

INTEGRATION OF HETEROGENEOUS DATA FOR PROTEIN ONTOLOGY

DATABASE USING SEMANTIC WEB TECHNOLOGY

by

Xiang Li

A thesis submitted to the Faculty of the University of Delaware in partial fulfillment

of the requirements for the degree of Master of Science in Bioinformatics and

Computational Biology

Fall 2018

© 2018 Xiang Li

All Rights Reserved

INTEGRATION OF HETEROGENEOUS DATA FOR PROTEIN ONTOLOGY

DATABASE USING SEMANTIC WEB TECHNOLOGY

by

Xiang Li

Approved: __

 Chuming Chen, Ph.D.

 Professor in charge of thesis on behalf of the Advisory Committee

Approved: __

 Kathleen F. McCoy, Ph.D.

 Chair of the Department of Computer and Information Sciences

Approved: __

 Levi T. Thompson, Ph.D.

 Dean of College of Engineering

Approved: __

 Doug Doren, Ph.D.

 Interim Vice Provost for Graduate and Professional Education

 iii

ACKNOWLEDGMENTS

I wish to thank my adviser, Dr. Chuming Chen, and my committee members

Dr. Hongzhan Huang, and Dr. Li Liao for their continuous advice, guidance, and

academic support during the past year. I must also thank my professional friend and

colleague, Mr. Wenbo Zhao, who has supported and helped me throughout my

graduate education.

This thesis is dedicated to my parents Feng Li and Hua Li for their

unconditional love and support, also to my wife Yaling Shi for her encouragement and

inspiration.

 iv

TABLE OF CONTENTS

LIST OF TABLES .. vi

LIST OF FIGURES .. vii

ABSTRACT .. ix

Chapter

1 INTRODUCTION .. 1

1.1 Semantic Web .. 1

1.1.1 RDF ... 3

1.1.2 RDF SCHEMA (RDFS) .. 5

1.1.3 OWL .. 6

1.1.4 SPARQL .. 6

1.2 Protein Ontology Database .. 7

1.2.1 Virtuoso SPARQL server .. 8

1.3 Application Programming Interface (API) .. 9

1.3.1 Python Django Framework .. 10

1.4 Outline of Thesis Work ... 13

2 SYSTEM DESIGN AND ARCHITECTURE .. 15

2.1 Design Rationale ... 15

2.2 System Architecture .. 18

2.3 Data Integration ... 19

3 VIRTUOSO/SPARQL BASED SEARCH ENGINE 25

3.1 PRO Search Website ... 25

3.2 SPARQL Syntax .. 28

3.3 SPARQL Query Library for PRO ... 30

3.4 Performance Evaluation .. 32

 v

4 RESTFUL API ... 35

4.1 API Design .. 35

4.2 API Implementation .. 37

4.3 Use Cases ... 45

5 DISCUSSION AND FUTURE WORK ... 51

6 CONCLUSION .. 53

REFERENCES ... 54

Appendix

A COMPARSION OF PERFORMANCE IN NEW/OLD DATABASE 58

B CATEGORY OF PRO API ... 60

 vi

LIST OF TABLES

Table 2.1 ... 24

 vii

LIST OF FIGURES

Figure 1.1 The components of the Semantic Web ... 2

Figure 1.2 RDF triple graph ... 4

Figure 1.3 An example RDF graph for a PRO term of Protein Ontology 4

Figure 1.4 The example of RDF Schema ... 5

Figure 1.5 The structure of Protein Ontology ... 8

Figure 1.6 The Flow Request and Response in Django Framework 11

Figure 1.7 An example RESTful API ... 13

Figure 2.1 LAV and GAV .. 15

Figure 2.2 Comparison between different methods of data integration 16

Figure 2.3 The architecture of old PRO database ... 18

Figure 2.4 The architecture of new PRO database ... 19

Figure 2.5 Sample data for PRO_extra RDF graph .. 20

Figure 2.6 Example of converting data into RDF in Turtle format 22

Figure 2.7 Example RDF triples in PRO_extra graph in Turtle format 23

Figure 3.1 PRO search website .. 26

Figure 3.2 Quick Links for PRO text search website ... 27

Figure 3.3 PRO main search interface .. 28

Figure 3.4 Basic structure of SPARQL query .. 29

Figure 3.5 Example SPARQL query for PRO field search .. 31

Figure 3.6 Average response time of 10 search queries ... 33

 viii

Figure 4.1 PRO RESTful APIs and Swagger UI interface ... 35

Figure 4.2 The data structure definition of PRO term .. 36

Figure 4.3 Python class for search parameters ... 37

Figure 4.4 Python class for retrieval parameters .. 39

Figure 4.5 Flow chart of function in Views ... 40

Figure 4.6 The layout of function definition in Views ... 40

Figure 4.7 Function for constructing SPARQL query dynamically 42

Figure 4.8 URL patterns defined in the Controller ... 43

Figure 4.9 An example JSON response from PRO RESTful APIs 44

Figure 4.10 An example XML response from PRO RESTful APIs 45

Figure 4.11 Inputs to “Search PRO terms” API. .. 46

Figure 4.12 A list of PRO_terms returned by “Search PRO terms” API. 47

Figure 4.13 Inputs to “Search organism-gene” API. .. 47

Figure 4.14 A list of organism specific PRO terms as returned by “Search

organism-gene” API. ... 48

Figure 4.15 Inputs to “Search decedents” API. .. 49

Figure 4.16 A list of organism specific PRO terms as returned by “Search

decedents” API. ... 49

Figure 4.17 Inputs to “Get PAF annotation” API. .. 49

Figure 4.18 Annotations returned by “Get PAF annotation” API. 50

Figure 4.19. Python script executes the search of a PRO term by its id. 50

 ix

ABSTRACT

As the volume and diversity of data and the desire to share them increase, we

inevitably encounter the problem of combining heterogeneous data generated from

many different but related sources and the problem of providing users with a unified

view of this combined data set. Data integration systems facilitate information access

and reuse by providing a common access point and a more complete view of the

available information. A widely adopted system, Semantic Web, provides the requisite

technologies to make such integration possible: 1) an abstract model for the relational

graphs: RDF; 2) a query language adapted for the relational graphs: SPARQL; and 3)

various technologies to characterize the relationships and categorize resources: RDFS,

OWL etc.

PRO databases draw on data sources that provide orthology, annotation, and

mapping information, as well as sequence-related data, including amino acid and

splice variants and multiple sequence alignments. The PRO website is currently hosted

in two places: University of Delaware for entry page and visualization, and

Georgetown University for text search and browse. The dual-site structure requires

that data files be duplicated and overlapped, thus creating website maintenance issue.

To streamline the update process and to remove redundancy, we explored simplifying

the data integration for the PRO database using Semantic Web technology. In this

process, the heterogeneous data was converted into RDF triples and integrated into a

Virtuoso RDF triple store. Furthermore, a Virtuoso/SPARQL based search engine for

the full-scale text search and hierarchy browsing for PRO website was developed.

 x

Tests reveal that we achieved similar performance as compared to the Apache Lucene

based search engine currently being used. We also developed RESTful APIs for

programmatic access to the PRO database using Open API specification and Django

REST framework.

In conclusion, the semantic web technologies such as RDF and SPARQL etc.

are suitable for data integration. Heterogeneous data in the PRO database are

structured and simplified by using RDF triples so that search efficiency can be

improved. In addition, the thesis showed the design and implementation of the

RESTful APIs in detail along with application examples. The thesis aims to provide a

clear description of the heterogeneous data integration process and API design and

implementation process that can be used as a reference in the field of Bioinformatics.

