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PREFACE 

In this work I conclude my studies of radiative trans- 
fer theory begun in the monograph, "Radiative Transfer on 
Discrete Spaces." In that monograph the main goal was the 
founding of the interaction principle underlying the phenom- 
enological theory of light in scattering-absorbing media. In 
this treatise, I systematically construct from the interac- 
tion principle those basic laws and formulas of the disci- 
pline of radiative transfer that pertain to hydrologic optics. 
Thus while the first work was concerned with the gathering 
together of many single threads of theory converging on the 
notion of the principle of interaction, the present study 
starts with the principle as a base, deduces the superstruc- 
ture of general radiative transfer theory, and applies it to 
the special case of light in the sea. This task is essen- 
tially carried out in Chapter 3 and culminates in the classi- 
cal principles of invariance and in the equation of transfer 
for radiance. Concurrent with this is the deduction of the 
existence of the fundamental optical properties used in the 
equation of transfer, namely the volume attenuation and vol- 
ume scattering functions. Some of the remaining chapters of 
the book (Chapters 4, 5, 6, 7, 8, 11) are devoted to deduc- 
tions from the principles of invariance and the equation of 
transfer of those laws of radiative transfer and those prop- 
erties of natural optical media which are particularly suited 
to the study of radiant energy transfer in the sea and other 
natural bodies of water. Actually, many hydrologic optics 
principles discussed in this work can also describe radiative 
transfer phenomena in generil optical media, such as those 
encountered in both the astrophysical and geophysical (in- 
cluding industrial) settings. However these principles have 
often been deliberately phrased for use within the context of 
hydrologic optics in order to retain the concreteness and 
practical utility of the theory. 'De quest for generality 
was fulfilled in the discrete-space inonograph. 

In completing the preceding task, I brought to a close 
a long and almost circular conceptual odyssey which began for 
me during a summer eighteen years ago (1950) when I was a 
student at the Massachusetts Institute of Technology. I was 
given the problem of determining the reduction of visibility 
of submerged objects a5 seen along inclined paths of sight 
through the wind-crinkled, air-water surface. The odyssey 
was 'circular' in the sense that my preoccupations in this 
field began and ended essentially with the problem of radia- 
tive transfer through the wind-blown air-water surfaces of 
natural hydrosols (Chapter 12). Between these end points con- 
cerned with the initial and final studies of this problem, I 
travelled a conceptual journey which for long periods was 
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occupled with the search for the most basic principles and 
concepts underlying the solution of this and related problems 
of light in the sea. As explained in the preface of the 
first work,that search was guided by a personal interest in 
carrying the theory of hydrologic optics to its highest level 
of geometric and algebraic perfection. 

During the past eighteen years the theory was most in- 
tensively pursued within the period of seven years from 1953 
to 1960 and during a brief period around 1964-1965. The re- 
maining periods of time were occupied at first with student 
studies and later with writing, teaching, travels, and ap- 
plied and pure mathematical studies in other fields. In par- 
ticular, the manuscript for the present work was first 
drafted in rough outline in the spring of 1958. Successive 
drafts were enriched as additional theory was created. The 
motivations of these additions were through the experimental 
findings of my colleagues and my own imperfect applications 
of the rough theory. The roots of the present work extend 
back to a series of lectures I gave on hydrologic and atmos- 
pheric optics in the fall of 1953 and the spring of 1954, 
and earlier still to the joint work in 1950-1952 with Duntley 
summarized in ehe first four chapters of "The Visibility of 
Submerged Objects." The final and main manuscript of the 
present work was essentially completed in the summer of 1965, 
after approximately 20 months of writing which wa5 begun hard 
on the heels of finishing my monograph. During this period 
large parts of Chapters 2, 3, 6, 7, and 12 were originated as 
the writing proceeded. In general, every chapter had new 
material of some kind added at this time. The present work 
then lay dormant for nearly three years, awaiting final proob- 
reading, while I was occupied with new teaching and research 
responsibilities. On recently re-reading the manuscript and 
teaching from parts of it, I find that the fundamental theory 
has mellowed well; it has reached a stage of internal com- 
pleteness which will be adequate to the needs of all advanced 
experimental and theoretical work in the forseeable future. 

Those points in the present study where contact is made 
with physical reality, in the form of useful illustrative 
experimental data on the radiance of submerged light fields 
and in instructive listings of optical properties of various 
seas and lakes, are due principally to the labors of my col- 
leagues Dr. S.Q. Duneley and Mr. J.E. Tyler. Their key meas- 
urements of the basic radiometric quantities and optical prop- 
erties of these media provided some of the original impetus 
toward my construction of the theory o€ hydrologic optics. 
The construction was undertaken as an attempt to conceptually 
sort and order the many empirical laws of light in the sea 
which their probings uncovered, My indebtedness to these men 
actually is deeper than this, and I would like to record here 
the following observations in this regard. 

To Dr. Duntley I owe much of the support of my work dur 
ing all the past years through his various contracts with the 
Bureau of Ships and the Office of Naval Research of the 
United States Navy. The early years were interspersed with 
conversations and working sessions in which I received from 
him some of my first glimpses of a possible theory of 
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hydrologic optics. In the summer of 1950 at the Diamond is- 
land Experimental Station in Lake Winnipesaukee, New Hamp- 
shire he described his important empirical discovery of the 
elliptical hydrologic range law made during some underwater 
experiments. The hint of theoretical orde-r in that experi- 
mental polar plot of hydrologic range versus downward angle 
of sight inspired me subsequently to fathom first the physi- 
cal and then the mathematical laws underlying that phenomenon. 
The ensuing summer was spent happily in my sun-baked cabin on 
that tiny island as I tackled my first independent scientific 
studies. These resulted in the deduction of the elliptical 
hydrologic range law and also the simplest radiance-propaga- 
tion laws for Bines of sight through air-ruffled water sur- 
faces and along inclined paths of sight through deep regions 
of seas and lakes. Duntley's influence on my studies occur- 
red not only in the experimental quarter, but also on first 
reading his distinguished contributions to the Schuster two- 
flow theory: I recall the train ride through New Hampshire 
countryside from Boston which began that summer of 1950 and 
which is forever linked with the conceptual revelations ex- 
perienced as I read his two papers on "Optical Properties of 
Diffusing Materials" and "The Mathematics of Turbid Yedia." 
The first paper pointed the way toward the improvement of the 
Schuster two-flow theory. The latter paper was eventually to 
provide an instance ob the interaction principle in the form 
of Schuster's "principle of self-illumination." A dozen 
years were to pass and a score or more of distinct manifesta- 
tions of the principle of interaction were to be discovered 
before its universality was to become manifest in my mind. 
It was also Duntley's exposition of L.V. King's integral equa- 
tion method and especially the closing remarks in the latter 
paper that eventually encouraged me to create the discrete 
space theory of radiative transfer. This theory on the one 
hand retains the generality of the integral equation approach 
and on the other leads without modification to numerical de- 
terminations of light fields in general optical media. The 
requisite procedure is given by the Categorical Analysis 
Method in my monograph. 

I wish also to note in some detail the profound influ- 
ence of the work of Tyler on my constructions of hydrologic 
optics theory. Unquestionably his experimental measurements 
on the "Radiance distribution as a function of depth in an 
underwater environment", was for me a watershed of at least a 
dozen incipient theoretical laws of hydrologic optics. ~t 
provided, for example, the definitive experimental data 
needed to verify L.V. Whitney's conjecture on the existence 
of "characteristic diffuse light" deep below the surface of 
every natural optical medium and which belongs exclusively to 
that medium regardless of the lighting conditions above its 
surface. These findings encouraged my search for theoretical 
expressions of the fundamental properties of real light 
fields far from the boundaries of deep optical media. It was 
also Tyler's accumulation of data by means of ever more pre- 
cise radiometric measurements in oceans and lakes that led us 
both 'to realize the inherent limitations of the classical 
Schuster two-flow (one-D) model of the light field in hand- 
ling such data: 
radiance flows, for example, were uncovering new kinds of 

his measurements of upward and downward ir- 

\ 
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depth behavior of the diffuse attenuation 8nd reflectance 
functions of such subtle and delicate forms that they lay far 
beyond the descriptive powers of the classical theory. This 
state of affairs eventually led me to formulate the theory of 
directly observable optical properties of light fields in 
real stratified media. These formulas for directly observ- 
able properties were subsequently applied by Tyler and his 
colleagues in various papers, and particularly in the "Method 
for obtaining the optical properties of large bodies of water!' 
The present account must also take cognizance of many conver- 
sations with Tyler on the puzzles of practical radiometry in 
the sea. These discussions gave me insight into the needs of 
the experimenter in hydrologic optics and for whom in turn 
Chapters 9, 10, and 13 are specifically written. In the 
course of the years the contents of these chapters arose in 
various attempts to cast into a mathematically self-consis- 
tent array of operationally meaningful forms all the funda- 
mental concepts of radiative transfer in the sea, such as the 
volume attenuation, scattering, absorption, and the diffuse 
attenuation functions for all radiometric concepts. These 
concepts in other branches of radiative transfer, notably as- 
trophysical optics, were either nonexistent or in the form of 
unrealizable mathematical abstractions of no use to one with 
direct instrumental access to the interior of the optical 
medium of interest; in our case, the sea. Finally, I grate- 
fully acknowledge that a large part of the writing of this 
work was generously supported by portions of Tyler's National 
Science Fotmdation Grants (G 11668 and G 289). 

The preceding description of the background of the pre- 
sent work has implicitly referred to the contents of all the 
chapters except the first two. 
as a self-contained 'short-cours? on hydrologic optics. In- 
deed it has been used as a base for the first course on 'Ra- 
diative Transfer in the Sea' given at Scripps Institution of 
Oceanography in the fall of 1967. ' Particular attention is 
directed toward the three simple models for light fields in 
natural waters given in Chapter 1. These models constitute 
the minimal theoretical tools for anyone who enters the field 
of hydrologic optics and wishes to do productive work therein. 
In particular for one who plans to do experimental studies, 
some guidelines are necessary to first of all measure the 
quantities of hydrologic optics in a consistent manner and 
secondly, to measure something that will he useful to others 
in the same field. These models and the constructs from 
which they are fashioned supply the requisite guidelines. As 
one's needs for precision and comprehensiveness of concepts 
evolve, then the theoretical developments comprising the re- 

, maining chapters of the work will be of help in filling these 
needs. Attention is also directed to the section of the 
first chapter dealing with practical nomographs for predict- 
ing the range of visibility available to underwater swimmers 
in various natural hydrosols such as harbors, lakes and seas. 
These nomographs are based on the work of Duntley, which 
combines the properties of the human eye with one of the 
three models of the light field referred to above. Also of 
general interest are the many samples of magnitudes -of light 
fields and optical constants found in natural waters. These 

\The first chapter may serve 
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samples are based mainly on the field work of Tyler, Duntley, 
and Jerlav and serve to fix one‘s intuition for the sizes of 
the optical constants found in nature. This in turn allows 
intelligent derivations of new approximate formulas based on 
thc light field moCels alluded to above. Finally, the pres- 
ence of’Chapter 2 ,is almost self-explanatory, being concerned 
with the scientific language of radiative transfer: geomet- 
rical radiometry. Students of geometrical radiometry may 
find the various novel formulas and laws developed throughout 
the chapter of independent interest. flowever, the chapter 
finds its place in this work by providing the radiometric 
concepts and formulations needed in the applications of the 
interaction principle to hydrologic optics. 

The main drafts were expertly typed by Mrs. Lynn White 
and by Mrs. Judith Marshail. Mrs. Marshall also assisted in 
the preparation of various tables and graphs, and the typing 
of the final draft for photocopy. 

R-W.P. 
San Diego 
December 1968 

The final draft was completed while undertaking new re- 
searches in hydrodynamics with the Tsunami Research Effort 
(J.T.R.E.), which is part of the Environmental Research Lab- 
oratories of the National Oceanic and Atmospheric Administra- 
tian. I am grateful to the Director of J.T.R.E., Dr. Gaylord 
Miller, for making available the Graphic Arts facilities at 
the Institute of Geophysics of the University of Hawaii, and 
particularly to Mr. Brad Evans for his art work on the 
figures. 

R.W.P. 

Honolulu 
January 1972 





CHAPTER 1 

INTRODUCTION TO HYDROLOGIC OPTICS 

1.0 Hydrologic Optics: Definition, Domain, and Desiderata 

As the earth swings round the sun, it continuously turns its 
atmosphere, its lands and its seas to face into the steady 
torrent of energy streaming from that radiant star. Of the 
nearly 65,000,000 watts of radiant power of all wavelengths 
emitted from each square meter of the sun's surface, about 
1,400 watts are incident on each square meter of the upper 
levels of the earth's atmosphere directly facing the sun, 
these to initiate and sustain the complex chains of meteoro- 
logic and hydrologic events among which are the important 
biologic links evolving in the atmosphere and the seas. In 
the meteorologic domain, the radiant flux from the sun is 
partly absorbed to warm the earth's gaseous mantle so as to 
generate winds and habitable climes; and partly scattered so 
as to help grow plants and light the ways of the creatures of 
the air and earth below. In the hydrologic domain the radi- 
ant flux, when in sufficient abundance, is partly absorbed to 
help keep the seas and lakes and other natural hydrosols in 
their fluid state, and is partly scattered about in their 
upper levels so as to light the ways and help provide suste- 
nance for the creatures of these watery domains. 

HydroZogic optics is the quantitative study of the in- 
teraction of radiant energy with hydrosols, especially the 
natural hydrosols of the earth such as its seas, lakes, ponds, 
rivers, and bays. Hydrologic optics is part of a broader 
discipline known as geophysicaZ op$ies which studies the com- 
mon physical and geometrical principles governing radiant en- 
ergy fields in both the meteorologic and hydrologic domains. 
Geophysical optics together with astrophysical optics--in 
which the emission, absorption and scattering of radiant en- 
ergy within general planetary and stellar atmospheres is of 
primary concern--fall under the aegis of radiative transfer 
theory, which is defined as the quantitative study, on a 
phenomenological level, of the transfer of radiant energy 
through media that absorb, ,scatter, or emit radiant energy. 
Radiative transfer theory, in turn, is viewable as a logical 
descendent of electromagnetic theory, and in this way hydro- 
logic optics, and more generally radiative transfer theory, 
may take its place among the theories of modern physics. 
These interrelations are summarized in Fig. 1.1. 



2 

ELECTROMAGNETIC THEORY r 
INTERACTION PRINCIPLE L 

VOI.. I 

GENERAL RADIATIVE 

ASTROPHYSICAL GEOPHYSICAL 

LIMN OLOGlC OCEANOGRAPHIC 

FIG. 1.1 Hydrologic optics as a logical descendant of 
radiative transfer theory and electromagnetic theory. 

The Problems of Hydrologic Optics 

logic optics arise in the attempts to answer several diverse 
types of questions such as the following. How much radiant 
energy of a given wavelength is reflected from a sea or lake 
surface, and how much penetrates this surface and reaches 
each depth of the sea or lake? How does the amount trans- 
mitted depend on the surface winds and other factors affect- 
ing the physical, geometric, and dynamic state of the moving 
surface? Does the light penetrate the body of the ocean or 
lake in some general and predictable manner as regards depth 
dependence and directional dependence of the light distribu- 
tion? If so, what are the pertinent physical measurements 
that must be made to facilitate such predictions? What ef- 
fects on the light field are engendered by the proximity of 
the shores, bottoms and other boundaries of the hydrosols? 
What are the pertinent optical properties of natural hydro- 
sols by which oceanographers and limnologists can character- 
ize these waters? How may these scientists usefully employ 
these concepts in the pursuit of their special interests such 
as marine biology, geology, and hydrodynamics? How far can a 

The theoretical and empirical studies comprising hydro- 
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diver or submariner expect to see a given submerged object 
as he maneuvers in the submarine world of blue-green lights 
and shadows? How far can one expect to communicate under- 
water by means of given types of light sources such as lasers, 
point sources, etc.? Of what significance is the polarized 
light field to the denizens of the deep and to enterprising 
humans interested in navigating through the submarine world 
by unconventional means? These summarize some of the basic 
types of questions with which hydrologic optics is concerned. 
The questions have many variations and their resolutions are 
often of great difficulty,so that the theory of radiative 
transfer which underlies hydrologic optics is often taxed to 
its limits in the attempts to provide quantitative or even 
qualitative answers. As the discussion proceeds, we shall 
make clear the present status of the solutions to the general 
problems listed above. 

The Aims and Desired Goals of This Work 

In this work we shall be concerned with the systematic 
development of the basic physical principles and mathematical 
procedures of radiative transfer theory which have been found 
effective in solving the general types of problems cited 
above. The reason for selecting the domain of hydrologic op- 
tics for specific study rather than meteorologic optics or 
any other branch of general radiative transfer rests simply 
in the fact that it is in this domain that most of the prac- 
tical experience of the author lies. 

It should be emphasized at the outset that our primary 
concern is with the principles of hydrologic optics rather 
than the detailed numerical and experimental aspects of the 
state of the art of the discipline. These latter procedures, 
as important as they are in the various stages of securing 
our knowledge, both theoretical and empirical, are in the 
last analysis meaningful a d  efficacious only if they are 
based on sound physical principles and mathematical tech- 
niques. Repeated direct exFeriences of the author in pur- 
suing complete or partial solutions of problems of the types 
listed above, have demonstrated the importance of having a 
well-grounded knowledge of the principles of radiometry and 
radiative transfer theory during the search for the solutions. 
It would seem to follow that anyone €aced with similar prob- 
lems and armed with a comparable battery of principles and 
laws of the subject will also eventually find his way to his 
own desired experimental or theoretical goals. This, then, 
leads to the primary aim of the present work: to give a sys- 
tematic development of the fundamental principles and proce- 
dures of radiative transfer theory which may be emptoyed by 
students of the subject Zn the pursuit of solutions of their 
particuZar theoretical and experimental problems of geophys- 
ical optics, and especially hydrologic optics. It has also 
been the experience of the author that both the theoretical 
and experimental practitioners of the arts of radiometry and 
radiative transfer are singularly independent individuals, 
each in his own way, and in view of this it would be somewhat 
futile to preoccupy the potential student and researcher with 
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anything but the most pertinent and general principles and 
procedures. This observation is cited to reinforce our aim 
enunciated above. 

The Plan and Scope of This Work 

It is in the nature of the theory of hydrologic optics 
that the full founding and delineation of its basic princi- 
ples is tantamount to a full founding and delineation of the 
basic principles of radiative transfer theory itself. This 
fact rests on the observation that the physical-geometric 
problem of completely describing the structure of the scat- 
tered light field in a sea or lake is just as complex a task 
as that of describing the light field in the atmosphere, or 
for that matter in any real medium that emits or scatters 
light. This realization dawned very early in the author's 
studies of oceanographic and limnologic optics and in his 
theoretical excursions into the problems of meteorologic op- 
tics. It was eventually realized that the appropriate direc- 
tion of study was not a problem-by-problem horizontal advance 
through the everyday jungle of examples, cases, and counter- 
examples, but rather the direction required a sharp vertical 
tack, straight up into the heights of abstraction, from 
whence one could most economically view the radiometric 
scenes spread out below from horizon to horizon. This at- 
tempt to escape into the thin air of general constructs and 
guiding principles was made as often as the exigencies of 
daily problems and consultations would allow, and eventually 
as reports and papers accumulated, there emerged a pattern of 
principles and procedures which could be seen to apply to all 
the special principles and special procedures accumulated to 
that time. Interestingly, it was found that the abstract 
principles could be phrased and assembled using very meager 
amounts of advanced mathematical machinery. This, coupled 
with the author's classroom experience that the basic con- 
structs of radiative transfer, namely radiant flux, scatter- 
ing, absorption, volume, area, and Length are all readily 
visualizable, resulted in a theoretical framework which was 
readily understood and applied once a small number of academ- 
ic prerequisites had been dispatched, namely the equivalent 
of a one year course in advanced calculus, which includes 
vector analysis, and first and second order ordinary differ- 
ential equations. 

stages of this work that its scope be widened to embrace, 
whenever possible, the completely general principles of radi- 
ative transfer theory, and to attempt a systematic develop- 
ment of the subject by starting from a single fundamental 
principle, namely that which eventually came to be called the 
interaction principle (Sec. 3.2). For, it would be ineffi- 
cient and unesthetic to base a science on many seemingly un- 
related principles when it is possible to employ merely one. 
Accordingly, in Chapter 3, after a thorough grounding in geo- 
metrical radiometry, the reader is lead through a methodical 
construction program of general radiative transfer theory. 
The elaboration of the details of this task will occupy most 

For all these reasons it was decided in the planning 
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of t remainL2r of the work, with several important chap :rs, 
included as integral pasts of the main discussion, which are 
devoted to the richer theoretical details made possible by 
adopting the plane-parallel settings indigenous to hydrologic 
optics. 

development of radiative transfer theory provided some care 
was taken at the outset to equalize the backgrounds and in- 
tuitions af potential students of the subject. It is to such 
students and to the general reader that we devote this chap- 
ter. In the following sections we shall acquaint these read- 
ers with the general outlines 0.5 hydrologic optics by sup- 
plying representative radiometric examples of natural light 
fields and typical magnitudes of optical properties encoun- 
tered in natural hydrosols. We shall also present three of 
the simplest models of light fields which are capable of des- 
cribing a very wide number of situations encountered in prac- 
tical hydrologic optics. W e  shall in addition illustrate the 
use of these models by means of explicit deductions and cal- 
culations. We shall also present graphs and tables based on 
these models which have been found useful in practice. Then 
with these introductory developments completed, we shall feel 
free to start from scratch in Chapt'er 2 and proceed rigorous- 
ly with the systematic construction of the modern theory of 

It was found possible to adopt the preceding form of 

CHAPTER AND ~~~U~~ lNfEWDEPENDENCE 

- 
> 
6 
> 
hr 

FIG. 1,2 Interdependence of the chapters of this work. 
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radiative transfer. The results will embody powerful exten- 
sions which appear to be capable of solving--in principle and 
in practice--every known current problem of applied radiative 
transfer theory in the domains of the air and the sea. 

cates the logical interdependence of the various volumes and 
chapters. Actually every chapter is connected in some way 
with every other; however, some connections are stronger than 
others, and these are shown in the diagram. Thus the prereq- 
uisite most essential to understanding a given chapter is the 
chapter (or chapters) which stand immediately above it via 
the horizontal and vertical lines in the diagram. For exam- 
ple Chapter 11 depends directly on 4,5, 7 and 10, while 6 
depends directly only on 3. Furthermore, the chapters whose 
contexts are developed on the level of general radiative 
transfer theory (Fig. 1.1) are outlined in heavy boxes; those 
that are more directly concerned specifically with hydrologic 
optics (or the theory of stratified plane parallel media) are 
outlined in the dashed boxes. 

As an aid in studying the present work Fig. 1.2 indi- 

1.1 A Primer of Geometrical Radiometry and Photometry 

levels of the atmosphere has rapidly percolated down through 
the atmosphere and redistributed itself via scattering pro- 
cesses throughout the lower reaches and in the upper layers 
of the seas and lakes, its flow within these media assumes an 
intricate, and relatively steady geometric pattern. A parti- 
cularly useful mode of representation of this flow of scat- 
tered radiant energy is possible by means of the concepts of 
geometrical radiometry, whose definitions and interrelations 
we shall now briefly study. A relatively complete and de- 
tailed study of geometrical radiometry and photometric con- 
cepts is reserved for Chapter 2. 

After the solar radiant energy incident on the upper 

The Nature of Radiant Flux 

The radiant energy streaming in from the sun is under- 
stood to be electromagnetic energy. The atomic radiative 
processes of the sun generate a wide range of frequencies (or 
wavelengths) of electromagnetic energy, only a small part of . 
which is visible to the human eye, or detectable by human 
skin, or usable by the plants and animals of the earth. The 
part of the electromagnetic spectrum visible to normal human 
eyes lies essentially in the range from 400 to 700 millimic- 
rons wavelength, the 400 mu  light being deep blue-violet, the 
700 mu light being deep red, with all the colors of the rain- 
bow ranging continuously between these extremes. The wave- 
length of electromagnetic energy evoking the greatest sensa- 
tion of brightness is the yellow-green at 555 mu under normal 
daylight conditions. If radiant energy of wavelengths much 
less than 400 or much greater than 700 mv fall on normal re- 
tinas, there is relatively no conscious awareness of such an 
event by the associated brain, though--in some extraordinary 
cases, some ultra violet (380 mu) and some infra red (780 mu) 
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phenomena are still within the range of detectability by the 
human visual organs. By and largep however, the human visual 
sensor system effectively samples and reacts to only the min- 
ute portion of the whole outpouring of radiant energy by the 
sun between 400 and 700 mp--much in the way that a taut wire 
of given length and diameter resonates most sharply to a sin- 
gle acoustic frequency and less sharply to the frequencies in 
a small interval surrounding the central frequency, outside 
of which the wire is essentially insensitive to the vibro- 
tions. Figure 1.3 depicts the place of the visible portion 
of the spectrum within the electromagnetic spectrum, along 
with schematic diagrams of those portions of which we are a- 
ware by means of various devices used to detect and measure 
radiant energy. (Current manufacturer's catalogs should be 
consulted for precise details of individual devices.) Any 
observable part of the electromagnetic spectrum, observahle 
not only as visible light but also by suitable technical 
means, falls under the aegis of geometrical radiometry. 

The central construct of geometrical radiometry is 
padiant ftum which we define generally as the time rate of 
flow of radiant energy of given wavelength (or frequency) a- 
cross a given surface. (It has dimensions of (radiant) ener- 
gy per unit time per unit frequency.) Thus radiant flux is a 
time density" of radiant energy. For our present purposes 
and in the exposition of radiative transfer theory, we may 
imagine the flow of radiant energy to be in the form of mu- 
tually non-interfering swarms of tiny colored particles-- 
which we call photons. While this may not correspond in all 
aspects to physical reality, it nevertheless is a helpful 
construct in practical work. Each photon contains a well 
defined amount hv--a quantum--of radiant energy associated 
with its color, or frequency v. This means of picturine ra- 
diant energy for the purposes of geometrical radiometry is 
quite useful and correct within the modern framework of phys- 
ics. It will make the exposition of the notions of geomet- 
rical radiometry a relatively simple task, and the visuali- 
zations of the various concepts an almost trivial matter. In 
the terminology of electromag?etic theory, we shall work with 
electromagnetic fields produced by mutually incoherent 
sources and which are studied on a macroscopic level, i.e., 
where the dimensions of the detectors are very large compared 
to the observed wavelengths. 

The Unpolarized-Flux Convention 

The radiant flux always will be assumed unpolarized, 
unless specifically noted Otherwise. This will result in 
simplified working formulas of relatively great practical val- 
ue and of adequate accuracy in the pursuit of most applica- 
tions of hydrologic optics. Whenever it is necessary to in- 
dicate how the theory may be elevated to the polarized level, 

* 
Because most of OUT discussions center on an arbitrary fre- 

quency (or wavelength) of radiant flux, the reference ta the 
"per unit frequency" part of the dimension of radiant flux 
will be omitted, unless specifically noted otherwise. 
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FIG. 1.3 The electromagnetic spectrum and the ranges of 
some typical radiant energy detector domains. 
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notes will be made to that effect. The general theory of po- 
larized radiative transfer is outlined in Sec. 114 of Ref. 
[251], and the problem of the relative consistency of the po- 
larized and unpolarized theories is examined in Sec. 13.11, 
below. 

Geometrical Channeling of Radiant Flux 

Once the nature of radiant flux is clarified, as above, 
the descriptions of the remaining concepts, theorems and pro- 
cedures of geometrical radiometry are essentially geometric 
in nature. There are only two distinct, ideal modes of des- 
cribing a flow of particles past a point in three dimensional 
space, and these are shown in Fig. 1.4. In part (a) of the 
figure a parallel flow of photons is described in terms of 
the passage of particles through a small region S on a plane 
normal to the flow around a point p on the plane. A comple- 
mentary mode of the flow is in terms of the passage of parti- 
cles through a small set D of directions around a given di- 
rection 5 and through the point p. Considering these two 
modes in a given flow 05 photons, let PIS) and P(n) be the 
radiant fluxes in each of these cases, with A(S) the area of 
S and n(D) the solid angle content of the bundle D of direc- 
tions. Further, let the central direction 5 of the bundle D 
be normal to S at p. Then we write: 

"P(S]/A(S)" for the area density of radiant flux 
"P(D)/n(D)" for the solid angle density of radiant 

flux 

I 

FIG. 1.4 Two geometric modes of describing radiant flux. 
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It 1s coiivcriicnt in gcometrical radiometry to call P(S)/A(S) 
:riin1)ly 11 ( r n d i a n t )  flux doneity and I'(I))/R(I)) n (radiant) 
intonsily. 

These are the two basic modes of conceptually ctinnncl- 
ing the flow of photons in space or matter. There is an 1111- 
portant third mode which*is the result of the direct union of 
these two modes. If we reconsider the setting of Fig. 1.4 
and imagine a narrow bundle of directions D around a central 
direction 5 normal to S at each point p of S ,  then there 
would be an associated flow P(S,D) of radiant energy across 
the combined set S x D of the surface set S and the direction 
set D. We write: 

"P(S,D)/A(S)R(D)" for the phase density of radiant 
flux 

The term "phase density" is simply a convenient descriptive 
term for the combined areal and directional densities, and it 
can be related to the phase space concept of classical sta- 
tistical mechanics, though there is no need to do so here. 
The conventional term for phase density of radiant flux, the 
one we adopt for use in this work is radiance; it is radiance 
which is used ta describe the monochromatic brightness of 
radiant flux. 

Operational Definitions of the Densities 

densities is effected by means of a radiant flux meter, de- 
picted schematically in (a) of Fig. 1.5. A radiant flux 
meter forms the heart of the radiance meter, as shown in (b) 
of Fig. 1.5, and may embody any one of several means of meas- 
urement of radiant flux, such as photoconductive, photoemis- 
sive, or photovoltaic devices (see Sec. 2.1). Before the ra- 
diant flux reaches the collecting surface S of the radiance 
meter, it is filtered to the desired wavelength and is also 
confined to flow onto S about point x through a narrow cir- 
cular conical bundle D of directions whose central direction 
5 is normal to S. A good radiance meter will have D so that 
Q(D) is as small as practicable. A magnitude of Q(D) 5 1/30 
steradians serves well for most geophysical optics tasks. If 
the reading of the radiant flux meter is P(S,D) when it is 
located at x and oriented by 5 (see Fig. 1.5), then the as- 
sociated radiance is P(S,D)/A(S]R(D), which we can denote by 
"N(x,5)". Here "XI' denotes where the flow is, and ' l ~ ' ~  d e - 
notes its direction. The associated radiant intensity is 
P(S,D)/R(U) and the radiant flux density is P(S,D)/A(S). 
These operational definitions reduce to a practical level the 
ideal situations pictured in Fig. 1.4. They are ideal be- 
cause in (a) of Fig. 1.4 the flow was assumed to be along a 
single direction and in (b) the flow was assumed to be through 
a single point. The operational definitions give workable 
approximations to these ideals and form the basis for a rigor- 
ous transition to the ideal limit, which will be made in 
Chapter 2. 

An operational definition of radiance and its companion 
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FIG. 1.5 Operational definitions of the radiometric con- 
cepts. 
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Field and Surface Interpretations 
and its Densities 

VOL. I 

of Radiant Flux 

In Fig. 1.4 one important fact about the radiant flux 
was omitted, namely its sense of flow. In practice we often 
find it useful to distinguish between the flow of radiant en- 
ergy onto a surface S and from the surface s. When we do so, 
the three central densities introduced above each have either 
one of the two possible interpretations, according as the ra- 
diant flux comprising the density is viewed as flowing onto 
or from a surface. When radiant flux comes from the radio- 
metric field and falls onto the collecting surface S of the 
radiance meter we call the associated radiance the field ra- 
diance. When the radiant flux is seen to leave a surface 
(either real or imaginary) for the surrounding radiometric 
field we use the term surface radiance. Similarly for radi- 
ant flux density: when radiant flux falls onto a surface we 
speak of the radiant flux density as the irradiance of the 
flux at a point, and when the radiant flux density leaves S, 
we speak of the radiant emittance of the radiant flux at a 
point. Similarly also for (radiant) intensity: we have sur- 
face (radiant) intensity and field (radiant) intensity. The 
parenthesized "radiant" indicates that this adjective can be 
omitted when radiant flux is understood to be the flux of in- 
terest. 

Operational Definitions of Field and Surface Quantities 

We may summarize the preceding definitions in parts (c)- 
(f) of Fig. 1.5. These diagrams emphasize the operational 
procedures used to measure the various quantities in actual 
radiometric environments. 

Thus field radiant flux can be defined over the surface 
S of the radiant flux meter for an incoming bundle D of direc- 
tions. The heavy arrows give the general sense of the flow. 
When the meter is oriented so that at paint x the inward unit 
normal to its collecting surface is E,, and D is opened up to 
be the hemisphere :(E) of all directions 5' such that 
6.5'5 cos 8 1 0  then by definition we measure the irradiance 
at x for the orientation 5 of the collector. The field (ra- 
diant) intensity J(x,S) and the field radiance N(x,E) are de- 
fined analogously. It is important to emphasize that the n(.D) 
in the latter two cases should be on the order of 1/30 of a 
steradian or smaller for best results. The 'surface' coun- 
terparts to the preceding 'field' quantities may be pictured 
by reversing the flux arrows in parts (c) to (f) of Fig. 1.5. 

Figure 1.6 shows the details of how a surface radiance 
may generally be assigned to a real or imaginary surface. We 
use the radiance invariance law (Sec. 2.6) to assign to the 
direction 5 at point p on S the radiance N(x,C) when p is 
viewed by a radiance meter oriented as shown. This is a con- 
sistent assignation since the radiance-invariance law states 
that for a fixed 5, N(x,[) is independent of y along a 
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FIG. 1.6 The method of assigning radiances to real or 
imaginary surfaces. 

vacuous path between x and p. In this way each 5 at p in the 
outward hemisphere :(n) of directions at p can be assigned a 
radiants. 

A useful property of irradiance is the cosine law, 
which f o ~ l o w s directly from the present operational consider- 
ations. Fig. 1.7 shows a thin collimated steady stream af 
photons incident normally on a small hypothetical plane sur- 
face S. If P(S,D) is the radiant flux produced on S by this 
stream, then this same flow P(S',D) exists across the surface 
S' whose unit normal is tilted 8' from the direction of the 
stream. The connection between the two irradiated areas is: 
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FIG. 1.8 Logical lineage of the radiometric concepts. 

Hence the connection between the irradiances on S' and S pro- 
duced by the stream is: 

That is, 

which is a form of the cosine law for irradiance (the general 
law is given in Sec. 2.8). The companion law to this for the 
radiant emittance of S' is: 

W(X,E') = W(X,E) cos 9' 

Summary of Concepts and Some Principal Formulas 
of Geometrical Radiometry 

in the manner described above, which summarizes the geometric 
derivatives of radiant energy, along with their mks units, 
and current standard symbols, is given in Fig. 1.8. The 
names of the six concepts above, and their designating sym- 
bols may come and go with the years, but the logical lineage 

A schematic diagram of radiometric concepts, developed 
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of the concepts depicted above, with their tap root in the 
concept of radiant energy and indicated branching Structures, 
will withstand the rigors of tinte. For while the names in the 
boxes are transient conventions, the arrangement of the boxes, 
and the underlying concepts for which the boxes stand are 
simply manifestations of the way we naturally view radiant 
energy and the flow of radiant energy in space and time, In 
this sense the indicated conceptual scheme in Fig. 1.8 is im- 
mutable. The full developments of the analytical connections 
among the radiometric concepts are not needed in this intro- 
ductory chapter, and are reserved for Chapter 2. However, a 
brief survey of some of the main formulas of geometrical ra- 
diometry is given here for convenient reference during the 
remainder of this chapter's discussions. 

The primary concept of geometrical radiometry in prac- 
tice is the phase density concept, namely radiance, We find 
it possible to describe all other concepts in terms of this 
density. Thus for example in the case of the flux density 
concept: 

H(x,S) = N [ x ~ ~ ~ ) ~ ~ * . S  dn(C') (with field (1) sg.9 radiance) 

W(X,S) - N(x,S')S'-S dQ(S;') (with surface (2) 
radiance) 

H(x,.S) is the irradiance at x on a surface whose inward nor- 
mal is the direction 5. The basis for (11, (2) rests in the 
cosine law for irradiance and the possibility of the linear 
superposition of radiant fluxes. The symbol "E(5)" stands 
for the hemisphere of all directions 5' such that c'*S > 0, 
(hence BC-6) is the hemisphere of all directions .St such 
that ct.(-f) > 0, i.e., t;'*S 0). Here "d8(5')" is short for 
"sin 6' de' d4' '\ where (FJ',$') define 5' in some reference 
frame. Of course 5'05 is the scalar 01- dot product of the 
directions E;' and 5. The representations of the solid angle 
density in terms of radiance are not needed at present and 
may be found, along with many related concepts, in Sec. 2.9. 
We shall also find it convenient to introduce at this time 
two cousins of the flux density concept, namely scalar and 
vector irradiance, defined, respectively, by writing: 

"h(x)" €or 1- N(x,Et) dn(4') (watt/m2) (3) - 
and : 

"H(x)" for N(x,4')5' dn(€') (watt/m2) (4) j3 
Here 2 is the set of all unit vectors (directions) in euclid- 
ean three space. The scalar irradiance h(x) is the total ra- 
diant flux per square meter coursing through point x in all 
directions. It is related to radiant energy per cubic meter 
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u(x) (the 
mula : 

radiant density: Joules/m3) by mean5 of the for- 

v(x) u(x) = h(x1 (5) 

where v(x is the speed of light at x (in m/sec). The quan- 
tity ~ ( x )  is a vector; the indicated equation is really three 
equations one for each of the x, y, z components of H(x), 
as given y the corresponding components of 5'. The vector 
H(x) also has units of watts per square meter: its magnitude 
is the maximum net irradiance attainable as one samples all 
possible directions 5 of flow about x. The direction of E(x) 
defines this direction of maximum net irradiance. The net 
irradiance K(x,t) at x in the direction 5 is defined as 
H(x,C)-H(x,-C); see Sec. 2.8 for complete details. 

also consider hemispherical scalar irradiance, defined by 
writing : 

It will be necessary in this introductory chapter to 

"h(x,t)" for N(x,C') dfi(S') (watt/m2) (6) 

for every 6 in E. A convenient terrestrial reference frame 
in hydrologic optics is that depicted in Fig. 1.9. We will 
often use the special case of (6), (7) where 5 = k, and we 
shall write 

'*h( z, +) 'I for h (p , +k) (9) 

where we retain only the depth variable z of the usual 
(x,y,z)-coordinates of the point p. Coiresponding to h(z,+) 
we have the companions from (1) in which 5 = +k; we write 

"H( z , +) 'I for H (p +k) (10) 

Irradiances associated with plus signs are upweZZing (or up- 
ward) irradiances; those with minus signs are downwelling (or 
downward) irradiances. All these irradiances have units of 
watt/m2. 
horizontal flat plate collectors, while h(z,+) can be meas- 
ured by spherical collectors, suitably shielded (see Sec. 
2.7). Some useful special cases of the preceding formulas 
are the following. 

x and of magnitude N; then by (1) 

In natural hydrosols H(z,+) can be measured by 

Let N(x,S) be uniform, i.e., independent of 5 at some 
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1 upward direction 
1 downword direction 

(measured positive 
downward 1 

FIG. 1.9 The standard terrestrially-based coordinate sys- 
tem in hydrologic optics. 

which holds for all 5 at x. 
the k axis momentarily shifted parallel to 5. 
(2), in the same way: 

The computation was made with 
Further, from 

(121 W(x,El = *N 
for all 5 at x. Next, by (3): 
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BY (4) 
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Observe the effect of the cosine in the integrand: for a un- 
iform radiance distribution at x, h(x,c)=ZH(x,c), for every 
5. Further examples are given in Sec. 2.11. 

n2-Law for Radiance 

We mention in passing an important law of geometrical 
radiometry cancerning radiance: If is an arbitrary photon 
path through a transparent optical medium within which the 
index of refraction n varies continuously with location, then 
photon flux aZong the path having radiance N moves such 
that N/n2 is invariant a2ong the path (cf. Sec. 2.6). This 
is the n2-law for radiance. 

