INTEGRATION OF HETEROGENEOUS DATA FOR PROTEIN ONTOLOGY

DATABASE USING SEMANTIC WEB TECHNOLOGY

by

Xiang Li

A thesis submitted to the Faculty of the University of Delaware in partial fulfillment
of the requirements for the degree of Master of Science in Bioinformatics and
Computational Biology

Fall 2018

© 2018 Xiang Li
All Rights Reserved

INTEGRATION OF HETEROGENEOUS DATA FOR PROTEIN ONTOLOGY

DATABASE USING SEMANTIC WEB TECHNOLOGY

by

Xiang Li

Approved:

Chuming Chen, Ph.D.

Professor in charge of thesis on behalf of the Advisory Committee
Approved:

Kathleen F. McCoy, Ph.D.

Chair of the Department of Computer and Information Sciences
Approved:

Levi T. Thompson, Ph.D.

Dean of College of Engineering
Approved:

Doug Doren, Ph.D.
Interim Vice Provost for Graduate and Professional Education

ACKNOWLEDGMENTS

I wish to thank my adviser, Dr. Chuming Chen, and my committee members
Dr. Hongzhan Huang, and Dr. Li Liao for their continuous advice, guidance, and
academic support during the past year. | must also thank my professional friend and
colleague, Mr. Wenbo Zhao, who has supported and helped me throughout my
graduate education.

This thesis is dedicated to my parents Feng Li and Hua Li for their
unconditional love and support, also to my wife Yaling Shi for her encouragement and

inspiration.

TABLE OF CONTENTS

LIST OF TABLES ...t Vi

LIST OF FIGURESooi ittt sttt st vii

ABSTRACT Lottt bbbttt b bt e s et et bbb e e IX
Chapter

1 INTRODUCTIONcoot ittt nnesne e 1

1.1 SemMantiC WED......cooiiiiiiiie it 1

I I R I | USSR 3

1.1.2 RDF SCHEMA (RDFS)ccoiiiiiiiiiiiene st 5

I I T © 1YY SRS 6

114 SPARQL ..ottt 6

1.2 Protein Ontology Database...........ccevueiiriereniniininieeeeeee e 7

1.2.1 VirtuoSO SPARQL SEIVENcccveiiiieiieectee et 8

1.3 Application Programming Interface (API)ccooviiiiiiiineiencseseseene 9

1.3.1 Python Django Framework.............ccccoveviiiiieiieiie e 10

1.4 Outling Of TeSIS WOIKcceiuiiieiieii et 13

2 SYSTEM DESIGN AND ARCHITECTURE........ccccoviiiiieieeene s 15

2.1 DeSign RAtIONAIEcviiiiiiiiiie e 15

2.2 SYSteM ATCNITECIUIEcvveieieiieee e 18

2.3 Data INTegrationccoveiieiiiiiiiisie e 19

3 VIRTUOSO/SPARQL BASED SEARCH ENGINE........cccccooviiiiiiiciiaine 25

3.1 PRO Search WEDSITEccooiieiiiie e 25

3.2 SPARQL SYNEAX...cttiuieieieieiieiiesiesieieiesie et ste e e sseesee e ssesseseessessesseas 28

3.3 SPARQL Query Library for PROcccoociiiiiiiiiiiieee e 30

3.4 Performance EValuationccocoieiiiiiieiie e 32

4 RESTRUL AP ..o 35

A1 APLDESIGN .eiiiiiiieiie ettt sttt nae s 35

4.2 APLIMPIEMENTAtIONcccvviieiicie e 37

4.3 USE CASES. ...ttt ettt ettt ettt b ettt et b nae e b nneas 45

5 DISCUSSION AND FUTURE WORKcccoiiiiiiiniiiisiseee e 51

B CONCLUSION ..ottt sttt e ens 53

REFERENCES ...ttt bbbttt bbb 54
Appendix

A COMPARSION OF PERFORMANCE IN NEW/OLD DATABASE 58

B CATEGORY OF PRO AP ..ottt ssens 60

LIST OF TABLES

Vi

LIST OF FIGURES

Figure 1.1 The components of the Semantic Webcccccovivieviiieiiece e 2
Figure 1.2 RDF triple graphoovoii e 4
Figure 1.3 An example RDF graph for a PRO term of Protein Ontology...................... 4
Figure 1.4 The example of RDF SChemMacooiiiiiiiiiieeeee e 5
Figure 1.5 The structure of Protein Ontologyccccceiveiiiii i 8
Figure 1.6 The Flow Request and Response in Django Framework.............cc.ccoeeee. 11
Figure 1.7 An example RESTTUl APL........coooi i 13
FIQUIE 2.1 LAV @NA GAV ...t 15
Figure 2.2 Comparison between different methods of data integration 16
Figure 2.3 The architecture of old PRO database.............ccccooviiiiiiiiinii e 18
Figure 2.4 The architecture of new PRO databasecccccevvivevivivicce e 19
Figure 2.5 Sample data for PRO_extra RDF graph..........ccccooviviiiniiiencienc e 20
Figure 2.6 Example of converting data into RDF in Turtle format..................ccc....... 22
Figure 2.7 Example RDF triples in PRO_extra graph in Turtle format....................... 23
Figure 3.1 PRO SEArch WEDSITEcoviiiiiiiiiece et 26
Figure 3.2 Quick Links for PRO text search website ..., 27
Figure 3.3 PRO main search interface...........cccovvviveiveie i 28
Figure 3.4 Basic structure of SPARQL QUEIYccveiiiiiiiiiiesiesieeeeee e 29
Figure 3.5 Example SPARQL query for PRO field searchcccccocevviiiviiieiiecinnns 31
Figure 3.6 Average response time of 10 search qUEries...........ccoovvvreieieiesc s 33

vii

Figure 4.1 PRO RESTful APIs and Swagger Ul interface..........ccccccevvviveiieiecicsnenne. 35

Figure 4.2 The data structure definition of PRO term...........ccocooiiiiiiiciencccee 36
Figure 4.3 Python class for search parameterscccoveveereeieseese e 37
Figure 4.4 Python class for retrieval parameters ... 39
Figure 4.5 Flow chart of function in VIEWSccccvveiiiiiiieiece e 40
Figure 4.6 The layout of function definition in VIEWS............cccooviiiiiieiiiencce 40
Figure 4.7 Function for constructing SPARQL query dynamically...........cccccccevevnennee. 42
Figure 4.8 URL patterns defined in the Controller.............ccocooviiiiiiinciccee 43
Figure 4.9 An example JSON response from PRO RESTful APIS........c.cccevviievnnnnee. 44
Figure 4.10 An example XML response from PRO RESTful APIS...........cccccovnnnnnnn. 45
Figure 4.11 Inputs to “Search PRO terms” APL ..o 46
Figure 4.12 A list of PRO_terms returned by “Search PRO terms” APL. 47
Figure 4.13 Inputs to “Search organism-gene” APLcccocoiviiiiiiiiiiiie 47
Figure 4.14 A list of organism specific PRO terms as returned by “Search

0rganisM-gene” APL ... 48
Figure 4.15 Inputs to “Search decedents” APLccooiiiiiiiiiie 49
Figure 4.16 A list of organism specific PRO terms as returned by “Search

decedents” APL 49
Figure 4.17 Inputs to “Get PAF annotation” APL.........cccccoiviiiiiiiiiiiie 49
Figure 4.18 Annotations returned by “Get PAF annotation” APLc..ccooiiis 50
Figure 4.19. Python script executes the search of a PRO term by itsid. 50

viii

ABSTRACT

As the volume and diversity of data and the desire to share them increase, we
inevitably encounter the problem of combining heterogeneous data generated from
many different but related sources and the problem of providing users with a unified
view of this combined data set. Data integration systems facilitate information access
and reuse by providing a common access point and a more complete view of the
available information. A widely adopted system, Semantic Web, provides the requisite
technologies to make such integration possible: 1) an abstract model for the relational
graphs: RDF; 2) a query language adapted for the relational graphs: SPARQL; and 3)
various technologies to characterize the relationships and categorize resources: RDFS,
OWL etc.

PRO databases draw on data sources that provide orthology, annotation, and
mapping information, as well as sequence-related data, including amino acid and
splice variants and multiple sequence alignments. The PRO website is currently hosted
in two places: University of Delaware for entry page and visualization, and
Georgetown University for text search and browse. The dual-site structure requires
that data files be duplicated and overlapped, thus creating website maintenance issue.
To streamline the update process and to remove redundancy, we explored simplifying
the data integration for the PRO database using Semantic Web technology. In this
process, the heterogeneous data was converted into RDF triples and integrated into a
Virtuoso RDF triple store. Furthermore, a Virtuoso/SPARQL based search engine for

the full-scale text search and hierarchy browsing for PRO website was developed.

Tests reveal that we achieved similar performance as compared to the Apache Lucene
based search engine currently being used. We also developed RESTful APIs for
programmatic access to the PRO database using Open API specification and Django
REST framework.

In conclusion, the semantic web technologies such as RDF and SPARQL etc.
are suitable for data integration. Heterogeneous data in the PRO database are
structured and simplified by using RDF triples so that search efficiency can be
improved. In addition, the thesis showed the design and implementation of the
RESTful APIs in detail along with application examples. The thesis aims to provide a
clear description of the heterogeneous data integration process and API design and

implementation process that can be used as a reference in the field of Bioinformatics.

Chapter 1
INTRODUCTION

Recent rapid development of biotechnology leads to an explosive growth of
bioinformatics data. However, very often the data are stored in different formats and in
different databases. The information returned from a single database is usually not
complete. Therefore, integration of heterogeneous data from different sources is
necessary. By converting and combining them into a unified semantic model such that
computer can process and understand to facilitate human-computer and computer-

computer interactions is called the semantic data integration [1].

1.1 Semantic Web

Sir Tim Berners-Lee proposed the concept of “Semantic Web” in Scientific
American article in 2001 [2]. In that article, he envisioned it as an evolution from the
World Wide Web to the Semantic Web. The resources on the web are the documents,
mainly for human consumption. In terms of current technology, it is impossible for
computer to understand the meaning of the contents in the web documents accurately
due to the complexity of unstructured data in the documents and lack of background
knowledge. In 2006, Tim Berners-Lee coined the linked data [3]. It is the principles of
publishing structured data so that they can be interlinked and more suitable for the

semantic queries [4].

User interface and applications |

| Trust |
| Proof
| Unifying Logic | ‘
| Ontologies: | | Rules: |
Querying: OWL RIF/'SWRL S
SPARQL S
Taxonomies: RDFS «Q
o
=3
| Data interchange: RDF |
| Syntax: XML |
Identifiers: URI Character Set: UNICODE

Figure 1.1 The components of the Semantic Web [5]

Figure 1.1 shows the major components of the Semantic Web. The Syntax
layer is XML which is the markup language for structured data. The proof component
is to determine if an answer found on the Semantic Web is correct, and support proof
generation, exchange, and validation. The URI is used to uniquely identify Semantic

Web resources and the UNICODE is the default character set used on the Semantic

Web. In addition, there are some important components such as RDF, RDFS and

SPARQL that will be introduced in the following sections.

111 RDF

The Resource Description Framework (RDF) is a framework for expressing
information about resources [6]. The resources can be almost anything, including
documents, people, abstract objects. RDF is designed to describe a model to represent
the web resources. RDF uses the triples in the form of subject—predicate—object to
make statements about resources. The Subject is a URI identifying the resource. The
Predicate is a URI indicates the relationship between Subject and Object, and the
Obiject is a literal value or URI of another resource related to the Subject. It can be
represented as a directed-labeled graph (See Figure 1.2). Due to its data-centric
architecture built upon a standardized model, RDF can exchange information between
different applications and provide a standard-compliant way for data publication and
interchange. These make RDF the most suitable framework for data integration. This
is one of the reasons we use RDF model in this research project. Another reason is that
RDF provides linked data framework, where heterogeneous data (structured, semi-
structured and unstructured) can be expressed, stored and accessed in the same manner.
This is made possible because the data structure is expressed through the links within
the data itself instead of being constrained to a structure imposed by the relational

database schema. As changes in the data structure occur, they are reflected in the RDF

database through changes in the links within the data. Interlinked datasets enable

cross-dataset queries to be performed using SPARQL.