 1

Chapter 1

INTRODUCTION

Recent rapid development of biotechnology leads to an explosive growth of

bioinformatics data. However, very often the data are stored in different formats and in

different databases. The information returned from a single database is usually not

complete. Therefore, integration of heterogeneous data from different sources is

necessary. By converting and combining them into a unified semantic model such that

computer can process and understand to facilitate human-computer and computer-

computer interactions is called the semantic data integration [1].

1.1 Semantic Web

Sir Tim Berners-Lee proposed the concept of “Semantic Web” in Scientific

American article in 2001 [2]. In that article, he envisioned it as an evolution from the

World Wide Web to the Semantic Web. The resources on the web are the documents,

mainly for human consumption. In terms of current technology, it is impossible for

computer to understand the meaning of the contents in the web documents accurately

due to the complexity of unstructured data in the documents and lack of background

knowledge. In 2006, Tim Berners-Lee coined the linked data [3]. It is the principles of

publishing structured data so that they can be interlinked and more suitable for the

semantic queries [4].

 2

Figure 1.1 The components of the Semantic Web [5]

Figure 1.1 shows the major components of the Semantic Web. The Syntax

layer is XML which is the markup language for structured data. The proof component

is to determine if an answer found on the Semantic Web is correct, and support proof

generation, exchange, and validation. The URI is used to uniquely identify Semantic

Web resources and the UNICODE is the default character set used on the Semantic

 3

Web. In addition, there are some important components such as RDF, RDFS and

SPARQL that will be introduced in the following sections.

1.1.1 RDF

The Resource Description Framework (RDF) is a framework for expressing

information about resources [6]. The resources can be almost anything, including

documents, people, abstract objects. RDF is designed to describe a model to represent

the web resources. RDF uses the triples in the form of subject–predicate–object to

make statements about resources. The Subject is a URI identifying the resource. The

Predicate is a URI indicates the relationship between Subject and Object, and the

Object is a literal value or URI of another resource related to the Subject. It can be

represented as a directed-labeled graph (See Figure 1.2). Due to its data-centric

architecture built upon a standardized model, RDF can exchange information between

different applications and provide a standard-compliant way for data publication and

interchange. These make RDF the most suitable framework for data integration. This

is one of the reasons we use RDF model in this research project. Another reason is that

RDF provides linked data framework, where heterogeneous data (structured, semi-

structured and unstructured) can be expressed, stored and accessed in the same manner.

This is made possible because the data structure is expressed through the links within

the data itself instead of being constrained to a structure imposed by the relational

database schema. As changes in the data structure occur, they are reflected in the RDF

 4

database through changes in the links within the data. Interlinked datasets enable

cross-dataset queries to be performed using SPARQL.

Figure 1.2 RDF triple graph

Figure 1.3 An example RDF graph for a PRO term of Protein Ontology

 5

Figure 1.3 shows an example RDF graph for a PRO term of Protein Ontology.

An RDF graph consists of nodes and edges. Nodes represent entities/resources (light

blue nodes), attributes (orange nodes), and edges represent the relationship between

entities and entities and the relationship between entities and attributes.

1.1.2 RDF SCHEMA (RDFS)

Resource Description Framework Schema (RDFS) is an extension vocabulary

from the basic RDF vocabularies. When the RDF was proposed, people find that there

are not enough classes and properties to describe the entities and attributes in the real

world. Therefore, W3C published the RDFS as W3C recommendation in 2004 that is a

supplement for RDF.

Figure 1.4 The example of RDF Schema

 6

As shown in Figure 1.4, RDFS consists of a set of classes with certain

properties using the RDF extensible knowledge representation data model. In addition,

RDFS defines properties rely on the classes of sources to which they apply, and

classes depends on the properties they may have. Through mutual constraints, the

RDFS can build a more rich and accurate vocabularies for describing resources in

RDF.

1.1.3 OWL

OWL is the Web Ontology Language. As mentioned above, RDFS is

essentially an extension of the RDF vocabulary. However, people found that the

expressivity of RDFS was still quite limited, so OWL was proposed [7]. OWL can

also be seen as an extension of RDFS that provides additional mechanism for defining

expressive and complex relationships on the Semantic Web. OWL provides a family

of knowledge representation languages for developing ontologies on the Semantic

Web.

1.1.4 SPARQL

After data are linked and stored on the Semantic Web, user needs a language

and tool to query, retrieval and manipulate them. In 2008, SPARQL 1.0 was published

and recommended by W3C [8]. SPARQL stands for SPARQL Protocol and RDF

Query Language [9]. SPARQL is a RDF query language. SPARQL can retrieve and

 7

manipulate data stored in RDF format [10]. It allows users to write queries against

what can loosely be called "key-value" data and the entire graph is a set of "subject-

predicate-object" triples which is different from relational database. In terms of SQL

relational database, the RDF can be seen as the table with three columns. Compared to

noSQL database, the object column in RDF is heterogeneous. For instance, each

predicate can have many different entries and even can return a collection. SPARQL

provides a full set of analytic query operations such as JOIN, SORT, AGGREGATE

where schema is intrinsically part of the data rather than requires a separate schema

definition [11].

1.2 Protein Ontology Database

The biological ontology is used to describe different conceptual frameworks

that guide the collection, organization and publication of biological data [12].

The PRotein Ontology (PRO) [13], the reference ontology for protein entities

in the OBO (Open Biological and Biomedical Ontologies) Foundry, represents protein

families, multiple protein forms (proteoforms) arising from single genes, and protein

complexes (Figure 1.5). In addition to the main ontology file itself (in OBO or OWL

format), PRO databases draw on data sources that provide orthology, annotation, and

mapping information, as well as sequence-related data, including amino acid and

splice variants and multiple sequence alignments. These contribute to the underlying

data resources to support PRO website by providing PRO entry view, batch retrieval

and search functionalities. The PRO website is currently hosted in two places:

 8

University of Delaware for entry page and visualization, and Georgetown University

for text search and browse. The dual-site structure requires that data files be duplicated

and overlapped, thus creating website maintenance issue.

Figure 1.5 The structure of Protein Ontology [14]

1.2.1 Virtuoso SPARQL server

Virtuoso server is a special purpose-built and optimized database for the

storage and retrieval of triples via semantic query language [15]. Virtuoso puts triples

in a single table with the graph URI as a key (Quad Store). In addition to queries,

triples can be imported/exported using RDF and other formats. Virtuoso server is also

a SPARQL Service Endpoint. It supports SPARQL 1.1 and provides federated

SPARQL query-processing for RDF data available on the Web. The latest version is

 9

7.2. Virtuoso can reduce the cost of bringing data from different sources and make it

more convenient to query and retrieval.

1.3 Application Programming Interface (API)

In computer science, an application-programming interface (API) is a set of

subroutine definitions, communication protocols, and tools for building software. A

good API makes it easier to develop a computer program by providing all the building

blocks (Wikipedia). Representational State Transfer (REST) is an architectural style

that defines a set of constraints to be used for creating web services [16]. We choose

RESTful API to provide programmatic access to PRO RDF database. Because

RESTful API has the following advantages [17].

1. Client-Server Mode. RESTful API separates user interface concern from the

data storage concern. It supports developing portable user interface for

multiple platforms and increasing the scalability of service because the

components of service is reduced.

