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ABSTRACT 

As the volume and diversity of data and the desire to share them increase, we 

inevitably encounter the problem of combining heterogeneous data generated from 

many different but related sources and the problem of providing users with a unified 

view of this combined data set. Data integration systems facilitate information access 

and reuse by providing a common access point and a more complete view of the 

available information. A widely adopted system, Semantic Web, provides the requisite 

technologies to make such integration possible: 1) an abstract model for the relational 

graphs: RDF; 2) a query language adapted for the relational graphs: SPARQL; and 3) 

various technologies to characterize the relationships and categorize resources: RDFS, 

OWL etc.  

PRO databases draw on data sources that provide orthology, annotation, and 

mapping information, as well as sequence-related data, including amino acid and 

splice variants and multiple sequence alignments. The PRO website is currently hosted 

in two places: University of Delaware for entry page and visualization, and 

Georgetown University for text search and browse. The dual-site structure requires 

that data files be duplicated and overlapped, thus creating website maintenance issue. 

To streamline the update process and to remove redundancy, we explored simplifying 

the data integration for the PRO database using Semantic Web technology. In this 

process, the heterogeneous data was converted into RDF triples and integrated into a 

Virtuoso RDF triple store. Furthermore, a Virtuoso/SPARQL based search engine for 

the full-scale text search and hierarchy browsing for PRO website was developed. 



 x 

Tests reveal that we achieved similar performance as compared to the Apache Lucene 

based search engine currently being used. We also developed RESTful APIs for 

programmatic access to the PRO database using Open API specification and Django 

REST framework. 

In conclusion, the semantic web technologies such as RDF and SPARQL etc. 

are suitable for data integration. Heterogeneous data in the PRO database are 

structured and simplified by using RDF triples so that search efficiency can be 

improved. In addition, the thesis showed the design and implementation of the 

RESTful APIs in detail along with application examples. The thesis aims to provide a 

clear description of the heterogeneous data integration process and API design and 

implementation process that can be used as a reference in the field of Bioinformatics. 
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Chapter 1 

INTRODUCTION 

Recent rapid development of biotechnology leads to an explosive growth of 

bioinformatics data. However, very often the data are stored in different formats and in 

different databases. The information returned from a single database is usually not 

complete. Therefore, integration of heterogeneous data from different sources is 

necessary. By converting and combining them into a unified semantic model such that 

computer can process and understand to facilitate human-computer and computer-

computer interactions is called the semantic data integration [1]. 

1.1 Semantic Web 

Sir Tim Berners-Lee proposed the concept of “Semantic Web” in Scientific 

American article in 2001 [2]. In that article, he envisioned it as an evolution from the 

World Wide Web to the Semantic Web. The resources on the web are the documents, 

mainly for human consumption. In terms of current technology, it is impossible for 

computer to understand the meaning of the contents in the web documents accurately 

due to the complexity of unstructured data in the documents and lack of background 

knowledge. In 2006, Tim Berners-Lee coined the linked data [3]. It is the principles of 

publishing structured data so that they can be interlinked and more suitable for the 

semantic queries [4]. 
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Figure 1.1 The components of the Semantic Web [5] 

 

Figure 1.1 shows the major components of the Semantic Web. The Syntax 

layer is XML which is the markup language for structured data. The proof component 

is to determine if an answer found on the Semantic Web is correct, and support proof 

generation, exchange, and validation. The URI is used to uniquely identify Semantic 

Web resources and the UNICODE is the default character set used on the Semantic 
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Web. In addition, there are some important components such as RDF, RDFS and 

SPARQL that will be introduced in the following sections. 

1.1.1 RDF 

The Resource Description Framework (RDF) is a framework for expressing 

information about resources [6]. The resources can be almost anything, including 

documents, people, abstract objects. RDF is designed to describe a model to represent 

the web resources. RDF uses the triples in the form of subject–predicate–object to 

make statements about resources. The Subject is a URI identifying the resource. The 

Predicate is a URI indicates the relationship between Subject and Object, and the 

Object is a literal value or URI of another resource related to the Subject. It can be 

represented as a directed-labeled graph (See Figure 1.2). Due to its data-centric 

architecture built upon a standardized model, RDF can exchange information between 

different applications and provide a standard-compliant way for data publication and 

interchange. These make RDF the most suitable framework for data integration. This 

is one of the reasons we use RDF model in this research project. Another reason is that 

RDF provides linked data framework, where heterogeneous data (structured, semi-

structured and unstructured) can be expressed, stored and accessed in the same manner. 

This is made possible because the data structure is expressed through the links within 

the data itself instead of being constrained to a structure imposed by the relational 

database schema. As changes in the data structure occur, they are reflected in the RDF 
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database through changes in the links within the data. Interlinked datasets enable 

cross-dataset queries to be performed using SPARQL.     

 

 

Figure 1.2 RDF triple graph 

 
    

 

Figure 1.3 An example RDF graph for a PRO term of Protein Ontology 
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Figure 1.3 shows an example RDF graph for a PRO term of Protein Ontology. 

An RDF graph consists of nodes and edges. Nodes represent entities/resources (light 

blue nodes), attributes (orange nodes), and edges represent the relationship between 

entities and entities and the relationship between entities and attributes. 

1.1.2 RDF SCHEMA (RDFS) 

Resource Description Framework Schema (RDFS) is an extension vocabulary 

from the basic RDF vocabularies. When the RDF was proposed, people find that there 

are not enough classes and properties to describe the entities and attributes in the real 

world. Therefore, W3C published the RDFS as W3C recommendation in 2004 that is a 

supplement for RDF. 

  

Figure 1.4 The example of RDF Schema 
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As shown in Figure 1.4, RDFS consists of a set of classes with certain 

properties using the RDF extensible knowledge representation data model. In addition, 

RDFS defines properties rely on the classes of sources to which they apply, and 

classes depends on the properties they may have. Through mutual constraints, the 

RDFS can build a more rich and accurate vocabularies for describing resources in 

RDF.  