Predicate

Figure 1.2 RDF triple graph

Namespaces:
xsd: <http
rdf: <http:/iwww.w3.0rg/1999/02/22-rdi-syntax-ns#>
rdfs: <http://www.w3.0rg/

ovd: <http:/iwww.w3.0rg/2002/07 /owi#>

obo: <http://purl.obolibrary.orglobo/>

obolnOwl: P

0bo:NCBITaxon_11320

owl:someValuesFrom

owl.onProperty

:b45527437
obolnOwl:hasOBONamespace

rdfs:label

rdfs:subClassOf

obolnOwl:hasExactSynonym

0bo:lIAO_0000115

Figure 1.3 An example RDF graph for a PRO term of Protein Ontology

Figure 1.3 shows an example RDF graph for a PRO term of Protein Ontology.
An RDF graph consists of nodes and edges. Nodes represent entities/resources (light
blue nodes), attributes (orange nodes), and edges represent the relationship between

entities and entities and the relationship between entities and attributes.

1.1.2 RDF SCHEMA (RDFS)

Resource Description Framework Schema (RDFS) is an extension vocabulary
from the basic RDF vocabularies. When the RDF was proposed, people find that there
are not enough classes and properties to describe the entities and attributes in the real

world. Therefore, W3C published the RDFS as W3C recommendation in 2004 that is a

supplement for RDF.

<7xml version="1.0" encoding="utl-8" 7>
<rdf:RDF

xmins:rdf="hitp-//www w3 org/1999/02/22-rdl-synlax-ns¥”
xmins:rdfs="http://ww.w3.org/2000/01/rdf-schema#"”
xmins:owl="http:/fwww.w3,0rg/2002/07 lowls™

xmins:obolnOwi="http://www.geneontology.org/formats/o
bolnOwig*
xmins:obo="hitp://purl.obolibrary.org/obo/™ >
<rdf-Description
rdf-about="hitp//pur.obolibrary orgloba/PR_000027736"
>
<rdf:type
rdf-resource="ntlp:/Awww . w3.0rg/2002/07 'owl#Class" />
<rdfs:label
rdf-datatype="http-/fwww.w3.0org/2001/XMLSchema#strin
g">neuraminidase subtype N2 (Influenza A
virus j</rdfs:label>
<rdfs:comment
rof.datatype="hitp//www.w3.0rg2001/XMLSchema#strin
g">Category=organism-gene. Requested by=IEDB.
Requested by=ImmPort.</rdfs:comment>
<rdfs subClassOf
rdf-resource="http://purl.obolibrary.org/obo/PR_00004974

2" I>

<rdfs:subClassOf rdf:nodelD="b45527437" />
<obolnOwl:hasExactSynonym
rdf:datatype="http:/’www.w3.0rg/200 1/ XMLSchema#string">fluA-N
A(N2)</oboinOwl:hasExactSynonym=>
<obolnOwi:hasOBONamespace
rdf:datatype="http:/’www.w3.0rg/2001/ XMLSchema#string">protei
n</obolnOwl:hasOBONamespace>
<obolnOwl:id
rdf:datatype="http:/’www.w3.0rg/2001/ XML Schema#string">PR:00
0027736</obolnOwl:id>
<obo:IAO_0000115
rdf-datatype="http:/’www.w3.0rg/2001/XMLSchema#string">A
neuraminidase (Influenza A wirus) that is expressed on the surface
of Influenza A virus and has similar antigenic properties, i.e., it will
be neutralized by a similar set of antibodies. Example:
UniProtKB:P06820.</obo:IAO_0000115>
</rdf:Description>
<rdf:Description rdf:nodelD="b45527437">
<rdf type
rdf.resource="hitp //www.w3.0rg/2002/07/owi#Restriction® />
<owl:onProperty
rdf:resource="hitp//purl.cbolibrary.orgloba/RO_0002160" />
<owl:someValuesFrom
rdf:-resource="hitp-//purl.obolibrary.org/obo/NCBITaxon_11320" />
</raf:Description>
</rd.RDF>

Figure 1.4 The example of RDF Schema

As shown in Figure 1.4, RDFS consists of a set of classes with certain
properties using the RDF extensible knowledge representation data model. In addition,
RDFS defines properties rely on the classes of sources to which they apply, and
classes depends on the properties they may have. Through mutual constraints, the
RDFS can build a more rich and accurate vocabularies for describing resources in

RDF.

1.1.3 OWL

OWL is the Web Ontology Language. As mentioned above, RDFS is
essentially an extension of the RDF vocabulary. However, people found that the
expressivity of RDFS was still quite limited, so OWL was proposed [7]. OWL can
also be seen as an extension of RDFS that provides additional mechanism for defining
expressive and complex relationships on the Semantic Web. OWL provides a family
of knowledge representation languages for developing ontologies on the Semantic

Web.

1.1.4 SPARQL

After data are linked and stored on the Semantic Web, user needs a language
and tool to query, retrieval and manipulate them. In 2008, SPARQL 1.0 was published
and recommended by W3C [8]. SPARQL stands for SPARQL Protocol and RDF

Query Language [9]. SPARQL is a RDF query language. SPARQL can retrieve and

manipulate data stored in RDF format [10]. It allows users to write queries against
what can loosely be called "key-value™ data and the entire graph is a set of "subject-
predicate-object"” triples which is different from relational database. In terms of SQL
relational database, the RDF can be seen as the table with three columns. Compared to
noSQL database, the object column in RDF is heterogeneous. For instance, each
predicate can have many different entries and even can return a collection. SPARQL
provides a full set of analytic query operations such as JOIN, SORT, AGGREGATE
where schema is intrinsically part of the data rather than requires a separate schema

definition [11].

1.2 Protein Ontology Database

The biological ontology is used to describe different conceptual frameworks
that guide the collection, organization and publication of biological data [12].

The PRotein Ontology (PRO) [13], the reference ontology for protein entities
in the OBO (Open Biological and Biomedical Ontologies) Foundry, represents protein
families, multiple protein forms (proteoforms) arising from single genes, and protein
complexes (Figure 1.5). In addition to the main ontology file itself (in OBO or OWL
format), PRO databases draw on data sources that provide orthology, annotation, and
mapping information, as well as sequence-related data, including amino acid and
splice variants and multiple sequence alignments. These contribute to the underlying
data resources to support PRO website by providing PRO entry view, batch retrieval

and search functionalities. The PRO website is currently hosted in two places:

University of Delaware for entry page and visualization, and Georgetown University
for text search and browse. The dual-site structure requires that data files be duplicated

and overlapped, thus creating website maintenance issue.

PRO
Pfam Domain
[ocen | e] - T
Root Leve! - protein P - Root Level - protein complex -
is & ias_purt Al
Family-Level Distinction ~|’ /GO Gene Ontology | | Complex-Level Distinction
+ In comman: specific ancestor I" jon product of an evolutionarily-related geI'IE} lecular function : qgeneral protein complex
sl b | e fenction | Ba
Gene-Level Distinction I J iological process L || Organism-Level Distinction - - -
+ In commen; specific gene | translation product of a specific gens} [_— | general protein complex - specific crganism
is_af . parficipates in L als
.F
Sequence-Level Distinction ! T, | Subunit-Level Distinction - -
+ In common: specific allsle or splice variant [translation product of a spacific mRNA} 1 exted ! I specific protein complex - specific organism]
is_a, derives_from : | I5_a
‘ . el —T o DO/UMLS Disease 3 . : — =
Modification-Level Distinction | - — || Modification-Level Distingtion
* In common: peciic product B \ pEesss | 1 modified specific protein complex - specific organisml
. \em
Exampla: SO Saquence niology has_part <protein> ‘—I
e] TGF-fi receptor-phosphorylated smad2 isoform? ||
ProForm © vl isa phosphorylated smad2 isoform1 ' | | sequence change Example:
Sequenca Level [| isa smad2 isoform 1 " has_agent (seq, change) Modification Level L-mediator complex (human) with MEDZ-phos
Gene Leval [isa smad2 | Lol funcuonal 1y Subunit Level isa L-mediator complex (human)
‘ jsa TGF-f receptor-reguiated smad PSI-MOD Heateaton ProComp organism Level | isa mediator complex {human)
ProEvo Family Leval isa smed Complex Level [isa madiator complex
Root Lavel E isa protein protein modification Root Level [isa protein complex

has_puart

Figure 1.5 The structure of Protein Ontology [14]

1.2.1 Virtuoso SPARQL server

Virtuoso server is a special purpose-built and optimized database for the
storage and retrieval of triples via semantic query language [15]. Virtuoso puts triples
in a single table with the graph URI as a key (Quad Store). In addition to queries,
triples can be imported/exported using RDF and other formats. Virtuoso server is also
a SPARQL Service Endpoint. It supports SPARQL 1.1 and provides federated

SPARQL query-processing for RDF data available on the Web. The latest version is

7.2. Virtuoso can reduce the cost of bringing data from different sources and make it

more convenient to query and retrieval.

1.3 Application Programming Interface (API)

In computer science, an application-programming interface (API) is a set of
subroutine definitions, communication protocols, and tools for building software. A
good API makes it easier to develop a computer program by providing all the building
blocks (Wikipedia). Representational State Transfer (REST) is an architectural style
that defines a set of constraints to be used for creating web services [16]. We choose
RESTful API to provide programmatic access to PRO RDF database. Because
RESTful API has the following advantages [17].

1. Client-Server Mode. RESTful API separates user interface concern from the
data storage concern. It supports developing portable user interface for
multiple platforms and increasing the scalability of service because the
components of service is reduced.

2. Stateless. The request sends from the client must include all the information so
that the client keeps the complete session state. It also makes debugging easy
for developer.

3. Cacheable. The response for a request can be implicitly or explicitly labeled as
cacheable or non-cacheable. If it is cacheable, the service can cache it and
reuse it. This feature can reduce the number of interactive connections and

improve system response speed.

4. Layered system. APIs play the middle layer between the server and the client
to respond to the client's request. The client does not need to care about
anything other than the component that it interacts with. This not only
improves the scalability of the system but also simplifies the complexity of the
system. Because of those nice features, many large technology companies,
such as Google, Amazon and Twitter, have widely used RESTful APIs. Most
public bioinformatics resource and databases provides API services. For
example, EUtilities APl system of NCBI and the PSAMM APl of
Computational Molecular Ecology Lab at the University of Rhode Island [18].
These APIs can help developers getting results more conveniently and apply
them into their project or research without rebuilding a big local database.
Since the Protein Ontology database has been built for bioinformatics
researchers, we also want to design our own APIs for PRO users and hope to

make them jobs more productive.

1.3.1 Python Django Framework

We used Python Django REST framework to develop RESTful API for our
Virtuoso/SPARQL search engine-based PRO RDF database. In addition, we used
several technologies to support our API design. The Open API specification, which is
also previously called Swagger specification, is an API description format for REST
APIs. It specifies the machine-readable interfaces and supports describing, producing,

consuming, and visualizing of RESTful API [19]. We used Swagger Editor, a

10

browser-based editor to write the Open API specifications. We also used Swagger Ul
to render Open API specifications as interactive APl documentation [20].

There are many advantages of Django framework. After more than a decade of
development and improvement, Django has a wide range of practical use cases and
comprehensive online documentation. Developers can search online documentation
for solutions when they encounter problems. In addition, Django comes with a lot of
tools and functionality common to many applications. It is also very convenient to
manage the information from a database. There are four important parts of API
framework: Models, Views, Controllers, Template. Theoretically, Django is an MVC
framework, but part of the controller that accepts user input is handled by the
framework itself, so Django is more like Models, Templates, and Views, also called

MTV mode [21] (See Figure 1.6):

Match the corresponding
view function according to URL
the URL Controller

Models
Files

Database Send data 10 Template
Template File

View Controller

Figure 1.6 The Flow Request and Response in Django Framework

11

M, stands for Model, is the data access layer. This layer handles all
transactions related to the data: how to access, how to verify validity, what behaviors

to include, and deal with the relationship between data.

T, stands for Template, is the presentation layer. This layer handles

performance-related decisions: How to display in a page or other type of document.

V, stands for View, is the business logic layer. This layer contains the relevant
logic for accessing the model and getting the appropriate template. You can think of it
as a bridge between the model and the template.

The API call is the process that the controller receives the request from the
user and passes it to the view to get the data from model and generate the response

formatted according to the template and returns to the user.