The Bridge to Geometrical Photometry 

The conceptual bridge from geometrical radiometry to 
geometrical photometry is built on the empirical fact that 
not all wavelengths of radiant flux invoke the same sensation 
of brightness in the human eye. The green-yellow wavelength 
555 mp is the brightest. In fact one would require, e.g., 
about 2 watts of blue-green light of 510 mu or 2 watts of 
orange light of 610 mu to produce the same sensation of 
brightness as one watt of green-yellow light of 555 mu. The 
photopic Zuminoeity curve depicted in Fig. 1.10 summarizes a 
quantitative measure T(X) of the brightness-sensation produc- 
ing capabilities of a wavelength X in the electromagnetic 
spectrum. Observe that for wavelengths X below 400 mp and 
above 700 mp, electromagnetic radiation no longer is seen by 
normal human eyes. A fuller discussion of this curve is gi- 
ven in Sec. 2.12. See also Sec. 1.8. 

The conversion rule from a radiometric concept to its 
photometric counterpart is based on the photopic luminosity 
curve and is given as follows: 

or N) which is defined over the electromagnetic spectrum. 
Then the photometric concept .Z (namely Q, F, E, L, I, or B, 
respectively) associated with kz is given by 

Let L? be any radiometric concept fe.g., U, P, H, W, J, 

d 

I 1 
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FIG. 1.10 The photopic luminosity function. 
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If k7 has units watt/(*), then .bf has units lumen/(*), where 
stands for (meter) OT (steradian) or various permissible 

combinations of these geometrical units. For example, 

, lumens/m2 sr 
m 

B(x,C)= 6801 N(x,C,;i) ?(I) dA 
0 

This gives the Zuminance (loosely, the "brightness") produced 
by a given sample of radiance. This is what, in essence, we 
can see as a result of the radiant flux of photons at x in 
the direction 5. Again, for example, illuminance is: 

H(x,C,X) y(X) dX , lumens/m2 

The logical interrelations among the photometric concepts pre- 
cisely parallel those of radiometry. Thus, starting with 1 ~ -  
minous energy Q, which, according to the rule above, we de- 
fine as: 
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PHOTO METRIC CONCEPTS 

(toibots) (lumens) 

(onto a surface) 

(from a surface) 

(onto a surface) 

(from a surface) 

FIG. 1.11 Logical lineage of the photometric concepts. 

Q = 680 U(X) y(X) dX 

we then can construct a diagram similar to that in Fig. 1.8. 
This is shown in Fig. 1.11. Consequently, everything we can 
say about the geometrical properties of the radiometric con- 
cepts, we can also say about the corresponding properties of 
photometric concepts. 

We mention in passing some classical alternate sets of 
photometric units: 

1, ? 

1 foot candle = 1 lumen/ft2 (area density of flux) (16) 

1 candela = 1 lumen/sr (solid angle density of flux)(l7) 

1 (centimeter) lambert = rr lumen/cm2 sr 
1 (meter) lambert = iT lumen/m2 sr 
1 (foot) lambert = if lumen/ft2 sr 

(phase 
density (18) 
of flux) I 1 

1 

1 
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L 

From (17) we can compactly express luminance generally in 
terms of candelasJm* when using the mks system (the preferred 
system). I’he lambert unit arises as follows: 1ct a surface, 
which has both unit reflectance with respect to irradiance for 
each wavelength and also 3 directionally uniform reflected 
radiance for each wavelength, he called a perfectly dif:ks<np 
surface, for short. By definition, a perfectly diffusing sur- 
face irradiated by one lumen has a luminance of one ZamSert. 
(Use Eq. (12) However, the conversion rules above in (18) 
are by convention now used under arbitrary directional and re- 
flectance conditions. 

mens/mZ8r to mater lamberts, multiply B(x,S) b y  T. (This fol- 
laws from the fast that as defined above the meter lambert is 
about 1/3 of a lumen/m2sr; so it takes about 3 meter lamberts 
to every lumen/m2sr to describe the same scene.) 

With due respect to the historical origins of the pre- 
ceding terms, it is felt that the continued employment of 
”foot candle” and ”lamberts” will serve no logical purpose. 
Their mention here simply serves to keep open the passageway 
to the classical literature of photometry and radiative trans- 
fer theory to which we must refer now and then during this 
work. New students are advised to use the lumen, meter, ste- 
radian system of units in photometry, along with the watt, 
meter, steradian system in radiometry in their future studies. 
A convenient abbreviated mks unit of radiance is the (unra- 
tionalized) * herschel: 

Thus we have the general rule: To convert B(x,C) lu- 

1 herschel = 1 watt/m2sr (13) 

1 blondel = 1 lumen/m*sr 
and an mks unit of luminance is the (unrationalized) blondel: 

(20) 

These abbreviations should L.f: used only when the sheer fre- 
quency of mention of “watt/m‘sr” or t11umen/m2srtt becomes so 
great in a given discussion that facile communication is im- 
paired; otherwise they simply should be spelled out in full 
using watts, meters and steradians. Further discussion of 
the foundations of photometry is given in Sec. 2.12. . 

3 
An unrationalized radiance (or luminance) unit is one for 

which a uniform radiance distribution of magnitude N produces 
an irradiance of n.4. A rationalized unit would associate to 
a uniform N the irradiance N. An unrationalized radiance 
unit is thus logically simpler than a rationalized unit. The 
term “rationalized” here means “removed r-factor”. It is ir- 
rational to rationalize radiance units just because it is too 
tiresome to carry around a n-factor which arises in calcula- 
tions with radiance distributions which in fact do not occur 
in practice in real environments in the first place! (namely 
directionally uniform distributions). 
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1.2 A Survey of Natural Light Fields 

The intricate chain of radiative transfer processes 
witliin the air and seas of the earth begins with the influx 
O C  solar radi:int energy at the upper levels of the atmosphere 
and ~iartially cntls in tlic dcptlis of tlie seas and lakes. We 
!,hall now 1)ricfly survey the main features of the light field 
in tlie metcorologic and hydrologic domains. We conduct the 
survey with the purpose of establishing the general orders of 
magnitudes of the set of radiometric phenomena in natural op- 
tical media which the theory of radiative transfer has been 
evolved to describe and predict. 

The Solar Constant 

The sotar (irradiance) constant is the total irradiance 
produced by solar radiant energy of all wavelengths at a 
point located outside the earth's atmosphere at the mean dis- 
tance of the earth from the sun and on a plane normal to the 
direction of the sun's center: 

solar (irradiance) constant = 1396 watt/m2 
= 2.002 gm cal/cm2min 

(1) 
where 

1 joule = 0.2389 gm cal 

The quantity (1) is based on the results summarized by John- 
son [128], and actually pertains to wavelengths in the range 
220 to 7000 mu. For a survey of solar constant measurements 
and some theoretical bases for them, see [296]. Table 1 
gives a wavelength by wavelength analysis of the solar (irra- 
diance) constant in watts/m*millimicron. In the table! p(X) 
is the percentage of the total solar constant included in the 
wavelength range from 0 to A. It is interesting to note that 
this distribution of H(X) with X is very close to the radiant 
emittance curve of a 6000'K complete radiator. The solar 
(illuminance) constant, i.ee, the photometric counterpart to 
the solar (irradiance) constant is obtained by computing 

+- 

E = 680 H(X) y(X) dX J, 
in accordance with the general rules of photometry laid down 
in Sec. 1.1. We find: 

solar (illuminance) constant = 136,700 lumens/m2 (3) 

= 12,700 footcandles 
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TABLE 1 

Solar Spectral Irradiance Data 

Wavelength in millimicrons. H(h) in watts/m2mu. 

x 
220 
225 
2 30 
235 
240 
245 
250 
255 
260 
265 
270 
275 
280 
285 
290 
295 
300 
30 5 
310 
315 
320 
325 
330 
335 
340 
34 5 
350 
355 
360 
365 
370 
375 
380 
385 
390 
395 
400 
405 
4 10 
415 

0.030 
0.042 
0.052 
0.054 
0.058 
0.064 
0.064 
0.10 
0.13 
0.20 
0.25 
0.22 
0.24 
0.34 
0.52 
0.63 
0.61 
0.67 
0.76 
0.82 
0.85 
1.02 
1.15 
1.11 
1.11 
1.17 
1.18 
1.16 
1.16 
1.29 
1.33 
1.32 
1.23 
1.15 
1.12 
1.20 
1.54 
1.88 
1.94 
1.92 

0.02 420 
0.03 425 
0.05 430 
0.07 435 
0.09 440 
0.11 445 
0.13 450 
0.16 455 
0.20 460 
0.27 465 
0.34 470 
0.43 475 
0.51 480 
0.62 485 
0.77 490 
0.98 495 
1.23 500 
1.43 505 
1.69 510 
1.97 515 
2.26 520 
2.60 525 
3.02 530 
3.40 535 
3.80 540 
4.21 545 
4.63 550 
5.04 555 
5.47 560 
5.89 565 
6.36 570 

7.29 580 
7.72 585 
8.13 590 
8.54 595 
9.03 600 
9.65 610 

10.3 620 
11.0 630 

6.84 575 

1.92 
1.89 
1.78 
1.82 
2.03 
2.15 
2.20 
2.19 
2 -16 
2.15 
2.17 
2.20 
2.16 
2.03 
1.99 
2.04 

1.97 
1.96 
1.89 

1.98 

1.87 
1.92 
1.95 
1.97 
1 .'98 
1.98 
1.95 
1.92 
1.90 
1.89 
1.87 
1.87 
1.87 
1.85 
1.84 
1.83 
1.81 
1.77 
1.74 
1.70 

11.7 
12.4 
13.0 
13.7 
14.4 
15.1 
15.9 
16.7 
17.5 
18.2 
19.0 
19.8 
20.6 
21.3 
22.0 
22.8 
23.5 
24.2 
24.9 
25.6 
26.3 
26.9 
27.6 
28.3 
29.0 
29.8 
30.5 
31.2 
3? .8 
32.5 
33.2 
33.9 
34.5 
35.2 
35.9 
36.5 
37.2 
38.4 
39.7 
40.9 

640 
650 
660 
670 
680 
690 
700 
710 
720 
730 
740 
750 
800 
850 
900 
950 
1000 
1100 
1200 
1300 
1400 
1500 
1600 
1700 
1800 
1900 
2000 
2100 
2200 
2300 
2400 
2500 
2600 
2700 
2800 
2900 
3000 
3100 
3200 
3300 

1.66 
1.62 
1.59 
1.55 
1.51 
1.48 
1.44 
1.41 
1.37 
1.34 
1.30 
1.27 
1.127 
1.003 
8.95 
0.803 
0.725 
0.606 
0.501 
0.406 
0.328 
0.267 
0.220 
0.182 
0.152 
0.1274 
0.1079 
0.0917 
0.0785 
0.0676 
0.0585 
0.05OP 
0.0445 
0.0390 
0.0343 
0.0303 
0.0268 
0.0230 
0.0214 
0.0191 

42.1 
43.3 
44.5 
45.6 
46.7 
47.8 
48.8 
49.8 
50.8 

52.7 
51.8 

53.7 
57.9 
61.7 
65.1 
68.1 
70.9 
75.7 
79.6 
82.9 
85.5 
87.6 
89.4 
90.83 
92.03 
93.02 
93.87 
94.58 
95.20 
95.71 
96.18 
96.57 
96.90 
97.21 
97.47 
97.72 
97.90 
98.08 
98.24 
98.39 
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3400 
3500 
3600 
3700 

3900 
4000 
4100 
4200 
4300 

3800 

0.0171 
0.0153 
0.0139 
0.0125 
0.0114 
0.0103 
0.0095 
0.0087 
0. ooao 
0.0073 

98.52 4400 
98.63 4500 
98.74 4600 
98.83 4700 

98.99 
99.05 
99.13 
99.18 
99.23 

98.91 4800 

0.0067 99.29 4900 0.0044 99.48 
0.0061 99.33 5000 0.0042 99.51 
0.0056 99.38 6000 0.0021 99.74 
0.0051 99.41 7000 0.0012 99.86 
0.00,48 99.45 

. (From [l28], by permission) 

By dividing the solar constant by the approximate solid . 

angle subtense of the sun at the mean distance of earth from 
sun, R= 6.8 xlO-’ steradians, we obtain the approximate solar 
radiance and luminance constants: 

N = 2 x lo’ watts/m2sr 
B = 2 x io9 lumens/m2sr 

General Irradiance Levels at Earth’s Surface 

The irradiance levels at the earth‘s surface can vary 
relatively widely because of correspondingly wide variations 
of atmospheric clarity and elevation differences of locales 
above mean sea level. Hence the magnitudes to be offered 
here are not as unique or invariable as the solar constant 
given above, and must be understood as general indicators of 
typical irradiance levels at the earth‘s surface. Table 2 is 
adapted from one given by Moon [185]. The solar constant val- 
ues in the indicated ranges have been computed from Table 1 
above and included for comparison. The column marked “405 to 
704 mp” is of especial interest since it gives the irradi- 
ances in the visible portion of the spectrum. By an odd nu- 
merical fluke, the sqlar irradiance constant 555 watts/m2 o- 
ver the visible spectrum numerically equals the wavelength 
(in mu) at which the photopic luminosity curve has its maxi- 
mum. It  is instructive to study the tabulated effects of 
moisture content of the air and altitude on the irradiance as 
given in Table 2. (The totals have been rounded out so as 
not to appear misleadingly accurate.) Quite a battery of em- 
pirical models have been evolved to predict the effects of 
moisture, dust, elevation of sun and of observer on the meas- 
ured irradiances OR the earth‘s surface. An excellent sum- 
mary of these models may be found in [96]. Another reference, 
of interest to oceanographers, would be [173]. For a recent 
survey of solar irradiation measurements, see [296]. 
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TAHLE L 

Irradiance Data at Earth‘s Surface 

(in wattslm‘ on a plane normal to sun’s rays, within 
indicated portions of the electromagnetic spectrum) 

Conditions 

Mountain tops, 
sun at zenith, 
dry clean. air. 

Mountain tops, 
sun at zenith, 
moist dusty air. 

At sea level, 
sun at zenith, 
dry clean air. 

At sea level, 
sun at zenith, 
moist dusty air. 

Solar (irradi- 
diance) Constant 
(for comparison) 

Wavelength Range 

1220 

(From [MS], by permission) 

General Illuminance Levels at Earth’s Surface 

An extensive photometric survey of illuminance at sea 
level on a horizontal plane under various sky conditions was 
made by Brown [35], part of which is summarized in Fig. 1.12. 
The graphs in Fig. 1.12 give a detaiXed photometric portrait 
of the extremes cf variation and the modes of variation of 
natural illumination generated by the light from the sun and 
the moon. We have seen in (3) that the solar (illuminance) 
constant is 12,700 footcandles, which corresponds to a solar 
disk luminance of 2 x lo9 blondels. This level of illumina- 
tion is approached by the “unobscured sun” curve in Fig. 1.12 
for zenith sun. hotice how little the average overcast con- 
ditions affect the general order of magnitude of the sea lev- 
el illuminance. Inexperienced bathers who think they will be 
safe from sunburn under overcast skies will do well to take 
note of this fact which follows from Fig. 1.12 one can get 
baked just as severely under overcast skies as in bright di- 
rect sunlight. Moonlight bathing is harmless- photometrically 
speaking--for, the average level of full moon1 ght illuminance 
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SOLAR AND LUNAR 
ALTITUDES 

LOVER LlYlT OF 
WUTICAL TW1 PHNEL120' , 

ALTITUDE 

W 
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10- 

FIG. 1.12 Illuminances on a horizontal surface at sea Pe- 
vel under indicated conditions. (From [35], by permission) 
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is about five orders of magnitude less than corresponding 
sunlight conditions. Typical clear sky luminances away from 
the sun are on the order of 3000 blondels, with very heavily 
overcast skies on the order of 300 to 1000 blondels at the 
zenith. For further details on the use of the graph in Fig. 
1.12, one should consult the discussion given in 1351. 

Gross Features of Atmospheric Radiative Transfer 

The tables and graphs of the irradiance and illuminance 
surveyed above show the great temporal and spatial variations 
possible in the magnitudes of these quantities. Therefore to 
try to assign specific numbers to the reflectance and trans- 
mittance of the atmosphere at any given time is seldom an in- 
structive activity. However, discernable patterns and stable 
percentages emerge when the daily variations of the reflec- 
tances and transmittances are averaged over long times and 
over great areas. Such averages begin to show the general 
features of the radiative transfer processes extant in the 
atmosphere, and help us form an initial picture of the ra- 
diant energy budget of the atmosphere-surface system. Con- 
sider, for example, the average yearly irradiance (of all 
wavelengths) on an average horizontal surface just outside 
the atmosphere over the entire northern hemisphere. On purely 
geometrical grounds, this amounts to about one quarter of the 
solar constant or 340 watts/m*(about 0.485 gm cal/cm2 min) 
over one year. 

follows: for easy visualization, we normalize the 340 watts/ 
m 2  and start with 100 watts/m2. Thus, if 100 units of irra- 
diance on the average are incident on the upper atmosphere, 
then the general radiative transfer activities in the atmos- 
phere at steady state are reflection, absorption, and trans- 
mission, which take up, resnectively, 34, 19, and 47 of these 
100 incoming units as shown in (a) of Fig. 1.13. Part (b) of 
Fig. 1.13 breaks the reflected and transmitted fluxes down 
even further. Thus, of the 54 units reflected, 25 of these 
are by the clouds, and 9 by the clear atmosphere. Of the 47 
units transmitted, 24 of these are directly transmitted (with- 
out scattering), and 23 are transmitted via scattering. Of 
these 23 transmitted units 17 are transmitted by the clouds, 
and 6 by the clear atmosphere. 

Now the 47 transmitted units are received in turn by 
the earth (terra firma + terra infirma), are chewed up and 
are eventually given back via heat radiation (14 ranits),or 
latent heat of evaporation in cloud formation (23 units] or 
via convection-conduction activity between the atmosphere and 
the earth's surface (10 units). This is shown in (c) of Fig. 
1.13. 

An exact mathematical formulation of these interactions 
can be written down using the principles of invariance for 
irradiance, as described generally in Sec. 8.7, assuming, 
e.g., a three-layer system (atmosphere + clouds + earth's 
surface); see in particular Examples 5 and 6 of Sec. 8.7. The 
numbers cited above, however, are not theoretical, but rather 
based on actual observations and are patterned after the 

The annual radiant energy budget may be analyzed as 
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(a) 

9 UNI 
BY 

( b) 
IO UNITS RETURNED VIA CONVECTION-CONDCCTI~N ACTIVITY BETWEEN 

. . . . .  

. . . . . . . .  . .  

. . . .  

(C 1 

FIG. 1.13 The average yearly radiant flux budget over the 
sunlit hemisphere of earth. (From [96],by permission) 

magnitudes summarized in [96]. 

Y 

Radiative Transfer Across the Air-Water Surface 

The still air-water surface acts like an imperfect mir- 
ror which reflects only about 2% of an unpolarized light beam 
normally incident on it from the air side, and transmits 
about 98% of the incident flux of the beam into the water be- 
low. As the beam is tipped and all other factors the same, 
this reflectance stays fairly constant until, at about 45' 
from the vertical, the reflectance curve begins to soar to a 
complete reflectance of unity at grazing incidence to the air- 
water surface. The functional dependence of this reflectance 
is quite well known and is governed by Fresnel's formulas, to 
be studied in Sec. 12.1. 
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When the air-water surfocr is ruffled b y  cnpil l a r y  w n v r s  
rnducod by thc wind, or whcn the surface is hesviriR wit11 1:rnv- 
ity waves, the average amount of flux reflected from R vcrti- 
cal light beam incident on the moving surface over a given 
time can be computed, once again by means of the Fresnel re- 
flectance function, but now with that function's values 
weighted by numbers between 0 and 1 which are the fraction of 
the given time interval the surface is tipped away iron the 
horizontal by a given angle between 0 and 40'. The determi- 
nation of these weighting factors required in such a computa- 
tion is at present principally an empirical matter, and one 
of the first such determinations made in hydrologic optics is 
depicted in Fig. 1.14. This curve, based on the experiTental 
researches by Duntley in [82], gives the number of times the 
water surface normal at a fixed point was observed to tip 
over by an amount Q, O o  L 4 I 90°, during a given time period. 
The solid curve is for the case where the normal was observed 
within the up-down wind plane; the dashed curve is for the 
cross-wind plane case. There is very little difference be- 
tween the two cases. A steady wind of 18 knots (about 9 m/sec) 
was blowing and maintaining a steady capillary wave and small 
gravity wave complex. 
times the wave surface normal was tipped $' from the vertical, 
during the experiment was very nearly expressible as: 

It was found that the number nb of 

tanZ 9 
20 2  

-- 
%= "0 e 

I 
COUNTS nd) 

(4) 

SLOPE (Z-ton (PI 
FIG. 1.14 Relative frequency of occurrence of a given 

tilt of a water wave facet. 
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In other words, n+ was found to vary in a gaussian manner 
when tan 4 (rather than $) was used as an independent vari- 
able. The quantity (5 is the usual standard deviation of the 
observed slopes (the mean slope tan + was zero). It is clear 
then, that the relative number of times the wave slopes were 
tipped at tan $, is given by ng/no. For the 18 knot wind, it 
turned out that a was 0.162, which may be pictured as the tan- 
gent of a standard deviation angle of inclination of the sur- 
face normal of about 9.2 degrees from the vertical. It was 
also found that the square of 6, i.e., u 2 ?  varied nearly lin- 
early with the surface wind speed generating and sustaining 
the steady wave complex. A flat calm surface clearly has a u 
of 0. The preceding gaussian distribution was also found by 
Cox and Munk [56] in their study of the glitter patterns on 
the sea surface. 

dynamic air-water surface can be used, under suitable condi- 
tions, to estimate the time averaged reflectance and trans- 
mittance of the air-water surface over a given time interval 
at a certain point; or dually, to estimate the space averaged 
reflectance and transmittance of the surface over a given re- 
gion at a certain time instant. Table 3 displays three re- 
flectances computed under the indicated conditions. 

The preceding statistical type of description of the 

Clear, sun at 60" 
from zenith 

TABLE 3 

1 

Smooth (a=()) Rough (a=O. 2) 
(no wind) (13-18 knot wind) 

.loo .on-.oa8 

Irradiance Reflectance H(O,+)/H(O,-) of the 
Air-Water Surface for Sky Light 

Uniform 

Overcast 

.066 .050-.os5 

.OS2 .043- .Q44 
L 

P 
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I I" A' 

FIG. 1.15 Contrast reduction by time-averaged refraction 
at the air-water surface. 

roughened surface for that matter) will reflect less and 
transmit more radiant flux than has been previously estimated 
using simple unweighted Fresnel reflectances (cf. [SR]). 
More exact values of the reflectance for (I = 0 are given in 
Table 4 of Sec. 12.1. 

of both the static and dynamic air-water surface is developed 
in Chapter 12 below. 

Besides oceanographic applications there are also visi- 
bility applications of the observed gaussian structure of the 
ruffled air-water surface slopes. Thus while it is common- 
place that the visibility of a submerged object below a wind 
blown surface as seen through the si9rface is less than when 
the surface is calm, due to the blurring action of the refrac- 
ting Frocesses at the surface, it is possible actually to 
make quantitative predictions of the time-averaged apparent 
contrast of a given submerged object against its background 
as a function of the size of the object and the standard de- 
viation o of the wave slopes through which the line of sight 
is directed. Part (a) of Fig. 1.15 depicts the basis of such 
predictions when the surface is flat and horizontal at the 
point of intersection with zhe line of sight, and when the 
center of the submerged object (here a circular disk) is ob- 
served to have an apparent radiance No. When the surface is 
tipped, as in (b) of the figure, the refracted line of sight 
picks up the apparent radiance N of the background of the ob- 
ject. The still water apparent contrast C of the center of 

A complete theory of the reflectance and transmittance 
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the object with respect to its water background is by defini- 
tion (No-N)/N. I f  the time-averaged apparent contrast of the 
object against its background is when the surface slopes 
have a standard deviation of 0, then it can he shown that: 

where the object has an angular radius of $. Observe that far 
C > 0, if 0 increases, then decreases for a given JI, as 
would be expected. Further, for given u, the time-averaged 
contrast C increases as IJI increases; again as would be expec- 
ted, but now in a definite quantitative way. For small ob- 
jects or rough seas (or bath) the preceding formula yields 
the rule OF thumb: 

c=c(.*) . 

These formulas, which describe the contrast reduction by tirne- 
varying refraction effects, will be developed in detail in 
Sec. 12.14. 

Glitter Patterns on the Air-Water Surface 

Sunlight reflected from a still air-water surface can 
be seen, by each observer, as a circular image lying angularly 
just as far below the observer's horizon as the sun lies above 
that horizon. A slight breeze disturbs the water and the sin- 
gle image splits into two or more irregularly shaped randomly 
moving images of the sun. The breeze continues and the few 
images ignite into a dazzling glitter pattern. TO a poeti- 
cally inclined observer, the glitter pattern invokes very un- 
geometrical and unhydrodynamical thoughts. In Russian, for 
example, the glitter pattern is sometimes referred to as the 
"road to happiness". However, to analytically inclined ob- 
servers, the glitter pattern contains a wealth of information 
about the geometrical structure of the surface, the statisti- 
cal distribution of wave slopes and, as we have seen above, 
important consequences for the radiative transfer processes 
across the air-water surface. 

As an illustration of these more technical ideas consi- 
der the problem of finding the greatest occurring slopes on a 
rough sea surface at a given time. It is seemingly impossible 
to do this visually or even with photographs or other optical 
means until certain geometrical features of the sun's glitter 
pattern come under scrutiny. Then it becomes clear that in 
order for an observer to see the instantaneous reflected 
image of the sun in a wave facet, the three participants in 
this phenomenon, namely the sun, the facet, and the observer, 
must subtend very precise geometrical relations. These re- 
lations are readily calculated using a bit of analytic geom- 
etry. Figure 1.16 (adapted from Minnaert [182], in turn 
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FIG. 1.16 How to find the tilt of a sun-reflecting water 
facet's normal knowing the sun altitude a and the horizontal 
angle w of the facet from the vertical plane containing the 
sun. (Based on Hulbust's calculation) (From [113], by per- 
miss ion) 

derived from [113]) summarizes one such calculation, and may 
be used as follows to estimate the required maximum tilt of 
wave facet-normals on an air-water surface which has a glit- 
ter pattern. First estimate the angular half-width w of the 
pattern, and estimate the altitude a of the sun above the 
horizon. Suppose, e.g., w = 15O and a = 30". Then the curve 
going through the grid point (15O, 30Q) is labeled "30°" and 
this is the requisite maximum tilt of the normals to the 
glittering facets. When a gr?! point (such as (20°, 40') ) 
falls between two curves, one must visually interpolate to 
find the requisite maximum tilt (about 32' in this case). 
These and related calculations are studied further in Sec. 
12.5. 

1.16 may be used to estimate the amount of tilt of any ob- 
served reflecting air-water facet; furt'iermore the object re- 
flected in the facet need not be the sun--any point source 
whose distance from the facet is several times greater than 
the observer-facet distance may replace the sun. 

It is of interest to observe that the graphs in Figure 

* 
Subsurface Refractive Phenomena 

Once one descends below the air-water surface a new 
realm of relatively strange radiative transfer phenomena is 
encountered. At the very instant light passes that incredi- 
bly thin air-water film the radiance function receives a jolt 
in the form of an abrupt increase in radiance of the sky in 
each observable direction. The increase is by a factor of 
(4/3)' or 16/9. This is a purely geometric effect due to the 
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FIG. 1.17 The effect which gives rise to the n2-law for 
radiance. 

general narrowing of a bundle of refracted light rays as they 
enter the more dense water from the air (see Fig. 1.17). It 
is interesting to note that this phenomenon, as such, is not 
detectable by the unaided eye since the apparent radiance as- 
sociated with a bundle of light rays depends (scattering ef- 
fects aside) only on the indices of refraction at the begin- 
ning and end of the light bundle's path. 
begins in air and ends on the retina inside the eye, the in- 
termediate water domain has no effect in this special geomet- 
rical sense. The full effect, however, can be measured by 
simple radiance meters, if they are suitably built. 

Since the bundle 

The optical distortions attendant upon the refraction 
of the light rays at the surface are quite marked. For ex- 
ample as one slowly descends into a body of water with a rel- 
atively calm surface and continues to look upward, one is 
struck with the impression that he has just descended downward 
into a room with a circular hole--a "manhole"--in its ceiling. 
Through this manhole one sees the objects above the surface 
become visually compressed the closer their images lie to the 
rim of the hole (Fig. 1.18). Just to one side of the hole 
the underside of the air-water surface appears as a slightly 
undulating perfect mirror, in which nearby fish or other ob- 
jects may be imaged--upside down. Also, if the bottom is 
just below the observer, he can see it mirrored on the sur- 
face above him around the rim of the manhole. As one des- 
cends further the manhole's outline is slightly dimmed by the 
scattering and absorbing effects of the water, but it contin- 
ues to subtend the same angular radius--about 48', the angle 
beyond which, according to Snell's law of refraction, total 
internal reflection takes place. 

If the air-water surface is not calm, but ruffled with 
wavelets, then the ideal geometric reflection pattern is re- 
placed by something relatively complex. Beebe 1121 gives the 
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FIG. 1.18 The swimmer's optical manhole to the outside 
world. 

following interesting account: 

lute until I threw my head back as far as I dared, [he was in 
an old fashioned iron helmet rig exploring Haiti Ray, in 19271 
and saw, almost directly overhead, facets of clarity, appear- 
ing and vanishing, showing me anainstant's patch of sky, a 
momentary glimpse of friend or boat--of that world to which 
it seemed at this moment inconceivable that I belonged. But 
anywhere except straight above me, the ceiling of the bay was 
watered gauze." 

downward, he may see in relarively shallow water a moving mo- 
saic of bright and dark areas on the bottom, produced by the 
refracted sun's rays converding and diverging at various 
points on the bottom. When two bundles of rays are refracted 
so as to momentarily converge at a point A on the bottom (Fig. 
1.19) the irradiance at A abruptly increases and is seen by 
the swimmer as a bright spot. On the other hand, rays could 
be diverted away from a point such as at B in Fig. 1.19, 
whereat it will be momentarily relatively dark. By knowing 
the statistics of the air-water surface slopes (as discussed 
above) it is possible to determine the statistics of the irra- 
diance pattern on the bottom. The problem has recently been 
studied, e.y., by Redmond [260], and Schenck [272]. 

modicum of suspended and dissolved material which scatters 
light, the refracted rays of sunlight are then seen to form a 
pattern of moving beams and weaving, lighted, curtain sur- 
faces very much like a watery aurora borealis or like the 
shafts of sunlight one sees directed earthward from rifts be- 
tween clouds. These beams die away relatively quickly with 
depth in natural waters, at least as compared to the decay of 
the general diffuse light originating from the sky and clouds. 

"AS to the opacity of the ceiling, 1 thought it abso- 

If the underwater observer now directs his attention 

As one descends still farthey, and if the water has a 
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FIG,, 1.19 Generating light patterns cx~ shallow bottoms. 

We shall look into this phenomenon in some detail later in 
this section. 

note here is that associated with the thermocline in natural 
hydrosols. The thermocline is the region of abrupt tempera- 
ture change, (usually taking place in an extensive thin hor- 
izontal layer) found in most all natural waters, which sepa- 
rates a warmer layer from a cooler layer of water below it. 
It is detectable by means of a submersible thermometer known 
as a bathythermograph. Accompanying this temperature change 
is a corresponding density change of the water, Ind with this 
occurs a change in the refractive index of the water. There- 
fore we would expect some interesting refractive optical phe- 
nomena at the thermocLine. Some observations of optical 
thermocline phenomena were made by Limbaugh and Rechnitzer 
[160] and are schematically summarized in Fig. 1.20, which is 
adapted from their paper. When the thermocline occurs in its 
more frequent guise, as a thin, horizontal, nearly motionless 
layer below the surface (as in the upper third of Fig. 1.20) 
one can actually see the thermocline from below as a smooth, 
nearly flat mirror-like plane boundary between the two water 
layers of differing temperature--and it generally manifests 
itself very much in the way the air-water surface does, even 
to the extent of having its own manhole into the warmer layer 
of water above. (Would one expect this manhole to subtend 
the same angular radius as the surface manhole?) Occasionally 
some rather unusual refractive phenomena may be observed when 
a moving tongue of cold water snakes its way through a warmer 
region on the bottom, (as in the lower left third of Fig. 
1.20). The convex boundary of the tongue is visible all 
along its extent at grazing incidence, and its general appear- 
ance is reminiscent of the intertwining portions of two mis- 
cible liquids, such as clear alcohol and clear water. Finally, 
Limbaugh and Rechnitzer observed the optical thermocline ef- 
fect in small isolated pools of relatively cold water resting 

One final subsurface refractive phenomenon we shall 
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FIG. 1.20 Three interesting subsurface refractive phenom- 
ena. (From [160], by permission) 

on the bottom in the midst of warmer water. These cool pools 
reflected light at their surfaces much in the way the still 
air-water surface reflects light for an observer above it. 

The Decay of the General Light Field with Depth 

Perhaps one of the most striking and outstanding fea- 
tures of the light field in deep natural waters is that it 
gets dark fast with increasing depth. For example infrared 
radiation (which comprises about half the irradiance at sea 
level on sunny noon days) is essentially absorbed in the first 
meter or so of most natural waters. There is a reasonably 
precise and simple law of darkening of the light field in 
this regard: the light field of any wavelength generally 
falls off or decays exponentially with depth. That is, if 
h(z) is the scalar irradiance at depth z in a homogeneous, 
deep lake or portion of the sea, then: 

h(z) = h(0) e-Kz (7) 

This type of law, namely the exponentiaZ type, is unquestion- 
ably the most ubiquitous of all types of natural laws in geo- 
physics: it describes thermal and radioactive decay in sol- 
ids and liquids, evaporation rates of falling rain droplets, 
growth rates of plant and animal species, fall off of atmos- 
pheric density with altitude, only to mention a few. IR our 
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D E P T H  ( F E E T )  
FIG. 1.21 Showing how scalar irradiance decreases expo- 

nentially with depth. Experiment by Duntley, Lake Winnipe- 
saukee, N.H., September 1948. (Fig. 30, left diagram, from 
[ 781 by permission3 

present studies, it describes not only the decay of the nat- 
ural light field with depth, but generally the decay of a 
beam of light with distance along its path. In the present 
case, the decay rate K depends on the wavelength X of light 
considered (h(z) depends on A ;  however for brevity, as usual 
we omit "X") and of course the clarity of the water consid- 
ered. Indeed, as we shall see later, in Sec. 1.7, we may use 
the wavelength dependence of K to help classify the optical 
properties of natural hydrosols. 

nation (taken from [78]) of the depth dependence of scalar 
irradiance in a deep clear lake (Lake Winnipesaukee, N.H.) 
over a depth range of 60 feet or 18.3 m. The crosses indi- 
cate the experimental points. The straight line is the best 
straight line for the data, and is plotted on semilog paper. 
The magnitude of the constant K is: K = .066/ft. = .216/m, 
for green light, 

In view of the preceding observations there is no need 
at present of giving further graphs of h(z) vs depth z in 
deep homogeneous media; for as the saying goes, 'if you have 
seen one, you have seen them all', the prototype being that 
displayed in Fig. 1.21. What is more worthwhile at present, 
is to raise such questions as: how is the exponential decay 
law affected if the medium is not deep, or if the bottom is 
clearly visible? What effects do inhomogeneities of the me- 
dium have on the exponential law? Does h(z) decay at the 

Figure 1.21 illustrates a sample experimental determi- 
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FIG. 1.22 Two experimental determinations of radiance by 
Tyler, Pend Oreille Lake, Idaho, April 1957. Note the gener- 
al exponential decrease. Note, also, the slight buildup of 
radiance for the upward looking path near the surface. (From 
[298], by permission) 

same rate at H(z,t)? (cf. (9) and (10) of 1.1). noes the 
exponential law hold right up to the surface, or is there a 
boundary effect? These and other questions are readily an- 
swered in detail by the thtbzies developed in Chapter 8. 
Some simple answers are given in Sec. 1.4. 

Behavior of Radiance Distributions with Depth 

If we fix attention on the zenith radiance as we des- 
cend into the sea, then, aside from "he effect on the radi- 
ance induced by a change of index of refraction (discussed 
above), there is observable a general build-up of radiance in 
the first meter or so below the surface. This build-up of 
light is depicted by Curve A of Fig. 1.22 (adapted from [298]) 
and is quite analogous to the increase in the light field one 
experiences as an airline passenger during the initial stages 
of the airliner's descent into a thick cloud layer lighted 
from above by the sun. We are observing in either case the 
storage of scattered radiant energy within the medium. In 
the case of the sea this increase in radiance is observable 
not only at the zenith, but in all upward looking directions, 
but is occasionally obscured by the refracted sunlight beams 
and other surface phenomena. The depth at which the maximum 
radiance occurs is predictable in theory and varies with the 

39 
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FIG. 1.23 Radiance distributions, in the vertical plane 
containing the sun, on a clear sunny day, at the indicated 
depth, in Lake Pend Oreille, Idaho, as measured by Tyler, 
April 1957. Observe how the shapes of the curves become sim- 
ilar as depth increases. (Fig. 26, from [78], by permission) 

direction of sight and the clarity of the medium (cf. (12) of 
Sec. 4.4). 

After the maximum radiance occurs in a given direction, 
the radiance in that direction begins to fall off rapidly 
with depth and soon assumes the exponential behavior that 
h(z) universally exhibits. This trend to exponentiality is 
seen quite clearly in the nadir curve R of Fig. 1.22, or more 
generally in Fig, 1.23, which is adapted Prom [78]. Fig. 
1.23 is designed to show how the shapes of the radiance dis- 
tributions vary with depth in the hydrosol. The particular 
graphs in Fig. 1.23 are adapted from [78] and represent the 
light field measured in Lake Pend Oreille, Idaho by Tyler 
[298]. The radiance is associated with a wavelength of 480 
2 64 mu, in water with a K of about .170/m and (for future 
reference) an a of .370/m. Two important and universal prop- 
erties of underwater radiance distributions are discernable 
in this set of curves: (i) the decrease in peakedness of the 
curves with depth, accompanied by a trend toward a limiting 
shape as depth increases, and (ii) the shift of the radiance 
maxima toward the zenith with increasing depth. Near the 
surface the peaks are pointed toward the refracted image of 
the sun; but this orientation is lost as depth increases. 
This trend toward a stable vertically-oriented smooth distri- 
bution is shown in more detail in Fig. 1.24, wherein the ze- 
nith angles of the maxima in Fig. 1.23 are plotted as a 
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FIG. 1.24 Plot of zenith angle of the maxima of the curves 
of Fig. 1.23. The maxima shift toward the zenith with in- 
creiasiie depth. This figure and Fig. 1.23 present graphic 
evidence of the validity of the asymptotic radiance hypothe- 
sis. (Fig. 28 from [78], by permission) 

function of depth. The problem of the description of the 
depth dependence of the radiance distribution in natural hy- 
drosols is one of the princi?al. tasks of hydrologic optics 
and to which much of this work is devoted. 

The Asymptotic Radiance Hypothesis 

The fact that the shapes of the radiance distributions 
in deep hydrosols approach limiting forms with increasing 
depth is observable in Both Figs. 1.2 3 and 1.24. In the for- 
mer figure all the radiance curves eventually steady in shape 
with increasing depth. This means that eventually all radi- 
ances are decreasing at the same exponential rate with depth. 
Hence the evidence points to the fact that radiance distribu- 
tions eventually assume certain stable shapes and these dis- 
tributions subsequently shrink down exponentially in size with 
increasing depth, all the while preserving those shapes. The 
general statement of the existence of such limiting shapes in 
all homogeneous natural hydrosols is the asymptotic radiance 
hypothesis which was first clearly enunciated by Whitney [315] 
on the basis of experimental findings, and subsequently 
proved mathematically in [225]. The validity of the asymp- 
totic radiance hypothesis has important consequences for the 
development of simple theoretical models of the light field 

Q 
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in the sea and in deep lakes, rivers and harbors. For exam- 
ple the scattering and absorption functions in the general 
theory depend in part on the shape of the radiance distribu- 
tions. I f  these distributions do not vary too much with 
depth, vast simplifications of the general theory are.pos- 
sible. These matters will be pursued at some length in Chap- 
ters 6, 8 and 10. 