2. Stateless. The request sends from the client must include all the information so

that the client keeps the complete session state. It also makes debugging easy

for developer.

3. Cacheable. The response for a request can be implicitly or explicitly labeled as

cacheable or non-cacheable. If it is cacheable, the service can cache it and

reuse it. This feature can reduce the number of interactive connections and

improve system response speed.

 10

4. Layered system. APIs play the middle layer between the server and the client

to respond to the client's request. The client does not need to care about

anything other than the component that it interacts with. This not only

improves the scalability of the system but also simplifies the complexity of the

system. Because of those nice features, many large technology companies,

such as Google, Amazon and Twitter, have widely used RESTful APIs. Most

public bioinformatics resource and databases provides API services. For

example, EUtilities API system of NCBI and the PSAMM API of

Computational Molecular Ecology Lab at the University of Rhode Island [18].

These APIs can help developers getting results more conveniently and apply

them into their project or research without rebuilding a big local database.

Since the Protein Ontology database has been built for bioinformatics

researchers, we also want to design our own APIs for PRO users and hope to

make them jobs more productive.

1.3.1 Python Django Framework

We used Python Django REST framework to develop RESTful API for our

Virtuoso/SPARQL search engine-based PRO RDF database. In addition, we used

several technologies to support our API design. The Open API specification, which is

also previously called Swagger specification, is an API description format for REST

APIs. It specifies the machine-readable interfaces and supports describing, producing,

consuming, and visualizing of RESTful API [19]. We used Swagger Editor, a

 11

browser-based editor to write the Open API specifications. We also used Swagger UI

to render Open API specifications as interactive API documentation [20].

There are many advantages of Django framework. After more than a decade of

development and improvement, Django has a wide range of practical use cases and

comprehensive online documentation. Developers can search online documentation

for solutions when they encounter problems. In addition, Django comes with a lot of

tools and functionality common to many applications. It is also very convenient to

manage the information from a database. There are four important parts of API

framework: Models, Views, Controllers, Template. Theoretically, Django is an MVC

framework, but part of the controller that accepts user input is handled by the

framework itself, so Django is more like Models, Templates, and Views, also called

MTV mode [21] (See Figure 1.6):

Figure 1.6 The Flow Request and Response in Django Framework

 12

M, stands for Model, is the data access layer. This layer handles all

transactions related to the data: how to access, how to verify validity, what behaviors

to include, and deal with the relationship between data.

T, stands for Template, is the presentation layer. This layer handles

performance-related decisions: How to display in a page or other type of document.

V, stands for View, is the business logic layer. This layer contains the relevant

logic for accessing the model and getting the appropriate template. You can think of it

as a bridge between the model and the template.

The API call is the process that the controller receives the request from the

user and passes it to the view to get the data from model and generate the response

formatted according to the template and returns to the user.

 13

Figure 1.7 An example RESTful API

As shown in Figure 1.7, user inputs a Request URL, the API service returns

the Response. By adding different renders and information in the request header, the

response can be rendered in JSON or XML format.

1.4 Outline of Thesis Work

The first step is to convert the source data power the current PRO database into

RDF triples. We study the content and organization of each data source, identified and

extracted relevant information, converted them into RDF triples. Python script is

developed to extract unstructured data from original source files and convert them into

 14

RDF triples. Meanwhile, the duplicate information in those source files are identified

and removed. The second step is to load those RDF triples into Virtuoso triple store as

three named graphs. The third step is to build a SPARQL query library and search

engine that supports quick link search and Boolean clause-based search of current

PRO search website. Finally, accuracy and performance tests are done to evaluate the

Virtuoso/SPARQL based search engine.

To facilitate programmatic access the PRO RDF database and SPARQL search

engine, we design the PRO RESTful APIs based on Open API specification and using

Swagger editor. We then implement the APIs using Django REST framework.

 15

Chapter 2

SYSTEM DESIGN AND ARCHITECTURE

The data heterogeneity increases the system complexity and hinders it

performance. We therefore need new methodology and model to do data integration.

2.1 Design Rationale

Lenzerini proposed a logical framework for data integration systems from a

theoretical perspective based on the notion of global schema, where the goal of data

integration system is to provide the users with a homogeneous view of the data across

different sources [22]. In this theoretical model, data integration can be characterized

into two approaches: LAV (Local-As-View) versus GAV (Global-As-View).

Figure 2.1 LAV and GAV

 16

As shown in Figure 2.1, the LAV approach is the most effective approach

when the global schema is stable in the data integration system. A typical example of

this approach is data warehouse. The data warehouse approach puts data sources into a

centralized location with a global data schema and an indexing system for fast data

retrieval. The GAV approach is the most effective approach when the set of sources

are stable in the data integration system. The example of this approach is federated

database. The federated database approach does not require a centralized database. It

maintains a common data model and relies on a schema mapping to translate

heterogeneous database schema into the target schema for integration. Therefore, it is

modular, flexible, and scalable. This project uses the LAV as the model to integrate

heterogeneous data for PRO database.

Figure 2.2 Comparison between different methods of data integration

The Figure 2.2 is the description of different integration methods. The

traditional way of integration is GAV model which using the extra parsers to analysis

 17

and form the data extracted from different databases. The typical example is

centralized data warehouse that combines data from different sources and user can

query these data using SQL. In contrast, the method used in this thesis project is

distributed. There is no centralization in this model and user can use the federated

SPARQL to query them.

The data heterogeneity is well known in the current PRO database as shown in

Figure 2.3. The PRO database consists of four different kinds of databases: SQL-lite,

Oracle, Virtuoso in the University of Delaware and Apache Lucene Search Engine in

the Georgetown University. Each database stores part of the data, which may have

already been stored in other databases and in different formats. At the same time, the

returned result is incomplete because they use different query languages. It is very

complicated for user and the requirements for maintenance personnel are also

increased since they need to maintenance four different databases at the same time. It

is also not easy to update if there is a wrong data need to modify because there are

duplicated in many databases. Therefore, it is necessary to integrate these data to

improve the efficiency of query and update in the PRO database and website.

 18

Figure 2.3 The architecture of old PRO database

2.2 System Architecture

As shown in Figure 2.3, other than the Protein Ontology, which is the core of

the PRO database, there are additional data such as PRO_orthoforms, PAF (PRO

annotation file), PRO_mapping, Human protein variants, Splice variants, Protein

sequences, MSA (Multiple Sequence Alignment) etc. They are used to power the PRO

website to provide PRO entry view, batch retrieval and search functionalities. We can

also see from Figure 2.3, not only different database technologies and query languages

are used, they are also been hosted on different sites: University of Delaware (UD) and

Georgetown University (GU). In addition, the same source data is repeatedly used in

 19

different databases. This creates potential synchronization issue during PRO database

update cycle. This thesis project explored simplifying the data integration for PRO

database using Semantic Web technologies as shown in Figure 2.4.

Figure 2.4 The architecture of new PRO database

2.3 Data Integration

To streamline the update process and to remove redundancy, we explored

simplifying the data integration for the PRO database using Semantic Web technology.

We studied the content and organization of each data source, identified and extracted

 20

relevant information, converted them into RDF triples, and integrated them into a

Virtuoso RDF triple store.

The most important step is to convert source data into RDF format. Most of the

data for PRO database are from PRO OWL file and PAF file. They have been

converted and stored in RDF format in the Virtuoso triple store. However, there are

still some data spreaded across multiple files. We therefore extracted them mainly

from ‘PRO_orthoforms.dat’ and ‘pro_reasoned.obo’ and converted them into RDF

triples and stored in a new RDF graph called “PRO_extra”.