12

Request:

Method: GET

Request URL

https://research.bicinformatics.udel.edu/PRO API/V1/pros?searchField=Al1Fields&searchValue=12345&showPROName=true&showPROTermDefinition=true&showCategor
y=t: W ion=trueishowAnyRelationship=truetshowChild=true&showEcoCy lseishowGeneName=trueishowHGNCID=FfalseishowMGIID=Ffalse

R:000000001",

: '
‘A protein that is a translation product of the human PCDH12 gene or a 1:1 ortholog therecf.",

"annotation": [],
"anyRelationship™: ""

'

": "A dengue virus genome polyprotein proteclytic cleavage product that is derived from dengue virus gencme polyprotein, glyco
sylated form and that consists only of the C (capsid) protein and the prM (pre-membrane) structural proteins of the dengue virus gencme po
lyprotein. It has a single W-linked glycosylation site at position Asn-69. UniProtEB:P299%0, 1-280, Asn-183, MOD:00160.",

"annotation": [],

"anyRelationship”: "PR:000036818 ! dengue virus gencme polyprotein proteolytic cleavage product;PR:000036818 ! dengue virus gencme pol
yprotein proteolytic cleavage product;derives from PR:000036817 ! dengue virus genome polyprotein, N-glycosylated form:;has part MOD:00160
! N4-glycosyl-L-asparagine;has part PR:000036819 ! capsid protein C;has_part PR:000036837 ! prM;lacks part PR:000036838 ! M812345;derives_
frem PR:000036817 ! dengue virus genome polyprotein, N-glycosylated form:;has part MOD:00160 ! Nd4-glycosyl-L-asparagine;has part PR:0000368
19 ! capsid protein C;has _part PR:000036837 ! prM:;lacks part PR:000036838 ! Ns12345;"

be

Figure 1.7 An example RESTful API

As shown in Figure 1.7, user inputs a Request URL, the API service returns
the Response. By adding different renders and information in the request header, the

response can be rendered in JSON or XML format.

1.4 Outline of Thesis Work

The first step is to convert the source data power the current PRO database into
RDF triples. We study the content and organization of each data source, identified and
extracted relevant information, converted them into RDF triples. Python script is

developed to extract unstructured data from original source files and convert them into

13

RDF triples. Meanwhile, the duplicate information in those source files are identified
and removed. The second step is to load those RDF triples into Virtuoso triple store as
three named graphs. The third step is to build a SPARQL query library and search
engine that supports quick link search and Boolean clause-based search of current
PRO search website. Finally, accuracy and performance tests are done to evaluate the
Virtuoso/SPARQL based search engine.

To facilitate programmatic access the PRO RDF database and SPARQL search
engine, we design the PRO RESTful APIs based on Open API specification and using

Swagger editor. We then implement the APIs using Django REST framework.

14

Chapter 2

SYSTEM DESIGN AND ARCHITECTURE

The data heterogeneity increases the system complexity and hinders it

performance. We therefore need new methodology and model to do data integration.

2.1 Design Rationale

Lenzerini proposed a logical framework for data integration systems from a
theoretical perspective based on the notion of global schema, where the goal of data
integration system is to provide the users with a homogeneous view of the data across
different sources [22]. In this theoretical model, data integration can be characterized

into two approaches: LAV (Local-As-View) versus GAV (Global-As-View).

S

{ Centralized database
s &
<

LAV

Database Database

Database

Database

GAV

Figure 2.1 LAV and GAV

15

As shown in Figure 2.1, the LAV approach is the most effective approach
when the global schema is stable in the data integration system. A typical example of
this approach is data warehouse. The data warehouse approach puts data sources into a
centralized location with a global data schema and an indexing system for fast data
retrieval. The GAV approach is the most effective approach when the set of sources
are stable in the data integration system. The example of this approach is federated
database. The federated database approach does not require a centralized database. It
maintains a common data model and relies on a schema mapping to translate
heterogeneous database schema into the target schema for integration. Therefore, it is
modular, flexible, and scalable. This project uses the LAV as the model to integrate

heterogeneous data for PRO database.

Traditional Data Integration RDF/SPARQL Data Integration E

Data Warehouse

Figure 2.2 Comparison between different methods of data integration

The Figure 2.2 is the description of different integration methods. The

traditional way of integration is GAV model which using the extra parsers to analysis

16

and form the data extracted from different databases. The typical example is
centralized data warehouse that combines data from different sources and user can
query these data using SQL. In contrast, the method used in this thesis project is
distributed. There is no centralization in this model and user can use the federated
SPARQL to query them.

The data heterogeneity is well known in the current PRO database as shown in
Figure 2.3. The PRO database consists of four different kinds of databases: SQL-lite,
Oracle, Virtuoso in the University of Delaware and Apache Lucene Search Engine in
the Georgetown University. Each database stores part of the data, which may have
already been stored in other databases and in different formats. At the same time, the
returned result is incomplete because they use different query languages. It is very
complicated for user and the requirements for maintenance personnel are also
increased since they need to maintenance four different databases at the same time. It
is also not easy to update if there is a wrong data need to modify because there are
duplicated in many databases. Therefore, it is necessary to integrate these data to

improve the efficiency of query and update in the PRO database and website.

17

[PRO Query, Search, Retrieval]

T

sequence.fa

uD
sQL-lite
(RDB)

pro_reasoned.owl ‘ ‘pafjxt->paf‘ttl ‘

ub
Virtuoso
(RDF Triple Store)

ubD

Oracle 12¢
(RDB)

GU
Apache Lucene
(Search Engine)

pro_reasoned.obo

PRO_orthoforms.dat
sp_varsplic.fa

taxbased_protein.dat

promapping.txt

PRO DB

Figure 2.3 The architecture of old PRO database

2.2 System Architecture

As shown in Figure 2.3, other than the Protein Ontology, which is the core of

the PRO database, there are additional data such as PRO_orthoforms, PAF (PRO

annotation file), PRO_mapping, Human protein variants, Splice variants, Protein
sequences, MSA (Multiple Sequence Alignment) etc. They are used to power the PRO
website to provide PRO entry view, batch retrieval and search functionalities. We can
also see from Figure 2.3, not only different database technologies and query languages
are used, they are also been hosted on different sites: University of Delaware (UD) and

Georgetown University (GU). In addition, the same source data is repeatedly used in

18

different databases. This creates potential synchronization issue during PRO database
update cycle. This thesis project explored simplifying the data integration for PRO

database using Semantic Web technologies as shown in Figure 2.4.

[PRO Query, Search, Retrieval]

T

ubD
Virtuoso
(RDF Triple Store)

pro_reasoned.owl!

Convert source data to RDF format

PRO_orthoforms.dat \‘{ taxbased_protein.dat
[sowarcers | [mmammictn | [oromapprgoe

PRO DB

Figure 2.4 The architecture of new PRO database

2.3 Data Integration
To streamline the update process and to remove redundancy, we explored
simplifying the data integration for the PRO database using Semantic Web technology.

We studied the content and organization of each data source, identified and extracted

19

relevant information, converted them into RDF triples, and integrated them into a

Virtuoso RDF triple store.

The most important step is to convert source data into RDF format. Most of the

data for PRO database are from PRO OWL file and PAF file. They have been

converted and stored in RDF format in the Virtuoso triple store. However, there are

still some data spreaded across multiple files. We therefore extracted them mainly

from ‘PRO_orthoforms.dat’ and ‘pro reasoned.obo’ and converted them into RDF

triples and stored in a new RDF graph called “PRO_extra”.

resu = re.
relationl
relation2
relation3

match(r'replaced by: (PR:[A-Z0-9\-*]*)',1n)
re.match(r'is_a: (.*)',1ln)
re.match(r'intersection_of: (.*)',1ln)
re.match(r'relationship: (.*)',1ln)

PRO_orthoforms.dat

ortho-isoform
ortho-isoform
ortho-isoform

ortho-gene PR:
ortho-gene PR:
ortho-gene PR:
ortho-gene PR:

ortho-isoform

ortho-gene PR:
ortho-gene PR:
ortho-gene PR:

PR:000039805
PR:000043072
PR:000041606
000001980
000001097
000005626

PR
PR
PR

W nononon

000005431 PR
PR:000042733 =
000015070 = PR
000022135 = PR
000015526 = PR

PR:P55809-1 PR:Q9DOK2-1
PR:Q9DOL7-1 PR:B1WBW4-1

PR:Q5XIS2-1 PR:(Q8BS40-1

:P70673 PR:Q61743 PR:Q2HX26 PR:Q14654
:Q6Y1R5 PR:Q96P68 PR:Q6IYF8

:Q8N3K9 PR:Q70KF4

:Q9QZD5 PR:P26374 PR:Q8LLDA4
PR:Q8KOX8-1 PR:Q99689-1

:A4ZYQ5 PR:POC6A1 PR:Q6PXP3

:Q2GOF8 PR:P11875 PR:ASIORS

:Q6P3D7 PR:(Q8N5J4

ortho-modification PR:000000556 = PR:000026341* PR:000036464* PR:000036466*

PRO reasoned.obo

Figure 2.5 Sample data for PRO_extra RDF graph

As shown in the Figure 2.5, there are seven different kinds of predicate. In the

file ‘orthoform.dat’, they are ‘replaced by’, ‘is_a’,’intersection _of” and ‘relationship.

Other three kinds of predicates, ‘ortho-gene’, ‘ortho-isoform’ and ‘ortho-modification’

20

are in the file ‘PRO reasoned.obo’. They all have their own special definitions. For
example, ‘relationship’ represents the related proteins and their relationships. ‘Ortho-
modification’ means the proteins on the right of equal sign are modified by one or
many methods from the original protein on the left.

Turtle (Terse RDF Triple Language) [23] is a format for expressing RDF
triples in a compact textual form. Turtle provides a way to group three URIs to make a
triple, and provides ways to abbreviate such information, for example by factoring out

common portions of URIs.

21

/ PRO orthoforms.dat’ \

“ortho-isoform PR:000043530 = PR:Q6TUF2-1 PR:Q8BQU3-1 PR:Q9NRP4-1"

‘pro_reasoned.obo’

‘id: PR:000043530°
K ‘is_a: PR:000003630 ! protein ACN9, mitochondrial’ /

U

s D

obo:PR_000043530

pr_extra:hasOrtholsoform obo:PR_Q6TUF2-1, obo:PR_Q8BQU3-1,
obo:PR Q9NRP4-1 ;

pr_extra:hasRelationshipWith """PR:000003630 ! protein ACN9,

Kmitochondrial:"""std:string ; /

Figure 2.6 Example of converting data into RDF in Turtle format

Figure 2.6 describes the process of converting and combining data for
PRO_extra RDF graph. As the supplement to PRO RDF graph, classes in the
PRO_extra have been defined in the PRO RDF graph. Therefore, we reuse them. The

data in “PRO_orthoforms.dat” file has the relationship which is the “ortho-isoform”.

22

However, there is no predefined URI or predicate. Therefore, we created new
predicate: “pr_extra:hasOrtholsoform”.
There are three principles in convert source data to RDF triple in Turtle format:
1. “prefix” is defined to represent namespaces and URIs sharing the same base.
2. Same subject can be referenced by a number of predicates. Therefore, a series
of RDF triples can be written by a series of predicates and objects, separated
by “;”, following a subject.

3. Objects are often repeated with the same subject and predicate. Therefore, a

(Y32

series of RDF triples can be written by a series of objects, separated by “,”.

@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.0rg/2000/01/rdf-schema#> .
@prefix xsd: <http://www.w3.0rg/2001/XMLSchema#> .

@prefix obo: <http://purl.ocbolibrary.orgfobo/> .

@prefix owl: <http://www.w3.0rg/2002/07/owl#> .

@prefix pr_extra: <https://proconsortium.org/pr_extra#=

pr_extra:hasOrthoIsoform

rdf:type owl:0bjectProperty ;

rdfs:label "hasorthoIsoform"~~xsd:string ;

rdfs:domain owl:Class ;

rdfs:range owl:Class ;

obo:IA0_8086115 "Ortho-isoforms were true alternative isoforms in a common ancestor, and quite likely functionally
equivalent."**xsd:string .

pr_extra:hasorthoMedifiedForm

rdf:type owl:0bjectProperty ;

rdfs:1label "hasOrthoModifiedForm"~~xsd:string ;

rdfs:domain owl:Class ;

rdfs:range owl:Class ;

obo:IA0_0000115 "Ortho-modified forms indicate the PTMs on ortho-isoforms that occur in equivalent residues.
"anxsdistring .

pr_extra:isReplacedBy
rdf:type owl:0bjectProperty ;
rdfs:label "isReplacedBy"~~xsd:string ;
rdfs:domain owl:Class ;
rdfs:range owl:Class ;
obo:TAO_0000115 "One PRO term is replaced by another PRO term."~Axsd:string .

pr_extra:hasRelationshipWith
rdf:type owl:0bjectProperty ;
rdfs:label "anyRelationship"~#xsd:string ;
rdfs:domain owl:Class ;
rdfs:range rdfs:Literal ;
obo:IA0_00080115 "Any relationship between PRO term and ontology or database identifier"~~xsd:string .

obo:PR_Q8VF13

pr_extra:hasRelationshipWith """PR:000012115 ! olfactory receptor 1094;PR:000029032 ! Mus musculus protein;PR:
000012115 ! olfactory receptor 1894;only_1in_taxon NCBITaxon:1009@ ! Mus musculus;has_gene_template MGI:30830928 ! 0lfr1894
(mouse);only_in_taxon NCBITaxon:10890 ! Mus musculus;"""~~xsd:string .

obo:PR_014709
pr_extra:hasRelationshipWith """PR:000017742 ! zinc finger protein 197;PR:000029067 ! Homo sapiens protein;PR:

000017742 ! zinc finger protein 197;only_1in_taxon NCBITaxon:9606 ! Homo sapiens;has_gene_template HGNC:12988 ! ZNF197
(human);only_in_taxon NCBITaxon:9686 ! Homo sapiens;"""~nxsd:string .