Underwater Irradiance Distributions 

The studies of visibility and biological problems--as 
far as they are concerned with the radiometric environment-- 
are facilitated by knowledge of the irradiance distributions 
H(z,-) at each depth z in the medium of interest. Figure 
1.25, plotted from the tables in [304], illustrates such a 
distribution as a function of orientation of the collecting 
surface's outward normal direction (e,@) and also of depth, 
for a sun zenith angle of 33.4'. This graph keys in with 
that of Fig. 1.23, being the irradiance distribution computed 
from the radiance distributions in Fig. 1.23, using (1) of 
1.1. The role of (e,$) is depicted in Fig. 1.26. 

know that an irradiance distribution H(z,*) at a depth z con- 
tains just as much information as the radiance distribution 
N(z,.) at that depth. This will be shown in Ex. 15 of Sec. 
2.11, wherein knowledge of N will be used to deduce knowledge 
of H, and conversely. The bridge between N(z,*) and H(z,=) 
is easily traversed in the direction N+H hut is somewhat more 
difficult to traverse numerically in the direction H+N, and 
until an efficacious numerical scheme to bridge the latter 
gap is devised, the radiance distribution will continue to be 
measured and be the favored means of cataloging natural light 
fields. 

Some practical features of irradiance distributions are 
as follows. Every irradiance distribution satisfies the exact 
cosine law: 

It is of both practical and theoretical interest to 

ACz,S) = A(z,m) cos e 

where R(z,E) is the net irradiance in the direction 6, m is 
the direction of greatest net irradiance (cf. (14) of Sec. 
2.8). and 0 is the angle between 5 and m. This law shows 
that we need only plot or tabulate irradiance distributions 
Il(z,.) for directions 5 not greater than 90' away from some 
arbitrary fiducial direction, say the vertical direction k. 
To see this, suppose that we have II(z,k) and H(z,-k) and that 
we know m. Then by the exact cosine law: 

R(z,k) = fl(z,k) - H(z,-k) = A(z,m) cos em 

where-8, is the angle between k and m. From this we can com- 
pute H(z,m). Now suppose we know W(z,-E) and that we want to 
know H(z,E), where 5 is less t.han 90' from k. Then the 
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FIG. 1.25 Irradiance distribution on a clear sunny day at 

FIG. 1.26 The collecting surface receiving the irradiance 

the indicated depths, in Lake Pend Oreille, Idaho, 28 April 
1957, as computed by Schaules and Tyler from Tyler's data. 

recorded in Fig. 1.25. 
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cosine law yields: 

H(z,E) = H(z,-S) + A(z,a) cos 0 (9) 

Therefore knowledge of m and E(z,m) together with H(z,*) over 
one hemisphere of directions, will yield H(z,-) over the re- 
maining hemisphere. 

Another practical aspect of the irradiance distribution 
is that is can be used to compute one of the basic optical 
properties--namely the volume absorption function, a --of nat- 
ukal optical media, by using the divergence law: 

-1 = a(z) h(z) 
dz 

for the vector irradiance (cf. (1) of 13.8, and Sec. 1.4 be- 
low). Thus knowledge of H(z,.) leads to H(z,k) and to the 
latter's derivative by straightforward computations. This, 
together with auxiliary determinations of h, yields estimates 
of a. 

Subsurface Contrast Reduction by Scattering 
and Absorbing Effects 

Underwater scenes in seas, lakes and harbors are char- 
acteristically dim and blurry. The sharp outlines and stark 
contrasts above the surface are relatively absent from under- 
water scenes. Even in the clearest swimming pools, distant 
objects no longer have sharp edges, and contrasts are slightly 
but yet noticeably decreased. If one looks a bit closer at 
these contrast-reduction phenomena, one outstanding and fun- 
damental fact soon becomes manifest: on the one hand, as the 
observer recedes from a relatively bright object, its lumi- 
nance rapidly falls off and soon melts into the background 
luminance; on the other hand, if the object is relatively 
dark, its luminance rapidly increases with viewing distance 
and eventually also melts into the background luminance. Is 
there some order and regularity in these changes of apparent 
contrast with viewing distance? In other words is there some 
general law followed by these changes in apparent contrast of 
distantly viewed objects in underwater scenes? The answer is 
Iyes', provided a judicious scientific choice is made in the 
selection of the notion of contrast. 

If tNr is the apparent (surface) radiance of an object 
(the target) viewed at a distance r underwater, and bNr is 
the apparent (surface) radiance of its background, then we 
write 

'Ti'' for (tNr- bNr)/bNr 

and call C the apparent contrast of the target with respect 
to its badground. The geometry of this situation is pictured 
in Fig. 1.27. If r=O, we call Co the inherent contrast of the 
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FIG. 1.27 The apparent contrast of a target against its 
background.. 

target with respect to its background. 
Figure 1.28 shows an experimental arrangement, devised 

by Duntley [78], to study contrast reduction phenomena in 
Lake Winnipesaukee, N.H.. A telephotometer (i.e., a radiant 
flux meter attached to a telescope) was mounted on a small, 
hooded glass-bottomed boat wi,Ich looked at a flat white tar- 
get at depth r. At the time of the experiment (sometime in 
September 1948) the water was calm, the sky was clear, with a 
low sun. For later reference we will note that the lake at 
that time had a K of 0.216/m and an a of 0.594/m, for green 
light. The observation of interest at the moment is recorded 
in Fig. 1.29, in its original form, which shows the sought- 
for law governing Cr vs distance r ic feet. This clearly 
shows an exponential decrease of Cr with r, in this case depth 
r below the bottom of the boat. In fact it was found, on con- 
verting to meter lengths, that: 

-.ai0 I Cr = Co e 

This finding of the exponential Paw is in itself a remarkable 
one; however, the really exciting fact lay in the nature of 
the number .810/m(=.247/ft), the exponential decay rate of the 
apparent contrast. It was found that: 

.a10 = .594 + .216 = a. + K (per meter) 
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FIG. 1.28 Physical set-up for Figs. 1.29, 1.30. 

To see the significance of this, recall our earlier observa- 
tions on the general mode of decay of the natural light field 
in the water. The depth rate of decay is given by K. The a 
on the other hand, gives the depth rate of decay of a beam of 
light in the water. Therefore there are two mechanisms in- 
volved here in giving rise to contrast reduction. These are 
summarized by K and u, and are generally distinct. These will 
share our attention later. But for the moment we quietly rev- 
el in the presence of discerned order in at least one feature 
of the underwater radiometric environment. It was perhaps 
this experimental finding and the ones immec'iately following 
it, shown in Fig. 1.30, that contributed more than any others, 
to inspire Duntley and one of his students (the present au- 
thor) to turn to the problem of explaining these interesting 
(and then, mysterious) manifestations of order in the sub- 
marine light field, and relating them to the general radiative 
transfer phenomena in scattering-absorbing media. 

What is shown in Fig. 1.30 (which holds for the same 
setting as above) is an extension of the findings in Fig. 
1.29, and once again in the original form given by Duntley. 
The new figure shows several things. First, it shows that 
the apparent contrast of arn object is exponentially attenuated 
with target distance at the same space rate for both light and 
dark targets. Second, this space rate is independent of azi- 
muth of the line of sight (here, the direction of motion of 
the photons) which in this experiment was inclined at an angle 
9 of 30° away from vertically upward, or an amount 8= 150° 
from vertically downward. (See Fig. 1.31) In particular the 
azimuths, measured from the vertical plane of the sun, are 



SEC. 1.2 NATURAL LIGHT FIELDS 47 

DE P T H  (FEET) T I R G E T  DISTANCE ( F E E T I  

FIG. 1.29 Duntley's classic experiment showing the expo- 
nential law of decrease of apparent contrast along a vertical 
path in a natural hydrosol (Lake Winnipesaukee, N.H., Autumn, 
1948. See also Figs. 1.28, 1.3O)(Fig. 30, middle diagram, 
from [78], by permission) 

tial a parent contrast law. (See Figs. 1.29, 1.31)(Fig. 30, 
right $ragram, from [ 781 

$ = O o  (circled points), Q = 45' (crosses), $ = 95O (diamonds) 
and 0 = 135' (squares). The dashed straight lines are drawn 
parallel to help judge the slope and linearity of the data 
and have a natural logarithmic slope of about .781/m. Once 
again this exponential decay rate is a source of surprise 
when it is observed that 

FIG. 1-30 Further experimental evidence for the exponen- 

by permission) 

.781 = -594 + .216 t os 30" (per meter) 

This wouLd lead one to conjecture that paths of sight inclined 
generally at 6 from the vertical in homogeneous stratified 
media, as shown in Fig. 1.31, would have an apparent contrast 
Cp associated with them of the general form 

The conjecture was confirmed and a simple theoretical model 
underlying this contrast reduction law was soon evolved. The 
model will be discussed further in Sec. 1.4, in Chapter 4, 
and Chapter 9. 
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FIG. 1.31 The geometrical details for Fin. 1.30. in which 

Subsurface Contrast Reduction by Refractive Effects 

When one looks across an extensive flat stretch of the 
earth's surface such as a meadow or stretch of ocean on a 
sunny or very windy day, distant objects seem to be blurred 
not only by the ilsual atmospheric haze, but also by a rapidly 
varying shimmering or "heat wave" effect. This phenomenon is 
produced by inhomogeneities of the refractive index of the air 
along the line of sight and is associated with cells of air of 
different density. These in turn are related to uneven tem- 
perature distributions in the air mass or simply to the local 
mechanical compression of the air in gusts of wind on windy 
days. The same mechanism makes the stars twinkle at night. 

sionally see this same twinkling, heat-wave like effect in the 
otherwise cool depths of an incompressible fluid like a sea or 
a lake. Nevertheless, the effect exists, and on closer exam- 
ination, sanity prevails: the underlying mechanism is seen 
to be refractive, but produced by myriads of tiny transparent 
plankton, whose indices of refraction differ very slightly 
from that of water. In some south sea waters, it is said 
that the concentration of such plankton is so great, the spac- 
ing between a swimmer's toes cannot be distinguished by him, 
though the foot is visible with high contrast against its 
background. A somewhat less dramatic but similar phenomenon 
was observed and recorded by Duntley at the Diamond Island 
Field Station in Lake Winnipesaukee, N.Ii.. Figure 1.32, from 
[78], shows a photograph of the light distribution on a camera 

It may come as a mild shock to some observers to occa- 
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FIG. 1.32 Swarming plankton photographed in the light of 
a strong collimated beam, as observed by Duntley in Lake Win- 
nipesaukee, N.H., 22 August 1961. Plankton swarms such as 
these may contribute to contrast reduction along underwater 
paths of sight. (Fig. 22 from [78], by permission) 

(Fig. 21 from 1781, by permission) 
FIG. 1.33 Arrangement for plankton photograph, Fig. 1.32. 

film produced by a collimated light beam after having travel- 
led through a horizontal 3 m water path shown in Fig. 1.33. 
The time of year was late August (1961) and the exposure time 
was 1/50 sec. on an Eastman Plus-X film with a normal D-76 
development. The beam had a diameter of about 5 cm and a 
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The u of the water was .585/m. in 
path between the lamp and camera was 
and the bright collimated beam has 
the photographic film. To judge the 

size of these tiny organic refractive cells, the diameter of 
the black circular border (caused by the camera opening) was 
measured to be 3.3 cm on the negative. 

A theory for'the loss of contrast of objects seen 
through atmospheric boil was evolved some time ago by the au- 
thor and some of his colleagues [81]. This theory appears to 
be applicable also to the contrast reduction phenomenon des- 
cribed above. The effect, however, is generally mild when it ' 

does occur, and may for virtually all practical purposes be 
ignored in the problem of predicting underwater visibility. 
Ilowever, in passing we may note that in a natural hydrosol 
which has such transparent plankton distributed uniformly and 
densely along a path of sight of length r the theory predicts 
that the magnitude of the blur (the standard deviation of the 
angular displacement of a typically straggling light ray from 
observer to object plane) increases like r1I2 and the apparent 
contrast of fine details in an object against the general 
background decreases like 1/r3. Thus the contrast reduction 
law produced by refractive inhomogeneities in a medium is, OR 
the one hand, quite different from that produced by scattering- 
absorbing mechanisms in that medium, and summarized in (12). 
On the other hand, as a perusal of 1811 would show, the theory 
of the present effect is quite close to that used to derive 
(5). 

The Polarization of Underwater Light Fields 

in natural hydrosols that have very little directly to do with 
the fdct that photons, in their pristine state, are viewable 
as particles with observable spins--i.e. , with an observable 
property we usually call polarization. If we now invoke the 
quantum theoretical wand of complementarity and imagine the 
photon to be not a small, hard, colored ball but, rather a 
relatively compact packet of electromagnetic waves whose E 
and H vectors vibrate in fixed mutually orthogonal planes as 
the packet moves along (see Fig. 1.34) then we add a new di- 
mension to the description of radiometric phenomena. No lon- 
ger is it sufficient to merely describe the unpolarized radi- 
ance of the light field, but rather we must go on to describe 
radiance carried by those photons at x in the direction 5 
whose E vector is oriented by the general angle JI with respect 
to some reference frame. 

Up to now we have been describing those optical effects 

Suppose we place a polarizer into the radiance tube, as 
shown in Fig. 1.35. (Compare with (b) of Fig. 1.5.) This may 
be made from some commercially available Polaroid material. . 
Then if we fix x and 5 as usual, and rotate the polarizing 
element, we can detect the presence of polarized radiance by 
the varying output of the radiant flux meter's dial. Suppose' 
we turn the polarizer one full turn. Let Nmax(x,E) and 
Nmin(x,S) be the maximum and minimum radiances so obtained, 
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FIG. 1.34 A linearly polarized E-vector. 
FIG. 1.35 The placement of a polarizer in a radiance tube 

preparatory to measuring the polarization of a light field. 

Then we write 

p(x,S) is called the polarization of the light field at x in 
the direction 6, and is a useful measure of how much polari- 
zation is present in the light field at x. 

Now if we train such a polarized radiance meter at a 
clear sky, we find that the sky radiance is most noticeably 
polarized in all directions which lie in a plane normal to the 
direction of the sun’s rays. 15 we go helow the air-water 
surface we find that the light field is still polarized but to 
a lesser excent. The shafts of sun and skylight beaming down 
into and around the manhole (described above) are scattered 
into the line of sight by the water in a manner completely 
analogous to the sunlight streaming into and scattering within 
the upper atmosphere. Furthermore, the underwater light field 
may also be reflected into the line of sight by the underpart 
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FIG. 1.36 The observed underwater polarized radiance can 
come from the sky via refraction through the manhole, or from 
the underwater domain via air-water surface reflection outside 
the manhole. 

of the air-water surface outside the manhole (see Fig. 1.36). 
These two mechanisms, the scattering and reflection of under- 
water light, contribute the principal polarized parts to the 
underwater light field. On purely theoretical grounds (which’ 
need not concern us here) one would expect the scattered light 
to be predominantly linear, and the reflected light to be el- 
liptical, and hence the general underwater light field to be 
a mixed linear-elliptical polarized field (see Sec. 2.10 and 
the Stokes Polarization Composition theorem). 

The general features of polarized submarine light fields 
may be summarized, according to Ivanoff and Waterman 11171, 
[118], as follows. In general for a fixed direction E the po- 
larization p(~,€) is greatest near the air-water surface, and 
diminishes rapidly with depth down to about 10-20 attenuation 
lengths and then settles down to an asymptotic value, which 
does not change with further increase of depth (this is remi- 
niscent of the asymptotic radiance theorem described earlier; 
and in Sec. 4.6 the potential connections between these two 
ideas will be outlined). Furthermore, the limiting p value 
depends on the water clarity, and we would expect on theoreti- 
cal grounds that it eventually be independent of surface and 
bottom effects provided the medium is deep enough. It is 
noted that, all other factors remaining fixed? polarization 
increases rapidly with transparency from turbid to moderately 
clear waters, but the increase slows down 8s waters become 
more and more transparent. In oceanic hydrosols p may vary, 
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e.g., from .60 at the surface to .30 as an asymptotic value. 
In a horizontal sweep, with low sun, the azimuth dependence 
of p is generally such that in directions normal to the ver- 
tical plane of the sun p is greatest, less €or directly away 
from the sun and least of all looking toward the sun. For 
higher suns or for more turbid waters a horizontal sweep of 
the radiance tube may find little variation in p. The wave- 
length dependence of p is such that, with all other factors 
remaining fixed, p attains a minimum at the blue-green wave- 
lengths (450 mp]--i.e., just about where in the spectrum nat- 
ural waters transmit best. This ties in with the observations 
cited just above about turbidity dependence of p. (Remember 
the proviso “all other factors remaining fixed“. 1 Thus both 
ends of the spectrum should yield higher p values, and hence 
more pronounced polarized fields in reddish and bluish light 
--of what there is to measure. The polarization of under- 
water light fields decreases when diffuseness of the field in- 
creases. For example, when depths are shallow, overhead 
cloudiness will tend to increase the diffuseness and hence de- 
crease the polarization. Under best conditions, the ellipti- 
cal component of the underwater radiance field reaches about 
10% of the total radiance, and about 50% of the linear com- 
ponent. At very great depths the light is predominantly hor- 
izontally linearized (because the predominant flow is down- 
ward; and recall the analogy with scattered skylight). 

Further details will be found in [117], [118], and also 
in Tyler’s article 13011. A simple model for polarized light 
fields in the sea is developed, along with the general theory, 
in Sec. 4.6. Sec. 2.10 develops the essentials of the radi- 
ometry of polarized light, 

Biological Sources of Submarine Light Fields 

How many have ever seen the unforgettable sight of lu- 
minous bow waves of a shir, Tlcring through nighttime tropical 
and semitropical waters? Many types of marine animals large 
and small are known to emit radiant energy when disturbed--a 
sort of pale cold light, obviously of chemical (quantum) rath- 
er than thermal origin. Other organisms seem to flash on and 
off under their own volition, deep in the sea or in nighttime 
waters ne?rer the surface. 

An important study of such se:f-regulative radiometric- 
biologic phenomena was made by Kampa and Boden [133] in which 
detailed and careful measurements of the radiant flux output 
of a certain type of luminescent creatures (Euphasia pacifica) 
were made both in situ in the San Diego Trough, and in the 
laboratory. The presence of these creatures is generally not- 
ed by sonar operators because the creatures form a sonic-scat- 
tering layer in the water. By lowering a bathyphotometer (a 
radiant flux meter tightly encased for deep water work) dowr, 
into the layer, day and night recordings of the output of the 
Euphasia were made. 

It was observed that the creatures emitted flashes hav- 
ing a mean irradiance of about 1.1 x microwatts/cm2 
throughout the day. The output was in the form of flashes 
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which varied in frequency as a function of time of day--great- 
est (42/min) during twilight when the Euphasia migrated up- 
ward, least (10-24/min) during midday when they were at rest 
in the depths, and intermediate (32/min) during the night. 
The color of the luminescence was blue-green, with maximum 
output near 478 mu, and a secondary maximum near 520 mp. 
Kampa and Boden postulate that the time dependence of the 
depth of the Euyhasia scattering layer is photoregulated; that 
is, the creatures constantly monitor the environmental level 
of irradiance and according raise or lower themselves to a 
depth at which tke total irradiyce ( H(z,+) +H(z,-) ) is on 
the order of 10- microwatts/cm . All this activity trans- 
pires along with the flashing at the above-mentioned mean ir- 
radiance and frequencies. The type of flashes are temporally 
highly peaked and these peaks were observed to be one to two 
orders of magnitude greater than the total environmental irra- 
diance (see Fig. 1.37). It appears that this is an optical 
means of assuring togetherness during the vertical migrations, 
for the eye pigment of the Euphasia has a greatest photosen- 
sitivity to the predominant color of its flashes. 

Using the irradiance models developed in Chapter 8, it 
is a relatively straightforward task to describe and predict 
the light field generated in the sea by extensive layers of 
the Euphasia or other stratified biological sources of radi- 
ant flux. The photoregulative activities of these creatures 
coupled with the general food chain activities in the seas 

TOTAL IRRADIANCE p watts/cm2 
10-6 10-4 10-2 100 102 104 

01' 1 I I 1 1  I I I I 1 1  

- I  / 

FIG. 1.37 Depth dependence of downward irradiance in 
which discrete flashes of light generated by Euphasia pacifica 
are evident at the depths around 300-350 meters, as observed 
by Rampa and Boden in the San Diego Trough, 20 February 1956. 
(From [133], by permission) 
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presents a challenging problem to hydrologic optics in the 
description of the dynamical interactions of plants, animals 
and photons in seas and lakes. We shall briefly reconsider 
chis problem in Sec. 1.10. 

1.3 Three Simple Mbdels for Light Fields 

How do we seek order in all that we have encountered 
above? HOW do we incorporate those few evidences of order, 
already glimpsed, into some greater scheme, satisfying for 
its accuracy, comprehensiveness, and relevance to the main 
stream of modern physical theory? The number of effects to 
be described is great, and their intricacy has a tendency to 
initially intimidate those who attempt a precise description: 
nature's ways are orderly hut infinitely complex, the theo- 
rists are few and finite; therefore, each stage of theoreti- 
cal knowledge inevitably rests on chosen compromises. Three 
such theoretical compromises are selected for study here; 
each is designed to describe one facet of the radiometric 
complex encountered in the seas and lakes of the earth: the 
first two describe the light fields generated by sunlight and 
skylight and give simple models for the radiance distributions 
and two-flow irradiance fields; the third describes artificial 
light fields set off in the water by man-made point sources 
and extended artificial sources of radiant flux. 

The Two-Flow Model 

The two-flow model of the light field pictures the ra- 
diant flux in a natural hydrosol X, free of internal sources, 
as divided into two streams at each depth 2; below the bound- 
ary: a downward stream of radiance H- and an upward stream 
of irradiance H+ (see Fig. 1.38). The primary purpose of the 
model is to predict H+ and 11- at each depth z, given H, and 
H- at the upper boundary, or more generally, given H, at some 
depth and M- at another (possibly the same) depth. The hy- 
drosol, Therefore, is viewed by this model as a ptane-parallel 
medium, i.e., an infinite region of space caught between two 
horizontal parallel planes, which rare the boundapies of the 
medium, The physical properties of the hydrosol are described 
in the present model by means of two optical properties a, h; 
and the geometrical flow of the radiant energy is described by 
means of a distribution factor D. These three concepts are 
defined in detail as follows. We write: 

"arr for the amount of irradiance absorbed from a 
narrow vertical beam of radiant flux of 
unit irradiance as it crosses a horizontal 
layer of unit thickness in X. 

without change in wavelength from a given 
arbitrary stream of radiant flux of unit 
irradiance as it crosses a horizontal layer 
of unit thickness in X. 

for the amount of irradiance back scattered Ttb" 

Finally, if h+, h- are the scalar irradiances associated with 
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FIG. 1.38 Setting for the two-flow model for irradiance. 

the two given streams of radiant flux in X, we write: 

"D," - for h,/H, 

D, give the mean distances traversed by each stream through a 
horizontal layer of unit thickness. They are also convenient 
measures of the diffuseness or collimatedness of the flows. 
This latter interpretation can be made plausible by a few ex- 
amples. If the downward stream, say, is collimated, i.e., in 
the form of a narrow beam which makes an angle 8 with the ver- 
tical, then from (9), (10) of 1.1 it is easy to see that 
D- = sec 8. Further, if the downward radiance distribution 
is uniform, then by (ll), (15) of Sec. 1.1, we have D- = 2. 
In the model currently under study, it is assumed that: 

and we shall write"D"for this common value. (On the basis 
of this assumption, we occasionally call the resultant two- 
flow model the one-D (two-fZow irradiance) model.) It is 
easy to see that the amount of irradiance lost by absorption 
from a flow of unit irradiance and of distribution factor D, 
as it traverses a unit thickness layer in X, is aD. On the 
other hand the amount of loss by backscattering is simply b, 
with the quantity D not appearing explicitly. The reason why 
absorption is treated differently than scattering in the above 
sense, rests in the fact that these processes manifest them- 
selves differently geometrically: when flux is absorbed it 
disappears from the scene; when it is scattered, it must 

c 



In the same way we find that for the upward stream of radiant 
flux, which moves through the same layer (so that its asso- 
ciated Aa is negative) the net change AH+ of H+ is: 

AH+ = -(aD + b)H+(-Az) + bH-(-Az) . (3) 
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still be contended with in the radiometric scene. This is 
discussed further throughout Chapter 8, along with precise 
definitions of D and b. 

We are now ready to derive the basic differential equa- 
tions of the two-flaw model. 

Consider the downward stream of radiant flux as it 
passes through a halrizontal layer of thickness Az, where z is 
measured positive in the downward diYection. (Fig. 1.38) As 
the stream progresses through the layer, it is partially ab- 
sorbed and partial1.y scattered backwards to join the upward 
stream of flux. The total amount of irradiance lost from H- 
by these two processes is, accorcking to the definitions of a 
and b: 

aDH-Az + bW-Az 

On the other hand, 13- will be increased by that amount of 
flux, namely bH+Az, scattered backwards from the upward 
stream. The net change AH, of the downward irradiance, after 
traversing the layer of thickness Az, is therefore: 

AM- = -[aD + b)H-Az + bH,Az . (2) 

Dividing each side of (2) by Az, and each side of (3) by -Az, 
and letting Az+,O, we have: 

- E  dH* -(air + b)H_ + bH+ 9 

d z  

- dH+ = -(aD + b)H, + bH- 
dz 

These equations constitute the two-ilow model for light fields 
in homogeneous stratified natural hydrosols. This model (the 
one-D model), in undecomposed form, in essence goes back to 
Schuster in 1905 who first formulated similar equations in 
the astrophysical context. In Chapter 8 we review the high 
points .of the model's history and place it on a sound physical 
and mathematical basis. For the present, however, we indulge 
in a relatively uncluttered derivation and solution of the 
model, in order to point up its central ideas and its simple 
beauty. 
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The solution of the system (41, (5) is" 

where m,, m- are arbitrary constants to be fixed by specify- 
ing either one of H+ and H- at each of two chosen depths (dis- 
tinct or not), and where we have written: 

and : I /2 
for [aD(aD + Zb)] I . Ilk11 

This completes the construction of the two-flow model. We 
shall put it to work in Sac. 1.4. 

The Radiance Model 

The radiance model connects the radiances at the begin- 
ning and end of an arbitrary path, such as AB, in a natural 
hydrosol X (Fig. 1.39). Thus, given the radiance at A in the 
direction 6, the model yields the radiance at B in the same 
direction 4. This model is quite general, for we can choose 
point A to be on the upper or lower boundary of X and so the 
radiance at the end B will give the apparent radiance of the 
boundary; and this is just the radiance one sees or measures 
at B with a radiance meter. 

happens to the radiance as it travels along a straight path 
in the water. If we imagine the radiance to be generated by 
a swarm of photons travelling along the path, then on the one 
hand we would expect this swarm to lose sone members via 
scattering and absorption at each point along the path. Ac- 
cordingly, let us write: 

In order to construct such a model we need to know what 

Ila" for the amount of radiance absorbed from a 
narrow beam of radiant flux of unit ra- 
diance travelling a unit distance along 
a path. 

change in wavelength from a narrow beam of 
radiant flux of unit radiance travelling a 
unit distance along a path. 

and 
ll s l l  for the amount of radiance scattered without 

*H(z,+) is the value of the function H+ at depth z. Similar- 
ly, H(z,-) is the value of H- at z. The functional notations 
"H+" and ltH(*,*)'T are to be considered synonymous and may be 
used interchangeably. 
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FIG. 1.39 Setting for the radiance madel. 
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We note in passing that the volume absorption function a for 
X just defined is identical with that defincd for the two- 
flow model. The function s is the volume total scattering 
function for X. 

Now, on the other hand, we would expect the swarm of 
photons to gain new members from the surrounding environment 
simply as a result of some of the nearby photons being scat- 
tered into the swarm as it passes along a small segment of its 
path. Thus, let us write: 

78N,7v for the amount of radiance scattered without 
change in wavelength into a narrow beam 
of radiant flux travelling a unit dis- 
tance along a given path past a given 
point. 

If No is the inherent radiance, of the path, i.e., the begin- 
ning radiance at point A in Fig. 1.39, and Nr is the apparent 
radiance of point A as seen at point B a distance r along the 
path, then according to the above remarks the change ANr of 
Nr in the next increment of distance Ar along the path is 
expected to be: 

QNr = - (a + s)NrAr + N,Ar 
Dividing by Ar and letting Qr+O, we arrive at - I % = -aNr + N, 1 

I I 

where we have written 

for a + s (11) Ila" 

Equation (10) is the equation of transfer for radiance. It 
is the central equation of radiative transfer theory. We 
call a the volume attenuation function and N, the path func- 
tion. The equation is used to connect the value Nr(Z,6) of 
Nr at depth z, in the direction 0 with the'value No(zo,B) of 
No at depth zo in the direction 0. (See Fig. 1.39.) 

As it stands, (10) looks like a simple differential 
equation, and, indeed, it is readily integrated if we know a 
and N, along the path. We shall assume a to be constant 
along the path, and N, to be given along the path, and that 
N, varies only with depth. Then it is easily verified that 
the general solution of (10) is (see, e.g., (1) -(3) of Sec. 
3.15): 

0 I z' = -r' cos e I Y 
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The simple model we are interested in at present rests on the 
assumption that N,(z,B) in optically very deep media depends 
only on depth z in X, in the manner: 

where K is the empirical depth rate of decay of the general 
light field in X, For example it may be taken as the empir- 
ical K in (7) of 1.2, or the theoretical k in (9) above en- 
countered in the two-flow model (cf. (61) of Sec. 1.4). At 
any rate, using (13) in (121, performing the integration and 
simplifying, we have: 

N,(z.e) [l-e-(a+K cos 9)r ] /(Id) 
Nr(z,e) - No(zo,9)e-ar 4 a+K cos e 

This is the requisite simple model for radiance. We shall 
study it later to see if it helps us understand some of the 
observed properties of the underwater light field surveyec! in 
Sec. 1.2. Xt is a simple matter to generalize (14) to the 
case where N,(z,B) depends also on the azimuth angle $J. (See 
Chapter 4.) FOF the present we can think of (14) holding in 
an arbitrary given azimuth plane. 

The Diffusion Modal 

The diffusion model is designed to describe the spatial 
variation of scalar irradiance in a natural hydrosol. This 
model together with the two-flow model for irradiance, and 
the model for radiance, forms a reasonably exhaustive battery 
of elementary descriptions 0; most of the natural and artifi- 
cial light fields encountered in everyday practice. 

can be made via the two-flow model (4), (S), as follows. Let 
us add together, term by corresponding term, the two equations 
(4), (5). We find: 

A simple and instructive route to the diffusion model 

Now, according to (8) of Sec. 1.1 and the definition 
of net irradiance R(z,+), which is defined by writing: 

tvH(z,+)lt for H(z,+) - H(z,-) , 

or more briefly: 
''E+q' fOF H, - H- 
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we can cast (15) into the form 
I 1 

I I 

using the definition of the distribution factor D, and (1). 
This states that the depth rate of change of the net upward 
irradiance at a point is jointly proportional ts the volume 
absorption coefficient and the scalar irradiance at that 
point. 

Readers familiar with the rudiments of vector analysis 
will see that either derivative term on the left side of (16) 
is simply the negative of the divergence of the vector irra- 
diance 11 (cf. (4) of Sec. 1.1). The other two (the x,y) de- 
rivatives of the components of H are missing from (16) be- 
cause the two-flow model applies to stratified media, i.e., 
media whose properties are constant over horizontal planes in 
the hydrosol. However, this recognition of the nature of the 
left side of (16) permits us to write: 

V"H = -ah (17) 

in place of (16). 
Equation (17), despite the route we have just taken, is 

a quite general law which holds in source-free media of arbi- 
trary shape and inhomogeneities and whose light fields are of 
arbitrary spatial and directional structure. We have in this 
way made a leap from the special to the general by making a 
simple observation on the mathematical form of the divergence 
of a vector field. (For further details, see (5) of Sec. 2.8 
and (15) of Sec. 8.8.) An even more general form can be ob- 
tained if we allow the presence of sources in the medium: -1 (18) 

where h, is the radiant flux generated per unit volume by in- 
ternal sources. 

from (18) once we have made a special assumption about the 
behavior of the light field and the nature of the term h,. 
The requisite assumption is concerned with the scattered 
light field in the medium of interest, so that we shall look 
only at the components of H and h which consist of radiant 
flux having been scattered at least once. In order to point 
this up in the notation, it can be shown that we may write 
(17) in a form quite analogous to (18): 

Now, the diffusion model we are interested in springs 
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This star notation is standard notation for scattered radiant 
flux. To indicate how we may arrive at (19), we first observe 
that the full vector and scalar irradiance fields are repre- 
sented as: 

PI = H0 + E* (20) 

h = ho + h" 
where Eo, ho consist of residual radiant flux directly trans- 
mitted from the sources and boundaries. 'When written in this 
form, we say that the light field H has been decomposed into 
its residual and scattered parts. This mode of decomposition 
is'not new to our discussions in this chapter. For we have 
in effect represented the apparent radiance Nr in (12) in pre- 
cisely this way. Indeed, if in the context of (12) we write 

qqNo9S for r 
and 

then the equation (12) for apparent radiance Nr becomes (in 
functional form) : 

Nr = t4; =+ N; (24) 

where Nor is the residua2 radiance and Ng the path radiance. 
This form is completely analogous to (20) , (21). In fact, all 
we have to do to get (20), (21) is integrate (24) over all 
directions and apply (3), (4) of Sec. 1.1 (cf. Secs. 6.5 and 
6.6). Hence if we integrate each side of (10) over all di- 
rections in this manner, we can obtain (19) quite rigorously. 
The complete details of this derivation may be found in the 
derivation of (63) of Sec. 6.6. 

We return to (191, and make the assumption about H* 
which invokes the desired diffusion model. The assumption is 
simply this: 

125) 

Here Vh* is the gradient of h". For example, in a stratified 
plane-parallel medium, this amounts to saying that: 

H* shall be proportional to -Vh* 

* x  dh* SI* = (H_-H+) (-b) = - --(-k)x dz (constant) 

i.e., that the scattered irradiance vector--which in the sea 
clearly points downward in the direction of greatest net irra- 
diance--is simply the derivative of the scattered scalar irra- 
diance times the unit downward vector (-IC), i.e., the vector 
poineing along the direction of increasing z. It is inter- 
esting to note that this is a sort of backwards version of 
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(16), obtained from the Patter essentially by moving the de- 
rivative operation from its left to its right side. Notice 
that H* is required by (25) to point in the direction of de- 
crease of h. In natural waters dhjdz is negative (with in- 
creasing z measured downward as usual). We shall use the con- 
ventional symbol I'D" for the diffusion constant of propor- 
tionality. Notice that its dimension is that of a length. 
(We use the letter "D" here without fear of confusion with 
our distribution coefficients.) Hence assumption (25) can be 
written as an equality: 

H* = -DVh* 
and when this assumption is used in (19) we have: 

V*(-Doh*) = -ah* + hi 

or, since D is a constant we have, finally: 
, 

(27) 
I I decomposed 

light field) 

which is the gresent desired form of the diffusion model. 
The symbol "V It  is the laplacian operator used In vector anal- 
ysis. In this model we assume that the source term hi des- 
cribes the origin of the scattered scalar irradiance h* and 
thereby is of the form: 

(28) 

where s is the volume total scattering coefficient defined in 
the preceding radiance model. discussion and ho is the scalar 
irradiance associated with the residual flux from the source 
and boundaries. The diffusion model takes its name from the 
assumption (26), which is Pick'e law of diffusion, now applied 
to the diffusion of photons. 

Equation (27) as it stands constitutes a reasonably 
good model of the scattered (or diffuse) scalar irradiance in 
both natural and artificial light fields. By way of contrast, 
we observe that it is more accurate than the diffusion model 
that comes from applying (26) (without the stars) to (18), 
instead of (26) to (19). For in the former case, i.e., when 
applying (26) (without the stars) to (18) we find 

(diffusion 
-DV 11 + ah = h equation for 

undecomposed 
light field) 

and even though the mathematical forms of (27) and (29) are 
the same, an essential difference between them arises by vir- 
tue of the nature of the source term hn. In the case of (29), 
h, for artificial point sources is a Dirac delta function, 
whereas in (27), as we see by (281, hi is a relatively 
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smoothly varying function throughout the medium. Since dif- 
fusion models become more accurate the snoother the spatial 
variation of the sourse terns, the superiority of (27) over 
(29) is quite clear. 

(27) than it does (29). The formal solution of (29) for a 
point source is straightforward, and takes the form: 

However, it takes cmrespondingly more effort to solve 

(undecomposed 
h, ana point 
source) (30) 

where we have written 

and Po is the radiant flux output of the point source, as- 
sumed to be uniform in all directions. Furthermore r is dis- 
tance from the observation point to the point source, and we 
have written: 

"K" for 6 , (32) 

where a is the volume absorption coefficient for the medium, 
and D is the diffusion constant (ef. (27) of Sec. 6.5). 

The general solution of (27) is now forthcoming by 
means of (30) and a straightforward integration. To see this, 
we imagine that at each point x' of the Medium X (which is an 
extensive region without perturbing boundaries) the residual 
scalar irradiance ho(x') is scattered, there to give rise to 
an entirely new point source problem whose solution at an ob- 
servation point x is described by (301, now written in the 
form: 

where 

and 

Hence if the original point source is at the origin (i.e., at 
x=O), and of a relatively mild directional output, then the 
scalar irradiance field h(x) at x is given very nearly by: 

h(x) = ho(x) + h*(x) 
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where 
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and where 
r' = lxll Y 

and ft(x') is the solid angular subtense of the point source 
as measured at X I .  The source is actually a small finite 
sphere of surface radiance NO in the direction 4' * x/lx'l. 
V is the volume measure in X. We shall not go into further 
details here. See (66) of Sec. 6.6 in particular, and Sec. 
6.6 in general for complete details. 

1.4 Some Deductions from the Light Field Models 

The three models for natural and artificial light fields 
derived above allow us to explain and interrelate many of the 
observed features of light fields in natural hydrosols. We 
shall consider here and in subsequent sections a small rep- 
resentative sample of such activity, based on simple deduc- 
tions from the three models. 

The Decay of the General Light Field with Depth 

two-flow model for light fields. Toward this end, we let the 
scattering medium X be infinitely deep and be absorbing, i.e., 
a>O. Then we compute the net downward irradiance at a generdl 
depth, using (6), (7) of Sec. 1.3. 

We shall now show how (7) of Sec. 1.2 follows from the 

E(z,-) = H(z,-) - H(z,+) 
(1) 

Now from (16) of SeC. 1.3 we find, by integrating between 
depths 0 and z, and noting that h(z) is a non negative quan- 
tity for all z: 

Hence for all z: 

E(z,-) c H(Oy-) (2) 
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This shows that the net downward irradiance is bounded. In- 
deed, from_ Tables 2, 3 of Sec. 1.2 we can estimate an upper 
bound of H(z,-) as 1396 ua%rs/m2, and infer that A(z,-) 2 0 
in real optical media. It follows that (23 and (11, along 
with a v Q ,  force ms to be zero; otherwise we could find a 
depth z at which (2) would be violated. Some further general 
inequalities related to (2) are given in Sec. 9.2. 

Having established that m,=O in infinitely deep absorb- 
ing media, (6), (1). of Ses. 1.3 yield the requisite forms of 
H(z,*] for every z: 

(3) 
-kz Hlzs-3 = m-8+e 

From (33, (43 we have, on setting z=O: 

H(09-1 = m-g+ 

Let us write 
I, R, I 1  for H(O,+)/H(O,-) 

Clearly, we then have from (33, (4): 

This shows that the reflectance R, of the medium is indepen- 
dent of depth and determinable once a, k, and D are known. 
Hence for every z, 

H(z,+) E H(z,-]!Xm 

where 

Thus we have shown, among other things that: 

for all z. 

(cf. (1) of Sec. 1.3) we have, with the help of (8) of Sec. 
1.1: 

Furthermore, by definition of the distribution factor D 
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h(.z) = h(z,+) + h(z,-) 

= D( H(z,+) + H(z,-) ) 
-kZ = D( H(O,+) + H(0,-) ) e 

= h(0) e-kz (7) 

which is the theoretical basis for (7) of Sec. 1.2. 

ous parts of the arguments above. This assumption is quite 
reasonable in terrestrial settings; indeed, in such settings 
the condition a=O for every wavelength is never observed. 
What would the light field look like in an infinitely deep 
medium in which a-O? Equation (1) shows us that if am0 fOt 
all wavelengths, then: since g-= g+ = 1, 

Observe how the assumption that a>O, is needed in vari- 

E(Z,-) = 0 
H(z,-) H(z,+) so that 

e 

at all depths z and for all wavelengths. The sea would be of 
the same general brightness and color of the sky in this case 
--at every depth! 

