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PREFACE

In this work I conclude my studies of radiative trans-
fer theory begun in the monograph, '"Radiative Transfer on
Discrete Spaces.”" In that monograph the main goal was the
founding of the interaction principle underliying the phenom-
enological theory of 1light in scattering-absorbing media. In
this treatise, I systematically construct from the interac-
tion principle those basic laws and formulas of the disci-
pline of radiative transfer that pertain to hydrologic optics.
Thus while the first work was concerned with the gathering
together of many single threads of theory converging :on the
notion of the principle of interaction, the present study
starts with the principle as a base, deduces the superstruc-
ture of general radiative transfer theory, and applies it to
the special case of light in the sea. This task’'is essen-
tially carried out in Chapter 3 and culminates in the classi-
cal principles of invariance and in the equation of transfer
for radiance. Concurrent with this is the deduction of the
existence of the fundamental optical properties used in the
equation of transfer, namely the volume attenuation and vol-
ume scatteéring functions. Some of the remaining chapters of
the book (Chapters 4, 5, 6, 7, 8, 11) are devoted to deduc-
tions from the principles of invariance and the equation of
transfer of those laws of radiative transfer and those prop-
erties of natural optical media which are particularly suited
to the study of radiant energy transfer in the sea and other
natural bodies of water. Actually, many hydrologic optics
principles discussed in this work can also describe radiative
transfer phenomena in general optical media, such as those
encountered in both the astrophysical and geophysical- (in-
cluding industrial) settings. However these principles have
often been deliberately phrased for use within the context of
hydrologic optics in order to retain the concreteness and
practical utility of the theory. Tle quest for generality
was fulfilled in the discrete-space monograph.

In completing the preceding task, I brought to a close
a long and almost circular conceptual odyssey which began for
me during a summer eighteen years ago (1850) when I was a
student at the Massachusetts Institute of Technology. 1 was
given the problem of determining the reduction of visibility
of submerged objects as seen along inclined paths of sight
through the wind-crinkled, air-water surface. The odyssey
was ‘circular' in the sense that my preoccupations in this
field began and ended essentially with the problem of radia-
tive transfer through the wind-blown air-water surfaces of
natural hydrosols (Chapter 12). Between these end points con-
cerned with the initial and final studies of this problem, I
travelled a conceptual journey which for long periods was
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occupied with thé search for the most basic principles and
concepts underlying the .solution of this and related problems
of light in the sea. As explained in the preface of the
first work, that search was guided by a personal interest in
carrying the theory of hydrologic optics to its highest level
of geometric and algebraic perfection.

During the past eighteen years the theory was most in-
tensively pursued within the period of seven years from 1953
to 1960 and during a brief period around 1964-1965. The re-
maining periods of time were occupied at first with student
studies and later with writing, teaching, travels, and ap-
plied and pure mathematical studies in other fields. In par-
ticular, the manuscript for the present work was first
drafted in rough outline in the spring of 1958, Successive
drafts were enriched as additional theory was created. The -
motivations of these additions were through the experimental
findings of my colleagues and my own imperfect applications -
of the rough theory. The roots of the present work extend
back to 2 series of lectures I gave on hydrologic and atmos-
pheric optics in the fall of 1953 and the spring of 1954, ’
and eavrlier still to the joint work in 1950-1952 with Duntley
summarized in the first four chapters of "The Visibility of
Submerged Objects.,'" The final and main manuscript of the
present work was essentially completed in the summer of 1965,
after approximately 20 months of writing which was begun hard
on the heels of finishing my monograph. During this period
large parts of Chapters 2, 3, 6, 7, and 12 were originated as
the writing proceeded. In general, every chapter had new
material of some kind added at this time. The present work
then lay dormant for nearly three years, awaiting final proof-
reading, while I was occupied with new teaching and research
responsibilities. On recently re-reading the manuscript and

- teaching from parts of it, I find that the fundamental theory
has mellowed well; it has reached a stage of internal com-
pleteness which will be adequate to the needs of all advanced
experimental and theoretical work in the forseeable future.

Those points in the present study where contact is made
with physical reality, in the form of useful illustrative .
experimental data on the radiance of submerged light fields
and in instructive listings of optical properties of various
seas and lakes, are due principally to the labors of my col- -
leagues Dr. S.Q. ‘Duntley and Mr, J.E. Tyler. Their key meas- .
urements of the basic radiometric quantities and optical prop-
erties of these media provided some of the original impetus '
toward my construction of the theory of hydrologic eoptics.
The construction was undertaken as an attempt to conceptually
sort and order the many empirical laws of light in the sea
which their probings uncovered. My indebtedness to these men -
actually is deeper than this, and I would like to record here
the following observations in this regard. '

To Dr. Duntley I owe much of the support of my work dur
ing all the past years through his various contracts with the.
Bureau of Ships and the Office of Naval Research of the
United States Navy. The early years were interspersed with
conversations and working sessions in which I received from
him some of my first glimpses of a possible theory of '
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hydrologic optics. In the summer of 1950 at the Diamond Is-
land Experimental Station in Lake Winnipesaukee, New Hamp-
shire he described his important empirical discovery of the
elliptical hydrologic range law made during some underwater
experiments. The hint of theoretical order in that experi-
mental polar plot of hydrologic range versus downward angle
of sight inspired me subsequently to fathom first the physi-
cal and then the mathematical laws underlying that phenomenon.
The ensuing summer was spent happily in my sun-baked cabin on
that tiny island as I tackled my first independent scientific
studies. These resulted in the deduction of the elliptical
hydrologic range law and also the simplest radiance-propaga-
tion laws for lines of sight through air-ruffled water sur-
faces and along inclined paths of sight through deep regions
of seas and lakes. Duntley's influence on my studies occur-
red not only in the experimental quarter, but also on first
reading his distinguished contributions to the Schuster two-
flow theory: I recall the train ride through New Hampshire
countryside from Boston which began that summer of 1950 and
which is forever linked with the conceptual revelations ex-
perienced "as I read his two papers on '"Optical Properties of
Diffusing Materials'" and "The Mathematics of Turbid Media."
The first paper pointed the way toward the improvement of the
Schuster two-flow theory. The latter paper was eventually to
provide an instance of the interaction principle in the form
of Schuster's '"principle of self-illumination." A dozen
years were to pass and a score or more of distinct manifesta-
tions of the principle of interaction were to be discovered
before its universality was to become manifest in my mind.

It was also Duntley’'s exposition of L.V. King's integral equa-
tion method and especially the closing remarks in the latter
paper that eventually encouraged me to create the discrete
space theory of radiative transfer. This theory on the one
hand retains the generality of the integral equation approach
and on the other leads without modification to numerical de-
terminations of light fields in general optical media. The
requisite procedure is given by the Categorical Analysis
Method in my monograph.

I wish also to note in some detail the profound influ-
ence of the work of Tyler on my constructiens of hydrologic
optics theory. Unquestionably his experimental measurements
on the "Radiance distribution as a function of depth in an
underwater environment", was for me a watershed of at least a
dozen incipient theoretical laws of hydrologic optics. It
provided, for example, the definitive experimental data
needed to verify L.V. Whitney's conjecture on the existence
of "characteristic diffuse light" deep below the surface of
every natural optical medium and which belongs exclusively to
that medium regardless of the lighting conditions above its
surface.. These findings encouraged my search for.theoretical
expressions of the fundamental properties of real light
fields far from the boundaries of deep optical media. It was
also Tyler's accumulation of data by means of ever more pre-
cise radiometric measurements in oceans and lakes that led us
both to realize the inherent limitations of the classical
Schuster two-flow (one-D) model of the light field in hand-
ling such data: his measurements of upward and downward ir-
radiance flows, for example, were uncovering new kinds of
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depth behavior of the diffuse attenuation Znd reflectance
functions of such subtle and delicate forms that they lay far
beyond the descriptive powers of the classical theory. This:-
state of affairs eventually led me to formulate the theory of
directly observable optical properties of light fields in

real stratified media. These formulas for directly observ- .
able properties were subsequently applied by Tyler and his
colleagues in various papers, and particularly in the '"Method
for obtaining the -optical properties of large bodies of waterl
The present account must also take cognizance of many conver-
sations with Tyler on the puzzles of practical radiometry in
the sea. These discussions gave me insight into the needs of
the experimenter in hydrologic optics and for whom in turn
Chapters 9, 10, and 13 are specifically written. 1In the
course of the years the contents of these chapters arose in
various attempts to cast into a mathematically self-consis-
tent array of operationally meaningful forms all the funda-
mental concepts of radiative transfer in the sea, such as the
volume attenuation, scattering, absorption, and the diffuse
attenuation functions for all radiometric concepts. These
concepts in other branches of radiative transfer, notably as-
trophysical optics, were either nonexistent or in the form of.-
unrealizable mathematical abstractions of no use to one with
direct instrumental access to the interior of the optical
medium of interest; in our case, the sea. Finally, I grate-
fully acknowledge that a large part of the writing of this
work was generously supported by portions of Tyler's National
Science Foundation Grants (G 11668 and G 289).

The preceding description of the background of the pre-
sent work has implicitly referred to the contents of all the
chapters except the first two. IThe first chapter may serve
as a self-contained 'short-course” on hydrologic optics. In-
deed it has been used as a base for the first course on 'Ra-
diative Transfer in the Sea' given at Scripps Institution of
Oceanography in the fall of 1967. ' Particular attention is
directed toward the three simple models for light fields in’
natural waters given in Chapter 1. These models constitute
the minimal theoretical tools for anyone who enters the field
of hydrologic optics and wishes to do productive work therein.
In particular for one who plans to do experimental studies,.
some guidelines are necessary to first of all measure the-
quantities of hydrologic optics in a consistent manner and
secondly, to measure something that will be useful to others '
in the same field.: These models and the constructs from
which they are fashioned supply the requisite guidelines. As .
one's needs for precision and comprehensiveness of concepts:
evolve, then the theoretical developments comprising the re-
maining chapters of the work will be of help in filling these -
needs. Attention is also directed to the section of the :
first chapter dealing with practical nomographs for predict- -
ing the range of visibility available to underwater swimmers
in various natural hydrosols such as harbors, lakes and seas.’
These nomographs are based on the work of Duntley, which
combines the properties of the human eye with one of the
three models of the light field referred to above., Also of
general interest are the many samples of magnitudes of light
fields and optical constants found in natural waters. These.



PREFACE xxxiii

samples are based mainly on the field work of Tyler, Duntley,
and Jerlov and serve to fix one's intuition for the sizes of
the optical constants found ir nature. This in turn allows
intelligent derivations of new approximate formulas based on
the light field models alluded to above. Finally, the pres-
ence of Chapter 2:is almost self-explanatory, being concerned
with the scientific language of radiative transfer: geomet=-
rical radiometry.’ Students of geometrical radiometry may
find the various novel formulas and laws developed throughout
the chapter of independent interest. However, the chapter
finds its place in this work by providing the radiometric
concepts and formulations needed in the appllcatlons of the
interaction principle to hydrologlc optics.

The main drafts were expertly typed by Mrs. Lynn White
and by Mrs. Judith Marshall. Mrs. Marshall also assisted in
the preparation of various tables and graphs, and the typing
of the final draft for photocopy.

- R.W.P.
San Diego
December 1968

The final draft was completed while undertaking new re-
searches in hydrodynamics with the Tsunami Research Effort
(J.T.R.E.}, which is part of the Environmental Research Lab-
oratories of the National Oceanic and Atmospheric Administra-
tion. I am grateful to the Director of J.T.R.E., Dr. Gaylord
Miller, for making available the Graphic Arts facilities at
the Institute of Geophysics of the University of Hawaii, and
particularly to Mr. Brad Evans for his art work on the
figures.

R.W.P,

Honolulu
January 1972






CHAPTER 1
INTRODUCTION TO HYDROLOGIC OPTICS

l.O'A Hydrologic Optics: Definition, Domain, and Desiderata

As the earth swings round the sun, it continucusly turns its
atmosphere, its lands and its seas to face into the steady
torrent of energy streaming from that radiant star, Of the
nearly 65,000,000 watts of radiant power of all wavelengths
emitted from each square meter of the sun's surface, about
1,400 watts are incident on each square meter of the upper
levels of the earth's atmosphere directly facing the . sun,
there -to initiate and sustain the complex chains of meteoro-
logic and hydrologic events among which are the important
biologic links evolving in the atmousphere and the seas. In
the meteorologic domain, the radiant flux from the sun is
partly absorbed to warm the earth's gaseous mantle so as to
generate winds and habitable climes; and partly scattered so
as to help grow plants and light the ways of the creatures of
the air and earth below. In the hydrologic domain the radi-
ant flux, when in sufficient abundance, is partly absorbed to
help keep the seas and lakes and other natural hydrosols in
their filuid state, and is partly scattered about in their
upper levels so as to light the ways and help provide suste-
nance for the creatures of these watery domains.

Hydrologic opties is the quantitative study of the in-
teraction of radiant energy with hydrosols, especially the
natural hydrosols of the earth such as its seas, lakes, ponds,
rivers, and bays. Hydrologic optics is part of a broader
discipline known as geophysiecal optieg which studies the com-
mon physical and geometrical principles governing radiant en-
ergy fields in both the meteorologic and hydrologic domains.
Geophysical optics together with astrophysical optics--in’
which the emission, absorption and scattering of. radiant en-
ergy within general planetary and stellar atmospheres is of
primary concern--fall under the aegis of radiative transfer
theory, which is defined as the quantitative study, on a
phenomenological level, of the transfer of radiant energy
through media that absorb, scatter, or emit radiant energy.
Radiative transfer theory, in turn, is viewable as a logical
descendent of electromagnetic theory, and in this way hydro-
logic optics, and more generally radiative transfer theory,
may take its place among the theories of modern physics.
These 1nterre1at10ns are summarized in Fig, 1.1, -

1
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ELECTROMAGNETIC THEORY

INTERACTION PRINCIPLE

GENERAL RADIATIVE
TRANSFER THEORY

|
|

ASTROPHYSICAL ’ GEOPHYSICAL
OPTICS - | - OPTICS
%
PLANETARY |° | "METEOROLOGIC HYDROLOGIC
OPTICS - OPTICS OPTICS -
LIMNOLOGIC OCEANOGRAPHIC |
OPTICS OPTICS -

:FIG. 1.1 Hydrologic optics as a logical descendant of
radiative transfer theory and electromagnetic theory.

The Problems of Hydrologic Optics

The theoretical and empirical studies comprising hydro-

logic optics arise in the attempts to answer several diverse . -

types of questions such as the following. How much radiant :
energy of a given wavelength is reflected from a sea or lake
surface, and how much penetrates this surface and reaches
each depth of the sea or lake? How does the amount trans-
mitted depend on the surface winds and other factors affect-
ing the physical, geometric, and dynamic state of the moving
surface? Does the light penetrate the body of the ocean or -
lake in some general and predictable manner- as regards depth
dependence and directional dependence of the light distribu--
tion? 1If so, what are the pertinent physical measurements
that must be made to facilitate such predictions? What ef- .
fects on the light field are engendered by the proximity of
the shores, bottoms and other boundaries of the hydrosols?
What are the pertiment optical properties of natural hydro- -
sols by which oceanographers and limnologists can character- -
ize these waters? How may these scientists usefully employ
these concepts in the pursuit of their special interests such
as marine biology, geology, and hydrodynamics? How far can-a
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diver or submariner expect to see a given submerged object

as he maneuvers in the submarine world of blue-green lights
and shadows? How far can one expect to communicate under-
water by means of given types of light sources such as lasers,
point sources, etc,? Of what significance is the polarized
light field to the denizens of the deep and to enterprising
humans .interested in navigating through the submarine world
by unconventional means? These summarize some of the basic
types of questions with which hydrologic optics is concerned.
The questions have many variations and their resolutions are
often of great difficulty,sc that the theory of radiative
transfer which underlies hydrologic optics is often taxed to
its limits in the attempts to provide quantitative or even.
qualitative answers. As the discussion proceeds, we shall
make clear the present status of the solutions to the general
problems listed above.

The Aims and Desired Goals of This Work

" In this work we shall be concerned with the systematic
development of the basic physical principles and mathematical
procedures of radiative transfer theory which have been found
effective in solving the general types of problems cited
above. The reason for selecting the domain of hydrologic op-
tics for specific study rather than meteorologic optics or
any other branch of general radiative transfer rests simply
in the fact that it is in this domain that most of the prac-
tical experience of the author lies.

It should be emphasized at the outset that our primary
concern is with the principles of hydrologic optics rather
than the detailed numerical and experimental aspects of the
state of the art of the discipline. These latter procedures,
as important as they are in the various stages of securing
our knowledge, both theoretical and empirical, are in the
last analysis meaningful aud efficacious only if they are
based on sound physical principles and mathematical tech-
niques., Repeated direct experiences of the author in pur-
suing complete or partial solutions of problems of the types
listed above, have demonstrated the importance of having a
well-grounded knowledge of the principles of radiometry and
radiative transfer theory during the search for the solutions.
It would -seem to foliow that anyone faced with similar prob-
lems and armed with a comparable battery of principles and
laws of the subject will z2lso eventually find his way to his
own desired experimental or theoretical goals. This, then,
leads .to the primary aim of the present work: te give a sys-
tematic development of the fundamental principles dand proce-
dures of radiative transfer theory which may be employed by
students of the subject in the pursuit of solutions of their
particular theoretical and experimental problems of geophys-
ical opties, and especially hydrologic optieg. It has also
been the experience of the author that both the theoretical
and experimental practitioners of the arts of radiometry and
radiative transfer are singularly independent individuals,
each in his own way, and in view of this it would be somewhat
futile to preoccupy the potential student and researcher with
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anything but the most pertinent and general principles and.
procedures. This observation is cited to reinforce our aim
enunciated above.

The Plan and Scope of This Work

It is in the nature of the theory of hydrologic optics
that the full founding and delineation of its basic princi-
ples is tantamount to a full founding and delineation of the
basic principles of radiative transfer theory itself. This
fact rests on the observation that the physical-geometric
problem of completely describing the structure of the scat-
tered light field in a sea or lake is just as complex a task
as that of describing the light field in the atmosphere, or
for that matter in any real medium that emits or scatters
light. This realization dawned very early in the author's
studies of oceanographic and limnologic optics and in his
theoretical excursions into the problems of meteorologic op-
tics. It was eventually realized that the appropriate direc-

tion of study was not a problem-by-problem horizontal advance . -

through the everyday jungle of examples, cases, and counter-
examples, but rather the direction required a sharp vertical
tack, straight up .into the heights of abstraction, from
whence one could most economically view the radiometric
scenes spread out below from horizom to horizon. This at-
tempt to escape into the thin air of general constructs and
guiding principles was made as often as the exigencies of
daily problems and consultations would allow, and eventually
as reports and papers accumulated, there emerged a pattern of
principles and procedures which could be seen to apply to all
the special principles and special procedures accumulated to
that time. Interestingly, it was found that the abstract
principles could be phrased and assembled using very meager
.amounts of advanced mathematical machinery. This, coupled
with the author's classtoom experience that the basic con-
structs of radiative transfer, namely radiant flux, scatter-
‘ing, absorption, volume, area, and length are all readily
visualizable, resulted in a theoretical framework which was
readily understood and applied once a small number of academ-
ic prerequisites had been dispatched, namely the equivalent
of a one year course in advanced calculus, which includes
vector analysis, and first and second order ordinary differ-
ential equations. - :

For all these reasons it was decided in the planning
stages of this work .that its scope be widened to embrace,
whenever possible, the completely general principles of radi-
ative transfer theory, and to attempt a systematic develop-
ment of the subject by starting from-a single fundamental
principle, namely that which eventually came to be called the
interaction principle (Sec. 3.2). For, it would be ineffi-
cient and unesthetic to base a science on many seemingly un--
related principles when it is possible to employ merely one.
Accordingly, in Chapter 3, after a thorough grounding in .geo-
metrical radiometry, the reader is lead through a methodical
construction program of general radiative transfer theory.
The elaboration of the details of this task will occupy most
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of the remainder of the work, with several important chapters,
included as integral parts of the main discussion, which are
devoted to the richer theorétical details made possible by
adopting the plane-parallel settings indigenous to hydrologic
optics.

It was found possible to adopt the precedlng form of
development of radiative transfer theory provided some care
was taken at the outset to equalize the backgrounds and in-
tuitions of potential students of the subject. It is to such
students and to the general reader that we devote this chap-
ter.. In the following sections we shall acquaint these read-
ers with the general outlines of hydrologic optics . by sup-
plying representative radiometric examples of natural light
fields and typical magnitudes of optical properties encoun-
tered in natural hydrosols. We shall also present three of
the simplest models of light fields which are capable of des-
cribing a very wide number of situations encountered in prac-
tical hydrologic optics. We shall in addition illustrate the
use of these models by means of explicit deductions and cal-
culations. We shall also present graphs and tables based on
these models which have been found useful in practice. Then
with these introductory developments completed, we shall feel
free to start from scratch in Chapter 2 and proceed rigorous-
ly with the systematic construction of the modern theory. of

N’CHAPTER AND VOLUME INTERDEPENDENCE

VoL.1 VOL.Ii

L voL.in | VOL.IV
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FIG. 1.2 1Interdependence of the chapters of this work,
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radiative transfer.. 'The results will embody powerful exten-
sions which appear to be capable of solving--in principle and
in practice--every known current problem of applied radiative
transfer theory in the domains of the air and the sea.

As an aid in studying the present work Fig. 1.2 indi-
cates the logical interdependence of the various volumes and
chapters. Actually every chapter is connected in some way
with every other; however, some connections are stronger than
others, and these are shown in the diagram. Thus the prereq-
uisite most essential to understanding a given chapter is the
chapter (or chapters) which stand immediately above it via
the horizontal and vertical lines in the diagram. For exam-
ple Chapter 11 depends directly on 4,5, 7 and 10, while 6
depends directly only on 3. Furthermore, the chapters whose
contexts are developed on the level of general radiative
transfer theory (Fig. 1.1) are outlined in heavy boxes; those :
that are more directly concerned specifically with hydrologic
optics (or the theory of stratified plane parallel media) are
outlined in the dashed-boxes. ) ’

1.1 A Primer of Geometrical Radiometry and Photometry

After the solar radiant energy incident on the upper
levels of the atmosphere has rapidly percolated down through
the atmosphere and redistributed itself via scattering pro-
cesses throughout the lower reaches and in the upper layers
of the seas and lakes, its flow within these media assumes an

intricate, and relatively steady geometric pattern. A parti-- .

cularly useful mode of representation of this flow of scat-
tered radiant energy is possible by means of the concepts of
geometrical radiometry, whose definitions and interrelations
we shall now briefly study., A relatively complete and de-
tailed study of geometrical radiometry and photometric con-
cepts is reserved for Chapter 2.

The Nature of Radiant Flux

The radiant energy streaming in from the sun is under-
stood to be electromagnetic energy. The atomic radiative
processes of the sun generate a wide range of frequencies (or
wavelengths) of electromagnetic energy, only a small part of
which is visible to the human eye, or detectable by human
skin, or usable by the plants and animals of the earth. The
part of the electromagnetic spectrum visible to normal human
eyes lies essentially in the range from 400 to 700 millimic-
rons wavelength, the 400 mu light being deep blue-violet, the-
700 mu light being deep red, with all the colors of the rain-
bow ranging continuously between these extremes. The wave-

length of electromagnetic energy evoking the greatest sensa—.~,;"
tion of brightness is .the yellow-green at 555 mu under normal.

daylight conditions. 1If radiant energy of wavelengths much -
less than 400 or much greater than 700 mu fall on normal re-
tinas, there is relatively no conscious awareness of such an
event by the associated brain, though--in some extraordinary
cases, some ultra violet (380 mu) and some infra red (780 mu)
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phenomena are still within the range of detectability by the
human visual organs. By and large, however, the human visual
sensor system effectively samples and reacts to only the min-
ute portion of the whole outpouring of radiant energy by the
sun between 400 and 700 mu--much in the way that a taut wire
of given length and diameter resonates most sharply to a sin-
gle acoustic frequency and less sharply to the frequencies in
a small interval surrounding the central frequency, outside
of which the wire is essentially insensitive to the vibra-
tions. ~Figure 1.3 depicts the place of the visible portion
of the spectrum within the electromagnetic spectrum, along
with schematic diagrams of those portions of which we are a-
ware by means of various devices used to detect and measure
radiant energy. (Current manufacturer's catalogs should be
consulted for precise details of individual devices.) Any
observable part of the electromagnetic spectrum, observable
not only as visible light but alsd by suitable technical
means, falls under the aegis of geometrical radiometry.

The central construct of geometrical radiometry is
radiant flux which we define generally as the time rate of
flow of radiant energy of given wavelength (or frequency) a-
cross a given surface. (It has dimensions of (radiant) ener-
gy per unit time per unit frequency.) Thus radiant flux is a
time density* of radiant energy. For our present purposes
and in the exposition of radiative transfer theory, we may
imagine the flow of radiant energy to be in the form of mu-
tually non-interfering swarms of tiny colored particles--
which we call photons. While this may not correspond in all
aspects to physical reality, it nevertheless is a helpful
construct in practical work. Each photon contains a well
defined amount hv--a quantum--of radiant energy associated
with its-color, or frequency v. This means of picturing ra-
diant energy for the purposes of geometrical radiometry is
quite useful and cerrect within the modern framework of phys-
ics. It will make the exposition of the notions of geomet-
rical radiometry a relativel;y simple task, and the visuali-
zations of the various concepts an almost trivial matter. In
the terminology of electromagnetic theory, we shall work with
electromagnetic fields produced by mutually incoherent
sources and which are studied on a macroscopic level, i.e.,
where the dimensions of the detectors are very large compared
to the observed wavelengths. :

The Unpolarized-Flux Convention

The radiant flux always will be assumed unpolarized,
unless specifically noted otherwise. This will result in
simplified working formulas of relatively great practical val-
ue and of adequate accuracy in the pursuit of most applica-
tions of hydrologic optics. Whenever it is necessary to in-
dicate how the theory may be elevated to the polarized level,

*

Because most of our discussions center on an arbitrary fre-
quency (or wavelength) of radiant flux, the reference to the
"per unit frequency'" part of the dimension of radiant flux
will be -omitted, unless specifically noted otherwise.
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notes will be made to that effect. The general theory of pe-
larized radiative transfer is outlined in Sec. 114 of Ref,
[251]1, and the problem of the relative consistency of the po-
larized and unpolarized theories is examined in Sec. 13.11,
below.

Geometrical Channeling of Radiant Flux

Once the nature of radiant flux is clarified, as above,
the descriptions of the remaining concepts, theorems and pro-
cedures of geometrical radiometry are essentially geometric
in nature. There are only two distinct, ideal modes of des-
cribing a flow of particles past a point in three dimensional
space, and these are shown in Fig. 1.4. 1In part (a) of the
figure a parallel flow of photons is described in terms of
the passage of particles through a small region S on a plane
normal to the flow around a point p on the plane, A comple-
. mentary mode of the flow is in terms of the passage of parti-

cles through a small set D of directions around a given di-
rection £ and through the point p. Considering these two
modes in a given flow of photons, let P(S) and P(Q) be the
radiant fluxes in each of these cases, with A(S) the area of
S and Q(D) the solid angle content of the bundle D of direc-
tions. Further, let the central direction £ of the bundle D
be normal to S at p. Then we write:

- "P(S8)/A(S)" for the area density of radiant flux
"P(D)/Q(D)"" for the solid angle density of radiant

flux
{a)
-~ (b)
D
o = Al \\\\\\\\\ - o

FIG. 1.4 Two geometric modes of describing radiant flux.
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It is convenient in geometrical radiometry to call P{S)/A(S).
simply a (radiant) flux danetty and P(10)/Q(D) a (radiant)
intanatly.

These are the two basic modes of conceptually channel-
ing the flow of photons in space or matter. . There is an im-
portant third mode which+is the result of the direct union of
these two modes. If we reconsider the setting of Fig. 1.4 .
and imagine a narrow bundle of directions D around a central
direction £ normal to S at eaeh point p of S, then there
would be an associated flow P(S,D) of rad1ant energy across
the combined set S x D of the surface set S and the direction-
set D. We write:

"P(S,D)/A(S)Q(D)" for the phase denszty of radiant
: flux

The term ‘''phasée density'" is simply a conveniént descriptive
term for the combined areal and directional densities, and it
can be related to the phase space concept of classical sta-
tistical mechanics, though there is no need to do so here.

The conventional term for phase density of radiant flux, the
one we adopt for use in this work is radidnce; it is radiance
which is used to déscribe the monochromatic brightness of
radiant flux. '

Operational Definitions of the Densities

: An operational definition of radiance and its companion
densities is effected by means of a radiant flux meter, de-
picted schematically in (a) of Fig. 1.5. A radiant flux .
meter forms the heart of the radiance meter, as shown in (b)
of Fig. 1.5, and may embody any one of several means of meas-
urement of radiant flux, such as photoconductive, photoemis-
sive, or photovoltaic devices (see Sec. 2.1). Before the ra--
diant flux reaches the collecting surface S of the radiance - -
meter, it is filtered to the desired wavelength and is also
confined to flow onto S about point x through a narrow cir- .
cular conical bundle D of directions whose central direction

€ is normal to S. - A good radiance meter will have D s6 that
2(D) is as small as practicable. A magnitude of Q(D) < 1/30
steradians serves well for most geophysical optics tasks., If
the reading of the radiant flux meter is P(S,D) when it is
located at x and oriented by £ (see Fig.-1.5), then the as-
sociated radiance is P(S5,D)/A(S)Q(D), which we can denote by
"N(x;E)". Here "x'" denotes where the flow is, and gt de-
notes its direction. The associated radiant 1nten51ty is
P(5,D)/2(D) and the radiant flux density is P(S,D)/A(S)., .
These operational definitions reduce to a practical level the
ideal situations pictured in Fig. 1.4, They are ideal be-
cause in (a) of Fig. 1.4 the flow was assumed to be along a’ .
single direction and in (b) the flow was assumed to be through
a single point. The operational definitions give workable
approximations to these ideals and form the basis for a rlgor-
ous transition to the ideal limit, which will be made in
Chapter 2.
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FIG. 1.5 Operational definitions of the radiometric con-

cepts.
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Field and Surface Interpretations of Radiant Flux
and its Densities

In Fig, 1. 4 one important fact about the radiant flux
was omitted, namely its sense of flow. In practice we often
find it useful to. distinguish between the flow of radiant en-
ergy onto a surface S and from the surface S. When we do so,
the three central densities introduced above each have either
one of the two possible interpretations, according as the ra-
diant flux comprising the density is viewed as flowing onto
or from a surface. When radiant flux comes from the radio-.
metric field and falls onto the collecting surface S of the’
radiance meter we call the associated radiance the field ra-
diande. When the radiant flux is seen to leave a surface
(either real or imaginary) for the surrounding radiometric ~

field we use the term surface radiance. Similarly for radi- '

ant flux density: when radiant flux falls onto a surface we

speak of the radiant flux density as the irradiance of the -
flux at a point, and when the radiant flux density leaves S,

we speak of the radiant emittance of the radiant flux at a
point. Similarly also for {radiant) intensity: we have sur-
face (radiant) intensity and field (radiant) <nteneity. The

parenthesized "radiant" indicates that this adjective can be

omitted when radiant flux is understood to be the flux of in-
terest.

Operational Defiﬁitions of Field and Surface Quantities

We may summarize the preceding definitions in parts (c¢)-.
(f) of Fig. 1.5. These diagrams emphasize the operational
procedures used to measure the various quantities in actual
radiometric environments.

Thus field radiant flux can be defined over the surface’
S of the radiant flux meter for an incoming bundle D of direc-
tions. The heavy arrows give the general sense of the flow.
When the meter is oriented so that at point x the inward unit
normal to its collecting surface is E, and D is opened up to.
be the hemisphere EZ(£) of all directions E£' such that
£+£'= cos 520 then by definition we measure the irradiance
at x for the orientation £ of the collector. The field (ra-
diant) intensity J(x,&) and the field radiance N(x,&) are de-
fined analogously. It is important to emphasize that the Q(D).
in the latter two cases should be on the order of 1/30.0f a . =
steradian or smaller for best results.  The 'surface' coun- .
terparts to the preceding 'field' quantities may be pictured.
by reversing the flux arrows in parts (c) to (f) of Fig. 1.5, .

Figure 1.6 shows the details of how a surface radiance
may generally be assigned to a real or imaginary surface. We"
use the radiance invariance law (Sec. 2.6) to assign to the
direction £ at point p on S the radiance N(x,£) when p is
viewed by a radiance meter oriented as shown. This is a con-
sistent assignation since the radiance-invariance law states
that for a fixed €, N(x,£) is independent of y along a
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FIG. 1.6 The method of assigning radiances to real or
imaginary surfaces.

vacuous path between x and p. In this way each £ at p in the

outward hemisphere Z(n) of directions at p can be assigned a
radiance.

A useful property of irradiance is the cosine law,
which follows directly from the present operational consider-
ations. Fig. 1.7 shows a thin collimated steady stream of
photons incident normally on a small hypothetical plane sur-
face S. If P(S,D) is the radiant flux produced on S by this
stream, then this same flow P{S',D) exists across the surface
S' whose unit normal is tilted 8' from the direction of the
stream. The connection between the two irradiated areas is:

A(S') cos 8' = A(S)

>

B £ 8 EI

FIG. i.? Deriving the cosine law for irradiance.
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FIG. 1.8 Logical lineage of the radiometric céncepts.

Hence the connection between the irradiances on S' and S pro-
duced by the stream is:

H(x,£) = B(SLD) . P(S,D)
A A(9)

cos 8' = H(x,E) cos 8’

That is, H(x,&') = H(x,&) cos '

which is a form of the cosine law for irradiance'(the general

law is given in Sec, 2.8). The companion law to this for the
radiant emittance of S' is:

Wex,£') = W(X,E) cos 8'

Summary of Concepts and Some Principal Formulas
' of Geometrical Radiometry

A schematic diagram of radiometric concepts, developed
in the manner described above, which summarizes the geometric
derivatives of radiant energy, along with their mks units,
and current standard symbols, is given in Fig. 1.8. The
names of the six concepts above, and their designating sym-
bols may come and go with the years, but the logical lineage
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of the concepts depicted above, with their tap root in the
concept of radiant energy and indicated branching structures,
will withstand the rigors of time. For while the names in the
boxes ‘are transient conventions, the arrangement of the boxes,
and the underlying concepts for which the boxes stand are
simply manifestations of the way we naturally view radiant
energy and the flow of radiant energy in space and time. 1In
this sense the indicated conceptual scheme in Fig. 1.8 is im-
mutable. The full developments of the analytical connections
among the radiometric concepts are not needed in this intro-
ductory chapter, and are reserved for Chapter 2. However, a
brief survey of some of the main formulas of geometrical ra-
diometry is given here for convenient reference during the
remainder of this chapter's discussions.

The primary concept of geometrical radiometry in prac-
tice is the phase density concept, namely radiance. We find
it possible to describe all other concepts in terms of this
density. Thus for example in the case of the flux density
concept!

H(x,E) = f N(X,E')E'+£ dR(E')  (with field %S
‘ E(£) radiance)

W) = [ NGgETE dagen)  vith surface  (2)
. EEE) radiance)

H(x,&) is the irradiance at x on a surface whose inward nor-
mal is the direction £. The basis for (1), (2) rests in the
cosine law for irradiance and the possibility of the linear
superposition of radiant fluxes. The symbol "E(E)" stands
for the hemisphere of all directions £' such that £'.§ > 0,
(hence - E(-£) is the hemisphere of all directions £' such
that E'+-(-€) > 0, i,e., E'+«§ < 0). Here "dA(E')" is short for
'sin 6' d6' d¢' ", where (8',¢') define &' in some reference
frame.  Of course £'+«E is the scalar or dot product of the
directions £' and &, The representations of the solid angle
density in terms of radiance are not needed at present and
may be found, along with many related concepts, in Sec. 2.9.
We shall also find it convenient to introduce at this time
two cousins of the flux density concept, namely sealar and
veetor irradiance, defined, respectively, by writing:

"h(x)" for J~ N(x,E") dn(E") (watt/m?) (3)

<)

and:

"R for [ NCx,EDE' da(g)  (watt/n?) (4)

Here E is the set of all unit vectors (directions) in euclid-
ean three space. The scalar irradiance h(x) is the total ra-
diant flux per square meter coursing through point x in all

directions. It is related to radiant energy per cubic meter
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u(x) {the radiant denatty Joules/m®) by means of the for-
mula: .
vix) u(x) = hix) (5)

where v{x) is the speed of light at x (in m/sec). The quan-
tity H(x) is a vector; the indicated equation is really three
equations: one for each of the x, y, z components of H(x),

as given by the corresponding components of £'. The vector
H(x) also has units of watts per square meter: its magnitude
is the maximum net irradiance attainable as one samples all
possible directions £ of flow about x. The direction of H(x)
defines this direction of maximum net irradiance., The net
irradiance H(x,E) "at x in the direction £ is defined as
H(x,E)-H(x,-£); see Sec., 2.8 for complete details.

It will be necessary in this introductery chapter to
also consider hemtephertcal scalar irradiance, defined’ by
writing:

"h(x,E)"  for ] N(x,E') da(E')  (watt/m?)  (6)

2(8)
"h(x,-£)" for- N(x,E') da(g') (watt/m?) = (7)
_ ' 2(-E)
where, by (3), .
h(x) = h[X,E) * h(X,'E) ' (8)

for every £ in £, - A convenient terrestrial reference frame
in hydrologic optics is that depicted in Fig. 1.9. We will
often use the spec1al case of (6}, (7) where £ = k, and we
shall write i :

" h(z,#)" for  h(p,*k) )

where we retain only the depth variable z of the usual
(x,y,z)-coordinates of the point p. Corresponding to h(z,t)
we have the companions from (1) in which £ = zk; we write

"H(z,+)" for H(p,*k) (16)4'

Irradiances associated with plus signs are upwelling (or up-
ward) irradiances; those with minus signs are downwelling (or
downward) irradiances. All these irradiances have units of
watt/m?. In natural hydrosols H(z,*) can be measured by
horizontal flat plate collectors, while h{z,*) can be meas-
ured by spherical collectors, suitably shielded (see Sec.
2.7). Some useful special cases of the precedlng formulas
are the following.

Let N(x,&). be uniform, i.e.,- independent of 5 at some..
x and of magnitude N; then by (1)
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z
{'=(a,B.y) . t upward direction
@ = 3in8’ cos P’ ‘
B =5in8' sin ¢’ . 1 downward direction
1y =cos§'
a2+B24+y22) ="k P
b - 9.1
| 3 i
l ’)’
. la=”

p=(x,y,2)
z
{measured positive
downward)

FIG. 1.9 The standard tefrestriallynbased coordinate sys-
tem in hydrologic optics.

2% w/2 -
H(x,E)= NJ E'eF dQ(E') = N J J cos 8' sin 8" de'de’
2(8) ¢=0 Jg=0 ,
= 7N (11)
which holds for all & at x. The computation was made with
the k axis momentarily shifted parallel to £, Further, from-
(2), in the same way: '

W(x,E) = =N
for all £ at x.

) - (12)
Next, by (3): .
v : 21 m '
h(x)= NI dae(g')= NI f sin 8' de'd¢' = 4aN
E ¢#=0 ‘g'=0

(13)
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By (4
H(x) = NJ £' dQ(E') = 0 (14)

23]

By (6)
h(x,£) = 27N sy

Observe the effect of the cosine in the integrand: for a unF'F
iform radiance distribution at x, h(x,g)=2H(x,&), for every .
£. Further examples are given in Sec. 2.11.

-n2-Law for Radiance

We mention in passing an important law of geometrical

radiometry concerning radiance: If (Z is an arbitrary photon -

path through a transparent optical medium within which the’
index of refraction N variee continuously with location, then
photon flux along. the path & having radiance N moves such
that N/n is invariant along the path (cf. Sec. 2.6). This
is the n?-law for- radlance.

The Bridge to Geometrical Photometry

The conceptual bridge from geometrical radiometry to
geometrical photometry is built on the empirical fact that
not all wavelengths of radiant flux invoke the same sensation
of brightness in the human eye. The green-yellow wavelength .
555 mu is the brightest. In fact one would require, e.g., .
about 2 watts of blue-green light of 510 mp or 2 watts of
orange light of 610 mu to produce the same sensation of
brightness as one watt of green- yellow light of 555 mu. The
photopic Zumznostty curve depicted in Fig. 1.10 summarizes a
quantitative measure y(2) of the br1ghtness sensation produc-
ing capabilities of a wavelength A in the electromagnetic
spectrum. Observe that for wavelengths X below 400 mu and
above 700 mu, electromagnetic radiation no longer is seen by .
normal human eyes. A fuller discussion of this curve is gi-’
ven in Sec. 2.12.- See also Sec. 1.8. '

The conversion rule from a radiometric concept to its
photometric counterpart is based on the photoplc 1um1n051ty
curve and is given as follows:

Let & be any radiometric concept (e.g., U, P, H, W, J,
or N) which is defined over the electromagnetic apectrum.
Then the photometric concept L (namely Q, F, E, L, I, or B,
respectively) associated with R is given by

2 - 6soj: RO FOA) d
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FIG. 1.10 The photopic luminosity function.