Figure 2.7 Example RDF triples in PRO_extra graph in Turtle format

23

The Figure 2.7 is the example of the integration result. “@prefix” is used to
define the namespaces and base URI. There are some special properties uniquely
defined for PRO_extra. The conversion script is developed in Python. The decisive
parameters in script are the regular expression rules. It is very convenient to add or

modify those rules to extract data.

Table 2.1 Statistics of PRO RDF database (PRO version 56.0)

. . Distinct . Distinct
Named Graph Triples Classes = Entities] Properties]
Subjects Objects
<http://purl.obolibrary.org/obo/pr> 10,164,037 8 1,747,528 2034,478 45 2,911,165
<http://pir.georgetown.edu/pro/paf> 94,409 4 8,599 20,709 22 30,781
<https://proconsortium.org/pr_extra> 398,643 1 4 266,912 10 316,530

Table 2.1 shows the number of triples, classes, entities, distinct subjects,
properties, and distinct objects for three named graphs stored in Virtuoso triple store

for PRO RDF database (version 56.0).

24

Chapter 3

VIRTUOSO/SPARQL BASED SEARCH ENGINE

The search function of current PRO website is powered by Apache Lucene
search engine. As a high performance, scalable information retrieval (IR) tool library
[24], Lucene stores the index and data together, therefore Lucene can search the index
rapidly and then the data can return directly without additional retrieval step. In our
new architecture, we propose to build a Virtuoso/SPARQL based search engine by
exploring the full-text search functionality of Virtuoso server to achieve the goals of

data integration and high-performance information retrieval.

3.1 PRO Search Website
We have two applications to demonstrate the usefulness of our SPARQL based
search engine for PRO. One is the PRO text search website. Another one is the

RESTTful APIs that will be described in the Chapter 4.

Figure 3.1 shows the web interface for PRO text search website. The red box
shows the quick links which includes some default filter conditions so that users can
return search results directly for some specific queries. The blue box is main body of
the query input. The search result is displayed as paginated table. The columns shown
in the table can be further customized by the “Display Options”. The search interface

was built with Perl CGI, HTML and Javascript. We re-used the front-end code and

25

replaced its underlying Apache Lucene based search engine with our

Virtuoso/SPARQL based search engine.

Help? Text Search
‘ --Quick Links. v H Clear l (click here for Batch Retrieval page)
\— Protein Ontology
Any field ~| AND v Any field ~ ||+ add Input box
[(search») = del Input box]
Display Options o |
215659 entries | 4314 pages | 50 / page | K&e [Hpapapags > Save Result As: “TABLE

click to show: selected Hierarchy selected OBO / PAF OR related OBO/PAF/Cytoscape \Iiew@

[J prOID PRO Name PRO Term Definition Cats Parent
legory
[]PR:X5MBU1-2& |receptor-type guanylate cyclase gcy-17 isoform b |A receptor-type guanylate cyclase gcy-17 (worm) that is a translation product of |organism- PR:X5M8U1
(worm}) some mRNA giving rise to a protein with the amino acid sequence represented |sequence

by UniProtKB:X5M8U1-2
[]PR:X5M8U1-1%& |receptor-type guanylate cyclase gcy-17 isoform a |A receptor-type guanylate cyclase gcy-17 (worm) that is a translation product of |organism- |PR:XSM8U1

(worm) some MRNA giving rise to a protein with the amino acid sequence represented |sequence
by UniProtkB:X5M8U1-1
[JPR:X5MBU1E |receptor-type guanylate cyclase gcy-17 (worm) A protein that is a translation product of the gcy-17 gene in worm organism- |PR:000036194
gene
[]PR:X5M5N0-9 & |serine/threonine-protein kinase WNK isoform h A serine/threonine-protein kinase WNK (worm) that is a translation product of |organism- [PR:XSMSNO
(worm) some mMRNA giving rise to a protein with the amino acid sequence represented |sequence

by UniProtkB:XSMSNO-9

(] PR:X5M5N0-8& |serine/threonine-protein kinase WNK isoform g A serine/threonine-protein kinase WNK (worm) that is a translation product of [organism- [PR:XSMSNO
(worm) some MRNA giving rise to a protein with the amino acid sequence represented |sequence

Figure 3.1 PRO search website

The Quick Links (Figure 3.2) can be grouped into three sections: Modified
forms, Terms related to disease and Other links. Modified protein forms are
distinguished by their category descriptions. However, everyone has to have keyword
“modification”. For “Terms related to disease”, we currently only have “Saliva
biomarkers” that represents proteins having the database cross-reference of “SALO:
AJ”. We also have other database cross-reference in “Other Links” section, such as
EcoCyc, MGlI, Panther, Reactome and UniProtKB. They have special filter conditions

on ID. ‘Complex’, ’Family Level’, and “Orthisoforms” are also included in this

26

section. These quick links allow user to get specific query results quickly. However,

they can also be combined with the main query interface, which can be used with filter

Heip 1ext searcn
--Quick Links ~| [|Cear (click here for Batch Retrieval page)
'\ Protein Ontology
[~-Modified forms-— i [AND ~ | Any field ~ [+ add input box | |
S Al modified forms [~ delinputbox | |
—] Phosphorylated forms
Display Optiot
Methylzted forms
215659 entries | 4314 pages | 5(Acetylated forms J3 65 > Save Result As: ~TABLE
click to show: selected Hierare |Uiauitinated forms)R related 0BO/PAF/ Cytoscape View)
Glycosylated forms
[l prROID PRO Name -Terms related to disease— PRO Term Definition Category |Parent
[]PR:X5MBUI-2 & |receptor-type Saliva biomarkers ioform b |A receptor-type guanylate cyclase gcy-17 (worm) that is a translation product of |organism- PR:X5M8U1
(worm) _Other Links— some mRNA giving rise to a protein with the amino acid sequence represented |sequence
- by UniProtKB:X5M8U1-2
[JPR:X5M8U1-1%& [receptor-type Family_level ioform a |A receptor-type guanylate cyclase gcy-17 (worm) that is a translation product of |organism- PR:X5M8U1
(worm) Orthoisoforms some mRNA giving rise to a protein with the amino acid sequence represented |sequence
Complex by UniProtkB:X5M8U1-1
[JPR:XSMBULE receptor-type Eoocye worm) A protein that is a translation product of the gcy-17 gene in worm organism PR:000036194
gene
[]PR:X5M5NO-9 & [serine/threon Hel prm h A serine/threonine-protein kinase WNK (worm) that is a translation product of |organism- PR:X5M5NO
(worm) Panther some mRNA giving rise to a protein with the amino acid sequence represented |sequence
Reactome by UniProtkB:X5MSN0-9
[JPR:X5M5NO-8E |serine/threon nrm g A serine/threonine-protein kinase WNK (worm) that is a translation product of |organism- PR:X5M5NO
E— UniProtkB P . P " N —
(worm) some mRNA giving rise to a protein with the amino acid sequence represented |sequence
by UniProtkKB: XSM5NO-8

Figure 3.2 Quick Links for PRO text search website

Figure 3.3 shows the PRO main search interface. User can select the field and
specify the search condition. User can also form Boolean query clause by clicking
“add/del input box™ button for different search fields. In addition to viewing the search
result page by page, user can select a list of PRO IDs to show their Hierarchy or
display their corresponding entries in OBO or PAF format. User can also view the list

of PRO Dls in Cytoscape network view.

27

Help? Text Search

‘ --Quick Links ~| El [Cear (click here for Batch Retrieval page)
= Proten Ontology
__ Any field ~| AND | Any field ~
)]
| Display Options o
215659 entries | 4314 pages | 50/ page | K< [Mpajaags B3 3] Save Result AS: “TABLE

click to show: selected Hierarchy selected OBO / PAF OR related OBO/PAF/Cytoscape Vlew@

[l pro 1D PRO Name PRO Term Definition gory |Parent
[PR:X5M8U1-2% |receptor-type guanylate cyclase gcy-17 isoform b |A receptor-type guanylate cyclase gcy-17 (worm) that is a t ion product of - PR:X5M8U1
(worm) some mMRNA giving rise to a protein with the amino acid sequence represented sequence
by UniProtKB: X5MBU1-2

Figure 3.3 PRO main search interface

3.2 SPARQL Syntax

SPARQL has many advantages [25]. First, the level of standardization of
implementations using RDF and SPARQL is much higher than SQL. It's possible to
swap out one triple store for another easily. Second, SPARQL is expressive. It is much
easier to model complex data in RDF than in SQL, and finally, it is easier to do things

like LEFT JOINSs (called OPTIONAL) in SPARQL.

28

prefix declarations
PREFIX obo: <...>

result clause

SELECT ...
dataset definition
FROM <.__>

FROM NAMED <...>
query pattern
WHERE {...}

query modifiers
GROUP BY ...
ORDER BY ...

LIMIT ...

OFFSET ...

VALUES ...

Figure 3.4 Basic structure of SPARQL query

SPARQL mainly consists of five components structurally. Except for the query
modifiers, the rest of components are essential in SPARQL query. The prefix
declaration is used to declare the namespaces which have included the stated entity
and relationships. The result clause is for identifying what information to return from
the query. Dataset definition is used to state what RDF graph(s) are being queried. It
also can be seen as the range of search. The query pattern is the main body of
SPARQL query. It shows the triple (graph) patterns people are searching in the query

dataset and the matched result will be restricted by the result clause. The query

29

modifier has many functions such as slicing, ordering, and otherwise rearranging
query results.

There are three RDF Terms in SPARQL syntax: the URI, the literal value and
the variable. The URI and the literal are the basic type in the SPARQL and RDF.
Variable represents any unknown thing in the triple pattern and the actual value can be
projected in the result clause.

There are some special key words for different functions. The keyword
“FILTER” is a restriction on solutions over the whole group in which the filter appears
and helps people searching result more accurately. Another keyword is “OPTIONAL”,
which allows additional patterns to extend the solution. Because there is no null value
in the SPARQL, this keyword is designed for matching additional patterns that may
extend the solution. It can allow information to be added to the solution where the
information is available, but do not reject the solution because some parts of the query
pattern do not match. We can use keyword “UNION” to combine graph patterns so
that one of several alternative graph patterns may match. If more than one of the
alternatives matches, all the possible pattern solutions are found. The last one is
“GRAPH”. When querying a collection of graphs, the GRAPH keyword is used to
match patterns against named graphs. The use of GRAPH changes the active graph for
matching graph patterns within that part of the query. Outside the use of GRAPH,

matching is done using the default graph.

3.3 SPARQL Query Library for PRO
The SPARQL query for each field in this graphic interface needs to be built

first. As shown in the example SPARQL query for PRO field search (Figure 3.5). The

30

red color codes show the triple patterns related to PRO term definition in Turtle format.
The two cells on the right are its corresponding SPARQL queries. One for all PRO

terms, another one for specified PRO terms.