1.1.3 OWL 

OWL is the Web Ontology Language. As mentioned above, RDFS is 

essentially an extension of the RDF vocabulary. However, people found that the 

expressivity of RDFS was still quite limited, so OWL was proposed [7]. OWL can 

also be seen as an extension of RDFS that provides additional mechanism for defining 

expressive and complex relationships on the Semantic Web. OWL provides a family 

of knowledge representation languages for developing ontologies on the Semantic 

Web.  

1.1.4 SPARQL 

After data are linked and stored on the Semantic Web, user needs a language 

and tool to query, retrieval and manipulate them. In 2008, SPARQL 1.0 was published 

and recommended by W3C [8]. SPARQL stands for SPARQL Protocol and RDF 

Query Language [9]. SPARQL is a RDF query language. SPARQL can retrieve and 
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manipulate data stored in RDF format [10].  It allows users to write queries against 

what can loosely be called "key-value" data and the entire graph is a set of "subject-

predicate-object" triples which is different from relational database. In terms of SQL 

relational database, the RDF can be seen as the table with three columns. Compared to 

noSQL database, the object column in RDF is heterogeneous. For instance, each 

predicate can have many different entries and even can return a collection. SPARQL 

provides a full set of analytic query operations such as JOIN, SORT, AGGREGATE 

where schema is intrinsically part of the data rather than requires a separate schema 

definition [11]. 

1.2 Protein Ontology Database 

The biological ontology is used to describe different conceptual frameworks 

that guide the collection, organization and publication of biological data [12].  

The PRotein Ontology (PRO) [13], the reference ontology for protein entities 

in the OBO (Open Biological and Biomedical Ontologies) Foundry, represents protein 

families, multiple protein forms (proteoforms) arising from single genes, and protein 

complexes (Figure 1.5). In addition to the main ontology file itself (in OBO or OWL 

format), PRO databases draw on data sources that provide orthology, annotation, and 

mapping information, as well as sequence-related data, including amino acid and 

splice variants and multiple sequence alignments. These contribute to the underlying 

data resources to support PRO website by providing PRO entry view, batch retrieval 

and search functionalities. The PRO website is currently hosted in two places: 
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University of Delaware for entry page and visualization, and Georgetown University 

for text search and browse. The dual-site structure requires that data files be duplicated 

and overlapped, thus creating website maintenance issue. 

 

Figure 1.5 The structure of Protein Ontology [14] 

1.2.1 Virtuoso SPARQL server 

 

Virtuoso server is a special purpose-built and optimized database for the 

storage and retrieval of triples via semantic query language [15]. Virtuoso puts triples 

in a single table with the graph URI as a key (Quad Store). In addition to queries, 

triples can be imported/exported using RDF and other formats. Virtuoso server is also 

a SPARQL Service Endpoint. It supports SPARQL 1.1 and provides federated 

SPARQL query-processing for RDF data available on the Web. The latest version is 
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7.2. Virtuoso can reduce the cost of bringing data from different sources and make it 

more convenient to query and retrieval.  

1.3 Application Programming Interface (API) 

In computer science, an application-programming interface (API) is a set of 

subroutine definitions, communication protocols, and tools for building software. A 

good API makes it easier to develop a computer program by providing all the building 

blocks (Wikipedia). Representational State Transfer (REST) is an architectural style 

that defines a set of constraints to be used for creating web services [16]. We choose 

RESTful API to provide programmatic access to PRO RDF database.  Because 

RESTful API has the following advantages [17]. 

1. Client-Server Mode. RESTful API separates user interface concern from the 

data storage concern. It supports developing portable user interface for 

multiple platforms and increasing the scalability of service because the 

components of service is reduced. 

2. Stateless. The request sends from the client must include all the information so 

that the client keeps the complete session state. It also makes debugging easy 

for developer. 

3. Cacheable. The response for a request can be implicitly or explicitly labeled as 

cacheable or non-cacheable. If it is cacheable, the service can cache it and 

reuse it. This feature can reduce the number of interactive connections and 

improve system response speed. 
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4. Layered system. APIs play the middle layer between the server and the client 

to respond to the client's request. The client does not need to care about 

anything other than the component that it interacts with. This not only 

improves the scalability of the system but also simplifies the complexity of the 

system. Because of those nice features, many large technology companies, 

such as Google, Amazon and Twitter, have widely used RESTful APIs. Most 

public bioinformatics resource and databases provides API services. For 

example, EUtilities API system of NCBI and the PSAMM API of 

Computational Molecular Ecology Lab at the University of Rhode Island [18]. 

These APIs can help developers getting results more conveniently and apply 

them into their project or research without rebuilding a big local database. 

Since the Protein Ontology database has been built for bioinformatics 

researchers, we also want to design our own APIs for PRO users and hope to 

make them jobs more productive. 

1.3.1 Python Django Framework 

We used Python Django REST framework to develop RESTful API for our 

Virtuoso/SPARQL search engine-based PRO RDF database. In addition, we used 

several technologies to support our API design. The Open API specification, which is 

also previously called Swagger specification, is an API description format for REST 

APIs. It specifies the machine-readable interfaces and supports describing, producing, 

consuming, and visualizing of RESTful API [19].  We used Swagger Editor, a 
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browser-based editor to write the Open API specifications. We also used Swagger UI 

to render Open API specifications as interactive API documentation [20].  