If L2 has units watt/(x), then X2 has units Zumen/(%), where
"{#)" stands for (meter) or (steradian) or various permissible
combinations of these geometrical units. For example,

oo

B(x,&)= 680! N(x,&,A) Y()) dxr , lumens/m? sr
0 .

This gives the luminance (loosely, the "brightness") produced
by a given sample of radiance. This is what, in essence, we
can see as a result of the radiant flux of photons at x in
the direction £. Again, for example, <{lluminance 1is:

€0

E(x,E)= 680[ H(x,&,%) ¥y(Xx) dx » lumens/m?
0 .

The logical intexrelations among the photometric concepts pre-
cisely parallel those of radiometry. Thus, starting with ZIy-

minous energy Q, which, according to the rule above, we de-
fine as:
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PHOTOMETRIC CONCEPTS ILLUMINANCE £| {onto a surface)
44 AREA
DENSITY
(tumen/m?) E;llJTM‘rl‘zgg: L| (from a surface )
FIELD
T _ INTENSITY . { {onto a surface)
N LUMINOUS LUMINOUS SOLID ANGLE
MAGNE TIC {-—pnd — o
ENERGY ENERGY Q FLUX F DENSITY SURFAGE
: R
B {lumen/sr) : (from a surface)
{talbots) © {(lumens} INTENSITY |
FIELD
LUMINANCE 8 {onto a surface)
L ged PHASE
DENSITY \
2 SURFACE
1 / ) ;
(lumen/m®sr LUMINANCE 8 (from a surface)

FIG. 1.11 Logical lineage of the photometric concepts. .

Q= GBOJwU(l) FOO dax ,
0

we then can.construct_a diagram similar to that in Fig. 1.8.
This is shown in Fig. 1.11. Consequently, everything we can
say about the geometrical properties of the radiometric con-
cepts, we can also say .about the correspondlng propertles of
photometric concepts.

We mention in. pa551ng some classical alternate sets of .
photometric units:

1 foot candle =1 1ﬁmen/ft2 (area density of'flux) (16) .
1 candela = 1 lumen/sr (solid angle density of flux)(17)v-

1 (centimeter) lambert = % lumen/cm? st

1 (phase )
1 (meter) lambertié’F lumen/m? sr density (18)
| '1 of flux)
1 (foot) lambert = T lumen/ft? sr
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From (17) we can compactly express luminance generally in
terms of candelas/m? when using the mks system (the preferred
system). The lambert unit arises as follows: let a surface,
which has both unit reflectance with respect to irradiance for
each wavelength and also a directionally uniform reflected
radiance for each wavelength, be called a perfectly diffusing
surface, for short. By definition, a perfectly diffusing sur-
face irradiated by one lumen has a luminance of one lambert.
(Use' Eq. (12).) However, the conversion rules above in (18)
are by convention now used under arbitrary directional and re-
flectance conditions.

Thus we have the general rule: To convert B(x,£) lu-
mens/mésr to meter lamberts, multiply B(x,£) by w.. (This fol-
lows from the fact that as defined above the meter lambert is
about 1/3 of a lumen/m2?sr; so it takes about 3 meter. lamberts
to every lumen/m?sr to describe the same scene.)

With due respect to the historical origins of the pre-
ceding terms, it is felt that the continued employment of
"foot candle" and "lamberts' will serve no logical purpose.
Their mention here simply serves to keep open the passageway
to the classical literature of photometry and radiative trans-
fer theory to which we must refer now and then during this
work. New students are advised to use the lumen, meter, ste-
radian system of units in photometry, along with the watt
meter, steradian system in radiometry in their future studies.
A convenient abbreviated mks unit of radiance is the (unra-
tionalized)* herschel:

1 herschel = 1 watt/m?sr - (19)
and an mks unit of luminance is the (unrationalized) blondel:
1 blondel = 1 lumen/m?srt ' (20)

These- abbreviations should ¢ used only when_ the sheer fre-
quency of mention of "watt/m?sr" or "lumen/m?sr'" becomes so
great in-a given discussion that facile communication is im-
paired; otherwise they simply should be spelled out in full
using watts, meters and steradians. Further discussion of
the foundations of photometry is given in Sec. 2.12Z.

E N - i

An unrationalized radiance (or luminance) unit is one for
which a’.uniform radiance distribution of magnitude N produces
an irradiance of wN. A rationalized unit would associate to
a uniform N the irradiance N. An unrationalized radiance
unit is thus logically simpler than a rationalized unit, The
term ''rationalized" here means "removed w-factor”. It is ir-
rational to rationalize radiance units just because it is too
tiresome to carry around a m-factor which arises in-.calcula-
tions with radiance distributions which in fact do not ocour
in practice in real environments in the first place' (namely
directionally uniform distributions).
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1.2 A Survey of Natural Light Fields

The intricate chain of radiative transfer processes
within the air and seas of the earth begins with the influx
of solar radiant energy at the upper levels of the atmosphere
and partially ends ‘in the depths of the seas and lakes. We
shall now bricfly survey the main features of the light field’
in the meteorologic and hydrologic domains. We conduct.the
survey with the purpose of establishing the general orders of -
magnitudes of the set of radiometric phenomena in natural op-
tical media which the theory of radiative transfer has been
evolved to describe and predlct

- The Solar Constant

TFhe solar (irradiance) constant is the total irradiance
_produced by solar rddiant energy of all wavelengths at a
point located outside the earth's atmosphere at the mean dis--
tance of the earth from the sun and on a plane normal to the
direction of the sun's center:

solar (irradiance) constant = 1396 watt/m?

2.002 gm cal/cm®min B
(1)
where ‘
' 1 joule = 0.2389 gm cal

The quantity (1) is based on the results summarized by John-
son [128], and actually pertains to wavelengths in the range
220 to 7000 mu. For a survey of solar constant measurements
and some theoretical bases for them, see [296]. Table 1
gives a wavelength by wavelength analysis of the solar (irra-~
diance) constant in watts/m?xmillimicron. In the table, p(A)
is the percentage of the total solar constant included in the
wavelength range from 0 to A. It is interesting to note that -
this distribution of H(A) with X is very close to the radiant’
emittance curve of a 6000°K complete radiator. The solar
(illuminance) constant, i.e., the photometric counterpart to
the solar (irradiance) constant is obtained by computing.

E = GBOJ H(A) F(A) dA C(2)-
0_ .
in accordance with the general rules of photometry laid down

in Sec. 1.1. We find:

solar (illuminance) constant

136,700 lumens/m? : (3)'

L}

12,700 footcandles
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TABLE 1
Solar Spectral Irradiance Data
Wavelength in millimicrons. H(A) in watts/m?mu.

A H(A) p(A) A H(A)  p(A) A H(AD)  p(d)
220 0,030 0.02 420 1.92 11.7 640 1.66' 42.1
225 0.042 0.03 425 1.89 12.4 650 1.62 - 43.3
230 0.052 0.05 430 1.78 13.0 660 1.59 44,5
235 0.054 0.07 435 1.82 13.7 670 1.55 45.6
240 0.058 0.09 440 2.03 14.4 680 1.51 46.7
245 0.0064 0.11 445 2,15 15.1 690 1.48 47.8
250 0.064 0.13 450 2.20 15.9 700 1.44 48.8
255 0.10 0.16 455 2.19 16.7 710 1.41 49.8
260 0.13 0.20 460 2.16 17.5 720 1,37 50.8
265 0.20 0.27 465 2.15 18.2 730 1.34 51.8
270 0.25 0.34 470 2.17 19.0 740 1.30 52.7
275 0.22 0.43 475 2.20 19.8 750 1.27 53.7
280 0.24 0.51 480 2.16 20.6 800 1.127 - 57.9
285 0.34 0.62 485 2.03 21.3 850 1.003 61.7
290 0.52 0.77 490 1.99 22.0 900 8.95 65.1
295 0.63 0.98 495 2.04 22.8 950 0.803 68.1
300 06.61 1.23 500 1.98 23.5 1000 0.725° 70.9
305 0.67 1.43 505 1.97 24.2 1100 0.606 75.7
310 0.76 1.69 510 1.96 24.9 1200 0.501 79.6
315 0.82 1.97 515 1.89 25.6 1300 0.406 82.9
320 ‘0.85 2.26 520 1.87 26.3 1400 0.328 85,5
325 1.02 - 2.6G 525 1.92 26.9 1500 0.267.° 87.6
330 1.15 3.02 530 1.95 27.6 1600 0.220 89.4
335 1.11 3.40 535 1.97 28.3 1700 0.182 90.83
340 1.11 3.80 540 1.98 29.0 1800 0,152 92.03
345 1.17 4,21 545 1.98 29.8 19006 0.1274 93,02
350 1.18 4.63 550 1.85§ 30.5 2000 0.1079 93.87
355 1.16 5.04 555 1.92 31.2 2100 0,0917  94.58
360 1.16 5.47 560 1.90 31.8 2200 0.0785 95,20
365 1.29 5.89 565 1.89 32.5 2300 0.0676 95.71
370 1.33 6.36 570 1.87 33.2 2400 0.0585 96.18
375 1.32 6.84 575 1.87 33.9 2500 0.0509 96,57
380 .1.23. 7.29 580 1.87 34.5 2600 0.0445 96,90
385 | 1:1% 7.72 585 1.85 35.2 2700 0.0390 97.21
390 1.12 8.13 590 1.84 35.9 2800 0.0343 97,47
395 1L20 8.54 595 1.83 36.5 2900 0.0303 97,72
400 1.54 9.03 600 i.81 37.2 3000 0.0268 97.90
405 1.88 9.65 610 1.77 38.4 3100 0.0230 98.08
410 1.94 10.3 620 1.74 39,7 3200 0.0214- 98.24
415 11.0 630 1.70 40.9 3300 0.0191- 98,39
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TABLE 1 (Continued)

A HO) p) A HOY B A HQR)  p(d)

3400 0.0171 98.52 4400 0.0067 99.29 4900 0.0044 99.48
3500 0.0153 98.63 4500 0.0061 99.33 5000 0.0042 99,51
3600 0.0139 98.74 4600 0.0056 99.38 6060 0.0021 99.74
3700 0.0125 98.83 4700 0.0051 99.41 7000 0.0012 99.86
3800 0.0114 98,91 4800 0.0048 99.45

3900 - 0.0103 98.99 .
4000 0.0095 99.05
4100 0.0087 99.13-
4200 0.0080 99.18
4300 0.0073 99.23

(From [128}, by permission).

By dividing the solar constant by the approximate solid
angle subtense of the sun at the mean distance of earth from
sun, 2= 6.8 x10~° steradians, we obtain the approximate solar
radiance and luminance constants: ] : :

N =2 x 107 watts/m?®sr o
(3a) -

B =2 x 10° lumens/m?sr

General Irradiance Levels at Earth's - Surface

The irradiance levels at the earth's surface can vary
relatively widely because of correspondingly wide variations
of atmospheric clarity and elevation differences of locales
above mean sea level, Hence the magnitudes to be offered
here are not as unique or invariable as the solar constant
given above, and must be understood as general indicators of
typical irradiance. levels at the earth's surface, Table 2 is
adapted from one given by Moon [185]. The solar constant val-
-ues in the indicated ranges have been computed from Table 1
above and- included for comparison. The column marked "405 to
704 mu" is of especial interest since it gives the irradi-
ances in the visible portion of the spectrum. By an odd nu- .
merical fluke, the solar irradiance constant 555 watts/m? o- -
ver the visible spectrum numerically equals the wavelength .
(in mu) at which the photopic luminosity curve has.its maxi-- .
mum. It is instructive to study the tabulated effects of :
moisture content of the air and altitude on the irradiance as. .
given in Table 2., (The totals have been rounded out so as '

not to appear misleadingly accurate.) Quite a battery of em-  1;_

pirical models have been evolved to predict the effects of
moisture, dust, elevation of sun and of observer on the meas-
ured irradiances on the earth's surface. An excellent sum-
mary of these models may be found in [96]. Another reference,
of interest to oceanographers, would be [173]. For a recent
survey of solar irradiation measurements, see [296].
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TABLE 2

Irradiance Data at Earth's Surface

(in watts/m? on a plane normal to sun's rays, within
indicated portions of the electromagnetic spectrum)

Conditions Wavelength Range

Below 346 to 405 to Above
346 mu 405 mu 704 myu 704 mu Total

Mountain tops, _ : '
sun at zenith, 23 47 484 668 1229
dry clean air.

Mountain tops,
sun at zenith, 16 43 466 534 1060
moist dusty air.

At sea level, ]
sun at zenith, " 16 42 472 665 1200
dry clean air.

At sea ievel,
sun at zenith, 4 30 375 425 . 834
moist dusty air. i

Solar (irradi-
diance) Constant 58 76 555 707 1396
(for comparison) ’ '

(From [185], by permission)
V’General Illuminance Levels at Earth's Surface

‘An extensive photometric survey of illuminance at sea
“level on a horizontal plane under various sky conditions was
made by Brown [35], part of which is summarized in Fig. 1.12.
The graphs in Fig. 1.12 give a detailed photometric portrait
of the extremes cf variation and the modes of variation of
natural illumination generated by the light from the sun and
the moon, We have seen in (3) that the solar (illuminance)
constant is 12,700 footcandles, which corresponds to a solar
disk luminance of 2 x 10° blondels. This level of illumina-
tion is approached by the "unobscured sun'" curve in Fig, 1.12
for zenith sun. Notice how little the average overcast con-
ditions affect the general order of magnitude of the sea lev-
el illuminance. Inexperienced bathers who think they will be
safe from sunburn under overcast skies will do well to take
note of this fact which follows from Fig. 1.12: one can get
baked just as severely under overcast skies as in bright di-
rect sunlight. Moonlight bathing is harmless--photometrically
speaking--for, the average level of full moonlight illuminance
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is about five orders of magnitude less than corresponding
sunlight conditions. Typical clear sky luminances away from
the sun are on the order of 3000 blondels, with very heavily
overcast skies on the order of 300 to 1000 blondels at the
zenith. For further details on the use of the graph in Fig.
1.12, one should consult the discussion given in [35].

Gross Features of Atmospheric Radiative Transfer

The tables and graphs of the irradiance and illuminance
surveyed above show the great temporal and spatial variations
possible in the magnitudes of these quantities. Therefore to
try to assign specific numbers to the reflectance and trans-
mittance of the atmosphere at any given time is seldom an in-
structive activity. However, discernable patterns and stable
percentages emerge when the dally variations of the reflec-
tances and transmittances are averaged over long times and
over great areas. Such averages begin to show the general
features of the radiative transfer processes extant in the
atmosphere, and help us form an initial picture of the ra--
diant energy budget of the atmosphere-surface system. Con-
sider, for example, the average yearly irradiance (of all
wavelengths) on an average horizontal surface just outside
the atmosphere over the entire northern hemisphere. On purely
geometrical grounds, this amounts to about one quarter of the
solar constant or 340 watts/m?(about 0.485 gm cal/cm? min)
over one year.

The annual radiant energy budget may be analyzed as
follows: for easy visualization, we normalize the 340 watts/
m? and start with 100 watts/m*®. Thus, if 100 units of irra-
diance oh the average are incident on the upper atmosphere,
then the general radiative transfer activities in the atmos-
phere at steady state are reflection, absorption, and trans-
missionm, which take up, respectively, 34, 19, and 47 of these
100 incoming units as shown in (a) of Fig. 1.13, Part (b) of
Fig. 1.13 breaks the reflected and transmitted fluxes down
even further. Thus, of the 34 units reflected, 25.of these
are by the clouds, and 9 by the clear atmosphere., - 0f the 47
units transmitted, 24 of these are directly transmitted (with-
out scattering), and 23 are transmitted via scattering. Of
these 23 transmitted units 17 are transmitted by the.clouds,
and 6 by the clear atmosphere.

.'Now the 47 transmitted units are received in turn by
the earth (terra firma + terra infirma), are chewed up and
are eventually given back via heat radiation (14 units), or
latent heat of evaporation in cioud formation (23 units) or
via convection-conduction activity between the atmosphere and
the earth's surface (10 units). This is shown in (c) of Fig,
1.13.

An exact mathematical formulation of these interactions
can be written down using the principles of invariance for
irradiance, as described generally in Sec. 8.7, assuming,
e.g., a three-layer system (atmosphere + clouds + earth's
surface)}; see in particular Examples 5 and 6 of Sec. 8.7. The
numbers cited above, however, are not theoretical, but rather
based on actual observations and are patterned after: the
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FIG. 1.13 The average yearly radiant flux budget over the
sunlit hemisphere of earth. (From [96], by permission)

magnitudes summarized in [96].

Radiative Transfer Across the Air-Water Surface

The still air-water surface acts like an imperfect mir-
ror which reflects only about 2% of an unpolarized light beam
normally incident on it from the air side, and transmits
about 98% of the incident flux of the beam into the water be-
low. As the beam is tipped and all other factors the same,
this reflectance stays fairly constant until, at about 45°
from the vertical, the reflectance curve begins to soar to 2
complete reflectance of unity at grazing incidence to the air:
water surface. The functional dependence of this reflectance
is quite well known and is governed by Fresnel's formulas, to
be studied in Sec. 12.1.



SEC. 1.2 NATURAL LIGHT FIELDS o 29

When the aivr-water surface is ruffled by capillary waves
induced by the wind, or when the surface is heaving with grav-
ity waves, the average amount of flux reflected from a verti-
cal light beam incident on the moving surface over a given
time can be computed, once again by means of the Fresnel re-
flectance function, but now with that function'’s values _
weighted by numbers between 0 and 1 which are the fraction of
the given time interval the surface is tipped away from the
horizontal by a given angle between 0 and 90°. The determi-
nation of these weighting factors required in such a computa-
tion is at present principally an empirical matter, and one
of the first such determinations made in hydrologic optics is
depicted in Fig. 1.14. This curve, based on the experimental
researches by Duntley in [82], gives the number of times the
water surface normal at a fixed point was observed to tip
over by an amount ¢, 0° < ¢ < 90°, during a given time period.
The solid curve is for the case where the normal was observed
within the up-down wind plane; the dashed curve is for the
cross-wind plane case. There is very little difference be-
tween .the two cases. A steady wind of 18 knots (about 9 m/sec)
was blowing and maintaining a steady capillary wave and small
gravity wave complex. It was found that the number ng of
times the wave surface normal was tipped ¢° from the vertical,
during the experiment was very nearly expressible as:

_ tan? &
_ 202
n¢— n, e (4)
Hy
j s
'/

|
|

___Z¢A_-- 1 i ] L . | +-Z

- =30° -20° -~10° O 10° 20° 30°

SLOPE (Z=tan ¢)

FIG. 1.14 Relative frequency of occurrence of a given
tilt of a water wave facet.
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In other words, ng was found to vary in a gaussian manner
when tan ¢ (rather than ¢) was used as an independent vari-
able. The quantity o is the usual standard deviation of the
observed slopes (the mean slope tan ¢ was zero). It is clear
then, that the relative number of times the wave slopes were
tipped at tan ¢, is given by nyg/no. For the 18 knot wind, it
turned out that o was 0.162, which may be pictured as the tan -
gent of a standard deviation angle of inclination of the sur-
face normal of about 9.2 degrees from the vertical. It was
also found that the square of o, i.e., 0%, varied nearly lin-
early with the surface wind speed generating and sustaining
the steady wave complex. A flat calm surface clearly has a ¢
of 0. The preceding gaussian distribution was also found by
Cox and Munk [56] in their study of the glitter patterns on
the sea surface.

The preceding statistical type of description of the
dynamic air-water surface can be used, under suitable condi-
tions, to estimate the time averaged reflectance and trans-
mittance of the air-water surface over a given time interval
at a certain point; or dually, to estimate the space averaged.-
reflectance and transmittance of the surface over a given re-
gion at a certain time instant. Table 3 displays three re-
flectances computed under the indicated conditions.

TABLE 3

Irradiance Reflectance H(O,+)/H(O{-) of the
Air-Water Surface for Sky Light

Sky ‘ Air-Water Surface
Smooth (o=0) _ Rough (0=0.2)v
Clear, sun at 60° (no wind) (13-18 knot wind)
from zenith ) .100 : .071-.,088 :
Uniform o .066 ' .050-.055
Overcast ' .052 .043-.044

{From [58], by permission)

Thus under a clear sky with the sun at 60° from the zenith, a
smooth sea surface will reflect about 10% of its total irra-
diance ( H(0,-) ) back into the sky, whereas, under the same ..
sky condition, a sea driven by a steady 13-18 knot wind would .
reflect a slightly less amount of about 7 to 9% of the total-
irradiance (over the whole spectrum). This is in reasonable
accordance with an intuitive estimate based on the Fresnel
reflectance function for the air-water surface. 1In all dis-
played cases in Table 3, the irradiance reflectance decreases
when the wind starts to blow over the surface and hence rough-
ens the surface. "As Cox and Munk observe, this fact has an
important oceanographic significance, namely that in summer .
the open stretches of the Arctic Ocean surface (or any
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FIG. 1.15 Contrast reduction by time-averaged refractlon
at the air-water surface.

roughened surface for that matter) will reflect less and
transmit more radiant flux than has been previously estimated
using simple unweighted Fresnel reflectances (cf. [58]).

More exact values of the reflectance for o = 0 are given in
Table 4 of Sec. 12.1.

A complete theory of the reflectance and transmittance
of both the static and dynamic air-water surface 1s developed
in Chapter 12 below.

Besides oceanographic applications there are also visi-
bility applications of the observed gaussian structure of the
ruffled air-water surface slopes. Thus while it is common-
place that the visibility of a submerged object below a wind
blown surface as seen through the surface is less than when
the surface is calm, due to the blurring action of the refrac-
ting processes at the surface, it is possible actually to
make quantitative predictions of the time-averaged apparent
contrast of a given submerged object against its background
as a function of the size of the object and the standard de-
viation o of the wave slopes through which the line of sight
is directed. Part {a) of Fig. 1.15 depicts the basis of such
predictions when the surface is flat and horizontal at the
point ‘of intersection with the line of sight, and when the
center of the submerged object (here a circular disk) is ob-
served to have an apparent radiance N,. When the surface is
tipped, as in (b) of the figure, the refracted line of sight
picks up the apparent radiance N of the background of the ob-
ject.  The still water apparent contrast C of the center of
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the object with respect to its water background is by defini-
tion (No-N)/N. 1If the time-averaged apparent contrast of the
object against its background is T when the surface slopes

have & standard deviation of ¢, then it can be shown that:

_ tan? ¥
,. (5)

where the object has an angular radius of w Observe that for
C > 0, if o increases, then T decreases for a given ¥, as
would be expected. Further” for given o, thé time-averaged
contrast C increases as Y increases; agaln a3 would be expec-
ted, but now in a definite quantitative way. For small ob-
jects or rough seas (or both) the preceding formula yields

the rule of thumb:

202

T=c (Eiﬂi_k) . f55:;i

These formulas, which describe the contrast reduction by time-
varying refraction effects, will be developed in deta11 in
Sec. 12.14.

Glitter Patterns on the Air-Water Surface

Sunlight reflected from a still air-water surface can
be seen, by each observer, as a circular image lying angularly.
just as far below the observer's horizon as the sun lies ahove-
that horizon. A slight breeze disturbs the water and the sin-

gle image splits into two or more irregularly shaped randomly . -

moving images of the sun. The breeze continues and the few
images ignite into a dazzling glitter pattern. To a poeti-
cally inclined observer, the glitter pattern invokes very un-
geometrical and unhydrodynamlcal thoughts. In Russian, for
example, the glitter pattern is sometimes referred to as the:
"road to happiness". However, to analytically inclined ob-
servers, the glitter pattern conta1ns a wealth of information
about the geometrical- structure of the surface, the statisti-
cal distribution of wave slopes and, as we have seen above,
important consequences for the radlatlve transfer processes
across the air-water. surface.

As an illustration of these more technlcal 1deas consi-
der the problem of f1nd1ng the greateést occurring slopes. on a
rough sea surface at a given time. It is seemingly impossible
to do this visually or even with photographs or other optical
means until certain geometrical features of the sun's glitter
pattern come under scrutiny. Then it becomes clear that in
order for an observer to see the instantaneous reflected
image of the sun in a wave facet, the three participants in
this phenomenon, namely the sun, the facet, and the observer,
must subtend very preécise geometrical relations. These re-
lations are readily calculated using a bit of analytic geom-
etry. Figure 1.16 (adapted from Minnaert [182], in turn
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FIG. 1.16 How to find the tilt of a sun-reflecting water
facet's normal knowing the sun altitude o and the horizontal
angle w of the facet from the vertical plane containing the
sun. {(Based on Hulburt's calculation) (From {113], by per-
mission) ‘

derived from [113]) summarizes one such calculation, and may
be used as follows to estimate the required maximum tilt of
wave facet~normals on an air-water surface which has a glit-
ter pattern. First estimate the angular half-width w of the
pattern, and estimate the altitude a of the sun above the
horizon. Suppose, e.g., ®w = 15° and o = 30°, Then the curve
going through the grid point (15°, 30°) is labeled "30°" and
this is the requisite maximum tilt of the normals to the
glittering facets. When a grid point (such as (20°, 40°) )
falls between two curves, one must visually interpolate to
find the requisite maximum tilt (about 32° in this case).
These and related calculations are studied further in Sec.
12.5.

. It is of interest to observe that the graphs in Figure
1.16 may be used to estimate the amount of tilt of any ob-
served reflecting air-water facet; furtermore the object re-
flected in the facet need not be the sun--any point source
whose distance from the facet is several times greater than
the observer-facet distance may replace the sun. :

<

Subsurface Refractive Phenomena

Once one descends below the air-water surface a new
realm of. relatively strange radiative transfer phenomena is
encountered. At the very instant light passes that incredi-
bly thin -air-water film the radiance function receives a jolt
in the form of an abrupt increase in radiance of the sky in
each observable direction. The increase is by a factor of
(4/3)% or 16/9. This is a purely geometric effect due to the
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FIG. 1.17 The effect which gives rise to the n?-law for
radiance. '

general narrow1ng of a bundle of refracted light rays as they’
enter the more dense water from the air (see Fig. 1. 17) It
is interesting to mote that this phenomenon, as such, is not

‘detectable by the unaided eye since the apparent radianqe as-

sociated with a bundle of light rays depends (scattering ef- -
fects aside) only on the indices of refraction at the begin-
ning and end of the light bundle's path. Since the bundle
begins in air and ends on the retina inside the eye, the in-
termediate water domain has no effect in this special geomet-
rical sense. The full effect, however, can be measured by
simple radiance meters, if they.are suitably built,

The optical distortions attendant upon the refraction
of the light rays at the surface are quite marked. For ex-
ample as one slowly descends into a body of water with a rel-
atively calm surface and continues to look upward, .one is o
struck with the impression that he has just descended downward
into a room with a.circular hole--a '"manhole'"--in its ceiling.
Through this manholé one sees the objects above the surface
become visually compressed the closer their images lie to the
rim of the hole (Fig. 1.18). Just to one side of the hole
the underside of the air-water surface appears as a slightly .
undulating perfect mirror, in which nearby fish or other ob-
jects may be imaged--upside down. Also, if the bottom is

just below the observer, he can see it mirrored on the sur-. . -

face above him around the rim of the manhole. As one des- H
cends further the manhole's outline is slightly dimmed by the
scattering and absorbing effects of the water, but it contin-
ues to subtend the same angular radius--about 48°, the angle
beyond which, according to Snell's law of refraction, total
internal reflection takes place,

If the air-water surface is not calm, but ruffled with
wavelets, then the ideal geometric reflectlon pattern is re-
placed by somethlng ‘relatively complex. Beebe [12] gives the
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FIG. 1.18 The swimmer's optical manhole to the outside
world.

following interesting account:

"As to the opacity of the ceiling, I thought it abso-
lute until I threw my head back as far as I dared, [he was in
an old fashioned iron helmet rig exploring Haiti Bay, in 1927}
and saw, almost directly overhead, facets of clarity, appear-
ing and vanishing, showing me an-instant's patch of sky, a
momentary glimpse of friend or boat--of that world to which
it seemed at this moment inconceivable that I belonged. But
anywhere except straight above me, the ceiling of the bay was
watered gauze."

" If the underwater observer now directs his attention
downward, he may see in relatively shallow water a moving mo-
saic of bright and dark areas on the bottom, produced by the
refracted sun's rays converging and diverging at various
points on the bottom. When two bundles of rays are refracted
so as to momentarily converge at a point A on the bottom (Fig.
1.1Y) the irradiance at A abruptly increases and is seen by
the swimmer as a bright spot. On the other hand, rays could
be diverted away from a point such as at B in Fig. 1.19,
whereat it will be momentarily relatively dark. By knowing
the statistics of the air-water surface slopes (as discussed
above) it is possible to determine the statistics of the irra-
diance. pattern on the bottom. The prohlem has recently been
studied, e.g., by Redmond [260}, and Schenck [272].

Ks one descends still farther, and if the water has a
modicum- of suspended and dissolved material which scatters
light, the refracted rays of sunlight are then seen to form a
pattern of moving beams and weaving, lighted, curtain sur-
faces very much like a watery aurora borealis or like the
shafts of sunlight one sees directed earthward from rifts be-
tween clouds. These beams die away relatively quickly with
depth-in natural waters, at least as compared to the decay of
the general diffuse light originating from the sky and clouds.



16 .- INTRODUCTION VOL. 1

]

A ' B

FIGﬂ 1.19 Generéting light patterns cn shallow bottoms.

We shall look into this phenomenon in some detail later in
this section.

One final subsurface refractive phenomenon we shall
note here is that associated with the thermocline in natural.
hydrosols. The thermocline is the reglon of abrupt tempera-
ture change, (usually taking place in an extensive thin hor-
izontal layer) found in most all natural waters, which sepa-
rates a warmer layer from a cooler layer of water below it.
It is detectable by means of a submersible thermometer known
. as a bathythermograph. Accompanying this temperature change
is a correspondlng density change of the water, and with this
occurs a change in the refractive index of the water. There-: -
fore we would expect some interesting refractive optical phe- -
nomena at the thermocline. Some observations of optical )
thermocline phenomena were made by L1mbaugh and Rechnitzer
{160] and are schematically summarized in Fig. 1.20, which is
adapted from their paper. When the thermocline occurs in its
more frequent guise, as a thin, horizontal, nearly motionless
layer below the surface (as in the upper third of Fig. 1.20)
one can actually see the thermocline from below as a smooth,
nearly flat mirror-like plane boundary between the two water
layers of d1ffer1ng temperature-—and it generally manifests
itself very much in the way the air-water surface does, even
to the extent of having its own manhole into the warmer layer .
of water above. (Would one expect this manhole to subtend ‘
the same angular radius as the surface manhole?) Occasionally
some rather unusual refractive phenomena may be observed when
a moving tongue of cold water snakes its way through a warmer
region on the bottom, (as in the lower left third of Fig.
1.20). The convex boundary of the tongue is visible all -
along its extent at grazing incidence, and its general appear-
ance is reminiscent of the intertwining portions of two mis-
cible liquids, such as clear alcohol and clear water, Finally,
Limbaugh and Rechnitzer observed the optical thermocline ef-
fect in small isolated pools of relatively cold water resting
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FIG. 1.20 Three interesting subsurface refractive phenom-
ena. (From [160]}, by permission)

on the bottom in the midst of warmer water, These cool pools
reflected light at their surfaces much in the way the still
air-water surface reflects light for an observer above it.

The Decay of the General Light Field with Depth

Perhaps one of the most striking and outstanding fea-
tures of the light field in deep natural waters is that it
gets dark fast with increasing depth. For example infrared
radiation (which comprises about half the irradiance at sea
level on sunny noon days) is essentially absorbed in the first
meter .or so of most natural waters., There is a reasonably
precise and simple law of darkening of the light field in
this regard: the light field of any wavelength generally
falls off or decays exponentially with depth., That is, if
h(z) is the scalar irradiance at depth z in a homogeneous,
deep lake or portion of the sea, then: o

h(z) = h(0) e X2 S N

This type "of law, namely the exponential type, is unquestion-
ably the most ubiquitous of all types of natural laws in geo-
physics: it describes thermal and radioactive decay in sol-
ids and liquids, evaporation rates of falling rain droplets,
growth rates of plant and animal species, fall off of atmos-
pheric density with altitude, only to mention a féw. In our
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FIG. 1.21 Show1ng how scalar. irradiance decreases expo-
nentially with depth. ©Experiment by Duntley, Lake Winnipe-
saukee, N.H., September 1948. (Fig. 30, left diagram, from
[78] by permission) .

present studies, it describes not only the decay of the nat-
ural light field with depth, but generally the decay of a

beam of light with distance along its path. In the present
case, the decay rate K depends on the wavelength A of light
consxdered (h{z) depends on A; however for brevity, as usual
we omit "A") and of course The clarity of the water consid-

ered. Indeed, as we shall see later, in Sec, 1.7, we may use,” 

the wavelength dependence of K to help classify the ontlcal
properties of natural hydrosols

Figure 1.21 illustrates a sample experimental determi-
nation (taken from {78]) of the depth dependence of scalar
irradiance in a deep. clear lake (Lake Winnipesaukee, N.H.) :
over a depth range of 60 feet or 18.3 m. The crosses indi- -
cate the experimental points. The straight line is the best
straight line for the data, and is plotted on semilog paper.
The magnitude of the constant K is: K = ,066/ft. = ,216/m,
for green light. ' : '

In view of the preceding observations there is no need
at present of giving further graphs of h(z) vs depth z in
deep homogeneous media; for as the saying goes, 'if you have
seen one, you have seen them all', the prototype being that -
displayed in Fig. 1.21. What is more worthwhile at present,

is to raise such questions as: how is the exponential decay . .

law affected if the medium is not deep, or if the bottom is
clearly visible? What effects do inhomogeneities of the me-
dium have on the exponential law? Does h{z) decay at the
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FIG. 1.22 Two experimental determinations of radiance hy
Tyler, Pend Oreille Lake, Idaho, April 1957. Note the gener-
al exponential decrease. Note, also, the slight buildup of
radiance for the upward looking path near the surface. (From
[298], by permission} :

same rate at H(z,*)? (cf. (9) and (10} of 1.1). TDoes the
exponential law hold right up to the surface, or is there a
boundary effect? These and other questions are readily an-
swered in detail by the thecries developed in Chapter 8.
Some simple answers are given in Sec. 1.4.

Behavior of Radiance Distributions with Depth

If we fix attention on the zenith radiance as we des-
cend into the sea, then, aside from the effect on the radi-
ance induced by a change of index of refraction (discussed
above), there is observable a general build-up of radiance in
the first meter or so below the surface. This build-up of
light is depicted by Curve A of Fig. 1.22 (adapted from [298])
and is quite analogous to the increase in the light field one
experiences as an airline passenger during the initial stages
of the airliner's descent into a thick cloud layer ‘lighted
from above by the sun. We are observing in either case the
storage of scattered radiant energy within the medium, In
the case of the sea this increase in radiance is observable .
not only at the zenith, but in all upward looking directions,
but is occasionally obscured by the refracted sunlight beams
and other surface phenomena. The depth at which the maximum
radiance occurs is predictable in theory and varies with the
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FIG. 1.23 Radiance distributions, in the vertical plane
conta1n1ng the sun, on a clear sunny day, at the indicated
depth, in Lake Pend Oreille, Idaho, as measured by Tyler,
April 1957, Observe how the shapes of the curves become sim-
ilar as depth increases. (Fig. 26, from [78], by permission)

direction of sight and the clarity of the medium (cf. (12) of
Sec. 4.4). .

After the maximum radiance occurs in a given-direction,
the radiance in that direction begins to fall off rapidly
"with depth and soon assumes the exponential behavior that
h(z) universally exhibits., This trend to exponentiality is
seen quite clearly in the nadir curve B of Fig. 1.22, or more
generally in Fig. 1.23, which is adapted from {78]. .Fig.
1.23 is designed to show how the shapes of the radiance dis- E
tributions vary with depth in the hydrosol. The particular
graphs in Fig. 1.23 are adapted from {78] and represent the
light field measured in Lake Pend Oreille, Idaho by Tyler
[298). The radiance is associated with a wavelength of 480
+ 64 mu, in water with a K of about .170/m and (for future
reference) an o of ,370/m, Two 1mportant'and universal prop--
erties of underwater .radiance distributions are discernable
in this set of curves: (i) the decrease in peakedness of the
curves with depth dccompanied by a trend toward a limiting
shape as depth increases, and (11) the shift of the radiance
maxima toward the zenith with increasing depth. Near the '
surface the peaks are pointed toward the refracted image of
the sun; but this orientation is lost as depth increases. .
This trend toward a stable vertically-oriented smooth distri- .
bution is shown in more detail in Fig. 1.24, wherein the ze-
nith angles of the maxima in Fig. 1.23 are plotted as a
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FIG, 1.24 Plot of zenith angle of the maxima of the curves
of Fig. 1.23. The maxima shift toward the zenith with in-
creasing depth. This figure and Fig. 1.23 present graphic
evidence of the validity of the asymptotic radiance hypothe-
sis, (Fig. 28 from [78], by permission}

function of depth. The problem of the description of the
depth dependence of the radiance distribution in natural hy-
.drosols is one of the princinal tasks of hydrologic optics
and. to which much of this work is devoted.

The Asymptotic Radiance Hypothesis

The fact that the shapes of the radiance distributions
in deep hydrosols approach limiting forms with increasing
depth is observable in Both Figs. 1.23 and 1.24, In the for-
mer figure all the radiance curves eventually steady in shape
with increasing depth, This means that eventually all radi-
ances are decreasing at the same exponential rate with depth.
Hence the evidence points to the fact that radiance distribu-
tions eventually assume certain stable shapes and these dis-
tributions subsequently shrink down exponentially. in size with
increasing depth, all the while preserving those shapes. The
general statement of the existence of such limiting shapes in
all homogeneous natural hydrosols is the asymptotie radiance
hypothesis which was first clearly enunciated by Whitney [315]
on the basis of experimental findings, and subsequently
proved mathematically in [225]. The validity of the asymp-
totic radiance hypothesis has important consequences for the
development of simple theoretical models of the light field
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in the sea and in deep lakes, rivers and harbors. For exam-
ple the scattering and absorptlon functions in the general
theory depend in part on the shape of the radiance distribu-
tions. If these distributions do not vary too much with
depth, vast simplifications of the general theory are.pos-
sible. These matters will be pursued at some length in Chap-
ters 6, 8 and 10.

Underwater Irradiance Distributions

The studies of visibility and biological problems--as
far as they are conc¢erned with the radiometric environment--
are facilitated by knowledge of the irradiance distributions
H(z,-) at each depth z in the medium of interest. Figure
1.25, plotted from the tables in [304], illustrates such a
distrlbutlon as a function of orientation of the collecting
surface's outward normal direction (6,¢)}) and also of depth,
for a sun zenith angle of 33.4°. This graph keys in with
that of Fig. 1.23, being the irradiance distribution computed
from the radiance.distributions in Fig, 1.23, using (1) of
1.1. The role of (0,¢) is depicted in Fig. 1.26,

It is of both.practical and theoretical interest to
know that an irradiance distribution H(z,+) at a depth z con-
tains just as much information as the radiance distribution
N(z,+) at that depth. This will be shown in Ex. 15 of Sec.
2.11, wherein knowledge of N will be used to deduce knowledge

. of H, and conversely. The bridge between N{z,.) and H(z,-)
is easily traversed in the direction N+H but is somewhat more
difficult to traverse numerically in the direction H+N, and
until an efficacious numerical scheme to bridge the latter
gap is devised, the radiance distribution will continue to be
measured and be the favored means of cataloglng natural light
fields.

Some pract1ca1 features of irradiance distributions arez.-
as follows. Every irradiance distribution satisfies the exact
cosineé law: I : .

i H(z,E) = H(z,m) cos #

where H(z,E) is the net irradiance in the direction &, m is
the direction of greatest net irradiance (c¢f. (14) of Sec.
2.8), and 8 is the angle between £ and m. This law shows
that we need only plot or tabulate irradiance distributions
H(z,+) for directions. £ not greater than 90° away from some
arbltrary fiducial direction, say the vertical direction k. }
To see this, suppose that we have l(z,k) and H(z,-k) and. that
we know m. Then by the exact cosine law: .