Figure 2.5 Sample data for PRO_extra RDF graph

As shown in the Figure 2.5, there are seven different kinds of predicate. In the

file ‘orthoform.dat’, they are ‘replaced by’, ‘is_a’,’intersection_of’ and ‘relationship.

Other three kinds of predicates, ‘ortho-gene’, ‘ortho-isoform’ and ‘ortho-modification’

 21

are in the file ‘PRO_reasoned.obo’. They all have their own special definitions. For

example, ‘relationship’ represents the related proteins and their relationships. ‘Ortho-

modification’ means the proteins on the right of equal sign are modified by one or

many methods from the original protein on the left.

Turtle (Terse RDF Triple Language) [23] is a format for expressing RDF

triples in a compact textual form. Turtle provides a way to group three URIs to make a

triple, and provides ways to abbreviate such information, for example by factoring out

common portions of URIs.

 22

Figure 2.6 Example of converting data into RDF in Turtle format

Figure 2.6 describes the process of converting and combining data for

PRO_extra RDF graph. As the supplement to PRO RDF graph, classes in the

PRO_extra have been defined in the PRO RDF graph. Therefore, we reuse them. The

data in “PRO_orthoforms.dat” file has the relationship which is the “ortho-isoform”.

 23

However, there is no predefined URI or predicate. Therefore, we created new

predicate: “pr_extra:hasOrthoIsoform”.

There are three principles in convert source data to RDF triple in Turtle format:

1. “prefix” is defined to represent namespaces and URIs sharing the same base.

2. Same subject can be referenced by a number of predicates. Therefore, a series

of RDF triples can be written by a series of predicates and objects, separated

by “;”, following a subject.

3. Objects are often repeated with the same subject and predicate. Therefore, a

series of RDF triples can be written by a series of objects, separated by “,”.

Figure 2.7 Example RDF triples in PRO_extra graph in Turtle format

 24

The Figure 2.7 is the example of the integration result. “@prefix” is used to

define the namespaces and base URI. There are some special properties uniquely

defined for PRO_extra. The conversion script is developed in Python. The decisive

parameters in script are the regular expression rules. It is very convenient to add or

modify those rules to extract data.

Table 2.1 Statistics of PRO RDF database (PRO version 56.0)

Named Graph Triples Classes Entities
Distinct

Subjects
Properties

Distinct

Objects

<http://purl.obolibrary.org/obo/pr> 10,164,037 8 1,747,528 2034,478 45 2,911,165

<http://pir.georgetown.edu/pro/paf> 94,409 4 8,599 20,709 22 30,781

<https://proconsortium.org/pr_extra> 398,643 1 4 266,912 10 316,530

Table 2.1 shows the number of triples, classes, entities, distinct subjects,

properties, and distinct objects for three named graphs stored in Virtuoso triple store

for PRO RDF database (version 56.0).

 25

Chapter 3

VIRTUOSO/SPARQL BASED SEARCH ENGINE

The search function of current PRO website is powered by Apache Lucene

search engine. As a high performance, scalable information retrieval (IR) tool library

[24], Lucene stores the index and data together, therefore Lucene can search the index

rapidly and then the data can return directly without additional retrieval step. In our

new architecture, we propose to build a Virtuoso/SPARQL based search engine by

exploring the full-text search functionality of Virtuoso server to achieve the goals of

data integration and high-performance information retrieval.

3.1 PRO Search Website

We have two applications to demonstrate the usefulness of our SPARQL based

search engine for PRO. One is the PRO text search website. Another one is the

RESTful APIs that will be described in the Chapter 4.

Figure 3.1 shows the web interface for PRO text search website. The red box

shows the quick links which includes some default filter conditions so that users can

return search results directly for some specific queries. The blue box is main body of

the query input. The search result is displayed as paginated table. The columns shown

in the table can be further customized by the “Display Options”. The search interface

was built with Perl CGI, HTML and Javascript. We re-used the front-end code and

 26

replaced its underlying Apache Lucene based search engine with our

Virtuoso/SPARQL based search engine.

Figure 3.1 PRO search website

The Quick Links (Figure 3.2) can be grouped into three sections: Modified

forms, Terms related to disease and Other links. Modified protein forms are

distinguished by their category descriptions. However, everyone has to have keyword

“modification”. For “Terms related to disease”, we currently only have “Saliva

biomarkers” that represents proteins having the database cross-reference of “SALO:

AJ”. We also have other database cross-reference in “Other Links” section, such as

EcoCyc, MGI, Panther, Reactome and UniProtKB. They have special filter conditions

on ID. ‘Complex’, ’Family Level’, and “Orthisoforms” are also included in this

 27

section. These quick links allow user to get specific query results quickly. However,

they can also be combined with the main query interface, which can be used with filter

condition.

Figure 3.2 Quick Links for PRO text search website

Figure 3.3 shows the PRO main search interface. User can select the field and

specify the search condition. User can also form Boolean query clause by clicking

“add/del input box” button for different search fields. In addition to viewing the search

result page by page, user can select a list of PRO IDs to show their Hierarchy or

display their corresponding entries in OBO or PAF format. User can also view the list

of PRO DIs in Cytoscape network view.

 28

Figure 3.3 PRO main search interface

3.2 SPARQL Syntax

SPARQL has many advantages [25]. First, the level of standardization of

implementations using RDF and SPARQL is much higher than SQL. It's possible to

swap out one triple store for another easily. Second, SPARQL is expressive. It is much

easier to model complex data in RDF than in SQL, and finally, it is easier to do things

like LEFT JOINs (called OPTIONAL) in SPARQL.

 29

Figure 3.4 Basic structure of SPARQL query

SPARQL mainly consists of five components structurally. Except for the query

modifiers, the rest of components are essential in SPARQL query. The prefix

declaration is used to declare the namespaces which have included the stated entity

and relationships. The result clause is for identifying what information to return from

the query. Dataset definition is used to state what RDF graph(s) are being queried. It

also can be seen as the range of search. The query pattern is the main body of

SPARQL query. It shows the triple (graph) patterns people are searching in the query

dataset and the matched result will be restricted by the result clause. The query

 30

modifier has many functions such as slicing, ordering, and otherwise rearranging

query results.

There are three RDF Terms in SPARQL syntax: the URI, the literal value and

the variable. The URI and the literal are the basic type in the SPARQL and RDF.

Variable represents any unknown thing in the triple pattern and the actual value can be

projected in the result clause.

There are some special key words for different functions. The keyword

“FILTER” is a restriction on solutions over the whole group in which the filter appears

and helps people searching result more accurately. Another keyword is “OPTIONAL”,

which allows additional patterns to extend the solution. Because there is no null value

in the SPARQL, this keyword is designed for matching additional patterns that may

extend the solution. It can allow information to be added to the solution where the

information is available, but do not reject the solution because some parts of the query

pattern do not match. We can use keyword “UNION” to combine graph patterns so

that one of several alternative graph patterns may match. If more than one of the

alternatives matches, all the possible pattern solutions are found. The last one is

“GRAPH”. When querying a collection of graphs, the GRAPH keyword is used to

match patterns against named graphs. The use of GRAPH changes the active graph for

matching graph patterns within that part of the query. Outside the use of GRAPH,

matching is done using the default graph.

