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INTRODUCTION

Definition of a Roulette and Formulation of the Problem
of This Paper

The most general roulette R is defined to be the
curve generated by a point P fixed in the plane of a curve
C as the curve C rolls without sliding on any other
curve B.

The problem to be considered here is special in that
while C is any continuous curve, B, the curve on which
it rolls, is a straight line. Formulas for the areas of
the surfaces of revolution and the volumes of the solids
of revolution generated by the roulette R when rotated
about the line B will be found.

It is then proposed to translate the general results
into one of the special cases, namely the case where C
is a conic. The areas of the surfaces of revolution and
the volumes of the solids of revolution generated as de-
seribed above by their special roulettes are expressible
as elliptic integrals, and the resulting elliptic integrals
are reduced to standard forms.

The results of the solution of this problem find an
application in mechanics, for example the “soap bubble”
problem, and in particular, Celestial Mechanics.
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I. The Parametric Representation of a Roulette in
General: Expressions for Areas and Volumes
of Solids of Revolution Generated by It

Since the curve B is to be considered a straight
line in this problem, it can be made the x-axis of a sys-
tem of Cartesian coordinates. As the curve C begns to
roll some point on C, say O, (in Fig. 1) must obviously
be in contact with a point, which may be called O, on
the line B. Since B is the x-axis, and O is on B, let O
be the origin of the system of coordinates.

Call T the instantaneous point of contact of the
line B and the curve C. (See Fig.1.) Let 6 be the angle
O’PT and p the line connecting the points P and T. The
curve C can now be written in polar form as p=1(0).
Denote by o the length of the arc O’T and by y the angle
of inclination of p to the base or x-axis. The line PQ
is constructed prerpendicular to the x-axis passing
through the point P.

By definition C rolls without slipping, and since by
agreement O and O’ coincided when the motion started,

it follows that
= 0T

which together with the definitions of the trigonometric
functions, gives for any arbitrary point (x, y) on the
roulette

(1)

X =p cosd +o

y = p sind .

The variables o and y are functions of ¢ and hence
the coordinates X, y may be expressed in terms of 4 as
a parameter. From elementary Calculus the length of

~ an arc of p = f(#) may be expressed as

2 A

0
U=! [p2+ %%) } de

where O is the initial value of 6 when the rolling of the
curve begins, and the upper limit of the integral is an
arbitrary 6.
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In terms of the functions f and its derivative T4
the formula just given for the length of the arc may be
expressed by

9

(2) o= f VEFE2 do

From the definition and the conditions imposed, the
x-axis is always tangent to the curve at the point T. To
determine the angle vy between the radius vector to the
point T on the curve and the tangent at that point, from
elementary Calculus

f
tany = i = —
d,
b
de
But
(180° —v) =y
whence
tan vy = —tanwy
and
tan v = — —
v e
and also
y i
sy =
V{24172
—_
CoSy = ———
V22

Substituting these expressions and the values p =f,
p’=1%"in (1), a pair of parametric equations for the
roulette in terms of # results

ﬁ’
Viz4fz

X = —

(4
i f VEEFEZ do
(3)

£2
VEFE?
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dx d
From these expressions the derivatives i and di;

which determine the derivative of the tangent to the
roulette are determined. From

i g

x:———-——+f
T VETEE a9

it is found by differentiating with respect to 6 that
dx il d
o do\  ypEree

since the derivative of the integral with respect to its
upper limit is

) + VEFI?

d AL L ]
-&f Vi2+£'2 d9 = V£I2+£2,

After reducmg to a common denominator
:f2+f’2( — " —£2) +£2 2+ L7 +£24+£72

ke do } (£2+1£2)%
or after collecting terms and simplifying
dx f2 (£2—ft”+-2£'2)
b (Errm%E
In a like manner, starting with the second equa-
tion (3), differentiating with respect to ¢ and simplify-
ing, it follows that
dy ff’(f2—ff"4-2£'2)
W @
The derivatives of x and y with respect to 4 are
therefore
dx f2 (f2—ff"4-21"2)
[ do (f24f2)%
.<l d_y_ff'(f2—ff”+2f’2)
L do (£24£72)%

(4)

T
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From equations (4) and (1) we see at once that
the slope of the roulette is

dy

da e 1
@27 & keny
do

from which it follows that the tangent to the roulette is
always perpendicular to the line TP.