There are many advantages of Django framework. After more than a decade of 

development and improvement, Django has a wide range of practical use cases and 

comprehensive online documentation. Developers can search online documentation 

for solutions when they encounter problems. In addition, Django comes with a lot of 

tools and functionality common to many applications. It is also very convenient to 

manage the information from a database. There are four important parts of API 

framework: Models, Views, Controllers, Template. Theoretically, Django is an MVC 

framework, but part of the controller that accepts user input is handled by the 

framework itself, so Django is more like Models, Templates, and Views, also called 

MTV mode [21] (See Figure 1.6): 

 

Figure 1.6 The Flow Request and Response in Django Framework 
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M, stands for Model, is the data access layer. This layer handles all 

transactions related to the data: how to access, how to verify validity, what behaviors 

to include, and deal with the relationship between data. 

T, stands for Template, is the presentation layer. This layer handles 

performance-related decisions: How to display in a page or other type of document. 

V, stands for View, is the business logic layer. This layer contains the relevant 

logic for accessing the model and getting the appropriate template. You can think of it 

as a bridge between the model and the template. 

The API call is the process that the controller receives the request from the 

user and passes it to the view to get the data from model and generate the response 

formatted according to the template and returns to the user. 
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Figure 1.7 An example RESTful API 

As shown in Figure 1.7, user inputs a Request URL, the API service returns 

the Response. By adding different renders and information in the request header, the 

response can be rendered in JSON or XML format. 

1.4 Outline of Thesis Work 

The first step is to convert the source data power the current PRO database into 

RDF triples. We study the content and organization of each data source, identified and 

extracted relevant information, converted them into RDF triples. Python script is 

developed to extract unstructured data from original source files and convert them into 
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RDF triples. Meanwhile, the duplicate information in those source files are identified 

and removed. The second step is to load those RDF triples into Virtuoso triple store as 

three named graphs. The third step is to build a SPARQL query library and search 

engine that supports quick link search and Boolean clause-based search of current 

PRO search website. Finally, accuracy and performance tests are done to evaluate the 

Virtuoso/SPARQL based search engine. 

To facilitate programmatic access the PRO RDF database and SPARQL search 

engine, we design the PRO RESTful APIs based on Open API specification and using 

Swagger editor. We then implement the APIs using Django REST framework.  
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Chapter 2 

SYSTEM DESIGN AND ARCHITECTURE 

The data heterogeneity increases the system complexity and hinders it 

performance. We therefore need new methodology and model to do data integration.  

2.1 Design Rationale 

Lenzerini proposed a logical framework for data integration systems from a 

theoretical perspective based on the notion of global schema, where the goal of data 

integration system is to provide the users with a homogeneous view of the data across 

different sources [22]. In this theoretical model, data integration can be characterized 

into two approaches: LAV (Local-As-View) versus GAV (Global-As-View).  

 

Figure 2.1 LAV and GAV 
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As shown in Figure 2.1, the LAV approach is the most effective approach 

when the global schema is stable in the data integration system. A typical example of 

this approach is data warehouse. The data warehouse approach puts data sources into a 

centralized location with a global data schema and an indexing system for fast data 

retrieval. The GAV approach is the most effective approach when the set of sources 

are stable in the data integration system. The example of this approach is federated 

database. The federated database approach does not require a centralized database. It 

maintains a common data model and relies on a schema mapping to translate 

heterogeneous database schema into the target schema for integration. Therefore, it is 

modular, flexible, and scalable. This project uses the LAV as the model to integrate 

heterogeneous data for PRO database. 

 

 

Figure 2.2 Comparison between different methods of data integration 

  

The Figure 2.2 is the description of different integration methods. The 

traditional way of integration is GAV model which using the extra parsers to analysis 
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and form the data extracted from different databases. The typical example is 

centralized data warehouse that combines data from different sources and user can 

query these data using SQL. In contrast, the method used in this thesis project is 

distributed. There is no centralization in this model and user can use the federated 

SPARQL to query them.  

The data heterogeneity is well known in the current PRO database as shown in 

Figure 2.3. The PRO database consists of four different kinds of databases: SQL-lite, 

Oracle, Virtuoso in the University of Delaware and Apache Lucene Search Engine in 

the Georgetown University. Each database stores part of the data, which may have 

already been stored in other databases and in different formats. At the same time, the 

returned result is incomplete because they use different query languages. It is very 

complicated for user and the requirements for maintenance personnel are also 

increased since they need to maintenance four different databases at the same time. It 

is also not easy to update if there is a wrong data need to modify because there are 

duplicated in many databases. Therefore, it is necessary to integrate these data to 

improve the efficiency of query and update in the PRO database and website. 
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Figure 2.3 The architecture of old PRO database 

 

2.2 System Architecture 

As shown in Figure 2.3, other than the Protein Ontology, which is the core of 

the PRO database, there are additional data such as PRO_orthoforms, PAF (PRO 

annotation file), PRO_mapping, Human protein variants, Splice variants, Protein 

sequences, MSA (Multiple Sequence Alignment) etc. They are used to power the PRO 

website to provide PRO entry view, batch retrieval and search functionalities. We can 

also see from Figure 2.3, not only different database technologies and query languages 

are used, they are also been hosted on different sites: University of Delaware (UD) and 

Georgetown University (GU). In addition, the same source data is repeatedly used in 
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different databases. This creates potential synchronization issue during PRO database 

update cycle. This thesis project explored simplifying the data integration for PRO 

database using Semantic Web technologies as shown in Figure 2.4. 

    

 

Figure 2.4 The architecture of new PRO database 

2.3 Data Integration 

To streamline the update process and to remove redundancy, we explored 

simplifying the data integration for the PRO database using Semantic Web technology. 

We studied the content and organization of each data source, identified and extracted 
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relevant information, converted them into RDF triples, and integrated them into a 

Virtuoso RDF triple store. 