3.3 SPARQL Query Library for PRO

The SPARQL query for each field in this graphic interface needs to be built

first. As shown in the example SPARQL query for PRO field search (Figure 3.5). The

 31

red color codes show the triple patterns related to PRO term definition in Turtle format.

The two cells on the right are its corresponding SPARQL queries. One for all PRO

terms, another one for specified PRO terms.

Figure 3.5 Example SPARQL query for PRO field search

Because there are only three namespaces that are used in this example query,

only three abbreviations are stated in PREFIX section. The line starting from SELECT

is the result clause in the query. Depending on the field searched, user can select any

related field they want to get the value from. The example is to query the definition of

protein, so the basic requirement is the URI, name, ID and definition of a protein.

After the dataset clause, three triple patterns are listed in the query patterns. In this

 32

example, it is mostly basic patterns without any special keyword. The keyword “BIND”

is just for getting only the literal portion and removing the URL from a variable. There

are two steps involved. The first step is to create a variable to hold the value entered

by user. This part is implemented by keyword “VALUES”, In SPARQL language, it is

used for assigning a value to a variable. In Figure 3.5, the value “PR:X5M8U1” was

given to the variable, “?variable”. The next step is to filter it with specified condition

using the keyword “FILTER” introduced above. In the example, the combination of

“FILTER” and “regex” is used to filter the value in the field of “PRO ID” with regular

expression search. According to the field selected and value entered by the users, it

will only work for one field. On PRO search interface, there are 26 fields. User can

select multiple fields and construct Boolean clause query using operators “NOT”,

“AND” and “OR”. To deal with this, a SPARQL query is split into different code

snippets with respect to their corresponding fields and stored in a lookup table

(Dictionary in Python). Based on the user input, different query snippets are combined

dynamically to construct a complete SPARQL query.

3.4 Performance Evaluation

We conducted performance evaluation using CURL command to record the

query response times of 10 queries against Apache Lucene based and

Virtuoso/SPARQL based search engines of PRO database. Each query was repeated

10 times for each search engine (Figure 3.6).

 33

Figure 3.6 Average response time of 10 search queries

In Figure 3.6, there are 10 different fields. For example, “Ecocyc ID”,” PRISF

ID”,” PMID” and “UniProtKB ID”. They have same data type and even similar triple

pattern so there is only “Ecocyc ID” chosen as the sample in the performance test.

When the property is the literal value, the efficiency of searching is similar and

sometime better. In this test, these fields include the “Comment”, “Any relationship”,

“Gene name” and “Ecocyc ID”. The annotation is the delegate of this kind of variable.

In the chart, the field “Modifier” and “Ontology ID” were chosen as the property

sample for Annotation. They all have a good performance and are better than the

performance of Apache Lucene based search engine. In addition, the field “Iso-formed”

and “Modified-form”, which belong to the PAF source, have a similar performance.

 34

As shown in the chart, for fields “Parent”, the response time is increased significantly.

Those are related to the complexity of graph patterns to match or whether we have

alternative patterns to match. Overall, Virtuoso/SPARQL based search engine

achieved comparable performance with respect to Apache Lucene based search engine.

The details of performance evaluation can be found in Appendix A.

 35

Chapter 4

RESTFUL API

4.1 API Design

PRO API design (Figure 4.1) was motivated by PRO text search website and

PRO manual curation guide website URI [26]. The API specification was designed

using Swagger editor (https://editor.swagger.io/) based on Open API (formerly known

as Swagger) Specification 3. Swagger UI was used to visualize and interact with the

API’s resources automatically generated from API specifications. The API is currently

accessible at the referenced website [27].

Figure 4.1 PRO RESTful APIs and Swagger UI interface

 36

The PRO RESTful APIs include 8 API operation groups (PRO Terms,

Proteform Terms, Protein Evolutionary Terms, Protein Complex Terms, Database

Cross-references, PRO Annotation File, OBO File, Hierarchy) and 34 access paths.

The description of each access path and its functionality can be found in Appendix B.

The core model of PRO APIs is PRO term, which consists of a list of attributes

associated with a given PRO term (Figure 4.2). For example, PRO ID, protein name,

term definition, category etc. The PRO RESTful APIs only support GET method,

which is the read-only operation. The API response can be in either JSON or XML

format.

Figure 4.2 The data structure definition of PRO term

 37

4.2 API Implementation

The PRO RESTful APIs are implemented in Python (version 2.7.15rc1) and

Django-REST framework (version 1.11.15). The first step in API implementation is to

build python classes for holding both the input parameters and query results. They are

Models in terms of Django-REST framework. One reason we choose it as the develop

tool is its extensive documentation and great community support. Another reason is

that internationally recognized companies including Mozilla, Red Hat, Heroku, and

Eventbrite, so it should have a trustworthy reliability. [28]

Figure 4.3 Python class for search parameters

Figure 4.3 shows the python class for search parameters. There are 22

parameters in this model. The parameter “search_field” is for the field the search is

against. The “search_value” is the value for the specific field which can be a number

 38

or literal value. When the value of parameter “search_value” is blank, which is the

default value, or not null, it will match any PRO terms with this search field property.

If the value is null, the result will return PRO terms without such search field property.

The parameter “offset” and “limit” are used for paginating the result to improve

performance. The Boolean valued show field parameters simulated the “Display

Options” of the PRO text search website. If a show field parameter is set to be True,

the value of that field will be included in the returned query result. By default, the

name, definition, category and parent of a PRO term are set to be True. The rest of the

show field parameters are set to be False.

 39

Figure 4.4 Python class for retrieval parameters

Figure 4.4 shows the python class for retrieval parameters. In comparison with

the class for search parameters, the class for retrieval parameters is simpler. Other than

the show field parameters, it only has one parameter, the “proId”. The value of this

parameter cannot be blank, so user must input a part or complete valid PRO term ID.

It has no search field and search value parameters. This class is mainly for retrieving

information about a specific PRO term.

Next important component is Views. Many of the functionalities of the API

services are implemented as functions in Views.

 40

Figure 4.5 Flow chart of function in Views

 From the Figure 4.5, there are four parts in the flow chart of Views function.

The information encoded in the URL needs to be extracted and processed. As the

bridge between other components, there is also a function related to rendering the

result to user.

Figure 4.6 The layout of function definition in Views

 41

 The function starts with some decorators as shown in the yellow box of Figure

4.6. “@api_view([‘GET’]) indicates that it is for handling HTTP GET method request.

“@render_classes ((JSONRenderer, XMLRenderer)) indicates that the HTTP response

can be rendered in either JSON or XML format depending on how the Accept format

header was set by the user client. By default, JSON response will be generated if user

client didn’t specify any Accept format.

The code snippets in blue box of Figure 4.6 processes request parameters.

There are different types of request parameters. One type of parameters shows

searching for a field with specified value. User can use “null” or “not null” as the

search field value. Display options parameter determines whether specified field will

be queried and become part of the response rendered to the user. So, if a show field is

set to be “True” that means the value of that field will be included in the rendered

response, “False” means the value of that field will be excluded. Another kind of

parameter is used for paginating the result to improve the performance such as “limit”

and “offset”. The code snippet in green box does the search against SPARQL endpoint

and generates the output.

 42

Figure 4.7 Function for constructing SPARQL query dynamically

The search functions in Views are organized into many files according to the

search field. In general, they are two steps in the search function. The first step is to

construct the SPARQL query based on the input parameter. There are two core

functions; one is for searching information in the annotation field, “search_annotation”

and another one is for other fields, “search_main”. As shown in the Figure 4.7, it has

two different conditions. When the field user wants to search is in the field of

 43

“annotation”, the “search_annotaion” will be called first to get the information and a

list of protein ID based on different conditions will be used to call the function

“search_main” in order to get the complete information about those proteins.