Reflectance and Transmittance of 
Finitely Deep Hydrosols 

The simple two-flow model allows us to estimate the re- 
flectances and transmittances of finitely deep layers of 
water. We return to (6), (7) of Sec. 1.3 and consider a fi- 
nitely deep homogeneous layer whose upper surface is at 0 and 
whose lower surface is at z. The upper surface is irradiated 
with a given irradiance H(0,-) and we set H(z,+)=O, which sim- 
ulates zero irradiation at the lower boundary (Fig. 1.40 (a)). 
We then find the m+, m- corresponding to these two given ir- 
radiances, and solve for H[O,*). Thus, if under these condi- 
tions we write 

"Ry ( T) " for H( 0, +) /H (0, -1 
then Ry(~) is the reflectance of the slab of (diffuse) optical 
depth" T = kz, and R (T) is found to be of the form: Y 

I 1 

*There are many 'optical depths' possible in radiative trans- 
fer theory; one for each scattering or absorbing concept. In 
the present case we use k as a base for optical depth. 
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T is optical depth corresponding to Z 

FIG. 1.40 Boundary conditions for the reflectance and 
transmittance of finitely deep layers in a hydrosol. 

where we have written: 

The transmittance TY(T) of,khe slab of optical depth T can be 
found in an analogous manner (Fig. 1.40 (b) ) by now seeking 
H(z,-) under the same conditions. Thus if we write: 

then it follows that: 

L 1 

One should see that, because the medium is homogeneous, R~(T) 
and Ty (T) depend spatially only on the optical depth T, so 
that (8) and (10) pertain to any slab of thickness T in the 
medium regardless of its vertical location within the medium. 

It will also be interesting to look at some of the lim- 
iting values of Ry.(~) and Ty(~) for various extreme values of 
T and y. ,For example, one may verify that: 
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From (15) we see that the reflectance of very thin slabs is 
proportional to the backscattering coefficient b. Indeed, 

R (TI lim Y = 
z+o = 

so that: 

R (T) z bz (17) 
Y 

for small T. 
thin slabs is: 

From (16) we see that the transmittance of very 

T (T) = 1 - (aD+b)z . (18) 
Y 

From (17), (18) we conclude that for thin slabs: 

R (T) + Ty(~) = 1 - (aD)z Y 

and if in general we write: 

“Ay ( T) I‘ 

we see that in particular for thin slabs: 

A (u) z (aD)z . (20) 
Y 

Clearly Ay(‘c) for general T is the amount of irradiance ab- 
sorbed by a slab of optical thickness T and with optical prop- 
erties a, b, and D. From (19) we have the general conserva- 
tion law: 
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1 I 

Figs. 1.41, 1.42 represent Rr(?) and Fig. 1.43 represents 
Ty(~) for a selected set of y and T values. Values of k and 
y can be obtained by direct computation from the definitions 
of k and y p  or by their graphs in Figs. 1.44, 1.45. The com- 
putations were done by Mrs. Judith Marshall. 

Invariant Imbedding Relations for Irradiance 

We now wish to investigate a particularly interesting 
property of the reflectance and transmittance functions R y ( ~ )  
and Ty{T) defined above. This property will allow us to 
write down Eqs. (6),(7) of Sec. 1.3 by sight for homogeneous 
media with transparent boundaries. We shall fix attention on 
an arbitrary medium X whose upper boundary is at optical 
depth 0 and whose lower boundary is at optical depth c (= zk), 
where z is the geometric depth of the medium. Since X is 
fixed throughout the present paragraph, we can drop the "Y" 
from the R and T notation. Furthermore, to emphasize the geo- 
metric limits of X we shall denote it by t'X(O,~)". 

only. Then by definition of R(c) and T(c) we have: 
Now suppose X(0,c) is irradiated at the upper boundary 

H(O,+) = H(0,-) R(c) (22) 

H(c,-) = H(0,-) T(c) (23) 

This is a simple application of (8) and (10) and the basic 
meanings of R(c) and T(c). Next, assume that X(0,c) is ir- 
radiated only on its lower boundary. Then, by the same token: 

H(O,+) = H(c,+) T(c) 

These formulas follow rigorously using the pattern of deriva- 
tion leading to (8) and (10). However, they should be intui- 
tively clear simply on the basis that T(c) and R(c) are trans- 
mittances and reflectances of homogeneous slabs of scattering 
absorbing material of optical thickness c in which complete 
symmetry of the light field has been assumed (in the form of 
(1) of Sec. 1.3). 

Furthermore, and this is a crucial step, because the 
basic differential equations of the two-flow model are linear, 
we have at our beck and call the mathematical principle of 
linear superposition of solutions of these equations. Thus, 
if X(0,c) is irradiated simultaneously at levels 0 and c, 
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PIG. 1-43 
-01 5 y  .98. 

then we would be correct in writing the observed emergent ir- 
radiances at levels 0 and c as: 

Calculated transmittance Ty(~) versus T, for 

I I 

M(O,+) H(O,-).R(c) 4 H(c,*)T(c) (26) 

f.i(~,-) = H(O,-)T(c) + M(c,+)R(c) (27) 

These equations are readily forthcoming from (6), (7) of Sec. 
1.3; however, we shall imagine for the moment that they form 
a relatively new basis for approachhg radiative transfer 
problems, and that they are just as Lasic (as indeed they are) 
as the two-flow equations [a), (5) of Sec. 1.3 in setting up 
the foundations of the two-flow model. We shall spend much 
time on this point of view and its generalizations in Chapters 
3, 7, and 8. For the moment we adopt it in the form of (26) 
and (27) and apply it in a simple and direct manner so as to 
explain the essential ideas behind it. 

In order to illustrate in a relatively concrete manner 
the properties of (26) and (27), we shall consider an actual 
natural hydrosol in the framework of the one-D model. Thus 
let us suppose that 

D = 2  (diffuse light distribution factor) 
a = .117/m (volume absorption coefficient) 
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Hence : 
aD = .234/m (VQBUTW absorption coefficient 

for diffuse Light) 

Further we suppose: 

and 
s = .325/m (volume total scattering coefficient) 

b .010/m (volume backward scattering coeffi- 
cient for diffuse light) 

From the graphs for y I  and k, we find that for this medium 

. y = .96 
k = .250/m. (diffuse attenuation coefficient) 

For later reference we note that: 
a = a+s .442/m (volume attenuation 

coefficient) 
For a medium of depth: 

we have an optical depth of: 

According to the graphs for R and T, for such a medium: 

z = 4 meters, 

c = zk = 1. 

and so: 

R(1) = .018 
T(1) = .360 
A(1) = .622. 

All these optical propertie- arc to be considered for illus- 
trative purposes only. In the present example, they pertain 
not to a single wavelength but to average values over the 
visible spectrum. Suppose that the medium X(0,l) has trans- 
parent upper and lower boundaries and that it it; irradiated 
such that: 

H(0,-) = 500 natt/m2 
H(l,+) = 100 watt/m2 . 

The H(0,-) chosen here simulates a typical visible spectrum 
irradiance produced by a noonday sun at sea level on a hori- 
zontal plane, under a sky with clear dry air (cf. Table 2 of 
Sec. 1.2). Then the upward irradiance at the upper boundary 
is, according to (26) : 

H(O,*) = 500 x .018 + 100 x .360 

= 45 watts/m2 e 

The downward irradiance at the lower boundary is: 
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H(1,-) 500 X .360 + 100 X .018 

= 182 watts/m2 . 
Finally, the number of incident watts absorbed per square me- 
ter of boundary within X(O,1) are: 

(H(0,-) * H(l,+)) x .622 = 373 watts/m2 

Suppose now that X(O,1) has a reflecting lower boundary. 
We wish to show next that the upward irradiance H(1,+) just 
above the lower boundary of X(0,I) can be computed directly, 
if the reflectance r of the lower boundary is known. Suppose 
that 

T = .os0 
and suppose that only H(0,-) is given. Let the associated 
light field be set up in X(0,l). Then if we know the irradi- 
ance €i(l,-) on the lower boundary, we have: 

H(l,+) = H(l,-)r (28) 

H(l,+) is the incident irradiance on the body of X(0,l) just 
within its lower boundary. Then, by (27). 

H(1,-) H(0,-)T(1) + H(l,+)R(l) (29) 

Combining (28), (29) we have, on solving for H(1,-): 

(30) 
H(0, -)T( 1) H(l,-) = 

1-rR(1) 

Suppose that Il(O,-) = 500 watts/m2, then (30) yields: 

500 X .360 
1-.05 x .02 

H(1,-) = 

= 180 watts/m2 . 

In other words, on comparing this H(1,-) with that worked out 
above, a bottom boundary reflecting by an amount r = .OS0 
will contribute essentially nothing measurable to H(1,-). By 
(28) we have 

H(l,+) = 180 x .050 = 9 watts/m2 

What should the reflectance r of the lower boundary be 
in order to yield the H(l,+) = 100 watts/m2 we used in the 
first illustration above? Multiplying each side of (30) by P, 
and using (28) we have 
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Solving for r: 
H (1, +) r -  

N(l,+)R(l) + H(0,-)T[1) 

- 100 
100 x .018 + 500 x .360 

--- - loo - .550 
182 

which could for example simulate a light sandy bottom. 
serve that the denominator in the preceding expression €or r 
is simply !1(1,-), under the present boundary conditions. 

These examples begin to show the use of the one-D model 
in making elementary calculations concerning everyday matters 
in the study of hydrologic optics, including the effects of 
nontransparent boundaries. 

We continue with another illustration which shows how 
to find the internal irradiances in X(@,l) knowing the inci- 
dent irradiances on its transparent upper and lower bounda- 
ries. Suppose we have the incident irradiances: 

Ob- 

H(0,-) = 500 watts/m' 
n(i,+) = 100 watts/m2 

We want to find H(I/2,t], i.e., the irradiances at the mid- 
level of the present medium. Now since (20), (27) hold for 
arbitrary media of optical depths c, let us apply them to the 
two subslabs X(0,1/2), and X(1/2,1) which comprise the upper 
and lower halves of X(0,1), respectively (see Fig. 1.46). 

Applying (261, (27) to X(O,1/2): 

H(O,+) = H(D,-)R(1/2) + H(P/2,+)T(1/2) (31) 

H[1/2,-) M(O,-)T(1/2] + H(1/2,+)R(1/2) (32) 

Of the irradiances we know only H(0,-), and we want to find 
H(1/2,*). IVe also do not know H(O,*). We therefore need 
more relations. Returning to (26), (27), and applying them to 
X(l/Z,l), we have: 

H(1/2,+) = H(1/2,-)R(1/2) + H(l,+)T(1/2) (33) 
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c=o 

c =  1/2 

. . . . .  
. . . . . . .  ... 

. . . . . . . .  . . . . . . . . .  . . . . . . . . . . . . .  . . . .  
H(O,-) 0 H1(Q,+) 
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........... . . . . .  

H (1/2,+) ......... 
. . .  . . .  . . . .  

. *  - . . . . . .  
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. . .  
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H(l,-l H (I, +I a c= I 

FIG. 1.46 Using invariant imbedding ideas to calculate 
internal irradiances from boundary irradiances. 

Here we know H(l,+), and we have more relations for H(1/2,+) 
with another unknown H(1,-). But now we have four equations 
in four unknowns which we can solve €or H(1/2,+), and rear- 
range as follows. 

14(1/2,-) = f~(O,-)J-(O,1/2,1) + H(l,+)@(l,l/Z,O) (35) 

H(1/2,+) Ii(0, -)4(0,1/2,1) + H(1 ,+)Z(l, 1/2,0) (36) 

where for the present example: 

D(O,l/Z,l) = &(1,1/2,0) = R(1/Z)T(1/2) = .006 

2-(0,1/2,1) = J(1,1/2,01 = T(1/2) 
1-R2 (1/2) 

= .6no 
1-R2(1/2) 

Hence : 
H(l/Z,-) = 500 :< .600 + 100 x .006 

= 301 watts/m2 
H(1/2,+) = 500 x ,006 + 100 x .600 

= 63 watts/m2 

(37) 

(38) 
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Equations (35)-(38) are special cases of the important invar- 
ianE imbedding relations we shall study in many contexts lat- 
er. If the reader has understood the deductions in this ex- 
ample, he will have no difficulty with the deductions in the 
remainder of this work concerning invariant imbedding con- 
cepts, for they are merely elaborations of the present simple 
exsmple to general geometries and radiometric quantities. It 
suffices 90 observe here that the Qandrfactors are the com- 
ptete rsfZactances and c a m p k t e  6raasmiCtances for the medium 
X(0,k) partitioned at level lf2. More general partitions 
gene~a1ly yield four such numbers. 

' With the preceding nunerical examples in mind, we may 
now apply (ZE), 127) to the following situation which gener- 
lizes the setting of Fig. 1.46. Thus, being guided by Fig. 
1.41 in which all depths are optical depths we have, for the 
medium X(a,b): 

H(a,+) = H(a,-)R(b-a) + H(b 

H(b,-] = H(a,-)T(b-a) + H(b 

Applying (ZE), (27) again, now to X(b,c 

H(b,+) = H(b,-)R(c-b) + H(c 

+) T (b - a) 
+) R( b - a) 

(39) 

140) 

+) T (c-b) (41) 

H(c,-) = H(b,-)T(c-b) + H(c,+)R(C-b) (42) 

Q \ d 
* .  . a .  . .  . .  . . . . . . .  . . .  . . . .  . . .  . .:. . 

c 

FIG. 1.47 General arrangement for calculating internal ir- 
radiances at level b from given irradiances at levels a and c y  
using the invariant imbedding relation. 
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Solving these four equations for H(b,k), we have, analogously 
to (35). (36) : 

where : T (b -a) R( c- b) 
1 - R(b - a) R( c -b) R(a,b,c) = 

T(a,b,c) = T(b-a) 
1 - R( b -a) R( c- b) 

&(c,b,a) = T(c-b) R(b-a) 
1 - R( b - a) R( c- b) 

T(c-b) 
T(c,b,a) = 

1-R(b-a) R(c-b) 

(45) 

(47) 

If the one-D model proves inadequate to predict or des- 
cribe a given radiometric condition in a natural hydrosol, it 
may be that a more general and flexible model is required. 
The hierarchy of successively more refined irradiance models 
that may be tried after the present one is as follows: the 
decomposed one-D model, the undecomposed two-D model, the 
decomposed two-D model; these are studied in Chapter 8. 

light field in real media may be measured so as to predict 
R(T) and T(T), see Examples 1, 2, in Sec. 13.10. 

For a reversal of the preceding procedures in which the 



SEC. 1.4 SOME DEDUCTIONS El 

A Theoretical Basis for the Law: 
-kz N*(z,O) = N,(O,0le 

In our derivation of the simple model for radiance lead- 
ing to (14) of Sec. 1.3 we assumed that the path function N, 
decreased exponentially with depth, as indicated in (13) of 
Sec. 1.3. We shall now do away with the assumption and de- 
duce this form of N, with the help of the two-flow model. 
This will place (15) of Sec. 1.3 on a sounder basis and also 
show how the simple models occasionally may be used to help 
each other attain their full descriptive powers. 

Now the path function value N*(z,B), as defined, gives 
the amount of radiknce generated by scattering at depth z, 
per unit length along the direction 5 of a path in a hydrosol, 
as shown in Fig. 1.39. What is scattered is the radiance at 
depth z impinging on the path in all directions 5'. Just how 
much of the stream in the direction 5' is scattered into the 
direction 5, at depth z is given by means of the volume scat- 
tering function values a(z;S';S). Thus 

N(z,S'Io(z;S';S) dfiC5'1 (50) 

where the notation "E" and I'dQ(F;')" is explained in Sec. 1.1. 
We shall carefully define 0 and derive (SO) from first prin- 
ciples in Chapter 3. For the present we can understand it on 
simple intuitive grounds, as just explained. 

tion N(z,-) has an arbitrary fixed shape in the upper and low- 
er hemispheres s,, E- of tki. unit sphere of directions E, If 
we assume in particular that for every depth z 

The two-flow model assumes that the radiance distribu- 

N(z,-) on E, has the constant value g(z) 

M(z,-) on E- has the constant value N(z) 
and that 

then (50) yields up the following necessary form of N,: 

N*CZ,E) = N(z,S')CrCz;E';5) dfi(S') 
-+ 
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111 thc two-flow model adoptcd in this chapter, the medium is 
assumed isotropic and homogoncous.* Further, the light field 
is such that the path direction F. can be characterized by a 
single angle 0 as shown in Fig. 1.39. Wc can therefore write, 
ad hoo: 

"~(0)" for a(z;C';E) dQ(E') 152) 
I 

We shall also write: 

(53) II s I1 for 1 o(z;S';S) dQ(6') 
I 
I 
I 

so that, 

- a(z;E';E) dQ(E') = s-s(9). (54) 
-+ 

The quantity s is simply the volume total scattering function 
introduced during the derivation of the simple model for ra- 
diance. The portion of the scattering lobe used in finding 
s(0) is shown unshaded in Fig. 1.39. In view of these con- 
ventions, we can write: 

From (11) of Sec. 1.1 is is clear that: 

H(z,-) = *E(z) (56) 

H(z,*) = r%(z) (57) 

M = E R, (58) 

N,(z,e) = E(z)[s(B) + R,(S-S(e>)l (591 

and from (57) , (56) and (5) we have: - 
Therefpre : 

We are essentially finished, because by (8), (11) of Sec. 1.1. 
we have (setting 5 equal to k) 

h(z) h(:z,+) + h(z,-) 

= ~H(z,+) + 2H(z,-) 
= 2n(Rm+l)N(z) (60) 

Using this in (59) and recalling (7), we find: 

"Homogeneity means u is independent of z; isotropy means u 
depends only on 5.5'. 
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which is the Besired result. I n  practice we can therefore use 
the theoretical k and the empirical K interchangeably. This 
derivation also shows how, using (SO), one can generalize the 
construction of N,(O,B) to quite realistic angular dependences 
using existing light fields at or somewhat below the air-water 
surface. The unshaded region of the a-lobe in Fig. 1.39 shows 
the portion of the three dimensional surface of a(z;E';S) over 
which the integration takes place to obtain s(@), 0s 6cn. 
Observe that if s(6) is a surface of revolution (as it is in 
practice) them : 

s(e) 4 SCT-Q) = s (63) 
whence : 

and in particular: 
s(n/2) = s/2 

s(0) 4 S(T) = s 

As an example of the use of (62) we observe that in 
some Pacific coastal waters (cf. [JOO]) as measured in the 
wavelength band of a Wratten 57 filter, we have 

s(0: = .00l/m 
sex) = .013/m 

Observe that s(0j acts like a backward scattering function 
for collimated flux, whereas S(T) acts like a forward scatter- 
ing function for collimated flux, so that by (63) 

s(0) + s(a) = s = .OL4/m 

This water was also found to have a corresponding volume ab- 
sorption coefficient of a = .104/m, and hence the medium has 
an a = .118/m. Such water is highly forward scattering and 
also relatively highly absorptive, and will therefore force 
the simple models to work hard in their descriptive tasks. 
Since the present medium is highly absorptive, the downward 
scattered daylight light near the surface will be relatively 
highly collimated. Accordingly we assume a relatively small 
distribution factor D, say D = 1.1. Since the medium is 
highly forward scattering, we shall estimate the backward 
scattering coefficient b for the ecatteped flux field to be 
.002/m. It follows from the one-D two-flow model ((9) of 
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1.3 and (9) of 1.4) that aD = .114, and that k = .114/m along 
with y =.99; so that R,= .01. Let h(0) = 500 watts/m2 just 
below the surface. 

path function formula (62). We have, for the downward path 
function just below the surface: 

These assumed conditions allow us to illustrate the 

h(O)[s(n) + Ls(O)] 
Za(l+R,) 

N*(O,n) 

- 500[.013 + .01 x .OOlL 
6.28 x (1 + .Ol) 

= 1.03 watts/m3sr 
= 1.03 herschels/m 

Further, for the horizontal path function: 

- - = .557 herschels/m 
4 x 3.14 

Finally, for the upward path function: 

500[.001+.01 x .013] 
6.28 (1+ .01) 

= .080 herschels/m. 

Computing Radiances from the Simple Model 

Some illustrations of the computation of radiances us- 
ing (14) of Sec. 1.3 will help fix in mind the typical orders 
of magnitudes of radiance values in natural waters. Let us 
begin with the case of a horizontal path of sight some given 
depth zo below the surface. Then in (14) of Sec. 1.3, we set 
0 = r/Z, and that equation becomes: 

I 1 

I I 
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which we can write quite simply as: 

provided tlic depth and direction of the path nrr understood. 
(The right is reserved to disintcr the depth and direct ion 
variables at any time.) For infinitely long horizontal p a t h s ,  
i.e., for the case r = w r  this formula yields: 

(45) 

for the observable horizontal radiance N at a given depth in 
any laterally extensive stratified optic81 medium. 
that in such media the Nq defined above does not: change with 
location along the path. For this reason we denote the obser- 
vable radiance as 'INq" and call it the equitibrium radiance. 

water around the blue-green part of the spectrum can be made 
on the basis of the preceding example, wherein we found that 
Nt(0,a/2) = .557 herschels/m. In such waters, for example, 
M * a+s = .IO4 + .(a14 = .118/m. Hence: 

Observe 

An estimate of Nq for shallow depths in Pacific coastal 

Nq(0,n/2] = .557/.118 = 4.72 herschels 

is the equilibrium radiance just below the surface. At a 
depth of 5 meters, it follows from (61) that 

E 

where we have used the 
ample. 

N*(5,T/2) ~ N*(O,r/2) ,-5k 
a d 

Nq(O,*/Z)e - Sk 
4-72 x ec-5 .I151 

4.72 x .560 = 2.64 herschels 

k for the water of the preceding ex- 

set 8 
depth 

As another example of the use of the radiance model, we 
= n, and e = 0 in (14) of Sec. 1.3, to find that, at 
z at the lower end of a vertical path of length r: 

and similarly at depth z, at the upper end of a vertical path 
of length r: 

1 

1 I 
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The reader is reminded of the standing convention that Nr(z,n) 
is the apparent radiance at depth z flowing in the downward 
direction and to see it, one must direct his eye or radiance 
meter upward (cf. Fig. 1.39). We persist in using this form 
of radiance (i.e-, surface radiance) because it simplifies 
the$dynamics of photons in sca'tfering-absorbing media. 

set r - m in (67) and still keep the path within the medium. 
Then (67) becomes: 

Suppose the medium is infinitely deep, so that we can 

N(z,O) = !%k& 
a + #  

which is the radiance one would see at depth z looking 
straight down into the infinite deeps. Suppose z = 0, then 
our preceding example lets us estimate that: 

N(0,O) = N+(O,O) 

- .080 

a + K  

.118 + .115 

= .344 herschels. 
Let the zenith radiance as seen just above an air-water 

surface be 80 herschels in a given band width of the blue- 
green part of the spectrum, say at 480 ?r 64 mp, and suppose 
that h(0) = 500 watts/m2 just below the surface. If the sur- 
face is calm, then just below it, by virtue of the n'-law for 
radiance, (Sec. l.l), we would have 

No[O,r) = 80 x ($1 = 142 herschels 

where 413 is the index of refraction of water. This radiance 
value is to be modified slightly if surface transmittance and 
reflectance effects are to be included. These corrections 
are of secondary importance and so we shall not include these 
effects at the moment. Now, to the present task: we can es- 
timate N(z,n) for z = 5 meters, by means of (66) in which we 
set zo= Om, z = Sm, and use a = .118/m, k = .115/m. Thus, 
with the help of our estimate of N,[O,n) above: 

= 142 x .554 +'(1.03 x .560) x 5 

78.6 + 2.88 

= 81.5 herschels 
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DEPTH- METERS 
FIG. 1.48 Experimental verification of the simple model 

for radiance, as measured by Tyler in Lake Pend Oreille, 
Idaho, April 1957. (From [298], by permission) 

The next to last equality shows that at a depth of 5 meters, 
78.6 herschels are transmitted from the original 142 just be- 
low the surface, and that 2.88 herschels are added by the pro- 
cess of scattering over the 5 meter path. 

Figure 1.48, which is based on the work in [298], shows 
the observed radiance distribution in Lake Pend Oreille and 
its associated predicted values using (14) of Sec. 1.3 for 
three important directions. The solid curve is computed from 
the model, the dots denote measured radiances, 

A word or two may be in order here on the rather unin- 
tuitive-seeming jump by the radiance function as the flux 
crosses the air-water surface. We saw in the example above 
how it jumped from 80 to 142 herschels. To simplify matters 
suppose for the moment that there are no losses by reflection 
as the flux crosses the surface. Fig. 1.49 depicts the flux 
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I 

FIG. 1.’49 To show that the irradiance conservation law 
holds despite the n2 effect on radiance at the air-water 
level. 

incident at a point A on the surface, flowing in from all di- 
rections in a hemisphere. The refracted rays below the sur- 
face do not fan out in a full hemisphere, but are limited to 
a right circular cone of half angle BC = 4S0, or more pre- 
cise ly , 

= arc sin [i] . 9c 

Let the incident radiance distribution be of constant magni- 
tude N. Then the irradiance on the air-water surface, by (11) 
of Sec. 1.1, is simply nN. Let us compute the irradiance 
just below the surface produced by the refracted incident 
flux of radiance (4/3)*N. By (1) of Sec. 1.1 we now find: 

= TTN 



This shows that, despite the rather odd buildup of refracted 
radiznce across the air-water surface, this buildup is of 
such a magnitude, and takes place over such a restricted set 
of directions, that, as expected, energy conservation is ob- 
served. Tie argument just given can readily be extended to 
ideal transmitting surfaces bounding media of arbitrary index 
of refraction. When, in addition, reflection processes are 
tQ be taken into account, the more extensive calculations 
discussed in Sec. 12.2 are eo be used. 

Derivation of the Contrast Transmittance Law and the 
Radiance Difference Law 

The contrast transmittance Paw: 

for an inclined path of sight of length r in a homogeneous 
optical medium was first encountered experimentally (in the 
special instances of vertical and horizontal directions) as 
explained in the discussion leading up to (12) of Sec. 1.2. 
It is now our purpose to show how this law may be deduced 
from the simple model for radiance (14) of Sec. 1.3, and un- 
der what conditions it is expected to hold. 

path in X as shown in (a) of Fig. 1.50, where the observer is 
at depth z and the apparent radiance tNr(z,O) of an object of 
inherent radiance tNo(zt,8) is observed. The angle e is such 

Let the hydrosol X be infinitely deep and consider a 

I zt 

ti 
F 

.al 
IG. 1.50 Setting for a theoretical proof of the exponen- 
law for apparent contrast. (cf. Figs. 1.29, 1.30) 
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that 0- e-:a/2. Recall that 0 is the angle from the vertical 
nt:wtiich tlic photons are flowtihg, as shown by the arrow in 
tliC figure. 

Now the background appaiPnt radiance bNr €or the present 
path of length r is obtained from (14) of Sec. 1.3 by setting 
r = -  in that general equation: 

This is the apparent radiance of the background of the target 
as seen at a range r from the target. The apparent contrast 
Cr(z;e) of the object against its background (recall (11) of 
Sec. 1.2) is: 

tNr ( 9 - bN,( 9 e) 
C r ( z A  = , (69) 

bNr(ZS0) 

wherein we have: 

Observing that : 

it follows from the preceding four relations, by straightfor- 
ward substitution of (68) and (70) into (69), and a reduction 
using (71) , that: 

I I 

which was to be shown. The quotient Cr/Co is called the con- 
trast transmittance. Equation (72) is the requisite contrast 
transmittance law. The quantity (a+K cos e)-' is called the 
attenuation length Le of the medium along the given path. 
For 0= n/2, L,/z= lfa, a basic property of the medium, while 
Lo = l/(a+K) is associated with secchi disk readings (cf. (84) 
below). The quantity 4Lg is mainly of historic interest and 
is the hydrologic range for the given path of sight. Its 
plot is an ellipse vs 0 (cf. Sec. 1.9). 

This simple derivation cannot be repeated in its entire- 
ty when the photons are streaming in from a nearby boundary, 
such as depicted in (b) of Fig. 1.40. In this case (68) must 
be replaced by the full form of (14) of Sec. 1.3. However, 
by using (69) and (71), which are general definitions of ap- 
parent and inherent contrasts, along with (14) of Sec. 1.3 
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once again, it follows readily by a similar cslculation, that 
quite generally: 

r 1 

The reader may show that this formula holds for both situa- 
tions depicted in Fig. 1,50, i.e., for 0 5 e S  T. It reduces 
to (72) when 0 5  0rn/2, i.e., when (14) of Sec. '1.3 reduces 
to (68). k fuller discussion of contrast and contrast trans- 
mittance is given in Chapter 9. 

of the contrast transmittance law for the cases of 0 = 90°, 
and 0 = 58.8O. The radiometric quantity used was apparent 
luminance Br, and the medium (Lake Winnipesaukee, N.H.) had 
an a of .490/m for Fig. 1.51 and for Fig. 1.52 the medium had 
a = .585/m and K = .350/m. These optical properties therefore 
pertain to averages of a, K over the visible spectrum. The 
observation point in each case was about a meter below a calm 
air-water surface and when the skies were overcast or early 

Figures 1.51 and 1.52 illustrate two experimental checks 

I 2 3 4 5 

FIG, 1.51 Experimental checks of the exponential law for 
apparent contrast (cf. Fig. l.55) by Duntley, Tyler, and Tay- 
lor, Lake Winnipesaukee, N.H., Summer 1958. 
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FIG. 1.52 Experimental checks of the exponential law for 
apparent contrast (cf. Fig. 1.51). 

morning skies in each case. 

of (73), namely that radiance differenaes propagate exactly 
according to the exponential law. 

Further details may be found in 

We conclude with the observation of a useful corollary 
1831. 

Thus 

I 

I I 

Contrast Transmittances for General Backgrounds 

It should be observed explicitly that formula (73) 
such generality that the apparent contrast 6, of an object 
need not be with respect to a water background. Rather, 
bNo in (73) is the inherent radiance of a background (as 
Fig. 1.53) for a target of inherent radiance tN, (shaded 
the figure), then by computing bNr according to (14) of 

isof 

if 
in 
in 
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FIG. 1.53 Contrast transmittance €or paths with arbitrary 
backgrounds. 

Sec. 1.3 and using this in (731, the requisite apparent con- 
trast transmittance Cr/C, is determinable. 

the line of sight be horizontal, then it is easy to see that: 
I , 

9 r 75) 

As a special case of (74) under these circumstances, let 

1 

b" o 
I I 

where Nq is the equilibrium radiance for the given horizontal 
path. 
path uses only the radiances bNo and Nq, ~.e., the radiances 
making up the immediate background of the target. Of course 
in real media Nq is somewhat affected by both tNo and bNo 
(and conversely) so that the classically simple formula (75) 
does not rigorously hold. But withiq the framework of the 
present simple models and for paths of sight under ordinary 
lighting conditions, (75) is a quite useful and adequate 
formula. 

Observe that the contrast transmittance of the given 

The Multiplicative Property of Contrast Transmittance 

If we take a still closer look at the contrast trans- 
mittance law (73), we find a most interesting property held 
by contrast transmittance in general, whether it be for paths 
of sight within the sea, or within the atmosphere, or even 
for paths partly in the sea and partly in the atmosphere! 

To facilitate our discussions let us write: 
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"Jr" $or Cr/Co 

and when necessary we include location and direction varia- 
bles with rfCr,rf. 
ten as 

Now observe that e-ar in (73) can be writ- 

0 where bNr is the residual radiance coming directly from the 
target background over the path of length r. (It is what is 
left of bNo after scattering and absorption have taken their 
toll; cf. (24) of Sec. 1.3). Then we see that (73) can be 
cast into the form: 

On this basis, we can work solely with the backgxound radi- 
ance of a target when discussing beam transmittance of a path 
along which it is viewed. Hence we need no longer carry the 
rehinder "b" before the radiance symbol. In other words we 
find that for a general path of tength r in a generat hydro- 
802, the contrast transmittance Cr/Co of the path is given by 

This situation is summarized schematically in (a) of Fig. 
1.54. 

end, as shown in (b) of Fig. 1.54. Let the inherent radiance 
at the far end be No. Then at the end of the first path seg- 
ment of length s, we have, according to the preceding rule: 

Next, suppose we have two paths of length r, s, end to 

where Ns is the apparent radiance associated with No, and Nz 
the residual radiance associated with No over the path of 
length s, both reckoned via (12) of Sec. 1.3, for example. 
The apparent radiance Ns now acts as did the initial radiance 
No, and Ns is transferred over the second segment of length r 
to give rise to an observed residual radiance Nse-ar and the 
apparent radiance Nr+s associated with Ns. Hence: 
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FIG. 1.54 Part (a): Deriving the contrast transmittance 
as the ratio of a residual radiance and an apparent radiance. 
Part (b) : Deriving the muLtiplicative (or semigroup) proper- 
ty of contrast transmittance. 

But looking at the path as a whole, we can also write: 

Comparing. (97) - (79) we find: 

This is the muZtipZicative (or semigroup) property of the con- 
trast txansmitfance. The argument just used to derive (80) 
is readily extended without change of the form of (80) to ar- 
bitrary paths in air or water and across places where the 
index of refraction varies, provided in such cases we work 
with N/n2 rather than N, where n is the index of refraction. 
For by the n2-law €or radiance, N/n2 is invariant in trans- 
parent media with varying index of refraction (see Sec. 9.5). 

As an obvious extension of (80), if a path consists of 
three contiguous, successive segments of arbitrary lengths 
r, s p  t, then the contrast transmittance t7;+s+t of the com- 
posite path is simply a product of the three contrast trans- 
mittances of the segments: 
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As an example of (81), consider a calm air-water sur- 
face. A line of sight of length t begins at a submerged ob- 
ject, is refracted at the air-water surface, and runs a length 
r in the air. Each of the three paths have an associated con- 
trast transmittance. While the path across the surface is of 
zero length, i.e., s = 0, there is a definite contrast reduc- 
tion that takes place because of reflected sky light and re- 
flected and transmitted underwater light occurring at the SUP 
face. The form of this singutar contrast transmittance To 
is given in detail in (ZO), (23) of Sec. 12.2. 

then the above analysis must include an additional factor yo (= C/C)associated with the time-averaged contrast reduc- 
tion by refraction (cf. in (5) of Sec. 1.2). Hence now: 

If, in addition, the air-water surface is in motion, 

- J,,t = &&Z& (82) - 
gives the time averaged contrast transmittance r r + t  for a 
path of length T in air, and going across a moving air-water 
surface and plunging a length t in a natural hydrosol (Fig. 
1.55). The factoTs are as follows for a vertical line of 
sight in air and a small submerged target of half-angle sub- 
tense $ as seen j&t below the surface: 

rt= 

1-e (at the interface) 

Finally To is as given in (21) of Sec. 12.2 (wherein No(x,cl) 
is now the time averaged vertical upward radiance). The com- 
plete analysis of the time averaged radiance transmitted a- 
cross the air-water surface is made in the latter half of 
Chapter 12, wherein the more or less intuitive type of factor 
analysis in (82) is bypassed in a direct, more general, but 
somewhat more difficult solution of the problem. 

Theory of the Secchi and Duntley Disks 

It is a part of almost everyone's experience to have 
thrown or dropped an object into deep water and to have 
watched it disappear into the depths. If the object is 
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FIG. 1.55 Contrast seduction along a composite path 
through air, air-water surface, and water. 

something bright or white, the eye can easily follow it down 
into the depths until it seemingly abruptly winks out, to be 
Post from sight from some depth onward. If the observer were 
of an inquisitive turn of mind, he may surmise that the gen- 
eral clarity of the water had something to do with the depth 
at which the object,disappeared, and he may wonder if there 
were indeed a quantitative connection between the depth rate 
of decay of the light field in the water and also the depth 
rate of decay of the whiteness or contrast of the sinking ob- 
ject against the watery background, and maybe even the depth 
at which it seems to wink into obscurity. 

Here is a hypothetical discussion about the radiometric 
problem of the sinking object, defined above, and which may 
occur on shipboard between a young eager theorist just learn- 
ing the ropes and a seasonel: experimenter in hydrologic optics 
just after one of them had accidently dropped a white glass 
coffee mug over the side of the oceanographic research vessel 
(which was moored in deep calm water at the time). 

Theorist: There you go, being carelrss with your design of 
experiments again. You didn't even note the sun alti- 
tude or what filter you were using. 

Experiynter:. I had an iriesistable urge to see what would 
a m e n  if I d r o m e d  it in. 

~ Th. Gobh heavens ma;*! Why the experiment? Have you for- 
gotten Archimedes Law? On theoretical grounds, I pre- 
dict that the mug will sink! - Ex. (Recovering from the accident) Look--it's turning bil- 
ious as it sinks deeper. What an interesting transfor- 
mation of shades and hues. It looks like it's down 10 
meters by now and I can still see it quite clearly! 
(Peering down over the railing) It must have reached 
terminal vel.ocity by now and is surely sinking accord- 
ing to Stokes' law. (Looking at his watch, then a pause) 
At the sound of the tone it will be exactly 20 meters. 

- Th. 
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Ex. - 
Th. 

Ex. 

- 
- 
Th . - 
Ex. 

Th . 

Th. - 
Ex. 
Th. 

Ex. 

Th. 
- 
- 

Ex. 

Th. 
- 
- 

Ex. 
I_ 

Th . - 

Ex. - 

(Ignoring the other's babbling) There it goes. I lost 
track of it. There's no doubt about it, this is pretty 
clear water! 
What's the alpha and the kay for this water? Did you 
measure it again this morning? 
It's the same as yesterday. The alphats about a tenth 
per meter and the kay is about fifty thousandths per me- 
ter, both in the green. What are you doing? 
(Jotting something on a piece of paper so that the oth- 
er can see it] I'll bet I can connect the mug's depth 
of disappearance with the alpha and kay of this water. 
(Smiling wearily to himself, and then with a sigh): 
Here we go again. Take it easy, Einstein, my calculus 
is buried under a ton of barnacles. 
We really don't need it. Didn't you explain to me how 
it's known that the light level generally goes down ex- 
ponentially with depth in deep water like this? I can 
use this fact to figure out how much light gets to the 
mug at each depth z. It would be (writing on the paper) 
Hoe-Kz, correct? 
Yes, and let's say that, Ho is the irradiance on a hori- 
zontal surface just belbw the surface and K is the kay 
for this water, namely, .050/m. So you can figure out 
the irradiance on a horizontal surface at depth z. 
(Then feigning puzzlement] Where does that get you? 
Why, this lets you compute the inherent radiance of the 
mug at depth z, if you know its reflectance. 
Do you know it? 
No, but let's just call it "R". Then (writing again) 
R(Hoe-Kz) would give an estimate of the radiance reflec- 
ted upward by the mug. 
Hmm---Yes, but that's its inherent radiance down at 
depth z. Here we are on deck. 
I see what you mean. So we need the apparent radiance 
of the mug. But that'll mean knowing the path radiance 
generated by scattered light between us and the mug and 
also the effect of the aiT-water surface. Gosh, all 
that's pretty hard to come by isn't it? 
Quite. But if you remember what I told you the other 
day about radiance differences . . . 
Radiance differences? Oh, of course! They are trans- 
mitted exactly according to the exponential law e-ar 
for beamed light. Let's see, the radiance difference 
in this case will be between the inherent radiance of 
the mug at depth z and the inherent radiance of the 
background water at the same depth. Such a difference 
is easy to figure. 
Is it? Again you don't know the reflectance of the wa- 
ter at the depth of the mug. At least I haven't meas- 
ured it yet for this place. 
That's O.K. Let's call the reflectance of the water 
"R,". It could not be much different from .02 for all 
depths. I was looking over some of YOUT old reports, 
and review articles yesterday, Everywhere you measured 
R, you got something around .02 for green light, even 
some deep clear lakes and ponds, n'est C B  pas? 
(Gritting his teeth) 7 am afraid so. Very few 
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surprises left there. Well, where are you leading me 
next with your paper and pencil? 
The average radiance of the water background at depth z 
is skinply R, times the downward irradiance at that 
depth. That is, we would have k(Hoe-KZ). Right? 
Yes, except for a factor of T--but they'll all cancel 
out anyway in the end. So don't worry about it now. 
(Looking up surprised) Say--how do you know that? 
Hawe you worked all this out before? 
(With a strakight face, looking out at the horizon) Not 
exactly. On with it--what is YOUP next step? 
Well here is the radiance difference between the mug 
and the sea at depth z: 

MoRemKz - HoRDDe -KZ 
And then? 
And then at long last I can use the radiance difference 
Paw. That is I multiply this difference by e-aZ to 
transmit it up to just below the surface--where it'll be 
what we will actually see if we went there. Thus: 

Can YOU simplify this mess? 
Sure, like this: - (a+K) z Ho (R-R,) e 

Also I don't like to bother with absolute light levels. 
Can you take care of that, too? 
Yes, I suppose, Why not divide the whole thing by the 
amount of reflected radiance from the sea just below 
the surface? Like this: - (a*K) z H (R-RJe 

0 -- 
HoR, 

That'll work fine, Row, what have you got for all your 
trouble? 
(A pause, and then) Why this looks like it could be a 
kind of contrast reduction formula ...y es, it is ...j ust 
let lfo(R-R,)/HoR, or simply (P-R,)/Rm be the inherent 
contrast of the mug against iLs background. It looks 
like this contrast is independent of the depth of the 
mug. That's fantastic! Is that right? 
(Blanching) YES, go on... 
So if the apparent contrast of the mug at depth t as 
seen from just below the surface is C,, then it looks 
like we have 

(A little startled at the equation's quick appearance 
from an unexpected line of argument) Would you know 
how to use something like that? 
(After a while) Well, if we can agree that the mug 
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disappears when Cz/Co is some small number, maybe like 
1/50, and measure the z for such a ratio, then we can 
compute the corresponding a+K. It's true we couldn't 
find a and K separately this way, but the sum is prob- 
ably still a good index of water clarity. - Ex. (In mock anger) Incredihlel Do you know what you've 
just donc, boy? - Th. (Somewhat aghast) No, sir. Rut I do know that we 
haven't allowed for the surface effects yet. Is some- 
thing wrong? - Ex. No, it's just that throughout this discussion I've seen 
several old friends in a new light. You did well. Now, 
you run along below and get me a fresh mug of coffee. 
And on the way back drop into the ship's library. I 
want to show you something in Sec. 1.4 of "Hydrologic 
Opticsq'. 
It wasn't long until the young theorist saw how to de- 

rive the contrast law in the orthodox way (see, e.g., (72)) 
and how to put in the contrast transmittance factors for the 
surface, as we have seen for ourselves in (82). It was also 
made clear to him how Secchi [283] had many years before, in 
1865, devised an empirical procedure of just this type for 
finding a water clarity index which used the depth of disap- 
pearance of a standardized disk, and finally of how the me- 
ticulous care with which Secchi had stated his measuring pro- 
cedures had generally been ignored or diluted by subsequent 
generations of users of his method. 