The most important step is to convert source data into RDF format. Most of the 

data for PRO database are from PRO OWL file and PAF file. They have been 

converted and stored in RDF format in the Virtuoso triple store. However, there are 

still some data spreaded across multiple files. We therefore extracted them mainly 

from ‘PRO_orthoforms.dat’ and ‘pro_reasoned.obo’ and converted them into RDF 

triples and stored in a new RDF graph called “PRO_extra”. 

 

 

Figure 2.5 Sample data for PRO_extra RDF graph 

As shown in the Figure 2.5, there are seven different kinds of predicate. In the 

file ‘orthoform.dat’, they are ‘replaced by’, ‘is_a’,’intersection_of’ and ‘relationship. 

Other three kinds of predicates, ‘ortho-gene’, ‘ortho-isoform’ and ‘ortho-modification’ 
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are in the file ‘PRO_reasoned.obo’. They all have their own special definitions. For 

example, ‘relationship’ represents the related proteins and their relationships.  ‘Ortho-

modification’ means the proteins on the right of equal sign are modified by one or 

many methods from the original protein on the left.  

Turtle (Terse RDF Triple Language) [23] is a format for expressing RDF 

triples in a compact textual form. Turtle provides a way to group three URIs to make a 

triple, and provides ways to abbreviate such information, for example by factoring out 

common portions of URIs. 
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Figure 2.6 Example of converting data into RDF in Turtle format 

 

Figure 2.6 describes the process of converting and combining data for 

PRO_extra RDF graph. As the supplement to PRO RDF graph, classes in the 

PRO_extra have been defined in the PRO RDF graph. Therefore, we reuse them.  The 

data in “PRO_orthoforms.dat” file has the relationship which is the “ortho-isoform”. 



 23 

However, there is no predefined URI or predicate. Therefore, we created new 

predicate: “pr_extra:hasOrthoIsoform”.  

There are three principles in convert source data to RDF triple in Turtle format: 

1. “prefix” is defined to represent namespaces and URIs sharing the same base. 

2. Same subject can be referenced by a number of predicates. Therefore, a series 

of RDF triples can be written by a series of predicates and objects, separated 

by “;”, following a subject. 

3. Objects are often repeated with the same subject and predicate. Therefore, a 

series of RDF triples can be written by a series of objects, separated by “,”. 

 

 

Figure 2.7 Example RDF triples in PRO_extra graph in Turtle format 
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The Figure 2.7 is the example of the integration result. “@prefix” is used to 

define the namespaces and base URI.  There are some special properties uniquely 

defined for PRO_extra. The conversion script is developed in Python. The decisive 

parameters in script are the regular expression rules. It is very convenient to add or 

modify those rules to extract data. 

Table 2.1 Statistics of PRO RDF database (PRO version 56.0) 

Named Graph Triples Classes Entities 
Distinct 

Subjects 
Properties 

Distinct 

Objects 

<http://purl.obolibrary.org/obo/pr> 10,164,037 8 1,747,528 2034,478 45 2,911,165 

<http://pir.georgetown.edu/pro/paf> 94,409 4 8,599 20,709 22 30,781 

<https://proconsortium.org/pr_extra> 398,643 1 4 266,912 10 316,530 

 

Table 2.1 shows the number of triples, classes, entities, distinct subjects, 

properties, and distinct objects for three named graphs stored in Virtuoso triple store 

for PRO RDF database (version 56.0). 
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Chapter 3 

VIRTUOSO/SPARQL BASED SEARCH ENGINE 

The search function of current PRO website is powered by Apache Lucene 

search engine.  As a high performance, scalable information retrieval (IR) tool library 

[24], Lucene stores the index and data together, therefore Lucene can search the index 

rapidly and then the data can return directly without additional retrieval step. In our 

new architecture, we propose to build a Virtuoso/SPARQL based search engine by 

exploring the full-text search functionality of Virtuoso server to achieve the goals of 

data integration and high-performance information retrieval. 

3.1 PRO Search Website 

We have two applications to demonstrate the usefulness of our SPARQL based 

search engine for PRO. One is the PRO text search website. Another one is the 

RESTful APIs that will be described in the Chapter 4. 

Figure 3.1 shows the web interface for PRO text search website. The red box 

shows the quick links which includes some default filter conditions so that users can 

return search results directly for some specific queries. The blue box is main body of 

the query input. The search result is displayed as paginated table. The columns shown 

in the table can be further customized by the “Display Options”. The search interface 

was built with Perl CGI, HTML and Javascript. We re-used the front-end code and 
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replaced its underlying Apache Lucene based search engine with our 

Virtuoso/SPARQL based search engine. 

 

 

Figure 3.1 PRO search website 

 

The Quick Links (Figure 3.2) can be grouped into three sections: Modified 

forms, Terms related to disease and Other links. Modified protein forms are 

distinguished by their category descriptions. However, everyone has to have keyword 

“modification”. For “Terms related to disease”, we currently only have “Saliva 

biomarkers” that represents proteins having the database cross-reference of “SALO: 

AJ”. We also have other database cross-reference in “Other Links” section, such as 

EcoCyc, MGI, Panther, Reactome and UniProtKB. They have special filter conditions 

on ID. ‘Complex’, ’Family Level’, and “Orthisoforms” are also included in this 
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section. These quick links allow user to get specific query results quickly. However, 

they can also be combined with the main query interface, which can be used with filter 

condition. 