Figure 4.8 URL patterns defined in the Controller

 Controller is the entry point in Django REST framework. Each field in the API has

their own views function so they also have their own URL patterns. Each line in

Figure 4.8 is a URL pattern and must be separated by colon. We use the parameter

“name” and views function name to distinguish and identify them. When user enters a

 44

URL into browser, Django will match it against the list. If this pattern is not in the list,

the server will return a error to promote user to check the URL.

Figure 4.9 An example JSON response from PRO RESTful APIs

The component Template in Django REST framework is just for rendering the

output. JSON is a lightweight data exchange format [29], simple and easy to read and

write. Figure 4.9 shows an example JSON response from PRO RESTful APIs. Each

PRO term is stored in curly braces and square brackets represents the data structure

model mentioned above. If user changes the value of “Annotation” from true to false,

there will be another curly brace in PRO term. As the key-value pair in the dictionary,

the key is the field name and value is the result queried from Virtuoso triple store.

 45

Figure 4.10 An example XML response from PRO RESTful APIs

XML is a markup language used to encode data or documents [30]. The format

of XML has strict standards. The reason PRO RESTful APIs also support rendering

XML output is because XML readers and writers have been developed for a variety of

programming languages.

4.3 Use Case

The REST services provide a flexible interface into multiple aspects of PRO

term. In the PRO, the UniProtKB is used to provide the formal definition of protein

[31] and there are also some other external databases that are connected to PRO

identifiers by the mapping of accessions. RESTful API can help user finding the

related information about a protein, like proteoforms, complexes, hierarchy and

 46

annotations. For example, we can get information for the gene level protein class

BUB1B (PR:000004855) and its subclasses using APIs.

 User can start from “Search PRO terms” API by specifying the

“PRO_term_definition” field and entering search value “BUB1B” (Figure 4.11) to get

a list of PRO terms as shown in Figure 4.12.

Figure 4.11 Inputs to “Search PRO terms” API.

 47

Figure 4.12 A list of PRO_terms returned by “Search PRO terms” API.

From the returned PRO terms, we can see “PR:000004855” has the category of

“gene”. We can use “PR:000004855” as input to the “Parent” field of “Organism-gene”

API (Figure 4.13) to get a list of organism specific PRO terms as the subclasses of

“PR:000004855” (Figure 4.14).

Figure 4.13 Inputs to “Search organism-gene” API.

 48

Figure 4.14 A list of organism specific PRO terms as returned by “Search organism-

gene” API.

As shown in Figure 4.14, we find 4 organism specific PRO terms that are subclasses

of “PR:000004855”: PR:O60566 (human), PR:Q8JGT8 (frog), PR:Q800D4 (chicken)

and PR:Q9Z1S0 (mouse). Alternatively, we can also use “Search decedents” API to

get all the subclasses of “PR:000004855” and looking for those with category of

“organism-gene” as shown in Figure 4.15 and 4.16 Furthermore, user can also get

PAF annotation (Figure 4.17 and 4.18).

 49

Figure 4.15 Inputs to “Search decedents” API.

Figure 4.16 A list of organism specific PRO terms as returned by “Search decedents”

API.

Figure 4.17 Inputs to “Get PAF annotation” API.

 50

Figure 4.18 Annotations returned by “Get PAF annotation” API.

Other than Swagger UI web interface and Curl command, the PRO RESTful

APIs can be invoked by a programming language and executed. Figure 4.19 shows a

Python script executes the search of a PRO term by its id.

Figure 4.19. Python script executes the search of a PRO term by its id.

import requests, sys

requestURL

="https://research.bioinformatics.udel.edu/PRO_API/V1/pros/PR:000004855?showPROName=true" \

"&showPROTermDefinition=true&showCategory=true&showParent=true&showAnnotation=false" \

"&showAnyRelationship=false&showChild=false&showEcoCycID=false&showGeneName=false" \

"&showHGNCID=false&showMGIID=false&showOrthoIsoform=false&showOrthoModifiedForm=false" \

"&showPANTHERID=false&showPIRSFID=false&showPMID=false&showReactomeID=false&showUniProtKBID=

false"

r = requests.get(requestURL, headers={"Accept":"application/json"})

if not r.ok:

 r.raise_for_status()

 sys.exit()

responseBody = r.text

print(responseBody)

 51

Chapter 5

DISCUSSION AND FUTURE WORK

The integration of heterogeneous data can significantly reduce the difficulty of

database`s maintenance. In the original version of PRO database, four different types

of databases are used: SQL-Lite, Oracle, Apache Lucene and Virtuoso. Each database

needs a series of processes to maintenance like checking the schema, models and data

files. The DBAs need to check and update four databases at the same time in order to

make PRO work regularly and smoothly. This often made the DBAs stressful. In

current version of PRO database, there is only one Virtuoso database server. There is

no doubt that the workload for DBA is reduced significantly.

Furthermore, the simplification of databases and data structure can also

improve the query efficiency. As indicated in the performance evaluation presented in

Chapter 3, the new Virtuoso/SPARQL based search engine has comparable

performance with respect to Apache Lucene based search engine. For some queries,

the new one is significant better. The stability of new searching engine is also better

than that of old engine. In addition, the integrity of data is also improved to some

extent. Finally, the PRO RESTful APIs provide programmatic access to PRO database

that can help bioinformatics developer build novel application to use PRO data.

However, there are still some improvements. For example, the SPARQL query

can be further optimized. The SPARQL query library can also be improved. The PRO

entry page and visualization website [32] is still using Oracle database as backend. It

can be modified to use the PRO RESTful APIs as the backend instead. In addition, as

 52

the database evolves, more data and fields will be introduced, the SPARQL query

library and RESTful APIs also need to be updated in the future.

 53

Chapter 6

CONCLUSION

In conclusion, the semantic web technologies such as RDF and SPARQL etc.

are suitable for data integration. By using RDF, the data is structured and simplified.

Compared to unstructured data, the structured data has a strict standard format and can

simplify the query process and improve efficiency. At the same time, expandability

and flexibility of data are also significantly improved so that we can store data at any

time without having to create new field in the SQL table. This is especially important

for dealing with Big Data.

 The thesis presents the integration of heterogeneous data using semantic

web technologies. In addition, it also showed the design and implementation of the

RESTful APIs in detail along with application examples. The thesis aims to provide a

clear description of the heterogeneous data integration process and API construction

process. The thesis can also be used as a reference for API development in the field of

Bioinformatics.

The Virtuoso/SPARQL powered PRO text search website [33] and the API

documentation website [34] are accessible by the URLs in the References.

This thesis work has been presented in the 7th Annual Big Data in

Biomedicine Symposium held in Georgetown University, Washington DC on October

26, 2018.