H(z,k) = H(z,k) - H(z,-k) = H(z,m) cos e, (ij

where_6; is the anglé between k and m. From this we can com:.
pute H(z m). Now suppose we know H(z,-£) and that we want to
know H(z,£), where E is less than 90° from k. Then the
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FIG. 1.25 Irradiance distribution on a clear sunny day at
the indicated depths, in Lake Pend Oreille, Idaho, 28 April
1957, as computed by Schaules and Tyler from Tyler's data.

FIG. 1.26 The collecting surface receiving the irradiance
recorded in Fig., 1.25.
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cosine law yields: A
H(z,E) = H(z,-8) + H(z,m) cos o : (9.

Therefore knowledge of m and H(z,m) together with H(z,+) over
one hemlsphere of directions, will yield H(z, ) over the re-
maining hemisphere.

Another practical aspect of the irradiance distribution
is that is can be used to compute one of the basic optical
properties--namely the volume absorption function, a --of nat-
utal optlcal medla, by using the dzvergence law:

JLCR ST (10)
dz ’

for the vector irradiance (cf. (1) of 13.8, and Sec. 1.4 be-
low). Thus knowledge of H(z,-) leads to H(z k) and to the
latter's derivative by straightforward computatlons. This,
together with auxiliary determinations of , Yields estimates
of a. .

Subsurface Contrast Reduction by Scattering
-and Absorbing Effects

Underwater scenes in seas, lakes and harbors are char-
acteristically dim and blurry. The sharp outlines and stark .
contrasts above the surface are relatively absent from under--
water scenes., Even in the clearest swimming pools, distant
cbjects no longer have sharp edges, and contrasts are slightly
but yet noticeably decreased. If one looks a bit closer at .
these contrast-reduction phenomena, one outstanding and fun-
damental fact soon becomes manifest: on the one hand, as the
observer recedes from a relatively bright object, its lumi- -
nance rapidly falls off and soon melts into the background
luminance; on the other hand, if the object is relatively

-dark, its luminance rapidly increases with viewing distance
and eventually also melts into the background luminance. Is
there some order and regularity in these changes of apparent.
‘contrast with viewing distance? In other words is there some
general law followed by these changes in apparent contrast of .-~
dlstantly viewed objects in underwater scenes? The answer is

'yes', provided a judicious scientific choice is made in the
selection of the notion of contrast.

If ¢Ny is the apparent (surface) radiance of an object .
{(the target) viewéd at a distance r underwater, and pNy is

the apparent (surface) radiance of its background, then we
write

mer for (tNr— bNr)/bNt (11)
and call Ci the- apparent contrast of the target with respect
g

to its background. ' The geometry of this situation is pictured
in Fig. 1.27. 1If r=0, we call C, the inherent contrast of the
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FIG. 1.27 The apparent contrast of a target against its
background.

target with respect to its background.

Figure 1.28 shows an experimental arrangement, devised
by Duntley [78), to study contrast reduction phenomena in
Lake Winnipesaukee, N.H.. A telephotometer (i.e., a radiant
flux meter attached to a telescope) was mounted on a small,
hooded glass-bottomed boat wiiich looked at a flat white tar-
get at.depth r. At the time of the experiment (sometime in
September 1948) the water was calm, the sky was clear, with a
low sun. For later reference we will note that the lake at
that time had a X of 0.216/m and an o of 0.594/m, for green
light. . The observation of interest at the moment is recorded
in Fig.-1.29, in its original form, which shows the sought-
for law governing Cy vs distance r in feet. This clearly
shows an: exponential decrease of Cy with r, in this case depth
r below the bottom of the boat. 1In fact it was found, on con- .
verting to meter lengths, that: o

- -.810 r
Cyp C, © .

This finding of the exponential law is in itself a remarkable
one; however, the really exciting fact lay in the nature of
the number ,810/m(=,247/ft), the exponential decay rate of theé
apparent contrast. It was found that:

.810 = ,594 + ,216 = a + K (per meter)
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FIG. 1.28 Physical set-up for Figs. 1.29, 1.30.

To see the significance of this, recall our earlier observa-
tions on the general mode of decay of the natural light field’
in the water. The depth rate of decay is given by K. The a .
on the other hand, gives the depth rate of decay of a beam of .
light in the water. Therefore there are two mechanisms in-
volved here in giving rise to contrast reduction.  These are .
summarized by K and @, and are generally distinct. These will
share our attention later. But for the moment we. quietly rev-
el in the presence of discerned order in at least one- feature
of the underwater radiometric environment. It was perhaps
this experlmental finding and the ones immediately following

it, shown in Fig.. 1.30, that contributed more than any others, "

to inspire Duntley and one of his students (the present au-
thor) to turn to the problem of explaining these interesting- .
(and then, mysterious) manifestations of order in the sub-
marine 11ght field, and relating them to the general radzat1ve_
transfer phenomena in scattering-absorbing media.

What is shown in Fig. 1.30 (which holds for the same
setting as above) is an extension of the findings in Fig.
1.29, and once again in the original form given by Duntley.
The new figure shows several things. First, it shows that

the apparent contrast of an object is exponentially attenuated':f
with target distance at the same space rate for both light and -

dark targets. Second, this space rate is independent of azi- -
muth of the line of sight (here, the direction of motion.of
the photons) which in this experiment was inclined at an angle
8 of 30° away from vertically upward, or an amount 8= 150° °
from vertically downward. (See Fig. 1.31) 1In particular the .
azimuths, measured from the vertical plane of the sun, are
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FIG. 1.29 Duntley's classic experiment showing the expo-
nential law of decrease of apparent contrast along a vertical
path in a natural hydrosol (Lake Winnipesaukee, N.H., Autumn,
1948. See also Figs. 1.28, 1.30)(Fig. 30, middle diagram,
from {78), by permission)

FIG. 1.30 Further experimental evidence for the exponen-
tial agparent contrast law. (See Figs. 1.29, 1.31)(Fig. 30,
right lagram, from [78]}, by permission)

[ ='0°'(circ1ed points}, ¢ = 45° (crosses), ¢ = 95° (diamonds)
and ¢ = 135° (squares). The dashed straight lines are drawn
parallel to help judge the slope and linearity of the data
and have a natural logarithmic slope of about .781/m. Once
again this exponential decay rate 1s a source of surprise
when it is observed that

.781 = .594 + ,216 cos 30° (per meter)

This would lead one to conjecture that paths of sight inclined
generally at 8 from the vertical in homogeneous stratified
media,  as ‘'shown in Fig. 1.31, would have an apparent contrast
Cr associated with them of the general form

- -{a+K cos 8)r
€, =Cye o (12)

~ The conJecture was confirmed and a simple theoretlcal model

underlying this contrast reduction law was soon evolved. The
model will be discussed further in Sec. 1.4, in Chapter 4,
and Chapter 9.
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FIG. 1.31 The geometrical details for Fig. 1.30, in which
8 = 30°. - :

Subsurface Contrast Reduction by Refractive Effects

When one looks across an extensive flat stretch of the
earth's surface such as a meadow or stretch of ocean on a
sunny or very windy day, distant objects seem to be blurred
not only by the usual atmospheric haze, but also by a rapidly

varying shimmering or "heat wave' effect. This phenomenon is - .
produced by inhomogeneities of the refractive index of the air.

along the line of sight and is associated with cells of air of
different density. These in turn are related to uneven tem- =
perature distributions in the air mass or simply to the 1local
mechanical compression of the air in gusts of wind on windy
days. The same mechanism makes the stars twinkle at night.

It may come as a mild shock to some observers to occa-
sionally see this same twinkling, heat-wave like effect in the
otherwise cool depths of an incompressible fluid like a sea or

a lake. Nevertheless, the effect exists, and on closer exam= . | -

ination, sanity prevails: the underlying mechanism is seen.
to be refractive, but produced by myriads of tiny transparent
plankton, whose indices of refraction differ very slightly
from that of water. . In some south sea waters, it is said R
that the concentration of such plankton is so great, the spac--
ing between a swimmer's toes cannot be distinguished by him,
though the foot is visible with high contrast against its
background. A somewhat less dramatic but similar phenomenon .
was observed and recorded by Duntley at the Diamond Island
Field Station in Lake Winnipesaukee, N.H.. Figure 1.32, from
[78], shows a photograph of the light distribution on a camera
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FIG. 1.32 Swarming plankton photographed in the light of
a strong collimated beam, as observed by Duntley in Lake Win-
nipesaukee, N.H., 22 August 1961, Plankton swarms such as
these may contribute to contrast reduction along underwater
paths of sight. (Fig. 22 from [78], by permission)

FIG. 1.33 Arrangement for plankton photograph, Fig. 1.32.
(Fig. 21 from {78], by permission}

film produced by a collimated light beam after having travel-
led through a horizontal 3 m water path shown in Fig. 1.33.
The time of year was late August (1961) and the exposure time
was 1/50 sec. on an Eastman Plus-X film with a normal D-76
development., The beam had a diameter of about 5 ¢m and a
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'spread of about 0.01°. The a of the water was .585/m, in

green light. The water path between the lamp and camera was
swarming with plankton, and the bright collimated beam has
limned some of these on the photographic film. To judge the
size. of these tiny organic refractive cells, the diameter of
the black circular border (caused by the camera opening) was
measured to be 3.3 cm on the negative.

A theory for ‘the loss of contrast of objects seen .
through atmospheric beil was evolved some time ago by the au-.
thor and some of his‘ colleagues [81]. This theory appears to
be applicable also to the contrast reduction phenomenon des- .
cribed above. The effect, however, is generally mild when it
does occur, and may for virtually all practical purposes be
ignored in the problem of predicting underwater visibility.

- However, in passing we may note that in a natural hydrosol

which has such transparent plankton distributed uniformly and
densely along a path of sight of length r the theory predicts -
that the magnitude of the blur (the standard deviation of the:
angular displacement of a typically straggllng light ray from -
observer to object plane) increases like r'/? and the apparent
contrast of fine details in an object against the general
background decreases like 1/r?. Thus the contrast reduction
law produced by refractive 1nhomogene1t1es in a medium is, on’
the one hand, quite different from that produced by scatterlng
absorbing mechanlsms in that medium, and summarized in (12).
On the other hand, as a perusal of [81] would show, the theory
of the present effect is quite close to that used to derive -

(s).

The Polarization of Underwater Light Fields

Up to now we have been describing those optical effects
in natural hydrosols that have very little directly to do with
the fdct that photons, in their pristine state, are viewable -
as particles with observable spins--i.e., with an observable
property we usually call polarization. If we now invoke the
quantum theoretical wand of complementarity and imagine the
photon to be not a small, hard, colored ball but, rather a
relatively compact packet of electromagnetic waves whose E
and H vectors vibrate in fixed mutually orthogonal planes as
the packet moves along (see Fig, 1.34), then we add a new di---
mension to the description of radiometric phenomena. No lon-
ger is it sufficient to merely describe the unpolarized radi- -
ance of the light field, but rather we must go on to describe -
radiance carried by those photons at x in the direction

whose E. vector is oriented by the general angle ¥ with respect

to some reference frame.

Suppose we place a polarizer into the radiance tube, as .
shown in Fig. 1.35. (Compare with (b) of Fig. 1.5.) This may
be made from some commercially available polaroid material, :
Then if we fix x and £ as usual, and rotate the polarizing
element, we can detect the presence of polarized radiance by
the varying output of the radiant flux meter's dial. Suppose’
we turn the polarizer one full turn. Let Np,.(x,£) and
Npin(x,£) be the maximum and minimum radiances so obtained.
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direction of (a)

propagation % H
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shade tube of radiance meter
filter

«— optic axis of polarizer {i.e., analyzer)

FIG. 1.34° A linearly polarized E-vector.
FIG. 1.35 The placement of a polarizer in a radiance tube
preparatory to measuring the polarization of a light field.

Then we write

for Nmax(xf E) - Nmin(X;E)

Noiax (X,8) + Nmin(x’g)

HP(X’E)N oT Hpu

p(x,E) is called the polarization of the light field at x in
the direction £, and is a useful measure of how much polari-
zation is present in the light field at x.

Now if we train such a polarized radiance meter at a
clear sky, we find that the sky radiance is most noticeably
polarized in all directions which lie in a plane normal to the
direction of the sun's rays. If we go helow the air-water
surface we find that the light field is still polarized but to
a lesser extent. The shafts of sun and skylight beaming down
into and around the manhole {described above) are scattered
into the line of sight by the water in a manner completely
analogous to the sunlight streaming into and scattering within
the upper atmosphere. Furthermore, the underwater light field
may alsc be reflected intc the line of sight by the underpart
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FIG. 1.36 The oﬁserved underwater polarized radiance can

come from the sky via refraction through the manhole, or from- ..

the underwater domain via air-water surface reflection outside
the manhole. : . :

of the air-water surface outside the manhole (see Fig. 1.36).-
These two mechanisms, the scattering and reflection of under-
water light, contribute the principal polarized parts to the
underwater light field. On purely theoretical grounds (which"
need not concern us here) one would expect the scattered light
to be predominantly linear, and the reflected light to be el-
liptical, and hence thé general underwater light field to be

a mixed linear-elliptical polarized field (see Sec. 2,10 and -
the Stokes Polarization Composition theorem). .

The general features of polarized submarine light fields
may be summarized, according to Ivancff and Waterman [117},
[118], as follows. 'In general for a fixed ditection £ the po-
larization p(x,£) is greatest near the air-water surface, and
diminishes rapidly with depth down to about 10-20 attenuation
lengths and then settles down to an asymptotic value, which ‘
does not change with further increase of depth (this is remi- -
niscent of the asymptotic radiance theorem described earlier;’
and in Sec. 4.6 the potential connections between these two
ideas will be outlined). Furthermore, the limiting p. value
depends on the water clarity, and we would expect on theoreti-
cal grounds that it-.eventually be independent of surface and
bottom effects provided the medium is deep enough. It is
noted that, all other factors remaining fixed, polarization o
increases rapidly with transparency from turbid to moderately =
clear waters, but the increase slows down as waters become '
more and more transparent, In oceanic hydrosols p may vary,
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e.g., from .60 at the surface to .30 as an asymptotic value.
In a horizontal sweep, with low sun, the azimuth dependence
of p is generally such that in directions normal to the ver-
tical plane of the sun p is greatest, less for directly away
from the sun and least of all looking toward the sun. For
higher suns or for more turbid waters a horizontal 'sweep of
the radiance tube may find little variation in p.. The wave-
length dependence of.p is such that, with 211 other factors
remaining fixed, p attains a minimum at the blue-green wave-
lengths (450 mp)--i.e., just about where in the spectrum nat-
ural waters transmit best. This ties in with the observations
cited just above about turbidity dependence of p. (Remember
the proviso, "all other factors remaining fixed"™.) Thus both
ends of the spectrum should yield higher p values, and hence
more pronounced polarized fields in reddish and bluish light
--of what there is to measure. The polarization of under-
water light fields decreases when diffuseness of the field in-
creases. For example, when depths are shallow, overhead
cloudiness will tend to increase the diffuseness and hence de-
crease the polarization. Under best conditions, the ellipti-
cal component of the underwater radiance field reaches about
10% of the total radiance, and about 50% of the linear com-
ponent. At very great depths the light is predominantly hor-
izontally linearized {because the predominant flow is down-
ward; and recall the analogy with scattered skylight).

Further details will be found in [117], [118), and also
in Tyler's article [301]. A simple model for polarized light
fields in the sea is developed, along with the general theory,
in Sec. 4.6. Sec. 2.10 develops the essentials of the radi-
ometry of polarized light.

Biological Sources of Submarine Light Fields

" How many have ever seen the unforgettable sight of 1u-
minous bow waves of a shipy plowing through nighttime tropical
and semitropical waters? Many types of marine animals large
and small are known to emit radiant energy when disturbed--a
sort of pale cold light, obviously of chemical (quantum) rath-
er than thermal origin. Other organisms seem to flash on and
off under their own volition, deep in the sea or in nighttime
waters nearer the surface. . .

An important study of such self-regulative radiometric-
biologic phenomena was made by Kampa and Boden [133] in which
detailed and careful measurements of the radiant flux output
of a certain type of luminescent creatures (Euphasia pacifica)
were made both #m situ in the San Diego Trough, and in the
laboratory. The presence of these creatures is generally not-
ed by sonar operators because the creatures form a sonic-scat-
tering layer in the water. By lowering a bathyphotometer (a
radiant flux meter tightly encased for deep water work) down
into the layer, day and nlght recordings of the output of the
Euphasia were made.

It was observed that the creatures emitted flashes hav-
ing a mean irradiance of about 1.1 x 107" microwatts/cm?
throughout the day. The output was in the form of flashes
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which varied in frequency as a function of time of day--great
est (42/min) during twilight when the Fuphasia migrated up-
ward, least (10-24/min) during midday when they were at rest
in the depths, and intermediate (32/min) during the night.

The color of the ‘luminescence was blue-green, with maximum
output near 478 mu, and a secondary maximum near 520 my.

Kampa and Boden postulate that the time dependence of the
depth of the Euphasia scattering layer is photoregulated; that
is, the creatures constantly monitor the environmental level
of irradiance and according raise or lower themselves to a
depth at which the total 1rrad1ance { H(z,+) +H(z,~) ) is on -
the order of 10-" microwatts/cm?. All this activity trans-
pires along with the flashing at the above-mentioned mean ir-
radiance and frequencies. The type of flashes are temporally
“highly peaked and these peaks were observed to be one to two
orders of magnitude greater than the total environmental irra-
diance (see Fig. 1.37). It appears that this is an optical
means of assuring'togetherness during the vertical migrations,
for the eye pigment of the Fuphasia has a greatest photosen-
sitivity to the preédominant color of its flashes.

Using the irradiance models developed in Chapter 8 it .
is a relatively stralghtforward task to describe and predlct
the light field generated in the sea by extensive layers of
the Euphasia or other stratified biological sources of radi-
ant flux. The photoregulative activities of these creatures
coupled with the general food chain activities in the seas

" TOTAL IRRADIANCE u watts/cm?
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o T T T T T 7 T L | T 1

501

{00

150

200k

DEPTH (meters)

" 250
300

350F

FIG. 1.37 Depthvdeﬁendence of downward irradiance in

which discrete flashes of light generated by Fuphasia paecificaq - :

are evident at the depths around 300-350 meters, as observed
by Kampa and Boden in the San Diego Trough, 20 February 1956.
(From {133], by permission) -
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presents 'a challenging problem to hydrologlc optics in the
description of the dynamical interactions of plants, animals
and photons in seas and lakes. We shall briefly recon51der
this problem in Sec. 1.10.

1.3 Three Simple Models for Light Fields

How do we seek order in all that we have encountered
above? How do we incorporate those few evidences of order,
already glimpsed, into some greater scheme, satisfying for
its accuracy, comprehensiveness, and relevance to the main
stream of modern physical theory? The number of effects to
be described is great, and their intricacy has a tendency to
1n1t1a11y intimidate those who attempt a precise description:
nature's ways are orderly but infinitely complex, the theo-
rists are few and finite; therefore, each stage of theoreti-
cal knowledge inevitably rests on chosen compromises, - Three
such theoretical compromises are selected for study here;
each is designed to describe one facet of the radiometric
complex encountered in the seas and lakes of the earth: the
first two describe the light fields generated by sunlight and
skylight and give simple models for the radiance distributions
and two-flow irradiance fields; the third describes artificial
light fields set off in the water by man-made point sources
and extended artificial sources of radiant flux.

The Two-Flow Model

The ‘two-flow model of the light field pictures the ra-
diant flux in ‘a natural hydrosocl X, free of internal sources,
as divided into two streams at each depth z below the bound-
ary: a downward stream of radiance H. and an upward stream
of irradiance H+ (see Fig. 1.38). The primary purpose of the
model is to predict Hy and H_ at each depth z, given H, and
H_ at the upper boundary, or more generally, given H, at some
depth and H_ at another (possibly the same) depth. The hy-
drosol, therefore, is viewed by this model as a plane-parallel
medium, i.e., an infinite region of space caught between two
horizontal parallel planes, which are the boundaries of the
medium. - The physical properties of the hydrosol are described
in the present model by means of two optical propertles a, b;
and the geometrical flow of the radiant energy is described by
means of a dietribution factor D. These three concepts are
defined in detail as follows. We write:

"a’ for the amount of irradiance absorbed from a
' narrow vertical beam of radiant flux of
unit irradiance as it crosses a horlzontal
layer of unit thickness in X.

"b' . for the amount of irradiance back seattered
without change in wavelength from a given
arbitrary stream of radiant flux of unit
irradiance as it crosses a horizontal layer
of unit thickness in X.

Finally, if h,, h_ are the scalar irradiances associated with
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FIG. 1.38 Setting for the two-flow model for irradiance.

the two given streams of radiant flux in X, we write:
_'"Dt" for hz/Ht

D, give the mean distances traversed by each stream through a
horizontal layer of unit thickness. They are also convenient.
measures of the diffuseness or collimatedness of the flows.
This latter interpretation can be made plausible by a few ex-
amples. If the downward stream, say, is collimated, i.e., in
the form of a narrow beam which makes an angle © w1th the ver-
tical, then from (9), (10) of 1.1 it is easy to see that

D_ = sec 6, Further, if the downward radiance distribution

is uniform, then by (11}, (15) of Sec. 1.1, we have D_. = 2.

In the model currently under study, it is assumed that:

D+ =_D_ : . : (1)

and we shall write "D" for this common value. (On the. basis
of this assumption, we occasiocnally call the resultant two-
flow model the one-D (two-flow irradiance) model.) - It is
easy to see that the amount of irradiance lost by absorption
from a flow of unit irradiance and .of distribution factor D,
as it traverses a unit thickness layer in X, is aD. On the
other hand the amount of loss by backscattering is simply b, :
with the quantity D not appearing explicitly. The reason why -

absorption is treated differently than scattering in the above_f:

sense, rests in the ‘fact that these processes manifest them-
selves differently geometrically: when flux is absorbed it
disappears from the scene; when it is scattered, it must
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still be contended with in the radiometric scene. This is
discussed further throughout Chapter 8, along with precise
definitions of D and b.

We are now ready to derive the basic differential equa-
tions of the two-flow model,

Consider the downward stream of radiant flux as it
passes through a horizontal layer of thickness Az, where z is
measured positive in the downward divection. (Fig. 1.38) As
the stream progresses through the layer, it is partially ab-
sorbed and partially scattered backwards to join the upward
stream of flux. The total amount of irradiance lost from H.
by these two processes is, according to the definitions of a
and b

aDH_Az + bH_Az

On the other hand, H. will be increased by that amount of
flux, namely bH+Az, scattered backwards from the upward
stream.» The net change AH. of the downward irradiance, after
traversing the layer of thickness Az, is therefore:

MH_ = -(aD + b)H_bz + bH Az . f (2)

In the same way we find that for the upward stream of radiant
flux, which moves through the same layer {(so that its asso-
ciated Az is negative) the net change AH, of H4 is:

AH, = -(aD + b)H, (-Az) + bH_(-82) . (3)

Dividing each side of (2) by Az, and each side of (3) by -Az,
and letting Az+0, we have:

2 (au + BIH_ + bH, : (4)
dz :

- dHy o (ap b}H, + bH_ . . (5)
dz

These equatxons constitute the two-ilow model for light fields
in homogeneous stratified natural hydrosols. This model (the
one-D model}, in undecomposed form, in essence goes back to
Schuster in 1905 who first formulated similar equatlons in
the astrophysical context. In Chapter 8 we review the high
points of the model's history and place it on a sound physical
and mathematical basis. For the present, however, we indulge
in a reldtively uncluttered derivation and solution of the
model, in order to point up its central ideas and its simple
beauty. i
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The solution of the system (4), (5) is*

- K -k
H(z,-) = m, g e L m_g.e z (6)

H(z,+) = m,g,e% + m_g e K2 (7)

where m,, m_ are arbitrary constants to be fixed by specify-
ing either one of H, and H. at each of two chosen depths (dis
tinct or not), and where we have written:

g." for 1z %g R . (Bj

"

and: . o 1/2
"k for [aD(aD + Zb)] ' . {(9)

This completes the construction of the two-flow model. We
shall put it to work in Sec. 1.4.

The Radiance Model

The radiance model connects thé radiances at the begin-
ning and end of an arbitrary path, such as AB, in a natural ’
hydrosol X (Fig. 1.39). Thus, given the radiance at A in the
direction &, the model yields the radiance at B in the same
direction £. This model is quite general, for we can choose
point A to be on the upper or lower boundary of X and so the -
radiance at the end B will give the apparent radiance of the
boundary; and this' is just the radiance one sees or measures
at B with a radiance meter.

In order to construct such a model we need to know what
happens to the radiance as it travels along a straight path
in the water. If we imagine the radiance to be generated by

a swarm of photons travelling along the path, then on the one B

hand we would expect this swarm to lose some members via
scattering and absorption. at each point along the path. Ac-
cordingly, let us write: . '

. 'a" for thé amount of radiance absorbed from a
narrow beam of radiant flux of unit ra-
. ‘'diance travelling a unit distance along

and a path.

A for - the amount of radiance acattered without
change in wavelength from a narrow beam of '
‘radiant flux of unit radiance travelling a
unit distance along a path.

H(z +) is the value of the function H, at depth z. Similar- .
1y, H(z,-) is the value of H_ at z. The functiomal notations
"Ha" and "H(.,%)'" are to be considered synonysous and may be.
used interchangeably. :
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FIG. 1.39 Setting for the radiance model.
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We note in passing .thdt the volume absorpticn function a for
X just defined is identical with that defined for the two- -
flow model. The: function s is the volume total scattering
function for X.

Now, on the - other hand, we would expect the swarm of
photons to gain new members from the surréunding environment
simply as a result of some of the nearby photons being scat-
tered into the swarm as it passes along a small segment of 1ts
path. Thus, let us write:

"NL" for the amount of radiance scattered without
change in wavelength into a narrow beam
of radiant flux travelling a unit dis-
tance along a given path past a given
point.

If Ny is the inherent radiance, of the path, i.e., the begin--
ning radiance at point A in Fig. 1.39, and Ny is the apparent
radiance of point A as seen at point B a distance r along the
path, then according to the above remarks the change AN, of.
Ny in the next increment of distance Ar along the path
expected to be:

ANr = -(a + S)N AT + N,Ar

" pividing by Ar and 1etting Ar+0, we arrive at

Nr . an_ o+ N, (10)

where we have written
. . "Cl" fOr a + S‘ . . (11)

Equation (10) is the equation of transfer for radiance, It
is the central equation of radiative transfer theory. We

call a the volume attenuation function and N, the path func-
tion. The equation -is used to connect the value Ny(z,6) of.

Ny at depth z, in the direction @ with the value No(zo,a) of

No at depth zg, in the direction 6. . (See Fig. 1.39.)

As it stands, (10) looks like a simple differential _
equation, and, indeed, it is readily integrated if we know o .
and N, along the path., We shall assume o to be constant .
along the path, and N, to be given along the path, and that
N, varies only with depth. Then it is easily verlfied that
the general solution of (10) is (see, e.g., (1)-(3) of Sec.
3.15):

Np(2,0) = Ny(z,,0)e 'ar-+IrN*(z',6)e'“(r'r')dr' (12)

z! = zo-r‘ cos ©
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The 51mp1e model we are interested in at present Tests on the
assumption that N.(z, B) in optically very deep media depends
only on depth z 1n X, in the manner:

N,(z,8) = No(0,8)e ¥Z : (13)

where K is the empirical depth rate of decay of the general
light field in X. For example it may be taken as the empir-
ical K in (7) of 1.2, or the theoretical k in (9) above en-
countered in the two-flow model (cf. (61) of Sec. 1.4). At
any rate, using (13) in (12), performing the 1ntegrat10n and
51mp11fy1ng, we have:

N_(z,8) = N_(z,,8)e " Ml.,[l_e-(mx cos 6)1] (14)

a+¥ cos 6

This is the requisite 51mp1e model for radiance. We shall
study it later to see if it helps us understand some of the
observed propertles of the underwater light field surveyed in
Sec. 1.2. It is a simple matter to generalize (14) to the
case where N,(z,6) depends also on the azimuth angle ¢. (See
Chapter 4.) For the present we can think of (14) holding in
an arbitrary given azimuth plane.

The Diffusion Model

The diffusion model is designed to describe the spatial
variation of scalar irradiance in a natural hydrosol. This
model together with the two-flow model for irradiance, and
the model for radiance, forms a reasonably exhaustive battery
of elementary descriptions ol most of the natural and artifi-
cial light fields encountered in everyday practice,

A 51mple and instructive route to the diffusion model
can be made via the two-flow model (4), (5), as follows. Let
us add together, term by corresponding term, the two equations
(4), (5). We find:

d(H. - Hy)

P = -aD(H, + H.) 'v _ (15)

Now, according to (8) of Sec. 1.1 and the definition
of net irradiance H{z,+), which is defined by writing:

_ "H(z,+)" for H(z,+) - H(z,-) s
or more briefly:
"H," for H_ - H

"H " for H - H .
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we can cast (15) info the form

dz Tz ’ (16)

using the definition of the distribution factor D, and (1).
This states that the depth rate of change of the net upward
irradiance at a point is jointly proportional to the volume -
absorption coefficient and the scalar irradiance at that
point.

Readers familiar with the rudiments of vector analysis.
will see that either derivative term on the left side of (16)
is simply the negative of the divergence of the vector irra-
diance H (cf. (4) of Sec. 1.1). The other two (the x,y) de--
rivatives of the components of H areé missing from (16) be-
cause the two-flow model applies to stratified media, i.e.,

media whose properties are constant over horizontal planes in

the hydrosol. However, this recognition of the nature of the -
left side of (16) permits us to write:

V-H = -ah an

in place of (16j.
Equation (17), despite the route we have just taken, is.

a quite general law which holds in source-free media of arbi-

trary shape and inliomogeneities and whose light fields are of
arbitrary spatial and directional structure. We have in this

- way made a leap from the special to the general by making a’’

simple observation on the mathematical form. of the divergence
of a vector field. (For further details, see (5) of Sec. 2.8
and (15) of Sec. 8.8.) An even more general form can be ob-
tained if we allow the presence of sources in the medium:

VeH = -ah+h, (18)

where hp is the radiant flux generated per unit volume by ‘in-
ternal sources.

Now, the diffusion model we are interested in springs .
from (18) once we have made a special assumption about the
behavior of the light field and the nature of the term hp.
The requisite assumption is concerned with thé scattered
light field in the medium of interest, so that we shall look
only at the components of H and h which consist of radiant
flux having been scattered at least once, -In order to point
this up in the notation, it can be shown that we may wrlte
(17} in a form qu1te analogous to (18):

%

‘voH* = -ah*+h) (19)
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This star notation is standard notation for scattered radiant
filux. To indicate how we may avrive at (19), we first observe
that the full vector and scalar 1rrad1ance fields are repre-
sented as:

E =g + g , _ (20)
h = h®+n* (21)

where Ho, h® consist of residual radiant flux directly trans-
mitted from the sources and boundaries. When written in this
form, we say that the light field B has been decomposed into
its residual and scattered parts. This mode of decomposition
is ‘'not new to our discussions in this chapter. For we have
in effect represented the apparent radiance Ny in (12) in pre-
cisely this way. Indeed, if in the context of (12) we write

"N;’_" for Noe"" 2

and

* r ~a{r-t')
"Nr" for L)N*e dr! ’ (23)

then the equation (12) for apparent radiance N becomes (in
functional form):

o # .

N, = N_ + N_ (24)
where N is the residual radiance and N; the path radiance.
This form is completely analogous to (20}, (21). In fact, all
we have to do to get (20}, (21) is integrate (24) over all
directions and apply (3), (4) of Sec. 1.1 (cf. Secs. 6.5 and
6.6). Hence if we integrate each side of (10) over all di-
rections in this manner, we can obtain (19) quite rigorously.
The complete details of this derivation may be found in the
derivation of (63) of Sec. 6.6.

We return to (19), and make the assumption'about *
which invokes the desired diffusion model. The assumption is
51mp1y this: )

* *

H” shall be proportional to -Vh (25)
Here Vh* is the gradient of h®*. For example, in a stratified

plane-parallel medium, this amounts to saying that:

* = (Hf-H:)(-k) = - %E—( k) x (constant)

i.e., that the scattered irradiance vector--which in the sea
clearly points downward in the direction of greatest net irra-
diance--is simply the derivative of the scattered scalar irra-
diance times the unit downward vector (-k}, i.e., the. vector
pointing along the direction of increasing z. It is inter-
esting to note that this is a sort of backwards version of
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(16), obtained from the latter essentially by moving the de-
rivative operation from its left to its right side. Notice
that H* is required by (25) to point in the direction of de-
crease of h. In natural waters dh/dz is negative (with in-
creasing z measured downward as usual). We shall use the con-~
ventional symbol "D' for the diffusion constant of propor-
tionality. Notice that its dimension is that of a length.

(We use the letter "D" here without fear of confusion with

our distribution coefficients.) Hence assumption (25) can be
written as an equality: .

#* = -pwn” (26)
and when this assumption is used in (19) we have:
© 9.(-DVR*} = -ah® + n}

or, since D is a constant we have, finally:

2, % LA ~ (diffusion T
-DV'h + ah h, equation for (27
decomposed

"light field) .

which is the gresent desired form of the diffusion model. _
The symbol "V?'" is ‘the laplacian operator used in vector ‘anal- .
ysis. In this model we assume that the source ferm hl des- *
cribes the origin of the scattered scalar 1rradiance h* and
thereby is of the form: .

hy = h% . (28)

where s is the volume ‘total scattering coeff1c1ent defined in
the preceding radiance model discussion and h® is the scalar.
irfadiance associated with the residual flux from the source
and boundaries. ' The diffusion model takes.its name from the . - .
assumption (26), which is Fick's law of dszuaton, now applled-j
to the diffusion of photons. oy

Equation (27) as it stands constitutes a reasonably |
good model of the scattered (or diffuse} scalar irradiance in
both natural and artificial light fields, By way of contrast,
we observe that it.is more accurate than the diffusion model
that comes from applying (26) (w1thout the stars) to (18),
instead of (26) te.(19). For in the former case, i.e., when-
applying (26) (w1thout the stars) to (18) we find :

2 , (diffusion o
-DV"h + ah = h equation for (29)

n “ undecomposed o
light field)

and even though the matheﬁétical forms of (27) and (29) are -~
the same, an essential difference between them arises by vir-

tue of the nature of the source term hp. In the case of (29),,>:'-

hp for artificial point sources is a Dirac delta function,
whereas in (27), as we see by (28), h} is a relatively
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smoothly varying function throughout the medium. ‘Since dif-
fusion models become more accurate the smoother the spatial
variation of the source terms, the superiority of (27) over
(29) is quite clear.

However, it takes correspondingiy more effort to solve
{(27) than it does (29). The formal solution of {29) for a
point source is straightforward, and takes the form:

P (undecomposed
= Jo "h, and point '
h(r) By source) (30)
where we have written ‘
o > .
"J " for Z% s ‘ (31)

and P, is the radiant flux output of the point source, as-
sumed to be uniform in all directions. Furthermore r is dis-
tance from the observation point to the point source, and we

have written:
et forv Q,% ’ » (32)

where alis the volume absorption coefficient for the medium,
and D is the diffusion constant (cf. (27) of Sec. 6.5).

The general solution of (27) is now forthcoming by
means of (30) and a straightforward integration. To see this,
we imagine that at each point x' of the Medium X (which is an
extensive region without perturbing boundaries) the residual
scalar irradiance h®(x') is scattered, there to give rise to
an entirely new point source problem whose solution at an ob-
;ervation point x is described by (30), now written in the

orm: ,

Jo(x')e'nr

hy(r) = 2— (33)
where -
r = |x-x'| (34)
angd .
4 = }_I_O_L)E’_)i = L ! B
Jo(x ) 4w 4t Ry (35}

Hence if the original point source is at the origin (i.e., at
x=0), apd of a relatively mild directional output, then the
scalar irradiance field h(x) at x is given very nearly by:

h(x) = hO(x) + h*(x) T (36)
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where

n*(x) = ] hy(x') dv(x') (31
X :

and
ho(x') = N%a(x")e ®T's ' (38) -
and where . :
o= |x'] , (39)

and Q(x') is the solid angular subtense of the point source
as measured at x'. -The source is actually a smalil finite
sphere of surface radiance N° in the direction &' = x/|x'].
V is the volume measure in X. We shall not go into further
details here. See. (66) of Sec. 6.6 in particular, and Sec.
6.6 in general for-complete details,

1.4 Some Deductions from the Light Field Models

The three models for natural and artificial light fields:
derived above allow us to explain and interrelate many of the.
observed features of light fields in natural hydrosols. We
shall consider here and in subsequent sections a small rep-

resentative sample o6f such activity, based on simple deduc- . = -

tions from the three models.

The Decay:of'the General Light Field with Depth

We shall now show how (7) of Sec. 1.2 follows from the
two-flow model for light fields. Toward this end, we let the
scattering medium X be infinitely deep and be absorbing, i.e.,
a>0. Then we compute the net downward irradiance at a general -
depth, using (6), (7) of Sec. 1.3.

H(z,-) -~ H(z,+)
(g_—g;)[ m+ekz - m_e'ki] : ' (1)”,_'?

Now from (16) of Sec. 1.3 we find, by integrating between .
depths 0 and z, and noting that h(z) is a non negative quan- ..~
tity for all z: ) ’

H(i’_')

i

o z z
H(z,-)-H(0,-) =

[ diz,n) . -aJ h(z') dz' < 0
0 0 :
Hence for all z: »

H(z,-) < fi(0,-) @)
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This shows that the net downward irradiance is bounded. In-
deed, from Tables 2, 3 of Sec. 1.2 we can estimate an upper
bound of H(z,-) as 1396 watts/m?, and infer that H(z,-) = 0
in real optical media. It follows that (2) and (1), along
with a=>0, force ms tc be zero; otherwise we could find a
depth z at which (2) would be violated. Some further general
inequalities related to (2) are given in Sec. 9.2,

Having established that m,=0 in infinitely deep absorb-
ing media, (6), (7), of Sec. 1.3 yield the requisite forms of
H{z,t) for every z: '

H(z,-) = m_g,e NG

m_g_e"kz . (4}

H(z,+)

From (3), (4) we have, on setting z=0:

H(Ow') = m_g+
H(0,+) = m_g_

Let us write
: "R, for  H(0,+)/H(0,-)

Clearly, we then have from (3), (4):

aD
p < H(0,%) | H(z,%) | g. . 1'% _ x-ap .
e " H(0,-) H(z,-) E, 1.aD k+aD

k

This shows that the reflectance Re of the medium is indepen-
dent of depth and determinable once a, k, and D are known.
Hence for every z, :

H(z,+) = H(z,-)R,

where

- H(07+) - H(09+) = H(O,')

m
- g.R, g. g,

“Thus wevhave shown, among other things that:

H(z,) = H(0,t)e ¥? (6)
for all z.

Furthermorey by definition of the distributioh factor D
(cf. (1) of Sec. 1.3) we have, with the help of (8) of Sec.
1.1: . :
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h(z)

h(z,+} + h(z,-)

L]

D( H(z,+) + H(z,-) )

D( H(0,+) + H(0,-) ) e’

h(0) e K2 (7N

kz

which is the theoretical basis for (7) of Sec. 1.2.

Observe how the assumption that a>0, is needed in vari-
‘ous parts of the arguments above. This assumption is quite
reasonable in terrestrial settings; indeed, in such settings
the condition a=0 for every wavelength is never observed.
What would the light field look like in an infinitely deep
medium in which a=0? Equation (1) shows us that if a=0 for
all wavelengths, then: since g =g, =1,

fi(z,~) = 0

so that H(z,-) = H(z,+)

at all depths z and for all wavelengths. The sea would be of
the same general brightness and color of the sky in this case
--at every depth!

Reflectance and Transmittance of
Finitely Deep Hydrosols

The simple two-flow model allows us to estimate the re-
flectances and transmittances of finitely deep layers of
water. We return to (6), (7) of Sec. 1.3 and consider a fi-
nitely deep homogeneéous layer whose upper surface is at 0 and
whose lower surface is at z. The upper surface is irradiated -
with a given irradiance H(0,-) and we set H(z,+)=0, which sim-

ulates zero irradiation at the lower boundary (Fig. 1.40 (a))r’,.

We then find the m,, m_. corresponding to these two given ir-

radiances, and solve for H(0,+). Thus, if under these condi-
tions we write . .