The SPARQL Query for fields

Field Example Retrieval Query

PRO_DEF_TXT | obo:PR_000000001 | PREFIX obo: PREFIX obo:

(pro term obo:IAO 0000115 | <http:/purl.obolibrary.org/obo/> <http://purl.obolibrary.org/obo/>

definition) "An amino acid PREFIX rdfs: PREFIX rdfs:
chain that is <http://www.w3.0rg/2000/01/rdf-schema#> <http://www.w3.0rg/2000/01/rdf-schema#>
produced de novo PREFIX obolnOwl: PREFIX obolnOwl:
by <http://www.geneontology.org/formats/oboln | <http://www.geneontology.org/formats/oboln
ribosome-mediated | Owl#> Owl#>
translation of a
genetically-encoded | SELECT ?PRO_term ?PRO_name SELECT ?PRO_term ?PRO_name
mRNA.""xsd:string | 7PRO_ID ?PRO_DEF ?PRO_ID ?PRC_DEF

FROM <http://purl.obolibrary.org/obo/pr> FROM <http://purl.obolibrary.org/obo/pr>

WHERE WHERE
{
?PRO_term rdfs:label ?_PRO_name . ?PRO_term rdfs:label ?_PRO_name .
?PRO_term obolnOwl:id ?_PRO_ID . ?PRO_term obolnOwl:id ?_PRO_ID .
?PRO_term obo:lIAO_0000115 ?PRO_term obo:lIAO_0000115
?_PRO_DEF . ?_PRO_DEF .
BIND(str(?_PRO_name) as ?PRO_name) . | BIND(str(?_PRO_name) as ?PRO_name) .
BIND(str(?_PRQ_ID) as ?PRO_ID) . BIND(str(?_PRO_ID) as ?PRO_ID).
BIND(str(?_PRQO_DEF) as ?PRO_DEF). BIND(str(?_PRO_DEF) as ?PRO_DEF).
} VALUES ?variable {"PR:X5M8U1"} .

FILTER(regex(?PRO _ID,?variable)) .
}

Figure 3.5 Example SPARQL query for PRO field search

Because there are only three namespaces that are used in this example query,
only three abbreviations are stated in PREFIX section. The line starting from SELECT
is the result clause in the query. Depending on the field searched, user can select any
related field they want to get the value from. The example is to query the definition of
protein, so the basic requirement is the URI, name, ID and definition of a protein.

After the dataset clause, three triple patterns are listed in the query patterns. In this

31

example, it is mostly basic patterns without any special keyword. The keyword “BIND”
IS just for getting only the literal portion and removing the URL from a variable. There
are two steps involved. The first step is to create a variable to hold the value entered
by user. This part is implemented by keyword “VALUES”, In SPARQL language, it is
used for assigning a value to a variable. In Figure 3.5, the value “PR:X5M8U1” was
given to the variable, “?variable”. The next step is to filter it with specified condition
using the keyword “FILTER” introduced above. In the example, the combination of
“FILTER” and “regex” is used to filter the value in the field of “PRO ID” with regular
expression search. According to the field selected and value entered by the users, it
will only work for one field. On PRO search interface, there are 26 fields. User can
select multiple fields and construct Boolean clause query using operators “NOT”,
“AND” and “OR”. To deal with this, a SPARQL query is split into different code
snippets with respect to their corresponding fields and stored in a lookup table
(Dictionary in Python). Based on the user input, different query snippets are combined

dynamically to construct a complete SPARQL query.

3.4 Performance Evaluation

We conducted performance evaluation using CURL command to record the
query response times of 10 queries against Apache Lucene based and
Virtuoso/SPARQL based search engines of PRO database. Each query was repeated

10 times for each search engine (Figure 3.6).

32

Average Response Time

2.5

1
°‘ II | I | .
; U mn B ER m=m

Any relati Gene EcocyclD Parent Ontology Modified

N

Response Time(s)
=
w

v

Any Fields Comment Modifier Iso_form

onship form

M Virtuoso/SPARQL 2.302 0.928 0.296 1.538 1.127 0.183 1.888 0.331 0.257 0.202
M Apache Lucene 2.386 0.581 0.777 1.505 1.029 0.211 1.141 0.864 0.627 0.1997
Source Field

HVirtuoso/SPARQL M Apache Lucene

Figure 3.6 Average response time of 10 search queries

In Figure 3.6, there are 10 different fields. For example, “Ecocyc ID”,” PRISF
ID”,” PMID” and “UniProtKB ID”. They have same data type and even similar triple
pattern so there is only “Ecocyc ID” chosen as the sample in the performance test.
When the property is the literal value, the efficiency of searching is similar and
sometime better. In this test, these fields include the “Comment”, “Any relationship”,
“Gene name” and “Ecocyc ID”. The annotation is the delegate of this kind of variable.
In the chart, the field “Modifier” and “Ontology ID” were chosen as the property
sample for Annotation. They all have a good performance and are better than the
performance of Apache Lucene based search engine. In addition, the field “Iso-formed”

and “Modified-form”, which belong to the PAF source, have a similar performance.

33

As shown in the chart, for fields “Parent”, the response time is increased significantly.
Those are related to the complexity of graph patterns to match or whether we have
alternative patterns to match. Overall, Virtuoso/SPARQL based search engine
achieved comparable performance with respect to Apache Lucene based search engine.

The details of performance evaluation can be found in Appendix A.

34

Chapter 4

RESTFUL API

4.1 API Design

PRO API design (Figure 4.1) was motivated by PRO text search website and
PRO manual curation guide website URI [26]. The API specification was designed
using Swagger editor (https://editor.swagger.io/) based on Open API (formerly known
as Swagger) Specification 3. Swagger Ul was used to visualize and interact with the
APT’s resources automatically generated from API specifications. The API is currently

accessible at the referenced website [27].

1 PRO Terms .
Protein Ontology RESTful API™® PRO Terms
Jrp——
5 - B Ipeon/{prold) etum s PO by I
Proteoform Terms i

Iproforss /modiicatio
N [

Iproforas/modi fication/posphory lated A | sochFeld Search feld that newds b be considered ot fter

informalics.udeLaduPRO_APW! v

Iprotorms /noditica

soarchValon any sting or'rul” o ot nul®
/protorms/nod!
PRO Terms
Iprot 106/ubiquitinated Mubrrs b bl o gt o frma
Proteoform Terms L
L T e p——r—
Protein Evolutionary Terms
Iprotoras/ozthotsotors Nars b st b showPROTemDelton =5
oo - ~
Protein Complex Terms
Irotoras/orthonodtorn s
showCategory
Database Cross-references Josluas e
/proforas/sequence s il egare o ;
PRO Annotation File A Toabat
proforas/orguni sa-Hequence s i opw s s ™
BO Fil ¢
08O Flle Protein Evolutionary Terms
howhn =
Hierarchy Iproavos/aaily e el eyl i . ey
L T T e—— showhnyRoltonhp ™
Modols o
/prooY0s /organisn-qane Aeusne s it ol cgari gurs ol ot :
Aol

Figure 4.1 PRO RESTful APIs and Swagger Ul interface

35

The PRO RESTful APIs include 8 API operation groups (PRO Terms,
Proteform Terms, Protein Evolutionary Terms, Protein Complex Terms, Database
Cross-references, PRO Annotation File, OBO File, Hierarchy) and 34 access paths.
The description of each access path and its functionality can be found in Appendix B.
The core model of PRO APIs is PRO term, which consists of a list of attributes
associated with a given PRO term (Figure 4.2). For example, PRO ID, protein name,
term definition, category etc. The PRO RESTful APIs only support GET method,

which is the read-only operation. The API response can be in either JSON or XML

format.
PROTerm v ¢
i S - Annotation v {
e P modifier string
The PED name. l‘elation str‘ing
P string ontologyID string
The PRO term definition. ontologyTerm string
o ST relativeTo string
The PRO term category. interactionWith string
q evidence -
annotation v [Annotation > {...}] Evidence » {eoal;
anyRalationship S ncbiTaxonId integer
. [string] inferredFrom .
ecoCycID string v [str:l.ng]
geneName string
hgneID . }
v [string]
mgilID .
v [string]
orthoIsoform X
v [string]
orthoModifiedForm ! [string] .
pantherID string EVIdence \4 {
paraent X
+ '
pirsf ctrirg evidenceSource ,
pmID string v [strlng]
=pAe v [string] . .
reactoned o Lotrin evidenceCode string
gl
uniprotKBID X
v [string] }

Figure 4.2 The data structure definition of PRO term

36

4.2 APl Implementation

The PRO RESTful APIs are implemented in Python (version 2.7.15rcl1) and
Django-REST framework (version 1.11.15). The first step in APl implementation is to
build python classes for holding both the input parameters and query results. They are
Models in terms of Django-REST framework. One reason we choose it as the develop
tool is its extensive documentation and great community support. Another reason is
that internationally recognized companies including Mozilla, Red Hat, Heroku, and

Eventbrite, so it should have a trustworthy reliability. [28]

class Search(mod 1):

Search_choices [("All Fiel ","Any relationship"), ("Category", "Category"),("Child","Child"),
search_field models. rFi. 1 t 5 1d*,c S Search_choices)

search_value = models. m 2 L True, he text "Search Value - Can be any string or 'null' or 'not n
show_pro_name = models

show_pro_definition

show_category = models

show_parent = models.B:

show_annotation - models.Bo

show_relationships

show_child = models.

show_ecocycid

show_genename

show_hgncid

show_mgiid .Bol

show_ortho_isoform= mo

show_ortho_modified = models.B:e

show_pantherid = models.Bool

show pirsfid models.Bool

show_pmid = models.Boo

show_reactomeid = mode

show_uniprotkbid = models.Bo
offset model 1 t he number of items to skip before starting to collect the result set.")
limit models = 50, he t he numbers of items to return.")

Figure 4.3 Python class for search parameters

Figure 4.3 shows the python class for search parameters. There are 22
parameters in this model. The parameter “search field” is for the field the search is

against. The “search_value” is the value for the specific field which can be a number

37

or literal value. When the value of parameter “search value” is blank, which is the
default value, or not null, it will match any PRO terms with this search field property.
If the value is null, the result will return PRO terms without such search field property.
The parameter “offset” and “limit” are used for paginating the result to improve
performance. The Boolean valued show field parameters simulated the “Display
Options” of the PRO text search website. If a show field parameter is set to be True,
the value of that field will be included in the returned query result. By default, the
name, definition, category and parent of a PRO term are set to be True. The rest of the

show field parameters are set to be False.

class Retrieval(models.Model):
proID = models.CharField(max length 20)
show pro name = models.BooleanField(default = True)
show pro definition = models.BooleanField(default = True)
show category = models.BooleanField(default = True)
show parent = models.BooleanField(default = True)
show annotation = models.BooleanField(default = False)
show relationships = models.BooleanField(default = False)
show child = models.BooleanField(default = False)
show ecocycid models.BooleanField(default False)
show genename = models.BooleanField(default = False)
show hgncid = models.BooleanField(default = False)
show mgiid models.BooleanField(default False)
show ortho isoform= models.BooleanField(default = False)
show ortho modified = models.BooleanField(default = False)
show pantherid = models.BooleanField(default = False)
show pirsfid = models.BooleanField(default = False)
show pmid = models.BooleanField(default = False)
show reactomeid = models.BooleanField(default = False)
show uniprotkbid = models.BooleanField(default = False)

38

Figure 4.4 Python class for retrieval parameters

Figure 4.4 shows the python class for retrieval parameters. In comparison with
the class for search parameters, the class for retrieval parameters is simpler. Other than
the show field parameters, it only has one parameter, the “prold”. The value of this
parameter cannot be blank, so user must input a part or complete valid PRO term ID.
It has no search field and search value parameters. This class is mainly for retrieving

information about a specific PRO term.

Next important component is Views. Many of the functionalities of the API

services are implemented as functions in Views.

[Receiving the URI from Controller }

O)

Decode the Request URI and get Combining

parameters from URI. SPARQL
QUERY

depend on
parameters.
Send to
Endpoint and
get the results
by many
python coding.

Use the predefined Models to save
parameters in order to reuse them

39

Figure 4.5 Flow chart of function in Views

From the Figure 4.5, there are four parts in the flow chart of Views function.
The information encoded in the URL needs to be extracted and processed. As the
bridge between other components, there is also a function related to rendering the

result to user.

api view(['GET'])
renderer classes((JSONRenderer,XMLRenderer))
request) :

def eqal(qua,res):
qua e
= "true":
qua = True
res "false":
qua = False

ﬁua int(res)
inform = request.GET
argu = defaultdict(lambda:-1)

k inform.iterkeys():
k "searchField" k "searchValue":

argulk] inform[k]

inform[k] "true":
argulk] = True
inform[k] "false":
argul[k] False

argulk] int(inform[k])

argu["searchField"] 1:

argu["searchField"] "Any field"

Search(search field = argu["searchField"],search value= argul"searchValue"],
.save()

sparqlsearc

b.search pre(a)

sort(c)

Response(d)

Figure 4.6 The layout of function definition in Views

40

The function starts with some decorators as shown in the yellow box of Figure
4.6. “@api_view([‘GET’]) indicates that it is for handling HTTP GET method request.
“@render_classes (JSONRenderer, XMLRenderer)) indicates that the HTTP response
can be rendered in either JSON or XML format depending on how the Accept format
header was set by the user client. By default, JSON response will be generated if user

client didn’t specify any Accept format.