 54

REFERENCES

1. Michelle Cheatham, Catia Pesquita. (2017). The semantic Data

integration. A.Y. Zomaya and S. Sakr (eds.), Handbook of Big Data

Technologies, Springer International Publishing

2. Berners-Lee, Tim (May 17, 2001). "The Semantic Web" (PDF).

Scientific American. Retrieved October 26, 2018, from

https://pdfs.semanticscholar.org/566c/1c6bd366b4c9e07fc37eb37277169

0d5ba31.pdf

3. Tom Heath, Christian Bizer, Synthesis Lectures. (2011) Linked Data:

Evolving the Web into a Global Data Space. Retrieved from

http://linkeddatabook.com/book

4. Ahmet Soylu, Felix Mödritscher, and Patrick De Causmaecker. 2012.

“Ubiquitous Web Navigation through Harvesting Embedded Semantic

Data: A Mobile Scenario.” Integrated Computer-Aided Engineering 19

(1): 93–109.

5. Semantic Web Architecture.(2007).Retrieved October 14, 2018, from :

http://obitko.com/tutorials/ontologies-semantic-web/semantic-web-

architecture.html.

6. W3C. RDF - Semantic Web Standards. https://www.w3.org/RDF/

7. B. McBride, The Resource Description Framework (RDF) and its

Vocabulary Description Language RDFS, in:The Handbook on

Ontologies in Information Systems, S. Staab,R.Studer(eds.),Springer

Verlag,2003.

8. "XML and Semantic Web W3C Standards Timeline" (PDF). 2012-02-04.

Retrieved October 26, 2018, from

http://www.dblab.ntua.gr/~bikakis/XMLSemanticWebW3CTimeline.pdf .

9. W3C. SPARQL 1.1(2013, March 21). Retrieved October 26, 2018, from

https://www.w3.org/TR/sparql11-overview/

10. Segaran, Toby; Evans, Colin; Taylor, Jamie (2009). Programming the

Semantic Web. O’Reilly Media, Inc., p. 84. ISBN 978-0-596-15381-6.

https://pdfs.semanticscholar.org/566c/1c6bd366b4c9e07fc37eb372771690d5ba31.pdf
https://pdfs.semanticscholar.org/566c/1c6bd366b4c9e07fc37eb372771690d5ba31.pdf
http://linkeddatabook.com/book
http://www.ahmetsoylu.com/wp-content/uploads/2013/10/soylu_ICAE2012.pdf
http://www.ahmetsoylu.com/wp-content/uploads/2013/10/soylu_ICAE2012.pdf
http://www.ahmetsoylu.com/wp-content/uploads/2013/10/soylu_ICAE2012.pdf
http://obitko.com/tutorials/ontologies-semantic-web/semantic-web-architecture.html
http://obitko.com/tutorials/ontologies-semantic-web/semantic-web-architecture.html
https://www.w3.org/RDF/
http://www.dblab.ntua.gr/~bikakis/XMLSemanticWebW3CTimeline.pdf
https://www.w3.org/TR/sparql11-overview/
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-0-596-15381-6

 55

11. Jim Rapoza (2006, May 2). "SPARQL Will Make the Web Shine".

eWeek. Retrieved October 26, 2018, from

http://www.eweek.com/development/sparql-will-make-the-web-shine .

12. Nadine Schuurman, Agnieszka Leszczynski (2008). Ontologies for

Bioinformatics. Bioinform Biol Insights. 2008; 2: 187–200.

13. Natale DA, Arighi CN, Blake JA, Bona J, Chen C, Chen SC, Christie KR,

Cowart J, D'Eustachio P, Diehl AD, Drabkin HJ, Duncan WD, Huang H,

Ren J, Ross K, Ruttenberg A, Shamovsky V, Smith B, Wang Q, Zhang J,

El-Sayed A, Wu CH. "Protein Ontology (PRO): enhancing and scaling

up the representation of protein entities." Nucleic Acids Res. 2017 Jan

4;45(D1): D339-D346. doi: 10.1093/nar/gkw1075. Epub 2016 Nov 28.

14. “Framework Figure”. (PDF) (2010, April). Retrieved October 26, 2018,

from https://pir.georgetown.edu/pro/documents/framework_figure.pdf.

15. W3C Semantic Web Activity". World Wide Web Consortium (W3C).

November 7, 2011. Retrieved October 26, 2018.

16. Fielding, Roy Thomas. Chapter 5: Representational State Transfer

(REST). Architectural Styles and the Design of Network-based Software

Architectures (Ph.D.). University of California, Irvine. 2000.

17. Erl, Thomas; Carlyle, Benjamin; Pautasso, Cesare; Balasubramanian, Raj

(2012). "5.1". SOA with REST: Principles, Patterns & Constraints for

Building Enterprise Solutions with REST. Upper Saddle River, New

Jersey: Prentice Hall. ISBN 978-0-13-701251-0.

18. Sayers E. A General Introduction to the E-utilities. In: Entrez

Programming Utilities Help [Internet]. Bethesda (MD): National Center

for Biotechnology Information (US); 2010-. Available

from:https://www.ncbi.nlm.nih.gov/books/NBK25497/

19. Veronique Greenwood. (2016, April 26). Life’s Blueprints. Retrieval

October 26, 2018, from https://www.quantamagazine.org/one-gene-

many-proteins-20160426/

20. Linux Foundation wants to extend Swagger in connected buildings".

(2015, November 6). Retrieval October 26, 2018, from

http://www.businesscloudnews.com/2015/11/06/linux-foundation-wants-

to-extend-swagger-in-connected-buildings/ .

21. Adrian Holovaty, Jacob Kaplan-Moss; et al. The Django Book.

http://www.eweek.com/development/sparql-will-make-the-web-shine
https://pir.georgetown.edu/pro/documents/framework_figure.pdf
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-0-13-701251-0
https://www.ncbi.nlm.nih.gov/books/NBK25497/
https://www.quantamagazine.org/one-gene-many-proteins-20160426/
https://www.quantamagazine.org/one-gene-many-proteins-20160426/
http://www.businesscloudnews.com/2015/11/06/linux-foundation-wants-to-extend-swagger-in-connected-buildings/
http://www.businesscloudnews.com/2015/11/06/linux-foundation-wants-to-extend-swagger-in-connected-buildings/
http://www.djangobook.com/en/2.0/chapter05.html#the-mtv-or-mvc-development-pattern

 56

22. M. Lenzerini. Data integration: a theoretical perspective. In Proceedings

of the 21st ACM SIGACT-SIGMOD-SIGART Symposium on Principles of

Database Systems, pp. 233–246, 2002.

23. "RDF 1.1 Turtle - Terse RDF Triple Language Turtle". World Wide Web

Consortium (W3C). (2014, February 25). Retrieved October 26, 2018,

from http://www.w3.org/TR/turtle/ .

24. "Lucene Implementations". apache.org. Archived from the original on 6

October 2015. Retrieved October 26, 2018, from

https://web.archive.org/web/20151006021755/http://wiki.apache.org/luce

ne-java/LuceneImplementations .

25. 25. ALISDAIR OWENS, “An Investigation into Improving RDF Store

Performance an Investigation into Improving RDF Store Performance”,

PHD Thesis, UNIVERSITY OF SOUTHAMPTON, 2009.

26. https://pir17.georgetown.edu/confluence/display/PROWIKI/PRO+Ontolo

gy+Manual+Curation+Guideline

27. https://beadle.dbi.udel.edu/pro/pro_api.shtml

28. Django REST Framework (2011) Retrieved October 26, 2018, from

https://www.django-rest-framework.org/# .

29. Introducing JSON. Retrieved October 26, 2018, from http://json.org/ .

30. Bikakis N, Tsinaraki C, Gioldasis N, Stavrakantonakis I, Christodoulakis

S. "The XML and Semantic Web Worlds: Technologies, Interoperability

and Integration. A survey of the State of the Art" In Semantic

Hyper/Multimedia Adaptation: Schemes and Applications, Springer 2013.