 

 

Figure 3.2 Quick Links for PRO text search website 

 

Figure 3.3 shows the PRO main search interface. User can select the field and 

specify the search condition. User can also form Boolean query clause by clicking 

“add/del input box” button for different search fields. In addition to viewing the search 

result page by page, user can select a list of PRO IDs to show their Hierarchy or 

display their corresponding entries in OBO or PAF format. User can also view the list 

of PRO DIs in Cytoscape network view. 
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Figure 3.3 PRO main search interface 

3.2 SPARQL Syntax 

SPARQL has many advantages [25]. First, the level of standardization of 

implementations using RDF and SPARQL is much higher than SQL. It's possible to 

swap out one triple store for another easily. Second, SPARQL is expressive. It is much 

easier to model complex data in RDF than in SQL, and finally, it is easier to do things 

like LEFT JOINs (called OPTIONAL) in SPARQL.  
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Figure 3.4 Basic structure of SPARQL query 

 

SPARQL mainly consists of five components structurally. Except for the query 

modifiers, the rest of components are essential in SPARQL query. The prefix 

declaration is used to declare the namespaces which have included the stated entity 

and relationships. The result clause is for identifying what information to return from 

the query. Dataset definition is used to state what RDF graph(s) are being queried. It 

also can be seen as the range of search. The query pattern is the main body of 

SPARQL query. It shows the triple (graph) patterns people are searching in the query 

dataset and the matched result will be restricted by the result clause. The query 
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modifier has many functions such as slicing, ordering, and otherwise rearranging 

query results. 

There are three RDF Terms in SPARQL syntax: the URI, the literal value and 

the variable. The URI and the literal are the basic type in the SPARQL and RDF. 

Variable represents any unknown thing in the triple pattern and the actual value can be 

projected in the result clause.  

There are some special key words for different functions. The keyword 

“FILTER” is a restriction on solutions over the whole group in which the filter appears 

and helps people searching result more accurately. Another keyword is “OPTIONAL”, 

which allows additional patterns to extend the solution. Because there is no null value 

in the SPARQL, this keyword is designed for matching additional patterns that may 

extend the solution. It can allow information to be added to the solution where the 

information is available, but do not reject the solution because some parts of the query 

pattern do not match. We can use keyword “UNION” to combine graph patterns so 

that one of several alternative graph patterns may match. If more than one of the 

alternatives matches, all the possible pattern solutions are found. The last one is 

“GRAPH”. When querying a collection of graphs, the GRAPH keyword is used to 

match patterns against named graphs. The use of GRAPH changes the active graph for 

matching graph patterns within that part of the query. Outside the use of GRAPH, 

matching is done using the default graph. 

3.3 SPARQL Query Library for PRO 

The SPARQL query for each field in this graphic interface needs to be built 

first. As shown in the example SPARQL query for PRO field search (Figure 3.5). The 
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red color codes show the triple patterns related to PRO term definition in Turtle format. 

The two cells on the right are its corresponding SPARQL queries. One for all PRO 

terms, another one for specified PRO terms. 

 

Figure 3.5 Example SPARQL query for PRO field search 

 

Because there are only three namespaces that are used in this example query, 

only three abbreviations are stated in PREFIX section. The line starting from SELECT 

is the result clause in the query. Depending on the field searched, user can select any 

related field they want to get the value from. The example is to query the definition of 

protein, so the basic requirement is the URI, name, ID and definition of a protein. 

After the dataset clause, three triple patterns are listed in the query patterns. In this 
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example, it is mostly basic patterns without any special keyword. The keyword “BIND” 

is just for getting only the literal portion and removing the URL from a variable. There 

are two steps involved. The first step is to create a variable to hold the value entered 

by user. This part is implemented by keyword “VALUES”, In SPARQL language, it is 

used for assigning a value to a variable.  In Figure 3.5, the value “PR:X5M8U1” was 

given to the variable, “?variable”. The next step is to filter it with specified condition 

using the keyword “FILTER” introduced above. In the example, the combination of 

“FILTER” and “regex” is used to filter the value in the field of “PRO ID” with regular 

expression search. According to the field selected and value entered by the users, it 

will only work for one field. On PRO search interface, there are 26 fields. User can 

select multiple fields and construct Boolean clause query using operators “NOT”, 

“AND” and “OR”. To deal with this, a SPARQL query is split into different code 

snippets with respect to their corresponding fields and stored in a lookup table 

(Dictionary in Python). Based on the user input, different query snippets are combined 

dynamically to construct a complete SPARQL query. 

3.4 Performance Evaluation 

We conducted performance evaluation using CURL command to record the 

query response times of 10 queries against Apache Lucene based and 

Virtuoso/SPARQL based search engines of PRO database. Each query was repeated 

10 times for each search engine (Figure 3.6). 
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Figure 3.6 Average response time of 10 search queries 

 

In Figure 3.6, there are 10 different fields. For example, “Ecocyc ID”,” PRISF 

ID”,” PMID” and “UniProtKB ID”. They have same data type and even similar triple 

pattern so there is only “Ecocyc ID” chosen as the sample in the performance test. 

When the property is the literal value, the efficiency of searching is similar and 

sometime better. In this test, these fields include the “Comment”, “Any relationship”, 

“Gene name” and “Ecocyc ID”.  The annotation is the delegate of this kind of variable. 

In the chart, the field “Modifier” and “Ontology ID” were chosen as the property 

sample for Annotation. They all have a good performance and are better than the 

performance of Apache Lucene based search engine. In addition, the field “Iso-formed” 

and “Modified-form”, which belong to the PAF source, have a similar performance. 
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As shown in the chart, for fields “Parent”, the response time is increased significantly. 

Those are related to the complexity of graph patterns to match or whether we have 

alternative patterns to match. Overall, Virtuoso/SPARQL based search engine 

achieved comparable performance with respect to Apache Lucene based search engine. 

The details of performance evaluation can be found in Appendix A. 

  



 35 

Chapter 4 

RESTFUL API 

4.1 API Design 

PRO API design (Figure 4.1) was motivated by PRO text search website and 

PRO manual curation guide website URI [26]. The API specification was designed 

using Swagger editor (https://editor.swagger.io/) based on Open API (formerly known 

as Swagger) Specification 3. Swagger UI was used to visualize and interact with the 

API’s resources automatically generated from API specifications. The API is currently 

accessible at the referenced website [27].  

