approach (Engquist and Majda [10], Stupfel and Mittra [26],
Jin [18]), but the accuracy of such boundary conditions is difficult to assess.

A new class of methods due to Bérenger [1] also deserves mention. This method
perturbs the differential equation in a layer (the “perfectly matched layer”) near the
artificial boundary to absorb scattering solutions and prevent unphysical reflections
from the artificial boundary. Although very effective, this technique is limited to
rather simple convex artificial boundaries (Collino and Monk [7], Chew and Teixeria
[5]).

In this paper, we use a technique first suggested by Jami and Lenoir [17] and
used extensively by Hazard and Lenoir [13]. This method is based on an overlapping
solution technique, which we shall discuss shortly. It has the advantage of guaranteed
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accuracy (shared with the “exact” methods coupling integral equations or series solu-
tion methods discussed previously), but without the need to evaluate weakly singular
integrals. In addition, the artificial boundary can be of arbitrary shape. The major
drawbacks are that the resulting matrix is general (not even complex symmetric), and
the coupling procedure reduces the sparsity of the matrix as we shall discuss in §5.2.
We are not aware of any existing discretization error study for methods of this type.
Deriving such a result as well as demonstrating it numerically are the major results
of this paper.

2. Setting up the problem. Consider the scattering of electromagnetic waves
from an infinitely long cylinder containing an anisotropic inhomogeneous medium.
Denote by ε and µ the electric permittivity and magnetic permeability. The electric
and magnetic fields, denoted Ê and Ĥ, satisfy the following Maxwell equations:

ε
∂Ê
∂t

+ σÊ−∇× Ĥ = 0, µ
∂Ĥ
∂t

+∇× Ê = 0.

We are interested in finding the solution at a fixed frequency ω. Let ε0 and µ0 denote
the electric permittivity and magnetic permeability of free space. Define the wave
number k = ω

√
ε0µ0 and the index of refraction

N (x) =
1
ε0

(
ε (x) + i

σ (x)
ω

)
,

and consider the special case of an anisotropic medium: an orthotropic medium. We
then have

ε (x) =

 ε11 (x) ε12 (x) 0
ε21 (x) ε22 (x) 0

0 0 ε33 (x)

 .

We also assume that σ (x) and µ(x) have the same form as ε and that x = (x, y) ,
so these quantities are independent of z. Also define n(x) = µ33

µ0
. For a fixed fre-

quency, the time-harmonic electric and magnetic fields can be written Ê (x, t) =
εo
− 1

2 E (x) e−iωt and Ĥ (x, t) = µo
− 1

2 H (x) e−iωt so that

∇×E− iknH = 0, ~∇×H + ikNE = 0,(2.1)

where ~∇ is the vector curl of a scalar. Here, E and H are assumed to be independent
of z (with H perpendicular to the xy-plane):

E =

 E1 (x, y)
E2 (x, y)

0

 , H =

 0
0

H3 (x, y)

 .

Under these assumptions, the Maxwell system (2.1) reduces to solving the following
general Helmholtz equation for u = H3 (x, y) :

∇ · A∇u+ k2n (x)u = 0,

where

A =
1

N11N22 −N12N21

(
N11 N21

N12 N22

)
.(2.2)
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To provide a broad setting for the theory and consequently for implementing
the finite element scheme, we consider a bounded impenetrable scatterer, D, with
smooth boundary Γ contained in a bounded region outside of which A = I and n = 1.
This corresponds to the cross section of the cylinder. We denote the unbounded
complement of D̄ in R2 by Ω.

Thus, the problem we wish to approximate is the problem P of finding u such
that

∇ · A∇u+ k2nu = f in Ω,(2.3)
u = 0 on Γ,(2.4)

lim
r→∞

√
r

(
∂us

∂r
− ikus

)
= 0,(2.5)

u = ui + us in Ω.(2.6)

Here, the incident field ui (x) is taken to be either a plane wave,

ui (x) = ui (x,d) = eikx·d

in the direction d, |d| = 1, where we take f = 0, or a point source (the fundamental
solution),

ui (x) = ui (x,y) =
i

4
H

(1)
0 (k|x− y|) ,

where x is the observation point, y is the source point located outside of the scatterer,
and f = δ(x − y). Condition (2.5) is known as the Sommerfeld radiation condition
and holds uniformly in azimuth angle θ. Equation (2.4) is the metallic or perfectly
conducting boundary condition. Motivated by Potthast [23], we assume A (given by
(2.2)) is a complex and uniformly bounded matrix that can be pointwise diagonalized
by a unitary complex matrix, U :

A(x) = U∗(x)AΛ(x)U(x),

where AΛ is a diagonal matrix. We assume further that the real part of AΛ has
uniformly positive diagonal entries, so that

amin |s|2 ≤ sTRe (AΛ) s ≤ amax |s|2 for all s in C2,(2.7)

where 0 < amin ≤ amax <∞.
We also assume that the domain, Ω, can be decomposed into a finite number

of disjoint open sets Ωm, m = 0...M , where
⋃M

i=1 Ωi (Ωi denotes the closure of Ωi)
completely contains the anisotropic inhomogeneous medium and each Ωi, i 6= 0, is
bounded with a uniformly Lipschitz-continuous boundary. We choose Ω0 to be the
exterior of

⋃M
i=1 Ωi and assume that in every subdomain A and n are continuously

differentiable and satisfy one of the following conditions:
1. A is a positive definite matrix, n is a strictly positive scalar function, both

are real-valued, and each component of A, as well as n, are in H3(Ωm) (this
implies that each component of A, as well as n, are continuously differentiable
in Ωm, [24] Corollary 6.92); or

2. A and n are complex-valued with A being semi-coercive, by which we mean

−
(
sT Im(AΛ)s

)
≥ α|s|2 for all s in C2,(2.8)
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where either

i. α > 0 and Im (n) ≥ 0; or
ii. α ≥ 0 and Im (n) ≥ δ > 0.

Note that (2.8) implies, on domains for which condition 2 is satisfied, that

−Im
(∫

Ωm

∇u · A∇udA
)

= −
(∫

Ωm

U∇u · Im(AΛ)U∇udA
)

≥ α ‖∇u‖2L2(Ωm) .(2.9)

The purpose of the next two sections is to establish uniqueness of the weak solution
to (2.3)-(2.6) and then show that an equivalent problem to P can be written as a
Fredholm equation from which existence follows. In these sections, we follow closely
the techniques of Hazard and Lenoir [13].

For the integral equation approach to this problem in [23], it is assumed that N
(and, consequently, A) is continuously differentiable. The approach in this paper is
by a variational formulation and allows us to establish existence and uniqueness for
piecewise smooth coefficients A and n. Another motivating factor for presenting this
analysis is that it leads directly to a finite element scheme.

3. Uniqueness. We show here that, under the conditions outlined in the previ-
ous section, the problem P has at most one weak solution. By linearity, this amounts
to proving that if the incident wave vanishes, the only solution of P in H1

loc (Ω) is
u ≡ 0, where

H1
loc (Ω) =

{
w : φw ∈ H1

0 (Ω) ∀φ ∈ C∞0 (Ω)
}
.