"R ()" for  H0,+)/H(0,-)

then Ry(t) is the reflectance of the slab of (diffuse) optical
depth* t = kz, and RY(T) is found to be of the form:

R (T);‘ (i'Yz) el - e T (a)A'.
oo (1+y)2e™ - (1-v)2%e™"

*There are many ‘'optical depths' possible in radiative trans--
fer theory; one for each scattering or absorbing concept. In
the present case we use k as a base for optical depth.
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(a) {b)

H(0,~)
REQU|RED) (GEVEN) (GIVEN)
T Ih T

I
AN // 't
g\_/_w{. -:-'.1 -" » I i
] H(Z,H)=0 H(Z,-)
H(Z,4)=0 (GIVEN) (GIVEN) @(REQUIRED)

T is optical depth corresponding fo 2

FIG, 1.40 Boundary conditions for the reflectance and
transmlttance of finitely deep layers in a hydrosol.

where we have written:

Hytt for -aYD' .- (9)

The transmittance Ty(t) of ,the slab of optical depth T can be
found in an analogous manner {Fig. 1.40 (b) ) by now seeking
H(z,-) under the same conditions. Thus if we write:

"T (T)"  for  H(z,-)/H(0,-) ,

then it follows that:

- 4y .
T (1) = (10)
Y (1+v)2e™ - (1-y)%e’"

One should see that, because the medium is homogeneous, Ry(T)
and Ty (1) depend spatlally only on the optical depth T, $O

that (8) and (10) pertain to any slab of thickness t in the
medium regardless of its vertical location within the medium.

It will also be interesting to look at some of the lim-
iting values of Ry(1) and Ty(t) for various extreme values of
T and y. " For example, one may verify that:
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Fim. R (1) = 0 (ay
T+{) Y
Iim  R_(1) = 12X« R : (12)
v Y l+y
“lim T_(1) = 1 (13)
10 Y o g
1lim T (1) = 0 " (14)
T !
R_(1T) 2 ’
. Y _1-y b
1lim = L = — (15)
0 T 2Y X
. 1-T (1) 1+vy2 D+b
Lim =22y =2 (16)
Tot+0 T 2y k

From (15) we see that the reflectance of very thin slabs is
proportional to the backscattering coefficient b. Indeed,

R (1)
Z

lim
z+0

so that:

Ry(r) = bz : (17)' 

* for small T. From'(16) we see that the transmittance of very:

thin slabs is:

T () = 1 - (aDsb)z . _ (18) .
From (17), (18) we conclude that for thin slabs:
Ryfr)vf T,(v) = 1 - (aD)z
and if in general we ﬁrite:
AY(T) for 1 —[RY(T) + ?Y(T)] (19} :
we see that in particular for thin slabs: .
Ay(T) = (aD)z ‘. _(20)

Clearly Ay(t) for general t is the amount of irradiance ab-
sorbed by a slab of optical thickness t and with optical prop-
erties a, b, and D. From (19) we have the general conserva-
tion law:
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A (r) + R (T) + TY(T) =1 : (z1)

Figs. 1.41, 1.42 represent Ry(t) and Fig. 1.43 represents
TY(t) for a selected set of v and 1 values. Values of k and
Y can be obtained by direct computation from the definitions
of k and v, or by their graphs in Figs. 1.44, 1.45. The com-
putations were done by Mrs. Judith Marshall. :

"-Invariant Imbedding Relations for Irradiance

We now wish to investigate a particularly interesting
property of the reflectance and transmittance functions Ry (T)
and Ty{t} defined above. This property will allow us to
write down Eqs. (6),(7) of Sec. 1.3 by sight for homogeneous
media with transparent boundaries. We shall fix attention on
an arbitrary medium X whose upper boundary is at optical
depth 0 ‘and whose lower boundary is at optical depth ¢ (= zk),
where z is the geometric depth of the medium. Since X is
fixed throughout the present paragraph, we can drop the "y"
from the R and T notation. Furthermore, to emphasize the geo-
metric limits of X we shall denote it by "X(0,c)".

Now suppose X{0,c) is irradiated at the upper boundary
only. Then by definition of R(c) and T(c) we have:

H(0,+) = H(0,-) R(c) ' (22)

H(C,-)

H(0,-) T(¢) ‘ (23)

This is a simple application of (8) and (10) and the basic
meanings of R(c) and T(c}. Next, assume that X(0,c) is ir-
radiated only on its lower boundary. Then, by the same token:

H(0,+)

H(c,+) T(c) (2

H(c,-) = H(c,+) R(¢) - (25)

These formulas follow rigorously using the pattern of deriva-
tion leading to (8) and (10). However, they should be intui-
tively clear simply on the basis that T{c) and R(c) are trans-
mittances and reflectances of homogeneous slabs of scattering
absorbing material of optical thickness c in which -complete
symmetry of the light field has been assumed (in the form of
(1) of Sec. 1.3).

Furthermore, and this is a crucial step, because the
basic differential equations .of the two-flow model’ are linear,
we have at our beck and call the mathematical principle of
linear superposition of solutions of these equations. ' Thus,
if X(0,c) is irradiated simultaneously at levels 0 and c,
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FIG. 1.41 Calculated reflectance R_(t) versus T, for
.01 <y < .80, ¥

FIG. 1.42 Calculated reflectance R (t) versus 1, for
.80 <y <.98. ' Y '
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FIG. 1. 43 Calculated transmittance T (T) versus 1, for
.01 <y <.98.

then we would be correct in writing the observed emergent ir-
radiances at levels 0 and ¢ as:

H(0,+) = é(ﬂ.-}R(C) + H(c,+)T(c) S (26)

H(c,-) = H(0,-}T(c) + H(c,*)R(c) . (27)

These equations are readily forthcoming from (6), (7) of Sec.
1.3; however, we shall imagine for the moment that they form
a relatzvely new basis for approaching radiative transfer
problems, -and that they are just as basic (as indeed they are)
as the two-flow equations (4), (5) of Sec. 1.3 in setting up
the foundations of the two-flow model. We shall spénd much
time on this point of view and its generalizations in Chapters
3, 7, and 8. For the moment we adopt it in the form of (26)
and (27) and apply it in a simple and direct manner so as to
explain. the essential ideas behind it.

In order to illustrate in a relatively concrete manner
the properties of (26) and (27), we shall consider an actual
natural hydrosol in the framework of the one-D model.- Thus
let us suppose that

D=2 (diffuse light distribution factdr)
Ta = L117/m (volume absorption coefficient)
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aD = ,234/m (volume absorption coefficient’
for diffuse light)

Further we suppose:

s = ,325/m (volume total scattering coefficient)
and

b = ,010/m (volume backward scattering coeffi-
cient for diffuse light)

From the graphs for vy, and k, we find that for this medium
Y = ,96
k = ,250/m,. {diffuse attenuation coefficient)

For later reference we note that:

a = a+ts = ,442/m {(volume attenuation
coefficient)

For 2 medium of depth:
z = 4 meters,
we have an optical depth of:
. c = zk = 1. , .
According to the graphs for R and T, for such a medium:

R(1) = .018
- T(1) = .360

and so:
A(l) = .622,

All these optical propertiec zre to be considered for illus-
trative purposes only. In the present example, they pertain
not to a single wavelength but to average values over the
visible spectrum. Suppose that the medium X({0,1) has trans-
parent upper and lower boundaries and that it is irradiated
such that:

500 watt/m?
100 watt/m? .

]

H(O:')
H{1l,+)

i

The H(O -) chosen here simulates a typical visible spectrum
1rrad1ance produced by a noonday sun at sea level on a hori-
zontal plane, under a sky with clear dry air (cf. Table 2 of

Sec. 1.2). Then the upward irradiance at the upper. baundary
is, according to (26):

11

H(0,+) = 500 x .018 + 100 x .360

45 watts/m? .

The downward irréﬁiance at the lower boundary is:-
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H(1,-) = 500 x .360 + 100 x ,018
= 182 watts/m? .

Finally, the number of incident watts absorbed per square me -
ter of boundary within X(0,1) are:

(H(0,-). + H(1,+)) X .622 = 373 watts/m?

Suppose now that X(0,1) has a reflecting lower boundary.
We wish to show next that the upward irradiance H(1l,+) just ~
above the lower boundary of X(0,1) can be computed directly,
if the reflectance - r of the lower boundary is known. Suppose
that
r = ,050

and suppose that only H(O -) is given. Let the associated

light field be set up in X(O 1). Then if we know the irradi-
ance H(1l,-) on the lower boundary, we have:

H(1,+) = H(1,-)r } (28)

H(1,+) is the 1nc1dent irradiance on the body of X(O 1) just
w1th1n its lower boundary. Then, by (27),

H(i;-) = H(0,-)T(1) + H(1.+)R(1) (29)
Combining (28),_(29)>we have, on solving for H(1,-):

_ H(0,-)T(1)
1-rR(1)

H(L,-) (30)

Suppose that H(0,-) = 500 watts/m?, then (30) yields: -

H(1,-) = 500°x 360
1-.05 x .02

= 180 watts/m .

In other words, on comparing this H(1l,-) with that worked out . -
above, a bottom boundary reflecting by an amount r = ,050
will contribute essentially nothing measurable to H(l -). By
{(28) we have

H(1, +) = 180 x .050 = 9 watts/m?

What should the reflectance r of the lower boundary. be
in order to yield the H(1,+) = 100 watts/m2 we used in the-
first illustration above? Multiplying each side of (30) by r,
and using (28) we-have o o
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L, ey = MO, ST
1-TR(1)
Solving for r: v
- - H(1,+)

H(1,+)R(1) + H(0,-)T(1)

100
100 x ,018 + 500 x .[360

100 . 559

182

which could for example simulate d light sandy bottom. Ob-
serve that the denominator in the preceding expression for r
is simply H({1,-), under the present boundary conditions.

‘These examples begin to show the use of the one-D model
in making elementary calculations concerning everyday matters
in the study of hydrologic optics, including the effects of
nontransparent boundaries.

‘We continue with another illustration which shows how
to find the internal irradiances in X(0,1) knowing the inci-
dent irradiances on its transparent upper and lower bounda-
ries. Suppose we have the incident irradiances:

H(o")
H{1,+)

500 watts/m?

100 watts/m?

We want to find H(1/2,%), i.e., the irradiances at the mid-
level of the present medium. Now since (26), (27) hold for
arbitrary media of optical depths c, let us apply them to the
two subslabs X(0,1/2), and X{1/2,1) which comprise the upper
and lower halves of X(0,1), respectively (see Fig. 1.46).

Applying (26), (27) to X(0,1/2):
CH(0,+) = H(0,-)R(1/2) *+ H(1/2,4)T(1/2) (31)
H(1/2,-) = H(0,-)T(1/2) *+ H(1/2,+)R(1/2)  (32)

Of the irradiances we know only H{0,-), and we want to find

H(1/2,%). We also do not know H(0,+). We therefore need

" more relations. Returning to (26), (27), and applying them to
X(1/2,1), we have: '

H(1/2,+)

H(1/2,-)R(1/2) + H(1,+)T(1/2) (33)

H(1/2,-)T(1/2) + H(L,4R(1/2) (34)

H(]-:')
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| | ,@H(o,—) ﬁH(O.H
=0 e

C=1/2 = . T (172,-) - . H(V2'+)

@ H(L—-) ﬁ H(l,+)

FIG. 1.46 Us1ng Ainvariant imbedding ideas to calculate
internal 1rradlances from boundary 1rrad1ances.

Here we know H(1, +), and we have more relations for H(1/2,%)
with another unknown H{1,-). But now we have four equations
in four unknowns whlch we can solve for H(1/2,%), and rear-
range as follows.

H(1/2,-)

H(0,-)77(0,1/2,1) * H(1, ") R(1,1/2,0) (35)

H(1/2,+) = H(0,-) R(0,1/2,1) + H(L,+)J (1,1/2,0) (36)

" where for the present example:

R0,1/2,1) = R1,1/2,0) = RUDTA/2) _ 0o (37)
; Rt 1-RT(1/2) ,
J0,1/2,1) = 7@1,1/2,0) = LA/2) o 0 o (3gy
e T 1-R2(1/2) S
Hence: o ,
H(1/2,-) = 500 x .600 + 100 x 006
» = 301 watts/m?
H(1/2,+) = 500 x .006 + 100 x .600

63 watts/m?
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Equations (35)-(38) are special cases of the important invar-
iant imbedding relations we shall study in many contexts lat-
er. If the reader has understood the deductions in this ex-
ample, he will have no difficulty with the deductions in the
remainder of this work concerning invariant imbedding con-
cepts, for they are merely elaborations of the present simple
example to general geometries and radiometric quantities. It
suffices to observe here that the (X and J factors are the com-
plete reflectancea and complete transmittances for the medium
X{0,1) partitioned at level 1/2. More general partitions
generally vield four such numbers.

' With the preceding numerical examples in mind, we may
now apply (26), (27) to the following situation which gener-
lizes the setting of Fig. 1.46, Thus, being guided by Fig.
1.47 in which all depths are optical depths we have, for the
medium X{a,b):

H(a,+)

H(a,-)R(b-a) + H(b,+)T(b-a) (39)

H(b,-) = H(a,-)T(b-a) + H(b,+)R(b-a) (40)

Applying (26), (27) again, now to X(b,c):

H(b,+)

H(b,-JR(c-b} + H(c,+)T(c-b) _ (41)

H(c,-)

H(b,-)T{c-b) + H(c,+)R(c-b)" (42)

H(o40‘\\\ ,///H(a
. ~_ + ) AR

X0 :-.‘.-:i-:'-.:f":-.'.';fr"".-;t".’

H(b,~)

X(a,c)J
X{b,c)

H(c,—)/ \H(c,+)

FIG. 1.47 General arrangement for calculating internal ir-
radiances at level b from given irradiances at levels a and c,
using the invariant imbedding relation.
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Solving these four equations for H(b,*), we have, analogously
~to. (35), (36):

H(b,-) =‘H(a,-)Jf(a,b,c) + H(c,+)A(c,b,a) (43)
H(b,+) = u(;,-)ga(a,b,c) + H(c,+}J(c,b,a) (44).
where: Riab,c) = T(b-a)R(c-b) (45)
L 1-R(b-a)R(c-b)
J(a,b,c) = —1(b-a) (46)
A 1-R(b-2)R(c-b) -
R(c.b,a) = —L(EzbIR(b-a)
v 1-R(b-a)R(c-b)
T (eyb,a) = — L&)

. _ (a8) .
1-R(b-a)R(g-b) S

which are the gehéral versions of (37), (38). These may be
evaluated using the R and T values tabulated above.

Equations (43), (44) together constitute the i{mvariant
imbedding relation for the medium X(a,c) which is partitioned .
at level b, asb=sc and in which 1rrad1ance is the radiometric
concept Of 1nterest. "It may be put into compact matrix form
as follows: -

' . fT(c,b,a) @(c,b,a) o
(H(b,+),H(b,-)) = (H(C,"“),H(av,‘)) ] (49)

R(a,b,e) JTa,b,c)

If the one- D model proves 1nadequate to predlct or des-

(47) gT-~

cribe a given radiometric condition in a natural hydresol, it . -~

may be that a more. general and flexible model is required.
The hierarchy of successively more refined irradiance models
that may be tried after the present one is as follows: the
decomposed one-D model, the undecomposed two-D model, the
decompoged two-D model; these are studied in Chapter 8.

For a reversal of the preceding procedures in which the
light field in real media may be measured so as to predict
R(t) and T(t), see Examples 1, 2, in Sec. 13.10.
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A Theoretical Basis for the Law:
Ny(z,8) = N,(0,8)e ¥%

In our derivation of the simple model for radiance lead-
ing to (14) of Sec. 1.3 we assumed that the path function N
decreased exponentially with depth, as indicated in (13) of
Sec. '1.3. We shall now do away with the assumption and de-
duce this form of N, with the help of the two-flow model.
This will place (13) of Sec. 1.3 on a sounder basis and also
show how the simple models occasionally may be used to help
each other attain their full descriptive powers.

Now the path: function value N,(z,8), as defined, gives
the amount of radihnce generated by scattering at depth z,
per unit length along the direction § of a path in a hydrosol,
as shown in Fig. 1.39. What is scattered is the radiance at
depth z impinging on the path in all directions &', Just how
much of the stream in the direction §' is scattered into the
direction £, at depth z is given by means of the volume scat-
tering function values o(z;E';£)., Thus '

No(z,8) = [ N(z,£')0(2;6"3E) da(E") (50)

[£4]

where the notation "' and '"dQ(&')" is explained in Sec. 1.1.
We shall carefully define ¢ and derive (50) from first prin-
ciples in Chapter 3. For the present we can understand it on
simple intuitive grounds, as just explained.

) The two-£flow model assumes that the radiance distribu-
tion N(z,+) has an arbitrary fixed shape in the upper and low-
er hemispheres EZ., E_ of the unit sphere of directions 2. If
we assume in particular that for every depth z
N(z,+) on £, has the constant value N(2)
and that

N(z,) on E_ has the constant value N(z)-

then (50} yields up the following nccessary form of N,:

| NG.eotzsese daten

E

N*(Z,'E)

+[ N(z,€)0(2;E'5E) aR(E")

[£3]

O3] [RTCHAS) dn(a')wcz)j

j$3]
n

o(z;€';€) da(g')  (51)
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In the two-flow model adopted in this chapter, the medium is
assumed isotropic and homogeneous.* Further, the light field
is such that the path direction £ can be characterized by a
single angle 6 as shown in Fig. 1.39. Wé can therefore write,
ad hoe: ’ :

"s@) for | o(zig'ie) dacen) (52)
We shall also Qrite}
"sv o for [ o(zig'56) da(en) (53)
so that, . ‘
[otzenie) aae = sese). (54

T+

The quantity s is simply the volume total scattering function
introduced during the derivation of the simple model for ra-
diance. The portion of the scattering lobe used in finding
s(8) is shown unshaded in Fig. 1.39. In view of these con-’
ventions, we can write: :

Nu(2,8) = N(2)s(8) + N(2)(s-5(0)) sy
From (11) of Sec. 1.1 is is clear thaf: -
H(z,-) = "N(z) (56)

H(z,+) = wN(z) | (57)"

and from (57), (56) and (5) we have:

' N=NR, =~ ‘ (58)
Therefore: . . ;
Ne(z,8) = N(z)[s5(8) *+ R, (s-s(8))] , (59) -

We are essentially finished, because by (8), (11) of Sec. 1.1
we have (setting & equal to k)

h(z)

h(zn") + h(z")

2H(z,+) + 2H(z,-)

2n(R_+1)N(2) | (60)

Using this in (59)'ahd recalling (7), we find:

*Homogeneity means ¢ is independent of z; isotropy means ¢ -
depends only on E-E'. )
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N, (z,0) = R([S(O) * Ry(s-5(0))]

27 (1+R,)
= N.(0,0)e X2 (61)
where:
N (0,8) = h(0)[s(8) + R,(s-s(8))] e
20 (1+R,)

which is the desired result.. In practice we can therefore use
the theoretical k and the empirical K interchangeably. This
derivation also shows how, using (50), one can generalize the
construction of N,(0,8) to quite realistic angular dependences
using existing light fields at or somewhat below the air-water
surface. The unshaded region of the o-lobe in Fig. 1.39 shows
“the portion of the three dimensional surface of o(z;E';§) over
which the integration takes place to obtain s(8), 0= 6=,
Observe that if s(8) is a surface of revolution (as it is in
practice) then:

s(8) + s(%-9) ='s ‘ (63)

whence:
a s(n/2) = s/2

and in particular:

$(0) + s(7) = s

.As an example of the use of (62) we observe that in
‘some Pacific coastal waters (cf. [300]}) as measured in the
wavelength band of a Wratten 57 filter, we have

s{(0} = .001/m

s(n) = .013/m

Observe that s(0) acts 1like a backward Scattering function
for collimated flux, whereas s(w) acts like a forward scatter-
ing function for colltmated flux, so that by (63)

L]

s(0) + s(w) = s .014/m

This water was also found to have a corresponding volume ab-
sorption coefficient of a = .104/m, and hence the medium has
an ¢ = ,118/m., Such water is highly forward scattering and
also relatively highly absorptive, and will therefore force
the simple models to work hard in their descriptive tasks.
Since the present medium is highly absorptive, the downward
scattered daylight light near the surface will be relatively
highly collimated. Accordingly we assume a relatively small
distribution factor D, say D = 1.1. Since the medium is
highly forward scattering, we shall estimate the backward

- scattering coefficient b for the scattered flux field to be
.002/m.. It follows from the one-D two-flow model ((9) of
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1.3 and (9) of 1.4) that aD = .114, and that k = .114/m along

with y =.99; so that R, = .01. Let h{(0) = 500 watts/m? just

below the surface.. _ .
These assumed conditions allow us to illustrate the

path function formula (62). We have, for the downward path

function just below the surface:

N,(o,f) - h(0)[s(m) *+ Res(0)]
27 (14R,)

_ 500[.013 + .01 x .001]
6.28 x (1 + .01)

1.03 watts/m¥sr

1.03 herschels/m

Further, for the horizontal path function:

N, (0,1/2) = DO [1*Re]s _ sh(0)
o Am[1+R] 4n

- 500 x .014
4 x 3,14

= ,557 herschels/m

* Finally, for the hpward path function:

N (0,0) = B0 [5(0)* Res(m)]
2u[1+R,]
L 500[.001+.01 x .013]
6.28(1+.01)

.080 herschels/m.

Computinglgédiances from the Simple Model

Some illustrations of the computation of radiances us-
ing (14) of Sec., 1.3 will help fix in mind the typical orders
of magnitudes of radiance values in natural waters. Let us
begin with the case ‘of a horizontal path of sight some given
depth z, below the surface. Then in (14) of Sec. 1.3, we set
8 = w/2, and that equation becomes:

- o

Np(24,m/2) = No(z,,1/2)e™%7 + NalZo,W2) [}-e'“r] 9
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which we can write quite simply as:

N_ = N e % &+ Na [1-e'“f}
T O Qa

provided the depth and direction of the path are understood.
(The right is reserved to disinter the depth and direction
variables at any time.) For infinitely long horizontal paths,
i.e., for the case r = «, this formula yields:

N = Na

e (65)

for the observable horizontal radiance N at a given depth in
any laterally extensive stratified opticgl medium. Observe
that in such media the Ngq defined above does not change with
location along the path. For this reason we denote the obser-
vable radiance as 'Ng" and call it the equilibrium radiance.

An estimate of Ngq for shallow depths in Pacific coastal
water around the blue-green part of the spectrum can be made
on the basis of the preceding example, wherein we found that
N,{0,%/2) = .557 herschels/m., In such waters, for -example,

o = a+*s = ,104 + 014 = ,118/m. Hence: .

No(0,7%/2) = .557/.118 = 4.72 herschels

is the equilibrium radiance just below the surface. At a
depth of 5 meters, it follows from (61) that

‘v~Nq(S,ﬂ/2) = N*(Sg"/%l - N*QO&w/Z) o5k

k

i

Nq(o,w/Z)e'5
L(-5 % .115)

L}

4,72 %

i

4,72 x ,560 = 2.64 herschels

where-we_have used the k for the water of the preceding ex-
ample, .

.As another example of the use of the radiance model, we
set 6 = w,.and & = 0 in (14) of Sec. 1.3, to find that, at
depth_; at the lower end of a vertical path of length r:

N (5 = No(zg,me T Eﬁé%ill B R I

and similarly at depth z, at the upper end of a vertical path
of length r: )

-'S}(Z’O) - No(zo,O)e"ar + Nx(z,0) [}-e‘(a+K)r] ] (67)

a+K




86 © ' INTRODUCTION VOL. T

The reader is reminded of the standing convention that Np(z,m)
is the apparent radiance at depth z flowing in the downward
direction and to see it, one must direct his eye or radiance
meter upward (cf. Fig. 1.39). We persist in using this form
of radiance (i.e., surface radiance) because it simplifies
the 'dynamics of photons in scattering-absorbing media.

Suppose the medium is infinitely deep, so that we can
set T = » in (67) and still keep the path within the medium.
Then (67) becomes: .

a-+ K

which is the radiéhcé one would see at depth z looking
straight down intc the infinite deeps. Suppose z =.0, then
our preceding example lets us estimate that:

N2(0,0)

a + K

“N(0,0)

_ .080
.118 + ,115

= 344 herschels.

Let the zenith radiance as seen just above an air-water . -

surface be 80 herschels in a given band width of the blue-
green part of the spectrum, say at 480 % 64 mp, and suppose
that h{0) = 500 watts/m? just below the surface. -If the sur-
face is calm, then just below it, by virtue of the n?-law for
radiance, (Sec. 1.1), we would have . :

. R _
N,(0,7) = 80 x [%] = 142 herschels

where 4/3 is the index of refraction of water. This radiance

value’ is to be modified slightly if surface transmittance and .

reflectance effects are to be included.. These corrections

are of secondary importance and so we shall not include these.
effects at the moment. Now, to the present task: we can es--
timate N(z,m). for z = 5 meters, by méans of {66) in which we =
set zy= Om, z = 5m, -and use a = .118/m, k = .115/m. Thus,
with the help of our' estimate of N,{(0,7) above:

e -.115x%5
Ng(5,m) = N_(0,mje -118%5 , Na(0,m)e

.118-.115

+

P;e-(.llé—.ilsjsl

142 x .554" + (1.03 x .560) x 5

78.6 + 2.88

81.5 herschels
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FIG. 1.48 Experimental verification of the simple model

for radiance, as measured by Tyler in Lake Pend Orellle
Idaho, April 1957. (From [298}, by permission)

The next to last equality shows that at a depth of 5 meters,
78.6 herschels are transmitted from the original 142 just be-
low the surface, and that 2.88 herschels are added by the pro-

-

cess of scattering over the 5 meter path.

Figure 1.48, which is based on the work in [298), shows
the observed radiance distribution in Lake Pend Oreille and
its associated predicted values using (14) of Sec. 1.3 for
three important directions. The solid curve is computed from
the model, the dots denote measured radiances.

A word or two may be in oxrder here on the rather unin-
tuitive- seeming jump by the radiance function as the flux
crosses the air-water surface. We saw in the example above
how it jumped from 80 to 142 herschels. To simplify matters
suppose for the moment that there are no losses by reflection
as the flux crosses the surface., Fig. 1.49 depicts the flux
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FIG. 1.49 Tb show that the irradiance conservation law
holds despite the n? effect on radiance at the air-water
level. ’

incident at a point A on the surface, flowing in from all di- .
rections in a hemisphere.. The refracted rays below the sur- .
face do not fan out in a full hemisphere, but are limited to
a right circular cone of half angle 6. = 48°, or more pre-
cisely, .

. 3
,e; arc sin [Z]

Let the incident radiance distribution be of constant magni-
tude N. Then the irradiance on the air-water surface, by (11)
of Sec. 1.1, is simply 7N. Let us compute the irradiance
just below the surface produced by the refracted incident

flux of radiance (4/3)*N. By (1) of Sec. 1.1 we now find:

2 . .
H ] &] cos 8' sin 8' de' d¢'

L]
Se—e—y
[
(¢}
jl L
Srr—
o~
R
|
L 1
TN

1
——
w| -~

2 ... 8¢
]- 2nN J cos 6' sin 9' de°

8'=0
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This shows that, despite the rather odd buildup of refracted
radiance across the air-water surface, this buildup is of
such a magnitude, and takes place over such a restricted set
of directions, that, as expected, energy conservation is ob-
served. The argument just given can readily be extended to
ideal transmitting surfaces bounding media of arbitrary index
of refraction. When, in addition, reflection processes are
to be taken into account, the more extensive calculations
discussed in Sec. 12.2 are to be used.

Derivation of the Contrast Transmittance Law and the
Radiance Difference Law

The contrast transmittance law:

= o~ (@*K cos 8)r
C, = Cye

for an inclined path of sight of length r in a homogene€ous
optical medium was first encountered experimentally (in the
special. instances of vertical and horizontal directions) as
explained in the discussion leading up to (12) of Sec., 1.2,
It is now our purpose to show how this law may be deduced
from the. simple model for radiance (14) of Sec. 1.3, and un-
der what conditions it is expected to hold.

Let: the hydrosol X be infinitely deep and consider a
path.in X as shown in (a) of Fig. 1.50, where the observer is
at depth z and the apparent radiance ¢N,(z,8) of an object of
inherent radiance ¢Np(zy,8) is observed. The angle 6 is such

(@ s | (b)

.wr é
% \

.

FIG."1.50 Setting for a theoretical proof of the exponen-
tial law for apparent contrast. {cf. Figs. 1.29, 1.30)
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that 0=06<n/2. Recall that 0 is the angle from the vertical
at which the photons are flowlhg, as shown by the arrow in
thc figure. .

Now the background'apparént radiance yNy for the present
path of length r is obtained from (14) of Sec. 1.3 by setting’
r =« in that general equation: i

GNo(z,0) = Helz.0) . ~(68)

a+K cos 8

This is the apparent radiance of the background of the target
as seen at a range r from the target. The apparent contrast.

Cy(z,8) of the obJect against its background (recall (11) of

Sec. 1.2) is: : )

N ( ,6) - N )e)
C’»(z,.e) I i o (2 , (69)
r. bNr(z'e)

wherein we have:
N,(2,8) = N_(z,,0)e %%+ NalZ,8) [1-.3'(“”( cos e)1'].(70).
. a+K cos 8 .

Observing that: )
' N {(z,,8) - .N (z,,8) :
Colzg,0) = Lot Do &1~ (71)
No(zt,e) ) . -

it fbllows from the preceding four relations, by stralghtfof-
ward substitution of (68) and (70) into (69), and a reduction.
using (71), that: .-

c.(z,0) = vCo(zt,'e)e'(““K cos e)r‘ (72)

which was to be shown. The quotient Cy/C, is called the con-
trast transmittance. Equation (72) is the requisite contrast
transmittance law. The quantity (a+K cos 8)! is called the
attenuation length Lg of the medium along the given path.

For 6= w/2, Ly/2= 1/a, a basic property of the medium, while

Ly = 1/(a+K) is assoc1ated with secchi disk readings (cf (84)

below). The quantity 4Lg is mainly of historic interest and
is the hydrologie ‘range for the given path of sight. Its
plot is an ellipse vs 9 (cf. Sec. 1.9).

This simple: derivation cannot be repeated in its entlre
ty when the photons are streaming in from a nearby boundary,
such as depicted in (b) of Fig. 1.40. 1In this case (68) must
be replaced by the full form'of (14) of Sec. 1.3. However,
by using (69) and (71), which are general definitions of ap-
parent and inherent contrasts, along with (14) of Sec. 1.3
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once agéin, it follows readily by a similar calculation, that
quite generally:

N (z_,8) _
C (z,0) = |22t &%) ¢ (z,,0) : (73)
LN (2,0) o .

The reader may show that this formula holds for both situa-
tions depicted in Fig. 1.50, i.e., for 0= 8= v, It reduces
to (72) when 0=08<wn/2, i.e.,, when (14) of Sec. 1.3 reduces
to (68), A fuller discussion of contrast and contrast trans-
mittance is given in Chapter 9. ‘

Figures 1.51 and 1.52 illustrate two experlmental checks
of the contrast transmittance law for the cases of € = 90°,
and 6 =.58.8°., The radiometric quantity used was apparent
luminance By, and the medium (Lake Winnipesaukee, N.H.) had
an o of .490/m for Fig. 1.51 and for Fig. 1.52 the medium had
o = ,585/m and K = .350/m. These optical properties therefore
pertain to averages of a, K over the visible spectrum. The
observation point in each case was about a meter below a calm
air-water surface and when the skies were overcast or early

10
9
8k 1 g
7'- ' §§ Bo : z
o AN [ | Vl _
‘57" ) \ \ | e e 4
ak AN
&l N\
o AN
3L WO\
\\o \
> 9
Tl N \\
i SO\
- 8 = 90° _ 2,
I Meters \\ '?‘90/4)
i 1 i 1 1 .
i 2 3 4 5

FIG. 1.51 Experimental checks of the exponential law for
apparent contrast (cf. Fig. 1.50) by Duntley, Tyler, and Tay-
lor, Lake Winnipesaukee, N.H., Summer 1958,
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FIG., 1.52 Experimental'checks of the exponential law for R
apparent contrast (cf. Fig. 1.51). )

morning skies in each case. Further details may be found in = -
[83]. : ’

We conclude with the observation of a useful.corollaryi
of (73), namely that radiance differences propagate exactly
according to the exponential law. Thus

1

o208 (2,00] = [N G- N 0]e™™ |

Contrast Transmittances for General Backgrounds

It should be observed explicitly that formula (73) is of
such generality that. the apparent contrast C, of an object
need not be with respect to a water background. Rather, if . -
bNo in (73) is the inherent radiance of a background (as .in
Fig. 1.53) for a target of inherent radiance ¢N, (shaded in
the figure), then by computing yNp according to (14) of
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FIG. 1.53 C(Contrast transmittance for paths with arbitrary
backgrounds.

Sec. 1.3 and using this in (73), the requisite apparent con-
trast-transmittance C,./Cg, is determinable.

"As a special case of (74) under these circumstances, let
the line of sight be horizontal, then it is easy to. see that:

i

C./C = 1 , . (75)
T [ N
1+ 2 (e%7-1) '
b%o

where Ng is the equilibrium radiance for the given horizontal
path.  Observe that the contrast transmittance of the given
path uses only the radiances Ny and Ngq, i.e., the radiances
making up the immediate background of the target. Of course
in real media Ngq is somewhat affected by both tNg and pNg
(and conversely) so that the classically simple formula (75)
does not rigorously hold. But within the framework of the
present :5imple models and for paths of sight under ordinary
lighting conditions, (75) is a quite useful and adequate
formula.

The Multiplicative Property of Contrast Transmittance

If we take a still closer look at the contrast trans-
mittancé law (73), we find a most interesting property held
by contrast transmittance in general, whether it be for paths
of sight within the sea, or within the atmosphere, or even
for paths partly in the sea and partly in the atmosphere!

.To -facilitate our discussions let us write:



94 © " INTRODUCTION VOL. I

" g’rl' for Cr/co

and when necessaty'we include location_and direction varia-
bles with " J,". ~Now observe that e *T in (73) can be writ-
ten as . :

(o]
er _ B2
pNo (250

where bNg is the residual radiance coming . directly from the
target background over the path of length r. (It is what is
left of yNo after scattering and absorption have taken their
toll; cf. (24) of Sec. 1.3). Then we see that (73) can be
cast into the form: -

NO
b
g’;_=_..£
N
b'r

On this basis, we can work solely with the background radi-
ance of a target when discussing beam transmittance of a path .
along which it is viewed. Hence we need no longer carry the
reminder "b'" before the radiance symbol. In other words we
find that for a general path of length r in a general hydro-
sol, the contrast transmittance Cr/C0 of the path is given by .

QZiHZE

T - (76)

This situation is summarized schematically in (a) of Fig.
1.54. ' :

Next, suppose we have two paths of length r, s, end to -
end, as shown in (b) of Fig. 1.54. Let the inherent radiance
at the far end be Ny. Then at the end of the first path seg- °
ment of length s, we have, ‘according to the preceding rule:

N® N e ®S _ - .
I Ss.-.°___ 01D
s N Ng _ .

where Ng is the apparent radiance associated with Ny, and NS
the residual radiance associated with Ng over the path of
length s, both reckoned via (12) of Sec. 1.3, for example.
The apparent radiance Ng now acts as did the initial radiance
No, and Ng is transferred over the second segment of length r
to give rise to an observed residual radiance Nge~%T and the
apparent radiance Ny,g associated with Ng. Hence: ’
' N_e T o :
TJ. = = Co(18)
r N :

Tr+s
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FIG. 1.54 Part (a): Deriving the contrast transmittance
as the ratio of a residual radiance and an apparent radiance.
Part {b): Deriving the multiplicative (or semigroup) proper-
ty of contrast transmittance.

"But looking at the path as a whole, we can also write:

NC
T+S ’
- . 79
;7;+s Nyws (79)
Comparing. (77)-(79) we find:
Tees = T2 Ts | (80)

This is the multiplicative (or semigroup) property of the con-
trast transmittance. The argument just used to derive (80)

is readily extended without change of the form of (80) to ar-
bitrary paths in air or water and across places where the
index of refraction varies, provided in such cases we work
with N/ni? rather than N, where n is the index of refraction.
For by the n2?-law for radiance, N/n? is invariant in trans-
‘parent .media with varying index of refraction (see Sec. 9.5).

As an obvious extension of (80), if a path comsists of
three contigucus, successive segments of arbitrary lengths
r, s, t, then the contrast transmittance €7;+s+t of the com-
posite path is simply a product of the three Contrast trans-
mittances of the segments: :
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Tresee = Tr T3 T GO

As an example of (81), consider a calm air-water sur-
face. A line of sight of length t begins at a submerged ob-
ject, 'is refracted at the air-water surface, and runs a length
r in the air. Eac¢h of the three paths have an associated con-
trast transmittance. While the path across the surface is of
zero length, i.e., s = 0, there is a definite contrast reduc-.
tion that takes place because of reflected sky light and re- .
flected and transmitted underwater light occurring at the sur-
face. The form of this singular contrast transmittance Jg
is given in detail in (20), (23) of Sec. 12.2.

I1f, in addition, the air-water surface is in motion,
then the above analysis must include an additional factor
»52 (= €/C)associated with the time-averaged contrast reduc-
tion by refraction [(cf. in (5) of Sec. 1.2). Hence now:

- ’Tﬁt = ‘7;' ‘7; 5:—)*7;. (82) -

gives the time averaged contrast transmittance CT;+t for a
path of length r in air, and going across a moving air-water
surface and plunging a length t in a natural hydrosol (Fig.
1.55). The factors are as follows for a vertical line of c-
sight in air and a small submerged target of half-angle sub-
tense Y as seen just below the surface: -

D’T = g T (in air)

CT;= e~ (02*K)t i vater)

- _tan? :
'QTA = |1-e 20 {at the interface)

Finally QT; is 'as-given in (21) of Sec. 12.2 (wherein Np(x,E')"
is now the time averaged vertical upward radiance)., The com-
plete analysis of the time averaged radiance transmitted a- - ==~
cross the air-water surface is made in the latter half of i
Chapter 12, wherein the more or less intuitive type of factor
analysis in (82) is bypassed in a direct, more general, but -
somewhat more difficult solution of the problem. -

Theory Qf the-Secchi and Duntley Disks
It is a part of almost everyohe's experience to have

thrown or dropped an object into deep water and to have
watched it disappear into the depths. If the object is
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FIG. 1.55 Contrast reduction along a composite: path
through axr, air-water surface, and water,

somethlng bright or white, the eve can easily follow it down
into the depths until it seemingly abruptly winks out, to be
lost from sight from some depth onward. If the observer were
of an inquisitive turn of mind, he may surmise that the gen-
~eral clarity of the water had something to do with the depth
at which the object:disappeared, and he may wonder if there
were indeed a quantitative connection between the depth rate
of decay of the llght field in the water and also the depth
rate of decay of the whiteness or contraet of the sinking ob-
ject against the watery background, and maybe even the depth
at which it seems to wink into obscurity.

Here is a hypothetical discussion about the radiometric
problem of the sinking object, defined above, and which may
occur on shipboard between a young eager theorist just learn-
ing the ropes and a seasoned experimenter in hydrologic optics
just after one of them had accidently dropped a white glass
coffee mug over the side of the oceanographic research vessel
(which was moored in deep calm water at the time).

Theorist: There you go, being careless with your design of
experiments again. You didn't even note the sun alti-
tude or what filter you were using.

Experimenter: I had an irresistable urge to see what would
happen if I dropped it in.

Th. Good heavens man! Why the experiment? Have you for-
gotten Archimedes Law? On theoretical grounds, I pre-
dict that the mug will sink!

Ex., (Recovering from the accident) Look--it's turn;ng bil-

ious as it sinks deeper. What an interesting transfor-

mation of shades and hues. It looks 1like it's down 10

. meters by now and I can still see it quite clearly!

Th. (Peering down over the railing) It must have reached

T ‘terminal velocity by now and is surely sinking accord-
ing to Stokes' law. (Locking at his watch, then a pause)
At the sound of the tone it will be exactly ‘20 meters.
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(Ignoring the other's babbling) There it goes. I lost
track of it. There's no doubt about it, this is pretty
clear wateri ..

What's the-alpha and the kay for thls water? Did you
measure it again this morning?

It's the same -as yesterday. The alpha's about a tenth

per meter and the kay is about fifty thousandths per me-  .

ter, both in the green. What are you doing? :
(Jottlng somethlng on a piece of paper so that the oth-~

er can see it} I'11 bet I can connect the mug's depth.

of disappearance with the alpha and kay of this water.’
(Smiling wearily to himself, and then with a sigh):
Here we go again. Take it easy, Einstein, my calculus
is buried under a ton of barnacles,.