The area of the surface of revolution generated by
revolving an area of the roulette about its x-axis is given
by the expression

T
or written with respect to 6,
o bt [T g e )
Sx—zﬂbfy \/(Eo') + (d—o)do,.
Squaring equations (4) and substituting the results

together with the second equation (3) in the above in-
tegral, gives

[/
L f g2 et fir+2p) £ (T 2f?)
x — 4T

Vi1t (£24£72)3 de

a

where the arc rotated has for its initial point the point
corresponding to 6, — 0 and its end point corresponding
to the arbitrary value 6,— 6. After factoring and re-
moving from under the radical such terms as are con-
venient, this expression becomes

4
2 (f2—ff” +2£'2)

(5) Sx = 27 3
° (f24£2) 7
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If any curve be rotated about its x-axis, the volume
of the solid it generates by its revolution is

b
szw‘j y2 dx

which may be written with respect to 6 as

23

v f M
’—”oq b

Squaring the second equation (3) and substituting the
result together with the first equation of (4) in the above
expression, we find

On
f4 f2 (f2—f”+2£"2
V= f ( ) de

f24e2 (f242)%

0a

where, as in the case of surfaces of revolution of the
roulette, new limits can be taken as 6,— 6 and 6,=2.
Therefore

[}
£6 (f2—ff” +2£2
¥ Lo
: (£24£2) %

II. Roulettes Generated by Conics

Roulettes generated by any curve C have been dis-
cussed in Section I. An interesting condition on C is
the case when C is limited to conics. Expressions which
are true of conics will come out of the general case by a
mere substitution of the equation of conics in polar form
for the general equation p — £ (6).

The integral (2) is a general expression for the
length of an arc of the curve C or p=1£(4). Since it
includes conics, the polar representation of conics,

(7) L

" 1—e cost
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(8) L pe sing

(1—e cosf) 2

when squared and substituted in (2) gives

p2e2sin2) %
= [ ] de
(l—e cosé')2 (1—e cosh) 4

or after simplifying

9) f V1—2e cosd + ez
T = de

(1—e cosf)2

The parametric equations of the conics come very
easily from equations (3) by substituting in (3) the
special values (7), (8), and (9). They are

' p2e sind \/ i T

I it i de
(01) 3 (1—e cos8) V1—2e cosb+e2 o (1—e T (1—e coso)®

Pl !

" VI2e cosofe

From the general expression for the area of the
surface of revolution of a roulette generated by a curve
C, given in (5), the special case for conics may like-
wise be obtained by substitution.

The differentiation of (8) gives
pe [2e — cosd (1+e cosd) ]

(11) £ =

(1—e cosg)2

which with (7) and (8), changes (5) into
(12)

[}
—_— (/]
Sz = 27 p2 f §li e /cosd) 4 - de.
(1 —2e coso + e2) *

Knowing the volume of the solid of revolution of
a roulette of any curve to be (6), the expression for the
case of conics is arrived at by inserting the special values
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(7), (8), and (11) for the corresponding general ones
in (6), which gives

13 9
(13) AL f (1—e cosg) do do.
(1 —2e cosd + e2) %

1II. Reduction of the Elliptic Integral to Normal Form

The elliptic integrals to be reduced to normal form
are the length of the arc, the surface of revolution of
the roulette, and the volume of the solid of revolution
of the conics. Since the eccentricity of the conic may
be greater, equal to, or less than unity, three particular
cases will have to be considered in the reduction of each
of the above mentioned elliptic integrals.

Reducing the expression for the length of an arc
of a curve to normal form is not only a simple operation,
but the substitutions employed are carried over directly
to the reduction of the remaining integrals.