Theorem 3.1. If u ∈ H1
loc(Ω) is a solution of P where the coefficients satisfy the

conditions outlined in §2 and there is no incident wave, then u ≡ 0.
Proof. Since there is no incident wave, ui = 0 and f = 0 in P. We begin by

proving u = 0 on Ωo and then work through the remaining subdomains.
Let BR be a ball of radius R and define ΩR = BR

⋂
Ω. If u is a solution of P,

then u satisfies

−
∫

ΩR

∇u · A∇udA+
∫

ΩR

∇ · (uA∇u) dA+ k2

∫
ΩR

n|u|2dA = 0.(3.1)

For R sufficiently large, using the Divergence Theorem and the boundary condition
(2.5) on Γ, we have∫

∂BR

u
∂u

∂ν
ds =

∫
ΩR

∇u · A∇udA− k2

∫
ΩR

n|u|2dA.(3.2)

Hence,

Im

(∫
∂BR

u
∂u

∂ν
ds

)
= Im

(∫
ΩR

∇u · A∇udA− k2

∫
ΩR

n|u|2dA
)

and since subdomains that satisfy condition 1, including Ω0, do not contribute to the
right-hand side,

Im

(∫
∂BR

u
∂u

∂ν
ds

)
= Im

( ∑
Ωm of cond. 2

∫
Ωm

∇u · A∇udA− k2

∫
Ωm

n|u|2dA

)
.
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The right-hand side is non-positive due to (2.8). Thus, for all sufficiently large R,

Im

(∫
∂BR

u
∂u

∂ν
ds

)
≤ 0,

from which it follows via Rellich’s Lemma (Colton and Kress [8]) that u = 0 in Ωo.
Note that, in Ωo, u ∈ H1

loc(Ω0) is a weak solution of 4u + k2u = 0 and hence a
classical solution in Ω0 [24] so the result of [8] applies.

Using (3.2) and the fact that, on Ω0 and ∂Ω, u = 0, it follows by continuity that
u vanishes in ∂Ω0, and we have

M∑
m=1

(∫
Ωm

−∇u · A∇udA+ k2

∫
Ωm

n|u|2dA
)

= 0.

If A satisfies condition 2 on a particular subdomain, then taking the imaginary part
leaves ∑

Ωm of cond. 2

(
Im

(∫
Ωm

−∇u · A∇udA
)

+ k2Im

(∫
Ωm

n|u|2dA
))

= 0.

By (2.9), for each Ωm where A and n satisfy condition 2, we have

Im

(∫
Ωm

−∇u · A∇udA
)

= Im

(
k2

∫
Ωm

n|u|2dA
)

= 0.

Under the assumptions of condition 2i, we first conclude that ∇u = 0 (u is a
constant) and it then follows, since u satisfies (2.3) with f = 0, that u = 0. If
condition 2ii holds, u = 0 directly. In either situation, we conclude that u = 0 in each
subdomain where A and n satisfy condition 2.

Let Ωm (m ≥ 0) be a given subdomain of Ω where A and n satisfy condition 1.
It will be shown that if a solution u vanishes in some subdomain Ωm′ adjacent to Ωm

(i.e., they share an edge), then it also vanishes in Ωm. On Ωm, u satisfies the equation

−
∫

Ωm

∇u · A∇udA+
∫

∂Ωm

u (A∇u) · νds+ k2

∫
Ωm

n|u|2dA = 0.

The following unique continuation result is due to Hörmander ([14], Theorem
17.2.1). We give a special case applicable to this problem.

Theorem 3.2. Let O be a bounded domain in R2 and suppose that u ∈ H1
loc(O)

satisfies (2.3) with ∇ · A∇u ∈ L2
loc(O). Suppose in addition that A and n are real-

valued and uniformly Lipschitz continuous in O. Finally, suppose that u vanishes on
a ball, B ⊂ O. Then u ≡ 0 in the whole domain O.

It is shown in Gilbarg and Trudinger [11] that, under the assumptions on A and
n, u ∈ H2

loc(Ωi) (and, hence, ∇ ·A∇u ∈ L2
loc(Ωi)), where Ωi is a subdomain in which

A and n satisfy condition 1. We can thus apply Hörmander’s theorem.
Suppose that A and n satisfy condition 1 in Ωm and that the subdomain Ωm′

has part of its boundary in common with ∂Ωm. Consider the domain Ω̃ = Ωm ∪ B,
where B is a small ball centered at a point of ∂Ωm ∩ ∂Ωm′ , with B contained in
Ωm ∪ Ωm′ . Let Ã and ñ, respectively, denote uniformly Lipschitz continuous and
real-valued extensions of A and n from Ωm to Ω̃. These functions can be built by
using the Calderon-Zygmund Extension Theorem (Wloka [27], Theorem 5.4) applied
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Fig. 4.1. Orientation of normals and geometry used in the existence proof. The shaded region
is the impenetrable scatterer.

to functions in H3(Ωm). This extension preserves continuity and differentiability at
the boundary of Ωm (Wloka [27], Addendum 5.2). If B is small enough, Ã is positive
definite and ñ is positive. Using the fact that u vanishes on Ωm′ and satisfies (2.3)
with f = 0 on Ωm, we see that u satisfies

∇ · Ã∇u+ k2ñu = 0 in Ω̃,

and there is an open ball B̃ contained in B (and, hence, contained in Ω̃) on which u
vanishes. Hence, by the result of Hörmander, u vanishes in Ω̃, which shows that u
vanishes in Ωm. If A and n satisfy condition 1 in Ωm, then, by (2.6), u is constant.
Since u vanishes on ∂Ωm ∩ ∂Ωm′ , u is zero in Ωm. This proves that the only solution
to P, with ui = 0 and f = 0, is u = 0, so the problem has at most one solution.
Hence, the uniqueness theorem has been proved.

4. Existence. The first step in proving existence is to derive a reduced problem
suitable for later finite element discretization. Let F be a closed uniformly Lipschitz
curve surrounding D and Σ a closed uniformly Lipschitz curve surrounding F which
has no point in common with F . We assume A = I and n = 1 in a neighborhood and
outside of F . Denote by Ω̂ the bounded part of Ω delimited by Σ, and by Ω̂i and Ω̂0

the parts of Ω̂ that are located, respectively, inside and outside of F . Let Ωe denote
the region exterior to Σ. These regions and the orientation of the unit normals are
indicated in Figure 4.1.

Let Φ (x,y) = i
4H

(1)
0 (k|x− y|), where H(1)

0 (k|x− y|) is the Hankel function of
the first kind and order zero. Note that Φ satisfies (2.3) with A = I and n = 1, as
well as (2.4) with respect to both variables x and y, except where x = y.

Outside of F, the solution u of P satisfies

∆u+ k2u = f,(4.1)

lim
r→∞

√
r

(
∂us

∂r
− ikus

)
= 0,(4.2)

u = ui + us.(4.3)

In order to obtain a representation of u outside F , the following theorem (found
in [3]) is a useful starting point.

Theorem 4.1. Let ΩF denote the unbounded region outside by F . Let w ∈
C2 (ΩF ) ∩ C1

(
ΩF

)
be a solution of (4.1) satisfying (4.2). Then, for x ∈ ΩF ,

w (x) =
∫

F

(
w (y)

∂Φ
∂νy

(x,y)− ∂w

∂νy
(y) Φ (x,y)

)
dsy.
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Hence, we define

I[F ;u] :=
∫

F

(
u (y)

∂Φ
∂νy

(x,y)− ∂u

∂νy
(y)Φ (x,y)

)
dsy.(4.4)

Note that, for x outside of F, we have

us (x) = I[F ;us].(4.5)

Since I[F ; ·] is linear and I[F ;ui] = 0 for x outside F, it follows that

u (x) = ui + I[F ;u].

Now define the boundary operator on Σ as follows:

L (u) :=
(
∂u

∂νx
− iλu

)∣∣∣∣
Σ

,

where λ is a nonzero real parameter.
The restriction of u to Ω̂, denoted by û, is then a solution to the following problem,

P′, set in the bounded domain Ω̂:

∇ · A∇û+ k2nû = 0 in Ω̂,
û = 0 on Γ,

L (û− I[F ; û]) = L
(
ûi
)

on Σ.