In 1949 Duntley [82] examined the Secchi disk procedure 
and devised a simple alternative scheme whereby it would be 
less subject to the vagaries of individual experimenters and 
lighting conditions during the moment of disappearance of the 
disk. lluntley observed that one important seat of the diffi- 
culty of using Secchi disk readings layAn coping with the 
contrast transmittance factors To and J in (82) (the fac- 
tor Tr is essentially unity for work rigRt above the surface). 

used, one being white, the other gray. Suppose further that 
the two disks are lowered together, side by side into the wa- 
ter a meter or two or so below the water surface, say to 
depth z. An observer above the surface will see them side by 
side: a white and a gray disk--each a bit dimmer now, but 
their luminances still quite distinct. Then the white one is 
slowly lowered farther into the water, the other being held 
fixed. As it is lowered, the white disk becomes darker (the 
e-Kz effect setting in) and soon, at some depth d below the 
gray disk, there appears to be a luminance match between the 
two disks (see Fig. 1.56). At this stage of the experiment, 
we see that by (72) and (82) : 

Suppose then, Duntley reasoned, that two disks were 

for the gray disk, and that: 



for the white disk, and indeed, that: 

(As they stand, either of these formulas for C, or C;+d by it- 
self comprises the theory of the Seechi disk.) By taklng the 
ratio of t.hese contra5t5, xe eliminate the troublesome con- 
trast transmittances To* Top to find: 

683) 
(a+K)d =. R-Ra e (a+Kfd c c 

l = L = 2 e  
C;+a cA R G - R a  

Hence 

Using the experimental fact that in green light Urn is 
on the order of .02 (but of course with some variation possi- 
ble) for most natural hydrosols, and that the R of the gray 
disk and the R' of the white disk may be easily chosen much 
greater than the Rm of the water to be measured, (84) can be 
written very nearly as: 

Since the number In (Rt/R) is known and fixed for a pair of 
disks, a table can be made from which one can read off a+K 
directly from the match-depth-difference d. 

equipped with a scuba and a light-weight pair of Duntley 
Suppose further that someday an optical oceanographer 

r 

FIG. 1.56 The Duntley-disk procedure for measuring a+K. 
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FIG. 1.57 The Duntley-disk procedure for measuring a-K. 

disks on a rod (as in Fig. 1.57) will be able to measure the 
match-depth-difference d for a vertically upward line of sight. 
Then from an analysis based either on the kind of reasoning 
by the young theorist in the dialogue above or by simply ap- 
pealing to (72) with B = 180°, we could deduce that, analo- 
gously to (85): 

From this and (85), we find: 
, 1 

and 

I J 

If such a device is used, it should have sectors (or perhaps 
annuli) on each disk of different whites and grays [when the 
diver looks upward the darker disk must be farther from him 
at match time). It is also suggested that the divers wear 
goggles which transmit in some given small band width of the 
spectrum around which the K and a values are to be determined. 
A readily used band width would be centered on the blue-green 
or yellow-green peaks of transmittance of most natural waters. 
Some care must also be given to the adaptation of the diver's 
eyes to the general level of illumination in which the visual 
match is best made. The importance of levels of illumination 
in underwater visibility tasks will be illustrated as a mat- 
ter of course in Sec. 1.9. 
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Theory of Absorption Measurements in Natural Hydrosols 

It is probably a continual source of fascination for 
highway patrolmen to examine the daily tallies of vehicles 
that pass over certain continuous road segments on superhigh- 
ways QI- relatively desolate roads located between consecutive 
toll houses, amd occasionally to be rewarded with a positive 
net influx of cars across a given segment. That is, when 
they subtract from the recorded number of vehicles entering 
the segment for each day the number of vehicles leaving the 
segment that same day they occasionally find a positive dif- 
ference! From a purely phenomenological point of view, this 
means that SQIIE vehicles have been absorbed in their passage 
through the given stretch of highway! Of course, if the tal- 
ly is correct, this could mean for example that there exist 
stalled vehicles somewhere along the segment, and a patrol is 
usually dispatched to investigate. 

The principle of detection of the absorption of photons 
in a given layer of a natural hydrosol is exactly analogous 
to the toll house tally procedure for wayward vehicles des- 
cribed above. In Fig. 1.58 a laterally extensive layer of 
arrater between tiso levels y and z in a stratified optical me- 
dium is monitored by irradiance meters measuring H(yD+) and 
tl(z,+]. The total influx of irradiance to the layer is 
H(y,-)+H(z,+)! and the total efflux is tI(y,+)+H(z9-). 
fore the net influx of irradiance is 

There- 

lH(y, -1 'fl(z ? *) 1 - [11(y9 '1 +H(z D -1 1 = H(y 9 - 1  -E(z P -1 

layer 

FIG. 1.58 The principle for determining light absorption 
in a layer of natural hydrosol. 
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1 % ~  ttrc sumc y,rnernl rccisoning leading to (2) we find 
tlrat (as in thc casc of the one-D model) in all real natural 
hydrosols wherein there are no internal sources of radiant 
flux, this difference is positive, indicating that some frac- 
tion of the entering photons is continually heing absorbed 
within the layer. The nature of the absorption is two-fold: 
if a tally is being kept only of photons of a given color 
(frequency) then the absorption in this case includes scatter- 
ing with change in color. Secondly, absorption could mean 
the transformation of radiant energy into non-radiant energy. 
In practice both of'these mechanisms are operative. The 
difference R(y,-)-H(z,-) is a direct measure of the amount of 
radiant flux absorbed by a column of unit horizontal cross 
section bounded by the upper and lower planes of the layer of 
water. If a is the volume absorption coefficient of the (ho- 
mogeneous) layer, then this quantity is directly measurable 
by means of the relation: 

I I 

provided a probe is sent down to find the values h(z') of the 
scalar irradiance between depths y and z. The reader may 
check that (89) follows directly from (16) of Sec. 1.3. Hence 
(89) is an exact formula for homogeneous media with B strati- 
fied light field. A discussion of (89) and a systematic der- 
ivation of the related formulas below is given in Sec. 13.8. 

directly : 
A local version of (89) comes from (16) of Sec. 1.3 

1 dq(z,+) a(z) = - 
h(z) dz 

L 1 

TO use (go), one need only measure h(z) at depth z, and also 
fl(z,+) in a smalT neighborhood of depths-about depth z, so as 
to be able to compute the derivative of Ii(z,+) at that depth, 
This method is exact for all inhomogeneous stratified media. 
An instrument to measure a, and which is based on the prin- 
ciple represented by (go), has been devised by Tyler [299] at 
the Visibility Laboratory. 

It is important to notice two essential features of(90). 
First, observe that scalar (rather than ordinary irradiance) 
is used to normalize the derivative; second,the net irradi- 
ance is used in the derivative. Now it turns out that of 
these two features, it is the first that is of critical im- 
portance and which gives the formula its distinctive power in 
natural hydrosols. To see this, recall from the preceding 
discussions that the reflectance R, for green light is quite 
small in clear deep media, the kind found in most oceanic 
work, for example, Hence in: 

h 
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we can ignore with ik fair measure of impunity thc tcrms ll(z,+ 
and h(;e,+). I n  that case, (90) becomes: 

-1 dH(%,-) a(a) z - 
R(z,-) dz 

Furthermore:, by virtue of the distribution factors D, defined 
in the two-flow model., we can write: - 

h(z,-) = D-Ii(z,-) . (91) 

In addition, if we estimate tl(z,-) by means of the ex- 
ponential law: 

~[z,-) = H(O,-]e-KZ 
(where K is obtained either via the one-D model, as in (9) of 
Sec. 1.3, or empirically), then (91) yields: 

i-KH ( z D - ) I  
- 1 

D_HCz,-I 
a q  

(92) 

This poinEs up the critical importance of the scatar irradi- 
ance A(z) in (901); for if we used H(z,+)+H(z,-) in its place, 
then we would have (90) yield up the estimate 

a "4 K (wrong) 

which is clearly false. 
the order of 1.0-2.0 in natural optical media with values 
clustering about 1.3 for blue-green light, so the use of H ra- 
ther than h to normalize the derivative in (90) could lead to 
errors anywhere from 0 to 100 percent in the estimate of a(z), 
but mostly on the order of 30 percent. 

From (90) we can also obtain a crude but occasionally 
useful estimate of the rate of absorption of radiant energy 
per unit ~o'lume of Q 'layer of water. First: 

Indeed, ihe factor D_ is often on 

is the exact formula for the required depth rate of absorp- 
tion, i.e., of net influx of irradiance to a unit layer at 
depth z. It is simply the product of a(z) at depth t with 
h[z) at depth z. Now if we again drop off H(z,+) and h(z,+) 
as being small compared to H(z#-) and h(z,-), we have: 

P 
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z -KH(z,-) = -KH(O,-)e-KZ 
as the depth rate of absorption of radiant flux per unit vol- 
ume at depth z. The last approximation comes from (92) and 
by means of the exponential law for irradiance. It should be 
noted that (93) is exact only for stratified media. If one 
wishes to compute exactly the rate of absorption of a small 
volume of water in a general light field in a generally in- 
homogeneous optical medium he may use (1) of Sec. 13.8 and 
the general instructions given there. 

As an illustration of (90) as a means of estimation of 
the volume absorption coefficient, consider the sample light 
field given in Table 1. 

TABLE 1 

Irradiance and Scalar Irradiance in 
Lake Pend Oreille, Idaho. (Relative values) 

z(meters) 

4.24 
10.42 
16.58 
28.96 
41.30 
53.71 

721,000 15,500 
329,000 6,040 
109,000 2,230 
13,100 298 
1,660 39 
221 5 

899,000 41,900 
413,000 16,500 
141,000 6,190 
17,200 830 
2,190 108 
289 14 

These data were obtained by Tyler, Richardson, and Holmes 
from radiance distribution measurements in Lake Pend Oreille, 
Idaho [306]. Radiance filters were centered on 480 * 64 mv. 
Observe first that D- at 4.24 meters is 1.25, and that its 
value at 53.71 meters is 1.31. This shows, incidentally, the 
general magnitude of D- found in most natural waters for blue- 
green light. Similar values m y  be found at the other depths. 
By computing the slope of the H(z,+)-plot derived from the 
tabulations above, and using the computed h(z) values, it was 
found via (90) that the lake was essentially homogeneous with 
an a on the order of .117/m. The K for this medium was found 
to be .169/m, and ci = .442/m. 

rate of absorption of radiant energy in a given medium, given 
the volume absorption function and some radiometric samplings 
of the medium. For example in infinitely deep media in which 

We can invert the formulas (89) and (90) to find the 
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scalar irradiance decreases according t o  the cxpsnentinl law, 
wo Cali estimate ttic total rate of zbsorption as follow.;. 'In 
[St)) set y = 0 and z = 00, so that H(.o,-) = 0. This leaves: 

m 

Rho,-) = a1 h(z') dz' 
0 

Using the exponential law for h(a): 

00 g(O,-) = ah(O]l0 e -Kz' dzi 

That is: 

(94) a H(O,-) = h(0) 

This formula holds actually for any depth z below the surface. 
(Simply mulp,iply each side by e-Kz.) 
of 0, then fa(z,-) in (94) is a measure of the radiant flux 
absorbed by the entire medium beZow the level z. 

watts/m2 on some sunny day just below the surface, for the 
wavelength band 480 k 64 mu. The total rate of absorption 
throughout the lake per square meter of lake surface is there- 
fore : 

If z is used in place 

As on illustration of (94), suppose that h(O) = 250 

.ll7 

.169 R(n,-) = ~ x 250 

= 173 watts/m2 
The remaining power, namely 250-173 = 77 watts/n2 goes on to 
initiate and sustain the scattered light field within the 
body of the lake. 

ments of H(y,-) and h(y) are made at some depth y in a deep 
homogeneous medium, and also that K is known for the same 
wavelength interval. We can then estimate a as follows. 

As &nother illustsatisn of (941, suppose that measure- 

From (94): - 
(95) a = K -  H(z,-) 

h(z) 

For example, from Table 1, at depth 28.96 meters, we have 

E(28.96,-) = 13,100 - 298 

= 12,802 watts/mz 
Also, 

h(28.96) = h(28.96,+) + h(28.96,-) 

= 830 4 17,200 
= 18,030 watts/m2 
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12,802 a = .169 
18,030 
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= .120/m . 
which agrees to within .003/m with the estimate .117/m for a 
obtained by light field measurements using (90). 

We conclude with some observations on the radiant ener- 
gy content of natural hydrosols, a concept which is closely 
related to the absorption concept presently under discussion. 
Recall the general relation between scalar irradiance h(z) 
and radiant density u(z) as given in (5) of Sec. 1.1: 

(96) 1 
UlZ) = y hCz1 

Here v is to the speed of light in homogeneous water: -. 

v = 2.25 x 10' m/sec . 
By integrating h(z) from the surface (z 0) down to depth z 
in an infinitely deep medium we find: 

2 z 
U(Z) = lOu(z) dz = $l,"(z) dz - W[l-e-"] vK 197) 

provided h follows the exponential law. This gives the amount 
of radiant energy U(z) in a vertical column of unit horizontal 
cross section with upper end at the surface and lower end at 
depth z. Observe that by (89) this also can be written 

For very shallow media, (98) yields 

For very deep media (98) yields 

In the present medium, (Lake Pend Oreille) which is very deep, 
with K = .169/m and h(0) = 250 watts/m2 (say), we find 

250 
2.25 x 10' x .169 

= 6.6 x joules/m2 

U(-) = 
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Hence over a region of one square kilometer (lo6 m2) 
the present medium contains below the surface about 7 joules 
of radiant energy in the blue-green wavelength interval in 
scattered or directly transmitted form. Observe by (98) that 
nearly 95% of this radiant energy is stored within the first 
three diffuse attenuation lengths below the surface, i.e., 
within 3/K 3/.169 17.7 meters of the surface. Equation 
(98) shows how U[z> can be estimated if the net influx of ra- 
diant energy over the depth interval. [O,z] is known, along 
with the wolume absorption coefficient a. Further discussion 
0% light storage phenomena in natural waters is given in Sec. 
5.13. 

1.5 Some Properties of Artificial Light Fields in Natural 
Waters 

Artificial light fields in seas and lakes are produced 
by men seeking to illuminate natural underwater environs to 
carry out search or detection procedures, to study biological 
P ~ O C ~ S S ~ S ~  or to establish techniques of underwater communi- 
cation by means of residual and scattered radiant flux. To 
facilitate these activities some knowledge is desirable of the 
general quantitative relations between the optical properties 
of a medium and the light fields produced in that medium by 
various artificial sources. Such sources commonly range from 
these that produce highly collimated beams to those that pro- 
duce conical beams of varying spread, UQ to uniform point 
sources. In this section we shall discuss several interesting 
empirical relations developed for artificial light fields. 

Useful models of artificial light fields, which can com- 
pletely elucidate the empirical findings presented below, may 
be based on the diffusion models discussed in Chapter 6, in 
particular in Secs. 6.5-6.7. However, we shall concentrate 
in this brief survey of artificial light fields only on the 
diffusion model (27) of Sec. 1.3, as it affords a simple yet 
adequate base on which to rest the empirical formulas. 

The Pure Absorption Case 

cial light fields in the sea, suppose for the moment that sea 
water or any other natural hydrosol only absorbed radiant 
flux, and therefoPe did not scatter it. Suppose that a spher- 
ical source S of radius ro, as in Fig. 1.59, has a uniform in- 
herent surface radiance No. Then the apparent radiance N, of 
this source's surface is: 

To see what the difficulties a:e in describing artifi- 

where a is the volume absorption coefficient of the medium. 
The radiant flux output Po of the source is: 
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source s i d e 7  IpJ 

far side 

FIG. 1.59 For the derivation of the diffuse light field 
at P as generated by a small source S via secondary sources 
limited to the sphere of radius rl. (Diffusion Model) 

Its radiant intensity is: 

and the apparent irradiance H, produced by the source is very 
nearly: 

(4) 
Joe -a ( r- rO) 

Hr r2 

for all riro. The apparent radiance Nr and apparent irradi- 
ance Hr in the case of pure absorption are thus quite simply 
described because of the absence of scattered flux. Even in 
the present case all is not simple if the radius ro is large 
compared to the absorption length l/a of the medium, for then 
a relatively complicated integration over direction space must 
replace (4). However, for ro < 1/2a, (4) is an adequate ap- 
proximation in normal practice. 

Derivation of the Semi-empirical 
Diffusion Model for Point Sources 

When scatte-ring may take place in the medium and to an 
extent in which the simple formulas (l), (4) no longer ade- 
quately describe the apparent radiance and irradiance fields, 
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WQ may 80 on to adbpt the next simplest available model for 
these fields. The required candidate takes the form of (36) 
of Sec. 1.3 in which the integration in (34) of Sec. 1.3 is 
no longer over the entire space X but is restricted to a rel- 
atively small spherical region of radius rll about the lumi- 
nous source. It is ius this spherical region where the pri- 
mary scattered radiant flux from the source initiates the 
principal paPt of the diffuse light field measured at rela- 
tively great distances r. The smaller ro and r1 are, compared 
to P, the more nearly will the scalar irradiance h(r) at a 
distance I- Prom the source S be given by an equation of the 
form : 

hlr) = ho(r) + h*(r) 

where A and B are generally functions of r, or at the very 
least, constants used to adjust the formula to fit empirical 
data. It is necessary to introduce A and B because we have 
sidestepped integrations which could contribute measurable 
deviations from the simple form (5) for small and large r. 
Me have simply used (4) above and (33) of Sec. 1.3 in a linear 
combination to obtain (5). A further simplification in the 
model can be effected i€ we replace K )  the decay constant in- 
digenous to diffusion theory (cf. (32) of Sec. 1.3), by the 
more readily empirically determined diffuse attenuation coef- 
ficient K obtained from irradiance measurements in the sea. 
(K is the empirical counterpart to the k of the two-flow model 
discussed above.) Thus, from (32) of Sec. 1.3 we have: 

From (92) of Sec. 1.4 we can approximate a by the form: 

where D, is now the distribution factor for the irradiance 
measured at point P of Fig. 1.59 produced by flux on the 
source side of the collector at P. If we identify K and K, 
then the two preceding relations yield an estimate of the 
classical diffusion constant D: 

Using this in (51, dividing each side of (5) by D-, and keep- 
ing A, B arbitrary, we have: 

I 1 
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which is the desired semi-empirical form for the irradiance 
H(r) produced at distance r from a point source of radiant in- 
tensity J a is the volume attenuation coefficient for the 
medium an8‘K is the diffuse attenuation coefficient for the 
mcdium. Observe also that in passing to (7) we have dropped 
as negligible the irradiance on the far side of the surface 
at P in Fig. 1.59. Despite this conglomeration ’of assumptions, 
(7) nevertheless provides a suitable model for H(r) under ju- 
dicious choice of the A and B as dictated by actual sample 
measurements of H(r) in real media. We shall now consider 
two such particular empirical forms of (7). 

Two Examples of the Empirical Diffusion Model 

Duntley reports in [76] and I771 the results of his em- 
pirical study during the summer of 1959 of irradiance fields 
produced by point sources in Lake Winnipesaukes, N.H.. He 
determined A and B in (7) in such a way that the resultant 
empirical formula should be applicable to a large set of nat- 
ural hydrosols in which are imbedded point sources with a wide 
range of angular beam spreads. 

In the case of a point source with a directionally uni- 
form radiance over all directions, Duntley found that in (7), 
the constants A, B may be given by: 

A =  1 (8) 

B = 2.5[1 +7e-Kr]/4~ (9) 

This shows that for relatively small r, B is on the order of 
8 times that for-large r. A comparison of a real irradiance 
field (black dots) with that predicted by (7) using (8), (9) 
(solid curve) is given in Fig. 1.60. The radiant flux wave- 
lengths measured in this experiment were via a Wratten No.61 
green filter. The corresponding attenuation length of the 
water was l/a = 1.52 meters, (3. 5.00 feet) associated with an 
a = .655/m (= .200/€t). The K for the same water and wave- 
length range was found to be .187/m (= .057/€t.). 

In a more detailed analysis of the empirical results, 
Duntley generalized (9) to include the effects of the beam 
spread of the source, particularly for wide beam spreads. It 
was found that: 

A - 1  (10) 

Here the point source‘ is emitting a beam in the form of a cir- 
cular cone with total angullar opening of 0. Observe how (11) 
reduces to (9) €or the case of B = 2s. Formula (11) is ex- 
pected to be a good approximation in the range 8/95 6 5 2 8 ,  
i.e., €or all beam spreads not less than about 20’. 
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FIG. 1.60 Comparison of calculated irradiance and meas- 
ured irradiance induced by a point source (small spherical 
lamp) by Duntley, Lake Winnipesaukee, N.H., 26 August 1959. 
(Pig. 16 from [78], by permission) 

Radiance Distribution Produced by a 
Submerged Uniform Point Source 

determination of the dif2Jsion model (7), (8) , (9), Duntley 
examined the radiance distribution produced at various dis- 
tances by a submerged point source of nearly uniform radiant 
intensity. This radiance distribution can be observed and 
photographed as a function of the direction from the source 
for various choices of the on-axis distance from the source. 
For nearby locations, the source (in the form of a spherical 
lamp) stands oiit sharply from itr luminous halo. As viewing 
distance increases, the bright disk of the lamp rapidly be- 
comes angularly smaller and also dimmer. Eventually the disk 
itself vanishes at about 18 to 20 attenuation lengths (i.e., 
at about 18fa to 2O/a meters), but the luminous glow persists 
for relatively great distances. Fig. 1.61 depicts the radi- 
ance distributions produced by a point source, for a selected 
set of distances from the source. The lamp was a 1000 watt 
incandescent "diving Pannp", whose 3 inch (7.62 cm) diameter 
spherical lamp envelope was sprayed with a lacquer to insure 
that its radiant intensity was uniform. 

In the same set of experiments leading to the empirical 
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FIG. 1.61 Radiance distributions produced by a point 
source (small spherical lamp). Measured by Duntley, Lake 
Winnipesaukee, N.H., 3 August 1961. (Fig. 15 from [78], by 
perm is s ion) 

An Empirical Study of Light Fields 
Produced by Collimated Sources 

In the future it is likely that the laser will be used 
to some extent in underwater communications. It is therefore 
of interest to study the properties of propagation of highly 
collimated beams of radiant flux in natural hydrosols. In 
some preliminary studies in this direction, Duntley [78] had 
designed and constructed a source of highly collimated radi- 
ant flux, shown schematically in Fig. 1.62. Using a lens sys- 
tem designed by J. J. Rennilson, it was possible to produce a 
long, narrow, very nearly cylindrical beam of light with total 
beam spread 2JI as small as O.0lo or 0.00017 of a radian. 
Smaller beams would begin to be noticeably spread by diffrac- 
tion effects. By selecting various external beam stops it 
was possible to produce fine cylindrical beams of variable 
diameters D which were nearly divergenceless (i.e., cylindri- 
cal) over a distance c = D/JI. (The figure gives the ray-geo- 
metrical significance of this relation.) Over this range the 
beam's residual irradiance is essent&ally flfee from inverse 
square effects and is of magnitude Hr = Hoe where r% c, 
Ho = Jo/cz, and where Jo is the radiant intensity of the lamp 
used in the collimator. For distances r greater than c, the 
light beam would de,part from its cylindrical shape and thus 
the residual irradiance of the beam would begin to fall off 
as the inverse square of r and also be further damped expo- 

for r z c ,  assuming negligible diffraction nentially, so that 
effects, we have: 

Hoemur 
H: = - 
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FIG. 1.62 Source for highly collimated beam of radiant 
flux experiment recorded in Fig. 1.63. 

FIG. 1.63 Three determinations of irradiance produced by 
a highly collimated beam of radiant flux, as made by Duntley 
in Lake Winnipesaukee, N.H., 14 August 1961. 
[ 781, by permission) 

(Fig. 18 from 
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Figure 1.63 records three experimental determinations 
by Duntley of the apparent irradiance H, of a highly colli- 
mated beam of spread 1/6*. The irradiance is that produced at 
a point on the axis of the beam a distance r from the source, 
and on a plane normal to the axis. The experimental results 
were reduced so that the beam diameters D in each of the three 
cases are in terms of the attenuation lengths of the medium 
namely 1/300, 2/JOO and 8/300 attenuation lengths. In this 
way it is possible to free the results somewhat from the na- 
ture of the particular medium in which they were found. The 
medium in this case was Lake Winnipesaukee, N.H. whose a was 
.520/m (= .158/ft.) and whose corresponding attenuation length 
therefore was l/a * 1.92 meters [* 6.3 ft.), for the wave- 
length band provided by Wratten No. 61 green filters. The 
solid lines in Fig. 1.63 are the empirically found Hr values. 
The dashed lines are the residual irradiances Hg computed 
from (12). The dashed lines depart from the solid lines at 
the points shown by triangles. These points are located at 
the distances c = D/$, which are 1.15 and 2.30 attenuation 
lengths for the l/300 and the 2,/300 curves, respectively. The 
point for the 8/300 beam is located 9.20 attenuation lengths 
away and is not shown. Hence the vertical separation of a 

l.ok 
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FIG. 1.64 Ratio of monopath (i.e., residual) radiance to 
multipath (i.e., scattered) radiance for two types of source 
as measured by Duntley in Lake Winnipesaukee, N.H., 26 August 
1961. (Fig. 19 from [78], by permission) 
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solid curve and its dashed mate gives a measure of the scat- 
tered [or diffuse) irradiance H$ Par each distance r. It 
should be observed that the data in Fig. 1.63 pertain only to 
the axis of an aplanatic underwater projection system having 
a beam spread of 1J6". In other words the L/6= beam spread 
cannot be scaled up and down by factors of 10. Separate and 
new measurements -fop different spreads d, must be made to see 

Some further information on the relative magnitudes,of 
unscattered and scattered irradiances Hq (monopath) and Hr 
(multipath) is givgn in Fig. LS64* and IS also due to Duntley 
/781. The rati5 H~/H: is p m t e a  versus I- for two cases: a 
spherical point sourcen and a point source having a total 
spread of 2Oo. fn the latter case the irradiance is located 
on-axis and falls on a plane normal to the axis, as usual. 
As expected, for each fixed distance rs there is relatively 
more difluse irradiance in the case of the spherical sourn 
as far the narrow beam source. These curves are for the med- 
ium described in Fig. 1.60. The residual irradiance H: was 
calculated using the first term of (7) with A = 1. 
obtained via Hr-Hg = W, using the irradiance H, of Fig. 1.60 
for the spherical case, and using recorded M, data for the 
2 Q O  case. 

Figure 1.65 shows still another experimental finding by 
DuntPey [YS] concerning the irradiance produced by collimated 
beams. In this case the beam had a ZQ of .046*, and a 2 inch 
Cor 5-08 em] diameter i). The medium had an a of .685/m 
(= .2(39/ft) and hence an attenuation length l/a of 1.46 meters 

how IQ; depends an q. 

was 

W 

+ ( D E G R E E S )  

FIG. 1.65 Irradiance on a collecting plane produced by a 
sweeping collimated beam, as observed by Duntley, Lake Winni- 
pesaukee, H.H., Summer 1961. (Fig. 20 from [78], by permis- 
s ion) 
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FIG. 1.66 Apparent radiance produced by beam of highly 
collimated flux (cf. Fig. 1.62), as found by Duntley, Lake 
Winnipesaukee, N.H., 11*August 1961. (Fig. 17 from [78], by 
permis s ion) 

(= 4.80 ft.) as measured via a Wratten No. 61 green filter, 5-1 
Lake Winnipesaukee, N.H., summer, 1961. The locations ob the 
measurements within the induced light field are indicated by 
the inset of the figure. The irradiated I ine was swept by 
the moving beam. 

Finally, Fig. 1.66 depicts the apparent radiance as ob- 
served under somewhat the same general test condition of Fig. 
1.65. Now the beam had a 29 of O.0lo and was directed toward 
the telephotometer so that it completely filled the entrance 
pupil of the latter at all times. The water was slightly 
clearer in the present case, having an attenuation length of 
2.04 meters (= 6.70 ft.), i.e. , an a of .490/m (= .149/ft.) 
for the same wavelength band. It is of interest to compare 
Figs. 1.61 and 1.66, which reveal subtle differences between 
the radiance distributions found by looking at distant point 
sources and down the barrel of a collimated beam. 

pecially their applicability to underwater communications by 
scattered light, may be found in [79]. 

1.6 Inherent and Apparent Optical Properties of Hydrosols 

seas and lakes of the earth, as developed in Sec. 1.3, may 
now be considered as reasonably established descriptions of 
radiative transfer in natural hydrosols. For as we have seen 
in our brief survey of their applications in Sec. 1.4 and 1.5, 
they can be used both to organize our accumulated empirical 
knowledge of natural light fields by means of faithful sym- 
bolic representations of our observations, and also to encour- 
age, via simple mathematical manipulations, the exploration of 

Some further discussion of these empirical findings, es- 

The three simple.models describing light fields in the 

I 
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new and deeper physical phenomena connected with light fields 
in the sea. 
the optical properties we introduced during their construc- 
tion, such as a, a, s, a, and K. 

may be viewed as the bone8 of the subject, then certainly the 
optical properties a? 0, K and the various related properties 
ore the wsat of the subject. Indeed, the equations provide 
the essential fomn of our discipline; but the numerical values 
of their parameters provide it with useful substance. It is 
our purpose in this section to sort out the principal optical 
properties used In hydrologic optics and to indicate their 
representative magnitudes. It is not our purpose at this time, 
however, to optically catalog the seas and lakes of the world; 
such a task stilk awaits a definitive effort, and lies outside 
the province of a work devoted to the theoretical principles 
of the subject. 

i[mpBicit in the structure of these models are 

Now, if the theoretical equations of hydrologic optics 

Operational Definitions of the Inherent Optical Properties 

The fundamental inherent optical properties of hydro- 
logic optics are the uolume attenuation function a, and the 
votums aoattering. funetion ti. They are inherent in the sense 
that their magnitudes for each wavelength depend only on the 
substances comprising the hydrosol and not on the geometric 
structure of the va~ious light fields that may pervade it. 
The properties a, and u are fundamental in the sense that the 
entire theory of hydrologic optics (and indeed radiative trans- 
fer theory) can be constructed from them, given the concept o€ 
the radiance ftsnctiton and the equation of transfer. The 
greatest contributions an experimental scientist can make to 
hydrologic optics at this stage of its development [or to any 
other branch of radiative transfer) lie in the detailed study 
--on physical, chemical, and optical levels--of these two fun- 
damental properties, along wizh the simultaneous documentation 
of the light fields in optical media. Chapter 13 is devoted 
to a detailed exposition of rhe operational definitions of 
these and other properties. Our immediate aim is to introduce 
these concepts with a minimum of preamble, though a full and 
deep understanding of them car, come only after the contents 
of at Beast Chapters 2, 3, 8, 9 and 13 are mastered. 

The Volume Attenuation Function 

The volume attenuation function a provides a measure of 
the loss of radiant flux from a beam of photons of a given 
wavelength induced by: (a) scattering of flux out of the di- 
rection of the beam without change in wavelength or: (b) by 
scattering of flux of the beam with a change of wavelength, 
OF: (c) by outright absorption of some of the radiant energy 

*Important problems concerning the physical makeup of a and u 
also await interested theoreticians. See problem I11 of 
Chapter XVI, Ref. [251]. 
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FIG. 1.67 Arrangement for an operational definition of 
volume attenuation function. 

into a form of non-radiant energy. 
method of defining a is by means of the beam transmittance 
function using the fast that radiance differences of sirnul- 
taneous beams propagate precisely in an exponential manner 
along close parallel paths. 

Figure 1.67 depicts two parallel closely spaced paths 
of length r in an optical medium. The initial radiances at 
the beginning of the paths are NP and N2, and matters are ar- 
ranged so that the mediuli is homogeneous in the vicinity of 
the paths and that the path radiances of the two paths are 
essentially the same, and of common valge N". If Tr is the 
common fraction of photons comprising N, and N: transmitted 
along each path without having been scattered or absorbed, 
then by (24) of Sec. 1.3 the apparent radiances: 

A particularly effective 

and 

measured at the end of the path may be used to find the beam 
transmittance Tr by means of the relation: 

It is very easy t0 see, using (I), that if two paths of 
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arbitrary lengths P and s are placed end to end to form a new 
straight path of length r+s, then: 

and : 

and also: 143 

The second prope~ty is the multipticaeive (or semigroup) pso- 
per%%' of beam %ransmittance. It is the basis of the exponen- 
tial ~~~~~~~~~~~~~~~ of Tre Indeed, let us write: 

The quantity ar is the (etnpCricaZ) votume attenuation function 
because it gives the average amount of 105s of radiance of a 

To see this let N be an initial radiance starting out along 
.a path of length r- Then NoTg = N: is the ~ e s i d u a t  radiance, 
i.e., the radiance left over in the beam after scattering and 
absorption Posses over the path. 
radiance lost, and (hJ0-N:9/r the average loss per unit length 
of the path. Dividing by P, we arrive at (5). 

Mow consider a. path of length r*s. Then by (3) and (5): 

bean? per unit ]Len %h of travel of a beam sf unit radiance. 

Hence No-N: is the actual 

Tsar-Tr Ts-f 
I- Tr = -aSTr 

S s 

Using %Re definition of derivative applied to T,, and letting 
s+O, we have: 

where we have written: 

From (4) and (6) : 

(81 

for homogeneous media. This is the basic connection between 
beam transmittance and the m t u m  attenuation function a de- 
Eined in (71. The function a has dimensions of C', and there- 
fore units of (meter)-'. 
a is a nen-negative quantity. From (8) we have: 

Observe that by (2) , ar and hence 
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FIG. 1.68 Arrangement for an operational definition of 
volume scattering function. 

which together with (1) provides a useful operational defini- 
tion of a. For a further discussion of these ideas see Secs, 
13.2, 13.4 and 13.5.. 

The Volume Scattering Function 

A small volume of an optical medium is irradiated 
through a small set of directions of solid angle G about a 
direction 5' by a radiance NO of a given wavelength, and the 
scattered radiant flux in the direction E;, at an angle 9 with 
E', is observed to be N;, where r is the length of the line 
of sight through the volume. The volume is in the form of a 
parellelepiped whose dimensions are r x r  xcr, where c is a 
constant. Then we write 

(10) Nf 
"(T (e)" for - 
r,n N0I-Q 

Further, we write: . 

"~(6)'' for lim u (e) (11) r-to r9' 

n+o 
and call u the volume scatteriizg function. A more detailed 
discussion of (T is given in Sec. 13.6, and in Sec. 18 of Ref. 
[251]. The dimensions of (T are L-'(sr)-' and hence it$ units 
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are Llrleter) - [steradian) - I  

The reason for choosing (11) as the basic definition of 
o[$) is that it yields at once the relation: 

N* 
M, = 2 r = PIOa(8)a 

which with care can be mad#? to blossom into: 

and which in turn is the st.andard representation of the path 
~ u ~ ~ ~ i ~ ~  in general radiative transfer theory. 
logical order of appearance of N, and (J in the theoretical 
canstrustion of radiative transfer theory is given in the 
systematic discussions of Chapter 3. 

The correct 

An alternate form of O ~ , ~ ( B )  is given by writing 

where H" a N'Q, v is the volume (e.g., in tihis case cr31 of 
the scattering region in Fig. 1.68, and .Jt is the radiant in- 
tensity of the scattered flux. Clearly 

and 5 0  the two definitions are equivalent. (A careful pyoof 
of this fs given in Sec. 18 of Ref. [251].) 
a depends, in virtually any given practical setting, only on 
the angle 5 between the incident direction e' and the scat- 
tered direction 5. 
"a(x;Sq ;&)pp in ehe more compact way %(5)", adopted above. 

It is found that 

Hence it is possible in practice to write 

Volume Total Scattering Function and 
Volume Absorption Function 

2 If u(8) is integrated O V ~ P  all 8, we obtain the volume 
tota2 pScat&e&ng function s; where we write: 

The angle @ 
as 8 hinge. 

is measured around the direction 5' (in Fig. 1.68) 
Clearly we have: 
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Ijy splittinx up the domain of integration [O,r] into [O,n/Z] 
and [ n / 2 , ~ ]  and writing": 

*/2 

a=o "f" for 2x1 5(e) sin e dB (16) 

and I" 

We then have: 
s = f + b  

where f and b are the (volume) forward and backward acatter- 
ing functions for collimated radiant flux. 

of the theory by writing 
The volume absorption function a comes in the back door 

"a" for a-s , (19) 

but it redeems itself by possessing the following remarkably 
powerful operational form: 

1 dA(z,+) a = -  , 
h(z) dz 

discussed in the closing paragraph of Sec. 1.4 (see in parti- 
cular (90) of Sec. 1.4, and also Sec. 13.8). 

Conaidered together, the three operational formuZation8 
of a, 6, and a in (9), (10) and (201, respectiusly, form a 
complete, mutually consistent, independent set of ezperimental 
meana of determining these enherent optical properties of nat- 
ural or artificiaz hydrosols. An ideal scientific study of a 
given hydrosol would determine a,a and a using these indepen- 
dent means, and then check consistency by requiring the three 
sets of data to satisfy the relation: 

I i 

L1 

In other words, the measured 5 values are first inte- 
grated to yield the left side of (21). Then the measured a 
is subtracted from the independently measured a, and, hope- 
fully, this difference is equal within a reasonable error 
allowance, to the computed a-integral, for each wavelength 
from the infrared to the ultraviolet parts of the electromag- 
netic spectrum, and for each point in a hydrosol 

*The general definitions are given in (l), (2) of Sec. 9.6. 
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f 

three determinations were made. This check is expected to 
hold, in principle, for a11 unpolarized light fields (Sec. 
13.11) - 

Selected Physical Measurements of the 
Ynherent Optical Properties 

The fo1Eowing three tables provide representative sam- 
ples of the inherent optical properties a, ci, s, f, b and a, 
neasaered fog distilled water, ocean water, and lake water. 
The measurements were made by Tyler [300] and may serve as an 
example of the careful and consistent types of measurements 
that may be used to optically document the natural waters of 
the world. Such types of measurements, when performed for a 
sufficiently finely spaced set of wavelengths, will begin to 
move hydrologic optics into its final stage of development as 
a mature scientific discipline. 