31. atale DA, Arighi CN, Blake JA, Bona J, Chen C, Chen SC, Christie KR,

Cowart J, D'Eustachio P, Diehl AD, Drabkin HJ, Duncan WD, Huang H,

Ren J, Ross K, Ruttenberg A, Shamovsky V, Smith B, Wang Q, Zhang J,

El-Sayed A, Wu CH. "Protein Ontology (PRO): enhancing and scaling

up the representation of protein entities." Nucleic Acids Res. 2017 Jan

4;45(D1): D339-D346. doi: 10.1093/nar/gkw1075. Epub 2016 Nov 28.

http://www.w3.org/TR/turtle/
https://web.archive.org/web/20151006021755/http:/wiki.apache.org/lucene-java/LuceneImplementations
https://web.archive.org/web/20151006021755/http:/wiki.apache.org/lucene-java/LuceneImplementations
https://www.django-rest-framework.org/
http://json.org/

 57

32. Natale DA, Arighi CN, Blake JA, Bult CJ, Christie KR, Cowart J,

D'Eustachio P, Diehl AD, Drabkin HJ, Helfer O, Huang H, Masci AM,

Ren J, Roberts NV, Ross K, Ruttenberg A, Shamovsky V, Smith B,

Yerramalla MS, Zhang J, AlJanahi A, Celen I, Gan C, Lv M, Schuster-

Lezell E, Wu CH. "Protein Ontology: a controlled structured network of

protein entities." Nucleic Acids Res. 2014, 42(Database issue): D415-21.

doi: 10.1093/nar/gkt1173.

33. The PRO entry page and visualization website, Retrieved October 26,

2018, from https://research.bioinformatics.udel.edu/pro/entry/[PRO_ID]/

34. PRO search website, Retrieved October 26, 2018, from

https://beadle.dbi.udel.edu/cgi-bin/pro/textsearch_sparql?search=1

35. The API documentation website, Retrieved October 26, 2018, from

https://beadle.dbi.udel.edu/pro/pro_api.shtml

 58

Appendix A

COMPARSION OF PERFORMANCE IN NEW/OLD DATABASE

SEARCH

FIELD

SEARCH

ENGINE
MINIMUM

TIME(s)

MAXIMUM

TIME(s)

AVERAGE

TIME(s)

STANDARD

DEVITATION

Any Fields

Virtuoso/SPAR

QL
2.277 2.354 2.302 0.010

Apache Lucene 1.551 5.344 2.386 0.988

Comment

Virtuoso/SPAR

QL
0.902 1.048 0.928 0.043

Apache Lucene 0.252 1.329 0.581 0.495

Modifier

Virtuoso/SPAR

QL
0.277 0.313 0.296 0.037

Apache Lucene 0.296 1.368 0.777 0.511

Any_relationshi

p

Virtuoso/SPAR

QL
1.494 1.721 1.538 0.066

Apache Lucene 0.460 2.959 1.505 0.884

Gene name

Virtuoso/SPAR

QL
1.111 1.158 1.127 0.013

Apache Lucene 0.302 2.707 1.029 0.875

Ecocyc ID

Virtuoso/SPAR

QL
0.168 0.205 0.183 0.013

Apache Lucene 0.202 0.221 0.211 0.007

 59

Parent

Virtuoso/SPAR

QL
1.881 1.893 1.888 0.004

Apache Lucene 0.390 2.866 1.041 0.825

Ontology ID

Virtuoso/SPAR

QL
0.305 0.352 0.331 0.014

Apache Lucene 0.278 1.369 0.864 0.403

Iso_form

Virtuoso/SPAR

QL
0.243 0.282 0.257 0.011

Apache Lucene 0.236 2.004 0.627 0.627

Modified_form

Virtuoso/SPAR

QL
0.180 0.234 0.202 0.015

Apache Lucene 0.184 0.278 0.1997 0.029

 60

Appendix B

CATEGORY OF PRO API

API

OPERATION

GROUP
PATH DESCRIPTION

PRO

TERMS

/pros
Gets a list of PRO terms and

associated information.

/pros/{proID}
Gets one or more PRO terms

and associated information.

by ID.

Proteoform

Terms

/proforms/modification
Gets a list of modified protein

forms and associated

information.

/proforms/modification/phosphorylated
Gets a list of phosphorylated

protein forms and associated

information.

/proforms/modification/methylated
Gets a list of methylated

protein forms and associated

information.

/proforms/modification/acetylated
Gets a list of acetylated

protein forms and associated

information.

/proforms/modification/ubiquitinated
Gets a list of ubiquitinated

protein forms and associated

information.

/proforms/modification/glycosylated
Gets a list of glycosylated

protein forms and associated

information.

 61

/proforms/orthoisoform
Gets a list of ortho-

isoform protein forms and

associated information.

/proforms/orthomodform
Gets a list of ortho-modform

protein forms and associated

information.

/proforms/sequence
Gets a list of sequence level

protein forms and associated

information.

/proforms/organism-sequence
Gets a list of organism-

sequence level protein forms

and associated information.

Protein

Evolutionary

Terms

/proevos/family
Gets a list of family level

protein terms and associated

information.

/proevos/gene
Gets a list of gene level

protein terms and associated

information.

/proevos/organism-gene
Gets a list of organism-gene

level protein terms and

associated information.

Protein

Complex

Terms

/procomps/species-specific
Gets a list of species specific

protein complex terms and

associated information.

/procomps/species-non-specific

Gets a list of species non-

specific protein complex

terms and associated

information.

Database

Cross-

references

/dbxrefs/EcoCyc_ID

Gets a list of PRO terms with

EcoCyC ID as cross-

reference and associated

information.

/dbxrefs/HGNC_ID
Gets a list of PRO terms with

HGNC ID as cross-reference

 62

and associated information.

/dbxrefs/MGI_ID
Gets a list of PRO terms with

MGI ID as cross-reference

and associated information.

/dbxrefs/Ontology_ID

Gets a list of PRO terms with

Ontology ID as cross-

reference and associated

information.

/dbxrefs/PANTHER_ID

Gets a list of PRO terms with

PANTHER ID as cross-

reference and associated

information.

/dbxrefs/PIRSF_ID
Gets a list of PRO terms with

PIRSF ID as cross-reference

and associated information.

/dbxrefs/PMID
Gets a list of PRO terms with

PMID as cross-reference and

associated information.

/dbxrefs/Reactome_ID

Gets a list of PRO terms with

Reactome ID as cross-

reference and associated

information.

/dbxrefs/NCBITaxon_ID

Gets a list of PRO terms with

NCBI Taxon ID as cross-

reference and associated

information.

/dbxrefs/UniProtKB_ID

Gets a list of PRO terms with

UniProtKB ID as cross-

reference and associated

information.

PRO

Annotation

File
/paf/{proId}

Gets annotations for the

given PRO ID.

 63

OBO File /obo/{proId}
Gets PRO term in OBO

format for the given PRO ID.

Hierarchy

/dag/parent/{proId}
Gets direct parent PRO terms

by the given PRO ID and

associated information.

/dag/ancestor/{proId}

Gets direct and indirect

parent PRO terms by the

given PRO ID and associated

information.

/dag/children/{proId}
Gets direct children PRO

terms by the given PRO ID

and associated information.

/dag/descendant/{proId}

Gets direct and indirect

children PRO terms by the

given PRO ID and associated

information.