To obtain a variational formulation of the above problem, it is necessary to modify
the formula for I[F ; ·] to allow for less smooth functions, i.e., functions in H1(Ω̂). Let
Ψ (y) be a function in C∞0 (Ω̂) such that Ψ = 0 in a neighborhood of Σ and Ψ = 1 in
a neighborhood of F . Define (RΦ) (x,y) = Ψ (y) Φ (x,y) and note that

RΦ|F = Φ(4.6)

and

RΦ|Σ = 0.(4.7)

Using (4.4) and (4.6), we have

us (x) =
∫

F

us (y)
∂Φ
∂νy

(x,y) dsy −
∫

F

∂us

∂νy
(y)RΦ (x,y) dsy.(4.8)

By Green’s first identity and taking into account the direction of the normals we
obtain

us (x) = −k2

∫
Ω̂o

RΦ (x,y)us (y) dAy +
∫

F

us (y)
∂Φ
∂νy

(x,y) dsy

+
∫

Ω̂o

∇yu
s (y) · ∇yRΦ (x,y) dAy := IR[F ;us].(4.9)

More generally, for every field u ∈ C2 (Ωo)
⋂
C1
(
Ωo

)
which satisfies (2.3) in Ω̂o it is

true that

I[F ;u] = IR[F ;u].
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However, IR[F ; ·] extends I[F ; ·] to a map from H1(Ω̂o) → C∞ (Ωe) .
Define the space

W :=
{
f ∈ L2(Ω̂) : fx, fy ∈ L2(Ω̂) and f |Γ = 0

}
,

equipped with the usual H1(Ω̂) norm, denoted ‖ · ‖W , and inner product

(u, v)W =
∫

Ω̂

(u(x)v(x) +∇u(x) · ∇v(x)) dx.

The reduced problem P′′ can now be written:
Find û in W such that

∇ · A∇û+ k2nû = 0 in Ω̂,(4.10)
û = 0 on Γ,(4.11)

L
(
û− IR[F ; û]

)
= L

(
ûi
)

on Σ.(4.12)

It can be seen, by construction, that any solution u ∈ H1
loc(Ω) of (2.3)-(2.6)

satisfies (4.10)-(4.12). Furthermore, if û ∈W satisfies (4.10)-(4.12), then

u =
{
û in Ω̂,
ui + I[F ; û] in Ωe,

satisfies (2.3)-(2.6). So the problems are equivalent and uniqueness is established for
(4.10)-(4.12) by our argument from the last section.

4.1. The Fredholm result. To show that (4.10)-(4.12) can be rewritten as
a Fredholm equation, we use a variational formulation suitable for finite element
discretization . Multiplying (4.10) by an arbitrary v in Wand integrating over Ω̂
yields ∫

Ω̂

v (∇ · A∇û) dA+ k2

∫
Ω̂

vnûdA = 0.

Using the vector identity

∇ · (vA∇û) = ∇v ·A∇û+ v (∇ ·A∇û) ,

and the fact that ∂Ω̂ = Γ ∪ Σ, we obtain

0 =
∫

Ω̂

∇v · (A∇û) dA− k2

∫
Ω̂

nûvdA−
∫

Σ

∂û

∂ν
vds.

On Σ,

∂û

∂ν
= L (û) + iλû = L

(
IR[F ; û]

)
+ L

(
ui
)

+ iλû,

and this results in∫
Σ

vL
(
ui
)
ds = −k2

∫
Ω̂

vnûdA+
∫

Ω̂

∇v · A∇ûdA

−
∫

Σ

vL
(
IR[F, û]

)
ds− iλ

∫
Σ

vûds.
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Now it is easily seen that P′′ is equivalent to:
Find u in W such that

ar (u, v) = lr (v) for all v in W(4.13)

where ar (·, ·) is the sesquilinear form defined on W by

ar (u, v) = −k2

∫
Ω̂

vnudA+
∫

Ω̂

∇v · A∇udA

−
∫

Σ

vL
(
IR[F, u]

)
ds− iλ

∫
Σ

vuds(4.14)

and lr (·) is the semilinear form given by

lr (v) =
∫

Σ

vL
(
ui
)
ds.

Consider then the operators Jr and Kr defined on W by

(Jru, v)W =
∫

Ω̂

∇v · A∇udA− iλ

∫
Σ

vuds+ k2

∫
Ω̂

vudA for all v in W,

and

(Kru, v)W = −k2

∫
Ω̂

vnudA−
∫

Σ

vL
(
IR[F, u]

)
ds− k2

∫
Ω̂

vudA for all v in W.

Let Lr be the vector of W associated with the semilinear form lr (·) by the relation

(Lr, v)W = lr (v) for all v in W.

The variational formulation (4.13) amounts to the following operator equation:

(Jr +Kr)u = Lr for u in W.(4.15)

Theorem 4.2. The reduced problem P′′ has a unique solution in W.
The proof is based on showing that Jr and Kr, respectively, are an isomorphism

and a compact operator in W. The Fredholm alternative shows that if the only solu-
tion to (4.15) with Lr = 0 is the trivial solution u = 0, then (4.15) has exactly one
solution for every Lr ∈W . The required uniqueness property follows from the unique-
ness of the solution of the problem P (Theorem 3.1), and the previously established
equivalence between the latter problem and P′′.

Lemma 4.3. Jr is a bounded invertible operator in Wwith bounded inverse.
Proof. There exists positive constants C1 and C2 such that

|(Jrv, u)W | ≤ C1

∫
Ω̂

∣∣∇v∇u∣∣ dA+ C2

∫
Σ

|vu| ds+ |k|2
∫

Ω̂

|vu| dA.

Then, by the Schwarz inequality and the trace theorem, there exists a positive constant
C3 such that

|(Jrv, u)W | ≤ C3 ‖u‖W ‖v‖W

and Jr is continuous.
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By virtue of the Lax-Milgram Lemma, it is enough to show that the sesquilinear
form associated with Jr is coercive in W, i.e.,

|(Jrv, v)W | ≥ α ‖v‖2W .

But

|(Jrv, v)W | ≥
∣∣∣(Re (A)∇v,∇v

)
L2(Ω̂)

+ k2 ‖v‖2L2(Ω̂)

∣∣∣ ,
and, by (2.7),

|(Jrv, v)W | ≥ C
(
‖∇v‖2L2(Ω̂) + k2 ‖v‖2L2(Ω̂)

)
,

and the lemma follows.
Lemma 4.4. Kr is a compact operator in W .
Proof. Write Kr as follows:

Kr = −KΣ
r − k2KΩ̂

r ,

where (
KΣ

r u, v
)
W

=
∫

Σ

vL
(
IR[F, u]

)
ds for all v ∈W

and (
KΩ̂

r u, v
)

W
=
∫

Ω̂

vu (n+ 1) dx for all v ∈W.

Existence of these operators follows from the Lax-Milgram Lemma.
(i) To see that KΩ̂

r is compact, note that∣∣∣(KΩ̂
r u, v

)
W

∣∣∣ ≤ ∫
Ω̂

|vu (n+ 1)| dx ≤ C ‖u‖L2(Ω̂) ‖v‖L2(Ω̂) ,

where C = max
x∈Ω̂

[n (x)]+1. Thus, if W ∗ is the dual space of Wand (KΩ̂
r )∗ the adjoint,

then

∥∥∥(KΩ̂
r

)∗
v
∥∥∥

W
= sup

u∈W

∣∣∣(KΩ̂
r u, v

)
W

∣∣∣
‖u‖W

≤
C ‖u‖2L2(Ω̂) ‖v‖

2
L2(Ω̂)

‖u‖W

≤ C ‖v‖L2(Ω̂) .

Thus, (KΩ̂
r )∗ is a continuous operator from L2(Ω̂) into W . Compactness of (KΩ̂

r )∗

and, hence, of KΩ̂
r follows from the compactness of the canonical injection from W

into L2(Ω̂).
(ii) To see that KΣ

r is compact it is first easily seen that IR[F ;u] is infinitely
differentiable in a vicinity of Σ, and if P denotes any derivative operator on Σ (of any
order), it follows that∣∣PIR[F ;u] (x)

∣∣ ≤ CP

(
‖u‖L2(F ) + ‖u‖L2(Ω̂0) + ‖∇u‖L2(Ω̂0)

)
at every point x ∈ Σ. Note here that CP is positive and depends on P. Thus

|PIR[F ;u] (x) | ≤ CP ‖u‖W .
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In particular, there exist a constant, C ≥ 0, such that∥∥L (IR[F ;u]
)∥∥

L2(Σ)
≤ C ‖u‖W .