In Table B the distilled water was of the commercially 
awaiPab1e Bind, and is not "disti1led" in the strictest sense 
of the word. The two samples do, however, provide a reason- 
ably good basis for comparison with the 0's of natural hydro- 
sols. The wawelength band for the measurements was centered 
at 522 f 80 mp. The results compare favorably with those of 
Wulburt fllS]. The Table 2 measurements were made in January 
1961 in the four numbered locations shown in Fig. 1.69, and 
over the same wavelength band used for Table 1. Table 3 

33'20' 

32' 40' 
I t  

I I 
40' 118'20' 118" 

FIG. 1.69 Locations of Tyler's measurements off Southern 
California coast, winter 1960-1961, and as recorded in Table 
2, (Pig. 1 from [300], by permission) 
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TABLE 1 

Scattering properties of commercial "distilled" water 
samples. Bandwidth limited by a Wratten No. 57 filter. 

Sample A B 

Volume attenuation coefficient u/m 

Volume total scattering coefficient 

Volume absorption coefficient a/m 

Forward scattering coefficient f/m 

Backward scattering coefficient f/m 

Ratio f/s 

Volume scattering function a(e) 

s /m 

e = oo 
10 
20 
30 
40 
50 
60 
70 
80 
90 

100 
110 
120 
130 
140 
150 
160 
170 
180 

.062 .n47 

.00845 .00457 

-0536 .a424 

.00763 .00396 

.00082 .000620 

.goo .870 

.00648 

.00223 

.000941 

.On0473 

.000271 

.000181 

.000140 

.000117 

.000110 

.000118 

.000126 

.000134 

.000139 

.000146 

.000171 

.000193 

.000201 

.00316 

.00107 

.000520 

.000294 

.000191 

.000096 

.000083 

.000079 

.On0082 

.000092 

.000102 

.000112 

.000119 

.000141 

.00016l 

.000169 

.no0128 

(From [300], by permission) 
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170 .001036 .000191 .000206 .On0219 
180 .001037 .000197 .000207 .000223 
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TABLE 2 

~~~~~~~~~~ ~ r ~ ~ ~ ~ t ~ ~ ~  of Pacific Coastal and offshore 
water at the Stations shown in Figure 1.69. Bandwidth lim- 
ited by a Wratten No. 57 filter. 

__I_- 

Station n m b e r  1 2 3 4 

Volume total scattering 
coefficient s/m .125 .01094 .01420 .0120 

Volume absorption 

Forward scattering 

Backward scattering 

coefficient a/m .611 .118P .IO38 .099 

coefficient f/m .I19 .01010 .01321 .(I110 

Coefficient b/m .00630 .000847 .000982 .000984 

Ratis f/s s 950 m 925 .930 .9P5 

Volume scattering 
function a(0) 

(3 = oo 
10 
20 
30 
40 
50 
60 
70 
80 
90 

100 
110 
120 
130 
140 

.lo14 

.0360 

.A152 

.00739 

.PO419 

.00266 
,00181 
.00f34 
.00109 
.000940 
,000903 
.000912 
.000944 

.0088l 

.On268 

.00117 

..O 0 06 16 

.000356 

.000232 

.000164 
a 000132 
* 000120 
* 000120 
,000124 
.000134 
,000145 

.OI192 

.00358 

.On145 

.000698 

.000396 

.000253 

.000179 

.000145 

.000134 

.000135 

.000146 

.000158 

.000175 

.00959- 

.00313 
,00129 
.000661 
.000388 
.000249 
.000175 
.000142 
.000130 
.000135 
,000146 
.000159 
.000176 

(From [ 3001, by permission) 
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TABLE 3 

Volume scattering function for Lake Pend Oreille, Idaho, 
Spring 1960 before and after a high wind. Bandwidth limited 
by a Ifratten No. 45 filter. 

Volume total scattering coefficient 

Volume absorption coefficient a/m 

Forward scattering function f/m 

Backward scattering coefficient b/m ,00976 .0256 

Volume scattering function ole) 

e = oo 
20 .222 
30 .0715 .166 
40 .0291 .0758 
50 .0137 ,0380 
60 .00712 -0206 
70 .00416 .0121 
80 .00271 .00780 
90 .00198 .00559 
100 .00162 .00448 
110 .00147 .00394 
120 .00143 .00379 
130 .00145 .00372 
140 .00149 .00371 
150 .00156 .00383 
168 -00163 .00396 
170 .DO168 .00406 

(From [ 3001, by permission) 

I 
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FIG. 1.70 Plot of Tables 1, 2, 3. 

summarizes Tyler's Lake Pend Oreille measurements of the 
Spring of 1960. 
at 480 f 64 mu. These tabulations are compared graphically 
in Fig. 1.70 wherein the relative c.arity of the waters may 
be seen at a glance. Curves 3, 4 of Table 2 essentially co- 
incide in the figure. 

Figure 1.71 provides three more comparisons of distil- 
led, lake and ocean waters. In this case, the distilled water 
measurements were by Dawson and HuPburt [63], the lake water 
measurements by Duntley [78], and the Atlantic (between Ma- 
deira and Gibralter) measurements by Jerlsv [123]. The lat- 
ter graph is keyed in with the measurements listed in Table 
4 below. The lake measurements by Duntley are of particular 
interest because of the relatively small angles for which 0 
was obtained using special equipment [78]. A detail of u for 
the range 0.5" to 1.7" is given in Fig. 1-72. The ordinates 
of the lake curve in Fig. 1.71 are continued in Fig. 1.72. 

The wavelength band in this case was centered 

:,, 
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SCATTERING ANGLE (DEGe'EES) 

FIG. 1.71 Plots of data taken at various times and lo- 
cales by Dawson and Nulburt (pure), by Duntley (lake), and by 
Jerlov (Atlantic). See text for details. (Fig. 9 from [78], 
by permission) 

W 
I 
3 _I 

0 

SCATTERING ANGLE (DEGREES) 

FIG. 1.72 Extreme detail of forward scattering values of 
volume scattering function in Duntley's lake water curve of 
Fig. 1.71. 



6 

SEC. 1.6 OPT 1 CAE P ROPE RT I E S 131 

TABLE 4 

Comparison between relative values of the scattering 
fun~tion. (A11 data normalized at 90") 

measurements 

.iu 1 b u r P 
(1945) 
Chs s a - 
peaks: 
€3 %Y 

white 
light 

247 
61 
22 
8.5 
3.0 
1.4 
1.0 
1.0 
1.2 
1,5 
2.2 
3.1 

Kozlyan- 
inov 

East 
China 
Sea 

blue 
light 

(1957) 

7200 
1100 
312 
62 
22 
6.9 
3.1 
1.8 
1.0 
0.49 
0.44 
0.50 

(From [127], by permission) 

In situ measurements 

hsaki 
:I9601 
Japan 
rrench 

576 mu 

39 
22 
5.5 
2.9 
1.2 
1.0 
0.8 
0.7 
1.0 
1.2 

Jerltpv 
(1961) 
East 

North 
At lant ic 

465 mu 

(690) 
292 
74 
23.5 
7.5 
2.96 
1.72 
1.00 
0.95 
1.05 
1.30 
1.55 
1.90 
(2.12) 

(1961) 
Califor- 
nian 
coast 

522 mu 

67 
20 
6.7 
2.70 
1.51 
1.00 
0.91 
0.94 
1.05 
1.18 
1.38 
1.49 

This shows horv, in the space of lo, near-forward scattering 
values soar two more orders of magnitude. The associated 
wavelengths are those transmitted by a No. 61 Wratten filter. 

(patterned after [127]). Observe t'at Tyler's measurements 
are tnose listed for location 2 in Table 2. The main purpose 
of Table 4 is to show the remarkable similarity in shape of 
the B curves, after normalization at 90'. This fact is re- 
produced graphically in Fig. 1 73. The curve labeled "Duntley 
(Green)" in Fig, 1.73 is the normalized lake curve of Fig, 
1.71. The remaining references for the u values of Table 4 
and Fig. 1.73 are as follows: Atkins and Poole [6], liulburt 
[llS], Kozlyaninov 11441, Sasaki et. al. [271], and Jerlov 
[123]. A relatively recent and somewhat extensive experimen- 
tal study ~f 0 in the Atlantic was made by Spilhaus [290]. 
This work makes new progress toward workable classifications 
of optical media via the volume scattering function. 

ters observed in a11 of the preceding results is one of the 

Further comparisons of a values are made in Table 4 

The highly forward scattering character of natural wa- 
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FIG. 1.73 Illustrating the stability of shape of the vol- 
ume scattering function as measured in various locations and 
times. See text for details. (Fig. 12 from [78], by per- 
mission) 

outstanding, and not yet fully understood features of the 
function. In particular, does the 0-curve have a vertical or 
horizontal tangent at O o ?  Despite the absence of detailed 
knowledge, we know that the high forward Scattering is due 
principally to the great variety of dissolved and suspended 
organic and mineral matter in the sea. The ebb and flow of 
the life processes and geologic processes within natural hy- 
drosols constantly alters the concentration of these sub- 
stances, and the basic Rayleigh-type scattering that absolute 
ly pure water would exhibit is heavily masked by the scattered 
light produced by these 'foreign' substances. If water in 
its pristine state is examined optically, then (sf. [63]) the 
scattered radiance N$ in (10) would have the general form: 

where A and B are suitable constants (see [63]). Observe 
that NF(0,x) increases sharply for the smaller wavelengths, 



SEC. 1.6 OPTICAL PROPERTIES 1 3 3  

thereby tending to suffuse extensive masses af very purr wa- 
ter with scattered blue light, much in the way that the clear 
sunlit atmosphere above one’s head appears blue to the sight. 
It was shown by Kalle 14321 that the relatively heavy con- .-en- 
tratilon of decaying organic matter in the form of phenol- 
humic acids and carbohydrate-humic acids (or melanoidines), 
respectively contribute the brownish and yellowish componsnts 
to the otherwise clear blue water, the net result being the 
blue-green appearance of most natural hydrosols. Henci: the 
greater the concentrations of these organic materials, the 
yellower OQ browner the water will become. Unlike the sharp 
A * b  wavelength-behavior of scattered light in pure water, we 
have, by contrastpin oceanic OK lake water which contain par- 
ticles and organisms whose dimensions are large compared with 
wavelengths of light, the scattered light nearly independent 
of w Hence when one measures a (= a+s) Or k 
(p 1 as a function of wavelength and observes 
great variations, these variations are due principally to the 
absorption mechanism operative in the solutes and Suspensoids 
within the water. For example, while the scattered light in 
pure water increases nearly 10 fold as .I goes from 700 to 400 
rnp, the absorption coefficient for plankton-infested water or 
for suspensoids of the yellow substance increases on the or- 
der of 100 fold over the same range (cf., e.g., [l15]). By 
virtue of these reasons, the striking similarity o€ shape of 
the 5 curves in Fig. 1-73 becomes more understandable. I f  
this sensitivity of o to wavelength 1 is sufficiently weak, a 
great simplification of the documentation of optical proper- 
ties of natural waters is possible; for then the burden of de- 
scribing the spectral variation of the inherent optical prop- 
erties falls on a or, equivalently, a. Table 5, adapted from 
Hulburt [115], gives the spectral dependence of a, s, and a 
for two types of water. These tabulations hear out the ra- 
tionalizations enunciated above. Table 6 shows the spread of 
a values over oceanic regions, as found by Jerlov [122]. 

TABLE 5 
Spectral dependence of volume attenuation (a), total 

scattering (s) and absorption functions (a) for distilled and 
Chesapeake Bay waters (per meter) 

-800 .175 .625 
.628 .180 .448 
.447 .I80 .267 
.351 .180 .1?1 
.323 .180 .143 

.589 .lRD -409 

.740 .180 ,560 

I 

L I I 

(From [115], by permission) 
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Location Attenuation length 
a/meter l/a meters 
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TARLE 6 

Caribbean .125 
Pacific N. Equatorial Current .083 
Pacific counter current .083 
Pacific Equatorial Divergence .IO0 
Pacific S. Equatorial Current .I11 
Gulf of Panama .167 
Galapagos Islands .250 

8 
12 
12 
10 
9 
6 
4 

1 I 
(From [122] , by permission) 

Before concluding this brief survey of the inherent op- 
tical properties of natural hydrosols we wish to point up an 
apparent dissimilarity between the spectral dependence of a 
in air and in water. The dissimilarity is with respect to 
the fine structure of the A-dependence of a. In the meteor- 
ologic optics context, a experiences rather spectacular in- 
creases and decreases in values at frequent intervals along 
the X-axis (see, e.g., Refs. [128], [296], and [177]). Where 
a decreases rapidly to some minimum at Xj, the atmosphere is 
said to have a window at Xj, for the beam tramsmittance 
Tr = e-a(Alr will have a marimum at Xj, and SO one can 'look 
through' the atmosphere with relative ease using light having 
wavelengths in the immediate neighborhood of A * .  The infra- 
red region of the spectrum, e.g., has windows ghrough the at- 
mosphere, and this fact has important consequences €or com- 
munication applications of radiative transfer theory. These 
observations lead one to consider the possibility of a fine 
structure for a in natural waters. This possibility does not 
seem too bright, at least on the basis of Table 5. However, 
perhaps the measurements of a yielding the values in Table 5 
were too crude, and accordingly smeared out possible sharp 
dips in a. That is, the minimum of a in the vicinity of 480 
mp for distilled water may harbor a still sharper minimum if 
the spectral resolution of a-meters were increased. Recently, 
a careful spectroscopic study of a for "battery-grade" dis- 
tilled water was made in the region from 375 mu to 685 mp by 
Drummeter and Knestrick [68]. The spectral resolution 
achieved by the grating spectrograph used was .02 mp. A path 
of water of 9.75 meters was used for the transmission experi- 
ment. Variations of a per meter as small as two parts in a 
hundred were capable of detection by the apparatus, i.e., the 
apparatus could detect changes Aa of 2 x 10-2/m. No spectral 
fine structure of a of any significance was detectable. 

x 
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Operational Definitions of the Apparent Optical Properties 

The apparent optccat properties of a natural hydrosol 
are those radiometrically determined scattering- and ahsorh- 
ing-induced quantities which generally depend on the geomet- 
rical structure of the light field (i*e.# whether the light 
field is more or less collimated or diffuse) but which have 
enough regular features and enough stability to be entitled 
to %he appellation, "optical. property". The main apparent 
optical properties are all measurable by means of the four 
irradiances: h(z,+) and N(z,+). (See (S), (10) of Sec. 1.1.) 
Thus we write: 

E! 

(Distribution (23) h(Z*") ,ID( a; A] '1 for 
HCz,*) functions 1 

(24) 1 dl-I(z,+) (K-functions for "K(z~C)" for -- irradiance) H(z,.) d2 

1 dh(Z) (K-function for C2S) 
scalar irradiance) 'lkCz)p~ for - ~ - 

h(z) dz 

H(z,T) (Reflectance func- 
"R(z,+)" for tion for irradiance)(26) 

H(Z,f) 

The distribution functions are simple indicators of the col- 
limatedness or diffuseness of the light field in the downward 
(-1 OT upward (+) flows. The three K-functions are the depth 
rates of decay of the various irradiances. They are in prin- 
ciple generally distinct, though numerically they are quite 
close in value. The R functions give the reflectance of the 
entire medium to upward (+) or downward (-) flux at level z. 
Each of these is implicitly a function of wavelength. The 
theory of their interconnections is quite simple and will be 
discussed briefly in the following section. Their full theory 
is established in Chapters 9, 10 and 13. Table 7, adapted 
from [506], is a representative sample of the magnitudes of 
these properties. 

fore the onset of the plankton bloom and appearance of the 
thermocline, The lake was essentially homogeneous so that 
the values of a, s, and a are representative of the entire 
medium. As the biologic activity within the lake increases 
throughout the remainder of the year, the values of a, s and 
a will rise accordingly, thereby providing an optical hio- 
meter of such activity. Furthermore, since ?5% of the radiant 
energy content of the lake is essentially confined to within 
3 diffusion lengths l/K of the surface (cf., (98) of Sec. 1.4) 
and is therefore within the arena of most biologic activity, 
we would expect the homogeneity of the lake to disappear with 
the onset of spring and summer. Furthermore, rain run-offs 
will introduce still further mixtures of organic and inorganic 
materials into the entire body of the lake and change the op- 
tical properties. In short, it appears quite possible for 

These measurements were made in the spring of 1957 be- 
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TABLE 7 

The apparent and inherent optical properties of Lake 
Pend Oreille at depth 29 meters and for a wavelength band 
centered on 480 t 64 mp 

(From [ 3061 , by permission) 

one to form an optical portrait of the biology and geology of 
a lake or oceanic region by monitoring its a p  u, a and K, at 
given times over a yearly cycle. The more of these proper- 
ties one records, the more complete will the optical portrait 
be, and the more likely will be the usefulness of the find- 
ings to scientists in neighboring disciplines to hydrologic 

P optics. 
In order to increase our intuitive and objective know- 

ledge about the relations between the clarity of water and 
its a and K properties, we append Table 8, adapted from [74]. 
This table, while ostensibly a rather limited sample, exhib- 
its some interesting relations between CL and #. For example 
the list of values shows a remarkable stability of the ratio 
K/a considering the range of waters in which the measurements 
were made. Thus while a varies over an eightfold range and 
K over a sevenfold range, KPa varies only over about a two- 
fold range. The stability of K/a within a given region of 
water is even greater, indicating a possible basis for simple 
rules of variation of a and K which may be used to es 
one of those properties in the absence of the other. 
stability of K/a will be seen to be an important fact 
the description of the shape of the light field at moderate 
and great depths in the seas and lakes (Sec. 10.7, in partic- 
ular (29) of Sec. 10.7). 
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TABLE 8 

E 

A sampling of a ,  K values for the 480 f 64 mu range. 

'mater-of the bottom) 
Open Sea Southwest of Point 
Lorna 

Coast at Mexico-California 

San Diego Harbor Opening 
Zuniga point Harbor Opening 
Entrance Channel, South 
Entrance Channel, North 
North Bend of Harbor 
Midpoint of Harbor Pocket 

border 

depth) 
Ocean Entrance 

Central Region 

Opposite Victoria, Vancouver 

Fresh Water Lakes* 
El Capitan Reservoir (Aug. 

Island 

1955) ,San Diego County 
(turbid water) 

Diamond Island Field Station 
(Summer 3956) Lake 'Winnipe- 
saukee, N.H. (moderately 
clear) 

1957) (Clear water) 
Lake Pend Oreille, Idaho (Ap 

a 
.499 mete;' 

1.439 mete+' 

1.654 
1.727 
1.065 
i.156 
t. 770 
L.462 
3.20 

8.543 mete; 
0.630 
0.6190 
0.72% 

0 e 651 

1.853 mete; 

0.756 

0.413 

K K/a 
-180 meter' 

.177 meter' 

226 
.I62 
396 

I. 280 
1.565 
I. 584 
. .07 

1.262 mete<] 
1.278 
1 315 
1.321 

D. 340 

1.062 meter 

0.374 

0.195 

~ - 361 

.404 

.346 

.223 

.372 
242 
,320 
.400 
.334 

.483 

.442 

.525 
,445 

.522 

,575 

.495 

.472 
p__ 

"The coefficients ci and K were found to be the same at all 
depths at these locations and times 
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,- Preliminary Observations on the Classification 
of Natural Hydrosols 

difficulties in forming a well-rounded optical picture of a 
natural hydrosol from most of the curlrently existing litera- 
ture in hydrologic optics is that each investigator has 
looked at only one or two fragments of the entire radiometric 
picture according to his momentary interests. As a result, 
such findings have only transient interest because they cannot 
be. incorporated by subsequent investigators into any syste- 
matic study of the radiative transfer processes occurring in 
the hydrosol. It is true that the preceding examples are 
very helpful in forming an intuition of the principal optical 
properties of natural hydrosols. However, the completeness 
of experimental studies to the degree shown in Tables 1, 2, 3 
are all too rare and we can be hopeful that they will he emu- 
lated by other investigators in future scientific studies of 
light fields in oceans and lakes. The recent works of Tyler 
cited above and those of Jerlov (1251, [126], [127], have 
begun to show a trend in the direction of exhaustive systemat- 
ic optical analyses of natural hydrosols. Thus in Jerlov's 
work [127], potentially fruitful classifications of different 
types of ocean waters are made, and are elaborated in the 
book version of [IZS]. For example, Fig. 1.74 shows a classi- 
fication of ocean water types by means of the irradiance 

From the preceding samplings, we see that one of the 
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FIG. 1.74 Irradiance transmittance for a 10 meter layer 
of water, as sampled by Jerlov, and illustrating a possible 
classification scheme for natural hydrosols. (From [127], by 
permission) 

. .. . . .  



i 

trmnsrriittarnce ,-ha. of ra ~ivsrr lioyer of wntcr ( T  ,. 10 meters 
in this cas<%) as a function of wavelength. Whilc i t  would be 
generally more desirable ,and more directly useful to simply 
plot the K-function for H(z,-) as a function of A ,  even as 
they stand, the graphs give an informative picture of the 
five general types of oceanic water encountered by Jerlov in 
his long series of careful studies of Atlantic and peripheral 
waters. These graphs could be of even greater service if 
someday they OT their kind are supplemented by similar plots 
of cy, as a function oE A ,  along with U, as a function of both 
e and A, if the patience and funds for such a pioneering ef- 
fort could ever be assembled. The rationale behind these ob- 
servations will be outlined in the following section. 

1.7 Some General Yodes of Classification of Natural Optical- 
Tedia 
_I_- 

Our studies in the preceding sections, especially those 
in the section just concluded, lead us to seek out those of 
the manifold optical properties used in the mathematical mod- 
els of light fields in natural hydrosols that are fundamental 
and most useful. This problem has no simple solution, and in- 
deed has different answers depending on one's view of the role 
of hydrologic optics in the study of natural waders. 
were a mathematician interested primarily in the intricate 
geometrical relations among the radiance distributions and 
their connections with the physics of the medium then, unques- 
tionably, the inherent optical properties a and U as functions 
of position and wavelength (or equivalently a and a) consti- 
tute the only scientific answer to the query. If one were 
interested mainly in engineering calculations leading to es- 
timates of the visibility of submerged objects in natural or 
artificial light fields then, equally clearly, the full spa- 
tial and spectral measurement of the properties a and K would 
suffice for most such purposes. On the other hand, a biolo- 
gist interested in the problem of photosynthesis may find it 
possible to conduct a large portion of his work using only 
the volume absorption function a or only the diffuse attenua- 
tion function K. If one were a physicist or chemist concerned 
mainly with the analysis of water foT the detection of certain 
dissolved and suspended substances, then quite likely u and a 
(or equivalently u and a] would suffice, but for vastly dif- 
ferent reasons than those given by the mathematician mentioned 
above. Far the mathematician would use a and ff to compute 
N(z,G) at each depth z and for each direction 5, while the 
physicist OT chemist would use a and u to yield concentrations of 
solutes and suspensoids in the irradiated sample of the hydro- 

If one 

kol. 

Xodes of Classification 

In view of the preceding observations, several alternate 
modes of classification of natural optical media are possible. 
We now list the main modes of classification and indicate how 
much information about the hydrosol is inherent in each. 
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Mode IA Specifying a,o a5 functions 
(for 0) and wavelength through 

4 
VbL. I 

of position, dFrection 
the medium X. 

The measurements of a,u are envisioned here as done by 
means of specially designed a-meters and a-meters (cf. [78]). 
The deductions that are possible using this mode are indica- 
ted schematically as follows under the column labeled “Mode 
I A” : 

Mode IA 

I.;..] 
equation of transfer 

at the boundaries of X 

radiance distributions 
throughout X 

1 yields 

Mode IB 

I a * U  I 
yields 

properties of X 

The procedure by which the radiance distributions throughout 
the medium are obtained from a, U, the equation of transfer, 
and the boundary lighting conditions on the hydrosol is now 
a well established procedure which may take several alternate 
forms. The main techniques for such calculations are summa- 
rized in Chapters 4, 5, 6, 7 and 8 below, and in Part Three 
of Ref. [251]. The determination of the apparent optical 
properties from radiance distributions proceeds as outlined 
in (23)-(26) of Sec. 1.6. 

Mode IB Specifying radiance distributions throughout X as 
functions of wavelength. 

This mode of classification is extremely fruitful, for 
as the deduction diagram for Mode IB shows, this information 
will yield all the inherent and apparent optical properties 
of the medium. Table 7 of Sec. 1.6, except for a, s and a, 
was constructed using this mode of classification. The man- 
ners in which the inherent optical properties a, s and a of 
a medium are forthcoming from radiance distribution measure- , 

ments are explained in Chapter 13. Modes IA and IB are in 
principle mathematically equivalent modes of classification 
and rank highest in the hierarchy of possible modes of clas- 
sification as regards completeness of information about the 
hydrosol studied. 
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Mods P I  Spocifyirrg II(z,+) and h[z,k) a8 functions of posi- 
tion and lJcZVt2teBlgth thPBOldghOMt x. 
From the four irradiances of Mode I1 comes the set of 

all apparent optical properties discussed in Sec. 1.6. An 
extraordinary amount of information is forthcoming from such 
a mode 02 classification when it is realized that we are re- 
placing the radiance distribution N(z,e) at each depth z hy 
just f5ur neulrbers H(z,+), hcz,?) at that depth. A n m h e r  of 
deductions of the relations among the inherent optical prop- 
erties s and B and a wealth of subsidiary properties are pos- 
sible from a carefully conducted Mode IP classification. The 
bases for these deductions are explored in Chapters 9, 10 and 
13. 

which are comprised only of radiometric documentations of 
It may seem odd to suggest modes of classification 

However, when one reflects on the matter, it 
that this is precisely how all the usual appar- 

koperties are found in the first place! 
vestigator accompanies the listing of the de- 
properties, of current interest, with a listing 

te H(z,+] and hcz,?) measurements (or preferably 
the N(z,E) measurements) from which he made his deductions, 
he thereby makes available to subsequent investigators poten- 
tial information he is presently uninterested in or which his 
technology may not yet be able to extract. Imagine, for ex- 
ample, if scientists in Galileo's time documented the light 
fields by means of radiance distributions, however crudely, 
we would now be able to extract information about those hy- 
drosols that the original investigators hardly could conceive 
of. Flights of fancy to one side, the reader should perceive 
the underlying intent of this observation and its pertinence 
to Mode I1 

There- 

Mode III Specifying a and K as functions of position and 
wavelength throughout X. 

The collection of a and K measurements is here envi- 
sioned as made by a single instrument assembly so designed as 
to simultaneously measure a and K as it is lowered into and 
moved about in the optical medium. For example, such a de- 
vice, designed by R.W. Austin of the Visibility Laboratory, 
University of California [7], has been used in coastal surveys 
by the I1.S. Oceanographic Office. 

butions and by virtue of the near-universality of shape of 
the (I curves Ccf. Fig. 1.73) one may be able to estimate 
N,(z,S), using (50) or (611 of See. 1.4 with the K values 
supplied by Mode 1 1 1  of the classification scheme. Then with 
(14) of Sec. 1.3 and the a as found by Mode 111, excellent 
estimates may be obtained of the radiance distributions with- 
in a medium probed in a Mode IIh fashion. Once these radiance 
distributions are obtained, then we are in effect in posses- 
sion of a Mode IB wealth of knowledge, provided the simple 
model for radiance fields is applicable. 

By a judicious choice of near-surface radiance distri- 
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Further members are possible in the preceding hierarchy 
of modes of classification of natural hydrosols. However, a 
proliferation of such modes a% this time is not desirable, as 
it would detract attention from the only mode really worth 
considering in the establishment of a science of hydrologic 
optics, namely Mode I in either of its equivalent guises A or 
B. However, this ideal may not soon be reached, and accord- 
ingly the two lesser hut yet extremely useful modes of clas- 
sification are included in our present survey. Finally, when- 
ever possible and in the intepests of consistency and com- 
pleteness, measurements in the preceding modes should be done 
in the polarized light context and atso as a function of time, 
if such is indicated by"the physical lor biological) state of 
the medium (cf., Sec, 13.6, 13.11). 

the optical properties in arbitrary optical media is made in 
Sec. 9.6. 

A complete theoretical analysis and classification of 

1.8 Colorimetric Radiative Transfer 

An interesting application of radiative transfer theory 
can be made.to the studies of the apparent colors of objects 
located within media that scatter and absorb radiant energy 
in a selective fashion. The application of the principles of 
radiative transfer to such stu'dies is straightforward and re- 
quires no new concepts to he introduced into the theory be- 
yond those we have been considering. 
need only adopt the well-known standard C.I.E. (Commission 
Internationale de I'Eclairage) color coordinate system, with- 
in which any spectral sample of radiant flux may be located 
and assigned a unique color, in a manner to be briefly ex- 
plained below. By coupling the concepts of radiative trans- 
fer theory to the C.I.E. color coordinate system, an accurate, 
quantitative basis for the description of color phenomena 
within the atmosphere and the sea is achieved, which for the 
purposes of the present discussion we shall call colorimetric 
radiative transfer theory. Our goal in this section is to 
outline the union of the two theories and indicate the .nature 
of its applications. 

The color phenomena within the domain of colorimetiic 
radiative transfer theory are manifold: a precise descrip- 
tion and prediction is possible of the blue of the sky and of 
the reds and golds of sunsets; of the onset and growth of the 
blue and purple hazes between distant mountains and a reced- 
ing observer; the odd yellowing of mercury vapor street lamps 
with distance in strange blue fogs [177]; the conventional 
but ever pleasant sight of a reddish-orange rising moon; the 
yellowing and reddening of extremely shiny surfaces such as 
corrugated aluminum roofs and sidings seen through long paths 
of sight in the atmosphere; the sickening brown smear of smog 
smothering a city. In the underwater domain, the colorimet- 
ric radiative transfer phenomena are overpowered and dominated 
by the highly selective absorption of reds and violets (and 
their neighboring colors), resulting in a powerful filtering 
of all sky light into a blue-green residue of greater or 
lesser luminance that pervades almost all submarine scenes. 

For this purpose we 
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Brightly-colored submerged tropical scenes of plants and ani- 
mals with their reds, yellows and deep blues quickly trans- ' 

form with distance into shades of brighter or dimmer greens 
and blues with.reds and purples washed to pink and then atten- 
uated away. Such scenes are now easily witnessed firsthand 
with modern scuba devices. However, only one or two genera- 
tions ago, such sights were a rare delight. 

In his 1927 Haiti expedition, Beehe /l2] noted that: 

[in his diving helniet rig] and watched the surface 
above me. The sea breeze had sprung up and it was 
fairly rough. The view from beneath was of green, 
wrinkled, translucent ceiling cloth, never still 
for a moment, crinkling and uncrinkling, waving and 
flapping as in a breeze, or rather cross breezes. 
lt was decidely green in comparison with the ever 
more blue distance--turquoise green in the sunlight, 
changing toward greenish glaucous in shadow. As to 
the distance, I can never get away from the idea of 
the most diluted, ethereal ultramarine, and yet my 
mind knows that a dozen other colors are somehow in 
it .I' 
All of these phenomena can be quantitatively and quite 

accurately described by means of such simple models for radi- 
ance and irradiance as developed in Sec. 1.3, which need only 
use information on optical properties obtainable by Mode I11 
classification procedures of optical media (cf., Sec. 1.7). 

"TQward the end of the dive I sat on white sand 

The Quantitative Description of Color 

It is a relatively easy matter to understand the C.I.E. 
color coordinate system if we recall some similar conventions 
we have adopted in our everyday tasks of locating objects in 
space. Part (a) of Fig. 1-75 exhibits an object in space 
(designated by "14") which can be located by means of its three 
coordinates in an xyz Cartesian frame of reference. There is 
nothing unique about this frame as far as being adequate to 
Locate A in space. The alternate frame depicted in (b) of 
Fig. 1.95 will do just as well. In each diagram, object A is 
Located at the same spot. That spot, fixed relative to the 
first frame, is designated by a vector u which is specified 
by giving its coordinates (x,y,z). These coordinates are 
found by dropping perpendiculars from lil to each of the three 
axes, in short, by finding the dot products: 

U * i  (1) 

sf the vector u with the mutually orthogonal unit vectors i, 
j, k along the x, y, z axes respectively. This is called an- 
alyzing ta relative to the x, y, z frame. The next step is to 
synthesize u (i.e., get it back) by means of the equation: 
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FIG. 1.75 For illustrating the analogy between coordinate 
systems in the real three dimensional world and the C.I.E. 
tristimulus color coordinate system. 

u = (u.i)i + (u*j)j + (u*k)k (4) 

Now, we can perform such an analysis and synthesis not 
only on a simple location vector such as U, but also on any 
radiant flux function P defined on the electromagnetic spec- 
trum A (the set of all wavelengths from X = 0 to X = -). In- 
stead of the i, j, k unit vectors,-we now use the (dimension- 
less) tristimulus functions x, y, z on A adopted by the C.I.E.. 
A plot of each of these is given, to scale, in Fig. 1.76. If 
we form samples b f  radiant flux with just the power spectra 
given by the forms of these three functions, then the visual 
sensation of the Z sample would be red, that of would be 
green, and that of y, blue. 

into its red, green and blue components, we write: 
To analyze a given radiant flux sample P (watts/mu) 

for 680 P(X) X(X) dX (lumens) (5) Im “ p . p  

0 

“p*T;” for 680 P(X) y(k) dX (lumens) (6) 
lorn 
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FIG. 1.76 The tristimulus functions. The y curve is the 
photopic luminosity function of Fig. 1.10. 

Ilp.91 P(A) y(X) dX (lumens) (7) 

which are closely analogous to the simple vector operations 
(I), [Z] (3). The number 680 has dimensions of lumens/watt, 
and serves as a connection with photometry--(cf,, Sec. 2.12). 
To point up this similarity to the vector operations we have 
written IrP*P, l'F"y", and 'lP-Trt for (51, (6), (7), respective- 
ly. Then analogously to (4) we can synthesize these compo- 
nents. We do this and write: 
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Chromaticity Vectors 
(1) Original radiant flux 

(2) Z',r,Y tristimulus functions 
(3) Color compon_een_ts of P with 

respect to x,y,z: 

function P 

P - z  = x 
P-y = Y 
P.7 = z 

(4) The representation of P: 
C[P] = xx + Yy + zz 

INTRODUCTION VOL. I 

We call C[P] the ooZor or chromaticity of P. C[P] is a 
function defined on A and it is designed to give a very close 
visual color match to the original function P. The point to 
observe here is that whereas P could be of quite an arbitrary 
structure over A, its calor C[P] is the linear superposition 
of three suitably weighted amounts of standard red, green_, 
and blue radiant flux samples. The weighting numbers Pax, 
P-7, P-z are the coZor components of P, and the ordered triple 
of numbers (P*x, Per, P-y) is the color vector associated with 
P. In this way we have set up a one-to-one transformation of 
given radiant flux samples P into their associated colors 
CLP], each with three well defined color components* Pox, 
Psy, P-Z. For brevity let us write (in accordance with C.I.E. 
notation) : 

"xtl for P-X 19) 

for P e r  (10) 

(111 

rryrr 

"Z" for Pwz 

We observe in passing that the component P - 7  of a sample P of 
radiant flux is simply its photometric counterpart. Thus, for 
radiance N, N - 7  is the associated luminance R; for irradiance 
H, li-7 is the associatcg illuminance E; land so on (cf., Sec. 
1.1). Tables of ?', y, z along with further descriptions of 
colorimetry may be found in [SO]. 

vectors and chromaticity vectors by means of the parallel list- 
ings below in Table 1. 

- 

We may summarize the analogy between simple location 

TABLE 1 
A vector analogy for chromaticity concepts 

Location Vectors 
(1) Original vector u 
(2) i,j,k unit vectors 

(3) Components of u with re- 
spect to i,j,k : 

u-i = a 
u.j = B 
u-k = Y 

(4) The representation of u: 
u = ai + Bj + yk 

The mathematical reader will see that this vector terminol- 
ogy is completely appropriate, for what we can postulate ini- 
tially is the vector space P of all Riemann integrahle func- 
tions P on A. The mapping C is therefore a non-identity lin- 
ear transformation of P into itself, It turns out that C 
is one-to-one and not onto, but its range is sufficiently 
large to encompass most colors seen by the human eye. 
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FIG. 1.77 Chromaticity plane (part (a)) and chromaticity 
diagram (part (b)). Point E is the white-light point. 

In the usual location vector theory, a special place is 
reserved for vectors of unit length, namely the unit sphere 
5 shown in (a) of Fig. 1.75. Analogous to the unit sphere is 
the chromaticity pZane shown in (a) of Fig. 1.77. This plane 
has the property that €or all points p (= (x,y,z)) on it we 
have x+y+z = 1. If (X,Y,Z) is a chromaticity vector, then 
the vector r > "I Y 

* (X,Y,Z) = - - 
X+Y+ z ' X+Y+Z ' X+Y+ z (X+Y+Z) I x  

lies on the chromaticity plane. Observe that only the part 
of the chromaticity plane that lies in the first octant (shown 
in (a) of Fig. 1.77) 1s needed in colorimetry. For, since P 
and the functions Z, 7, z are never negative, all chromaticity 
vectors accordingly lie in the first octant. Observe further 
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that one need only use two numbers to locate a point on the 
chromaticity plane. These numbers are conventionally chosen 
to he the x and y components, where we write 

n for - 
X+Y+Z 
Y "y" for - 

X*Y+Z 

"x" 

Z *Jz** for - 
X4Y + z 

The x,y,z are the chromaticity components (or coordinates) of 
P. By projecting all chromaticity vectors (X,Y,Z) down onto 
the chromaticity plane, as shown in Fig. 1.76, we are in ef- 
fect normalizing the associated luminances of the radiant flux 
function P. Once the chromaticity plane is defined we can 
excise it from its spatial context, or simply work with a 
plane diagram COPY of the chromdticity plane, as in (b) of 
Fig., 1.77. The x and y chromaxicity coordinates are displayed 
in a way once again reminiscent of the usual location vector 
conventions. 

Once the setting in (b) of Fig. 1.77 is achieved, we 
can locate within it all manners of points which represent 
the conventional colors of familiar everyday objects and 
scenes. For example, suppose that we begin with a sample P 
of radiant flux which has a constant value Po for all X. 
From (5) - (7) this gives : 

0 

m 

Y = 680 Pojoy(A) dA 

m 

Z = 680 Pojoz(h) dX 

Now the y, 7, and z functions are so designed that their in- 
tegrals over A = [O,m] have essentially a single common value, 
namely 21.37. Hence the associated chromaticity components 
for this P are 

x = 1/3 
y = 1/3 
z = 1/3 

Such a flux sample has the appearance of a pure white color 
and is analogous to pure noise in acoustics. In fact, in the 
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theory of stochastic proccsscs, if the spcctrum of R givrn 
function is of constant value, it is said that thc function 
rcprcserits white noise (all the analogies we arc touchinR 
hare and there in the present exposition are quite dcrp and 
far more than superficial in appearance). 

The point (x,y) - (1/3,1/3) in the chromaticity nlane 
corresponding to white light is denoted by "E", in (b) of Fig. 
1.77 and is the central base of operations in the practical 
task of specifying colors. If we go on to obtain the chroma- 
ticity coordinates 05 all the pure monochromatic colors of 
the spectrum A (their sample functions P are Dirac delta func- 
tions), we sweep out a horseshoe shaped locus in the plane of 
(b) of Fig. 1.77, starting approximately at the point x = .74, 
y = -26 (red), and sweeping around to the point x = .07, 
y = .84 (green), and ending up at x = .17, y -- .01 (violet). 
This curve is called the spectrum locus. lie can close the 
locus by drawing the straight line from the violet to the red 
point. The closed plane region so formed is the chromaticity 
diagram. The colors associated with the points of the spect- 
rum locus are the purest colors attainable in the present sys- 
tem. Suppose that a given sample of radiant flux has chroma- 
ticity coordinates (x,y) which Land it at point Q on the 
chromaticity diagram. Draw a straight line from E through Q 
to intersect the spectrum locus at li. The wavelength X asso- 
ciated with W is called the dominant wavelength or color of Q, 
and the fraction p = EQ/EW (where "EQ", "Eli" denote the 
lengths of the respective straight line segments) is called 
the pupity of the color of (2. If a point such as Q' is con- 
sidered, we extend Q'E back to 'ii', and the associated purity 
is by definition EQ'/EW'. In this way, we finally achieve 
the first part of our goat for the present exposition, namely, 
the explanation of how a given sample P of radiant flux de- 
fined on the spectrum A can be assigned two numbers: its 
dominant wavelength X and the purity p of the dominant uave- 
length of P. 

These two numbers act very much like the polar coordi- 
nates of points in the chromaticity diagram, with the point 
E as the pole. The purity is often given as a percentage ra- 
ther than a fraction. llence the pair (x,y) of chromaticity 
coordinates have their polar equivalents (X,p). We shall use 
the term "chromaticity coordinates" interchangeably for these 
equivalent representations. 

An Example of Experimentally Determined 
Chromaticity Coordinates 

lie shall now cite some examples of the preceding con- 
cepts. These exampies are drawn from various colorimetric 
studies of natural hydrosols. Fig. 1.78 depicts the spectral 
dependence of the apparent radiance of submerged sandy shoals 
and reefs as studied in 1944 by Duntley through a glass-bot- 
tomed boat surveying parts of the east coast of Florida (near 
Dania). The same submarine area surveyed from an altitude of 
4300 feet (1300 meters) is depicted in Fig. 1.79. If N(X) is 
the apparent radiance of a particular point of the underwater 
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WAVELENGTH I N  M I L L I M I C R O N S  

FIG. 1.78 Spectroradiometric curves of sandy bottom of 