The code snippets in blue box of Figure 4.6 processes request parameters.
There are different types of request parameters. One type of parameters shows
searching for a field with specified value. User can use “null” or “not null” as the
search field value. Display options parameter determines whether specified field will
be queried and become part of the response rendered to the user. So, if a show field is
set to be “True” that means the value of that field will be included in the rendered
response, “False” means the value of that field will be excluded. Another kind of
parameter is used for paginating the result to improve the performance such as “limit”
and “offset”. The code snippet in green box does the search against SPARQL endpoint

and generates the output.

41

a.search_field erac W "Modifier" a.search_field “Ontology ID" a.search_field
anno,annolist= b.search anno(a,"")
count

a.show _annotation

X annoli

count
xi result.iterkeys():
res.append(result[xi])
res

Xi anno.iterke
aft(a,anno[xi][xo0],"")
eys():
result[count] [ki] = main[k][ki]
count
result[xi]["annotation"] = anno[xi]

res.append(result[xi])
res

main - b. main(a,"")
a.show annotatio: f 0
xi main.iterkeys():
res.append(main[xi])
res

xi main.iterkeys():
X0 main[xi].iterkeys():

o fo X0:

anno,annolist = b.search anno aft(a,main[xi][xo],"")

an - []
ai anno. i ():
an.append(anno[a

result[xi] ["annotation"] an

result[xi] [xo] = main[xi][xo]
res.append(result[xi])
]

Figure 4.7 Function for constructing SPARQL query dynamically

The search functions in Views are organized into many files according to the
search field. In general, they are two steps in the search function. The first step is to
construct the SPARQL query based on the input parameter. There are two core
functions; one is for searching information in the annotation field, “search_annotation”
and another one is for other fields, “search_main”. As shown in the Figure 4.7, it has

two different conditions. When the field user wants to search is in the field of

42

“annotation”, the “search annotaion” will be called first to get the information and a
list of protein ID based on different conditions will be used to call the function

“search_main” in order to get the complete information about those proteins.

urlpatterns [
admin/', admin.site.urls),
url(r'~pross',views.search, name ‘search'),
]+¢',views.proid, name 'proid'),
s/modifications',views.modification, name 'modification'),

proforms/modification/phosphorylateds’',views.phosphorylated, name 'phosphorylated'),
proforms/modification/methylateds',views.methylated, name 'methylated'),
proforms/modification/acetylateds',views.acetylated, name 'acetylated'),
proforms/modification/ubiquitinateds’',views.ubiquitinated, name 'ubiquitinated'),
proforms/modification/glycosylateds',views.glycosylated, name 'glycosylated'),
proforms/orthoisoforms',views.orthoisoform, name 'orthoisoform'),
proforms/orthomodforms',views.orthomodiform, name ‘orthomodiform'),
proforms/sequences ', views.sequence, name 'sequence'),
proforms/organism-sequences',views.organism sequence,name 'organism sequence'),
proevos/familys',views. family, name 'family'),
proevos/genes',views.gene,name ‘gene'),
proevos/organism-genes',views.organism gene,name 'organism gene'),
procomps/species-specifics',views.complex, name 'complex'),
procomps/species-non-specific$',views.non_complex, name ‘non_complex'),
dbxrefs/EcoCyc ID%',views.EcoCycID,name 'EcoCycID'),
dbxrefs/HGNC ID%',views.HGNCID, name '"HGNCID'),
dbxrefs/MGI_ID$',views.MGIID, name 'MGIID'),
dbxrefs/Ontology ID%',views.OntologyID,name 'OntologyID'),
dbxrefs/PANTHER ID%',views.PANTHERID, name 'PANTHERID'),
dbxrefs/PIRSF_IDS',views.PIRSFID, name 'PIRSFID'),
dbxrefs/PMID<',views.PMID, name 'PMID'),
dbxrefs/Reactome ID%',views.ReactomelID, name '‘ReactomelID'),
dbxrefs/NCBITaxon_IDS$',views.TaxonID,name 'TaxonID'),
dbxrefs/UniProtKB ID¢',views.UniProtKBID, name 'UniProtkKBID'),
paf/[\- ',views.annotation, name ‘annotation'),
dag/parent/[\-/]+%"',views.parent, name 'parent'),
dag/ancestor/[\]+%$",views.ancestor, name 'ancestor'),
dag/children/]+4',views.child, name ‘child"),
dag/descendant/ [\ :]1+%5",views.descendant, name ‘descendant'),
obo/[\- 1] , views.0BO Format, name '0BO Format')

=
r
=
=
r
=
=
r
-
=
=
-
=
=
7
=
=
-
=
=
7
=
=
7
=
=
7
=
=
r
=
=

Figure 4.8 URL patterns defined in the Controller

Controller is the entry point in Django REST framework. Each field in the APl has
their own views function so they also have their own URL patterns. Each line in
Figure 4.8 is a URL pattern and must be separated by colon. We use the parameter

“name” and views function name to distinguish and identify them. When user enters a

43

URL into browser, Django will match it against the list. If this pattern is not in the list,

the server will return a error to promote user to check the URL.

Response body

"category”: "gene”,
“"termDef": "A protein that is a translation product of the human PSMD12 gene or a 1:1 ortholog thereof.",
"id" 000002178,

": "PR:000000001",
: "26S proteasome non-ATPase regulatory subunit 12"

“category”: "gene",

"termDef": "A protein that is a translation product of the human ADAM12 gene or a 1:1 ortholog thereof.”,
"id": "PR:eeeee3711",

"parent”: "PR:000000001",

"name": "disintegrin and metalloproteinase domain-containing protein 12"

“category”: "gene”,

"termDef": "A protein that is a translation product of the human PSMD1 gene or a 1:1 ortholog thereof.”,
"id": "PR:000002176",

“parent”: "PR:000000001",

"name”: "26S proteasome non-ATPase regulatory subunit 1"

"category”: "gene",
"termDef": "A rhodopsin-like G-protein coupled receptor that is a translation product of the human HTR7 gene or a 1:1 ortholog thereof. The
preferred ligand is 5-hydroxytryptamine (serotonin).”,
d": "PR:0@eee11e3",

Response headers

content-type: application/json

Figure 4.9 An example JSON response from PRO RESTful APIs

The component Template in Django REST framework is just for rendering the
output. JSON is a lightweight data exchange format [29], simple and easy to read and
write. Figure 4.9 shows an example JSON response from PRO RESTful APIs. Each
PRO term is stored in curly braces and square brackets represents the data structure
model mentioned above. If user changes the value of “Annotation” from true to false,
there will be another curly brace in PRO term. As the key-value pair in the dictionary,

the key is the field name and value is the result queried from Virtuoso triple store.

44

Response body

<?xml version="1.0" encoding="utf-8"?>
<root>
<list-item>
<category>gene</category>
<termDef>A protein that is a translation product of the human PSMD12 gene or a 1:1 ortholog thereof.</termDef>
<id>PR:000002178</id>
<parent>PR:000000001</parent>
<name>26S proteasome non-ATPase regulatory subunit 12</name>
</list-item>
<list-item>
<category>gene</category>
<termDef>A protein that is a translation product of the human ADAM12 gene or a 1:1 ortholog thereof.</termDef>
<id>PR:000003711</id>
<parent>PR:000000001</parent>
<name>disintegrin and metalloproteinase domain-containing protein 12</name>
</list-item>
<list-item>
<category>gene</category>
<termDef>A protein that is a translation product of the human PSMD1 gene or a 1:1 ortholog thereof.</termDef>
<id>PR:000002176</id>
<parent>PR:000000001</parent>
<name>26S proteasome non-ATPase regulatory subunit 1</name>
</list-item>
<list-item>
<category>gene</category>
<termDef>A rhodopsin-like G-protein coupled receptor that is a translation product of the human HTR7 gene or a 1:1 ortholog thereof. The Download
preferred ligand is 5-hydroxytryptamine (serotonin).</termDef>

<id>PR:000001183</id>

Response headers

content-type: application/xml; charset=utf-8

Figure 4.10 An example XML response from PRO RESTful APIs

XML is a markup language used to encode data or documents [30]. The format
of XML has strict standards. The reason PRO RESTful APIs also support rendering
XML output is because XML readers and writers have been developed for a variety of

programming languages.

4.3 Use Case

The REST services provide a flexible interface into multiple aspects of PRO
term. In the PRO, the UniProtKB is used to provide the formal definition of protein
[31] and there are also some other external databases that are connected to PRO
identifiers by the mapping of accessions. RESTful API can help user finding the

related information about a protein, like proteoforms, complexes, hierarchy and

45

annotations. For example, we can get information for the gene level protein class
BUB1B (PR:000004855) and its subclasses using APIs.

User can start from “Search PRO terms” API by specifying the
“PRO_term_definition” field and entering search value “BUBI1B” (Figure 4.11) to get

a list of PRO terms as shown in Figure 4.12.

PRO Terms v

/pros Search PRO terms.

Gets a list of PRO terms and associated information.

Parameters

Name Description

searchField Search field that needs to be considered for filter
string

(query) PRO_term_defintion ~

searchValue any string or "null" or "not null"

string

(query) BUB1B

Figure 4.11 Inputs to “Search PRO terms” API.

46

Curl

curl -X GET "https://research.bioinformatics.udel.edu/PRO_API/V1/pros?
searchField=PRO_te: lefintion&searchValue=BUB1B&showPROName=truekshowPROTermDefinition=trus .owCategory=trueishowParent=truesshowAnnotation=false&show
AnyRelationship=falseishowChild=false&showEcoCycID=falsesshowGeneName=fal, howHGNCID=false&showMGIID=fal, owOrthoIsoforms se&showOrthoModifiedFor

5
m=false&showPANTEERID=falsekshowPIRSFID=falseishowPMID=falsesshowReactomeID=falseishowlUniProtKBID=falsestOffset=04Limit=50" -B "accept: application/json"

Request URL

https://research.bioinformatics.udel.edu/PRO_API/V1/pros?

searchField=PRO_term defintion&searchValue=BUB1B&showPROName=true&showPROTermDefinition=truesshowCategory=trueishowParent=truesshowhAnnotation=false&show
AnyRelationship=false&showChild=false&showEcoCycID=falsesshowGe: lame=£alsesshowHGNCID=falsesshowdGI ID=falsesshowOrthoIsoform=falsesshowOrthoModif.
Form=false&showPANTHERID=falseishowPIRSFID=falsekshowPMID=fa owReactomeID=falsesshowlniProtKBID=falses0f feet=05Limit=50

Server response

Code

200

Gégene9’

Details

Response body

"id": "PR1000035579",
"name": "BUB1liunphosphoBUB1S complex (humanm)®,
"termDef": "A BUB1:BUB1B complex that contains the unphosphorylated form of BUB1B, and whose components are encoded in the genome of hu-

O
“category”: "organism-complex”,
“parent”: "PR:000035578"

*id": "HGNC:1149",
"name”: "BUB1B (human)”,
ermDef": "A protein coding geme BUB1B in human.”,
egory”: "external”,
parent”: "80:0001217"

"id": "PR:000004854",

"name": "mitotic checkpoint serine/threonine-protein kinase BUBL",

"termDef": "A BUB1/BUB1B protein that is a tramslation product of the human BUB1 gene or a 1:1 ortholog thereof.”,
.egory”: "gene",
ent": "PR:000035665"

"id": "PR1000004855",

"name”: "mitotic checkpoint serine/threonime-protein kinase BUB1 beta”,

"termDef": "A BUBL/BUB1B protein that is a translation product of the human BUBIB gene or a 1:1 ortholog thereof.",
"category”: "geme",

Figure 4.12 A list of PRO_terms returned by “Search PRO terms” APIL.

From the returned PRO terms, we can see “PR:000004855” has the category of

. We can use “PR:000004855” as input to the “Parent” field of “Organism-gene”

API (Figure 4.13) to get a list of organism specific PRO terms as the subclasses of

“PR:000004855” (Figure 4.14).

/proevos/organism-gene Retums a list of organism-gene level protein terms.

Gets a list of organism-gene level protein terms and associated information.