It then follows that

|
(
KΣ

r u, v
)
W
| ≤ C ‖v‖L2(Σ) ‖u‖W

and ∥∥∥(KΣ
r

)∗
v
∥∥∥

W
= sup

u∈W

|
(
KΣ

r u, v
)
W
|

‖u‖W

≤ C ‖v‖L2(Σ) ,

where
(
KΣ

r

)∗ denotes the adjoint.
Thus,

(
KΣ

r

)∗ is as a continuous operator from L2 (Σ) into W. The trace operator
v → v|

H
1
2 (Σ)

is continuous. Compactness of
(
KΣ

r

)∗ (and, consequently, KΣ
r ) follows

from the compactness of the canonical embedding of H
1
2 (Σ) into L2 (Σ).

Thus, we have shown that Jr and Kr are an isomorphism and a compact operator,
respectively. Existence follows from the Fredholm alternative.

5. Finite element analysis. Here we discretize the variational formulation de-
rived in the previous section and use the finite element method to compute the scat-
tered field. Below we will show that there exists a unique solution to the discretized
problem and, at the same time, derive an estimate of the rate of convergence.

Let Wh be a finite dimensional subspace of W made up of piecewise linear func-
tions defined on a regular mesh, where h denotes the minimum diameter of a circle
that could contain each element of the mesh. A key assumption is that F and Σ
coincide with edges of the mesh.

Standard finite element theory (e.g., Brenner and Scott [2]) shows that the fol-
lowing inequality holds, where uI denotes the interpolant of u:

‖u− uI‖L2(Ω̂) + h ‖∇(u− uI)‖L2(Ω̂) ≤ Ch2 ‖u‖H2(Ω̂) .(5.1)

The finite-dimensional problem is then to find uh ∈Wh such that

ar,h (uh, vh) = lr (v) for all vh in Wh,(5.2)

where ar,h (·, ·) is the approximate bilinear form defined as

ar,h (uh, vh) = −k2

∫
Ω̂

vhnuhdA+
∫

Ω̂

∇vh · A∇udA

−
∫

Σ

vhL
(
IR
h [F, uh]

)
ds− iλ

∫
Σ

vhuhds

and we take IR
h , the discrete version of IR, to be defined as follows:

IR
h [F ;uh] :=

∫
F

uh (y)
∂Φ
∂νy

(x,y) dsy − k2

∫
Ω̂o

vh (x,y)uh (y) dAy

+
∫

Ω̂o

∇yuh (y) · ∇yvh (x,y) dAy(5.3)

where, for each x in a neighborhood of Σ, vh (x, ·) ∈ Wh|Ω̂o
interpolates RΦ (x, ·) as

a function on F and vanishes on Σ, but is otherwise arbitrary.
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5.1. Existence and uniqueness. In this section, existence and uniqueness of
the approximate solution uh ∈ Wh will be discussed. The sesquilinear form (4.14)
is non-Hermitian and, more importantly, not coercive. As a result, the Lax-Milgram
Lemma cannot be directly applied to prove existence and uniqueness. We need to use
a G̊arding-type inequality.

First, we prove a preliminary result that justifies our choice of vh in (5.3).
Lemma 5.1. IR

h [F ;uh] is independent of the choice of vh provided that uh satisfies
(5.2).

Proof. Let v(1)
h and v(2)

h be two finite element functions as defined after (5.3) and
define

IR,j
h [F, uh] :=

∫
F

uh (y)
∂Φ
∂νy

(x,y) dsy − k2

∫
Ω̂o

v
(j)
h (x,y)uh (y) dAy

+
∫

Ω̂o

∇yuh (y) · ∇yv
(j)
h (x,y) dAy

for j = 1, 2. Taking the difference,

IR,1
h [F, uh]− IR,2

h [F, uh] = −k2

∫
Ω̂o

(
v
(1)
h (x,y)− v

(2)
h (x,y)

)
uh (y) dAy

+
∫

Ω̂o

∇yuh (y) · ∇y

(
v
(1)
h (x,y)− v

(2)
h (x,y)

)
dAy.

But, v(1)
h − v

(2)
h = 0 at the interpolation points on F and Σ and, since v(1)

h − v
(2)
h

is piecewise linear and F and Σ coincide with the edges of the mesh, we conclude
v
(1)
h − v

(2)
h = 0 on F and Σ. As a result, v(1)

h − v
(2)
h can be extended by zero to a

function wh ∈Wh, where wh = 0 on F and Σ. Hence,

IR,1
h [F, uh]− IR,2

h [F, uh] = ar,h (uh, wh) = lr (wh) .

Since lr(wh) depends only on wh|Σ, we have that

lr (wh) = 0.

This implies that

IR,1
h [F, uh] = IR,2

h [F, uh],

which is the desired result.
We now proceed with a series of lemmas that ultimately lead to the proof of

existence of a unique uh in Wh that satisfies (5.2).
Lemma 5.2. For every v in W , there exists a positive constant C such that∥∥LIR[F ; v]− LIR

h [F ; v]
∥∥

L2(Σ)
≤ Ch ‖v‖W .

Furthermore, if vI is the interpolant of a function v in W ∩H2(Ω̂), then∥∥LIR[F ; vI ]− LIR
h [F ; vI ]

∥∥
L2(Σ)

≤ Ch ‖v‖H2(Ω̂) .
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Proof. Let vI denote the interpolant of RΦ on Ω̂. From the definitions of IR
h [F, ·]

and the operator L, which is linear, we have

LIR[F ; v]− LIR
h [F ; v] =

∂

∂νx

∫
Ω̂o

∇yv (y) · ∇yE (x,y) dAy

−k2 ∂

∂νx

∫
Ω̂o

E (x,y) v (y) dAy

−iλ
∫

Ω̂o

∇yv (y) · ∇yE (x,y) dAy

+iλk2

∫
Ω̂o

E (x,y) v (y) dAy,

where E (x,y) = RΦ (x,y)− vI (x,y). Hence,∥∥LIR[F ; v]− LIR
h [F ; v]

∥∥
L2(Σ)

≤ C

(
sup
x∈Σ

∣∣∣∣∫
Ω̂o

(νx · ∇xE (x,y)) v (x,y) dAy

∣∣∣∣
+sup

x∈Σ

∣∣∣∣∫
Ω̂o

(∇y∇xE (x,y)) · ∇yv (x,y) dAy

∣∣∣∣
+ sup

x∈Σ

∣∣∣∣∫
Ω̂o

E (x,y) v (x,y) dAy

∣∣∣∣
+ sup

x∈Σ

∣∣∣∣ ∫
Ω̂o

∇yE (x,y) · ∇yv (x,y) dAy

∣∣∣∣).
We can now estimate each term on the right-hand side of the above equation. For
example,

sup
x∈Σ

∣∣∣∣∫
Ω̂o

(νx · ∇xE (x,y)) v (x,y) dAy

∣∣∣∣ ≤ sup
x∈Σ

(
‖∇xE (x,y)‖L2(Ω̂o)

)
‖v‖L2(Ω̂o) ,

where

∇xE = ∇x (Ψ(y)Φ(x,y))−∇xvI(x,y) = Ψ(y)∇xΦ(x,y)−∇xvI(x,y).

Clearly, ∇xE ∈ L2(Ω̂). Similar results hold for the other terms. The first result follows
from the above inequalities and the second result follows by adding and subtracting
v and using the triangle inequality:∥∥LIR[F ; vI ]− LIR

h [F ; vI ]
∥∥

L2(Σ)
≤ Ch‖vI‖W

≤ Ch

(
‖vI − v‖W + ‖v‖W

)

≤ Ch

(
h‖v‖H2(Ω̂) + ‖v‖W

)

≤ Ch‖v‖H2(Ω̂).
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The lemma is proved.
Lemma 5.3. For every v, w in W ,

|ar,h(v, w)− ar(v, w)| ≤ Ch‖v‖W ‖w‖W .