shoals near llania, Florida, by lfuntley, March 1944. (Fig. 1 
from [ 781 , by permission) 
sceng for a given X, as plotted on Fig. 1.78, then the color 
comp6nents x, y, z of N(X), O S A S - m ,  are obtained by using 
these plotted radiance values in CS)-(7) and (12)-(14) with 
N(h) replacing P(X). 
y, were computed according to 
curves in Fig. 1.78, and their locations are shown along the 
upper curve on the chromaticity diagram of Fig. 1.80. The 

Seventy-six chromaticity coordinates x, 
(12), (13) for each of the five 

cbi-responding 

WAVELENGTH I N  M I L L I M I C R O N S  k- z 
w 
LL 
4 a 
b - 
a 

FIG. 1.79 Same scene as Fig. 1.78, viewed from an alti- 
(Fig. 2 from [78], by permission) tude of 4300 feet. 



SEC. 1.8 COEORIMETH I C RAD1 AT I Vli TMMSFIiR 151 

I I 1 I I I I 

X 

FIG. 1.80 Chromaticity diagram associated with the curves 
of Figs. 1.78, 1.79. The five curves of Fig. 1.78 yield the 
five points of the upper curve in the chromaticity diagram. 
The five curves of Fig. 1-79 yield the five points of the 
lower curve in the diagram. (Fig. 3 from [78], by permission) 

locus of the chromaticity coordinates for the aerial view of 
the shoals is given by the lower curve in Fig. 1.80. This 
example is taken from the review article [78] by Duntley. 
Further examples may be found in [126], and [302]. 

tion, the theory of colorimetric radiative transfer. 
We now turn to the second part of our goal in this sec- 

On the Use of Simple Models for Theoretical 
Predictions of Chromaticity Coordinates 

A relatively unexplored area of application of the sim- 
ple models for radiance and irradiance developed in Sec. 1.3 
is colorimetric radiative transfer theory. We shall consider 
the essential steps that may be taken in this direction of ap- 
plication. Starting quite generally with the apparent radi- 
ance form of the equation of transfer (12) of Sec. 1.3, let 
us take the wavelength X out of wraps and write the equation 
with A explicitly shown, as follows: . 
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Iiy specifying No(zo,8,X), u(X), and NJ,(z',8,X) we are able in 
principle to compute N,(z,O,X) for every z, 8, r, and X over 
~ i v c n  paths and for a preselected set or" A values in A. Then 
h y  (!,)-(7), we can compute: 

Yr(z,D) = 680 Nr(z,D,h) y(h) dX (=Br(z,D)) (20) J, 
rm 

Zr(z9D) = 680 Nr(z,O,X) z(h) dX 
10 

From these color components of Nr(Z,D,?), using (12), (13), 
we can find the two chromaticity coordinates: 

IZZ) xr(z,e) xr(z,e) = 

Yr(ZA = 

Xr(z,8) + Yr(z,8) + Zr(Z,8> 

Xr(z,81 + Yr(z,8) + Z,lzA 
(23) yr (2 , 8) 

and from these, as explained above, we derive the dominant 
wavelength X and the purity p of this wavelength. Such a 
pair (h,p) is a function of z, 8, and r, and we thus may write 
the pair as: (X,(z,e), pr(z,D) ). 

The simple model for apparent radiance (14) of Sec. 1.3 
should be a rich source of colorimetric predictions for the 
light fields in natural hydrosols. Thus we can now write the 
equation as: 

where -K(X)z NJ,(Z,8,X) = N,(O,e,X)e 
By setting 8= 0, 7r/2 and i-r in (24), for example, we can pre- 
dict the spectral apparent radiance of the hydrosol in these 
directions at depth z and via ( 2 2 ) ,  (23), assign dominant 
wavelengths to theze directions and depths, and purities to 
these wavelengths. To use (24) one need only specify a(X), 
K(X) and N,.(O,EI9h) along with Yo(zo,8,X). The equation will 
then automatically take care of and predict t!ie effects of 
the radiative transfer processes on the apparent radiances 
Nr(zAA). 

c 
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The quantitative study of the colors O T  distant otijccts 
was apparently first systematically done hy ''iddlcton 1177) 
in the meteorologic optics settin:. lie used a special case 
of (24) in which 5 = 7112, and computed the chanye in color of 
various objects as a function of r. lIis computation may 
serve as a model for the more extensive computations that can 
be made using (24) with a general value of 8. 

model for spectral irradiance If (z, f A) described. in (6) , (7) 
of Sec. 1.3, and particularly in (8)-(10) of Sec. 1.4, to nre- 
dict the chromaticity coordinates of the upward and downward 
irradiances as a function of optical depth in a given medium. 
The A-dependence of' H(z,+,A) enters this theory via the y pa- 
rameter and also the initial irradiances li(O,t,X) (or any 
equivalent pair of irradiances, as suggested by (43), (44) of 
Sec. 1.4). 

It should fie observed that in the employment of the sim- 
ple model for radiance and the two-flow model for irradiance, 
we require only information on the '.lode 1 1 1  level of classifi- 
cation of natural hydrosols (cf., Sec. 1.7). 

submarine color has been to lay the foundations for a scienti- 
fic description of the myriads of colors and their many hues 
as seen beneath the surface of seas and lakes illuminated by 
natural light. The simple theory evolved above and culminat- 
ing in (22) and (23) goes a long way toward a quantification 
of the otherwise inexpressible color sensations experienced 
by all who explore and study underwater environs. Even such 
skilled expositors of natural phenomena as Yinnaert [182] or 
William Beebe were hard pressed in taeir explorations of the 
atmosphere and the sea to descrihe adequately what they saw. 
In his studies of the coral reefs of Iiaiti in 1927, Beebe, in 
particular, observed that [12]: 

"Someday, when I can carry a color book in my hel- 
met, I will be able to enumerate an exact color code 
of distance. Even in our colder, thinner atmosphere 
the green of mountain slopes softens to purple a long 
way off, but on the bottom of the sea, still greater 
changes take place within a few feet or yards. I have 
walked backward and seen a feathery-crowned sea-worm 
of dragon's blood alter, in my vision, within a few 
seconds and steps, to the palest of coral pink; w'iile 
a sea-weed, deep olive-green when within reach, comes 
gently to the eye, when five yards away, as faintest 
glaucus .'I 

In a completely similar way we may use the two-flow 

Our purpose .in this brief excursion into the world of 

The relatively precise expression of these transforma- 
tions of colors with distance in scattering-ahsorbiny media 
is now within our grasp. But the placing of a coordinate grid 
over our visual impressions can go only so far--somethinE of 
our impressions of the real world will always slip throueh 
suc:~ a coarse net. This was sensed by Beebe; and for us, now 
in nossession of the relatively powerful tools forged above, 
we are inclined to agree when he goes on to reflect that [ 1 2 ] :  

"An artist of great skill and patience can approx- 
imate the oxydized royal purple of a gorgonia, even 
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the pink and ivory sunset of a conch shell--but the 
vanishing point of distance beneath the water, where 
the coral reef ends and the mysteries of the unknown 
deeps begin--the illusion, too subtle for color, of 
submarine visual infinity--this is not to be whelmed 
by man-made brushes nor imprisoned on any terrestrial 
dimension.” 

lications of Hydrologic Optics to Underwater 
s ibili ty Problems 

In this section we shall apply the simple model for ra- 
diance (14) of Sec. 1.3 to the problem of predicting the vis- 
ibility of underwater objects illuminated by natural light 
fields and as seen by underwater swimmers. In order to a- 
chieve this goal we must take into account not only the geo- 
metrical structure of the light field at each depth z, and 
its general exponential decrease with depth, but also the in- 
herent properties of the eyes of the underwater swimmer and 
their mode of adaptation to the light levels in the under- 
water environs. These rather delicate features of the problem 
must be blended with great care in order to achieve a synthe- 
sis which is at once readily applicable under rugged field 
conditions, and yet accurate enough to make useful and depend- 
able predictions. 

and it is on his results reported in [75] that the present 
section is based. Except for minor chanqes of the text of 
[75], in order to insure continuity within the framework of 
the present work, the exposition of the use of the nomogranhs 
is essentially that given in 1751. Successful experimental 
field tests of the theory underlying the simple model are re- 
corded in [83]. (See Figs. 1.51, 1.52.) 

k!e observe that the optical properties required for the 
application of the nornographs in this section are the volume 
attenuation coefficient a and the diffuse attenuation coeffi- 
cient K, so that we require only a ’lode 111 classification of 
optical media, as defined in Sec. 1.7, in order to implement 
the theoretical results summarized below. These optical prop- 
erties may be measured simultaneously by means of a water 
clarity meter ilcsigned and developed at the Visibility Labor- 
atory of the Scripps Institution of Oceanography 171 and which 
has been in use now for several years by the U.S. Oceanograph- 
ic Office. 

Such a synthesis has recently been achieved by Duntley 

Introduction to the Nomographs 

The limiting range at which a swimmer can sight any 
specified underwater object can be calculated from a and K if 
sufficient information is available concerning the nature of 
the object, its lighting, its background, and the visual char- 
acteristics of the observer. Consider, for example, the two 
underwater photographs shown in Fig. 1.81. In part (a) of the 
figure the camera is looking steeply downward through twenty 
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FIG. 1.81 Parts (a) and (h) illustrate the effect of dis- 
tance on the apparent contrast of a swimmer against his back- 
ground. The nornographs below give a quantitative means for 
predicting and describing the visibility of the swimmer for 
various parts of his underwater environs. Courtesy of S.Q. 
DuntZey 
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feet or more oE water at a black-suited swimmer close to the 
hottom. At short range, as in part (b) or' the figure, the 
swimmer's suit appears very black compared with the near- 
white bottom, but at twenty feet (part (a)) its apparent con- 
trast is low; only the nearest fish and kelp heaves appear 
"black". At a slightly greater camera distance the swimmer 
would not be seen in the photograph because of inkufficient 
apparent contrast. The greatest distance at which the swim- 
mer can be seen by his companion, the photographer, may be 
calculated by means of the nomographic charts presented in 
this section. 

to nearly every underwater viewing task if adequate input 
data concerning the object, its lighting, and its background 
are available. The applications discussed and illustrated in 
this section are visual tasks for which adequate input data 
are readily available. 

The main body of this section is concerned with the pre- 
diction of sighting ranges along paths of sight which are in- 
clined downward, and the nomographs are designed especially 
for this case. The visibility of flat, horizontal, non-glossy 
surfaces lying on the bottom or suspended far above the bottom 
can be calculated with great accuracy; but three-dimensional 
objects, particularly those with rounded surfaces, will be 
treated with slightly less certainty until additional develop- 
ment work, in progress at the time of the present writing, 
has been completed. Accordingly, sightings of complex sur- 
faces and sightings along upward-looking paths of sight are 
not treated per se in the present set of nomographs. 

The nomographic charts in this section can be applied 

A. Selection of the Proper Chart 

A. 1 Introduct'ion 

The detection capabilities of any swimmer depend upon 
the level of light to which his eyes are adapted. This, in 
turn, depends upon the quantity of natural illumination on 
the surface of the sea, the depth of the swimmer, and the 
clarity of the water. 

We shall present nomographic charts for nine adaptation 
conditions covering the entire range of light levels at which 
the human eye can operate, a range which extends from bright- 
est day to darkest night. The first step in any visibility 
calculation is to ascertain the adaptation luminance to which 
the swimmer will be exposed and to select the appropriate 
chart. 

A.2 Natural IZlumination 

The Bureau of Ships, U.S. Navy, has made a comprehen- 
sive study of natural illumination on the surface of the 
sea and has published an unclassified handbook-type report en- 
titled "Natural Illumination Charts", (Ref. [35]) from which 
the illuminance in lumens per square foot (i.e. "footcandles') 
can be found for any location on earth at any time of day on 
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any day in any year. A summary page from that report is re- 
produced as Figurc 1.12. 13y means o€ this figure the illumi- 
nation on the surface of the sea can be found if the altitude 
of the sun and type of sky is known. 

A.3 Effect of Depth and Water CZarity 

horizontal surface is measured at various depths in any uni- 
form stratum of sea water, we have seen (in (7) of Sec. 1.2, 
and (7) of Sec. 1.4) that, to a useful approximation, the il- 
lumination level decreases exponentially with depth. Graphs 
of the exponential law, constructed especially for the pur- 
poses of the present section, are given in Figures 1.82, 1.83. 
The slopes of the straight lines are measured by the various 
values of the diffuse attenuation coefficient K, which is de- 
fined by the equation 

If the illuminance on any fully exposed upward-facing 

, (1) -Kz E, = Eoe 
where Eo is the downward illuminance at the top of the uni- 
form stratum, z is depth within the stratum, and Ez is the 
downward illuminance at depth z. Strictly, this equation re- 
lates to monochromatic light only, as shown in (7) of Sec. 
1.4, but it is a suEficient approximation to illuminance data 
for the practical purposes of this section. 

face to the target, z may be taken as the depth of the swim- 
mer and the illuminance at his depth determined by multiply- 
ing the illuminance at the sea-surface (from Figure 1.12) by 
the appropriate factor read from Figure 1.82. 

Strati f ied Water 

If the measured value of K is the same from the sea sur- 

If the water above the target is composed of two or 
more layers having different values of K, it will be neces- 
sary to use the appropriate straight line in Figure 1.82 or 
1.83 to obtain the factor for calculating the illuminance at 
the bottom of the first layer and use this value as the il- 
lumination incident on the top of the second layer, and so on 
until the level of the swimmer is reached. In other words, 
Figure 1.82 is used to determine factors for each successive 
layer, and the product of these factors is multiplied by the 
illuminance at the surface of the sea in order to obtain the 
illuminance at the depth of the swimmer. 

The assumption of an average or weighted-average K for 
the entire distance from sea-surface to swimmer is often a 
sufficient approximation for the calculation of adaptation 
luminance and the subsequent selection of the proper nomo- 
graphic chart. Even in extreme cases the use of a single K is 
often sufficient for this purpose. 

Effect of Sea-state 

Sea-state, i.e., wave conditions, have no significant 
effect on underwater visibility tasks except near the surface, 
where small waves and ripples may cause the water to be filled 
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with a rapidly moving ensemble of dancing beans O €  sunlight 
and where large waves may cause noticeable lighting fluctua- 
tions due to the effectively variable depth of the swimmer 
(cf., discussions on subsurface refractive phenomena in Sec. 
1.21. Nhen the sun is within 5 degrees ?f the horizon, 
slightly more sunlight penetrates the water surface when it is 
rough than when it is calm, as described in the discussions 
of Table 3, Sec. 1.2, but the effect is ordinarily negligible 
in terms of visibility by swimmers. 

Examp 1 e s 

On a certain cloudless sunny morning the illuminance at 
a point 40 feet beneath the surface in the entrance channel 
of a harbor was found by measurement to be 176 lumens/ft2 and 
K at this depth was measured as 0.0943 per foot.. A deck-cell 
showed the illuminance on the surface of the water to be 7600 
lumens/ft2. Reference to Figure 1.82 or insertion of these 
numbers in Equation (1) yields a predicted illurrinance of 175 
lumens/ft2, in excellent agreement with the measured value. A 
diver reported that no major stratification was observable 
above 40 feet. 

Half an hour earlier, however, the diver had reported a 
dense cloud of organic material between depths 10 and 15 feet. 
The surface illuminance at that time was 5200 lumens/ft2 and 
K at 40 feet was 0.0943 per foot. The illuminance at 40 feet 
predicted from these numbers is 120 lumens/ft2, but measure- 
ment disclosed only 90 lumens/ft2. Obviously the cloudy stra- 
tum between 10 and 15 feet had lowered the illuminance at 40 
feet by 30 lumens/ft2, and it wou1.d have been necessary to 
know K for this stratum in order to correct for its presence. 

A.4 Adaptation Letlel 

If the swimmer were just above a perfectly reflecting 
white bottom he would be adapted to a luminance level (expres- 
sed in foot-lamberts) numerically equal to the illuminance at 
his depth. If, however, he is in water so deep that the bot- 
tom produces no influence on the light-field he will see, 
when looking straight down, a luminance numerically equal to 
approximately 1/50 of the illuminance from above (see para- 
graph B.7 below). Thus, if the illuminance on the top of the 
swimmer is 100 lumens/ft2 he will observe an adaptation lumi- 
nance of 2 foot-lamberts when looking straight down. 

Inclination Factor 

If the swimmer looks along an inclined path rather than 
straight down he will see an adaptation luminance which is 
greater by an amount known as the inclination factor. This 
factor depends upon depth and the downward direction in which 
he looks, as shown by the small graphs in the lower left cor- 
ner of Figure 1.84. For example, if the swimmer is at a depth 
Y/K (i.e.2 90 feet if K = 0.1 per foot) and looks downward in 
a direction having a zenith angle of 120 degrees in the azi- 
muth of the sun he will observe approximately twice as much 
luminance as if his path of sight were straight down. In I 

,:. 
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terms of the numerical example in the preceding parap,rapPi, his 
adaptation luminance is 2x2 = 4 foot-lamberts. The thcoreti- 
cal basis for the inclination factor is (68) of Sec. 1.4. 

Bottom Influence 

If the swimmer is near the bottom, his adaptation may 
be affected, depending (i) on how greatly the bottom differs 
in reflectance from 1/50, (ii) on the clarity of the water, 
aqd (iii) upon its distance from the swimmer. Generally 
speaking, dark mud bottoms have little or no effect on adap- 
tation and light-colored bottoms have negligible influence 
when the sighting range is the order of 3/K or greater. Even 
at a sighting range of only one diffuse attenuation length 
1/K, few bottoms are white enough to affect the swimmer's 
adaptation significantly. Generally speaking, therefore, the 
influence of the bottom upon adaptation can be neglected in 
calculating visibility by swimmers. It should be noted, how- 
ever, that the reflectance of the bottom may have a major 
effect on the inherent contrast of the object and, therefore, 
upon its visibility, as discussed in Section B.2 below. 

A. 5 CalcuZation of Adaptation 'Luminance 

The foregoing discussion can he summarized and illus- 
trated by concrete examples: let it be required to find the 
adaptation luminance for a swimmer 60 feet beneath the sur- 
face of deep water characterized by a diffuse attenuation co- 
efficient K of 0.10 per foot, or 0.42F: per meter which, as we . 

have seen in Tables 7 and 8 of Sec. 1.6, is on the order of 
K-values found in clear lake water. It is also a value typi- 
cal of coastal water. Let it be assumed that the sun is 16.8 
degrees above the horizontal plane on a clear sunny day. 

Reference to Figure 1.12 shows that the illuminance on 
the sea-surface is 2000 lumens/ft2. Inspection of the line 
marked K = 0.10 per foot in Figure 1.82 shows that the hori- 
zontal plane containing the swimmer receives 2.5 x lo-' as 
much downward light as does the sea-surface, or 2000 x 2.5 x 
lo-' = 5 lumens/ft2. 

luminance will be 5 x 1/50 = 0.1 foot-lamberts if there is no 
bottom influence. 

If the swimmer looks along a downward slant path having 
a zenith angle of 110 degrees in a plane at right angles to 
the azimuth of the sun, the inclination factor graph in Fig. 
1.84 shows that his adaptation luminance is 2.5 times greater 
than if he looks straight down. Along this inclined path of 
sight the swimmer's adaptation luminance is, therefore, 
0.10 x 2.5 = 0.25 foot-lamberts. The user of Figure 1.84 
should verify that tlie "across sun" curve is applicable by 
noting that the depth (60 feet) of the swimmer is 6/K, since 
K = 0.10 per foot, and that this depth lies between limits 
specified in the figure. 

Had the solar elevation been 65 degrees, Figure 1.12 

If the swimmer looks straight downward his adaptation 
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shows that the illumination at the sea-surface would have 
been 10,000 lumens/ft' and the adaptation luminances of the 
swimmer at 60 feet would, therefore, have been five times 
higher; i-e., 0.50 foot-lamberts when Booking straight down 
and 1.25 foot-lamberts when looking at right angles to the 
azimuth of the sun along a downward path of sight having a 
zenith angle of 110 degrees. 

A.6 Chart Seteetion 

Paragraph R below (in Figs. 1.89-1.106) contains nine 
pairs of nomographic charts, each pair representing a decimal 
value of adaptation luminance, as follows: 1000, 100, 10, 1, 
los'> 10-33 IO-", lo-' foot-lamberts. One member of a 
pair is for low clarity, the other for high clarity water. 
After the adaptation luminance of the swimmer has been calcu- 
lated the chart closest to this level is selected. If the 
adaptation luminance is not close to any decimal value, sight- 
ing range for the visual target should be calculated by means 
of charts for higher and lower light levels respectively in 
order to bracket the desired answer and provide for interpo- 
lation between these sighting ranges. 

E. Using the Nomographs 

B.l Introduction 

Once the adaptation luminance for the swimmer has been 
determined and the proper nomographic chart selected, sight- 
ing ranges can be predicted. The calculation procedures are 
slightly different €or each type 'of visual task and, there- 
fore, they will he discussed separately. The basic nomo- 
graphs are given in Figs. 1.69-1.106. However, for illustra 
tive purposes, two charts have been excised from that group 
and appear in Figs. 1.84 and 1.85. This is the low-clarity, 
high-clarity pair for 10-1 foot-lambert adaptation. 

B.2 Objects on the Bottom 

The nomographic visibility charts can be used to calcu- 
late the sighting range of flat, horizontal objects of unifonn 
reflectance lying on the bottom. 

Object Size and Shape 

The size of the object is measured by its area, expres- 
sed in square feet; the shape of the object is unimportant un- 
less it is an extremely elongated form (1O:l or greater) and 
unless adaptation luminance is 10 foot-lamherts or qreater. 
Even in such unusual cases the effect of object shape on 
sighting range is usually small. 

Vertical Path of Sight 

Sighting range calculations are simplest when the path 
of sight is vertically downward. Each nomograph requires 
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five items of input data: tarqet ares, target reflectance, 
bottom reflectance, the volume attenuation coefficient CI, and 
the diffuse attenuation coefficient K. The coefficients a 
and K must be for the water between the swimmer and the tar- 
get. 

The vertical scales on the nomographs are labeled 
"a-K cos 8". (The use of a minus sign here, relative to the 
use of a plus sign in Sec. 1.3 wherein the theory of the sim- 
ple radiance model was developed, is to facilitate the direc- 
tion specifications by the swimmer. In other words we adopt 
here field luminances and the swimmer-centered direction con- 
vention.) A downward vertical path of sight has a zenith an- 
gle e = 180 degrees, and cos 180 = -1. A point representing 
the sum of a and K, expressed ifi reciprocal feet, is marked 
on the left vertical scales. 

The right vertical scales of the nomographs are labeled 
"target reflectance minus bottom reflectance". The algebraic 
sign of this difference is of no importance; if the bottom is 
more reflective than the target the difference will, of 
course, be a negative number; disregard the negative sign and 
plot the magnitude of the difference on the right vertical 
scale. Reflectance must be expressed as a decimal; i.e., as 
0.06, not as six percent. Bottom reflectance should be meas- 
ured at the sea-bottom with great care to avoid disturbing 
any fine silt which may be present. Bottom samples cannot be 
brought to the surface for measurement without disturbing the 
material sufficiently to alter its reflectance. Target re- 
flectance may be measured at the sea-bottom or on ship-board 
by means of a technique described in paragraph B.5 of this 
section. 

The curved lines which cover the upper right corner of 
the nomographic visibility charts represent visual threshold 
data for the target,area with which each curve is identified. 
(The refractive effect of the swimmer's flat face-plate has 
been allowed for in constructing these nomographs.) Curves 
representing decimal values of target area are marked accord- 
ingly. Intermediate unmarked curves refer respectively to 2, 
4, 6, and 8 times the decimal value except in those cases 
when only a single line appears between decimal curves; in , 

this case the unmarked curve related to 5 times the decimal 
value. 

Special Charts for Water of Low-clarity. Two series of 
nine nomographic charts are presented below. In the first 
series, the scales have been optimized for use in clear oce- 
anic and coastal waters where sighting ranges of 20 feet to 
100 feet or more often occur. The second series of charts 
are designed for waters of poor to medium clarity where 
sighting ranges of 1 foot to 20 feet or more prevail. Either 
series of charts may be used for any problem having input 
data within the range of its scales, hut experience will even- 
tually indicate khich chart is hest suited €or any given prob- 
lem. 

Sighting Range Calculations, Clear Hater. To calculate 
sighting range, connect the appropriate points on the left 
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and right vertical scales by a straight line and note its in- 
tersection with the curve corresponding to the area of the 
target. From this intersection proceed vertically to the 
sighting range scale. The following numerical example will 
illustrate this procedure with the aid of Figure 1.84. 

Let the following input data be assumed: 

Adaptation luminance = lo-' foot-lamberts 
Target: flat; horizontal; on the bottom 
Target area -. 10 square feet 
Target reflectance = 0.080; non-glossy 
Bottom reflectance = 0.030 
Volume attenuation coefficient = Q = 0.073 per foot 
Diffuse attenuation coefficient = K = 0,027 per foot 
From these data, (recalling that paths of sight at pres- 

ent are vertical) CL + K = 0.100, and target reflectance minus 
bottom reflectance is 0.050. The solid line drawn on Figure 
1.84 intersects the curve marked "10 square feet" at the ver- 
tical line denoting a sighting range of 47.6 feet. The same 
line drawn on Figure 1.84 indicates that a swimmer looking 
straight down under the assumed conditions can sight a 0.1 
square foot object at 43 feet, an object of 1 square foot at 
46 feet, and all objects of area 100 square feet or more when 
he is 48.5 feet or less from the bottom. 

Sighting Range CaZauZations, Low-c2arity Water. The 
same example may be solved by means of the low-clarity chart 
(Figure 1.85) and corresponding sighting ranges obtained, but 
with far less precision. 

In an hypothetical water of lesser clarity, character- 
ized by a = 0.43 per foot and K = 0.17 per foot, the sum a+K 
is 0.60 per foot. If all other input data remain unchanged 
the high-clarity nomograph (Figure 1.84) cannot readily be 
used because its left vertical scale goes only to 0.14. Ac- 
tually, this chart can be adapted by extending the left ver- 
tical scale linearly downward to 0.60 and constructing a di- 
agonal line from that point to 0.05 on the right vertical 
scale, but such a procedure is unnecessary because the low- 
clarity nomograph (Figure 1.85) is available. The straight 
line drawn on that figure indicates by its intersection with 
the lower-most curve that flat horizontal objects of all 
sizes greater than 1 square foot can be seen by a swimmer 
looking straight down under the assumed conditions when he is 
8 feet or less from the bottom. The same line shows by other 
intersections, that he must2descend to within 7.5 feet of the 
bottom to see an object 10- square feet in area and-to 5.5 
feet from the bottom before a tiny object of area 10 ' square 
feet can be seen. 

Inclined Paths of Sight 

The nomographic visibility charts can be used for the 
calculation of sighting range along inclined paths of sight. 
Three additional items of input data are necessary: (1) the 
approximate azimuth of the path of sight relative to the sun, 
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(2) the depth of the swimmer expressed in units of 1/K, and 
(3) the zenith angle of the path of sight. 

crease in adaptation luminance associated with the inclined 
path. This is accomplished by means of the inclination fac- 
t o ~  curves in the lower left corner of Figure 1.84. (Identi- 
cal curves appear an all of the nomographic visibility charts.) 
A continuation of the numerical example begun in the preceding 
section will illustrate this step: 

The first two items of data are used ta estimate the in- 

Let the following input information be assumed: 

(1) Azimuth of the path of sight: at right angles 

(2) Depth of swimmer = 2.7/K. This would be the 

to the azimuth of the sun; i.e., the path of sight is "across 
sun". 

case if his depth is 100 feet and K = 0.027. The depth, 
2.7/K, falls within the range for which the "across sun"curve 
applies. 

Pees. 

"across sun" inclination factor graph discloses that the in- 
clination factor for this zenith angle is 1.9. This means 
that the adaptation luminance is 1.9 times as great as that 
experienced by the swimmer when looking vertically downward; 
i.e., 1.9 x lo-' = 0.19 foot-lamberts. Since this adaptation 
luminance falls between the nomograms for 1 and lo-' foot- 
lamberts, both charts should be used in order to bracket the 
sighting range. The effect of adaptation on sighting range 
will be discussed further in a later part of this section and 
illustrated by Figure 1.86. 

nith angle of the path of sight (120 degrees) affects the val- 
ue plotted on the left vertical scale of the nomograph: 

(3) Zenetk angle of the path of sight = 120 de- 

Effect of Zenith Angle on Adaptation. Reference to the 

Effect of Zenith AngZe on Left Vertical Scate. The ze- 

U-K COS e = 0.43 - (0.17)(-0.50) = 0.51 . 
(A table of cosines is available in Table 7 of Sec. 12.1) Use 
the relation cos 6 = -cos (1SO-9) for 9 in the ranpe 
9 0 5  6 5180. 

Effect of Zenith Angle on Effective Area. The effec- 
tive area of the object depends on the observer's line of 
sight; thus A cos (180-9) = 91, x 0.50 = 5 square feet, In- 
spection of the curves in Figure 1.85 shows that, in this 
case, no sighting range will be lost by the foreshortening he- 
cause a11 targets having an effective area qreater than 1 
square foot are visually detectable at the same distance un- 
der the conditions assumed in this numerical example. 

The inclination factor affects the value plotted on the 
right vertical scale as follows: the difference between tar- 
get reflectance and bottom reflectance must be divided by the 
inclination factor before the number is plotted. Thus, 

Effect of Inctination Factor on Right Vertical Scale. 
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SIGHTING R A N G E  (FEET) 

FIG. 1.86 The effect of adaptation on sighting range (see 
text). 



(O.o!to/L.!l) I= 0.020. 'l'hc incl illation factor C U T V C : ~  whrch : i y  
p a r  on eacli chart have ticern plotted on an invrrtctl 1oj:aritIi- 
inic scale having the same modulus as the r i g h t  vertical scale 
of the nomograph in order that the division can lie accom- 
plished graphically. Draftsman's dividers can conveniently 
be used for this purpose: measure downward from the top bor- 
der of the figure to the inclination factor curve and trans- 
fer this setting to the right vertical scale of the nomograph, 
using it to reduce the plotted value of target reflectance 
minus bottom reflectance. 

Figure 1.85 shows that the sighting range would be 8.1 feet 
for the inclined path if the adaptation luminance was lo-' 
foot-lamberts. Since, as shown above, the adaptation lumi- 
nance is 1.9 x 10 foot-lamberts a minor correction to the 
sighting range should be made in the following manner: 

Effect of Adaptation on Szghting Range. Since the lu- 
minance to which the swimmer's eyes are adapted is 0.19 foot- 
lamberts, an interpolation should be made between the sight- 
ing range 9.1 feet indicated by the nomograph for 1 foot-lam- 
bert and the Tighting range 8.2 feet indicated by the nomo- 
graph for 10- foot-lambert. By linear arithmetic interpola- 
tion, 8.2 + (9.1-8.2)(1.9 x lo-') = 8.4 feet. This value 
compares with the sighting range of 8.5 feet found by the 
graphical interpolation provided by Figure 1.86, which illus- 
trates the effect of adaptation on sighting range in this il- 
lustrative example. Figure 1.86 has been prepared by assum- 
ing successively all decimal values of adaptation luminance 
and plotting the resulting sighting ranges given by the en- 
tire series of nomographic charts.* Linear arithmetic inter- 
polation of sighting range between adjacent decimal levels of 
adaptation luminance suffices for the needs of most problems. 

Calaukation of &he Sighting Range. The broken line on 

ImpZication of the Sighting Range. Although the sight- 
ing range for the inclined path (8.5 feet) happens to be only 
slightly longer than the sighting range for the vertical case, 
it should be recognized that the swimmer must be within 4.25 
feet of the bottom in order to see the target at this inclin- 
ation angle. 

13.3 The Secchi Disk 

The underwater sighting range of a flat horizontal sur- 
face of uniform reflectance, suspended in (optically) deep 
water, e.g., a Secchi Disk, can be calculated by means of the 
nomographic visibility charts. Ordinarily, Secchi Disk read- 
ings are obtained by an observer above the surface of the sea 

"The discontinuity in curve slope at about 4.4 x lo-' foot- 
lamberts results from a change from central fixation to avert- 
ed vision on the part of the swimmer, in order to achieve max- 
imum sighting range in the dim light; this change of fixation 
is built into the nomographs. 
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who must look downward through the surface (see the analysis 
of the Secchi Disk theory in Sec. 1.4). Sky reflection and 
complex refractive effects resulting from water waves greatly 
complicate the interpretation of the greatest depth at which 
the disk can be seen. If, however, a swimmer lowers a Secchi 
Disk beneath him and observes its disappearance, the sighting 
range can be predicted by means of the nomographic visibility 
charts if a and K are known. Conversely, the observed sight- 
ing range can be inserted in the nomograph in order to find 
the sum of the attenuation coefficients, a+K. 

Let it be assumed that the water is so deep beneath the 
disk that the bottom has no significant effect upon the light 
field. The nomographs are so constructed that they will cor- 
rectly predict the sighting range of the disk if the right 
vertical scale of the nomograph is imagined to be labeled 
"Secchi Disk reflectance minus 0.02". All other details of 
the calculation are identical with those described in the pre- 
ceding paragraphs of this section which deal with objects on 
the sea-bottom. Attention is called, however, to subject mat- 
ter of Section B.7, entitled "The R, Correction". 

8.4 Target Markings 

The preceding paragraphs of this section have dealt 
with the sighting ranges of the whole target. It is some- 
times required to calculate the sighting ranges of certain d e  
tails or markings on a target. This is readily accomplished 
by means of the nomographic visibility charts. The only mod- 
ifications of the procedure described in the preceding para- 
graphs are (i) to imagine the right vertical scale to be la- 
beled "reflectance of markinp-reflectance of target", and (ii) 
to use the curve which applies to the area of the marking. 

B.5 The Measurement of Target Reflectance 

The reflectance of painted surfaces differ, often mar- 
kedly, when dry and when wet. The values of target reflect- 
ance required for use in the nomographic visibility charts 
are those which would be measured by a water-filled reilect- 
ometer submerged with the tarqet. This submerged reflectance 
differs from reflectances measured by conventional laboratory 
reflectometers even if the painted surface is wet. 

or, with greater convenience, it aay be measured on ship- 
board by means of a technique developed by the Visibility 
Laboratory of the University of California (San Diego) and 
described in [52]. Excerpts from that report have been as- 
sembled and are reproduced in Fig. 1.57. 

I$. 6 Horizontal Paths of Sight 

Target reflectance may be measured at the sea-bottom, 

The visibility nornographs can be used for calculating 
sighting ranges along horizontal paths of sight provided the 
inherent contrast of the object against its horizontal water 
background is known. Such contrasts are determinable in any 
of several ways. For example, one may use irradiance 
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APPARENT REFLECTANCE OF W E T  OBJECT (W) d a a 

FIG. 1.87 Graphical means of determining the reflectance 
Ro of a submerged surface given its wet reflectance. The 
technique involves wetting the sample with a thin film of wat- 
er, irradiating it with a beam at 4S0, and viewing it normally, 
say with a conventional refractometer. This determines the 
abscissa of the graph. The associated ordinate yields Ro. 
This scheme was designed by Duntley, and the plotted points 
are the results of his experimental check of the graph. 

distributions of the kind shown in Figs. 1.25, 1.26, for the 
general class of medium (specified by .\lode 111 of Sec. 1.7) 
under study. Such irradiance distributions are also readily 
made from radiance distributions obtained via a Vode I13 clas- 
sification of media. Finally, one may use the simple radiance 
model of Sec. 1.3 to provide such estimates. 

right vertical scale should be imagined to he labeled "inher- 
ent contrast + 50"- Thus an inherent contrast of k 1  plots at 
the point marked 0.02 on the right vertical scale. 

For the calculation of horizontal siqhtinp ranges, the 

For horizontal paths of sight the zenith angle 9 = 90 
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d a g r e e ~  arid, ~irtcc cos 90 = 0, the left vertical scale in- 
vc,lva*r ollly thr. volurnr: attenuation coefficient a. The areas 
~~.:-;oi:i~~t.~tl W I  t h  I I I C  curved lines on the nomograph refer to 
tikc. 11rojvctp1I ~ I ~ C I I  of the t.ireet os ~ c e n  from the position of 
t IIO sw iniiiic r . 

and left vertical scales with a straiRht line, and reading 
the sighting range from the scale division directly above the 
intersection of this line with the curve which applies to the 
target area. When the nomographic charts are used in this 
manner for horizontal sighting range calculations no approxi- 
mations are involved so that neither of the corrections des- 
cribed in the next two sections of this report are required. 

B.7 The R, Correction 

biglitiiig ranges art* cnlculatod by connect in^ the riRht 

In nearly all optically deep natural waters and at all 
depths approximately 50 times more illuminance reaches any 
horizontal plane from above than from below. The ratio of 
the illuminance from below to the illuminance Prom above is 
denoted by the symbol "R,". This notation implies that the 
(optically) infinite deep water beneath any horizontal plane 
in the sea could be repl'aced, for optical purposes, by a sur- 
face of reflectance R,. This quantity is often measured by 
means of two photoelectric cells mounted back-to-back and 
facing upward and downward respectively. 

to high clarity, the nomographic visibility charts have this 
value built into their scales. If %, is known to be different 
than 0.02 in any specific instance, this information can be 
entered in the calculation by dividing the value of "target 
reflectance - bottom reflectance" by 50 R, before plotting the 
point on the right vertical scale of the nomograph. Alterna- 
tively, the "Rm CORRECTION" scale printed on the nomograph can 
be used to apply a correction after the point has been plotted 
but before the line is drawn across the chart. Draftsman's 
dividers are a convenient tool for this purpose: set one leg 
of the dividers at the circled point on the "R, CORRECTION" 
scale and adjust the othelr leg to the known value of R,. 
Transfer this setting to lthe right vertical scale, maintaining 
the direction of the correction indicated by the "R, CORREC- 
TION" scale; i.e., the plotted point on the right vertical 
scale is moved downward when R, exceeds 0.02, and upward when 
R, is less than 0.02. 

€3.8 Correction of the Sighting Range 

Because R, = 0.02 for most natural waters of moderate 

The nomographic visibility charts involve certain alge- 
braic approximations which may lead to invalid sighting rang- 
es when the indicated value of sighting range is short and 
when the reflectance of the bottom departs markedly from 0.02. 
Figure 1.88 is provided as a means for testing any indicated 
sighting range for error and indicating the needed correction 
The following numerical example will illustrate the use of 
Figure 1.88. 

A sighting range of 4 feet is indicated by the 
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C. Interpretation of Sighting Range 

C.l Introduction 

The sighting ranges calculated by means of the nomo- 
graphic visibility charts are the limiting distances at which 
a swimmer will be aware of seeing the object. It is assumed 
that he is fully familiar with the underwater environment, 
well acquainted with the objects for which he looks, and pos- 
sessed of perfect vision. It is not assumed, however, that 
his training has included a lengthy special training period 
devoted to maximizing his ability to produce long sighting 
ranges e 

It is assumed that the swimmer knows the direction in 
which to look and that he expects to see the visual target. 
In other words, the swimmer is not required to search his vis- 
ual field and there is RO problem of vigilance. 

The above described interpretation o€ "sighting range" 
is indicated on the nomographic visibility charts by the in- 
scriprion "field factor 2.4". This notation, meaningful only 
to specialists in visibility calculations, implies that nomo- 
graphic charts can be constructed to depict other levels of 
observer performance, i.e., other values of "field factor". 
A general discussion of visual search, field factors, and ob- 
server characteristics is out of place in this work, but three 
common effects will be discussed in simplified form in the fo& 
lowing paragraphs. 