 

Figure 4.1 PRO RESTful APIs and Swagger UI interface 
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The PRO RESTful APIs include 8 API operation groups (PRO Terms, 

Proteform Terms, Protein Evolutionary Terms, Protein Complex Terms, Database 

Cross-references, PRO Annotation File, OBO File, Hierarchy) and 34 access paths. 

The description of each access path and its functionality can be found in Appendix B. 

The core model of PRO APIs is PRO term, which consists of a list of attributes 

associated with a given PRO term (Figure 4.2). For example, PRO ID, protein name, 

term definition, category etc. The PRO RESTful APIs only support GET method, 

which is the read-only operation. The API response can be in either JSON or XML 

format. 

 

Figure 4.2 The data structure definition of PRO term 
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4.2 API Implementation  

The PRO RESTful APIs are implemented in Python (version 2.7.15rc1) and 

Django-REST framework (version 1.11.15). The first step in API implementation is to 

build python classes for holding both the input parameters and query results. They are 

Models in terms of Django-REST framework. One reason we choose it as the develop 

tool is its extensive documentation and great community support. Another reason is 

that internationally recognized companies including Mozilla, Red Hat, Heroku, and 

Eventbrite, so it should have a trustworthy reliability. [28] 

 

Figure 4.3 Python class for search parameters 

Figure 4.3 shows the python class for search parameters. There are 22 

parameters in this model. The parameter “search_field” is for the field the search is 

against. The “search_value” is the value for the specific field which can be a number 
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or literal value. When the value of parameter “search_value” is blank, which is the 

default value, or not null, it will match any PRO terms with this search field property. 

If the value is null, the result will return PRO terms without such search field property. 

The parameter “offset” and “limit” are used for paginating the result to improve 

performance. The Boolean valued show field parameters simulated the “Display 

Options” of the PRO text search website. If a show field parameter is set to be True, 

the value of that field will be included in the returned query result. By default, the 

name, definition, category and parent of a PRO term are set to be True. The rest of the 

show field parameters are set to be False. 
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Figure 4.4 Python class for retrieval parameters 

Figure 4.4 shows the python class for retrieval parameters. In comparison with 

the class for search parameters, the class for retrieval parameters is simpler. Other than 

the show field parameters, it only has one parameter, the “proId”. The value of this 

parameter cannot be blank, so user must input a part or complete valid PRO term ID. 

It has no search field and search value parameters. This class is mainly for retrieving 

information about a specific PRO term. 

Next important component is Views. Many of the functionalities of the API 

services are implemented as functions in Views. 
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Figure 4.5 Flow chart of function in Views 

 From the Figure 4.5, there are four parts in the flow chart of Views function. 

The information encoded in the URL needs to be extracted and processed. As the 

bridge between other components, there is also a function related to rendering the 

result to user.    

 

Figure 4.6 The layout of function definition in Views 
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  The function starts with some decorators as shown in the yellow box of Figure 

4.6. “@api_view([‘GET’]) indicates that it is for handling HTTP GET method request. 

“@render_classes ((JSONRenderer, XMLRenderer)) indicates that the HTTP response 

can be rendered in either JSON or XML format depending on how the Accept format 

header was set by the user client. By default, JSON response will be generated if user 

client didn’t specify any Accept format. 

The code snippets in blue box of Figure 4.6 processes request parameters. 

There are different types of request parameters. One type of parameters shows 

searching for a field with specified value. User can use “null” or “not null” as the 

search field value. Display options parameter determines whether specified field will 

be queried and become part of the response rendered to the user. So, if a show field is 

set to be “True” that means the value of that field will be included in the rendered 

response, “False” means the value of that field will be excluded. Another kind of 

parameter is used for paginating the result to improve the performance such as “limit” 

and “offset”. The code snippet in green box does the search against SPARQL endpoint 

and generates the output. 
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Figure 4.7 Function for constructing SPARQL query dynamically 

The search functions in Views are organized into many files according to the 

search field. In general, they are two steps in the search function. The first step is to 

construct the SPARQL query based on the input parameter. There are two core 

functions; one is for searching information in the annotation field, “search_annotation” 

and another one is for other fields, “search_main”. As shown in the Figure 4.7, it has 

two different conditions. When the field user wants to search is in the field of 
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“annotation”, the “search_annotaion” will be called first to get the information and a 

list of protein ID based on different conditions will be used to call the function 

“search_main” in order to get the complete information about those proteins. 

 

Figure 4.8 URL patterns defined in the Controller 

    Controller is the entry point in Django REST framework. Each field in the API has 

their own views function so they also have their own URL patterns. Each line in 

Figure 4.8 is a URL pattern and must be separated by colon. We use the parameter 

“name” and views function name to distinguish and identify them. When user enters a 
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URL into browser, Django will match it against the list. If this pattern is not in the list, 

the server will return a error to promote user to check the URL. 

 

Figure 4.9 An example JSON response from PRO RESTful APIs 

The component Template in Django REST framework is just for rendering the 

output.  JSON is a lightweight data exchange format [29], simple and easy to read and 

write. Figure 4.9 shows an example JSON response from PRO RESTful APIs. Each 

PRO term is stored in curly braces and square brackets represents the data structure 

model mentioned above. If user changes the value of “Annotation” from true to false, 

there will be another curly brace in PRO term. As the key-value pair in the dictionary, 

the key is the field name and value is the result queried from Virtuoso triple store.  
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Figure 4.10 An example XML response from PRO RESTful APIs 

XML is a markup language used to encode data or documents [30]. The format 

of XML has strict standards. The reason PRO RESTful APIs also support rendering 

XML output is because XML readers and writers have been developed for a variety of 

programming languages. 