Also, if vI is the interpolant of v in W and ξh in Wh is arbitrary, then

|ar,h (vI , ξh)− ar (vI , ξh)| ≤ Ch ‖v‖H2(Ω̂) ‖ξh‖W .

Proof. Using the previous lemma,

|ar,h (vI , ξh)− ar (vI , ξh)| =
∣∣∣∣∫

Σ

(
LIR[F ; vI ]− LIR

h [F ; vI ]
)
ξhds

∣∣∣∣
≤ C

∥∥LIR[F ; vI ]− LIR
h [F ; vI ]

∥∥
L2(Σ)

‖ξh‖L2(Σ)

≤ Ch ‖v‖W ‖ξh‖W .

The second result in the lemma follows by the triangle inequality:

|ar,h (vI , ξh)− ar (vI , ξh) | ≤ Ch ‖vI‖W ‖ξh‖W

≤ Ch
(
‖vI − v‖W + ‖v‖W

)
‖ξh‖W

≤ Ch
(
h ‖v‖H2(Ω̂) + ‖v‖W

)
‖ξh‖W

≤ Ch ‖v‖H2(Ω̂) ‖ξh‖W ,

and both inequalities are proved.
We now have a bound for the discretized sesquilinear form.
Lemma 5.4. There exists a positive constant C such that, if u ∈ H2(Ω̂),

|ar,h (eh, eh) | ≤ Ch ‖u‖H2(Ω̂) ‖eh‖W ,

where eh = wh − uh, wh ∈W.
Proof. The analysis is similar to the proof of the First Strang Lemma (see Ciarlet

[6]). We first rewrite ar,h (eh, eh) as follows:

ar,h (eh, eh) = ar,h (wh, eh)− ar,h (uh, eh)
= ar,h (wh, eh)− l (eh)
= ar,h (wh, eh)− l (eh) + ar (wh, eh)− ar (wh, eh)
= ar,h (wh, eh)− l (eh) + ar (wh − u, eh) + ar (u, eh)− ar (wh, eh)
= ar (wh − u, eh) + (ar,h (wh, eh)− ar (wh, eh)).

Thus,

|ar,h (eh, eh)| ≤ |ar (wh − u, eh)|+ |ar,h (wh, eh)− ar (wh, eh)| .
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By the continuity of ar (·, ·) shown in the previous section and taking the supremum
over ξh in Wh,

|ar,h (eh, eh) | ≤ C

(
‖wh − u‖W + sup

ξh∈Wh

|ar,h (wh, ξh)− ar (wh, ξh) |
‖ξh‖W

)
‖eh‖W .

Choosing wh to be the interpolant of u (eh = uI − u) and using Lemma 5.3 yields

|ar,h (eh, eh) | ≤ Ch ‖u‖H2(Ω̂) ‖eh‖W ,

which is the desired result.
Lemma 5.5. The following G̊arding-type inequality holds for all w in W :

|ar,h (w,w) | ≥ C1 ‖w‖2W − C2

(
‖w‖2L2(Ω̂) + ‖w‖2L2(F ) + h2 ‖w‖2W

)
,

where C1 and C2 are positive constants.
Proof. Using the diagonalizability assumptions on A and standard estimates,

|ar,h (w,w) | ≥
∣∣∣∣∫

Ω̂

∇w · A∇wdA− iλ

∫
Σ

|w|2ds
∣∣∣∣− |k|2 ∫

Ω̂

|n| |w|2 dA

−‖w‖L2(Σ)

∥∥L (IR
h [F,w]

)∥∥
L2(Σ)

≥

[(∫
Ω̂

U∇w ·Re (AΛ)U∇wdA
)2

+
(∫

Ω̂

U∇w · Im (AΛ)U∇wdA− λ

∫
Σ

|w|2ds
)2
] 1

2

− |k2|
∫

Ω̂

|n||w|2dA− ‖w‖L2(Σ)

∥∥L (IR
h [F,w]

)∥∥
L2(Σ)

.

By (2.9), (∫
Ω̂

U∇w · Im (AΛ)U∇wdA− λ

∫
Σ

|w|ds
)2

≥
(
λ

∫
Σ

|w|ds
)2

.

Then, provided λ > 0, there exists positive constants C1, C2 and C3 such that

|ar,h (w,w) | ≥ C1 ‖∇w‖2L2(Ω̂) + C2 ‖w‖2L2(Σ) − C3 ‖w‖L2(Ω̂)

−‖w‖L2(Σ)

∥∥L (IR[F,w]
)∥∥

L2(Σ)

≥ C1 ‖∇w‖2L2(Ω̂) + C2 ‖w‖2L2(Σ) − C3 ‖w‖L2(Ω̂)

−‖w‖L2(Σ)

∥∥L (IR
h [F,w]

)
− L

(
IR[F,w]

)∥∥
L2(Σ)

(5.4)

−‖w‖2L2(Σ)

∥∥L (IR[F,w]
)∥∥

L2(Σ)
.
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By applying the arithmetic-geometric mean to (5.4) for all ε > 0 and for all δ > 0,

|ar,h (w,w) | ≥ C1 ‖∇w‖2L2(Ω̂) + C2 ‖w‖2L2(Σ) − C3 ‖w‖2L2(Ω̂)

−
(
ε

2
‖w‖2L2(Σ) +

1
2ε

∥∥L (IR[F,w]
)∥∥2

L2(Σ)

)

−
(
δ

2
‖w‖2L2(Σ) +

1
2δ

∥∥L (IR
h [F,w]

)
− L

(
IR[F,w]

)∥∥2

L2(Σ)

)
,

and, taking ε = δ = C2,

|ar,h (w,w) | ≥ C1 ‖∇w‖2L2(Ω̂) − C3 ‖w‖2L2(Ω̂)

− 1
2C2

(∥∥L (IR[F,w]
)∥∥2

L2(Σ)
(5.5)

+
∥∥L (IR

h [F,w]
)
− L

(
IR[F,w]

)∥∥2

L2(Σ)

)
.

The idea now is to bound (5.5). Using integration by parts,

IR[F,w] =
∫

F

w (y)
∂Φ
∂νy

(x,y) dsy − k2

∫
Ω̂0

Rφ (x,y)w (y) dAy

+
∫

Ω̂0

w (y)4yRΦ (x,y) dAy −
∫

F

w (y)
∂RΦ
∂νy

(x,y) dsy.

The derivative, ∂
∂νx

, on the operator L is only applied to RΦ since w depends on the
variable of integration y; thus, there exists a positive C such that∥∥L (IR[F,w]

)∥∥2

L2(Σ)
≤ C

(
‖w‖2L2(F ) + ‖w‖2L2(Ω̂0)

)
≤ C

(
‖w‖2L2(F ) + ‖w‖2L2(Ω̂)

)
.

Using Lemma 5.2,

|ar,h (w,w) | ≥ C1 ‖∇w‖2L2(Ω̂) − C2

(
‖w‖2L2(Ω̂) + ‖w‖2L2(F ) + h2 ‖w‖2W

)
,

and the result follows.
Although existence and uniqueness are not guaranteed in general by the above

G̊arding-type inequality of the previous lemma, they can be shown to hold under
certain circumstances. In particular, they will be shown here for h sufficiently small
(h� 1). The proof uses the ideas of Shatz [25].

Let ψ ∈ H1(Ω̂) be such that

ar (v, ψ) = (v, e)L2(Ω̂) for all v ∈ H1(Ω̂),(5.6)

where e = u− uh.
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We now show that ψ is well-defined. By interchanging the order of integration in
ar(·, ·), it can be seen that ψ is related to w ∈ H1(Ω) which is a weak solution of

∇ · A∇w + k2nw = e in Ω,(5.7)
w = 0 on Γ,(5.8)

lim
r→∞

√
r

(
∂w

∂r
+ ikw

)
= 0,(5.9)

by the relation

w|Ω̂ :=
{
ψ + (1−Ψ)T (ψ) in Ω̂o,

ψ in Ω̂i,
(5.10)

where T is defined as follows:

T (ψ) =
∫

Σ

ψ(y)
(
∂Φ
∂νy

(x,y) + iλΦ(x,y)
)
dsy.