C. 2 Effect of Lack of Warning 

When an underwater object is encountered by a swimmer 
without warning, the sighting range will be somewhat shorter 
than otherwise. This is to say that unexpected objects will 
be less well detected initially than will those whose exis- 
tence is known and whose appearance is expected. This effect 
is independent of training, experience, or visual Capability. 
Its effect upon the sighting range can be allowed for by di- 
viding the value of "target reflectance minus bottom reflec- 
tance" by 1.2 before entering the right vertical scale of the 
nomographic charts. 

C.3 Effect of Observer Tpaining 

limiting distances will enable good observers to exceed slight- 
ly the normal sighting range, A correction for the effect of 
training can be made by multiplying the value of 'Itarget re- 
flectance - bottom reflectance" by a training factor between 
1 and 2 before entering the right vertical scale of the nomo- 
graphic charts. A training factor of 1.0 represents the usual 
capability of experienced swimmers who are fully familiar with 
the underwater environment and are well acquainted with the 

Extensive practice in sighting underwater targets at 
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object for wtliict~ they look; this value [urvity) should ordi- 
niirily be usucl. If an experienced .eiwimmer is considered to 
be unusually good at tarrderwntor prightlrags ra trainina factor 
of 1.2 is recommended." hborntory experience indicates that 
only after many thousands of careful attempts to achieve 
sightings at maximum ranae can even the most experienced per- 
sonnel achieve a training factor of 2. 

C. 4 Effect of O b ~ e r v e ? ~  Visual Capabi Zity 

All human eyes are not created equal with respect to 
their capability to detect underwater objects at limiting 
range; this is not a matter of training but represents subtle 
physiological differences between men which are beyond detec- 
tion by ordinary eye-examinstiops. The nomographic charts 
have been drawn to represent: thk performance of average "per- 
fect" young eyes. Some estimatb of the effect on sighting 
range of the spread in visual capability within the popula- 
tion of "perfect" observers can be obtained by successively 
doubling and halving the value of "target reflectance minus 
bottom reflectance" before entering the right vertical scale 
of the nomographic chart. 

D. Visualization of Water Clarity 

n.l Introduction 

The clarity of natural waters can be visualized directly 
in terms of the attenuation coefficients a and I< on the basis 
of experience gained through the use of the nomoqraphic visi- 
bility charts. It will be found that most objects can be 
sighted at 4 to 5 times the distance l/[a-K cos 0) unless the 
adaptation level is low; exceptions to this rough rule-of- 
thumb are common but they can easily be categorized. Alker- 
natively, a convenient conceptualization of the appearance of 
any underwater environment can be obtained from l/a and l/K. 

D.2 Estimation of Sighting Range 

graph is illustrated by the examples in paragraph R.2 of this 
section. In the firse (clear water) case l/(a-# cos 9) = 
1/0.10 = 10 feet and the vertical siqhting range of the large 
(10 square feet) object is 48 feete, or 4.8 times l/(a-K cose). 
In the second (low-clarity water) case l/(a-K cos 9)= 1/0.60 
= 1.67 feet, and the vertical sighting range of the same tar- 
get is 8.0 feet, or 4.8 times l/(a-K cos e), 

The rough rule-of-thumb stated in the preceding para- 

*It will be recognized that the factor 6/1.2 for lack of warn- 
ing and the training factor 1.2 cancel; thus the nomographic 
charts as drawn apply without correction to the case of the 
experienced, highly trained swimmer who comes upon objects 
without warning. 
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The value 4.8 is not universal; it will be altered by 
changing target size, adaptation luminance, zenith angle, tar- 
get reflectance, eec. For example, it was moted in paragraph 
B.2 that in the low-clarity water the vertical sighting range 
ob a small target square feet in area is 5.5 feet or 3.3 
times l/(u-K cos e). If, however, the reflectance of the ori- 
ginal 10 square foot visual target had been 0.330 (instead of 
the value 0.060 assumed in paragraph B.2), thus forming a 
high inherent contrast with the dark (0.030) bottom, its ver- 
tical sighting range is found to be 11.0 feet or 6.6 times 
l/(a-K cos 9). In summary, small values of target size or 
1ow.values of adaptation luminance (or both) will produce 
sighting ranges shorter than 4 times l/(a-K cos 6) whereas 
high values of "target reflectance minus bottom reflectance" 
make large objects visually detectable at ranges in excess of 
5 times l/(a-K cos e). 

dark objects viewed horizontilly. In this case l/(u-K cos e)= 
* l/a, since cos 90° = 0, and the sighting range will be ap- 
proximately 4 times l/a unless the adaptation luminance is 
Bow. 

An important and common special case is that of large 

D.3 Estimation a'f Adaptation Lurninanoe 

Inspection of Figure 1.12 will enable convenient order- 
of-magnitude values of illuminance on the surface of the sea 
to be noted for, say, noon and sunset, clear and cloudy. 
Translation of these values to the approximate illuminance at 
the depth of the swimmer is often facilitated by noting that 
the illuminance, and, therefore, the adaptation luminance is 
reduced by a factor of 1/10 for each (In 10)/K of depth. 
Figures 1.82 and 1.83 provide convenient illustrations of 
this concept. 

D.4 Estimition of a and K 

In some, but by no means all, waters the distance 2.3/K 
is about 50% greater than the distance 4/a; i.e., about 6/a; 
thus the natural illuminance (and the adaptation level) may 
decrease by a factor of 1/10 for each unit of depth equal to 
1.5 times the horizontal distance at which a swimmer can see a 
large dark object at high light levels. If measured values 
of a and K are not available, these constants can be esti- 
mated by means of the relations u =4/d and K = l.S/d, where d 
is the horizontal sighting range for large dark objects at 
high light levels. The estimate of a is more reliable than 
the estimate of K. Rules of thumb such as these can be given 
a better basis after more extensive Mode III classifications 
of natural hydrosols have been made (cf. Sec. 1.7; see also 
(11)-(13) of Sec. 10.8). 

D.5 Characterization of Natura2 Waters 

natural waters to be characterized by the distances 4/u and 
For purposes of easy visualization, it is possible for 
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2.3/K, though the nurnhers l/a, and 1/K can do just as well. . . 

fn the clcnrest known natural waters* rhese distances 41a 
ii r r t l  %.:5/Y: rirrt believed to I ~ r l  less than 230 feet and 340 feet 
rr?:.lwct i v c l y .  I n  the f.ir:;t numerical example Riven in para- 
Krrijrti 13.2 t h v  tlistrinc.vs WCTC found to Fie lia - 5 5  feet and 
%.I/K = HE, feet; in tlrc second, 4/u - !1.3 feet and 2.3/K = 
1.7.5 feet. 

1.10 Applications of flydrologic Optics to the Food-Chain 
Problem in the Sea 

In this section we shall:discuss, from the point of 
view of radiative transfer thegry, the problem of food-chain 
relations in the ocean. The theory of food-chain relations 
attempts to describe , in quantitative terms, the distribution 
in time and space, within a given oceanic region, of the food 
supply of the main animal populations of that region. The 
food supply is an essentially self-sustaining collection of 
biological organisms, inorganic matter, and radiant energy. 
Aside from radiant energy, the chain consists principally of 
the following four links: nutrients (e.g., phosphate), phy- 
toplankton, herbivores, and predators. This set of interact- 
ing organisms is arranged so that each item in the list con- 
stitutes the food of the next item in the list, and in this 
sense forms a food-chain in an oceanic region. This food- 
chain is initiated and sustained by solar radiant energy pene- 
tTating into the sea. The radiant energy sustains the photo- 
synthesis within the phytoplankton and the life processes of 
the herbivores and predators. Furthermore, the continued de- 
composition into nutrient material of each of the last three 
links in the chain also contributes to its maintenance. Thus, 
any complete theory of food-chain relations in the ocean must 
take into explicit account, among other things, the role of 
radiant energy in the food-chain relations. A survey of the 
present state of the theory (ref. [265]) indicates that the 
systematic inclusion of radiant energy terms into the food- 
chain relation has been avoided because of the additional dif- 
ficulties attendant on such an inclusion in an already complex 
theory. In the present discussion, it will be shown how the 
general inclusion of radiant energy terms into the descrip- 
tion of the food-chain relations ran be carried aut in such a 
way that the attendant increase in the complexity of the the- 
ory will not render the result altogether impracticable. Fur- 
thermore, it will be shown that the resultant formulations 
point to some novel, detailed descriptions of the depth dis- 
tributions of the light field in a region containing the mem- 
bers o€ the food-chain. By doing so, the main purpose of the 
discussion will be fulfilled, namely, to round out the clas- 
sical Volterra prey-predator equations [309] which describe 

"Probable values: Q = 0.017 per foot = 0.056 per meter 
K = 0.0067 per foot 

= 0.022 per meter at 480 millimicrons 
Compare this a with that in Table 1 of Sec. 1.6. 
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food-chain relations, 
specifically--and in 

by including one more equation which 
a manner uniform with the other equa- 

tions--incorporates the photons of the light field into the 
list of interacting members of the the food-chain. The manner 
in which light particles can generally be considered as "prey" 
or "predator" will become clear as the discussion proceeds. 

The General Exponential Law of Change 

The simple differential law: 

-- dA - KA 
dt 

has been found to describe a wide variety of natural phenome- 
na, among which are: growth of yeast cultures and bacterial 
cultures, decay of radioactive substances, growth and decay 
of animal populations, damped or resonating oscillations of 
mechanical and electrical systems, and the darkening of light 
fields with depth in scattering-absorbing media, to name a 
few. Up until now we have been concerned in this work prin- 
cipally with the latter use of the exponential law. As we 
shall see in the Latter stages of this discussion, we may 
very well view (l), under suitable interpretations, as the 
alpha and the omega--that is, the beginning and the end--of 
the general theory of the food-chain relations. However, for 
the present, we view (1) as the ostensibly simple equation it 
appears to be, with constant coefficient K, and thereby ob- 
tain the general solution of (1) in the form: 

where A(t) is the amount at time t of the entity under con- 
sideration. When K is positive, then there is growth of h(t); 
when K is negative, there is decay of A(t), as time t in- 
creases. 

The description of natural growth and decay processes 
summarized in (1) and (2) is known as the exponential law and 
pertains as it stands basically to isolated and relatively 
simple systems. When the systems are no longer isolated or 
no longer simple in internal structure, then (1) is replaced 
by a correspondingly modified equation. For example, by re- 
moving the isolation restriction, two new features appear: a 
source term A,-,-may be added to the right side of (1); and the 
possibility arises of a non-constant growth rate term K. From 
the present point of view, the inclusion of a source term A, 
presents no essential modification of the equation (l), and 
SO will not be studied in this discussion. However, the prac- 
tical and theoretical possibilities inherent in a non-constant 
growth rate term K are endless, and some of them hold the key 
to the solution of the general problem of the food-chain re- 
lation; some of these possibilities will now be considered. 
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The Volterra Prey-Predator Equations 

A theory of food-chains can be made to rest in the clas- 
sical equations postulated by Volterra I3091 which govern the 
evolution in time of the number P of prey and number A of 
predators feeding on the prey. Thus, for example, if P is the 
number of plants and A the number of animals in a symbiotic 
relation, then their evolution in time may be governed by gen- 
eral equations of the form: 

dP 
dt !pp 
- =  

where we have written 

I'Kpt' for p-bA 

(3) 

and 

"KA" %or cP-a (6) 

That is, the growth rate term K p  for the prey is the sum of 
the intrinsic growth rate p for the prey population and the 
interaction decay term -bA, where b is a coupling constant be- 
tween the populations of A and P. Similarly a is the coeffi- 
cient of decay of the predator population, and c is the coup- 
ling constant between A and P in this instance. The coupling 
constants b and c are usually taken as equal or as connected 
by some given relation. 

and, assuming K p  and K known as functions of time along with 
the initial values P(0f and A(0) of P and A, are directly in- 
tegrable : 

Now each equation (3), (4) is of the general type as (1) 

P(t) = P(0) exp{ /:Kp(tq) dt' I c J 

However, equations (3) and (4) are generally coupled (i.e., 
b # 0 and c # 0) so that the preceding solutions, while for- 
mally correct, are of no immediate practical use, since know- 
ledge of Kp and KA is tantamount to knowledge of P and A them- 
selves. 

The equations (3) and (4), despite their analytically 
unpleasant nonlinear coupling, form a workable starting point 
in the quantitative description of the food-chain relation. 
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It is clear, howeverp that the equations as they stand de- 
scribe only the herbivore and predator components of the 
chain and so cannot adequately describe the complete food- 
chain relation as defined above. The other members of the 
chain, namely the phytoplankton and the nutrients (which also 
constitute a prey-predator pair), along with the radiant en- 
ergy, are excluded from (31, (4). 

The General Food-Chain Equations 

We turn now to a formulation of the Volterra-type prey- 
predator equations which goes beyond that of (3), (4) and 
whish takes into account the interactions of all five members 
of the food-chain relation. To keep the geometric and phys- 
ical variables down to a comfortable minimum at the outset, 
we shall assume that all quantities of the chain depend on 
depth and time only,over the oceanic region of interest. Thus 
let: 

U(z,t) be the radiant density (radiant energy per 
unit volume) at depth z, time t 

P(z,t) be the number of phytopZankton per unit 
volume at depth z, time t 

B(z,t) be the number of herbivores per unit volume 
at depth z, time t 

C(z,t) be the number of carnivores per unit volume 
at depth z, time t 

N(z,t) be the amount of nutrient per unit volume 
at depth z, time t 

We postulate a food-chain ordering among the members of 
the food-chain, and which is schematically summarized below: 

This ordering is to be interpreted as follows: consider the 
carnivore row. Carnivores in the present hierarchy are under- 
stood to grow at the expense of most other members of the 
chain (hence the + signs in the row). Herbivores, on the 
other hand, grow at the expense of phytoplankton, nutrients 
and radiant energy (hence + signs) but are preyed upon by car- 
nivores (hence - sign). The zero entries indicate that in the 
present model, members of the chain do not increase or de- 
crease at the expense of their own numbers. (In mathematical 
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terms tlic food-chain orderinA felation in (7) is an irreflex- 
ivo, asyminctric, transitive relation.) The double signs (+) 
in the nutriont row intlicnto that at times, N may increase(+] 
in tho direct presence of the other members and at other 
times may decrease (-) in the direct presence of the other 
members. 

The food-chain ordering associated with each pair of 
the food-chain is given a quantitative measure by assigning 
interaction functions to each pair of members of the chain. 
Thus to the pair (C,B) we assign a function KCB which on the 
basis of the food-chain ordering relation tabulated above, is 
positive for all z and t. Similarly to (C,P) we assign the 
interaction function KCP which is also positive-valued. Con- 
tinuing in this way we assign to the pair (U,N) the function 
KUN which is negative-valued for all z,t. The functions KCC, 
KBB, etc. are all zero-valued, and K c may be positive, zero 
or negative-valued for various z, an! t. 

20 non zero interaction funct.ions have been assigned, the Vol- 
terra interaction equations can be written down: 

Once a food-chain ordering has been established and the 

dC 
dt - = KCC 
dB - KBB 
at 

dP 
dt 
- = KpP 

dN - = KNN 
dt 

dU 
dt - =I KUU 

where we have written 

J 
"KC" for kC + KCBB + KCpP + KCNN + KCUU 

"KB" 

"Kp" 

"KN" for kN + KNCC + K B + K 

for kB + KBCC + KBpP + KBNN + KBUU 

kp + KpCC + KpBB + KpNN + KpUU 

NPP + KNUU 

for 

NB 

UPp %NN "KU" for kU + KUCC + K ~ ~ B  + K 

} (9) 
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The five functions kCY ...s kU are inherent growth-decay sates, 
which are operative independently of the presence of other 
members of the chain. Furthermore, the differentiation opera- 
tor d/dt in ($) is a total derivative operator, i.e., we have 
written 

W / d t i i  for Plat + v(a/az) (10) 

where in each case v is an averaged speed of propagation in 
the z direction, In the case of U it is the speed of light. 
In the case of C and B, it is variable with time and space 
according to the vertical movements of the animals. In the 
case of P and N, v represents rate of rising and sinking, plus 
eddy diffusion rates. The theoretical basis for the equation 
governing U in (8) which is one of the novel features of (8), 
rests in the general theory of K-functions for directly obsew- 
able radiometric quantities as developed in Chapter 9 below. 
For practical purposes, one may, however, use (7) of Sec. 1.4 
with each side divided by v (recall (5) of Sec. 1.1). 

states C(z,O), K(z,O), ..., U(z,O) are known over all depths z 
in the region of interest, the system (8) is in principle solv- 
able by iteration techniques. Thus, for example, by writing 

Once the interaction functions are known and the initial 

"A" for (C, B, P, N, U) (11) 

The system (8) becomes transformed into the vector equation: 

which may be solved by any of several modern iteration tech- 
niques (see, e.g., [23J) using large scale computers. It is 
therefore no longer necessary to limit the generality of a 
food-chain theory because of the possible intractability of 
the analytic solution procedure (e.g., the impossibility of 
obtaining closed forms for the integrations). 

An Illustration of the Food-Chain Theory with 
A Radiant Energy Term 

As a simple illustration of the general theory outlined 
above, let us consider a three-member food-chain consisting of 
phytoplankton, herbivores, and radiant energy. Hence we will 
study the effect of adding to the classical prey-predator equa- 
tions (3), (41, another equation which specifically includes 
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radiant energy in the prey-predator interactions. The follow- 
ing discussion is actually independent of the number of mem- 
bers in the food-chain, so that a reader following the general 
line of argument developed below may extend the arguments and 
their results to arbitrarily large food-chains. 

The General Three-Term Equations 

The requisite equations for the present illustration 
are : 

(141 - dU * (ku + KUBB + IEupP)U 
dt 

(photons) 

(kB -6 KBpP + KBUU)B (herbivores) (15) dB 
dt 
_ =  

-- dP - (kp + KpBB + IKpuU)P (phytoplankton) (163 dt 

The Quasi-Steady State Equations 

We shall be interested for the present in a quasi-steady 
state solution of the preceding system of equations. By 
'quasi-steady state' we mean that the time rates of change of 
the magnitudes of P and B are negligible compared to that of 
U, so that the light field U adjusts to and settles down to 
steady state almost instantly in accordance to the prevailing 
spatial distributions of P and B at time t. Therefore, in 
(14) we may drop the time derivative and consider only change 
of U in depth for fixed t and adjust the definitions of the 
K-functions to absorb the speed constant v; and in (15) and 
(16) we may drop the spatial derivatives, and consider only 
the change of B and P in time for a fixed depth z: 

(17) -- dU - (ku + KUBB + KupP)U 
dz 

(18) -- a B  - (kB + KRpP 4 KBUIJ)B 
at 

(19) _ -  a' - (kp 4 KpHB + KpUU)P 
at 

This set of equations like the general equations, is readily 
solvable in principle for given arbitrary constants kU, KUB, 
etc., and initial conditions. The steady state spatial dis- 
tributions of U, P, B are of especial interest, and we shall 
devote the remainder of this section to the study of these 
distributions. 
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The Equilibrium Solutions 

When aB/at = 0 for every z at a given time t, the exist- 
ing spatial distribution of R is called the equitibrium popu- 
tation and denoted by "Eq"; similarly for P. The equilibrium 
populations of P or B are readily characterized in terms of 
the spatial distribution of the radiant energy. Thus from 
(18) we have: 

whish implies 

so that 

kB + K P + KBUU = 0 BP 9 

11 
Similarly from (19), for steady state: 

So that 

whence 

Equations (20) and (21) show that if the steady state radiant 
energy distribution U is known, the equilibrium P and B dis- 
tributions are determinable over the range of depths of in- 
terest. 

We now show that the relations (20) and (21) together 
with (17) uniquely determine the steady state radiant energy 
distribution through the medium so that Pq and Bq are uniquely 
determinable, in turn. 
(20) and (21) into (17), and rearranging, we have: 

Substituting Pq and Bq as given by 

dz 

That is: 
J 
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where we have written: 

and 

"a" for kIJ - 

VOL. I 

If "U(0)" denotes the initial vglue of U at some fiducial 
depth (here z = O), then (22) r4solves into: 

7*, 
aU(0)eaz U(z) = 

-bU(0)eaz + [bU[O) + a] 

This solution may now be used in (20) and (21) to obtain de- 
tailed descriptions of the depth distribution of the steady 
state populations of P and B. The solution (25) exhibits 
some interesting mathematical properties for various choices 
of a and b. For b = 0, we have simple exponential growth 
(a> 0) or decay CacO). For ip = 0, by a limiting argument, 
we have 

U(2) = = 
1-bU(0)z 

Some General Properties of Equilibrium Solutions 

The equilibrium solutions found above have several in- 
teresting practical properties, one of which we isolate for 
particular attention here. This is the property of predict- 
ing a possible band of depths below the ocean surface outside 
of which the P and B populations cannot exist. To find the 
limits of this band of depths, we return to equations (20) 
and (21) and require that P q z O  and Bq?O. These conditions 
merely state that real distributions of phytoplankton and her- 
bivores must not have negative populations. The non negativ- 
ity condition applied to (20) yields: 

From the interaction table (7) we find that KBP 1 0 ,  so that 

kB + KBUU 5 0 

whence 
U S - k  K B/ BU 



P 

SEC. 1.11 FUTURE PROBLEMS 205 

Similarly, from (21) with the help or‘ the nonnegativity con- 
dition we find: 

U 2 -kp /Kpu 

Hence a necessary condition for the existence of steady state 
P and B equilibrium distributions at depth z is that 

It is to be noted that (26) are necessary conditions (i.e., 
if a band exists, then it must be such that (26) holds) and 
not sufficient conditions, except insofar as the steps can be 
retraced from (26) to (20) and (21). This can be done if Kpg 
and # ~ p  are strictly negative and strictly positive, respec- 
tively, and if the left side of (26) is indeed less than the 
right side. 

Now according to (25), U(z) is under certain conditions 
a decreasing function of z (for negative a). Thus if U(0) is 
greater than -kg/KgU, then (26) shows that no steady state 
population should exist for depths z = 0 down to where 
U(z) = -kg/K~u. Then there is expected a band of depths with- 
in which P > 0 and B > 0. Since U(z) decreases monotonically, 
there will be depths below which the left side of (26) no 
longer holds, so that P = 0 and B = 0 in those depths, It ap- 
pears then that the present model can in principle predict a 
euphotic zone in natural hydrosols in which the food-chain is 
in a quasi-steady state condition. 

We have reached the main goal of the discussion, namely 
to supplement the classical Voltesra prey-predator equations 
with a third equation governing the flow of radiant energy in 
the sea, and to briefly explore the consequences of the inter- 
actions of the prey-predator-photon system. 

1.11 Future Problems of Hydrologic Optics 

The present introductory chapter to hydrologic optics 
is brought to a close with a small, carefully selected list 
of important problems which are as yet only partially resolved. 
The list is deliberately kept small so as not to overwhelm 
prospective students of the subject with a mass of more or less 
obvious types of applicational problems they soon would en- 
counter in their own fashion as their studies proceed. Rather, 
we have selected for presentation and discussion here three 
archetype problems which, if eventually satisfactorily re- 
solved, would elevate the discipline of hydrologic optics to 
the level of a mature science which could predict and des- 
cribe, in the fullest sense of these terms, all aspects of 
the transfer of radiant energy in the seas, lakes and other 
natural hydrosols of the world. 



206 INTRODIJCTION VOI.. r 

Problem One: To Establish Theoretically the 
Physical Basis of the Inherent Optical Properties 

of Natural Hydrosols 

hydrosols, and of optical media in general defined in Sec. 
1.6, together with the equation of transfer ((10) or (12) of 
Sec. 1.3) form the core of modern radiative transfer theory. 
This theory is by definition (i.e., by actual considered 
choice) predominantly phenomenological in outlook, and accord- 
ingly the optical properties a, u are left unspecified in the 
general theory. The theory thus contains no formalism which 
predicts the values of a and u in a given medium in terms of 
the inherent physical structure of that medium. It is impor- 
tant to understand the significance of this observation. It 
does not maintain that the theory of radiative transfer is in- 
capable of providing procedures to measure a and u in natural 
optical media. The operational procedures in Sec. 1.6 and in 
Chapter 13 below supply abundant methods for arriving at a 
and cs in given media. Rather, what is intended is the obser- 
vation that the connections between a and u and the electro- 
magnetic structure, and more basically, the molecular struc- 
ture of these media is beyond the ken of the principles of 
the theory. The purpose of Problem One is to establish theo- 
retical connections between a and u and the physical proper- 
ties of an hydrosol--i.e., the properties of a given solution 
or suspension (or both) of substances in HzO. One such con- 
nection is possible on the electromagnetic level wherein a 
and u could be related theoretically to the permittivity, per- 
meability, and conductivity functions of the hydrosol. Such 
connections have received initial attention in Chapters XIV 
and XVI of Ref. [251], and the results there suggest further 
directions in which to pursue this problem. Observe that the 
approach in [251] is not the approach of the Mie theory of 
scattering,since the latter applies only to single scatterers. 
The suggested approach attempts to obtain a basis for u as 
actually measured in situ. The motivation for Problem One is 
quite clear: if this problem is solved, it may someday be 
possible to predict, by calculation, the a and u of an hydro- 
sol, given its physical analysis; and conversely, from a spec- 
tral radiometric analysis of a and u, to determine the physi- 
cal components of the hydrosol. It may then also be possible 
to resolve once and for all the quantitative and conceptual 
problems of the nature of forward scattered light for very 
small and very large angles of scatter (see Sec. 1.6, in par- 
ticular Fig. 1.72; sec. 18 of Ref. [251], and 1781) and also 
to provide a rational basis for such interesting findings as 
displayed in Table 4 and Fig. 1.73 of Sec. 1.6, of the uni- 
formity of shape of u. Furthermore, by solving Problem One, 
we may also resolve such questions as the existence of spec- 
tral windows in the sea which even though seemingly settled 
on an empirical level (cf., Sec. 1.6) will continually nag at 
the analytically inclined individual who would prefer such an 
important question to be resolved in a way which rests on nec- 
essary inferences drawn from established physical principles; 

The two main inherent optical properties a, 0, of the 
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principles which are, incidentally, on a more fundamental le- 
vel than those on which radiative transfer theory is made to 
rest. Still further, the problem of the structure of a in 
the polarized context (using the matrix p) may be solved (see 
Sec. 13.11). . Last, but not least, the resolution of the pres- 
ent problem will securely anchor the discipline of hydrologic 
optics, and radiative transfer in general, to the mathemati- 
cal and physical bedrock of the mainland of modern physics. 

Problem Two: To Establish Complete Empirical 
Classifications of Natural Hydrosols 

The discussion of this problem was essentially presented 
in Sec. 1.7, and so need not be repeated here. It should per 
haps be emphasized that this problem is unquestionably the 
single most important problem facing experimenters in the 
field of hydrologic optics. A moment’s reflection will show 
the experimenter (who is for example bent on the problem of 
the connections between the ideal photosynthesis in a region 
and the measurement of radiant energy in that region) that 
this problem is essentially one of classification of an opti- 
cal medium in either of the three main modes (Modes I, 11, 
111) described in Sec. 1.7, Or again, a scientist concerned 
with the problem of underwater optical communication or visi- 
bility will benefit from complete empirical classifications 
of the media of interest. Even theoreticians, on descending 
from their ivory towers after making some inroads into Proh- 
lem One above, will require corroboration of the kind that 
only a truly exhaustive solution of the present problem can 
supply. 

into perspective by enjoining the prospective experimenter on 
what not to do if his work is to contribute to the solutionof 
Problem Two and is to be of Pasting worth and importance to 
the discipline of hydrologic optics : 

Perhaps we can put the nature of the present problem 

(1) Do not omit to mention the spectral range and 
accuracy of your determinations of the optical properties. 

(ii) Avoid broad-band measurements whenever narrow- 
band measurements are possible, even if considerably more 
effort is entailed for the latter. 

(iii) Do not measure a alone or a alone; measure them 
together (Yode IA), over at least the visible spectrum. 

Alternatively: 
(iv) Do not measure CL alone or K alone; measure them 

together (Mode 111), over at least the visible spectrum. 
Alternative l y  : 

(v) Do not measure H(z,-) alone or h(z) alone; measure 
all four irradiances: H(z,+) and h(z,+) together (h!ode 111, 
or preferably N(z,*) (Mode IB), over at least the visible 
spectrum. 
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Of course with these dgn't8 go important posirive obser- 
vances of the usual kind, especially for alternatives (iv) 
and (v): recording of lighting conditions above the air- 
water surface ~ the state of the air-water surface, the proxim- 
ity and state of the bottom, the state of polarization, and 
so on. 

Problem Three: To Establish A Unified Automatic 
Computation Program for Prediction Computations 

and Data Reduction Computations in 
Geophysical Optics (the GEOVAC) 

The theory of radiative transfer is now well founded 
with many excellent means of solution of the equations of the 
theory, as explained at length at appropriate points through- 
out the remainder of this work, or in Ref. [ZSl], and in other 
works on the subject. In need at present are workable compu- 
ter programs which will take a and u and boundary lighting 
conditions (either unpolarized or polarized) and yield inter- 
nal radiance distributions throughout the medium of interest, 
regardless of its shape and size, In other words we envision 
a hardware realization of the Mode IA classification of natur- 
al optical media. Conversely, the computation programs 
should be able to convert experimental documentations of the 
(unpolarized or polarized) radiance distributions (or at least 
irradiance quartets), as a function of wavelength and depth, 
into the appropriate determination of the inherent and ap- 
parent optical properties of the medium. In this way we can 
also achieve a hardware realization of the Mode IB (or, re- 
spectively, the Mode 11) classification of natural optical 
media. The applications of such a program-complex to the 
problems cited in the opening remarks of Sec. 1.0 are mani- 
fold, and many uses of such a program are undoubtedly yet to 
be conceived. The geophysical optics automatic variable com- 
puter--the'GEOVAC'--program envisioned above will serve to tie 
together efforts on both Problems One and Two above, as well 
as help solve the everyday problems arising in the engineering 
applications of meteorologic and hydrologic optics. 

. .  

1.12 Bibliographic Notes for Chapter 1 

In addition to the mention of various references given 
at the appropriate points in the discussions of this chapter, 
the following references are noted for especial attention, as 
they form a relatively immediate point of entry into the do- 
main of hydrologic optics, either directly or via their ref- 
erences. First there is the survey article of light in the 
sea by Duntley [78] which covers the gist of the hydrologic 
optics work of the Visibility Laboratory of the University of 
California over the twenty year period 1944-1964. Contempo- 
rary and earlier work in hydrologic optics by other organiza- 
tions and individuals is surveyed in the annotated bibliog- 
raphy on transmission of light in water by Du hi! and Dawson 
[84]. This bibliography covers approximately 650 abstracts 
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by over 400 authors in more than 150 European and American 
journals, extt~ntlinp, over the pcriod from l R l R  to 1Q5(). Two 
syinijosia on rncliririt energy in the sen r e s u l t ~ d  i n  p i ~ t i l  i.;ht.tl 
papers rclcvnrit t o  tiyrlrolng ic optics: t h e  t 1 c - 1  L; i n k  I mevt i n q  
of I.U.G.G. in Au!{rist 19 h O  is summarized in 112AI; :ind p:ilwr~ 
presented at the iiawaiiran meeting of the tenth Pacific Scicm-c 
Congress are in 13031. Reference [IO91 contains a summarv of 
a small amount of theory and a relatively larger amount of 
practical experimental results along with descriptions of in- 
strumentation used in hydrologic optics. Ueference [109], 
accordingly, is a useful supplement to the present work. The 
paper and recent book by Jerlov [125] also surveys recent de- 
velopments in the field. Of some historical interest in the 
developmental aspects of the field of hydrologic optics are 
Chapters I-IV of [82] which are the synthesis of the experi- 
mental work by Duntley and the early theoretical work of the 
author. The roots of this chapter trace back in part to some 
early studies presented in [2l0]. The basis of the subsequent 
chapters of this work are given in the bibliographic notes 
appended to each chapter. 

and succeeding volumes follows that of the master bibliog- 
raphy given in the final volume (VI) of the present work. 

The numbering of the bibliography items in this volume 
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, 

ca (alpha), 60 
a (ay) 55, 58, 60 
Absorbed flux, 55, 58 
Absorption (of a finitely 

deep slab of water, AT!, 
'PO; measurements, 103 , 
length, 110 

Adaptation level (for visi- 
bility), 160 

Apparent optical properties, 
118; defined, listed, 135 

Apparent radiance, 60 
Astrophysical Optics, de- 

fined, l 
Asymptotic radiance hypo- 

thesis, 4P 
Atmospheric radiative trans- 

fer, gross features, 27 
Attenuation length, 90 

Back scattered flux, 55 
Beam transmittance, 128 
Beebe, L., 143, 153 
Biological sources, under- 
water light field, 53 

Blondel, 21 
Boundaries, 55 
Brightness (monochromatic) 

of radiant flux, 10; 
'brightness' is an untech- 
nical term for the precise 
concepts of radiance or 
luminance (as the case may 
be). 

Candela, 20 
Carnivores (in food chain), 

199 
Clironiaticity (color), 146; 

components, 14%; plane, 
147; diagram, 149; coor- 
dinates, 149 

Classification of natural 
hydrosols, 138 

Collimated flux, scattering 
functions for, 83; produced 
by sources, 114 

Color, 146; components, 146; 
purity, 149; dominant wave- 
length, 143 

Colorimetric radiative trans - 
fer, 142 

Complete reflectance (for ir- 
radiance), 79 

Complete transmittance (for 
irradiance), 79 

Cons is tency , check for inher - 
ent optical properties, 124 

Contrast; apparent, inherent, 
44; transmittance law, 89,90, 
99; multiplicative (semi- 
group) property, 95 

Contrast reduction; subsurface, 
by scattering and absorption, 
44 ; by refractive effects, 
48 

Conventions (used in this work) 
nature of radiant flux, 6; 
unpolarized flux, 7; fre- 
quency density (footnote) 

for radiant emittance, 14 

Decomposed (light field), 63 
Diffusion constant (D), 64; in 

Diffusion equation (For h), 64 
Diffusion length, 135 
Iliffusion model, G l ;  for point 
sources, 110; empirical ex- 
amples, 112 

Distribution factor, 55 
Divergence law, 44; for vector 

irradiance, 62 
Dominant wavelength, 149 
Duntley Disks, 96 

Equation of transfer, 60 
Equilibrium radiance, 85 
Equilibrium solutions (food 

chain), 203 
Exponential law of change (gen- 
eral), 197; differential 
form, 201 

Fick's law (of diffusion), 64 
Field interpretations of radi- 
ant flux, 12 

Finitely deep hydrosols, re- 
flectance and transmittance, 
68 

Flux density (radiant), 10 
Food chain problem (in the sea), 

Foot candle, 20 
Frequency density convention 

Cosine law, for irradiance, 13; 

terms of K, 111 

196 

(in this work), 7 
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Geophysical Optics, defined, 

CEOVAC (geophysical optics 

Glitter patterns, on air-wa- 

Herbivore (in food chain), 

Herschel (luminance unit), 21 
Homogeneity (of (I), 82 
Hydqologic Optics, defined,l; 

future problems, 205 
Hydrologic range, 90 

1 

variable automatic computer), 
208 

ter surface, 32 

199 

Illuminance, 19; measured at 
earth's surface, 25 

Inherent optical properties, 
118; defined, listed, 119 

Inherent radiance, 40 
Intensity (radiant), 10 ; 

field, 12; surface, 12 
Interaction principle, 4 
Interdependence (Plan) of 

chapters in this work, 5 
Invariant Imbedding Relation 

(for irradiance), 71, 80 
Irradiance, 12; scalar, 15, 

106; hemispherical scalar, 
16; vector, 15; net, 16, 
61; upwelling (upward), 16, 
55, 58, 106; downwelling 
(downward), 16, 55, 58, 
106; measured at earth's 
surface, 24; reflectance 
of air-water surface, 30; 
reflectance in deep water, 
67; invariant imbedding 
relations , 71 

Irradiance distributions, 
underwater, 42 

Isotropy (of o), 82 

K (kappa)(k-function or dif- 
fuse attenuation. function 
for diffusion model), 65 

k (little kay), 58; inter- 
cnangeable with K (big 
kay), 83 

Lambert, 20 
Light. This term is used 

throughout the present work 
as an informal correspon- 
dent to any one of the de- 
fined concepts of geometri- 
cal radiometry and 

photometry. The meaning in- 
tended for the tern 'light' 
will be implicit in each 
context of its use. Thus 
'light field' may, e.g., 
correspond informally to 
'radiant energy', 'radiant 
flux', 'radiance distribu- 
tion', 'irradiance function', 
'luminous energy', 'luminous 
flux' 'luminance distribu- 
tion', 'illuminance func- 
tion', etcetera. 

Light field, decay with depth, 
37, 66; polarization, under- 
water, 50 ; biological SYUTWS, 
53; artificial, 109; decom- 
posed, 63 

Lumen, 19 
Luminance, 19 
Lum i no s i ty f unc t ion (photopic), 

Luminous energy, 19 

Manhole (optical) , 34 
Melanoidines (Gelbstoff) ? 133 
Modes of classification of 

natural hydrosols, 140 
Mu1 t ipl icative (semigroup) 

property, of contrast trans- 
mittance, 93; of beam trans- 
mittance, 120 

Natural hydrosols, classified, 
138; characterization (for 
visibility), 195 

Natural illumination, 156 
Nomographs for underwater vis- 

ibility, 154 
Nutrient (in food chain), 199 

One-D (two-flow irradiance) 

Operational definitions of the 

Optical properties, inherent, 

145 

model, 54 

densieies, 10 

apparent, 118 

~ Path function, 60 
Path radiance, 63 
Perfectly diffusing (surface), 

Phase density, of radiant 

Photometry, geometrical, 18 
Photons, as viewed in this 

21 

flux, 10 

Work, 7 
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Photovic luminosity curve, 
18$- 145 

Phytoplankton (in food chain), 
iw- 

Polarization, defined, 51; 
underwater properties, 52 

Plane-parallel medium, 55 
Prey-predator equations, 198 
Principles of invariance for 

Problems of hydrologic optics, 

Quantum, 7 
Quasi-steady state [food 

Radiance, PO; field, 12; 

irradiance, 73, 79 

2, 205 

chain), 202 

surface, 12; n'-law, 18, 
87; inherent, 60; appar- 
ent, 60; equilibrium, 85; 
-difference law, 92; re- 
sidual, 120; path, 63 

Radiance distribution, behav- 
ior with depth, 39; asymp- 
totic hypothesis, 41; by 
submerged point source, 113 

Radiance model, 58 ~ 

Radiant density, 16 
Radiant emittance, I2 
Radiant energy. In this work 

radiant energy is the unde- 
fined, primitive concept, 
taken as given by nature 
and axiomatized by radio- 
metrists as their primary 
physical notion. In other 
fields, such as electromag- 
netics, it can be made to 
rest on one step lower: on 
the constructs (E,D,B,H) of 
the electromagnetic fie Id. 
These steps into physical 
primitivity descend even 
lower, But this nether re- 
gion is of no concern to us 
in this work. 

monochromatic brightness of, 
10; field and surface inter- 
pretations, 121 

Radiant intensity, 10; field 
and surface, 12 

Radiative transfer theory, 
defined, 1; basic con- 
structs, 4; atmospheric 
features, 27; across air- 
water surface, 28; 

Radiant flux, defined, 7; 
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Unpolarized-Flux convention 

Vector analogy with color, 146 
Visibility underwater, 154; 

effect of depth and water 
clarity, 157; use of nomo: 
graphs, 163; along inclined 
paths of sight, 165; hori- 
zontal paths of sight, 170 

Volterra prey-predator equa- 
tions, 198 

Volume absorption function, 
60; measurement, 103; oper- 
ational definition, 124 

Volume attenuation function, 
60; operational definition, 
119; empirical, 120 

Volume backward scattering 
functions, 124 

Volume forward scattering 
functions, 124 

Volume scattering function, 
122 

Volume total scattering func- 
tion, 60; operational defi- 
nition, 123 

Water c 1 ar i ty (vis ua 1 i z a t ion), 
194 

Wavelength, dominant, 149 
White light, 149 
Window (spectral), 134 

(in this work), 7 
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