4.3 Use Case 

The REST services provide a flexible interface into multiple aspects of PRO 

term.  In the PRO, the UniProtKB is used to provide the formal definition of protein 

[31] and there are also some other external databases that are connected to PRO 

identifiers by the mapping of accessions. RESTful API can help user finding the 

related information about a protein, like proteoforms, complexes, hierarchy and 
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annotations. For example, we can get information for the gene level protein class 

BUB1B (PR:000004855) and its subclasses using APIs. 

 User can start from “Search PRO terms” API by specifying the 

“PRO_term_definition” field and entering search value “BUB1B” (Figure 4.11) to get 

a list of PRO terms as shown in Figure 4.12.  

 

 

Figure 4.11 Inputs to “Search PRO terms” API. 
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Figure 4.12 A list of PRO_terms returned by “Search PRO terms” API. 

From the returned PRO terms, we can see “PR:000004855” has the category of 

“gene”. We can use “PR:000004855” as input to the “Parent” field of “Organism-gene” 

API (Figure 4.13) to get a list of organism specific PRO terms as the subclasses of 

“PR:000004855” (Figure 4.14).  

 

 

Figure 4.13 Inputs to “Search organism-gene” API. 
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Figure 4.14 A list of organism specific PRO terms as returned by “Search organism-

gene” API. 

As shown in Figure 4.14, we find 4 organism specific PRO terms that are subclasses 

of “PR:000004855”: PR:O60566 (human), PR:Q8JGT8 (frog), PR:Q800D4 (chicken) 

and PR:Q9Z1S0 (mouse). Alternatively, we can also use “Search decedents” API to 

get all the subclasses of  “PR:000004855” and looking for those with category of 

“organism-gene” as shown in Figure 4.15 and 4.16 Furthermore, user can also get 

PAF annotation (Figure 4.17 and 4.18).  
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Figure 4.15 Inputs to “Search decedents” API. 

 

 

Figure 4.16 A list of organism specific PRO terms as returned by “Search decedents” 

API. 

 

Figure 4.17 Inputs to “Get PAF annotation” API. 
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Figure 4.18 Annotations returned by “Get PAF annotation” API. 

Other than Swagger UI web interface and Curl command, the PRO RESTful 

APIs can be invoked by a programming language and executed. Figure 4.19 shows a 

Python script executes the search of a PRO term by its id. 

Figure 4.19. Python script executes the search of a PRO term by its id. 

import requests, sys 

 

requestURL 

="https://research.bioinformatics.udel.edu/PRO_API/V1/pros/PR:000004855?showPROName=true" \ 

"&showPROTermDefinition=true&showCategory=true&showParent=true&showAnnotation=false" \ 

"&showAnyRelationship=false&showChild=false&showEcoCycID=false&showGeneName=false" \ 

"&showHGNCID=false&showMGIID=false&showOrthoIsoform=false&showOrthoModifiedForm=false" \ 

"&showPANTHERID=false&showPIRSFID=false&showPMID=false&showReactomeID=false&showUniProtKBID=

false" 

 

r = requests.get(requestURL, headers={"Accept":"application/json"}) 

 

if not r.ok: 

    r.raise_for_status() 

    sys.exit() 

     

responseBody = r.text 

 

print(responseBody) 
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Chapter 5 

 

DISCUSSION AND FUTURE WORK 

The integration of heterogeneous data can significantly reduce the difficulty of 

database`s maintenance. In the original version of PRO database, four different types 

of databases are used: SQL-Lite, Oracle, Apache Lucene and Virtuoso. Each database 

needs a series of processes to maintenance like checking the schema, models and data 

files. The DBAs need to check and update four databases at the same time in order to 

make PRO work regularly and smoothly. This often made the DBAs stressful. In 

current version of PRO database, there is only one Virtuoso database server. There is 

no doubt that the workload for DBA is reduced significantly.  

Furthermore, the simplification of databases and data structure can also 

improve the query efficiency. As indicated in the performance evaluation presented in 

Chapter 3, the new Virtuoso/SPARQL based search engine has comparable 

performance with respect to Apache Lucene based search engine. For some queries, 

the new one is significant better. The stability of new searching engine is also better 

than that of old engine. In addition, the integrity of data is also improved to some 

extent. Finally, the PRO RESTful APIs provide programmatic access to PRO database 

that can help bioinformatics developer build novel application to use PRO data. 

However, there are still some improvements. For example, the SPARQL query 

can be further optimized. The SPARQL query library can also be improved. The PRO 

entry page and visualization website [32] is still using Oracle database as backend. It 

can be modified to use the PRO RESTful APIs as the backend instead. In addition, as 
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the database evolves, more data and fields will be introduced, the SPARQL query 

library and RESTful APIs also need to be updated in the future. 
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Chapter 6 

CONCLUSION 

In conclusion, the semantic web technologies such as RDF and SPARQL etc. 

are suitable for data integration. By using RDF, the data is structured and simplified. 

Compared to unstructured data, the structured data has a strict standard format and can 

simplify the query process and improve efficiency. At the same time, expandability 

and flexibility of data are also significantly improved so that we can store data at any 

time without having to create new field in the SQL table. This is especially important 

for dealing with Big Data. 

    The thesis presents the integration of heterogeneous data using semantic 

web technologies. In addition, it also showed the design and implementation of the 

RESTful APIs in detail along with application examples. The thesis aims to provide a 

clear description of the heterogeneous data integration process and API construction 

process. The thesis can also be used as a reference for API development in the field of 

Bioinformatics.  

The Virtuoso/SPARQL powered PRO text search website [33] and the API 

documentation website [34] are accessible by the URLs in the References. 