Recall that Ψ is defined in the discussion prior to equations (4.6) and (4.7). Existence
and uniqueness of w follows the analysis of the original problem (using the appropriate
radiation condition (5.9)). The integral equation

ψ + T (ψ) = w

is uniquely solvable for ψ on Σ (see Colton and Kress [8]) and, because T depends
only on ψ|Σ, existence and uniqueness of ψ follows.

It is assumed that there exists (for the index 0 < γ ≤ 1) a positive constant C
such that the a priori estimate

‖ψ‖H1+γ(Ω̂i) + ‖ψ‖H1+γ(Ω̂o) ≤ C ‖e‖L2(Ω̂) for all e in L2(Ω̂)(5.11)

holds, where e = u− uh. Note also that, since γ > 0,

‖ψ − Pψ‖W ≤ Chγ ‖ψ‖H1+γ(Ω̂) ,(5.12)

where P is the orthogonal projection from W into Wh. For smooth coefficients and
smooth boundaries, equation (5.11) holds for γ = 1.

Lemma 5.6. For every v in W, there exists a positive constant C such that

‖v‖2L2(F ) ≤ C ‖v‖L2(Ω̂) ‖v‖W .

Proof. Let q ∈ H1(Ω̂) be such that

∆q − q = 0 in Ω̂,

∂q

∂ν
= 0 on Σ,

∂q

∂ν
= 1 on F ,

and choose w = ∇q. Then

w · ν =
{

0 on Σ,
1 on F.
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Using the Divergence Theorem,∫
F

v2w · νds =
∫

∂Ω̂

v2w · νds

=
∫

Ω̂

∇ ·
(
v2w

)
dA

=
∫

Ω̂

(
2v∇v · w + v2∇ · w

)
dA

≤ C
(
‖v‖L2(Ω̂) ‖∇v‖L2(Ω̂) + ‖v‖2L2(Ω̂)

)
,

where C depends on w. It follows that

‖v‖2L2(F ) ≤ C ‖v‖L2(Ω̂) ‖v‖W

and the inequality is established.
Combining the above inequality, Lemma 5.4 and the G̊arding-type inequality

(with w = eh),

C1 ‖eh‖2W − C2

(
‖eh‖2L2(Ω̂) + ‖eh‖L2(Ω̂) + ‖eh‖W + h2 ‖eh‖2W

)

≤ Ch ‖u‖H2(Ω̂) ‖eh‖W .

Using the arithmetic-geometric mean, for all ε > 0 and for all δ > 0,

C1 ‖eh‖2W − C2

(
‖eh‖2L2(Ω̂) +

δ

2
‖eh‖2W +

1
2δ
‖eh‖2L2(Ω̂) + h2 ‖eh‖2W

)

≤ C

(
1
2ε
h2 ‖u‖2H2(Ω̂) +

ε

2
‖eh‖2W

)
.

Choosing a δ and ε such that

δ

2
C2 ≤

C1

4

and

ε

2
C ≤ C1

4

yields (
C1

2
− C2h

2

)
‖eh‖2W − C2

(
1 +

δ

2

)
‖eh‖2L2(Ω̂) ≤

C

2ε
h2 ‖u‖2H2(Ω̂) .

If h is small enough, there are new constants C1, C2 and C3 (all > 0) such that

C1 ‖eh‖2W − C2 ‖eh‖2L2(Ω̂) ≤ C3h
2 ‖u‖2H2(Ω̂ ,
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independent of h. Hence,

C1 (‖u− uh‖W − ‖u− uI‖W )2 − C2

(
‖u− uh‖L2(Ω̂) + ‖u− uI‖L2(Ω̂)

)2

≤ h2C3 ‖u‖2H2(Ω̂) ,

or, with C3 a new constant,

C1 ‖u− uh‖2W − 2 (C1 + C2) ‖u− uh‖W ‖u− uI‖W

− C2 ‖u− uh‖2L2(Ω̂) ≤ h2C3 ‖u‖2H2(Ω̂) .

The arithmetic-geometric mean then yields, for all ε > 0,

C1 ‖u− uh‖2W − 2 (C1 + C2)
(
ε

2
‖u− uh‖2W +

1
2ε
‖u− wh‖2W

)

− C2 ‖u− uh‖2L2(Ω̂) ≤ h2C3 ‖u‖2H2(Ω̂) ,

and so, with new constants C1, C2 and C3,

C1 ‖u− uh‖2W − C2 ‖u− uh‖2L2(Ω̂) ≤ C3h
2 ‖u‖2H2(Ω̂) .(5.13)

Lemma 5.7. There exists a positive constant C such that

‖e‖L2(Ω̂) ≤ C

(
hγ ‖e‖W + h ‖u‖W

)
.(5.14)

Proof. By (5.6),

(e, e)L2(Ω̂) = ar (e, ψ) = ar (u, ψ)− ar (uh, ψ)

= ar (u, ψ − Pψ) + ar (u, Pψ)− ar (uh, ψ)
+ar,h (uh, ψ − Pψ)− ar,h (uh, ψ − Pψ)
+ar (uh, ψ − Pψ)− ar (uh, ψ − Pψ)

= ar (e, ψ − Pψ) + ar,h (e, ψ)− ar (e, ψ)
+ar,h (u, ψ)− ar (u, ψ)
+(ar (e, ψ − Pψ)− ar,h (e, ψ − Pψ)
+ar (u, ψ − Pψ)− ar,h (u, ψ − Pψ) .(5.15)

Using continuity of ar (·, ·) in (5.15) and Lemma 5.4,

‖e‖2L2(Ω̂) ≤ ‖e‖W ‖ψ − Pψ‖W + h ‖e‖W ‖ψ‖W

+h ‖u‖W ‖ψ‖W + h ‖e‖W ‖ψ − Pψ‖W

+h ‖u‖W ‖ψ − Pψ‖W .

Applying (5.11) and (5.12), as well as noting that h (1 + hγ) ≤ Ch if h is bounded
above, yields the desired result.
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Using Lemma 5.7, equation (5.13) becomes

C1 ‖u− uh‖2W − C (hγ ‖u− uh‖W + h ‖u‖W )2 ≤ Ch2 ‖u‖2H2(Ω̂) ,

or, with a new C,

C1 ‖u− uh‖2W − C2h
2γ ‖u− uh‖2W − C2h

2(γ+1) ‖u− uh‖W ‖u‖W

≤ Ch2 ‖u‖2H2(Ω̂) .

By applying the arithmetic-geometric mean, for all ε > 0,

C1 ‖u− uh‖2W − C2h
2δ ‖u− uh‖2W − C2h

2(δ+1)

(
ε

2
‖u− uh‖2W +

1
2ε
‖u‖2W

)

≤ Ch2 ‖u‖2H2(Ω̂) .

For h small enough,

C1 − Ch2δ − h2(δ−1) ε

2
> 0,

and so, with C a new constant,

C1 ‖u− uh‖2W ≤ Ch2 ‖u‖2H2(Ω̂) .

Taking u to be zero in the above inequality proves the uniqueness of the discrete
solution. We have proved:

Theorem 5.8. For h sufficiently small, there exists a unique solution to (5.2).
Furthermore, if u is smooth enough, there exists a constant C, independent of h, (but,
depending on k) such that

‖u− uh‖W ≤ Ch ‖u‖H2(Ω̂) .(5.16)

Remark. By a similar argument as the proceeding analysis, if piecewise p−degree
polynomials are used to discretize the problem so that

‖u− uI‖L2(Ω̂) + ‖∇ (u− uI)‖L2(Ω̂) ≤ Chp ‖u‖Hp+1(Ω̂) ,

it then follows that

‖u− uh‖W ≤ hp ‖u‖Hp+1(Ω̂) .