We really don't need it. Didn't you explain to me how
it's known that the 11ght level generally goes down ex-
ponentially with depth in deep water like this? [ can
use this fact to figure out how much light gets to the
mug at each depth z. It would be (writing on the paper)

Hoe'KZ, correct? A
Yes, and let's say that, Ho is the irradiance on a hori-
zontal surface just belbw the surface and K is the kay
for this water, namely, .050/m. So you can figure out
the irradiance on a horizontal surface at depth z.
(Then feigning puzzlement) Where does that get you?
Why, this lets you compute the inherent radiance of theg
mug at depth z, if you know its reflectance.

Do you know it?

No, but let's just call it "R". Then (writing again) -

R(Hoe ) would give an estimate of the radiance reflec
ted upward by the mug. .
Hmm---Yes, but that's its inherent radiance down at
depth z. Here we are on deck.

I see what you mean. So we need the apparent radiance
of the mug. But that'll mean knowing the path radiance
generated by scattered light between us and the mug and.
also the effect of the air-water surface. Gosh, all
that's pretty hard to come by isn't it?

Quite. But if you remember what I told you the other
day about radiance differences . . g
Radiance differences? 0h, of course' They are trans--
mitted exactly according to the exponential law e~0OT
for beamed light. Let's see, the radiance difference '
in this case will be between the inherent radiance of .
the mug at dépth z and the inherent radiance of the
background water at the same depth. Such a difference
is easy to figure. )

Is it? Again’you don't know the reflectance of the wa-
ter at the depth of the mug. At least I haven't meas-
ured it yet for this place.

That's O.K.” Let's call the reflectance of the water

"Re'". It could not be much different from .02 for all

depths. 1 was looking over some of your old reports,
and review articles yesterday. Everywhere you measured
R, you got something around .02 for green light, even
some deep clear lakes and ponds, n'est ce pas?
(Gritting his teeth) I am afraid so. Very few
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surprises left there. Well, where are you 1ead1ng me
next with your paper and penc11’

The average radiance of the water background at depth z
is simply Re times the downward 1rradlance at that
depth. That is, we would have Rg(Hge~ Kzy, Right?

- Yes, except fcr a factor of w--but they'll all cancel
“gut anyway in the end. So don't worry about it now.

(Looking up surprised) Say--how do you know that?

Have you worked all this out before?

(With a straight face, 1ooking out at the horizon) Not
exactly. On with it--what is your next step?

Well here is the radiance difference between the mug
and the sea at depth z:

-Kz -Xz

HORe - HORme
And then?

And. then at long last I can use the radiance difference
law. That is I multiply this difference by e¢~%% to
transmit it up to just below the surface--where it'll be

" what we will actually see if we went there. -Thus:

! -Kz _ -Kz -0z
B!oRe H R,e ] e
Can you simplify this mess?
Sure, like this:

-(a+K)z
Hy(R-R )e

."Also I don't like to bother with absolute light levels.

Can you take care of that, toco?

Yes, I suppose. Why not divide the whole thing by the
amount of reflected radiance from the sea just below
the. surface? Like this:

H (R-R,)e  (2*K)2

H,R.,

That'll work fine. Now, what have you got for all your

_ trouble?

(A pause, and then) Why this looks like it could be a
kind of contrast reduction formula...yes, it is...just
let Ho(R-Rw)/HpR, 0T simply (R-Re)/Re be the 1nherent
contrast of the mug against iis background. It looks
like this contrast is independent of the depth of the
mug. That's fantastic! Is that right?

(Blanching) Yes, go on...

So -if the apparent contrast of the mug at depth z as
seen from just below the surface is Cz, then it looks

like we have

- -(a+K)z
CZ Coe .
(A little startled at the equation's quick appearance
from an unexpected line of argument) Would you know

~how to use something like that?
- {After a while)} Well, if we can agree that the nug
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disappears when C,/C4 is some small number, maybe like
1/50, and measure the z for such a ratio, then we can
compute the ¢orresponding o+K. It's true we couldn't
find o and X separately this way, but the sum is prob-
ably still a good index of water clarity,.

Ex. (In mock anger) Incredible! Do you know what you've

T just done, boy?:

Th. (Soméwhat aghast) No, sir. But I do know that we

T  haven't allowed for the surface effects yet. Is some-
thing wrong?

Ex. No, it's just that throughout this discussion I've seen

several old friends in a new light. You did well. Now,
you run along ‘below and get me a fresh mug of coffee.
And on the way. back drop into the ship's library. 1
want to show’ you something in Sec. 1.4 of "Hydrologic
Optics™. .

It wasn't long until the young theorist saw how to de-
rive the contrast law in the orthodox way (see, e.g., (72))
and how to put in the contrast transmittance factors for the
surface, as we have seen for ourselves in (82). It was also
made clear to him how Secchi [283] had many years before, in
1865, devised an empirical procedure of just this type for
finding a water clarity index which used the depth of disap--
pearance of a standardized disk, and finally of how the me- .
ticulous care with which Secchi had stated his measuring pro-
cedures had generally been ignored or dlluted by subsequent
generations of users . of his method,

In 1949 Duntley [82] examined the Secchi disk procedure
and devised a simple alternative scheme whereby it would be .
less subject to the vagaries of individual experimenters and’
lighting conditions during the moment of disappearance of the
disk. Duntley observed that one important seat of the diffi-
culty of using Secchi disk readings lay i 1n coplng with the .
contrast transmittance factors J and in (82) (the fac-
tor J} is essentially unity for work rlggt above the- surface)..

Suppose then, Duntley reasoned, that two disks were )

used, one being white, the other gray. Suppose further that .
the two disks are lowered together, side by side into the wa-
ter a meter or two or so below the water surface, say to
depth z. An observer above the surface will see them side by
side: a white and a gray disk--each a bit dimmer now, but -
their luminances still quite distinct. Then the whlte one is’
slowly lowered farther into the water, the other being held
fixed. As it is lowered, the white disk becomes darker (the

e-Kz effect setting 1n) and soon, at some depth d below the
gray disk, there appears to be a luminance match between the
two disks (see Fig. 1:56). At this stage of the experlment
we see that by (72) and (82):

o, - [ 7

for the gray disk,,gnd that:

ey o0 ] 3,5,
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for the white disk, and indeed, that:

fal = ]
€, 7 Cieq

{As they stand, either of these formulas for C, or Cz+d by it-

self comprises the theory of the Secchi disk. ) By taking the
ratic of these contrasts, we eliminate the troublesome con-
trast transmittances Jg, J,, to find:

C C : R-R

1s 2o 0 (Kd = (ariOd (83)
Cz+d C0 R'-R
. Hence

' 1 R'-R

a+tKk = = In (84)
d
R-R_

Using the experimental fact that in green light Re is
on the order of .02 (but of course with some variation possi-
ble) for most mnatural hydrosols, and that the R of the gray
disk and the R' of the white disk may be easily chosen much
greater than the Re. of the water to be measured, (84} can be
written very nearly as: i

< 1 R' ,
a+K 3 In (ﬁ—) (85)
Since the number In {(R'/R} is known and fixed for a pair of
disks, a table can be made from which one can read off o+X
directly from the match-depth-difference d.

Suppose further that someday an optical oceanographer
equipped with a scuba and z light-weight pair of Duntley

z : Z+d
J—~mi:m}”—
grey disk

d

I

white disk

& -

FIG. 1.56 The Dﬁntley—disk procedure for measuring a+K.
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i

darker disk IIIEIZDL\II
d

lighter disk $XC,Tm __L

FIG. 1.57 The Duntley-disk procedure for measuring o-K.

disks on a rod (as im Fig. 1.57) will be able to measure the
match-depth-difference d for a vertically upward line of sight.
Then from an analysis based either on the kind of reasoning

by the young theorist in the dialogue above or by simply ap-
pealing to (72) with 6 = 180°, we could deduce that, analo-
gously to (85):

a-K = = 1In [——] (86).

From this and (85), we find:

and

=
n
0O |

oo I
d d R . )

If such a device is used, it should have sectors.(or perhaps
annuli) on each disk of different whites and grays (when the '
diver looks upward .the darker disk must be farther from him
at match time). It is also suggested that the divers wear
goggles which transmit in some givem small band width of the

spectrum around which the K and o values are to be determined;"

A readily used band width would be centered on the blue-green
or yellow-green peaks of transmittance of most natural waters.
Some care must also be given to the adaptation of the diver's
eyes to the general level of illumination in which the visual
match is best made. The importance of levels of illumination
in underwater visibility tasks will be illustrated as a mat-.
ter of course in Sec. 1.9. :

Fﬂé] in {BL] ' (87)
d a R | -

-
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Theory of Absorption Measurements in Natural Hydrosols

It is probably 2 continuazl source of fascination for-
highway patrolmen to examine the daily tallies of vehicles
that pass over certain continuous road segments on superhigh-
ways or relatively desclate roads located between consecutive
toll houses, and occasionally to be rewarded with a positive
net influx of cars across a given segment, That is, when
they subtract from the recorded number of vehicles entering
the segment for each day the number of vehicles leaving the
segment that same day they occasionally find a positive dif-
ference! - From a purely phenomenclogical point of view, this
means that some vehicles have been absorbed in their passage
through the given stretch of highway! Of course, if the tal-
ly is correct, this could mean for example that there exist
stalled vehicles somewhere along the segment, and a patrol is
usually dispatched to investigate. .

The principle of detection of the absorption of photons
in a given layer of a natural hydrosol is exactly analogous
to the toll house tally procedure for wayward vehicles des-
cribed above. In Fig. 1.58 a laterally extensive layer of
water between two levels y and z in a stratified optical me-
dium is monitored by irradiance meters measuring H({y,*) and
H(z,%). The total influx of irradiance to the layer is
H(y,-)+H{z,+), and the total efflux is H(y,+)+H({z,-). There-
fore the net influx of irradiance is

(H(y,-)+H(z,+)] - [H(y,+)+H(z,-)] = A(y,-)-H(z,-)

N

;|
Hhﬁ% ﬁmy.ﬂ '
%H(z,ﬂ %(Z,—) \urbiirory Iovye.r »

Fe

. FIG. 1.58 The principle for determining light .absorption
in a layer of natural hydrosol. . :
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By the same geneyal reasoning leading to (2Z) we find
that (as in the case.of the one-D medel) in all real natural
hydrosols wherein there are no internal sources of radiant
flux, this difference is positive, indicating that some frac-
tion of the entering photons is continually being absorbed
within the layer. The nature of the absorption is two-fold:
if a tally is being Kept only of photons of a given color
(frequency) then the absorption in this case includes scatter-
ing with change in color. Secondly, absorption could mean
the transformation of radiant energy into non-radiant energy. -
In practice_both of these mechanisms are operative. The
difference H(y,-)-H(z,-) is a direct measure of the amount of
radiant flux absorbed by a column of unit horizontal cross
section bounded by the upper and lower planes of the layer of
water. If a is the volume absorption coefficient of the (ho-
mogeneous) layer, then this quantity is directly measurable
by means of the relation:

- o) - ficz,o) (89) -

I h(z') dz!
y

provided a probe is sent down to find the values h(z') of the -
scalar irradiance between depths y and z. The reader may S
check that (89) follows directly from (16) of Sec. 1.3. Hence’
(89) is an exact formula for homogeneous media with a strati-
fied 1light field. -A discussion of (89) and a systematic der-
ivation of the related formulas below is given in Sec. 13.8.

A local version of (89) comes from (16) of Sec. 1.3
directly:

a(z) = L $z,1) O em
: h(z) dz

To use (90), one need only measure h(z) at depth z, and also
H{z,+) in a swmall neighborhood of depths_about depth z, so as
to be able to compute the derivative of li(z,+) at that depth,
This method is exact for all inhomogeneous stratified media.

An instrument to measure a, and which is based on the prin- \
ciple represented by (90), has been devised by Tyler [299] at
the Visibility Laboratory. ' i

It is important to notice two essential features of (90).
First, observe that scalar (rather than ordinary irradiance)
is used to normalize the derivative; second, the net irradi-
ance is used in the derivative. Now it turns out that of
these two features, it is the first that is of critical im-
portance and which gives the formula its distinctive power in
natural hydrosols., To see this, recall from the preceding
discussions that the reflectance R, for green light is quite
small in clear deep media, the kind found in most oceanic
work, for example, Hence in:
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H{z,+) = H(z,*) - H(z,-)

and in:
hi{z} = h(z,+} + h{z,-

we can ignore with a fair measure of impunity the tgrmx H(z +)
and h(z, *) In that case, (90) becomes:

-1 dH{z,~)
h(z,~) dz

Furthermore, by virtue of the distribution factors D, defined
in the two-flow model, we can write:

a(z) =

h(z,-) = D_H{z,-) . (91)
In-addition, if we estimate H(z,-) by means .of the ex-
ponential law: :

H(z,-) = H(0,-)e KZ

(where-K is obtained either via the one-D model, as in (9) of
Sec. 1.3, or empirically), then (91) yields:
-1

a e it cmt
D _H(z,-}

i

* [-KH(z,-}]

- L (92)

‘This points up the critical importance of the scalar irradi-
ance h(z} in (90); for if we used H(z,+)+H(z,-) in its place,
then we would have (90) yield up the estimate

a s K {wrong)

which is clearly false. Indeed, the factor D. is often on
the order of 1.0-2.0 in natural optical media with values
clustering about 1.3 for blue-green light, so the-use of H ra-
ther than h to normalize the derivative in (90) could lead to
errors anywhere from 0 to 100 percent in the estimate of a(z),
but mostly on the order of 30 percent.

From (90) we can also obtain a crude but occa51onally
useful estimate of the rate of absorption of radiant energy
per unit volume of a layer of water. First:

dH(2,%) © 205y n(2) S (03)
dz .

is the exact formula for the required depth rate of absorp-

tion, ‘i.e., of net influx of irradiance to a unit layer at

depth z, It is simply the product of a(z) at depth z with

h(z) at depth z. Now if we again drop off H(z,+) and h(z,+)

as being small compared to H(z,-) and h(z,-), we have:
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'*éﬂﬁiLll z ~a(z) h(z,-)

-a(z)D_H(z,-)

Kz

i

-KH(z,-) = ~KH(0,-)e~

as the depth rate of absorption of radiant flux per unit vol-
ume at depth z. The last approximation comes from {92) and
by means of the exponential law for irradiance. It should be
noted that (93) is exact only for stratified media. If one
wishes to computé exactly the rate of absorption of a small
volume of water in a .general light field in a generally in-
homogeneous optical medium he may use (1) of Sec. 13.8 and
the general instructions given there.

As an illuStration of (90) as a means of estimation of °
the volume absorption coefficient, consider the sample light
field given in Table 1.

TABLE 1

Irradiance and Scalar Irradiance in
Lake Pend Oreille, Idaho. (Relative values)

z(meters) H(z,-) H(z,+) h(z,-)  h(z,+)
4.24 721,000 15,500 899,000 41,900
10.42 329,000 6,040 413,000 16,500
16.58 109,000 - 2,230 141,000 6,190
28.96 13,100 208 17,200 830
41.30 1,660 - 39 2,190 . 108
53.71 221 5 289 14

These data were obtained by Tyler, Richardson, and Holmes

from radiance distribution measurements in Lake Pend Oreille,
Idaho [306]. Radiarce filters were centered on 480 *-64 mu.
Observe first that-D_-at 4.24 meters is 1.25, and that its
value at 53.71 meters..is 1.31. This shows, incidentally, the- -
general magnitude of D. found in most natural waters for blue-
green light. Similar values may be found at the other depths..
By computing the slope of the H(z,+)-plot derived from the
tabulations above, and using the computed h(z) values, it was
found via (90) that the lake was essentially. homogeneous with
an a on the order of. .117/m. The K for this medium was found °
to be .169/m, and o = .442/m.

We can invert the formulas (89) and (90) to find the
rate of absorption of radiant energy in a given medium, given.
the volume absorption function and some radiometric samplings
of the medium. For example in infinitely deep media in which

b
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scalar irradiance decreases according to the exponential law, .
we can estimate the total rate of absorption as follows. In
(89) set y = 0 and z = «, so that H(e,-) = 0. This leaves:

H(o,-) = aI h(z') dz'
0
Using the exponential law for h(z):

H(o,-) = ah(O)f e K2 gy
0
That is:.
H(0,-) = % h(0) (94)

This formula holds actually for any depth z below the surface.
(Simply multiply each side by e-Kz,y If z is used in place
of 0, then H(z,-) in (94) is a measure of the radiant flux
absorbed by the entire medium below the level z.

As an illustration of (94), suppose that h(0) = 250
watts/m?% on some sunny day just below. the surface, for the
wavelength band 480 # 64 mu. The total rate of absorption
throughout the lake per square meter of lake surface is there-
fore:

— _ .117
H(C,-) = 55 * 250

173 watts/m?

The remalnlng power, namely 250-173 = 77 watts/m? goeé on to
initiadte and sustain the scattered light field within the
body of the lake.

As another illustration of (94), suppose that measure-
ments of H(y,-) and h(y} are made at some depth y in a deep
homogeneous medium, and also that K is known for the same
wavelength interval. We can then estimate a as follows.
From (94): -

. X H(z,-)

h(z)

(95)

For example, from Table 1, at depth 28.96 meters, we have

H(28.96,-) = 13,100 - 208
= 12,802 watts/m?
Also, -
’ h(28.96) = h(28.96,+) + h(28.96,-)

830 + 17,200

i

18,030 watts/m?
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llence:
a = .160 12,802
18,030
= ,120/m .

which agrees to within .003/m with the estimate .117/m for a
obtained by light field measurements using (90).

We conclude with some observations on the radiant ener-
gy content of natural hydrosols, a concept which is closely .
related to the absorption concept presently under discussion.
Recall the general relation between scalar irradiance h{z)
and radiant density u(z) as given in (5) of Sec. 1.1:

u(z) = 1 h(2) (96)

Here v is to the speed of light in homogeneous water:
‘v o= 2,25 % 10° m/sec .

By integrating h(z) from the surface (z = 0) down to depth z
in an infinitely deep medium we find:

Z . z .
uCz) = {'u(zj dz = %I h(z) dz = Eé%l[i-e'Kz] o7
0 0

provided h follows the exponential law. This gives the amount
of radiant energy U(z) in a vertical column of unit horizontal

cross section with ‘upper end at the surface and lower end at - =
depth z. Observe that by (89) this also can be written

U(z) =:H(0,-)v; H(z,-) . h&g}[l_e-Kz] , (985:"-

For very shallow .media, (98) yields o
uez) = 202 (99)

For very deep media (98) yields

u(e) = 000 ©(100) -
vk

In the present medium, (Lake Pend Oreille) which is very deep,
with K = .169/m and h(0) = 250 watts/m? (say), we find

U(e) = 250
_ 2.25 x 10% x ,169

= 6.6 x 10°% joules/m?
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Hence over a region of one square kilometer [10% m?)
the present medium contazins below the surface about 7 joules
of radiant energy in the blue-green wavelength interval in
scattered or directly transmitted form. Observe by (98) that
nearly 95% of this radiant energy is stored within the first
three diffuse attenuation lengths below the surface, i.e.,
within 3/K = 3/.169 = 17.7 meters of the surface.. Equation
(98) shows how U(z) can be estimated if the net influx of ra-

. diant energy over the depth interval {0,z] is known, along

with the volume absorption coefficient a. Further discussion

of light storage phenomena in natural waters is given in Sec.
5.13. . .

o

1.5 Some Properties of Artificial Light Fields in Natural
Waters '

Artificial light fields in seas and lakes are produced
by men seeking to illuminate natural underwater environs to
carry out search or detection procedures, to study bioclogical
processes, or to establish techniques of underwater communi-
cation by means of residual and scattered radiant flux. To
facilitate these activities some knowledge is desirable of the
general quantitative relations between the optical properties
of a medium and the light fields produced in that medium by
various artificial sources. Such sources commonly range from
those that produce highly collimated beams to those that pro-
duce conical beams of varying spread, up to uniform point
sources. In this section we shall discuss several interesting
empirical relations developed for artificial light fields.

Useful models of artificial Ilight fields, which can com-
pletely elucidate the empirical findings presented below, may
be based on the diffusion models discussed in Chapter 6, in
particular in Secs. 6.5-6.7. However, we shall concentrate
in this brief survey of artificial light fields only on the
diffusion model (27) of Sec. 1.3, as it affords a simple yet
adequate base on which to rest the empirical formulas.

The Pure Absorption Case

To see what the difficulties ace in describing artifi-
cial light fields in the sea, suppose for the moment that sea
water or any other natural hydrosol only absorbed radiant
flux, and therefore did not scatter it. Suppose that a spher-
ical source S of radius rqy, as in Fig. 1.59, has a uniform in-
herent surface radiance Ngy. Then the apparent radiance N, of
this source's surface is: :

4

N_ = N e T ' (1)

where a is the volume absorption coefficient of the medium.
The radiant flux output P, of the source is:

P, = (4nr2)mN - (2)
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FIG. 1.59 For the derivation of the diffuse light field
at P as generated by a small source S via secondary sources
limited to the sphere of radius r,. (Diffusion Model)

Its radiant intensity is:

J

. ! = __2: 2 . 3
,Jo i (TrroJNo » . (3.

and the apparent'irradiance H, produced by the source is very.
nearly: T
Y Joe—a(r-ro)

e ee— W
| . _

for all r=rg. Theé apparent radiance N, and apparent irradi-
ance Hy in the case of pure absorption are thus quite simply .
described because of the absence of scattered flux. Even in -
the present case all is not simple if the radius r, is large ..
compared to the absorption length 1/a of the medium, for then --
a relatively complicated integration over direction space must
replace (4). However, for ro < 1/2a, (4) is an adequate ap-
proximation in normal practice. .

Derivation of the Semi-empirical
Diffusion Model for Point Sources
When scattering may take place in the medium and to an

extent in which the . simple formulas (1), (4) no longer ade-
quately describe the apparent radiance and irradiance fields,’
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s

we may go on to adopt the next simplest available model for
these fields. The required candidate takes the form of (36)
of Sec. 1.3 in which the integration in (37) of Sec. 1.3 is
no longer over the entire space X but is restricted to a rel-
atively small spherical region of radius r; about the lumi-
nous source. It is in this spherical region where the pri-
mary scattered radiant flux from the source initiates the
principal part of the diffuse light field measured at rela-
tively great distances vr. The smaller ry and r, are, compared
to v, the more nearly will the scalar irradiance h(r) at a
%istance t from the source S be given by an equation of the
orm: .

n(r) = h°(x) + h*(1)

o AJge %" | BJge™T

r? Dr

()

where A and B are generally functions of r, or at the very
least, constants used to adjust the formula to fit empirical
data. It is necessary to introduce A and B hecause we have
sidestepped integrations which could contribute measurable
deviations from the simple form (5) feor small and large r.

We have simply used {4) above and (33) of Sec. 1.3 in a linear
combination to obtain (5). A further simplification in the
model can be effected if we replace x, the decay constant in-
digenous to diffusion theory (cf. (32} of Sec. 1.3}, by the
more readily empirically determined diffuse attenuation coef-
ficient X obtained from irradiance measurements in the sea.

(K is the empirical counterpart to the k of the two-flow model
discussed above.) Thus, from (32} of Sec. 1.3 we have:

D

From (92) of Sec. 1.4 we can approximate a by the form:

where D. is now the distribution factor for the irradiance
measured at point P of Fig. 1.59 produced by flux on the
source side of the collector at P, If we identify « and X,
then the two preceding relations yield an estimate of the
classical diffusion constant D:

. 1 '
b 5x | (6)

Using this.in (5), dividing each side of (5) by D_, and keep-
ing A, B arbitrary, we have:

Y 5 ¢ -Kr .
H(r) = J_| A — + B Ke B (N
T T :
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which is the desired semi-empirical form for the irradiance
H(r) produced at distance r from a point source of radiant in-
tensity Jo. @ is the volume attenuation coefficient for the
medium ang K is the .diffuse attenuation coefficient for the
medium. Observe also that in passing to (7) we have dropped
as negligible the irradiance on the far side of .the surface
at P in Fig. 1.59. Despite this conglomeration of assumptions,
(7) nevertheless provides a suitable model for H(r) under ju-
dicious choice of the A and B as dictated by actual sample
measurements of H(r) in real media. We shall now consider
two such particular empirical forms of (7).

Two Examples‘of the Empirical Diffusion Model

Duntley reports in [76] and [77} the results of his em-
pirical study during the summer of 1959 of irradiance fields
produced by point sources in Lake Winnipesaukee, N.H.. He
determined A and B in (7) in such a way that the resultant
empirical formuld should be applicable to a large set of nat-
ural hydrosols in which are imbedded point sources with a wide
range of angular beam spreads.

In the case of a point source with a dlrectlonally uni -
form radiance over all dlrectlons, Duntley found that in (7),
the constants A, B may- be given by:

A=1 | NN

"B = 2.5[1 +7¢ KTy an ' (9

This shows that for relatively small r, B is on the order of

8 times that for -large r. A comparison of a real irradiance
field (black dots) with that predicted by (7) using (8), (9)"
(solid curve) is given in Fig. 1.60. The radiant flux wave- :
lengths measured in this experiment were via a Wratten No.61.
green filter. The corresponding attenuation length of the
water was 1l/a = 1.52 meters, (= 5.00 feet) associated with an:
o = .655/m (= 200/ft) The K for the same water and wave- -
length range was found to be .187/m (= .057/ft.).

In a more detailed analysis of the empirical ‘results,
Duntley generalized (9) to include the effects of the beam

spread of the source, partlcularly for wide beam spreads. It"
was found that: ’

o A=1 ‘ | (10) -
oo fomns v ) pofE) e o

Here the point source ‘is emitting a beam in the form of a cir-
cular cone with total angular opening of 8., Observe how (11)
reduces to (9) for the case of B = 2n. Formula (11) is ex-
pected to be a good approximation in the range /9= 8= 2w,
i.e., for all beam spreads not less than about 20°,
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FIG. 1.60 Comparison of calculated irradiance and meas-
ured irradiance induced by a point source (small spherical
lamp) by Duntley, Lake Winnipesaukee, N.H., 26 August 1959,
(Fig. 16 from [78}, by permission)

Radiance Distribution Produced by a
Submerged Uniform Point Source

In the same set of experiments leading to the empirical
determination of the diffusion model (7), (8), (9), Duntley
examined the radiance distribution produced at various dis-
tances by a submerged point source of nearly uniform radiant
intensity. This radiance distribution can be observed and
photographed as a function of the direction from the source
for various choices of the on-axis distance from the source.
For nearby locations, the source (in the form of a spherical
lamp) stands out sharply from itr luminous halo. -As viewing
distance increases, the bright disk of the lamp rapidly be-
comes angulariy smaller and also dimmer. Eventually the disk
itself vanishes at about 18 to 20 attenuation lengths (i.e.,
at about 18/a to 20/c meters), but the luminous glow persists
for relatively great distances. Fig. 1.61 depicts the radi-
ance distributions produced by a point source, for a selected
set of distances from the source. The lamp was a 1000 watt
incandescent "diving lamp', whose 3 inch (7.62 cm) diameter
spherical lamp envelope was sprayed with a lacquer to insure
that its radiant intensity was uniform.
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FIG. 1.61 Radiance distributions produced by a point
source (small spheérical lamp). Measured by Duntley, Lake
Winnipesaukee, N.H., 3 August 1961. (Fig. 15 from [78], by
permission) o

An Empirical Study of Light Fields
Produced by Collimated Sources

In the future it is likely that the laser will be used
to some extent in underwater communications. It is therefore
of interest to study the properties of propagation of highly . -
collimated beams of radiant flux in natural hydrosols. In .
some preliminary -studies in this direction, Duntley [78] had =~
designed and constructed a source of highly collimated radi-
ant flux, shown schematically in Fig. 1.62. Using a lens sys-
tem designed by J. J. Rennilson, it was possible to produce a
long, narrow, very nearly cylindrical beam of light with total
beam spread 2¥ as small as 0.01° or 0.00017 of a radian. o
Smaller beams would begin to be noticeably spread by diffrac-
tion effects. By selecting various external beam stops it
was possible to produce fine cylindrical beams of variable
diameters D which were nearly divergenceless (i.e., cylindri-.
cal) over a distance ¢ = D/y. (The figure gives the ray-geo-:
metrical significance of this relation.) Over this range the’
beam's residual irradiance is essentially freg from inverse
square effects and is of magnitude Hp = Hoe ®', where r=c, |
Hy = Jo/c?, and where J, is the radiant intensity of the lamp - °
used in the collimator. For distances r greater than c, the
light beam would depart from its cylindrical shape and thus
the residual irradiance of the beam would begin to fall off .
as the inverse square of r and also be further damped expo-
nentially, so that for r=c, assuming negligible diffraction
effects, we have: ’ .

4O Hoe ar ( ).
= = . 12
N eOL :
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FIG. 1.62 Source for h1gh1y collimated beam of radiant
flux experiment recorded in Fig. 1.63. '

FIG. 1.63 Three determinations of irradiance produced by
a highly collimated beam of radiant flux, as made by Duntley
in Lazke Winnipesaukee, N.H., 14 August 1961. (Fig. 18 from
[78), by permission) o
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Figure 1.63 records three experimental determinations
by Duntley of the apparent irradiance Hy of a highly colii-
mated beam of spread 1/6°. The irradiance is that produced at
a point on the axis of the beam a distance r from the source,
and on a plane normal to the axis. The experimental results
were reduced so that the beam diameters D in each of the three
cases are in terms of the attenuation lengths of the medium
namely 1/300, 2/300.and 8/300 attenuation lengths. 1In this
way it is possible to free the results somewhat from the na-
ture of the particular medium in which they were found. The

- medium in this case was Lake Winnipesaukee, N.H. whose a was .
.520/m (= .158/ft.) and whose corresponding attenuation length

therefore was 1/a = 1.92 meters (= 6.3 ft.}, for the wave-
length band provided by Wrattem No. 61 green filters. The :
solid lines in Fig, 1.63 are the empirically found Hy values. =~
The dashed lines are the residual irradiances HY computed

from (12). The dashed lines depart from the splid lines at
the points shown by triangles. These points are located at
the distances ¢ = D/y, which are 1.15 and 2.30 attenuation
lengths for the 1/300 and the 2/300 curves, respectively. The -
point for the 8/300 beam is located 9.20 attenuation lengths
away and is not shown. Hence the vertical separation of a

oo T T T T T T T T T T

20°

SPHERICAL LAMP

RATIO OF MONOPATH IRRADIANCE TQ MULTIPATH (RRADIANCE

175 550 S S N O T I DY N RO S T AU Y U NI
o - 4 8 2 16 20 24 28 32

LAMP DISTANCE (ATTENUATION LENGTHS)

FIG. 1.64 Ratio of monopath (i.e., residual) radiance to
multipath (i.e., scattered) radiance for two types of source
as measured by Duntley in Lake Winnipesaukee, N.H., 26 August
1961. (Fig. 19 from [78], by permission)} .
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solid curve and its dashed mate gives a measure of the scat-
tered (or diffuse) irradiance H; for each distance r. 1t
should be observed that the data in Fig. 1.63 pertain only to
the axis of an aplanatic underwater projection system having:

~a beam spread of 1/6°. In other words the 1/6° beam spread

cannot be scaled up and down by factors of 10, Separate and
new mﬁaSurements for different spreads ¥ must be made to see
how Hy depends on ¥. '

) Some further information on the relative magnitudes of
unscattered and scattered irradiances H? {monopath) and Hp
{multipath) is given ;n Fig. 1.64, and is also due to Duntley
[78]. -The ratio H/Hy is plotted versus r for two cases: a
spherical point source, and a point source having a total
spread of.20%. Im the latter case the irradiance.is located
on-axis and falls on a plane normal to the axis, as usual,

As expected, for each fixed distdnce r, there is relatively
more diffuse irradiance H} in the case of the spherical source
as for the narrow beam source. These curves are for the med-
ium described in Fig. 1.60. The residual irradiante'Hg was
calculated using the first term of (7) with A = 1. H¥ was
obtained via H.-HQ = H} using the irradiance Hy of Fig. 1.60

for the spherical case, and using recorded H, data for the
20° case.

Figure 1.65 shows still another experimental finding by
Duntley [78] concerning the irradiance produced by collimated
beams. In this case the beam had a 2y of .046°, and a 2 inch
{or 5.08 cm) diameter D. The medium had an o of .685/m
(= .209/ft) and hence an attenuation length 1/a of 1.46 meters
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b —ai X
!
10,000 IRRADIATED PLANE-—=| -
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[+ 2 4 € 8 [{s] 12 14 6 " 18 20 22 24
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FIG. 1}65 Irradiance on a collecting plane prb&uced by a
sweeping collimated beam, as observed by Duntley, Lake Winni-

pgsa?kee; N.H,, Summer 1961, (Fig. 20 from [78], by permis-
sion :



118 " INTRODUCTION voL. I

100,060 T T T T T T T T T T T

14,000

1000}~

00

i

‘J.Illlll|LllIIl|
!

APPARENT RADIANCE (RELATIVE UNITS)

DEGREES

FIG. 1.66 Apparent radiance produced by beam of highly
collimated flux (cf. Fig. 1.62), as found by Duntley, Lake
Winnipesaukee, N.H., 17 August 1961. (Fig. 17 from [78], by
permission) :

(= 4.80 ft.) as measured via a Wratten No. 61 green filter, in
Lake Winnipesaukee; N.H., summer, 1961. The locations of the
measurements within the induced light field are indicated by
the inset of the figure. The irradiated | ine was swept by
the moving beam. h

Finally, Fig. 1.66 depicts the apparent radiance as ob-
served under somewhat the same general test condition of Fig.:
1.65. Now the beam had a 2y of 0.01° and was directed toward
the telephotometer so that it completely filled the entrance
pupil of the latter at all times. The water was slightly g
clearer in the present case, having an attenuation length of
2.04 meters (= 6.70 ft.), i.e., an o of .490/m (= .149/ft.)
for the same wavelength band. It is of interest to compare
Figs. 1.61 and 1.66, which reveal subtle differences between
the radiance distributions found by lookihg at distant point
sources and down the barrel of a collimated beam.

Some further discussion of these empirical findings, es-
pecially their applicability to underwater communications by
scattered light, may be found in [79].

1.6 Inherent and.Apparent Optical Properties of Hydrosols

The three simple models describing light fields in the
seas and lakes of the earth, as developed in Sec. 1.3, may
now be considered as reasonably established descriptions of
radiative transfer  in natural hydrosols. For as we have seen

in our brief survey of their applications in Sec: 1.4 and 1.5,

they can be used both to organize our accumulated empirical
knowledge of natural light fields by means of faithful sym-
bolic representations of our observations, and also to encour-
age, via simple mathematical manipulations, the exploration of -
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new and deeper physical phenomena connected with light fields
in the sea. Implicit in the structure of these models are
the optical preperties we introduced during their comstruc-
tion, such as «, 0, s, a, and K. .

Now, if the theoretical equations of hydrologic optics
may be viewed as the bones of the subject, then certainly the
optical properties o, ¢, & and the various related properties
are the meat of the subject. Indeed, the equations provide
the essential form of our discipline; but the numerical values
of their parameters provide it with useful substance. It is
our purpose in this section to sort out the principal optical
properties used in hydrologic optics and to indicate their
representative magnitudes. It is not our purpose at this time,
however, to optically catalog the seas and lakes of the world;
such a task still awaits a definitive effort, and lies outside
the province of a work devoted to the theoretical principles
of the subject.

Operational Definitions of the Inherent Optical Properties

The fundamental inherent optical properties of hydro-
logic optics are the volume attenuation functien o, and the
volume scattering funetion o. They are inherent in. the sense
that their magnitudes for each wavelength depend only on the.
substances comprising the hydrosol and not on the geometric
structure of the variocus light fields that may pervade it. )
The properties a, and o are fundamental in the sense that the
entire theory of hydrologic optics (and indeed radiative trans-
fer theory) can be constructed from them, given the concept of
the radiance function and the equation of transfer. The
greatest. contributions an experimental scientist can make to
hydrologic optics at this stage of its development (or to any
other branch of radiative transfer) lie in the detailed study
--on physical, chemical, and optical levels--of these two fun-
damental properties, along with the simultaneous documentation
of the light fields in optical media.® Chapter 13 is devoted
to a detailed exposition of the operational definitions of
these and other properties. Our immediate aim is to introduce
these congcepts with a minimum of preamble, though a full and
deep understanding of them car come only after the contents
of at least Chapters 2, 3, 8, 9 and 13 are mastered..

The Volume Attenuation Function

The volume attenuation function a provides a measure of
the loss of radiant flux from a beam of photons of a given
wavelength induced by: [(a) scattering of flux out of the di-
rection of the beam without change in wavelength or: (b) by
scattering of flux of the beam with a change of wavelength,
or: (¢) by outright absorption of some of the radiant energy

*Important problems concerning the physical makeup of = and o
also await interested thecreticians. See problem III of
Chapter XVI, Ref. ([251]. .
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FIG. 1.67 Arrangement for an operational definition of
volume attenuation function.

into a form of non-radiant energy. A particularly effective’
method of defining a is by means of the beam transmittance
function using the fact that radiance differences of simul-
taneous beams propagate precisely in an exponential manner
along close parallel paths.

Figure 1.67 depicts two parallel closely spaced paths
of length r in an optical medium. The initial radiances at -
the beginning of 'the paths are N§ and N?, and matters are ar-
ranged so that the medium is homogeneous in the vicinity of
the paths and that the path radiances of the two paths are
essentially the same, and of common valye N*. If T, is the.
commoni fraction of photons comprising N; and Ng transmitted
along each path without having been scattered or absorbed,
then by (24) of Sec..1.3 the apparent radiances:

[ 3
N; = N?Tr + N

and
Ny = N?Tr + N*

measured at the end of the path may be used tc find the beanm f
transmittance Tr by means of the relation: -

N2-N;
T = (1y .
'  nNg-N9

It is very easy to see, using (1), that if two paths of
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arbitrary lengths v and s are placed end to end to form a new
straight path of length r+s, then:

0=T =1 (2)

and:
Toes = T.Ts ' (3
and also: T, = 1 R (4)

The second property is the multiplicative {or semigroup) pro-
perty of beam transmittaence. It is the basis of the exponen-
tial representation of Ty. . Indeed, let us write:

1-T
r
ey ' for
r r

(5)

The quantity ap is the (empirical) volume attenuation function
because it gives the average amount of loss of radiance of a
beam per unit len%th of travel of a beam of unit radiance.

To see this let NO be an initial ragdiance starting out along
a path of length r. Then NOTy = Ny is the residual radiance,
i.e., the radiance left over in the beam after scattering and
absorption losses over the path., Hence NO-Ng is the actual
radiance lost, and (N°®-N2)/r the average loss per unit length
of the path. Dividing by N°, we arrive at (5).

Now comsider a path of length r+s. Then by (3) énd (5):
Teppe Ty Tg-l

s I Ty = -osT,

Using the definition of derivative applied to Ty, and letting
s+0, we have: : .

dTr »
& T S®
where we have written:
Yot for lim oL (7)
_ r+0 -
From (4) .and (6):
T . -ar
Tr = @ (8)

for homogeneous media. This is the basic connection between
beam transmittance and the volume attenuation function o de-
fined in (7). The function o has dimensions of L', and there-
fore units of (meter)~!. Observe that by (2), ay and hence

@ is a non-negative quantity., From (8) we have: )

= 1 : '
a = ; In Tr ) » v (9)
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FIG. 1.68 Arrangement for an operational definition of
volume scattering function.

which together with (1) provides a useful operational defini-
tion of a. For a. further discussion of these ideas see Secs._
13.2, 13.4 and 13.5. .

The Volume Scattering Function

A small volume of an optical medium is 1rradlated
through a small set of directions of solid angle @ about a
direction £' by a-radiance NO of a given wavelength, and the-
scattered radiant flux 1n the direction £, at an angle 8 with’
E', is observed to be N}, where r is the length of the ‘line
of sight through the volume. The volume is in the form of a
parellelepiped whose dimensions are rxr xcr, where c is a

constant. Then we write *

: N T
vg_ .(8)" for r (10)
r,0 NOrq ’
Further, we write:
"g(e)" for lim o] Q(6) ) (11) .
A 0 Ts _
09+0

and call o the volume scattering function. A more detailed
discussion of ¢ is given in Sec. 13.6, and in Sec. 18 of Ref.
[251]. The dimensions of ¢ are L~ ‘(sr)'1 and hence itd units
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are {meter) ?(steradian)”?.
The reason for choosing (11) as the basic deflnltlon of
(8} is ‘that it ylelds at once the relation:

N
N, = — = N (0)0
. . r
which with care can be made to blossom into:

Nolx,8) = L_N(x,a*)a(x;s';s) (e

and whxch in turn. is the standard representatxon of the path
function in general radiative transfer theory. The correct.
logical order of appearance of N, and o in the theoretical
construction of radiative transfer theory is given in the
systematic discussions of Chapter 3.