Name Description

searchField Search field that needs to be considered for filter
string

(query) Parent -]

searchValue any string or "null" or "not null"

string

(query)

PR:000004855

Figure 4.13 Inputs to “Search organism-gene” APL

47

Curl

curl -X GET "https://research.bioinformatics.udel.edu/PRO_API/V1/proevos/organisn-gene?
searchField=ParentssearchValue=PRi3AD00004855ks howPROName=t rue&showPROTermDefinition=truekshowCategory=trueishowParent=truekshowAnnotation=falsekshowhny

Relationship=false&showChild=falsekshowEcoCycID=falsesshowGenelame=falsesshowHGNCID=falsekshowGIID=falsekshowOrthol soform=FalsesshoworthoModifisdForm=><
alse&showPANTHERID=false&showPIRSFID=falsesshowPMID=falsesshowReactomeID=falsesshowlniProtKBID=falsesOffset=08Limit=50" -H "accept: application/json”

Request URL

jhowParent=true Annotation=falsekshowAny
owOrtholsoforms: showOrthoModifiedForm=f
ELimit=50

Server response

Code Details

200 Response body
“name”: "mitotic checkpoint serine/threonine-protein kinase BUB1 beta (human)",
“termDef": “A mitotic checkpoint serine/threonine-protein kinase BUB beta that is encoded in the gemome of human.®,
“category”: "organism-gene”,
"parent”: "PR:000004855"

"id": "PRIQBJIGTE",

"name": "mitotic checkpoint serine/threonine-protein kinase BUB1 beta (frog)",

“"termDef": "A mitotic checkpoint serine/threonine-protein kinase BUB1 beta that is encoded in the genome of frog.",
"category”: "organism-gene”,

“parent”: "PR1000004855"

"id": "PR:QBOOD4",

"name”: "mitotic checkpoint serine/threonine-protein kinase BUB1 beta (chicken)",

“termDef": "A mitotic checkpoint serine/threonine-protein kinase BUB1 beta that is emcoded in the genmome of chicken.”,
“category": "organism-gene”,

“parent”: "PR:1000004855"

"id": "PR:Q92180",

"name": "mitotic checkpoint serine/threonine-protein kinase BUB1 beta (mouse)",

"termDef": "A mitotic checkpoint serine/threcnine-protein kinase BUB1 beta that is emcoded in the gemome of mouse.”,
"category”: "organism-gene”,

"parent”: "PR:000004855"

Figure 4.14 A list of organism specific PRO terms as returned by “Search organism-
gene” APL

As shown in Figure 4.14, we find 4 organism specific PRO terms that are subclasses
of “PR:000004855”: PR:060566 (human), PR:Q8JGT8 (frog), PR:Q800D4 (chicken)
and PR:Q9Z1S0 (mouse). Alternatively, we can also use “Search decedents” API to
get all the subclasses of “PR:000004855” and looking for those with category of
“organism-gene” as shown in Figure 4.15 and 4.16 Furthermore, user can also get

PAF annotation (Figure 4.17 and 4.18).

GET /dag/descendant/{prold} Returns direct and indirect children PRO terms by the given PRO ID.

Gets direct and indirect children PRO terms by the given PRO ID and associated information.

—

Name Description

prold * " PROID

string

=2 PR:000004855

48

Figure 4.15 Inputs to “Search decedents” API.

Curl

curl -X GET "https://research.biocinformatics.udel.edu/PRO_API/V1/dag/descendant/PR:0000048557
showPROName=trussshowPROTermDefinition=truesshowCategory=true&showParent=truesshowAnnotation=false&showAnyRelationship=false&showChild=false&showEcoCycl
D=falseishowGeneName=falseishowHGNCID=falseishowMGIID=false! owOrthoIsoform=falseishowOrthoModifiedForm=falsekshowPANTHERID=falseishowPIRSFID=false&sho

wPMID=falseishowReactomeID=false&showlniProtKBID=falseiOffset=0&Limit=50" -H "accept: application/json”

Request URL

https://research.bioinformatics.udel.edu/PRO_API/V1/dag/descendant/PR:0000048557
showPROName=truesshowPROTermDefinition=truesshowCategory=trueishowParent=trueishowhAnnotation=false&showAnyRelationship=false&showChild=falseishowEcoCy-

cID=false&showGeneName=false&showHGNCID=falsesshowNGIID=fal: howOrthoIsoform=falsesshowOrthoModifiedForm=falsekshowPANTEERID=falsesshowPIRSFID=falseis
howPMID=falsekshowReactomeID=falsekshowlUniProtKBID=falsekOffset=04Limit=50

Server response

Code Details

200 Response body

*id": "PR:060566",
“name”: "mitotic checkpoint serine/threonine-protein kinase BUB1 beta (human)”,
“termDef": “A mitotic checkpoint serine/threonine-protein kinase BUB1 beta that is encoded in the genome of human.®,
“"category”: "organism-gene",
"parent”: [
"PR1000004855"
1

"id": "PR108OODA",
"mitotic checkpoint serine/threcnine-protein kinase BUB1 beta (chicken)”,
"termbef”: "A mitotic checkpoint serine/threomine-protein kinase BUB1 beta that is encoded in the genome of chicken.”,
"organism-gens”,

n
“PR:000004855"

"id": "PRi1QBJCTS",
"name”: "mitotic checkpoint serine/threcnine-protein kinase BUB1 beta (frog)”,
"termDef": "A mitotic checkpoint serine/threomine-protein kinase BUB1 beta that is encoded in the gemome of frog.",
"category”: "organism-geme",
"parent”: [
"PR:000004855"
1
}

Resnansa hasdars

Figure 4.16 A list of organism specific PRO terms as returned by “Search decedents”
API.

PRO Annotation File v

_ /paf/{proId} Retuns annotations for the given PRO ID.

Gets annotations for the given PRO ID.

Parameters

Name Description

prold * reree PROID

string

(path) PR:000035430

Figure 4.17 Inputs to “Get PAF annotation” APL

49

curl -X GET "https://research.bioinformatics.udel.edu/PRO_API/V1/paf/PR:000035430" -E "accept: application/json”

Request URL

https://research.bioinformatics.udel.edu/PRO_API/V1/paf/PR1000035430

Server response

Code Details

200 Response body

[
{

“evidence": [

"evidenceCode": "EXP",
"evidenceSource”: "PMID:17998400"
}

1,
"interactionWith": ""
"id": "PR:000035430",
"relativeTo": "http://purl.obolibrary.org/obo/PR_000035425",
“relation": "has_function",
"ontologyID": "GO:0004672",
“"ontologyTerm": "protein kinase activity”,
"modifier": "increased"”,
"inferredFrom": "*
"ncbiTaxonId": ""
}
1

Response headers

content-type: application/json

Figure 4.18 Annotations returned by “Get PAF annotation” API.

Other than Swagger Ul web interface and Curl command, the PRO RESTful
APIs can be invoked by a programming language and executed. Figure 4.19 shows a

Python script executes the search of a PRO term by its id.

import requests, sys

requestURL
="https://research.bioinformatics.udel.edu/PRO_API/V1/pros/PR:000004855?showPROName=true" \
" &showPROTermDefinition=true&showCategory=true&showParent=true&showAnnotation=false" \
"&showAnyRelationship=false&showChild=false&showEcoCycID=false&showGeneName=false" \

" &showHGNCID=false&showMGIID=false&showOrthoIsoform=false&showOrthoModifiedForm=false" \
"&showPANTHERID=false&showPIRSFID=false&showPMID=false&showReactomeID=false&showUniProtKBID=
false"

r = requests.get (requestURL, headers={"Accept":"application/json"})
if not r.ok:

r.raise for status()

sys.exit ()

responseBody = r.text

print (responseBody)

Figure 4.19. Python script executes the search of a PRO term by its id.

50

Chapter 5

DISCUSSION AND FUTURE WORK

The integration of heterogeneous data can significantly reduce the difficulty of
database’s maintenance. In the original version of PRO database, four different types
of databases are used: SQL-L.ite, Oracle, Apache Lucene and Virtuoso. Each database
needs a series of processes to maintenance like checking the schema, models and data
files. The DBAs need to check and update four databases at the same time in order to
make PRO work regularly and smoothly. This often made the DBAs stressful. In
current version of PRO database, there is only one Virtuoso database server. There is
no doubt that the workload for DBA is reduced significantly.

Furthermore, the simplification of databases and data structure can also
improve the query efficiency. As indicated in the performance evaluation presented in
Chapter 3, the new Virtuoso/SPARQL based search engine has comparable
performance with respect to Apache Lucene based search engine. For some queries,
the new one is significant better. The stability of new searching engine is also better
than that of old engine. In addition, the integrity of data is also improved to some
extent. Finally, the PRO RESTful APIs provide programmatic access to PRO database
that can help bioinformatics developer build novel application to use PRO data.

However, there are still some improvements. For example, the SPARQL query
can be further optimized. The SPARQL query library can also be improved. The PRO
entry page and visualization website [32] is still using Oracle database as backend. It

can be modified to use the PRO RESTful APIs as the backend instead. In addition, as

51

the database evolves, more data and fields will be introduced, the SPARQL query

library and RESTful APIs also need to be updated in the future.

52

Chapter 6
CONCLUSION

In conclusion, the semantic web technologies such as RDF and SPARQL etc.
are suitable for data integration. By using RDF, the data is structured and simplified.
Compared to unstructured data, the structured data has a strict standard format and can
simplify the query process and improve efficiency. At the same time, expandability
and flexibility of data are also significantly improved so that we can store data at any
time without having to create new field in the SQL table. This is especially important
for dealing with Big Data.

The thesis presents the integration of heterogeneous data using semantic
web technologies. In addition, it also showed the design and implementation of the
RESTful APIs in detail along with application examples. The thesis aims to provide a
clear description of the heterogeneous data integration process and API construction
process. The thesis can also be used as a reference for APl development in the field of
Bioinformatics.

The Virtuoso/SPARQL powered PRO text search website [33] and the API
documentation website [34] are accessible by the URLSs in the References.

This thesis work has been presented in the 7th Annual Big Data in
Biomedicine Symposium held in Georgetown University, Washington DC on October

26, 2018.

53

10.

REFERENCES

Michelle Cheatham, Catia Pesquita. (2017). The semantic Data
integration. A.Y. Zomaya and S. Sakr (eds.), Handbook of Big Data
Technologies, Springer International Publishing

Berners-Lee, Tim (May 17, 2001). "The Semantic Web" (PDF).
Scientific American. Retrieved October 26, 2018, from
https://pdfs.semanticscholar.org/566¢/1c6bd366b4c9e07fc37eb37277169
0d5ba31.pdf

Tom Heath, Christian Bizer, Synthesis Lectures. (2011) Linked Data:
Evolving the Web into a Global Data Space. Retrieved from
http://linkeddatabook.com/book

Ahmet Soylu, Felix Mdlritscher, and Patrick De Causmaecker. 2012.
“Ubiquitous Web Navigation through Harvesting Embedded Semantic
Data: A Mobile Scenario.” Integrated Computer-Aided Engineering 19
(1): 93-109.

Semantic Web Architecture.(2007).Retrieved October 14, 2018, from :
http://obitko.com/tutorials/ontologies-semantic-web/semantic-web-
architecture.html.

W3C. RDF - Semantic Web Standards. https://www.w3.0rg/RDF/

B. McBride, The Resource Description Framework (RDF) and its
Vocabulary Description Language RDFS, in:The Handbook on
Ontologies in Information Systems, S. Staab,R.Studer(eds.),Springer
Verlag,2003.

"XML and Semantic Web W3C Standards Timeline" (PDF). 2012-02-04.
Retrieved October 26, 2018, from
http://www.dblab.ntua.gr/~bikakis/XMLSemanticWebW3CTimeline.pdf .

W3C. SPARQL 1.1(2013, March 21). Retrieved October 26, 2018, from
https://www.w3.0rg/TR/spargl11-overview/

Segaran, Toby; Evans, Colin; Taylor, Jamie (2009). Programming the
Semantic Web. O Reilly Media, Inc., p. 84. ISBN 978-0-596-15381-6.