This thesis work has been presented in the 7th Annual Big Data in 

Biomedicine Symposium held in Georgetown University, Washington DC on October 

26, 2018. 
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Appendix A 

COMPARSION OF PERFORMANCE IN NEW/OLD DATABASE 

 

SEARCH 

FIELD 

SEARCH 

ENGINE 
MINIMUM 

TIME(s) 

MAXIMUM 

TIME(s) 

AVERAGE 

TIME(s) 

STANDARD 

DEVITATION 

Any Fields 

Virtuoso/SPAR

QL 
2.277 2.354 2.302 0.010 

Apache Lucene 1.551 5.344 2.386 0.988 

Comment 

Virtuoso/SPAR

QL 
0.902 1.048 0.928 0.043 

Apache Lucene 0.252 1.329 0.581 0.495 

Modifier 

Virtuoso/SPAR

QL 
0.277 0.313 0.296 0.037 

Apache Lucene 0.296 1.368 0.777 0.511 

Any_relationshi

p 

Virtuoso/SPAR

QL 
1.494 1.721 1.538 0.066 

Apache Lucene 0.460 2.959 1.505 0.884 

Gene name 

Virtuoso/SPAR

QL 
1.111 1.158 1.127 0.013 

Apache Lucene 0.302 2.707 1.029 0.875 

Ecocyc ID 

Virtuoso/SPAR

QL 
0.168 0.205 0.183 0.013 

Apache Lucene 0.202 0.221 0.211 0.007 
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Parent 

Virtuoso/SPAR

QL 
1.881 1.893 1.888 0.004 

Apache Lucene 0.390 2.866 1.041 0.825 

Ontology ID 

Virtuoso/SPAR

QL 
0.305 0.352 0.331 0.014 

Apache Lucene 0.278 1.369 0.864 0.403 

Iso_form 

Virtuoso/SPAR

QL 
0.243 0.282 0.257 0.011 

Apache Lucene 0.236 2.004 0.627 0.627 

Modified_form 

Virtuoso/SPAR

QL 
0.180 0.234 0.202 0.015 

Apache Lucene 0.184 0.278 0.1997 0.029 
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Appendix B 

CATEGORY OF PRO API 

 

API 

OPERATION 

GROUP 
PATH DESCRIPTION 

PRO 

TERMS 

/pros 
Gets a list of PRO terms and 

associated information. 

/pros/{proID} 
Gets one or more PRO terms 

and associated information. 

by ID. 

Proteoform 

Terms  

/proforms/modification 
Gets a list of modified protein 

forms and associated 

information. 

/proforms/modification/phosphorylated 
Gets a list of phosphorylated 

protein forms and associated 

information. 

/proforms/modification/methylated 
Gets a list of methylated 

protein forms and associated 

information. 

/proforms/modification/acetylated 
Gets a list of acetylated 

protein forms and associated 

information. 

/proforms/modification/ubiquitinated 
Gets a list of ubiquitinated 

protein forms and associated 

information. 

/proforms/modification/glycosylated 
Gets a list of glycosylated 

protein forms and associated 

information. 
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/proforms/orthoisoform 
Gets a list of ortho-

isoform  protein forms and 

associated information. 

/proforms/orthomodform 
Gets a list of ortho-modform 

protein forms and associated 

information. 

/proforms/sequence 
Gets a list of sequence level 

protein forms and associated 

information. 

/proforms/organism-sequence 
Gets a list of organism-

sequence level protein forms 

and associated information. 

Protein 

Evolutionary 

Terms  

/proevos/family 
Gets a list of family level 

protein terms and associated 

information. 

/proevos/gene 
Gets a list of gene level 

protein terms and associated 

information. 

/proevos/organism-gene 
Gets a list of organism-gene 

level protein terms and 

associated information. 

Protein 

Complex 

Terms 

/procomps/species-specific 
Gets a list of species specific 

protein complex terms and 

associated information. 

/procomps/species-non-specific 

Gets a list of species non-

specific protein complex 

terms and associated 

information. 

Database 

Cross-

references  

/dbxrefs/EcoCyc_ID 

Gets a list of PRO terms with 

EcoCyC ID as cross-

reference and associated 

information. 

/dbxrefs/HGNC_ID 
Gets a list of PRO terms with 

HGNC ID as cross-reference 
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and associated information. 

/dbxrefs/MGI_ID 
Gets a list of PRO terms with 

MGI ID as cross-reference 

and associated information. 

/dbxrefs/Ontology_ID 

Gets a list of PRO terms with 

Ontology ID as cross-

reference and associated 

information. 

/dbxrefs/PANTHER_ID 

Gets a list of PRO terms with 

PANTHER ID as cross-

reference and associated 

information. 

/dbxrefs/PIRSF_ID 
Gets a list of PRO terms with 

PIRSF ID as cross-reference 

and associated information. 

/dbxrefs/PMID 
Gets a list of PRO terms with 

PMID as cross-reference and 

associated information. 

/dbxrefs/Reactome_ID 

Gets a list of PRO terms with 

Reactome ID as cross-

reference and associated 

information. 

/dbxrefs/NCBITaxon_ID 

Gets a list of PRO terms with 

NCBI Taxon ID as cross-

reference and associated 

information. 

/dbxrefs/UniProtKB_ID 

Gets a list of PRO terms with 

UniProtKB ID as cross-

reference and associated 

information. 

PRO 

Annotation 

File 
/paf/{proId} 

Gets annotations for the 

given PRO ID. 
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OBO File /obo/{proId} 
Gets PRO term in OBO 

format for the given PRO ID. 

Hierarchy  

/dag/parent/{proId} 
Gets direct parent PRO terms 

by the given PRO ID and 

associated information. 

/dag/ancestor/{proId} 

Gets direct and indirect 

parent PRO terms by the 

given PRO ID and associated 

information. 

/dag/children/{proId} 
Gets direct children PRO 

terms by the given PRO ID 

and associated information. 

/dag/descendant/{proId} 

Gets direct and indirect 

children PRO terms by the 

given PRO ID and associated 

information. 

 

 