5.2. Numerical integration. The mass and stiffness matrices for (5.2) can
be approximated by quadrature in the normal way. The only difficult term of (5.2)
involves IR

h [F, uh]. We use (5.3) and choose vh that interpolates Φ on F and is zero on
all elements that do not touch F (see Figure 5.1 a). Justification of this follows from
the fact that the IR

h was shown to be independent of the choice of the representation
of RΦ from Wh. This limits the coupling of nodes and, as a result, the number of
potentially nonzero entries in the system matrix. Thus, in an element with nodes
j = 1, 2, 3, at least one of which is on F , we have

vh (x,y) =
i

4

3∑
j=1

p (j)φj (y)H(1)
0

(
k|x− yj |

)
,(5.17)
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(a) Coupling of the nodes between F and Σ. (b) The mesh m.

Fig. 5.1. Figure (a) shows the layer of nodes around F that are coupled with the nodes on Σ.
Figure (b) shows the coarse mesh denoted by m.

mesh triangles nodes nonzero entries F and Σ coupling percent
m 688 388 8073 5632 70
m1 688 388 8073 5632 70
m2 1540 840 17756 12288 69
m3 2752 1464 31205 21504 69
m4 4300 2660 48417 33280 69
m5 6192 3228 69393 47616 69
m6 8428 4368 94133 70272 75

Table 5.1
Comparison of the number of mesh nodes and nonzero entries in the resulting system matrix.

where p (j) is zero if node j is not on F and 1 if node j is on F , and φj is the finite
element basis function associated with yj .

Consider, for example, scattering by an impenetrable disc of radius 1. Using the
Modulef mesh generating package, a coarse (h = 0.8123) triangular mesh, denoted
by m, was created where Γ, F, and Σ are taken to be circles of radius 1, 2, and 3,
respectively (see Figure 5.1 b). This mesh was refined four times, each by dividing
number of triangles in the original mesh n2 times, where n = 2, ..., 5. These refine-
ments are denoted m3, ...,m6, respectively. Two additional meshes, m1 and m2, were
generated separately with h values that are between the h values for m and m3 (see
Table 6.1 for the h values). Each of the meshes cover the domain Ω̂. The resulting
total number of nonzero entries in the system matrix corresponding to ar,h(·, ·), as
well as the number due the to coupling between F and Σ, are shown in Table 5.1 and
in Figure 5.2.

6. Numerical examples. We present four computational examples, the first
two of which are of an impenetrable scatterer and a penetrable scatterer, respectively.
In both cases, the focus is on computing the near field and verifying the rate of
convergence suggested in (5.16).

Since one of the goals of computational scattering is often to predict the far-field
pattern of the scattered wave, in the third example it is shown that the far-field can
be found easily once the near-field has been determined.

Finally, we have avoided singular integrals in the coupling of F and Σ which have
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(a) No coupling of between F and Σ. (b) Coupling between F and Σ only.

Fig. 5.2. Nonzero entries in the system matrix for the mesh m1. Figure (a) shows the nonzero
entries without the coupling of F and Σ and (b) shows only the nonzero entries due to coupling of
F and Σ.

no point in common. The best choice of the distance between these two curves and
the effect of this distance on the accuracy of the solution is not so clear. We offer
some insight to these questions in the fourth example.

6.1. Impenetrable scatterer: near-field. The specific problem here is to com-
pute the field scattered from an impenetrable circular scatterer of radius 1, denoted
by D. The artificial boundary Σ is taken to be the circle of radius 3 and F the circle
of radius 2. The meshes from the previous section are used in the computations. We
choose λ = k = 4.0, which provides at least ten nodes per wavelength in m4 −m6,
and the mesh m is not used because it is too coarse. We take A ≡ I and n ≡ 1
everywhere, and the incident field ui = eikx (i.e., d = (1, 0) ).

The analytic solution outside of the scatterer, which is assumed to be centered at
the origin, can be written as the series

u (ro, θ) =
∞∑

n=−∞

(i)n
Jn (ka)

H
(1)
n (ka)

H(1)
n (kro) einθ,(6.1)

where ro is the distance from the origin of the observation point and θ is the azimuthal
angle.

The finite element matrix equation is solved using the LU decomposition of the
coefficient matrix. This was done using the IMSL Fortran subroutines dlftzg, which
computes the LU factorization for a complex general sparse matrix, and dlfszg, which
uses the LU factorization to solve the matrix equation.

We are then able to investigate the error estimate (5.16) and the L2-error, as well
as the maximum relative error

max
j
|uj − uj

h|

max
j
|uj |

,(6.2)

where the superscript j is the index of the jth grid point. Both the series (6.1) and its
gradient were computed using Matlab, taking the sum from −20 to 20. Any additions
past |n| = 20 were on the order of 10−10 or smaller.

The error results obtained using each mesh are given in Table 6.1. Table 6.2
shows the slopes of the lines joining the errors of consecutive meshes using a log-log
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scale as well as the slope of the line that best fits all six data points. In the case
where all six errors are used, slopes of 1.9093 and 1.3058 were obtained for rates of
convergence in the L2 and H1-norms, respectively. These numerical results indicate a
rate of convergence in the H1-norm of order h as was predicted by Theorem 5.8. They
also suggest a rate of h2 in the L2-norm which, although not proved in this paper,
would be optimal for the L2-norm convergence. The imaginary part of the computed
total field and scattered field are shown in Figure 6.1.

mesh h max rel. error L2 -error H1 -error
m1 0.4062 0.4392 0.4058 0.4794
m2 0.2724 0.2208 0.1975 0.2771
m3 0.2054 0.1285 0.1149 0.1890
m4 0.1649 0.0846 0.0747 0.1424
m5 0.1377 0.0598 0.0524 0.1142
m6 0.1182 0.0442 0.0387 0.0954

Table 6.1
The h value and all three errors for the six meshes.

mesh L2 -error H1 -error
m1 to m2 1.8024 1.3483
m2 to m3 1.9179 1.3553
m3 to m4 1.9602 1.2859
m4 to m5 1.9712 1.2284
m5 to m6 1.9895 1.1845
m1 to m6 1.9093 1.3058

Table 6.2
Slopes between consecutive meshes.

(a) Real part of the total field. (b) Real part of the scattered field.

Fig. 6.1. The real part of the total and scattered fields in the case of an impenetrable object.

6.2. Penetrable scatterer: near-field. This problem differs from the previous
one in that the scatterer, D, is a penetrable isotropic object with boundary that is
the circle of radius 1. In this case, A takes the form

A =
(
â 0
0 â

)
.
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Again, the artificial boundaries Σ and F are taken to be the circles of radius 3
and 2, respectively. Six mesh, pm1, ...pm6, were generated in the same manner as
in previous example. They differ from m1 − m6 in that the meshes are now discs
without the hole in the middle. In this case, pm2 − pm6 are all n2 refinements of
pm1, where n = 2, ..., 6, see Table 6.3. We choose λ = k = 3.0 and take the isotropy
to be â = 2− 1

2 i in D, A = I outside of D and n = 1 everywhere.
The analytic solution inside D can be written as the series

u (ro, θ) =
∞∑

n=−∞
anJn (Kro) einθ,

where ro is the distance from the origin of the observation point, θ is the azimuthal
angle and

K =
k2

â
=

9
2− 1

2 i
.

For this example, we take the source point to be located at (4, 0) . Outside D the
incident field (which is a point source) and scattered field are known to be

ui (r, θ) =
∞∑

n=−∞
H(1)

n (krs) Jn (kro) einθ(6.3)

and

us (ro, θ) =
∞∑

n=−∞
bnH

(1)
n (kro) einθ,(6.4)

respectively.
Using these series representations and the following conditions at the boundary

of D : (
2− i

2

)
∂u

∂r
=
∂ui

∂r
+
∂us

∂r
,

u = ui + us,

we can evaluate the coefficients an and bn. We can then analyze the finite element
errors as in the previous example. The error results obtained using each mesh are
given in Table 6.3 and, as before, Table 6.2 shows the slopes of the lines joining the
errors of consecutive meshes using a log-log scale as well as the slope of the line that
best fits all six data points. Using a log-log plot, slopes of 1.9533 and 1.2873 were
obtained for rates of convergence in the L2 and H1-errors, respectively, using all six
meshes. The results again indicate a rate of convergence in the H1-norm of order h,
as was predicted by Theorem 5.8, and a rate of h2 for the L2-norm convergence. The
imaginary part of the computed total field and scattered field are shown in Figure
6.2.