An alternate form of or’ﬂ(e) is given by writing
® . )
re (8)"  for —L -(12)
v Hov : .
where HY = NOQ V is the volume (e.g., in this case cf‘j of’

the scattering region in Fig. 1.68, and J; is the radlant in-
tensxty of the scattered flux. Clearly

() = oy o) S am

and so.the two deflnltlons are equivalent. (A careful proof
of this is: glven in Sec. 18 of Ref. [251].) It is found that
o depends, in wvirtually any given practical setting, only on
the angle 6§ between the incident direction &' and the scat-
tered direction-£. Hence it is .possible in practice. to write
g (x; E‘,E)" in the more compant way “o(8)'", adopted above.

Volume Total Scattering Function and
Volume Absorption Function

+ If o(8) is integrated over all 8, we obtain fbé volume
total asaattering function 5; where we write:
’ 2w
gt for J J c(8) sin 6 d6 d¢ (14)
: $=078=0 ‘

The angle ¢ is measured around the direction &' (iﬁvFig.‘1.68)
as a hlnge. Clearly we have: CL -

x
s = 2% j o(8) sin 6 db '-f (15)
8=0 : o
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By splitting up therdomain of integration [0,n] into [0,w/2]
and [w/2,n] and writing*

_ w/2
g for ZwI o(8) sin 8 deo (16)
. 8=0 .
and . ; o .
) np! for ZHJ o(0) sin 6 do- (17
n/2 ’

We then have:

s =f+b (18)

where f and b are the (volume) forward and backward scatter—'

ing funetions for collimated radiant flux.

The volumé. absorption functzon a comes in the back door
of the theory by wrltlng

"

a" for a-s , (19)

but it redeems itself by possessing the following remarkably
powerful operational form:

a = 1 di(z,*) s E (20)y ...

h(z) dz

discussed in the closing paragraph of Sec. 1.4 (see in parti-
cular (90) of Sec. 1.4, and also Sec. 13.8).

Cansidered'fogether, the three operational formulations
of a, 0, and a in (9), (10) and (20), respectively, form a

complete, mutually consistent, independent set of experimental .
meang of determining these 1nherent optical properties of nat-

ural or artifieial hydrosols. An ideal scientific study of a
given hydrosol would determine ao,0 and a using these indepen-

dent means, and then check consistency by requiring the three

sets of data to satisfy the relation:

o’

. ¢ o
In other words, the measured o values are first inte-
grated to yield the left side of (21). Then the measured a
is subtracted from the 1ndependent1y measured «, and, hope-
fully, this difference is equal within a reasonable error
allowance, to the computed o-integral, for each wavelength
from the infrared to the ultraviolet parts of the electromag-

netic spectrum, and for each point in a hydrosoléat which the

*The general definitions are given in (1), (2) of Sec. 9.6.

. n . .
.zﬁ( 6(8) sin 6 do = «-a : (21Y
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three determinations were made. This check is expected to
hold, in principle, for all unpolarized light fields (Sec.
13.11).

Selected Physical Measurements of the
Inherent Optical Properties

The following three tables provide representative sam-
ples of the inherent optical properties a, o, s, £, b and a,
measured for distilled water, ocean water, and lake water,
The measurements were made by Tyler [300] and may serve as an
example of the careful and consistent types of measurements
that may be used to optically document the natural waters of
the world. Such types of measurements, when performed for a
sufficiently finely spaced set of wavelengths, will begin to
move hydrologic optics into its final stage of development as
a mature scientific discipline.

In-Table 1 the distilled water was of the commercially
available kind, and is not "'distilled" in the strictest sense
of the word. The two samples do, however, provide a reason-
ably good basis for comparison with the o's of natural hydro-
sols. - The wavelength band for the measurements was centered
at 522 * 80 mp. The results compare favorably with those of
Hulburt {115]. The Table 2 measurements were made in January
1961 in the four numbered locations shown in Fig. 1.69, and
over the same wavelength band used for Table 1. Table 3

ol
SAN PEDRO BAY

33°40"
@2
3
FSANTA
33°20' m&z’
\.._.NJ

4

33°
\ N
SAN

| CLEMENTE

32° 40’
1t8°* 40" ng°20' I1e®

FIG. 1.69 Locations of Tyler's measurements off Southern
California coast, winter 1960-1961, and as recorded in Table
2. (Fig. 1 from [300], by permission) :
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TABLE 1

Scattering properties of commercial "distilled" water
samples. Bandwidth limited by a Wratten No. 57 filter.

Sample A B

Volume aftenuatibg coefficient a/m .062 .047
Volume total scaféering coefficient

s/m .00845  .00457
Volume absorption cqefficient a/m .0536 .0424
Forward scattering coefficient f/m .00763 .00396
Backward scattering coefficient f/m -  .00082 .000620
Ratio f/s o ' . .900 .870

Volume scattering function o(9)

8 = 0°
10 .
20 .00648 °  .00316
30 - ..00223 .00107
40 .000941 ,000520
50 .000473 ,000294
60 .000271 .000191
70 .000181 .000128
80 .000140 .000096
90 .000117 .000083
100 .000110 .0n0079
110 .000118 -.000082
120 .000126 .000092
130 .000134 .000102
140 .000139 .000112
150 .000146. .000119
160 000171 .000141
170 .000193 .000161
180 .000201 .000169

(From [300}, by permission)
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TABLE Z

Scattering properties of Pacific Coastal and offshore
watey at the Stations shown in Figure 1.69. Bandwidth lim-
ited by a Wratten No. 57 filter. i

Station number 1 2 3. 4

Volume attenuation

coefficient a/m . 736 .129 118 .111
Voldme»total scattering . .

coefficient s/m .125 .01094 .01420 L0120
Voluméiabsorptiom

coefficient a/m .611 .1181 .1038 .099
Forwérd_scattering

coefficient £/m L1198 .01010 01321 .0110
Backward scattering

coefficient b/m .00630 .000847 .000982 . .000984
Ratio f/s .950 .925 .930 .915

Volume scattering
function o(8)

8 = 0°
10
20 L1014 .00881 .01192 .00959-
30 .0360 .00268 .00358 .00313
40 L0152 .00117 .00145 .00129
50 .00739 .000616 .000698 °.000661
60 .00419 .000356 .000396 .000388
70 .00266 .000232 ,000253 .000249
80 .00181 .000164 .000179 .000175
90 .00134 .000132 .000145 .000142
100 .00109 .000120 .000134 .000130
110 .0600940 .000120 .000135 .000135
120 .000903 .000124 .000146 .000146
130 .000912 .000134 ,000158 .000159
140 .000944 ,000145. .000175 ..000176
150 .001003 .000156 .0001%2 .000193
160 .001028 .000175 .000202 .000208
170 .001036 .000191 .000206 .000219
180 .001037 .000197 .000207 .000223

(From [300}, by permission)
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TABLE 3

Volume scattefing function for Lake Pend Oreille, Idaho,
Spring 1960 before and after a high wind. Bandwidth limited
by a Wratten No. 45 filter. :

Sample date . April 26 April 27 |
Volume attenuation coefficient a/m .589 .909
Volume total scattefing coefficient

s/m : ) .258 .585
Volume absorption coefficient a/m .331 .324
Fbrward scattering function f/m 248 .559
Backward scattering coefficient b/m .00976 .0256
Ratio f/s o v .960 .955

Volume scattering function o(8)

9 = 0°
10
20 .222 .470
30 L0715 .166
40 .0291 .0758
50 .0137 .0380
60 .00712 .0206
70 .00416 .0121
80 .00271 .00780
90 .00198 .00559
100 .00162 .00448
110 .00147 .00394
120 .00143 .06379
130 .00145 .00372
140 .00149 .00371
150 .00156 .00383 .
160 .00163 .003896 .
170 ",00168 .00406
186 .00170 .00410

(From [300], by permission)
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FIG. 1.70 Plot of Tables 1, 2, 3.

summarizes Tyler's Lake Pend Oreille measurements of the
Spring of 1960. The wavelength band in this case was centered
at 480 * 64 mp. These tabulations are compared graphically

in Fig., 1.70 wherein the relative clarity of the waters may

be seen at a glance. Curves 3, 4 of Table 2 essentially co-
incide in the figure. ' '

Figure 1.71 provides three more comparisons .of distil-
led, lake and ocean waters. In this case, the distilled water
measurements were by Dawson and Hulburt [63], the lake water
measurements by Duntley [78], and the Atlantic (between Ma-
deira and Gibrdlter) measurements by Jerlov [123]. The lat-
ter graph is keyed in with the measurements listed in Table
4 below. The lake measurements by Duntley are of particular
interest because of the relatively small angles for which o
was obtained using special equipment [78]. A detail of o for
the range 0.5° to 1.7° is given in Fig. 1.72. The ordinates
of the lake curve in Fig. 1.71 are continued in Fig. 1.72.
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FIG. 1.71 Plots of data taken at various times and lo-
cales by Dawson and Hulburt (pure), by Duntley (lake), and by
Jerlov (Atlantic). See text for details. (Fig. 9 from [78],
by permission)
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FIG. 1.72 Extreme detail of forward scattering values of
volume scattering function in Duntley's lake water curve of
Fig. 1.71.
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TABLE 4
Comparison between relative values of the scattering
function. (A1l data normalized at 90°)
In vitro measurements In situ measurements
Angle Poole Hulburt| Kozlyan- [Sasaki |Jerlow Tyler -
8 and (1945) inov {(1960) {(1961) (1961) -
‘Atkins |Chesa- {1957) Japan East Califor-
(1954) | peake East Trench |[North | nian
English Bay China : Atlantic coast
‘Channel Sea
blue white blue 576 mp 465 mp 522 mu
light light light
1° 7200
5° ’ 1100 (6906)
10° 232 247 312 292
20° 62 61 62 39 74. 67
30° 18 22 22 22 23.5 { 20
45° 6.0 8.5 6.9 5.5 7.5 6.7
60° 2.5 3.0 3.1 2.9 2.96 2.70
75°¢ 1.5 1.4 1.8 1.2 1.72 1.51
8p° 1.0 1.0 1.0 1.0 1.00 ©1.00
105° 0.82 1.0 0.49 0.8 0.95 0.91
120° 0.67 1.2 0.44 0.7 1.05 - 0.94
135° 0.90 1.5 0.50 1.0 1.30 1.05
156° 2.2 1.2 1.55 1.18
" 1165° . 3.1 - 1.90 } 1.38
180° . (2.12) 1.4@

{From [127], by permission)

This shows how, in the space of 1°, near-forward.écattering
values soar two more orders of magnitude. The associated
wavelengths are those transmitted by a No. 61 Wratten filter.

Further comparisons of o values are made in Table 4
(patterned after [127]). Observe t at Tyler's measurements
are those listed for location 2 in Table 2. The main purpose
of Table 4 is to show the remarkable similarity in shape of
the ¢ curves, after normalization at 90°. This fact is re-
produced graphically in Fig. 1.73. The curve labeled 'Duntley
(Green)™ in Fig. 1.73 is the normalized lake curve of Fig,
1.71.  The remaining references for the ¢ values of Table 4
and Fig. 1.73 are as follows: Atkins and Poole [6], Hulburt
[115), Kozlyaninov [144], Sasaki et. al. [271], and Jerlov
[123]. A relatively recent and somewhat extensive experimen-
tal study of ¢ in the Atlantic was made by Spilhaus {290].
This work makes new progress toward workable classifications
of optical media via the volume scattering function.

The highly forward scattering character of natural wa-
ters observed in all of the preceding results is one' of the
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FIG. 1.73 1Illustrating the stability of shape of the vol-
ume scattering function as measured in various locations and
times. See text for details. (Fig. 12 from [78], by per-
mission) T .

outstanding, and not yet fully understood features of the
function. In particular, does the o-curve have a vertical or
horizontal tangent at 0°? Despite the absence of detailed
knowledge, we know that the high forward scattering is due
principally to the great variety of dissolved and suspended
organic and mineral matter in the sea. The ebb and flow of
the life processes and geologic processes within natural hy-
drosols constantly alters the concentration of these sub-

stances, and the basic Rayleigh-type scattering that absolutey 
ly pure water would exhibit is heavily masked by the scattered

light produced by these 'foreign' substances. If water in
its pristine state 'is examined optically, them (cf. [63]) the
scattered radiance-N§ in (10) would have the general form:

No(8,0) = AL (1 + B cos?e) (22)
. A u .

where A and B are suitable constants {see [63]). Observe
that N$(8,A) increases sharply for the smaller wavelengths,
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thereby tending to suffuse extensive masses of very pure wa-
ter with scattered blue light, much in the way that the clear
sunlit atmosphere above one's head appears blue to the sight.
It was shown by Kalle [132] that the relatively heavy concen-
tration of decaying organic matter in the form of phenol-
humic acids and carbohydrate-humic acids (or melanoidines),
respectively contribute the brownish and yellowish components
to the otherwise clear blue water, the net result being the
blue-green appearance of most natural hydrosols. Hence the
greater the concentrations of these organic materials, the
yellower or browner the water will become. Unlike the sharp
A"® wavelength-behavior of scattered light in pure water, we
have, by contrast,in oceanic or lake water which contain par-
ticles and organisms whose dimensions are large compared with
wavelengths of light, the scattered light nearly independent
of wavelength. Hence when one measures o (= a+s) or k

(¢ VaD(aD+Zb) ) as a function of wavelength and observes
grzat variations, these variations are due principally to the
absorption mechanism operative in the solutes and suspenscids
within the water. For example, while the scattered light in
pure water increases nearly 10 fold as X goes from 700 to 400
mp, the absorption coefficient for plankton-infested water or
for suspensoids of the yellow substance increases on the or-
der of 100 fold over the same range {c¢f., e.g., [115]). By
virtue of these reasons, .the striking similarity of shape of
the ¢ curves in Fig. 1.73 becomes more understandable, If
this sensitivity of o to wavelength A is sufficiently weak, a
great simplification of the documentation of optical proper-
ties of natural waters is possible; for then the burden of de-
scribing the spectral variation of the inherent optical prop-
erties falls on o or, equivalently, a. Table 5, adapted from
Hulburt [115], gives the spectral dependence of &, s, and a
for two types of water. These tabulations bear out the ra-
tionalizations enunciated above. Table 6 shows the spread of
a values over oceanic regions, as found by Jerlov [122].

TABLE §

Spectral dependence of volume attenuation (a),. total
scattering (s) and absorption functions (a) for distilled and
Chesapeake Bay waters (per meter)

Wavelength Distilled Bay

(rp) o s a o s a

400 .080 .038 .042 - - -

420 .061 030 .031 . 800 .175 L6285
440 .046 .025 .021 .628 .180 .448
430 037 .017 .020 .447 .180 . 267
520 .040 .013 .028 .351 .180 .171
560 ] .053 .009 044 .323 .180 .143
600 .197 .007 .190 .429 .180 . 249
640 .292 .005 . 287 .500 .180 .320
680 .406 .004 .402 .589 .180 .409
700 .576 .004 .572 .740 .180 .560

(From [115], by permission)
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TABLE 6

Representative values of the volume attenuation
function for various oceanic locations for 480 mu wavelength.

Location . Attenuation length
T a/meter - 1/a meters
Caribbean ' : .125 8
Pacific N. Equatorial Current .083 12
Pacific counter current .083 12
Pacific Equatorial Divergence .100 10
Pacific S. Equatorial Current .111 » 9
Gulf of Panama 167 6
Galapagos Islands .250 4

(From [122], by permission)

Before concluding this brief survey of the inherent op- -
tical properties of natural hydrosols we wish to point up an
apparent dissimilarity between the spectral dependence of a
in air and in water. The dissimilarity is with respect to
the fine structure of the A-dependence of a. In the meteor-.
ologic optics contéxt, o experiences rather spectacular in-
creases and decreases in values at frequént intervals along
the X-axis (see, e.g., Refs. [128], [296], and [177]). Where
a decreases rapidly to some minimum.at Xj, the atmosphere is
said to have a window at Aj, for the beam tramsmittance -

Ty = %A T will have a mazimum at Aj, and so one can 'look
through' the atmosphere with relative ease using light having
wavelengths in the immediate neighborhood of A3;. The infra-
red region of the spectrum, e.g., has windows %hrough the at-’
mosphere, and this fact has important consequences for com-
munication applications of radiative transfer theory. These
observations lead one to consider the possibility of a fine
structure for o in natural waters. This possibility does not
seem too bright, at least on the basis of Table 5. However, -
perhaps the measureménts of a yielding the values in Table 5
were too crude, and- accordingly smeared out possible sharp
dips in o. That is, the minimum of o in the vicinity of 480
mpu for distilled water may harbor a still sharper minimum if
the spectral resolution of a-meters were increased. Recently, .’
a careful spectroscopic study of o for "battery-grade" dis-
tilled water was made in the region from 375 mu to 685 mp by :
Drummeter and Knestrick [68]. The spectral resolution )
achieved by the grating spectrograph used was .02 mu. A path
of water of 9.75 meters was used for the transmission experi-
ment. Variations of a per meter as small as two parts in a
hundred were capable of detection by the apparatus, i.e., the
apparatus could detect changes Aa of 2 x 10°2/m. No spectral
fine structure of a of any significance was detectable. '
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Operational Definitions of the Apparent Optical Properties

The apparent optical properties of a natural hydrosol
are those radiometrically determined scattering- and. absorb-
ing-induced quantities which generally depend on the geomet-
rical structure of the light field (i.e., whether the light
field is more or less collimated or diffuse) but which have
enough regular features and enough stability to be entitled
to the appellation, "optical property”. The main apparent
optical properties are all measurable by means of the four
irradiances: h(z,*} and H(z,*). (See (9}, (10} of Sec. 1.1))
Thus we write: .

"D(i,i)" for h(z,* (Distribution (23)
H(z,%) functions)

1 dH(z,*) (X-functions for

"K{z, )" for ) . (28)
o H(z,t) dz irradiance)
. o 1 dh(z) (K-function for {25)
k(z)* for e e SATA - .
h(z) dz scalar irradiance)
" " H(z,¥) (Reflectance func-
R(z,%) for H(z,t tion for irradianndﬁZG)
9 - . . .

The distribution functions are simple indicators of the col-
limatedness or diffuseness of the light field in the downward
(-) or upward (+) flows. The three K-functions are the depth
rates of decay of the various irradiances. They are in prin-
ciple generally distinct, though numerically they are quite
close in value. The R functions give the reflectance of the
entire medium to upward (+) or dewnward (-} flux at level z.
Each of theése is implicitly a function of wavelengtli. The
theory of their interconnections is quite simple and will be
discussed briefly in the following section. Their full theory
is established in Chapters 9, 10 and 13. Tahle 7, adapted
from [306], is a representative sample of the magnitudes of
these properties.

These measurements were made in the spring of 1957 be-
fore the onset of the plankton bloom and appearance of the
thermocline. The lake was essentially homogeneous so -that
the values of o, s, and a are representative of the entire
medium. As the biologic activity within the lake increases
throughout the remainder of the year, the values of o, s and
a will rise accordingly, thereby providing an optical bio-
meter of suclh activity. Furthermore, since 95% of the radiant
energy content of the lake is essentially confined to within
3 diffusion lengths 1/K of the surface (cf., (98) of Sec. 1.4)
and is therefore within the arena of most biologic activity,
we would expect the homogeneity of the lake to disappear with
the onset of spring and summer. Furthermore, rain run-offs
will introduce still further mixtures of organic and inorganic
materials into the entire body of the lake and change the op-
tical properties. In short, it appears quite possible for
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TABLE 7

The apparent and inherent optical properties of Lake
Pend Oreille at depth 29 meters and for a wavelength band
centered on 480 * 64 mu

Property 28 April 1957 16 March 1957 |Calculated
Computed from Measured Directly |Indirectly
Radiance Dist.

{sunny) (overcast)

D(29,+) 2.78

D(29,-) 1.31 ‘

K(29,+) .164/m

K(29,-) ~,169/m .184/m

R(29,+) 43.5 "

R(29,-) .023

o (29) .442/m

s(29) ’ ‘ +/325/m

a(29) 117 /m

(From [306], by permission)

one to form an optical portrait of the biology and geology of
a lake or oceanic region by monitoring its a, o, a and K, at -
given times over a yearly cycle. The more of these proper- -
ties one records, the more complete will the optié¢al portrait
be, and the more likely will be the usefulness of the find-
ings to scientists in neighboring disciplines to hydrologic
optics.

In order to increase our intuitive and objective know- -
ledge about the relations between the clarity of water and
its a and K properties, we append Table 8, adapted from {[74].
This table, while ostensibly a rather limited sample, exhib-
its some interesting relations between a and K. For example
the list of values shows a remarkable stability of the ratio:
K/a considering the range of waters in which the measurements .
wvere made. Thus while o varies over an eightfold range and
K over a sevenfold range, K/a varies only over about a two-
fold range. The stability of 'K/a within a given region of
water is even greater, indicating a possible basis for simple -
rules of variation of a and K which may be used to estimate.
one of those properties in the absence of the other. his
stability of K/a will be seen to be an important factor in
the description of the shape of the light field at moderate
and great depths in the seas and lakes (Sec..10.7, in partic-
ular (29) of Sec. 10.7).
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A sampling of o, K values for the 480 64 mp Tange.

Coronados islands, Mexico
{depth: ¥ to 10 meters)

San Diego Bay and Approaches
(Average of data within 1/2
meter of the bottom)

Open Sea .Southwest of Point
Loma

Coast at Mexico-California
bordex

San Diege Harbor Opening
Zuniga Peint, Harber Opening
Entrance Channel, South
Entrance Channel, North
North Bend of Harbor
Midpoint of Harbor Pocket

Proceeding  East through
Straits of Juan de Fuca to
Admiralty Inlet (Averages
of data from 5 to 30 meters
depth)

Ocean Entrance

Central Région

Opposite Victoria, Vancouver
Island

Fresh Water Lakes™

El Capitan Reservoir (Aug.
1955} ,San Diego County
(turbid water)

‘Diamond Island Field Station

(Summer 1956) Lake Winnipe-
saukee, N,H. (moderately
clear)

Lake Pend Oreille, Idaho (Apr

137
TABLE 8
o 1 4 K/a
0.499 meter |0.180 meter | .361
0.430 meter |0.177 meter'| .404
0.654 0.226 .346
0.727 0.162 .223
1.065 0.396 .372
1.156 0.280 .242
1.770 0.565 .320
1.462 0.584 .400
3,20 1.07 .334
0.543 meter’|0.262 meter | .483
0.630 0.278 | 442
0.660 0.315 .525
0.724 n.321 .445
0.651 0.340 .522
1.853% meter |1.062 meter | .575
0.756 0,374 .495
0.413 0.195 .472

1957) (Clear water)

*The coeff1c1ents a and K were found to be the same at all

depths at these locations and times.
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'Preliminary Observations on the Classification
" “of Natural Hydrosols

From the preceding samplings, we see that one of the
difficulties in forming a well-rounded optical picture of a”
natural hydrosol from most of the currently existing litera-
ture in hydrologic optics is that each investigator has
looked at only one or two fragments of the entire radiometric.
picture according to his momentary interests. As a result,
such findings have only transient interest because they cannot
be' incorporated by subsequent investigators into any syste- -
matic study of the radiative transfer processes occurring in
the hydrosol. It is true that the preceding examples are
very helpful in forming an intuition of the principal optical
properties of natural hydrosols. However, the completeness:
of experimental studies to the degree shown in Tables 1, 2, 3
are all too rare and we can be hopeful that they will be emu-
lated by other investigators in future scientific studies of
light fields in oceans and lakes. The recent works of Tyler
cited above and those of Jerlov [125], [126}, [127], have
begun to show a trend in the direction of exhaustive systemat-
ic optical analyses of natural hydrosols. Thus in Jerlov's
work [127], potentially fruitful classifications of different
types of ocean waters are made, and are elaborated in the

book version of [125]. For example, Fig. 1.74 shows a classi- -

fication of ocean water types by means of the irradiance

*
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mp

FIG. 1.74 Irradlance transmittance for a 10 meter layer
of water, as sampled by Jerlov, and illustrating a possible
classification scheme for natural hydrosols. (From [127}],
permission)

ivry
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transmittance e &2 of g piven layer of water (z = 10 meters
in this case) as a {unction of wavelength. While it would be
generally more desirable and more directly useful to simply
plot the K-function for H(z,-) as a function of A, even as
they stand, the graphs give an informative picture of the
five general types of oceanic water encountered by Jerlov in
his long series of careful studies of Atlantic and peripheral
waters. These graphs could be of even greater service if
someday they or their kind are supplemented by similar plots
of o as a function of A, along with o, as a function of both
6 and A, if the patience and funds for such a pioneering ef-
fort could ever be assembled. The rationale behind these ob-
servations will be outlined in the following section.

1.7 Some General Modes of Classification of Natural Optical
Media ’

Our studies in the preceding sections, especially those
in the section just concluded, lead us to seek out.those of
the manifold optical properties used in the mathematical mod-
els of light fields in natural hydrosols that are fundamental
and most useful. This problem has no simple solution, and in-
deed has different answers depending on one's view of the role
of hydrolegic optics in the study of natural waters, .If one
were a mathematician interested primarily in the intricate
geometrical relations among the radiance distributions and
their connections with the physics of the medium then, unques-
tionably, the inherent optical properties o and ¢ as functions
of position and wavelength (or equivalently a and -a) consti-
tute the only scientific answer to the query. If one were
interested mainly in engineering calculations leading to es-
timates of the visibility of submerged objects in natural or
artificial 1light fields then, equally clearly, the. full spa-
tial and spectral measurement of the properties a and X would
suffice for most such purposes. On the other hand, a biolo-
gist interested in the problem of photosynthesis may find it
possible to conduct a large portion of his work using only
the volume absorption function a or only the diffuse attenua-
tion function K. 1If one were a physicist or chemist concerned
mainly with the analysis of water for the detection of certain
dissolved and suspended substances, then quite likely o and o
(or equivalently o and a) would suffice, but for vastly dif-
ferent reasons than: those given by the mathematician mentioned
above. .For the mathematician would use a and o to. compute
N{z,&) at each depth z and for each direction £, while the
physicist or chemist would use a and o to yield concentrations of
solutes and suspensoids in the irradiated sample of the hydro-

%ol.

Modes of Classification

In- view of the preceding observations, several alternate
modes of classification of natural optical media are. possible.
We now list the main modes of classification and indicate how
much information about the hydrosol is inherent in each.
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Mode IA Specifying a,0 as functions of position, direction"'
(for o) and wavelength through the medium X.

The measurements of ao,0 are envisioned here as done by
means of specially designed o-meters and o-meters (cf. [78]).
The deductions that are possible using this mode are indica--
ted schematically as follows under the column labeled "Mode
IA™: .

Mode IA v Mode IB
0,0 | : radiance distributions
T throughout X
equation of transfer plus
and radiance distributions * -
at the boundaries of X equation of transfer
[,yields i yields
radiance distfibutions o,0
throughout X ' .
yields
| yieds

- — - all apparent optical
all apparent optical properties of X
properties of X :

The procedure by which the radiance distributions throughout
the -medium are obtained from a, o, the equation of transfer,
and the boundary lighting conditions on the hydrosol is now
a well established procedure which may take several alternate
forms. The main techniques for such calculations are summa--
rized in Chapters 4, 5, 6, 7 and 8 below, and in Part Three
of Ref, {251]. The determination of the apparent optical
properties from radiance distributions proceeds as outlined
in (23)-(26) of .Sec. 1.6.

Mode IB Specifyiné-radiance distributione throughout X as
functions .of wavelength.

This mode of classification is extremely fruitful, for
as the deduction diagram for Mode IB shows, this information
will yield all the inherent and apparent optical properties:
of the medium. Table 7 of Sec. 1.6, except for o, s and a,
was constructed using this mode of classification., The man-
ners in which the inherent optical properties a, s and a of
a medium are forthcoming from radiance distribution measure- '
ments are explained in Chapter 13. Modes IA and IB are in
principle mathematically equivalent modes of classification
and rank highest in the hierarchy of possible modes of clas-
sification as regards completeness of information about the
hydrosol studied. .

Bt
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Mode I1 Speecifying H(z,+) and h{z,z) as funetions of posi-
tion and wavelength throughout X.

From the four irradiances of Mode Il comes the set of
all apparent optical properties discussed in Sec. 1.6. An
extraordinary amount of information is forthcoming from such
a mode of classification when it is realized that we are re-
placing the radiance distribution N(z,¢) at each depth z hy
just four numbers H(z,*), h(z,*) at that depth. A number of
deductions of the relations among the inherent optical prop-
erties s and a and a wealth of subsidiary properties are pos-
sible from a carefully conducted Mode II classification. The
bases for these deductions are explored in Chapters 9, 10 and
13.

It may seem odd to suggest modes of classification
which are comprised only of radiometric documentations of
light fielgisiy - However, when one reflects on the matter, it
becomes ¢ r;that thls is prec1sely how all the usual appar-
ent opticfll ropertles are found in the first place! There-
fore if vestigator accompanies the listing of the de-
duced op }cal properties, of current interest, with a listing
of the cBmplete H(z,%) and h(z,%) measurements (or preferably
the N(z,£) measurements) from which he made his deductions,
he thereby makes available to subsequent investigators poten-
tial information he is presently uninterested in or which his
technology may not yet be able to extract. Imagine, for ex-
ample, if scientists in Galileo's time documented the light
fields by means of radiance distributions, however crudely,
we would now be able to extract information about those hy-
droscols that the original investigators hardly could conceive
of. Flights of fancy to one side, the reader should perceive
the underlying intent of this observation and its pertinence
to Mode II.

Mode III  Specifying o and K as functions éf position and
wavelength throughout X.

The collection of o and K measurements is here envi-
sioned as made by a single instrument assembly so. designed as
to simultaneously measure o and X as it is lowered into and
moved about in the optical medium. For example, -such a de-
vice, designed by R.W. Austin of the Visibility Laboratory,
University of Califeprnia [7], has been used in coastal surveys
by the U.S. Oceanographic Office.

By a JudlClOUS choice of near-surface radiance distri-
butions and by virtue of the near-universality of shape of
the o curves (cf. Fig. 1.73) one may be able to estimate
Ng(z,8), using (50) or (61) of Sec., 1.4 with the K values
supplied by Mode II1 of the classification scheme. Then with
(14) of Sec. 1.3 and the a as found by Mode III, excellent
estimates may be obtained of the radiance distributions with-
in a medium probed in a Mode III fashion. Once theése radiance
distributions are obtained, then we are in effect in posses-
sion of a Mode IB wealth of knowledge, provided the 'simple
model for radiance fields is applicable,
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Further mémbers are possible in the preceding hierarchy
of modes of classification of natural hydrosols. However, a
proliferation of such modes at this time is not desirable, as
it would detract attention from the only mode really worth
considering in the establishment of a science of hydrologic:
optics, namely Mode I in either of its equivalent guises A or
B. However, this ideal may not soon be reached, and accord-
ingly the two lesser but yet extremely useful modes of clas-
sification are included in our present survey. Finally, when-.
ever posaible and in the interests of constistency and com-
pleteness, measurements in the preceding modes should be done
in the polarized light context and also as a function of time,
if sueh is indicated by the physical (or biological) state of
the medium (cf., Sec. 13.6, 13.11).

A completefthéoretical analysis and classification of .
the optical properties in arbitrary optical media is made in-
Sec. 9.6. i C

1.8 Colorimetric Radiative Transfer

An interesting application of radiative transfer theory’
can be made to the studies of the apparent colors of objects
located within media that scatter and absorb radiant energy
in a selective fashion., The application of the principles of
radiative transfer to such studies is straightforward and re-
quires no new concepts to be introduced into the theory be-
yond those we have been considering. For this purpose we :
need only adopt the well-known standard C.I.E. (Commission
Internationale de 'l'Eclairage) color coordinate system, with-
in which any spectral sample of radiant flux may be located.
and assigned a unique color, in a manner to be briefly ex-
plained below. - By coupling the concepts of radiative trans- o
fer theory to the C.I.E. color coordinate system, an accurate, .
quantitative basis for the description of color phenomena
within the atmosphere and the sea is  achieved, which for the
purposes of the present discussion we shall call colorimetric
radiative transfer theory. Our goal in this section is to
outline the union of the two theories and indicate the .nature
of its applications.

The color phenomena within the domain of colorimetric
radiative transfer theory are manifold: a precise descrip-
tion and prediction.is possible of the blue of the sky and of
the reds and golds of sunsets; of the onset and growth of the
blue and purple hazes between distant mountains and a reced-
ing observer; the odd yellowing of mercury vapor street lamps
with distance in strange blue fogs [177]; the conventional -
but ever pleasant sight of a reddish-orange rising moon; the’

.yellowing and reddening of extremely shiny surfaces such as
corrugated aluminum roofs and sidings seen through long paths-
of sight in the atmosphere; the sickening brown smear of smiog
smothering a city. In the underwater domain, the colorimet-
ric radiative transfer phenomena are overpowered and dominated.
by the highly selective absorption of reds and violets (and -
their neighboring colors), resulting in a powerful filtering
of all sky light into a blue-green residue of greater or
lesser luminance that pervades almost all submarine scenes.

Al . el
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Brlghtly colored submerged tropical scenes of plants and ani-
mals with their reds, yellows and deep blues quickly trans-
form with distance into shades of brighter or dimmer greens
and blues with reds and purples washed to pink and then atten-
uated away. Such scenes are now easily witnessed firsthand
with modern scuba devices. However, cnly one or two genera-
tions ago, such sights were a rare delight.

In his 1927 Haiti expedition, Beebe [12] noted that

"Toward the end of the dive I sat on wh;te sand
[in his diving helmet rig] and watched the surface
above me. The sea breeze had sprung up and it was
fairly rough. The view from beneath was of green,
‘wrinkled, translucent ceiling cloth, never still
- for a moment, crinkling and uncrinkling, waving.and
flapping as in a breeze, or rather cross breezes.
"It was decidely green in comparison with the ever
more blue distance--turquoise green in the sunlight,
changing toward greenish glaucous in shadow. As to
the distance, I can never get away from the idea of
the most diluted, ethereal ultramarine, and yet my
mind knows that a dozen other colors are somehow in
1t "

All of these phenomena can be quantitatively adnd quite
accurately described by means of such simple models for radi-
ance and irradiance as developed in Sec. 1.3, which need only
use information on optical properties obtainable by Mode III
classification procedures of optical media (cf., Sec. 1.7).

The Quantltatlve Descr1pt1on of . Color

It is a relatively easy matter to understand the C.I.E.

color coordinate system if we recall some similar conventions

we have-adopted in our everyday tasks of locating objects in
space. . Part (a) of Fig. 1.75 exhibits an object in space
(designated by "A") which can be located by means of -its three
coordinates in an xyz cartesian frame of reference. There is
nothing unique about this frame as far as being adequate to
locate A in space. The alternate frame depicted in (b) of
Fig. 1,75 will do just as well. 1In each diagram, object A is
located at the same spot. That spot, fixed relative to the
first frame, is designated by a vector u which is specified
by giving its coordinates (x,y,z). These coordinates are
found by dropping perpendiculars from u to each of the three
axes, in short, by finding the dot products:

u-i B (1)

a- g @
u -k : (3)

of the vector u with the mutually orthogonal unit vectors i,
j, k along the x, y, z axes respectively. This is called an-
alyzing u relative to the x, y, z frame. The next step is to
gynthesize u (i.e., get it back) by means of the equation:
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(a)
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A 4
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FIG. 1.75% For iilﬁstrating the analogy between coordinate
systems in the real three dimensional world and the C.I.E.
tristimulus color coordinate system. ’

u = (ui)i + (u-j)j + (u-k)k (4)

Now, we can perform such an analysis and synthesis not
only on a simple location vector such as u, but also on any
radiant flux function P defined on the electromagnetic spec-

trum A (the set of all wavelengths from A = 0 to A = =), 1In-:

stead of the i, j, k unit vectors, we now use the (dimension-
less) t¢ristimuius. funetions x, y, z on A adopted by the C.I.E..
A plot of each of these is given, to scale, in Fig, 1.76. If
we form samples of radiant flux with just the power spectra
given by the forms of these three functions, then the visual
sensation of the X sample would be red, that of y would be
green, and that of z, blue,

To analyze-a given radiant flux sample P (watts/mu)
into its red, greem and blue components, we write:

"p.X"  for 680[ P(A) F(A) dA  (lumens) (5

oo

"peF T for 6SOJ P(}) y(A) dr (lumens)  (6)
‘ 0

£
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FIG. 1.76 The tristimulus functions. The ¥ curve is the
photopic luminosity function of Fig. 1.10. o

<«

"p.Z"  for 680I P(x) Z(A) dxr (1ﬁmens) N
0 .

which are closely analogous to the simple vector operations
(1), (2), (3). The number 680 has dimensions of lumens/watt,
and serves as a connection with photometry--(cf., Sec. 2.12).
To point up this similarity to the vector operations we have
written "P+X", "Pey", and "P-2" for (5), (6), (7), respective-
ly. Then analogously to (4) we can synthesize these compo-
nents. . We do this and write: '

"Cc[plv for (PX)X + (PV)Y + (P-E)Z o (8)

s
N
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We call C[P] the color or chromaticity of P, CJ[P] is a
function defined on A and it is designed to give a very close
visual color match to the original function P, The point to
observe here is that whereas P could be of quite an arbitrary
structure over A, its color C[P] is the linear superposition
of three suitably weighted amounts of standard red, green,

and blue radiant flux samples. The weighting numbers P.X, .
P-y, P-z are the color components of P, and the ordered tr1p1e
of numbers (P-X, P-y, P«z) is the caZor vector associated with
P. 1In this way we have set up a one-to-one transformation of
given radiant flux samples P into their associated colors
C[P], each with three well defined color components® P.x,
pP.y, P.z. For brev1ty let us write (in accordance with C.I.E.
notation):

"X"  for P.X (9)
Ceyn o for  P.Y (10)
"Zn for  PeZ (11)

We observe in passing that the component P-y of a sample P of
radiant flux is simply its photometric counterpart. Thus, for
radiance N, N+y is the associated luminance B; for irradiance
H, H-y is the associated illuminance E; and so on (cf., Sec.
1.1). Tables of X, ¥, z along with further descrlptlcns of
colorimetry may be found in [50]

We may summarize the analogy between simple location
vectors and chromaticity vectors by means of the parallel llSt-
ings below in Table 1.

TABLE 1
A vector analogy for chromaticity concepts

Location Vectors Chromaticity Vectors

(1) Original vector u (1) Original radiant flux
) function P

(2) i,3j,k unit vectors o _ .
(2) x,y,z tristimulus functions|"

(3) Components offﬁ with re- {3) Color cbmponents of P with|

spect to i,3j,k : respect to X,¥,Z
ui = a PeX = X
usd =8 R DR
u'k‘%-Y . Pz =1 _
(4) The represeﬁfation of u: (4) The representation of P:
u = oi + Bj '+ vk CIP] = XX + Yy + Iz

* . .
The mathematical reader will see that this vector terminol-. -
ogy is completely appropriate, for what we can postulate ini-
tially is the vector space (P of all Riemann integrable func--
tions P on A. The mapping C is therefore a non-identity lin-
ear transformation of /# into itself. It turns out that C
is one-to-one and not onto, but its range is sufficiently
large to encompass:most colors seen by the human eye.
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(b)

FIG.v1;77 Chromaticity plane (part (a)) and chromaticity
diagram (part (b)). Point E is the white-light point.

In the usual location vector theory, a special place is
reserved for vectors of unit length, namely the unit: sphere
£ shown in (a) of Fig. 1.75. Analogous to the unit sphere is
the chromaticity plane shown in (a) of Fig. 1.77. This plane
has the property that for all points p (= (x,y,z)) on it we
have x+y+z = 1. If (X,Y,Z) is a chromaticity vector, then
the vector

"""’1"‘"— . (X!sz) = X ’ Y 5 Z
C(X+Y+Z) X+Y+Z  X+Y+Z  X+Y+Z

lies on the chromaticity plane. Observe that only the part
of the.chromaticity plane that lies in the first octant (shown
in (a) of Fig. 1.77) is needed in colorimetry. For, since P
and the functions X, ¥, z are never negative, all chromaticity
vectors accordingly lie in the first octant. Observe further
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that one nced dnly,use two numbers to locate a point on the
chromaticity plane. . These numbers are conventionally chosen
to be the x and y components, where we write

X

‘_Ux” for (12)
X+Y+Z

Tyn for Y (13)
X+Y+Z

EAN for z (14)
X+Y+2Z

The x,y,z are the chromaticity components (or coordinates) of
P. By projecting all chromaticity vectors (X,Y,2) down onto
the chromaticity plane, as shown in Fig. 1.76, we are in ef-
fect normalizing the associated luminances of the radiant flux
function P. Once the chromaticity plane is defined we can
excise it from its spatial context, or simply work with a
plane diagram copy of the chromdticity plane, as in (b) of
Fig: 1.77. The x and y chromaticity coordinates are displayed
in a way once again reminiscent of the usual location vector
conventions.