54

https://pdfs.semanticscholar.org/566c/1c6bd366b4c9e07fc37eb372771690d5ba31.pdf
https://pdfs.semanticscholar.org/566c/1c6bd366b4c9e07fc37eb372771690d5ba31.pdf
http://linkeddatabook.com/book
http://www.ahmetsoylu.com/wp-content/uploads/2013/10/soylu_ICAE2012.pdf
http://www.ahmetsoylu.com/wp-content/uploads/2013/10/soylu_ICAE2012.pdf
http://www.ahmetsoylu.com/wp-content/uploads/2013/10/soylu_ICAE2012.pdf
http://obitko.com/tutorials/ontologies-semantic-web/semantic-web-architecture.html
http://obitko.com/tutorials/ontologies-semantic-web/semantic-web-architecture.html
https://www.w3.org/RDF/
http://www.dblab.ntua.gr/~bikakis/XMLSemanticWebW3CTimeline.pdf
https://www.w3.org/TR/sparql11-overview/
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-0-596-15381-6

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Jim Rapoza (2006, May 2). "SPARQL Will Make the Web Shine".
eWeek. Retrieved October 26, 2018, from
http://www.eweek.com/development/spargl-will-make-the-web-shine .

Nadine Schuurman, Agnieszka Leszczynski (2008). Ontologies for
Bioinformatics. Bioinform Biol Insights. 2008; 2: 187—-200.

Natale DA, Arighi CN, Blake JA, Bona J, Chen C, Chen SC, Christie KR,
Cowart J, D'Eustachio P, Diehl AD, Drabkin HJ, Duncan WD, Huang H,
Ren J, Ross K, Ruttenberg A, Shamovsky V, Smith B, Wang Q, Zhang J,
El-Sayed A, Wu CH. "Protein Ontology (PRO): enhancing and scaling

up the representation of protein entities.” Nucleic Acids Res. 2017 Jan
4;45(D1): D339-D346. doi: 10.1093/nar/gkw1075. Epub 2016 Nov 28.

“Framework Figure”. (PDF) (2010, April). Retrieved October 26, 2018,
from https://pir.georgetown.edu/pro/documents/framework_figure.pdf.

W3C Semantic Web Activity". World Wide Web Consortium (W3C).
November 7, 2011. Retrieved October 26, 2018.

Fielding, Roy Thomas. Chapter 5: Representational State Transfer
(REST). Architectural Styles and the Design of Network-based Software
Architectures (Ph.D.). University of California, Irvine. 2000.

Erl, Thomas; Carlyle, Benjamin; Pautasso, Cesare; Balasubramanian, Raj
(2012). "5.1". SOA with REST: Principles, Patterns & Constraints for
Building Enterprise Solutions with REST. Upper Saddle River, New
Jersey: Prentice Hall. ISBN 978-0-13-701251-0.

Sayers E. A General Introduction to the E-utilities. In: Entrez
Programming Utilities Help [Internet]. Bethesda (MD): National Center
for Biotechnology Information (US); 2010-. Available
from:https://www.ncbi.nIm.nih.gov/books/NBK25497/

Veronique Greenwood. (2016, April 26). Life’s Blueprints. Retrieval
October 26, 2018, from https://www.quantamagazine.org/one-gene-
many-proteins-20160426/

Linux Foundation wants to extend Swagger in connected buildings™.
(2015, November 6). Retrieval October 26, 2018, from
http://www.businesscloudnews.com/2015/11/06/linux-foundation-wants-
to-extend-swagger-in-connected-buildings/ .

Adrian Holovaty, Jacob Kaplan-Moss; et al. The Django Book.

55

http://www.eweek.com/development/sparql-will-make-the-web-shine
https://pir.georgetown.edu/pro/documents/framework_figure.pdf
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-0-13-701251-0
https://www.ncbi.nlm.nih.gov/books/NBK25497/
https://www.quantamagazine.org/one-gene-many-proteins-20160426/
https://www.quantamagazine.org/one-gene-many-proteins-20160426/
http://www.businesscloudnews.com/2015/11/06/linux-foundation-wants-to-extend-swagger-in-connected-buildings/
http://www.businesscloudnews.com/2015/11/06/linux-foundation-wants-to-extend-swagger-in-connected-buildings/
http://www.djangobook.com/en/2.0/chapter05.html#the-mtv-or-mvc-development-pattern

22.

23.

24,

25.

26.

27.

28.

29.
30.

31.

M. Lenzerini. Data integration: a theoretical perspective. In Proceedings
of the 21st ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, pp. 233-246, 2002.

"RDF 1.1 Turtle - Terse RDF Triple Language Turtle". World Wide Web
Consortium (W3C). (2014, February 25). Retrieved October 26, 2018,
from http://www.w3.org/TR/turtle/ .

"Lucene Implementations™. apache.org. Archived from the original on 6
October 2015. Retrieved October 26, 2018, from
https://web.archive.org/web/20151006021755/http://wiki.apache.org/luce
ne-java/Lucenelmplementations .

25. ALISDAIR OWENS, “An Investigation into Improving RDF Store
Performance an Investigation into Improving RDF Store Performance”,
PHD Thesis, UNIVERSITY OF SOUTHAMPTON, 2009.

https://pirl7.georgetown.edu/confluence/display/PROWIKI/PRO+Ontolo
gy+Manual+Curation+Guideline

https://beadle.dbi.udel.edu/pro/pro_api.shtml

Django REST Framework (2011) Retrieved October 26, 2018, from
https://www.django-rest-framework.org/# .

Introducing JSON. Retrieved October 26, 2018, from http://json.org/ .

Bikakis N, Tsinaraki C, Gioldasis N, Stavrakantonakis I, Christodoulakis
S. "The XML and Semantic Web Worlds: Technologies, Interoperability
and Integration. A survey of the State of the Art" In Semantic
Hyper/Multimedia Adaptation: Schemes and Applications, Springer 2013.

atale DA, Arighi CN, Blake JA, Bona J, Chen C, Chen SC, Christie KR,
Cowart J, D'Eustachio P, Diehl AD, Drabkin HJ, Duncan WD, Huang H,
Ren J, Ross K, Ruttenberg A, Shamovsky V, Smith B, Wang Q, Zhang J,
El-Sayed A, Wu CH. "Protein Ontology (PRO): enhancing and scaling
up the representation of protein entities.” Nucleic Acids Res. 2017 Jan
4;45(D1): D339-D346. doi: 10.1093/nar/gkw1075. Epub 2016 Nov 28.

56

http://www.w3.org/TR/turtle/
https://web.archive.org/web/20151006021755/http:/wiki.apache.org/lucene-java/LuceneImplementations
https://web.archive.org/web/20151006021755/http:/wiki.apache.org/lucene-java/LuceneImplementations
https://www.django-rest-framework.org/
http://json.org/

32.

33.

34.

35.

Natale DA, Arighi CN, Blake JA, Bult CJ, Christie KR, Cowart J,
D'Eustachio P, Diehl AD, Drabkin HJ, Helfer O, Huang H, Masci AM,
Ren J, Roberts NV, Ross K, Ruttenberg A, Shamovsky V, Smith B,
Yerramalla MS, Zhang J, AlJanahi A, Celen I, Gan C, Lv M, Schuster-
Lezell E, Wu CH. "Protein Ontology: a controlled structured network of
protein entities.” Nucleic Acids Res. 2014, 42(Database issue): D415-21.
doi: 10.1093/nar/gkt1173.

The PRO entry page and visualization website, Retrieved October 26,
2018, from https://research.bioinformatics.udel.edu/pro/entry/[PRO_ID]/

PRO search website, Retrieved October 26, 2018, from
https://beadle.dbi.udel.edu/cgi-bin/pro/textsearch_spargl?search=1

The API documentation website, Retrieved October 26, 2018, from
https://beadle.dbi.udel.edu/pro/pro_api.shtml

57

Appendix A

COMPARSION OF PERFORMANCE IN NEW/OLD DATABASE

SEARCH SEARCH MINIMUM [MAXIMUM | AVERAGE | STANDARD
FIELD ENGINE TIME(s) TIME(S) TIME(s) |PEVITATION
V”tuogolfspAR 2.277 2.354 2.302 0.010
Any Fields
Apache Lucene 1.551 5.344 2.386 0.988
VIroso/SPAR | g, 1.048 0.928 0.043
QL
Comment
Apache Lucene 0.252 1.329 0.581 0.495
V'”uogolfSPAR 0.277 0.313 0.296 0.037
Modifier
Apache Lucene 0.296 1.368 0.777 0.511
| VIruoso/SPAR | 4q, 1.721 1,538 0.066
Any_relationshi QL
p
Apache Lucene 0.460 2.959 1.505 0.884
VIruoso/SPAR |4 114 1.158 1127 0.013
QL
Gene name
Apache Lucene 0.302 2.707 1.029 0.875
Virtuoso/SPAR 0.168 0.205 0.183 0.013
QL
Ecocyc ID
Apache Lucene 0.202 0.221 0.211 0.007

58

Virtuoso/SPAR

1.881 1.893 1.888 0.004
QL
Parent
Apache Lucene 0.390 2.866 1.041 0.825
V'”UO(SDOKSPAR 0.305 0.352 0.331 0.014
Ontology ID
Apache Lucene 0.278 1.369 0.864 0.403
V'rtuogolfSPAR 0.243 0.282 0.257 0.011
Iso_form
Apache Lucene 0.236 2.004 0.627 0.627
V”tuogolfspAR 0.180 0.234 0.202 0.015
Modified_form

Apache Lucene 0.184 0.278 0.1997 0.029

59

Appendix B

CATEGORY OF PRO API

API
OPERATION PATH DESCRIPTION
GROUP
/ Gets a list of PRO terms and
pros ; : .
associated information.
PRO
TERMS Gets one or more PRO terms
/pros/{prolD} and associated information.
by ID.
Gets a list of modified protein
/proforms/modification forms and associated
information.
Gets a list of phosphorylated
/proforms/modification/phosphorylated protein forms and associated
information.
Gets a list of methylated
/proforms/modification/methylated protein forms and associated
Proteoform information.
Terms

/proforms/modification/acetylated

Gets a list of acetylated
protein forms and associated
information.

/proforms/modification/ubiquitinated

Gets a list of ubiquitinated
protein forms and associated
information.

/proforms/modification/glycosylated

Gets a list of glycosylated
protein forms and associated
information.

60

/proforms/orthoisoform

Gets a list of ortho-
isoform protein forms and
associated information.

/proforms/orthomodform

Gets a list of ortho-modform
protein forms and associated
information.

/proforms/sequence

Gets a list of sequence level
protein forms and associated
information.

/proforms/organism-sequence

Gets a list of organism-
sequence level protein forms
and associated information.

/proevos/family

Gets a list of family level
protein terms and associated

information.
Protein Gets a list of gene level
Evolutionary | /proevos/gene protein terms and associated
Terms information.
Gets a list of organism-gene
/proevos/organism-gene level protein terms and
associated information.
Gets a list of species specific
/procomps/species-specific protein complex terms and
Protein associated information.
C_(Izmplex Gets a list of species non-
orms /procomps/species-non-specific specific protein complex
P pSISp P terms and associated
information.
Gets a list of PRO terms with
EcoCyC ID as cross-
Database /dbxrefs/EcoCyc_ID reference and associated
Cross- information.
references

/dbxrefs/HGNC _ID

Gets a list of PRO terms with
HGNC ID as cross-reference

61

and associated information.

/dbxrefs/MGI_ID

Gets a list of PRO terms with
MGI ID as cross-reference
and associated information.

/dbxrefs/Ontology_ID

Gets a list of PRO terms with
Ontology ID as cross-
reference and associated
information.

/dbxrefss/PANTHER_ID

Gets a list of PRO terms with
PANTHER ID as cross-
reference and associated

information.

/dbxrefs/PIRSF_ID

Gets a list of PRO terms with
PIRSF ID as cross-reference
and associated information.

/dbxrefs/PMID

Gets a list of PRO terms with
PMID as cross-reference and
associated information.

/dbxrefs/Reactome_ID

Gets a list of PRO terms with
Reactome ID as cross-
reference and associated
information.

/dbxrefs/INCBITaxon_ID

Gets a list of PRO terms with
NCBI Taxon ID as cross-
reference and associated

information.

/dbxrefs/UniProtkKB_ID

Gets a list of PRO terms with
UniProtKB ID as cross-
reference and associated

information.

PRO
Annotation
File

/paf/{prold}

Gets annotations for the
given PRO ID.

62

OBO File

/obo/{prold}

Gets PRO term in OBO
format for the given PRO ID.

Hierarchy

/dag/parent/{prold}

Gets direct parent PRO terms
by the given PRO ID and
associated information.

/dag/ancestor/{prold}

Gets direct and indirect
parent PRO terms by the
given PRO ID and associated
information.

/dag/children/{prold}

Gets direct children PRO
terms by the given PRO ID
and associated information.

/dag/descendant/{prold}

Gets direct and indirect
children PRO terms by the
given PRO ID and associated
information.

63