6.3. Penetrable scatterer: far-field. One advantage of the method is that the
IR[F, · ] operator defined in (4.9) provides a way to compute the scattered field outside
F, using only the knowledge of the scattered field and its gradient near F . This has
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mesh triangles h max error L2 error H1 -error
pm1 200 0.8388 0.4279 0.5447 0.6364
pm2 800 0.4534 0.1556 0.1773 0.2814
pm3 1800 0.3134 0.0759 0.0843 0.1718
pm4 3200 0.2396 0.0443 0.0487 0.1231
pm5 5000 0.1940 0.0228 0.0316 0.0969
pm6 7200 0.1630 0.0202 0.0221 0.0789

Table 6.3
The h value and all three errors for the six meshes.

mesh L2 -error H1 -error
pm1 to pm2 1.8615 1.3265
pm2 to pm3 1.9514 1.3362
pm3 to pm4 2.0435 1.2414
pm4 to pm5 2.0488 1.1336
pm5 to pm6 2.0538 1.1803
pm1 to pm6 1.9533 1.2873

Table 6.4
Slopes between consecutive meshes.

already been implicitly demonstrated in the set up of the variational formulation. This
equation also provides a way to compute the far-field pattern, again with only the
knowledge of the scattered field and its gradient near F . The operator IR[F, ·] needs
only to be modified using the asymptotic properties of the fundamental solution. In
this case, the result, denoted IR

∞[F, ·], is

IR
∞[F, u] =

∫
F

us (y)
∂

∂νy
e−ikx̂·ydsy − k2

∫
Ω̂o

Re−ikx̂·yus (y) dAy

+
∫

Ω̂o

∇yu
s (y) · ∇yRe

−ikx̂·ydAy.(6.5)

The setting for this example will be the same as for the previous example with the
following exceptions. The isotropy is given by â = 2 and the incident field is taken to
be a plane wave changing (6.3) to

ui (ro, θ) =
∞∑

n=−∞
inJn (kro) einθ.

Using the properties of the Hankel function for large arguments,

H(1)
n (z) =

√
2
πz
ei(z−nπ

2 −π
4 ),

we obtain the following series representation for the far-field pattern

u∞ =
∞∑

n=−∞
bn

√
2
πk
e−i(nπ

2 + π
4 )einθ.

The scattering data from the finite element code (using the mesh pm6) was used and
the far-field was computed at 100 evenly spaced points on the unit circle. The results
are shown in Figure 6.3 where the maximum relative error is 0.0301.
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(a) Imaginary part of the total field. (b) Imaginary part of the scattered field.

Fig. 6.2. The imaginary part of the total and scattered fields. The boundary of the scatterer is
a circle of radius 1 outlined in black.

0 1 2 3 4 5 6

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0 1 2 3 4 5 6

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

(a) Real part. (b) Imaginary part.

Fig. 6.3. The computed and series representation of the far-field. Figure (a) shows the real
part and (b) shows the imaginary part. The exact series solution is the solid line and the far-field
computed using the scattered field generated from the finite element code is the dashed line.

7. Distance between F and Σ. Table 5.1 shows a significant increase in the
number of nonzero entries in the system matrix due to the coupling between F and
Σ that results simply from the refinements of the original mesh. However, Tables
6.1 and 6.3 suggest that the refinement is necessary to obtain a reasonable degree of
accuracy. This example demonstrates the influence that the distance between F and
Σ has on the accuracy of the computed solution.

To demonstrate this interaction, we use the first example of an impenetrable
scatterer given in §7.3. A mesh was made with Σ a circle of radius 3, F a circle of
radius ranging from 1.20 to 2.80 and the scatterer a disc of radius 1. Since a major
factor depending on the distance between F and Σ is the argument of the fundamental
solution k|x − y|, several possible values of the wave number k, 1.0, 2.0, 4.0, 6.0 and
8.0, were chosen. With these choices, the value of k|x−y| ranges from 0.2 to 46.4. As
in each of the previous examples, we take λ = k. The value of the resulting maximum
relative error from each computation is shown in Table 7.1.

Note that, even though F varies in the above example, the same mesh was used
each time. For this mesh, h = 0.1344. It is necessary to have at least one layer of
elements between the object and F as well as between F and Σ. In practice, this is
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not a restriction because at least ten nodes per wavelength are needed to obtain an
accurate solution. Also, because we can choose the discretized RΦ using a function
that is nonzero only on the first layer of elements exterior to Ωi, we are not required to
have more than two layers of elements between F and Σ. In fact, Table 7.1 indicates
that it is desirable to have F close to Σ.

Radius Wave number
of F 1.0 2.0 4.0 6.0 8.0
1.2 0.0008 0.0048 0.0430 0.1698 0.4477
1.6 0.0008 0.0048 0.0429 0.2693 0.4474
2.0 0.0007 0.0047 0.0423 0.1667 0.4431
2.4 0.0007 0.0047 0.0392 0.1484 0.3850
2.8 0.0007 0.0047 0.0392 0.1484 0.3850

Table 7.1
Cross reference between the maximum relative error and the radius of F . The radius of Σ is

fixed at r = 3.

8. Concluding remarks. While the method used here is successful, there are
several questions about methods of this type that remain to be investigated, both
in the context presented in this paper as well as their use in other problems. For
example, the optimal positioning of Σ and F for accuracy and stability is not known.
In addition, the best approach to solving the matrix problem, taking into account the
coupling between Σ and F, needs to be investigated. We finally note that the method
appears to be quite useful in computing scattering from more complicated anisotropic
objects as can be seen in [22], where an example of two different anisotropic objects
generating the same exterior scattered field is shown.
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[3] K. Chadan, D. Colton, L. Päivärinta, and W. Rundell, An Introduction to Inverse Scat-
tering and Inverse Spectral Problems, Society for Industrial and Applied Mathematics,
1997.

[4] G. Chen and J. Zhou, Boundary Element Methods, Academic Press, 1992.
[5] W. Chew and F. Teixeria, Analytical derivation of a conformal perfectly matched absorber

for electromagnetic waves, Microwave and Optical technology letters, 17 (1998), pp. pp
231–236.

[6] P. G. Ciarlet, Numerical Analysis of the Finite Element Method, North-Holland, 1974.



28 P. Monk and J. Coyle

[7] F. Collino and P. Monk, The perfectly matched layer in curvilinear coordinates, SIAM J.
Sci. Computing, 19 (1998), pp. pp 2061 – 2090.

[8] D. Colton and R. Kress, Integral Equation Methods in Scattering Theory, John Wiley and
Sons, Inc., 1983.

[9] D. Colton and P. Monk, A linear sampling method for the detection of leukemia using
microwaves, SIAM Journal of Applied Math., 58 (1998), pp. pp 926 – 941.

[10] B. Engquist and A. Majda, Absorbing boundary conditions for the numerical simulation of
waves, Math. Comp., 31 (1977), pp. 629–651.

[11] D. Gilbarg and N. Trudinger, Elliptic Partial Differentail Equations of Second Order,
Springer-Verlag, 1985.

[12] D. Givoli and J. Keller, Exact non-reflecting boundary conditions, J. Comp. Phys., 82 (1989),
pp. 172–192.

[13] C. Hazard and M. Lenoir, On the solutions of time-harmonic scattering problems for
Maxwell’s equations, SIAM Journal on Mathematical Analysis, (1996).
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