Once the setting in (b) of Fig. 1.77 is achieved, we
can locate within it all manners of points which represent
the conventional colors of familiar everyday objects and
scenes. For examplé, suppose that we begin with a sample P
of radiant flux which has a constant value P, for all A.
From (5)-(7) this gives:

X = 680 éOI X(1) da (15)
0

Y = 680 pofosr'(x) dx . (16) "

Z = 680 POJ Z(2) da ' (an

. 0 »

Now the X, ¥, and 7z functions are so designed that their in-
tegrals over A = [0,»] have essentially a single common value,
namely 21.37. Hence the associated chromaticity components
for this P are

x = 1/3
y = 1/3
z = 1/3

Such a flux sample has the appearance of a pure white color
and is analogous to pure noise in acoustics. In fact, in the
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theory of stochastic processes, if the spectrum of a given
function is of constant value, it is said that the function
represents white notse (all the analogies we are touching
here and there in the present cxposition are quite deep and
far more than superficial in appearance).

The point (x,y) = (1/3,1/3) in the chromaticity nlane
corresponding to white light is denoted by "E', in (b) of Fig.
1.77 and is the central base of operations in the practical
task of specifying colors. If we go on to obtain.the chroma-
ticity coordinates of all the pure monochromatic colors of
the spectrum A (their sample functions P are Dirac delta func-
tions), we sweep out & horseshoe shaped locus in the plane of
(b) of Fig. 1.77, starting approximately at the point x = .74,
y = .26 (red), and sweeping avround to the point x = .07,

y = .84 (green), and ending up at x = .17, y = .01 (violet).
This -curve is called the spectrum locues. We can close the
locus by drawing the straight line from the violet to the red
point. The closed plane region so formed is the chromaticity
diagram. The colors associated with the points of the spect-
rum locus are the purest colors attainable 'in the present sys-
tem. Suppose that a given sample of radiant flux has chroma-
ticity coordinates (x,y) which land it at point Q on the
chromaticity diagram. Draw a straight line from E through Q
to intersect the spectrum locus at W. The wavelength } asso-
ciated with W is called the dominant wavelength or color of Q,
and the fraction p = EQ/EW (where "EQ", "EW" denote the
leéngths of the respective straight line segments) is called
the purity of the color of Q. If.a point such as Q' is con-
sidered, we extend Q'E back to W', and the associated purity
is by definition EQ'/EW'. In this way, we finally achieve
the first part of our goal for the present exposition, namely,
the explanation of how a given sample P of radiant flux de-
fined on the spectrum A can be assigned two numbeérs: Its
dominant wavelength A and the purity p of the dominant wave-
length of P,

.These two numbers act very much like the polar coordi-
nates of points in the chromaticity diagram, with the point
E as the pole, The purity is often given as a percentage ra-
ther than a fraction. llence the pair (x,y) of chromaticity
coordinates have their polar equivalents (A,p). We shall use
the term 'chromaticity coordinates' interchangeably for these
equivalent representations.

An Example of Experimentally Determined
Chromaticity Coordinates

We shall now cite some examples of the preceding con-
cepts, These examples are drawn from various colorimetric
studies of natural hydrosols., Fig. 1.78 depicts the spectral
dependence of the apparent radiance of submerged sandy shoals
and reefs as studied in 1944 by Duntley through a glass-bot-
tomed boat surveying parts of the east coast of Florida (near
Dania). The same submarine area surveyed from an altitude of
4300 feet (1300 meters) is depicted in Fig. 1.79. If N(A) is
the apparent radiance of a particular point of the underwater
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FIG.  1.78 Spectroradiometric curves of sandy bottom of
shoals near Uania, Florida, by Duntley, March 1944, (Fig. 1
from [78], by permission) :

scené for a given A,. as plotted 6én Fig. 1.78, then the color
components x, y, z of N(A), 0 A=, are obtained by using
thesé plotted radiance values in® (5)-(7) and (12)-(14) with
N(A) replacing P(A). Seventy-six chromaticity coordinates X, -
Yy, were computed according to (12), (13) for each of the five
curves in Fig. 1.78, and their locations are shown along the
upper curve on the chromaticity diagram of Fig. 1.80. The
corresponding . ‘
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FIG. 1.79 Same scené as Fig. 1.78, viewed from an alti-
tude of 4300 feet. (Fig. 2 from [78], by permission)



SEC. 1:8" COLORIMETRIC RADIATIVE TRANSFER ." 151

0.80]

Q.6

0.40

0.20— —
INFINVTE

G0
470

1400
o 0ic 020 0.40 ‘060 080

FIG. 1.80 Chromaticity diagram associated with the curves
of Figs. 1.78, 1.79. The five curves of Fig. 1.78 yield the
five points of the upper curve in the chromaticity diagram.
The five curves of Fig. 1.79 yield the five points of the
lower curve in the diagram. (Fig., 3 from {78], by permission)

locus of the chromaticity coordinates for the aerial view of
the shoals is given by the lower curve in Fig. 1.80.. This
example is taken from the review article [78) by Duntley.
Further examples may be found in {126], and [302]..

We now turn to the second part of our goal in this sec-
tion, the theory of colorimetric radiative transfer.

"On the Use of Simple Models for Theoretical
Predictions of Chromaticity Coordinates

A relatively unexplored area of application of the sim-
ple models for radiance and irradiance developed in Sec. 1.3
is colorimetric radiative transfer theory. We shall consider
the essential steps that may be taken in this direction of ap-
plication. Starting quite generally with the apparent radi-
ance form of the equation of transfer (12) of Sec. 1.3, let
us take the wavelength X out of wraps and write the equation
with A explicitly shown, as follows: *

r ¥
NL(2,0,0)= N (zg,8,0)e (I Ty fomz',e,x)e‘“(”“'r Jart (19)
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By specifying Ng(zo,08,%), a(A), and N,(z',8,A) we are able in
principle to compute.Ny(z,6,)2) for every z, 6, r, and A over-:
given paths and for a presclected set of A values in A. Then
by (5)-(7}, we can compute: '

o

mmJ N_{z,8,x) X(A) dx (19)
: o T K

X (z,0)

Tp(2,0) = 680] N.(2,0,0) TO) O (B,(2,0)) (20)

o

z,(z,0) % 630L)Nr(z,e,x) (W) da (z1)

From these color components of Ny(z,8,)A), using (12), (13),
we can find the two chromaticity coordinates:

x (z,8) = Xr(z,9) (22)
Xr(z,e) + Yr(z,e) + Zr(z,e) :
¥ (2,8) = Yrle,0) (23)

X (2,0) + Y _(z,8) + Z_(z,0)

and from these, as explained above, we derive the dominant
wavelength A and the purity p of this wavelength. Such a.
pair (A,p) is a function of z, 8, and r, and we thus may write
the pair as: (Ay(z,8), py(2,8) ).

The simple model for apparent radiance (14) of Sec. 1.3
should be a rich source of colorimetric predictions for the
light fields in natural hydrosols. Thus we can now write the
equation as:

L el
Np(2,0,0) = Ny (z,,0,0)e a(Mr

. Np(z,0,1) [1-0" (00O cos 0] (5
(a(A)+K(A) cos 8)

where
Ni(z,8,8) = Nu(0,0,0)e X(M)2

By setting 6= 0, w/2.and w in (24), for example, we can pre-
dict the spectral apparent radiance of the hydrosol in these’
directions at depth z and via (22), (23), assign dominant '
wavelengths to these directions and depths, and purities to
these wavelengths. To use (24) one need only specify o(A),
K(A) and N,(0,8,)X) along with Ny(zo,9,A). The equation will
then automatically take care of and predict the effects of

the radiative transfer processes on the apparent radiances
N _(z,6,\). ' -

T
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“The quantitative study of the colors of distant ohjects
was apparently first systematically done hy Middleton {177}
in the meteorologic optics setting. e used a special case
of (24} in which & = w/2, and computed the change in color of
various objects as a function of r. Ilis computation may
serve-as a model for the more extensive computations that can
be made u51ng (24) with a general value of 0.

In a completely similar way we may use the two-flow
model for spectral irradiance H(z,_,x) described in (6), (7)
of Sec. 1.3, and particularly in (8)-(1n) of Sec. 1.4, to pre-
dict the chromaticity coordinates of the upward and downward
irradiances as a function of optical depth in a given medium,
The A-dependence of H{z,*,)X)} enters this theory via the y pa-
rameter and also the 1n1t1a1 irradiances H(0,%,X) (or any
equivalent pair of 1rradlances, as suggested by (43), (44) of
Sec. 1.4).

It should be observed that in the employment of ‘the sim-
ple model for radiance and the two-flow model for irradiance,
we require only information on the Mode III level of classifi-
cation of natural hydrosols (cf., Sec. 1.7).

‘Our purpose in this brief excursion into the world of
submarine color has been to lay the foundations for a scienti-
fic description of the myriads of colors and their many hues
as seen beneath the surface of seas and lakes illuminated by
natural light. The simple theory evolved above and culminat-
ing in (22) and (Z3) goes a long way toward a quantification
of the otherwise inexpressible color sensations experienced
by all who explore and study underwater environs.. Even such
skilled expositors of natural phenomena as Minnaert [182] or
William Beebe were hard pressed in thneir explorations of the
atmosphere and the sea to describe adequately what they saw.
In his studies of the coral reefs of l{aiti in 1927, Beebe, in
particular, observed that [12]:

"Someday, when I can carry a color book in my hel-
met, I will be able to enumerate an exact color code
of distance. Even in our colder, thinner atmosphere
the green of mountain slopes softens to purple a long
way off, but on the bottom of the sea, still greater
changes take place within a few feet or yards. I have
walked backward and seen a feathery crowned sea-worm
of dragon's blood alter, in my vision, within a few
seconds and steps, to the palest of coral pink; while
a sea-weed, deep olive-green when within reach, comes
gently to the eye, when five yards away, as faintest
glaucus."

The relatively precise expression of these transforma-
tions of colors with distance in scattering-absorbing media
is now within our grasp. But the placing of a coordinate grid
over our visual impressions can go only so far--something of
our impressions of the real world will always slip through
sucih a coarse net. This was sensed by Beebe; and for us, now
in possession of the relatively powerful tools forged above,
we are inclined to agree when he goes on to reflect that [12]:

MAn artist of great skill and patience can approx-
imate the oxydized royal purple of a gorgonia, even
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the pink and ivory sunset of a conch shell--but the
vanishing point of distance beneath the water, where
the coral reef ends and the mysteries of the unknown
deeps begin--the illusion, too subtie for color, of
submarine visual infinity--this is not to be whelmed
by man-made brushes nor imprisoned on any terrestrial
dimension." .

1.9 Applications of Hydrologic Optics to Underwater
Visibility Problems

In this section we shall apply the simple model for ra-
diance (14) of Sec..’1.3 to the problem of predicting the vis-
ibility of underwater objects illuminated by natural light
fields and as seen by underwater swimmers. In order to a-
chieve this goal we must take into account not only the geo-
metrical structure of the light field at each depth z, and
its general exponential decrease with depth, but also the in-
herent properties of the eyes of the underwater swimmer and
their mode of adaptation to the light levels in the under- -
water environs. These rather delicate features of the problem
must be blended with great care in order to achieve a synthe-
sis which is at oncé readily applicable under rugged field
conditions, and yet accurate enough to make useful and depend-.
able predictions. -

Such a synthesis has recently been achieved by Duntley
and it is on his results reported in [75] that the present
section is based. Except for minor changes of the text of
[75], in order to insure continuity within the framework of
the present work, the exposition of the use of the nomogranphs
is essentially that given in [75]. Successful experimental
field tests of the theory underlying the simple model are re-
corded in [83]. (See Figs. 1.51, 1.52.) .

We observe that the optical properties required for the
application of the momographs in this section are the volume . -
attenuation coefficiént o and the diffuse attenuation coeffi-+-
cient K, so that we require only a Mode ITI classification of
optical media, as defined in Sec. 1.7, in order to implement
the theoretical results summarized below. These optical prop-
erties may be measured simultaneously by means of a water
clarity meter designed and developed at the Visibility Labor-
atory of the Scripps Institution of Oceanography [7] and which
has been in use now for several years by the U.S. Oceanograph-
ic Office. . : -

Introduction to the Nomographs

The limiting- range at which a swimmer can sight any :
specified underwater object can be calculated from a and XK if
sufficient information is available concerning the nature of
the object, its lighting, its background, and the visual char-
acteristics of the observer. Consider, for example, the two
underwater photographs shown in Fig. 1.81. 1In part (a) of the
figure the camera is loocking steeply downward through twenty
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FIG. 1.81 Parts (a) and (b) illustrate the effect of dis-
tance on the apparent contrast of a swimmer against his back-
ground. The nomographs below give a quantitative means for
predicting and describing the visibility of the swimmer for
various parts of his underwater environs. Courtesy of 5.4Q.
Duntléy.
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fect or more of water at a black-suited swimmer close to the
hottom. At short range, as in part (b) of the figure, the
swimmer's suit appears very black compared with the near-
white bottom, but at twenty feet (part (a)) its apparent con-
trast is low; only the nearest fish and kelp leaves appear
"black'". At a slightly greater camera distance the swimmer
would not be seen in the photograph because of insufficient

. apparent contrast. The greatest distance at which the swim-
mer can be seen by his companion, the photographer, may be
calculated by means of the nomographic charts presented in
this section.

The nomographic charts in this section can be applied
to nearly every underwater viewing task if adequate input
data concerning the object, its lighting, and its background
are available, The applications discussed and illustrated in
this section are visual tasks for which adequate input data
are readily available.

The main body of this section is concerned with the pre--
diction of sighting ranges along paths of sight which are in--
clined downward, and the nomographs are designed especially
for this case. The visibility of flat, horizontal, non-glossy
surfaces lying on the bottom or suspended far above the bottom -
can be calculated with great accuracy; but three-dimensional
objects, particularly those with rounded surfaces, will be
treated with slightly less certainty until additional develop-
ment work, in progress:at the time of the present writing,
has been completed. Accordingly, sightings of complex sur-
faces and sightings along upward-looking paths of sight are
not treated per se in the present set of nomographs.

A. Selection of the Proper Chart
A.1 Introduction »

The detection capabilities of any swimmer depend upon
the level of light to which his eyes are adapted. This, in
turn, depends upon the quantity of matural illumination on
the surface of the sea, the depth of the swimmer, and the
clarity of the water.

We shall present nomographic charts for nine adaptation
conditions covering. the entire range of light levels at which
the human eye can operate, a range which extends from bright-
est day to darkest night. The first step in any visibility
calculation is to ascertain the adaptation luminance to which
the swimmer will be. exposed and to select the appropriate
chart. S

A.2 fRatural Illumination

The Bureau of Ships, U.S. Navy, has made a comprehen-
sive study of natural illumination on the  surface of the
sea and has published an unclassified handbook-type report en-
titled "Natural Illumination Charts', (Ref. [35]) from which
the illuminance in lumens per square foot (i.e., '"footcandies')
can be found for any location on earth at any time of day on
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any day in any year. A summary page from that report is re-
produced as Figure 1.12. By means of this figure the illumi-
nation on the surface of the sea can be found if the altitude
of the sun and type of sky is known.

A.3 Effect of Depth and Water Clarity

If the illuminance on any fully exposed upward-facing
horizontal surface is measured at various depths in any uni-
form stratum of sea water, we have seen (in (7) of Sec. 1.2,
and (7) of Sec. 1.4) that, to a useful approximation, the il-
lumination level decreases exponentially with depth. Graphs
of the exponential law, constructed especially for the pur-
poses of the present section, are given in Figures 1.82, 1.83.
The slopes of the straight lines are measured by ‘the various’
values of the diffuse attenuation coefficient K, which is de-
fined by the equation

-Kz .

E, = Ege s (1)
where Eg is the downward illuminance at the top of the uni-
form stratum, z is depth within the stratum, and E; is the
downwaid illuminance at depth z. Strictly, this equation re-
lates to monochromatic light only, as shown in (7) of Sec.
1.4, but it is a sufficient approximation to illuminance data
for the practical purposes of this section.

1f the measured value of K is the same from the sea sur-
face to the target, z may be taken as the depth of the swim-
mer and the illuminance at his depth determined by multiply-
ing the illuminance at the sea-surface (from Figure 1.12) by
the appropriate factor read from Figure 1.82.

Stratified Water

If the water above the target is composed of two or
more layers having different values of K, it will be neces-
sary to use the appropriate straight line in Figure 1.82 or
1.83 to obtain the factor for calculating the illuminance at
the bottom of the first layer and use this value as the il-
lumination incident on the top of the second layer, and so on
until the level of the swimmer is reached. 1In other words,
Figure 1.82 is used to determine factors for each successive
layer, and the product of these factors is multiplied by the
illuminance at the surface of the sea in order to obtain the
illuminance at the depth of the swimmer.

The assumption of an average or weighted-average K for
the entire distance from sea-surface to swimmer is often a
sufficient approximation for the calculation of adaptation
luminance and the subsequent selection of the proper nomo-
graphic chart. Even in extreme cases the use of a s1ngle K is
often sufficient for this purpose.

Effect of Sea-state
Sea-state, i.e., wave conditions, have no significant

effect on underwater visibility tasks except near the surface,
where small waves and ripples may cause the water to be filled
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with a rapidly moving ensemble of dancing beams of sunlight
and where large waves may cause noticeable lighting fluctua-
tions due to the effectively variabie depth of the swimmer
(cf., discussions on subsurface refractive phenomena in Sec.
1.2). When the sun is within 5 degrees of the horizon,
slightly more sunlight penetrates the water surface when it is
rough than when it is calm, as described in the discussions
of Table 3, Sec. 1.2, but the effect is ordinarily negligible
in terms of visibility by swimmers. .

Examples

On a certain cloudless sunny morning the illuminance at
a point 40 feet beneath the surface in the entrance channel
of a harbor was found by measurement to be 176 lumens/ft? and
K at this depth was measured as 0.0943 per foot.- A deck-cell
showed the illuminance on the surface of the water to be 7600 -
lumens/ft®. Reference to Figure 1.82 or insertion of these
numbers in Equation (1) yields a predicted illuminance of 175
lumens/ft?, in excellent agreement with the measured value. A
diver reported that no major stratification was observable
above 40 feet,

Half an hour -earlier, however, the diveéer had reported a
dense cloud of organic material between depths 10 and 15 feet..
The surface illuminance at that time was 5200 lumens/ft? and
K at 40 feet was 0.0943 per foot. The illuminance at 40 feet
predicted from these numbers is 120 lumens/ft?, but measure-
ment disclosed only 90 lumens/ft?. Obviously the cloudy stra-
tum between 10 and 15 feet had lowered the illuminance at 40°
feet by 30 lumens/ft?, and it would have been necessary to
know K for this stratum in order to correct for its presence.

A.4 Adaptation Level

I1f the swimmer were just above a perfectly reflecting
white bottom he would be adapted to a luminance level (expres-
sed in foot-lamberts) numerically equal to the illuminance at
his depth. 1If, however, he is in water so deep that the bot-
tom produces no influence on the light-field he will see, .
when looking straight .down, a luminance numerically equal to -
approximately 1/50 of the illuminance from above (see para- :
graph B.7 below). Thus, if the illuminance on the top of the-
swimmer is 100 lumens/ft? he will observe an adaptation lumi-
nance of 2 foot-lamberts when looking straight down.

Inclination Factor

If the swimmer looks along an inclined path rather than
straight down he will see an adaptation luminance which is
greater by an amount known as the <inelination factor. This
factor depends upon depth and the downward direction in which
he looks, as shown by the small graphs in the lower left cor-
ner of Figure 1.84., For example, if the swimmer is at a depth
9/K (i.e., 90 feet if K = 0.1 per foot) and looks downward in
a direction having a zenith angle of 120 degrees in the ‘azi-
muth of the sun he will observe approximately twice as much
luminance as if his path of sight were straight down. 1In
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terms of the numerfcal example in the preceding paragraph, his:
adaptation luminance is 2x2 = 4 foot-lamberts, The thecoreti-
cal basis for the inclination factor is (68) of Sec. 1.4.

Bottom Influence

If the swimmer is near the bottom, his adaptation may
be affected, depending (i) on how greatly the bottom differs
in reflectance from 1/50, (ii) on the clarity of the water,
and (1ii) upon its distance from the swimmer. Generally
speaking, dark mud bottoms have little or no effect on adap-
tation and light-colored bottoms have negligible influence
when the sighting range is the order of 3/K or greater. Even
at a sighting range of only one diffuse attenuation length
1/K, few bottoms are white enough to affect the swimmer's
adaptation significantly. Generally speaking, therefore, the
influence of the bottom upon adaptation can be neglected in -
calculating visibility by swimmers. It should be noted, how--
ever, that the reflectance of the bottom may have a major :
effect on the inherent contrast of the object and, therefore,
upon its visibility, as discussed in Section B.2Z below.

A.5 Calculation of_Adaptation'Luminance

The foregoing discussion can be summarized and illus-
trated by concrete examples: let it be required to find the.
adaptation luminance for a swimmer 60 feet beneath the sur-
face of deep water characterized by a diffuse attenuation co-
efficient K of 0.10 per foot, or (0.328 per meter which, as we
have seen in Tables 7 and 8 of Sec. 1.6, is on the order of
K-values found in clear lake water. It is also a value typi-
cal of coastal water. Let it be assumed that the sun is 16.8
degrees above the horizontal plane on a clear sunny day.

Reference to Figure 1.12 shows that the illuminance on
the sea-surface is 2000 lumens/ft?, Inspection of the line
marked K = 0.10 per foot in Figure 1.82 shows that the hori-
zontal plane containing the swimmer receives 2.5 x 107% as
much downward light as does the sea-surface, or 2000 x 2,5 x

10-% = 5 lumens/ft?.

If the swimmer looks straight downward his adaptation
luminance will be 5 x 1/50 = 0.1 foot-lamberts if there is no
bottom influence.

If the swimmer looks along a downward slant path having
a zenith angle of 110 degrees in a plane at right angles to
the azimuth of the sun, the inclination factor graph in Fig.
1.84 shows that his adaptation luminance is 2.5 times greater
than if he looks straight down. Along this inclined path of -
sight the swimmer's adaptation luminance is, therefore,
0.10 x 2.5 = 0.25 foot-lamberts. The user of Figure 1.84
should verify that the ‘'‘across sun'" curve is applicable by
noting that the depth (60 feet) of the swimmer is 6/K, since’
K = 0.10 per foot, and that this depth lies between limits
specified in the figure.

Had the solar elevation been 65 degrees, Figure 1.12
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shows that the illumination at the sea-surface would have
been 10,000 lumens/ft? and the adaptation luminances of the
swimmer at 60 feet would, therefore, have been five times
higher; i.e., 0.50 foot-lamberts when looking straight down
and 1.25 foot-lamberts when looking at right angles to the
azimuth of the sun along a downward path of sight having a
zenith angle of 110 degrees.

A.6 Chart Selection

Paragraph B below (in Figs. 1.89-1.106) contains nine
pairs of nomographic charts, each pair representing a decimal
value of adaptatlun luminance, as follows: 1000, 100, 10, 1,
107, 10°%, 10°%, 10™%, 10°% foot-lamberts. One member of a
pair is for low clarity, the other for high clarity water.
After the adaptation luminance of the swimmer has been calcu-
lated the chart closest to this level is selected. " If the
adaptation luminance is not close to any decimal value, sight-
ing range for the visual target should be calculated by means
of charts for higher and lower light levels respectively in
order to bracket the desired answer and provide for interpo-
lation between these sighting ranges.

B. Using the Nomographs
B.1 Introduction ‘

Once the adaptation luminance for the swimmer has been
determined and the proper nomographic chart selected, sight-
ing ranges can be predicted. The calculation procedures are
slightly different for cach type of visual task and, there-
fore, they will be discussed separately. The basic nomo-
graphs are given in Figs. 1.89-1.106. However, for illustra-
tive purposes, two charts have been excised from that group
and appear in Figs., 1.84 and 1.85. This is the low-clarity,
high-clarity pair for 10~! foot-lambert adaptation.

B.2 Objects on the Bottom

The nomographic visibility charts can be useéd to calcu-
late the sighting range of flat, horizontal objects of unifomm
reflectance lying on the bottom.

Object Size and Shape

" The size of the object is measured by its area, expres-
sed in square feet; the shape of the object is unimportant un-
less it is an extremely eclongated form (10:1 or greater) and
unless adaptation luminance is 10 foot-lambherts or greater.
Even in such unusual cases the effect of object shape on
sighting range is usually small.

Vertical Path of Sight

Sighting range calculations are simplest when the path
of sight is vertically downward. Each nomograph requires
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five items of imput data: tarvrget area, target reflectance,
bottom reflectance, the volume attenuation coefficient a, and
the diffuse attenuation coefficient K. The coefficients o
and K must be for the water between the swimmer and the tar-
get.

The vertical scales on the nomographs are labeled

"a-K cos 6". (The use of a minus sign here, relative to the
use of a-plus sign in Sec. 1.3 wherein the theory of the sim-
ple radiance model was developed, is to facilitate the direc-
tion specifications by the swimmer. In other words we adopt
here field luminances and the swimmer-centered direction con-
vention.) A downward vertical path of sight has a zenith an-
gle @ = 180 degrees, and cos 180 = -1, A point representing
the sum of a and X, expressed in reciprocal feet is marked
on the left vertical scales.

The right vertical scales of the nomographs are labeled
"target reflectance minus bottom reflectance'". The algebraic
sign of this difference is of no importance; if the bottom is
more reflective than the target the difference will, of
course, be a negative number; disregard the negative sign and
plot the magnitude of the difference on the right vertical
scale. Reflectance must be expressed as a decimal; i.e., as
0.06, not as six percent. Bottom reflectance should be meas- '
ured at the sea-bottom with great care to avoid disturbing
any fine silt which may be present. Bottom samples cannot be
brought to the surface for measurement without disturbing the
material sufficiently to alter its reflectance. Target re-
flectance may be measured at the sea-bottom or on ship-board
by means of a technlque described in paragraph B.5 of this
section.

The curved 11nes which cover the upper right corner of
the nomographic visibility charts represent visual threshold
data for the target area with which each curve is identified.
(The refractive effect of the swimmer's flat face- -plate has
been allowed for in constructing these nomographs.) Curves
representing decimal values of target area are marked accord-.
ingly. Intermediate unmarked curves refer respectively to 2,
4, 6, and 8 times the decimal value except in those cases
when only a single line appears between decimal curves; in
this case the unmarked curve related to 5 times the dec1ma1
value.

Speetal Chartg for Water of Lou-clarity. Two series of
nine nomographic charts are presented below. In the first
series, the scales have been optimized for use in clear oce- |
anic and coastal waters where sighting ranges of 20 feet to
100 feet or more often occur. The second series of charts
are designed for waters of poor to medium clarity where
sighting ranges of 1 foot to 20 feet or more prevail. Either
series of charts may be used for any problem having input
data within the range of its scales, but experience will even .
tually indicate which chart is best suited for any given prob-
lem. :

Sighting Range Caleulations, Clear Water. To calculate”’
ghting range, connect the appropriate points on the left
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and right vertical scales by a straight line and note its in-
tersection with the curve corresponding to the area of the
target. From this intersection proceed vertically to the
sighting range scale. The following numerical example will
illustrate this procedure with the aid of Figure 1.84.

Let the following input data be assumed:

Adaptation luminance = 10~! foot-lamberts

Target: £lat; horizontal; on the bottom

Target area = 10 square feet

Target reflectance = 0.080; non-glossy

Bottom reflectance = 0.030

Volume attenuation coefficient = a = 0.073 per foot
Diffuse attenuation coefficient = K = 0,027 per foot

: From these data, (recalling that paths of sight at pres-
ent are vertical) o + K = 0.100, and target reflectance minus
bottom reflectance is 0.050. The solid line drawn on Figure
1.84 intersects the curve marked '"10 square feet' at the ver-
tical line denoting a sighting range of 47.6 feet. The same.
line drawn on Figure 1.84 indicates that a swimmer looking
straight down under the assumed conditions can sight a 0.1
square foot object at 43 feet, an object of 1 square foot at
46 feet, and all objects of area 100 square feet or more when
he is 48.5 feet or less from the bottom. ‘

Stghting Range Caleulations, Low-clarity Water. The
same example may be sclved by means of the low-clarity chart
(Figure 1.85) and corresponding sighting ranges obtained, but
with far less precision.

In an hypothetical water of lesser clarity, character-
ized by a = 0.43 per foot and K = 0.17 per foot, the sum a+X
is 0.60 per foot. If all other input data remain unchanged
the high-~clarity nomograph (Figure 1.84) cannot readily be
used because its left vertical scale goes only to 0.14. Ac-
tually, this chart can be adapted by extending the left ver-

" tical scale linearly downward to 0.60 and constructing a di-
agonal line from that point to 0.05 on the right vertical
scale, but such a procedure is unnecessary because the low-
clarity nomograph (Figure 1.85) is available. The straight
line drawn on that figure indicates by its intersection with
the lower-most curve that flat horizontal objects of all
sizes greater than 1 square foot can be seen by a swimmer
locking straight down under the assumed conditions when he is
8 feet or less from the bottom. The same line shows by other
intersections, that he must descend to within 7.5 feet of the
bottom to see an object 10"% square feet in area and to 5.5
feet from the bottom before a tiny object of area 10 * square
feet can be seen.

Inclined Paths of Sight

The nomographic visibility charts can be used for the
calculation of sighting range along inclined paths of sight,
Three additional items of input data are necessary: (1) the
approximate azimuth of the path of sight relative to the sun,
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(2) the depth of the swimmer expressed in units of l/K and
(3) the zenith angle of the path of sight.

The first two items of data are used to estimate the im-
crease in adaptation luminance associated with the inclined
path. This is accomplished by means of the inelination faec-
tor curves in the lower left corner of Figure 1.84. (Identi-
cal curves appear on all of the nomographic visibility charts)
A continuation of the numerical example begun in the preceding
section will illustrate this step:

Let the following input information be assumed

(1) Azimuth of the path of sight: at right angles
to the azimuth of the sun; i.e., the path of sight is "across
sun'.

: (2) Depth of swimmer = 2.7/K. This would be the
case if his depth is 100 feet and K = 0,027. The depth,
2.7/K, falls within the range for which the '"across sun''curve
applies.

o (3) Zenith angle of the path of sight = 120 de-
reeca.

Effeet of Zenith Angle on Adaptation. Reference to the
"across sun' inclination factor graph discloses that the in-
clination factor for this zenith angle is 1.9. This means
that the adaptation luminance is 1.9 times as great as that
experienced by the swimmer when looking vertically downward;
i.e., 1.9 x 107° = 0.19 foot-lamberts. Since this adaptatlon
luminance falls between the nomograms for 1 and 10™ %Y foot-
lamberts, both charts should be used in order to bracket the
sighting range. The effect of adaptation on sighting range
will be discussed further in a later part of this section and
illustrated by Figure 1.86.

Effect of Zenith Angle on Left Vertical Scaléfi The ze-
nith angle of the path of sight (120 degrees) affects the val-
ue plotted on the left vertical scale of the nomograph:

a-K cos 8 = 0.43 - (0.17)(-0.50) = 0.51

(A table of cosines is available in Table 7 of Sec. 12.1) Use
the relation cos & = -cos (180-8) for 8 in the range
90=8 =180.

Effect of Zenith Angle on Effective Area. The effee-
tive aréa of the object depends on the observer's line of
sight; thus A cos (180-8) = 10 x 0,50 = 5 square feet. In-
spection of the curves in Figure 1.85 shows that, in this
case, no sighting range will be lost by the foreshortening he-
cause all targets having an cffective area greater than 1
square foot are visually detectable at the same distarice un-
der the conditions assumed in this numerical example.

Effect of Ineclination Factor on Right Vertical Seale.
The inclination factor affects the value plotted on the
_right vertical scale as follows: the difference between tar-
get reflectance and bottom reflectance must be divided by the
1nc11nat10n factor before the number is plotted. Thus,
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FIG. 1.86 The effect of adaptation on sighting range (see
text). ’ -
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(0.050/L.9} = 0,020, The inclination factor curves which ap-
pear on each chart have been plotted on an inverted lOVlTlth-
mic scale having the same modulus as the right vertical scale
of the nomograph in order that the division can be accom-
plished graphically. Draftsman’s dividers can conveniently
be used for this purpose: measure downward from the top bor-
der of the figure to the inclination factor curve and trans-
fer this setting to the right vertical scale of the nomograph,
using it to reduce the plotted value of target reflectance
minus bottom reflectance.

Caloulation of the Sighting Range. The broken line on
Figure 1.85 shows that the sighting range would be 8.1 feet
for the inclined path if the adaptation luminance was 10~
foot-lamberts. Since, as shown above, the adaptation.lumi-
nance is 1.9 x 10°! foot-lamberts a minor correction to the
" sighting range should be made in the following manner:

Effect of Adaptation on Sighting Range. Since the lu-
minance to which the swimmer's eyes are adapted is 0.19 foot-
lamberts, an interpolation should be made between the sight-
ing range 9.1 feet indicated by the nomograph for 1 foot-lam-
bert and the 51ght1ng range 8.2 feet indicated by the nomo-
graph for 107" foot-lambert. By linear arithmetic interpola-
tion, 8.2 + (9.1-8.2)(1.9 x 10°%) = 8.4 feet., This value
compares with the sighting range of 8.5 feet found by the
graphical interpolation provided by Figure 1.86, which illus-
trates the effect of adaptation on sighting range in this il-
lustrative example. Figure 1.86 has been prepared by assum-
ing successively all decimal values of adaptation luminance
and plotting the resulting sighting ranges given by the en-
tire series of nomographic charts.* Linear arithmetic inter-
polation of sighting range between adjacent decimal levels of
adaptation luminance suffices for the needs of most problems.

Impliecation of the Sighting Range. Although the sight-
ing range for the inclined path (8.5 feet) happens to be only
slightly longer than the sighting range for the vertical case,
it should be recognized that the swimmer must be within 4,25
feet of the bottom in order to see the target at this inclin-
ation angle.

B.3 The Seccht Disk

The underwater sighting range of a flat horizontal sur-
face of uniform reflectance, suspended in (optically) deep
water, e.g., a Secchi Disk, can be calculated by méans of the
nomographic visibility charts. Ordinarily, Secchi Disk read-
ings are. obtained by an observer above the surface of the sea

*The discontinuity in curve slope at about 4.4 x 10" foot-
lamberts results from a change from central fixation to avert-
ed vision on the part of the swimmer, in order to achieve max-
imum 51ght1ng range in the dim light; this change of fixation
is built into the nomographs. ’
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who must look downward through the surface (see the analysis
of the Secchi Disk theory in Sec. 1.4). Sky reflection and
complex refractive effects resulting from water waves greatly
complicate the interpretation of the greatest depth at which
the disk can be seen. If, however, a swimmer lowers a Secchi
Disk beneath him and observes its disappearance, the sighting
range can be predicted by means of the nomographic visibility
charts if a and K are known. Conversely, the observed sight-.
ing range can be inserted in the nomograph in ordér to find
the sum of the attenuation coefficients, a+K.

Let it be assumed that the water is so deep beneath the
disk that the bottom has no significant effect upon the light
field. The nomographs are so constructed that they will cor-
rectly predict the sighting range of the disk if the right
vertical scale of the nomograph is imagined to be labeled
“"Secchi Disk reflectance minus 0.02'". All other details of
the calculation are-identical with those described in the pre-
ceding paragraphs .of this section which deal with objects on
the sea-bottom. - Attention is called, however, to subject mat-
ter of Section B.7, entitled "The R, Correction'.

B.4 Target MarkingsA

The preceding paragraphs of this section have dealt
with the sighting ranges of the whole target. It is some- .
times required to calculate the sighting ranges of certain de
tails or markings on a target. This is readily accomplished
by means of the nomographic visibility charts. The only mod--
ifications of the procedure described in the preceding para-
graphs are (i) to imagine the right vertical scale to be la-
beled “"reflectance of marking-reflectance of target", and (ii)
to use the curve which applies to the area of the marking.

B.5 The Measurement of Target Reflectance

The reflectance of painted surfaces differ, often mar- .
kedly, when dry and when wet. The values of target reflect-
ance required for use in the nomographic visibility charts
are those which would be measured by a water-filled reflect-
ometer submerged with the target. This submerged reflectance
differs from reflectances measured by conventional laboratory:
reflectometers evern if the painted surface is wet.

Target reflectance may be measured at the sea-bottom,
or, with greater convenience, it may be measured on ship- .
board by means of a technique developed by the Visibility
Laboratory of the University of California (San Diego) and
described in [82]. Excerpts from that report have been as- -
sembled and are reproduced in Fig. 1.87.

B.6 Horizontal Paths of Sight

The visibility nomographs can be used for calculating
sighting ranges along horizontal paths of sight provided the
inherent contrast of the object against its horizontal water
background is known. Such contrasts are determinable in any
of several ways. For example, one may use irradiance



SEC. 1.9 UNDERWATER VISIRILITY PROBLEMS . 171

Q.0 T U R T

-3 - ]
] o m
[+ 4 - -
~ 005+ ]
- g ]
o 5

T3]

= n -
m N .

o . /

o 0.0l -
[T% L ]
N :
w 0005p— —
= . -
m —
2 ™

m —
W N
o

w  Q.001 -
o ) e
¥, 3
.0 _
+5,0.0005 ]
w .

| .
o

L

[+ 4 -
; . 1 L i | L1l 1 1.1 I LLLl 1 il I L1l
g 0.000! 0.0005 0.00l 0.005 0.0l T 0.05 Qlic
<L .

& APPARENT REFLECTANCE OF WET OBJECT (W)
<q

FIG. 1.87 Graphical means of determining the reflectance
Ry of a submerged surface given its wet reflectance.. The
technique involves wetting the sample with a thin film of wat-
er, irradiating it with a beam at 45°, and viewing it normally,
say with a.conventional refractometer. This determines the
abscissa of the graph. The associated ordinate yields Ro.
This scheme was designed by Duntley, and the plotted points
are the results of his experimental check of the graph

distributions of the kind shown in Figs. 1.25, 1.26, for the
general class of medium (specified by Mode III of Sec. 1.7)
under study. Such irradiance distributions are also readily
made from radiance distributions obtained via a Mode IB clas-
sification of media. Finally, one may use the 51mple radiance
model of Sec. 1.3 to provide such estimates.

For the calculation of horizontal 51ghting ranges, the
right vertical scale should be imagined to be labeled "inher-
ent contrast ¢ 50". Thus an inherent contrast of *1 plots at
the point marked 0.02 on the right vertical scale.

For horizontal paths of sight the zenith angle 8 = 90
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degrees and, since cos 90 = 0, the left vertical scale in-
volves anly the volume attenuation coefficient «. The areas
associnted with the curved tines on the nomograph refer to
the prothttd aren . of the target as scen from the position of
the swimmer.

Sighting ranges are calculated by connecting the right
and left vertical scales with a straight line, and reading
the sighting range from the scale division directly above the
intersection of this line with the curve which applies to the
target area. When the nomographic charts are used in this -
manner for horizontal sighting range calculations no approxi-
mations are involved so that neither of the corrections des-
cribed in the next two sections of this report are required,

B.7 The Re Correction

In nearly -all optically deep natural waters and at all
depths approximately 50 times more illuminance reaches any
horizontal plane from above than from below. The ratio of
the illuminance from below to the illuminance from above is
denoted by the symbol "R,'". This notation implies that the
(opt1ca11y) infinite deep water beneath any horizontal plane
in the sea could be replaced, for opt1ca1 purposes, by a sur-
face of reflectance R, This quantity is often measured by
means of two photoélectric cells mounted back-to-back and
facing upward and downward respectively.

Because Ry = 0.02 for most natural waters of moderate
to high clarity, the nomographic visibility charts have this
value built into their scales. If R, is known to be different .
than 0.02 in any specific instance, this information can be
entered in the calculation by dividing the value of '"target
reflectance - bottom reflectance' by 50 R, before plotting the .
point on the right vertical scale of the nomograph. Alterna-
tively, the ""Ro CORRECTION'" scale printed on the nomograph can
be used to apply a .correction after the point has been plotted
but before the line is drawn across the chart. Draftsman's
dividers are a convenient tcol for this purpose: set one leg
of the dividers at.the circled point on the "R, CORRECTION"
scale and adjust the other leg to the known value of R, ’
Transfer this setting to the right vertical scale, malntalning
the direction of the correction indicated by the "R CORREC~
TION" scale; i.e., the plotted point on the right vert1cal
scale is moved downward when R, exceeds 0.02, and upward when
R, is less than 0.02.

B.8 Correction of the Sighting Range

The nomographic visibility charts involve certain alge-
braic approximations which may lead to invalid sighting rang-
es when the indicated value of sighting range is short and.
when the reflectance of the bottom departs markedly from 0.02
Figure 1.88 1is provided as a means for testing any indicated
sighting range for error and indicating the needed correction.
The following numerical example will illustrate the use of.
Figure 1.88. .

A sighting range of 4 feet is indicated by the
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C. Interpretation of Sighting Range

C.1 Introduction

“The sighting ranges calculated by means of the nomo-
graphic visibility charts are the limiting distances at which
a swimmer will be aware of seeing the object. It is.assumed
that he is fully familiar with the underwater environment,
well acquainted with the objects for which he looks, and pos-
sessed of perfect vision. It is not assumed, howéver, that
his training has included a lengthy special training period
devoted to maximizing his ability to produce long sighting
ranges.

It is assumed that the swimmer knows the direction in
which to look and that he expects to see the visual target.
In other words, the swimmer is not required to search his vis-
ual field and there is no problem of vigilance,

The above described interpretation of 'sighting range”

is indicated on the nomographic visibility charts by the in-
scription "field factor 2.4". This notation, meaningful only
to specialists in visibility calculations, implies that nomo-
graphic charts can be constructed to depict other levels of
observer performance, i.e., other values of "field factor".
A general discussion of visual search, field factors, and ob-
server characteristics is out of place in this work, but three
common effects will be discussed in simplified form in the fok
lowing paragraphs.

C.2 Effeet of Laeck of Warning

When an underwater object is encountered by a swimmer
without warning, the sighting range will be somewhat shorter
than otherwise, This is to say that unexpected objects will
be less well detected initially than will those whose exis-
tence is known and whose appearance is expected. This effect
is independent of training, experience, or visual capability.,
Its effect upon the sighting range can be allowed for by di-
viding the value of “target reflectance minus bottom reflec-
tance" by 1.2 before entering the right vertical scale of the
nomographic charts.

C.3 Effect of Observer Training

Extensive practice in sighting underwater targets at
limiting distances will enable good observers to exceed slight-
ly the normal sighting range. A correction for the effect of
training .can be made by multiplying the value of "target re-
flectance - bottom reflectance' by a training factor between
1 and 2 before entering the right vertical scale of the nomo-
graphic charts. A training factor of 1.0 represents the usual
capability of experienced swimmers who are fully familiar with
the underwater environment and are well acquainted with the
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object for which they look; this value (unity) should ordi-
narily be usoed. [f an experienced swimmer is considered to
be unusuu]ly good at underwatcr sightings a training factor
of 1.2 is recommended.® Laboratory experience indicates that
only after many thousands of careful attempts to achieve
sightings at maximum range can even the most experienced per-
sonnel achieve a training factor of 2.

C.4 Effect of Observer Visual Capability

All human eyes are not created equal with respect to
their capability to detect underwater objects at limiting
range; this is not g matter of training but represents subtle
physiological differences between men which are beyond detec-
tion by ordinary eye-examinatiomns. The nomographic charts E
have been drawn to represent the performance of average ''per- .
fect" young eyes. Some estimatk of the effect on sighting
range of the spread in visual capability within the popula-
tion of 'perfect' observers can be obtained by successively
doubling and halving the value of "target reflectance minus
bottom reflectance” before entering the right vertical scale
of the nomographic chart.

D. Visualization of Water Clarity

D.1 Introduction

The clarity of mnatural waters can be visualized directly
in terms of the attenuation coefficients a and K on the basis
of experience gained through the use of the nomographic visi-
bility charts. It will be found that most objects can be .
sighted at 4 to 5 times the distance 1/(a-K cos 8) unless the -
adaptation level is low; exceptions to this rough rule-of-
thumb are common but they can easily be categorized. Alter-
natively, a convenient conceptualization of the appearance of
any underwater environment can be obtained from 1/a and 1/K.

D.2 Estimation of Sighting Range

The rough rule-of-thumb stated in the preceding para-
graph is illustrated by the examples in paragraph B.2 of this
section. In the first (clear water) case 1/(o-K cos 8) =
1/0.10 = 10 feet and the vertical sighting range of the large
(10 square feet) object is 48 feet, or 4.8 times 1/(a-K cos8).
In the second (low-clarity water) case 1/(a-X cos 8)= 1/0.60
= 1.67 feet, and the vertical sighting range of the same tar-
get is 8.0 feet, or 4.8 times 1/(a-K cos 8),

*It will be recognized that the factor 1/1.2 for lack of warn- '
ing and the training factor 1.2 cancel; thus the nomographic
charts as drawn apply without correction to the case of the
experienced, hlghly tralnea swimmer who comes upon ohjects
without warning.
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The value 4.8 is not universal; it will be altered by
changing target size, adaptation luminance, zenith angle, tar-
get reflectance, etc. For example, it was noted in paragraph
B.2 that in the low-clarity water the vertical sighting range
of a small target 10-? square feet in area is 5.5 feet or 3.3
times 1/(o-X cos 8). If, however, the reflectance of the ori-
ginal 10 square foot visual target had been 0.330 (instead of
the value 0.080 assumed in paragraph B.2), thus forming a
high inherent contrast with the dark (0.030) bottom, its ver-
tical sighting range is found to be 11.0 feet or 6.6 times
1/(e-K cos 68). In summary, small values of target size or
low. values of adaptation luminance (or both) will produce
sighting ranges shorter than 4 times 1/(a-K cos 8) whereas
high values of *"target reflectance minus bottom reflectance"
make large objects visually detectable at ranges in excess of
5 times 1/(«-K cos 8).

An important and common special case is that of large
dark objects viewed horizontally. In this case 1/{a-K cos 8)=
= 1/0, since cos 90° = 0, and the sighting range will be ap-
proximately 4 times 1/a unless the adaptation luminance is
low.

D.3 Estimation of Adaptation Luminance

Inspection of Figure 1.12 will enable convenient order-
of -magnitude values of illuminance on the surface of the sea
to be noted for, say, noon and sunset, clear and cloudy.
Translation of these values to the approximate illuminance at
the depth of the swimmer is often facilitated by noting that
the illuminance, and, therefore, the adaptation luminance is
reduced by a factor of 1/10 for each (In 10)/K of depth.
Figures 1.82 and 1.83 provide convenient illustrations of
this concept.

 D.4 Estimation of o and K

In some, but by no means all, waters the distance 2.3/K
is about 50% greater than the distance 4/a; i.e., about 6/a;
thus the natural illuminance (and the adaptation level) may
decrease by a factor of 1/10 for each unit of depth equal to
1.5 times the horizontal distance at which a swimmer can see a
large dark object at high light levels. If measured values
of o and K are not available, these constants can be esti-
mated by means of the relations o =4/d and K = 1.5/d, where d
is the horizontal sighting range for large dark objects at
high light levels. The estimate of ¢ is more reliable than
the estimate of K. Rules of thumb such as these can be given
a better basis after more extensive Mode III classifications
of natural hydrosols have been made (cf. Sec., 1.7; see also
(11)-(13) of Sec. 10.8).

D.5 Chargeterization of Natural Waters

For purposes of easy visualization, it is possible for
natural waters to be characterized by the distances 4/a and
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2.3/K, though the numbers 1/o, and 1/K can do just as well,
In the clearest known natural waters® these distances 4/a ]
and 2.3/K are helieved to be less than 230 feet and 340 feet
respectively. o the. first numerical example given in para-
graph B.2 the distances were found to he 4/a = 55 fest and
2.3/K = 85 feet: in the second, 4/a = 9.3 feet and 2.3/K =
13.5 feet. :

1.10 Applicationé of tlydrologic Optics to the Food-Chain
Problem in the Sea

“In this section we shall :discuss, from the point of
view of radiative transfer theory, the problem of food-chain
relations in the ocean. The theory of food-chain relations
attempts to describe, in quantitative terms, the distributicn
in time and space, within a given oceanic region, of the food
supply of the main animal populations of that region., The
food supply is an essentially self-sustaining collection of
biological organisms, inorganic matter, and radiant energy. .
Aside from radiant energy, the chain consists principally of
the following four links: nutrients (e.g., phosphate)}, phy--
toplankton, herbivores, and predators. This set of interact-
ing organisms is arranged so that each item in the list con-
stitutes the food of the next item in the list, and in this
sense forms a food-chain in an oceanic region. This food-
chain is initiated and sustained by solar radiant energy pene-
trating into the sea. The radiant energy sustains the photo-
synthesis within the phytoplankton and the 1life processes of
the herbivores and predators. Furthermore, the continued de-
composition into nutrient material of each of the last three
links in the chain also contributes to its maintenance. Thus,
any complete theory of food-chain relations in the ocean must
take into explicit account, among other things, the role of
radiant energy in the food-chain relations. A survey of the
present state of the theory (ref. [265]) indicates that the
systematic inclusion of radiant energy terms into the food-
chain relation has been avoided because of the additional dif-
ficulties attendant on such an inclusion in an already complex
theory. In the present discussion, it will be shown how the
general inclusion of radiant energy terms into the descrip-
tion of the food-chain relations can be carried out in such a
way that the attendant increase in the complexity of the the-
ory will not render the result altogether impracticable. Fur-
thermore, it will be shown that the resultant formulations
point to some novel, detailed descriptions of the depth dis-
tributions of the light field in a region containing the mem-
bers of the food-chain. By doing so, the main purpose of the
discussion will be fulfilled, namely, to round out the clas-
sical Volterra prey-predator equations [309] which describe

*probable values: ”a
K

0.017 per foot = 0.056 per meter
0.0067 per foot
0.022 per meter at 480 millimicrons

Compare this o with that in Table 1 of Sec. 1.6.
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food-chain relations, by including one more equation which
specifically--and in a manner uniform with the other equa-
tions~-incorporates the photons of the light field into the
list of interacting members of the the food-chain. The manner
in which light particles can generally be considered: as ‘'prey"
or "predator” will become clear as the discussion proceeds.

The General Exponential Law of Change
:The simple differential law:

da _
It KA 1)
has been found to describe a wide variety of natural phenome-
na, among which are: growth of yeast cultures and bacterial
cultures, decay of radioactive substances, growth and decay
of animal populations, damped or resonating oscillations of
mechanical and electrical systems, and the darkening of 1light
fields with depth in scattering-absorbing media, to name a
few., Up until now we have been concerned in this work prin-
cipally with the latter use of the exponential law, ' As we
shall see in the latter stages of this discussion, we may"
very well view (1), under suitable interpretations, as the
alpha and the omega--that is, the beginning and the end--of
the general theory of the food-chain relations. However, for
the present, we view (1) as the ostensibly simple equation it
appears to be, with constant coefficient K, and thereby ob-
tain the general solution of (1) in the form:

ACt) = A(0)eKE ()

where A(t) is the amount at time t of the entity under con-
sideration. When K is positive, then there is growth of A(t);
when XK is negative, there is decay of A(t), as time t in-
creases. o

The description of natural growth and decay processes
summarized in (1) and (2) is known as the exponential law and
pertains as it stands basically to isolated and relatively
simple systems. When the systems are no longer isoclated or
‘no longer simple in internal structure, then (1) is replaced
by a correspondingly modified equation. For example, by re-
moving the isclation restriction, two new features: appear: a
source ‘term A may be added to the right side of (1); and the
possibility arises of a non-constant growth rate term K. From
the present point of view, the inclusion of a source. term Ap
presents no essential modification of the equation (1), and
so will not be studied in this discussion. However, the prac-
tical and theoretical possibilities inherent in a non-constant
growth rate term K are endless, and some of them hold the key
to the solution of the general problem of the food-chain re-
lation; some of these possibilities will now be considered.
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The Volterra Prey-Predator Equations

A theory of food-chains can be made to rest in the clas-
sical equatlons postulated by Volterra {309] which govern the
evolution in time of the number P of prey and number A of .
predators feeding on the prey. Thus, for example, if P is the
number of plants and A the number of animals in a symbiotic
relation, then their evolution in time may be governed by gen-
eral equations of the form:

dP _
Ic prp (3)
da _ 5
where we have written
"Kp" for p-bA (5).
and
"KA' for cP-a . (6)

That is, the growth rate term KP for the prey is the sum of

the intrinsic growth rate p for the prey population and the )
interaction decay term -bA, where b is a coupling constant be-
tween the populations of A and P. Similarly a is the coeffi-
cient of decay of the predator population, and c is the coup-
ling constant between A and P in this instance. The coupling
constants b and c are usually taken as equal or as connected
by some given relatiom.

Now each equation (3), (4) is of the general type as (1)
and, assuming Kp and K, known as functions of time along with
the initial values P(O? and A(0) of P and A, are directly in-
tegrable: .

c .
A(t): A(0) exp L)KA(t') dt!

P(t)‘k :

¥

¢
P(0) exp L)Kp(;') dt’

However, equations (3) and (4) are generally coupled (i.e.,

b # 0 and ¢ # 0) so that the preceding solutions, while for-
mally correct, are of no immediate practical use, since know-
ledge of Kp and KA is tantamount to knowledge of P and A them-
selves.

The equations (3) and (4), despite their analytically
unpleasant nonlinear coupling, form a workable starting point
in the quantitative description of the food-chain relation,



SEC. 1;10 ‘ FOOD-CHAIN PROBLEM ' 199

It is clear, however, that the equations as they stand de-
scribe only the herbivore and predator components of the
chain and so cannot adequately describe the complete food-
chain relation as defined above. The other members of the
chain, namely the phytoplankton ard the nutrients (which also
constitute a prey-predator pair), along with the radiant en-
ergy, are excluded from (3), (4).

The General Food-Chain Equations

We turn now to a formulation of the Volterra-type prey-
predator equations which goes beyond that of (3), (4) and
which takes into account the interactions of all five members
of the food-chain relation. To keep the geometric and phys-
ical variables down to a comfortable minimum at the outset,
we shall assume that all quantltles of the chain depend on
depth and time only, over the oceanic region of interest. Thus
let:

U(z,t) be the radiant density (radlant energy per
unit volume) at depth z, time t

P(i,t) be the number of phytoplankton per unit
) volume at depth z, time t

B{z,t) be the number of herbzvores per un1t volume
T at depth z, time t

C(z,t) be the number of carnivores per unit volume
S at depth z, time ¢ i

N(z,t) be the amount of nutrient per unit volume
Co at depth z, time t

We postulate a food-chain ordering among the‘membérs of
the food-chain, and which is schematically summarized below:

C B p N u
c 0 + + % +
B - 0 * % +
P - - 0 S + (7
N % £ t 0 *
U - - - - 0

This ordering is to be interpreted as follows: <consider the
carnivore row. Carnivores in the present hierarchy are under-
stood to grow at the expense of most other members of the
chain (hence the + signs in the row). Herbivores, on the
other hand, grow at the expense of phytoplankton, mitrients
and rad1ant energy (hence + signs) but are preyed upon by car-
nivores (hence - sign). The zero entries indicate that in the
present model, members of the chain do not increase or de-

* crease at the expense of their own numbers. (In mathematical
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terms the food-chain ordering telation in (7) is an irreflex--
ive, asymmetric, transitive relation.) The double signs (%)
in the nutrient row indicate that at times, N may increase(+}
in the direct presence of the other members and at other
times may decrease (-) in the direct presence of the other
members.

The food-chain orderinpg associated with each pair of
the food-chain is given a quantitative measure by assigning
interaction functions to each pair of members of the chain.
Thus to the pair (C,B) we assign a function Kgp which on the |
basis of the food-chain ordering relation tabulated above, is
positive for all z' and t. Similarly to (C,P) we assign the
interaction function Kcp which is also positive-valued. Con-
tinuing in this way we assign to the pair (U,N) the function
Kyny which is negative-valued for all z,t. The functions K¢g,
Kgg, etc. are all zero-valued, and Kyc may be positive, zero
or negative-valued for various z, and t.

Once a food-chain ordering has been established and the -
20 non zero interaction functions have been assigned, the Vol--
terra interaction equations can be written down: T

%% = K.C w

%% = KyB

7 ).
%% = KN

%% = KU

where we have written

"K' for kg + KegB + KepP + KN + KoyU )

K" fo;’ Ky + KpoC *+ KgpP + KpyN + KU

"Kp" for kp + KpoC + KpgB + KpuN + KpuU (9
Kyt for- Ky + Ky ¢ KypB o+ KgpP ¢ KU

K" for ky + KycC *+ KyghB + KypP + KQNN )
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The five functions kc, sy kyy are inherent growth-decay rates,
which are operative independently of the presence of other
members of the chain. Furthermore, the differentiation opera-
tor d/dt in (8) is a total derivative operator, i.e., we have
written

"d/de" for ~ /3t + v(3/9z) . (10)

where in each case v is an averaged speed of propagation in
the z direction. In the case of U it is the speed of light.
In the. case of C and B, it is variable with time and space
according to the vertical movements of the animals. In the
case of P and N, v represents rate of rising and sinking, plus
" eddy diffusion rates. The theoretical basis for the equation
governing U in (8) which is one of the novel features of (8),
rests in the general theory of K-functions for directly observ-
able radiometric quantities as developed in Chapter 9 below.
For practical purposes, one may, however, use {(7) of Sec. 1.4
with each side divided by v (recall (5) of Sec. 1.1).

Once the interaction functions are known and the initial
states C(z,0), K(z,0),...,U{(z,0) are known over all depths z
in the region of interest, the system (8) is in principle solv-
able by iteration techniques. TKus, for example, by writing

AN for (C, B, P, N, U) (11)
and o
KC 0
YR for KB (12)
0 “KU

The System {8) becomes transformed into the vector equation:

da
= =2aK 13
It (13)

which may be solved by any of several modern iteration tech-
niques (see, e.g., [23]) using large scale computers.. It is
therefore no longer necessary to limit the generality of a
food-chain theory because of the possible intractability of
the analytic solution procedure (e.g., the impossibility of
obtaining closed forms for the integrations).

An Illustration of the Food-Chain Theory with
A Radiant Energy Term

"As a simple illustration of the general theory outlined
above, let us consider a three-member food-chain consisting of
phytoplankton, herbivores, and radiant energy. Hence we will
study the effect of adding to the classical prey-predator equa-
tions (3), (4), another equation which specifically includes
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radiant energy in the prey-predator interactions. The follow-
ing discussion is actually independent of the number of mem-
bers in the food-chain, so that a reader following the general
line of argument developed below may extend the arguments and
their results to arbitrarily large food-chains.

The General Three-Term Equations

The requisité.equations for the present illustration

are:
dU .
G ° oy + KygB + KpPIU (photon;) (14)
g_% = (kB' + KppP + KBUq)B (herbivores) (15);
dp ' : ‘
& - (kp + KppB + Ky )P (phytoplankton) (16)

The Quasi-Steady State Equations

We shall be interested for the present in a quasi-steady -
state solution of the preceding system of equations. By
'quasi-steady state' we mean that the time rates of change of’
the magnitudes of P and B are negligible compared to that of
U, so that the light field U adjusts to and settles down to
steady state almost instantly in accordance to the prevailing
spatial distributions of P and B at time t. Therefore, in
(14) we may drop the time derivative and consider only change
of U in depth for fixed t and adjust the definitions of the
K-functions to absorb the speed constant v; and in (15) and
(16) we may drop the spatial derivatives, and consider only
the change of B and P in time for a fixed depth z: i

au _ 7
S Oy + KygB * KpP)U (17)
3B - (ky + K, P + K. U)B (18)
3t B * Kgp BU .

ELI (ky, + KB + K, U)P (19)
T p * Kpp PU

This set of equations like the general equations, is readily
solvable in principle for given arbitrary constants ky, Kyp,
etc., and initial. conditions. The steady state spatial dis-
tributions of U, P, B are of especial interest, and we shall
devote the remainder of this section to the study of these
distributions.
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The Equilibrium Solutions

When 9B/3t = 0 for every z at a given time t, the exist-
ing spatial distribution of B is called the equilibrium popu-
lation and denoted by "B,"; similarly for P. The equilibrium
populations of P or B are readily characterized in terms of
the spatial distribution of the radiant energy. Thus from
(18) we have:

which implies

so that

P = -(kB + KBUU)/KBP (20)

Similérly from (19), for steady state:

p
?—.—C.Lso
at
so that’
kp + KPBBq + KPUU =0
whence 1
By = ~(kp *+ Kpyt) /Kpp -(zn

Bquations (20) and (21) show that if the steady state radiant
energy distribution U is known, the equilibrium P and B dis-
tributions are determinable over the range of depths of in-
terest.

We now show that the relations (20) and (21) together
with -(17) uniquely determine the steady state radiant energy
distribution through the medium so that Pq and Bq are uniquely
determinable, in turn. Substituting Pg and Bq as given by
(20) and (21) into (17), and rearranging, we have:

dz

. K X : .
du UB Up A
=2k, - o= (kp + KpU) - = (ky + KUY P U
dz u KPB P PU Kgp = B BU
That is
U . Ly o+ b2 RN ¢33
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where we have written:

K K
_ UB UpP
mav for k., - |k, —— + k, — (23)
u P Kpp B Kpp :
and _
K, K
wpv  for  — |_UBPU , “UPTBU (24)
_ Kpg Kgp :

1f JU(O)" denotes the initial value of U at some fiducial
depth (here z = 0), then (22) résolves into:

au(0)e??

u(z) = (25) -

-bU(0)e?Z + [bU(0) . al

This solution may now be used in (20) and (21) to obtain de-
tailed descriptions of the depth distribution of the steady
state populations of P and B. The solution (25) exhibits
some interesting mathematical properties for various choices
of a and b. For b = 0, we have simple exponential growth
(a>0) or decay {(a<0). For a = 0, by a limiting argument,
we have :

U(z) = _EE_QL_
. 1-bU(0)z

Some General Properties of Equilibrium Solutions

The equilibrium solutions found above have several in-
teresting practical properties, one of which we isolate for
particular attention here. This is the property of predict-
ing a possible band of depths below the ocean surface outside
of which the P and B populations cannot exist. To find the
limits of this band of depths, we return to equations (20) .
and (21) and require that Py =0 and Bq=0. These conditions
merely state that real distributions of phytoplankton and her-
bivores must not have negative populations. The non negativ-
ity condition applied to (20) yields:

- (kg * KpyU)/Kpp =0

From the interaction table (7) we find that Kgp =0, so that

k., + KB U9

B u

whence
U= -ky/Kpy
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Similarly, from (21) with the help of the nonnegativity con-
dition we. find:

U= -kp /Kpy

Hence aknecessary condition for the existence of steady state
P and B equilibrium distributions at depth z is that

“kp/Kpy = U(2) = ~ky/Kpy S (26)

It is“to be noted that (26) are necessary conditions (i.e.,
if a band exists, then it must be such that (26) holds) and
not sufficient conditions, except insofar as the steps can be
retraced from (26) to (20) and (21). This can be done if Kpp
and Kpp are strictly negative and strictly positive, respec-
tively, and if the left side of (26) 1s indeed less than the
right side.

Now according to (25), U(z) is under certain conditions
a decreasing function of z (for negative a). Thus if U(0) is
greater . than -kB/KBU, then (26) shows that no steady state
population should exist for depths z = () down to where
U(z) = -kp/Kpy. Then there is expected a band of depths with-
in which P>0 and B>0., Since U{z) decreases monotonically,
there will be depths below which the left side of (26) no
longer holds, so that P = 0 and B = 0 in those depths. It ap-
pears then that the present model can in principle predict a
euphotic zone in natural hydrosols in which the food- chaln is -
in a qua51 steady state condition.

We. have reached the main goal of the discussion, namely
to supplement the classical Volterra prey-predator equations
with a third equation governing the flow of radiant energy in
the sea, and to briefly explore the consequences of the inter-
actions of the prey-predator-photon system.

1.11 Future Problems of Hydrologic Optics

The present introductory chapter to hydrologic optics
is brought to a close with a small, carefully selected list
of important problems which are as yet only partially resolved.
The 1list is deliberately kept small so as not to overwhelnm
prospective students of the subject with a mass of more or less
obvious: types of applicational problems they soon would en-
counter in their own fashion as their studies proceed. Rather,
we have selected for presentation and discussion here three
archetype problems which, if eventually satisfactorily re-
solved, would elevate the discipline of hydrologic optics to
the level of a mature science which could predict and. des-
cribe, in the fullest sense of these terms, all aspects of
the transfer of radiant energy in the seas, lakes and other
natural hydrosols of the world.
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Problem One: 7To Establish Theoretically the
Physical Basis of the Inherent Optical Properties
.of Natural Hydrosols

The two main inherent optical properties a, ¢, of the
hydrosols, and of optical media in general defined in Sec.
1.6, together with the equation of transfer ((10) or (12) of
Sec. 1.3) form the core of modern radiative transfer theory.
This theory is by definition (i.e., by actual considered
choice) predominantly phenomenological in outlook, and accord-
ingly the optical properties a, o are left unspecified in the
general theory. The .theory thus contains no formalism which .
predicts the values of o and o in a given medium <n terms of .
the inherent physical structure of that medium. It is impor- .
tant to understand the significance of this observation. It .
does not maintain that the theory of radiative transfer is ins
capable of providing procedures to measure o and o in natural
optical media. The ‘operational procedures in Sec., 1.6 and in
Chapter 13 below supply abundant methods for arriving at o
and o in given media. Rather, what is intended is the obser-
vation that the connections between o and o and the electro-
magnetie structure, and more bastically, the molecular struc-
ture of these media is beyond the ken of the principles of
the theory. The purpose of Problem One is to establish theo-
retical connections between o and o and the physical proper-
ties of an hydrosol--i.e., the properties of a given solution.
or suspension (or both) of substances in H,0. One such con-
nection is possible on the electromagnetic level wherein a

and o could be related theoretiecally to the permittivity, per- - )

meability, and conductivity functions of the hydrosol. Such
connections have received initial attention in Chapters XIV
and XVI of Ref. [251], and the results there suggest further
directions in which to pursue this problem. Observe that the
approach in [251] i§ not the approach of the Mie theory of
scattering, since the .latter applies only to single scatterers.
The suggested approach attempts to obtain a basis for o as
actually measured ©# situ. The motivation for Problem One is
quite clear: 1if this problem is solved, it may someday be
possible to predict, by calculation, the a and ¢ of an hydro-
sol, given its physical analysis; and conversély, from a spec-
tral radiometric analysis of o and o, to determine the physi-
cal components of the hydrosol. It may then also be possible
to resolve once and for all the quantitative and conceptual
problems of the nature of forward scattered light for very
small and very large angles of scatter (see Sec. 1.6, in par-
ticular Fig. 1.72; Sec. 18 of Ref. [251], and [781) and also
to provide a rational basis for such interesting findings as ..
displayed in Table: 4 and Fig. 1.73 of Sec. 1.6, of the uni-
formity of shape of d. Furthermore, by solving Problem One,
we may also resolve such questions as the existence of spec-
tral windows in the sea which even though seemingly settled
on an empirical level (cf., Sec. 1.6) will continually nag at
the analytically inclined individual who would prefer such an
important question to be resolved in a way which rests on nec-
essary inferences drawn from established physical principles;
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principles which are, incidentally, on a more fundamental le-
vel than those on which radiative transfer theory is made to
rest. Still further, the problem of the structure of ¢ in
the polarized context (using the matrix p) may be solved (see
Sec. 13.11). " Last, but not least, the resolution of the pres-
ent problem will securely anchor the discipline of hydrologic
optics, and radiative transfer in general, to the mathemati-
cal and physical bedrock of the mainland of modern physics.

Problem Two: To Establish Complete Empirical
Ciassifications of Natural Hydrosols ‘

The discussion of this problem was essentially presented
in Sec.-1.7, and so need not be repeated here. It should per
haps be emphasized that this problem is unquestionably the
single most important problem facing experimenters in the
field of hydrologic optics. A moment's reflection will show
the experimenter (who is for example bent on the prcblem of
the connections between the ideal photosynthesis in a region
and the measurement of radiant energy in that region) that
this problem is essentially one of classification of an opti-
cal medium in either of the three main modes (Modes I, II,
I1I) described in Sec. 1.7. Or again, a scientist concerned
with the problem of underwater optical communication or visi-
bility will benefit from complete empirical classifications
of the media of interest. Even theoreticians, on descending
from their ivory towers after making some inroads into Prob-
lem One above, will require corroboration of the kind that
only a.truly exhaustive solution of the present problem can
supply.

Perhaps we can put the nature of the present problem
into perspective by enjoining the prospective experimenter on
what not to do if his work is to contribute to the solution of
Problem Two and is to be of lasting worth and importance to
the discipline of hydrologic optics:

(i) Do not omit to mention the spectral range and
accuracy of your determinations of the optical properties,

(ii) Avoid broad-band measurements whenever narrow-
band measurements are possible, even if considerably more
effort is entailed for the latter.

(iii) Do not measure a alone or o alone; measure them
together (Mode IA), over at least the visible spectrum.

Alternatively:

© (iv) Do not measure o alone or X alone; measure them
together (Mode III), over at least the visible spectrum,

Alternatively:

{(v) Do not measure H(z,-) alone or h(z) alone:; measure
all four irradiances: H{z,%) and h(z,*) together (Mode II}),
or preferably N(z,+) (Mode IB), over at least the visible
spectrum.
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Of course with these don'ts go important positive obser
vances of the usual kind, especially for alternatives (iv)
and (v): recording of lighting conditions above the air-
water surface, the state of the air-water surface, the proxim-
ity and state of the bottom, the state of polarizatiomn, and
so on.

Problem Three: To Establish A Unified Automatic
Computation Program for Prediction Computations
and Data Reduction Computations in
Geophysical Optics (the GEOVAC)

The theory of radiative transfer is now well founded
with many excellent means of solution of the equations of the
theory, as explained at length at appropriate points through- .
out the remainder of this work, or in Ref. [Z51], and in other
works on the subject. In need at present are workable compu-
ter programs which will take o and ¢ and boundary lighting
conditions (either unpolarized or polarized) and yield inter-
nal radiance distributions throughout the medium of interest,
regardless of its shape and size. In other words we envision
a hardware realization of the Mode IA classification of natur
al optical media. Conversely, the computation programs
should be able to convert experimental documentations of the
(unpolarized or polarized) radiance distributions {or at least
irradiance quartets), as a function of wavelength and depth,
into the appropriate determination of the inherent and ap-
parent optical properties of the medium. In this way we can’
also achieve a hardware realization of the Mode 1B (or, re-
spectively, the Mode II) classification of natural optical
media. The applications of such a program-complex to the
problems cited in the opening remarks of Sec. 1.0 are mani-
fold, and many uses of such a program are undoubtedly yet to
be conceived. The geophysical optics automatic variable com-

puter--the 'GEOVAC'--program envisioned above will serve to tie

together efforts on both Problems One and Two above, as well
as help solve the everyday problems arising in the englneern@
applications of meteorolog1c and hydrologic optics.

1.12 Bibliggraphié Notes for Chapter 1

In addition to the mention of various references given
at the appropriate points in the discussions of this chapter,
the following references are noted for especial attention, as
they form a relatively immediate point of entry into the do-
main of hydrologic optics, either directly or via their ref-
erences. First there is the survey article of light in the
sea by Duntley [78] which covers the gist of the hydrologic
optics work of the Visibility Laboratory of the University of
California over the twenty year period 1944-1964. Contempo-
rary and earlier work in hydrelogic optics by other organiza-
tions and individuals is surveyed in the annotated bibliog-
raphy on transmission of light in water by Du Pr& and Dawson
[84]. This bibliography covers approximately 650 abstracts
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by over 400 authors in more thanm 150 European and American
journals, extending over the period from 1818 to 1959, Two

symposia on radiant energy in the sca resulted in published
papers relevant to hydrologic optics: the Helsinki meeting
of 1.U:G.G. in August 1960 is summarized in [124]; and papers

presented at the Hawaiian meeting of the tenth Pacific Science
Congress are in [303]. Reference [109] contains a summary of
a small amount of theory and a relatively larger amount of
practical experimental results along with descriptions of in-
strumentation used in hydrologic optics. Reference -[109],
accordingly, is a useful supplement to the present work. The
paper and recent book by Jerlov [125] also surveys recent de-
velopments in the field. Of some historical interest in the
developmental aspects of the field of hydrologic optics are
Chapters I-IV of [82] which are the synthesis of the experi-
mental work by Duntley and the early theoretical work of the
author. The roots of this chapter trace back in part to some
early studies presented in [210}. The basis of the subsequent
chapters of this work are given in the bibliographic notes
appended -to each chapter.

The numbering of the bibliography items in this volume
and succeeding volumes follows that of the master bibliog-
raphy given in the final volume (VI) of the present work.
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INDEX-

o {alpha), 60

a (ay), 55, 58, 60

Absorbed flux, 55, 58

Absorption (of a finitely
deep slab of water, AY)’
70; measurements, 103
1ength 110

Adaptation level (for visi-
bility), 160

Apparent optical properties,
118; defined, listed, 135

Apparent radiance, 60

Astrophysical Optics, de-
fined,

Asymptotic radiance hypo-
thesis, 41

Atmospheric radiative trans-
fer, gross features, 27

Attenuation length, 90

Back scattered flux, 55

Beam transmittance, 120

Beebe, L., 143, 153

Biological sources, under-
water light field, 53

Blondel,

Boundaries, 55

Brightness (monochromatic)
of radiant flux, 10;
'Brightness' is an untech-
nical term for the precise
concepts of radiance or
luminance (as the case may
be}.

Candela, 20

Carnlvores (in food chain),
199

Chromaticity (color), 146;
components, 148; plane,
147, dlagram 149 coor-
dlnates, 149

Classification of natural
hydrosols, 138

Collimated flux, scattering
functions for, 83; produced
by sources, 114

Color, 146; components, 146;
purity, 149; dominant wave-
length, 149

Colorimetric radiative trans-
fer, 142

Complete reflectance (for ir-
radiance), 79

Diffusion model, 61;
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Complete transmittance (for
irradiance), 79

Consistency, check for inher-

ent optical properties, 124

Contrast; apparent, inherent,
44; transmittance law, 89,90,
99; multiplicative (semi-
group) property, 95

Contrast reduction; subsurface,
by scattering and absorption,
44 by refractive effects,

Conventlons (used in this work)
nature of radiant flux, 6;
unpolarized flux, 7; fre-
quency density (footnote)

Cosine law, for irradiance,
for radiant emittance, 14

13;

Decomposed (light field), 63

Diffusion constant (D), 64; in
terms of K, 111 °

piffusion equation (for h), 64

Diffusion length, 135

for point

sources, 110; empirical ex-
amples, 112

Distribution factor, 55

Divergence law, 44; for vector
irradiance, 62 ‘

Dominant wavelength,

Duntley Disks, 96

149

Equation of transfer, 60

Equilibrium radiance, 85

Equilibrium solutions (food
chain), 203

Exponential law of change (gen-
eral), 197; differential
form, 201 i

Fick's law (of diffusion), 64

Field interpretations of radi-
ant flux, 12

Finitely deep hydrosols, Te-
flectance and transmlttance,
68

Flux density (radlant), 10

Food. chain problem (in the sea),
196

Foot candle, 20

Frequency density convention
(in this work), 7
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Geophysical Optics, defined,
1

GEOVAC (geophy51cal optics
variable automatic computer),
208

Glitter patterps;,on air-wa-
ter surface, 32

Herbivore (in food chain),
199

Herschel (luminance unit}), 21

Homogeneity (of o), 82

Hydrologic Optics, defined, 13
future problems, 205

Hydrologic range, 90

Il1luminance, 19; measured at
earth's surface, 25

Inherent optical properties,
118; defined, listed, 119

Inherent radiance, 60

Intensity (radiant}), 10;

" field, 12; surface, 12

Interaction principle, 4

" Interdependence (Plan) of
chapters in this wotrk, 5

Invariant Imbedding Relation-
(for irradiance), 71, 80

Irradiance, 12; scalar, 15,
106; hemispherical scalar,
16; vector, 15; net, 16,
61; upwelling (upward), 16,
55, 58, 106; downwelling
(downward), 16, 55, 58,
106; measured at earth's
surface, 24; reflectance
of air-water surface, 30;
reflectance in deep water,
67; invariant imbedding
relations, 71

Irradiance distributions,
underwater, 42

Isotropy (of o), 82

¢ (kappa){(k-function or dif-
fuse attenuation<function
for diffusion model), 65

k (little kay), 58; inter-
changeable with K (big
kay), 83

Lambert, 20 :

Light. ThlS term is used
throughout the present work
as an informal correspon-
dent to any one of the de-
fined concepts of geometri-
cal radiometry and

INDEX
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photometry. The meaning in- -
tended for the term 'light'
will be implicit in each
context of its use. Thus
'light field' may, e.g.,
correspond informally to
'radiant energy', 'radiant -
flux', 'radiance distribu-
tion', 'irradiance function',
fluminous energy', 'luminous-

flux', ‘luminance distribu-
tion', 'illuminance func-
tion', estcetera.

Light field, decay with depth,
37, 66; polarlzatxon, under-
water, 50; biological sources,
53; artificial, 109; decom-
posed, 63

Lumen, 19

Luminance, 189

Luminosity function (photopic),
145 :

Luminous energy, 19

Manhole (optical), 34

Melanoidines (Gelbstoff), 133 ,“

Modes of classification- of
natural hydrosels, 140

Multiplicative (semigroup)
property, of contrast trans-
mittance, 33; of beam trans-
mittance, 120

Natural hydrosols, classified,
138; characterization (for .
visibility), 195

Natural illumination, 156

Nomographs for underwater vis-~
ibility, 154 ,

Nutrient (in food chain), 199

One-D (two-£flow irradiance)
model, 56

Operational definitions of the
densities, 10

Optical properties,

inherent,
apparent, 118

; Path function, 60

Path radiance, 63
Perfectly diffusing (surface),
21 ' :

Phase density, of radiant
flux, 10

Photometry, geometrical, 18

Photons, as viewed in this
work, 7
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INDEX

Photopic luminosity curve,
18, 145

Phytoplankton (in food chain),
199

Polarization, defined, 51;
underwater properties, 52

Plane-parallel medium, 55

Prey-predator equations, 198

Principles of invariance for
irradiance, 73, 79

Problems of hydrologic optics,
2, 205

Quantum, 7
Quasi-steady state {(food
chain), 202

Radiance, 10; field, 12;
surface, 12; n2-law, 18,
87; imherent, 60; appar-
ent, 60; equilibrium, 85;
-difference law, 92; re-
sidual, 120; path, 63

Radiance distribution, behav-
ior with depth, 39; asymp-
totic hypothesis, 41; by
submerged point source, 113

Radiance model, 58 .

Radiant density, 16

Radiant emittance, 12

Radiant energy. In this work
radiant energy is the unde-
fined, primitive concept,
taken as given by nature
and axiomatized by radio-
metrists as their primary
physical notion. In other
fields, such as electromag-
netics, it can be made to
rest on one step lower: on
the constructs (E,D,B,H) of
the electromagnetic field.
These steps into physical
primitivity descend even
lower. But this nether re-
gion' is of no concern to us
in this work.

Radiant flux, defined, 7;
monochromatic brightness of,
10; field and surface inter-
pretations, 121

Radiant intemnsity, 10; field
and surface, 12

Radiative transfer theory,
defined, 1; basic con-
structs, 4; atmospheric
features, 27; across air-
water surface, 28;

Radiativ
(con't
colori

Radiomet
tional

Radiomet

Rational
on}, 2

Reflecta
air-wa
infini
water,
homoge:
plete

Refracti:

Residual

Riccati |
chain,

R-infini
tion i:

o (sigma
s (ess),
Scattere:
limate:
backwa:
Schuster
Secchi D:
calcul:

-~ Semigrou

proper
mittant
mittani
Sighting
tions)
Simple mt
Solar (1i:
22; (i
Source t¢
diance’
Spectrum
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Surface :
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beam, I
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INDEX
Unpolarized-Flux éonyention
(in this work), 7

Vector analogy with color, 146
Visibility underwater, 154;

effect of depth and water
clarity, 157; use of nomo-
graphs, 163; along inclined

paths of sight, 165; hori-
zontal paths of sight, 170
Volterra prey-predator equa-
tions, 198 ' :

Volume absorption function,
60; measurenment,

t, 103; oper-
ational definition, 124
Volume attenuation function,

60; operational definitiom,
119; empirical, 120

Volume backward scattering
functions,

124
~Volume forward scattering
functions, 124
122

Volume scattering function,

Volume total scattering func-
tion, 60; operational defi-
nition, 123

Water clarity (visualization),
194

149

Wavelength, dominant, 149
White light, )
Window (spectral), 134
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