Consider first the length of the arc of an ellipse
(e < 1). Recalling (9)

V1—2e cosd - e2
s=p f de

(1 —e cosd)2

apply to it the substitution

I(u:cost?
QN0

Ll S
and it becomes
(15) 1
) (1 —2eu + e2) du
0 = —
2 2 2
€ u, (1—eu) \/(u-—- 1+e ) (u2—1)
2e

To keep the terms in the field of real numbers, they
are reduced to the form (1—t2) (1—k2t2), where k and



86 DELAWARE NOTES

the limits of the integral, t; and t,, are each < 1. This

is accomplished by setting

l{ 1+e2t
==
e(1+t)
(16) $
(e2—1)dt
duy et e S
L (1+t2)2

This substitution may be obtained analytically by using
the general linear substitution
p+at
7 1+t
in the radical, which occurs in our original expression,

setting the coefficients of terms of the first degree equal
to zero, and solving for p and q. The values of p and q

1
are found to be e and o respectively. After using

substitution (16) and simplifying, (15) becomes

p lIE~ (t2—1)dt
g = SN
(1—e2) o t2VT

where
'(T = (1—t2) (1—e2t2)
(17) { 1—eu;
==
L e(u;—e)

According to our original assumption, e is less than
one, therefore k is less than one, and since u==cos 4
cannot exceed unity, the limits cannot exceed unity, and
a positive radicand is assured.

After breaking into parts, the above expression for
the length of an arc becomes

t1 t1
P at (t2)-1dt
18 = —
i 1—e2[f e v’T"]

1/e 1/e

or in Legendre’s notation
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p
1—e2

o =

(Yo—Y).

Apply the standard reduction formula for Y to the
above expression and it becomes

P

t 1/e

o =
1—e2

or when Y, is put in the form (Y, —e2Y,)

iy » [e2+1Y 1 gt {v‘f‘}u ]
= i o U gt
1__e2 e2 0—e2 o ¢ ezt 1/e

and therefore, in standard form, the length of an arc of
an ellipse may be written

(19)
"—_—"——p——[(l-l-e?)F(k t)—E (k, t) {E}tl ]
e2(1—e?) ] ST t 1/e
where
(20) lrk =e<1
< 1—eu; 1
lt=%t = and t = —.
L e(ui—e) e

If, however, the eccentricity is greater than unity,
the results of the previous case cannot be used for
k=—e > 1, and the radicand cannot be called positive.

Beginning with (18)

P [ .fv dt jtvl dt ]
O T R
1—e? vV (1—t2) (1—e2t2) t2V (1—t2) (1—e2t2)

1/e /e
apply the substitution
Z

(21) () e

e

and the above expression becomes

pe [ 1 jz‘] dz fl (z2)‘1dz]
1—e2 L e2J y7r ¢ V7'

o=

when
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i 1
J Z = (1—22) (1— — Z2)
e2
(22)

l—euy
) = .
u;—e

The radical is now in standard form, both requirements

being met, namely k:% <1 and the limits < 1.
In Legendre’s notation the above expression becomes
il Ly oy ]
a2

which by the application of the standard reduction
formula on Y_; reduces to

e2VZ )z
e
Z 1

and therefore written in the standard form the arc of
a hyperbola is

a:—-—p—[Yo+Y1—
1—e2

(23)
B ey A sk { il } i
e(1—e?) Z 1
where
1
k=—
e
(24)
1—euy
zi—= 15 g =
L u;—e

~ Finally if e be unity, the integral which expresses
the length of an arc of the parabola is not an elliptic
integral and can be integrated directly.

Set e=1 in (15), which becomes after simplifi-
cation

u

1 du
= V2 7Y
i Gl VI

1
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or
o= V2pJ
where
b du
J= R AT
1 (1—u) 2V1+tu
Integrating
Vitu 1 Vifu+ ve )™
(25) I = + —— log —— -
2(1—u) 4Vv2 Vitu— V2 " 1

and consequently the length of an arc of a parabola is
given by the expression

(26) il

m
0=£{2%VI+u+log } )
4 1—u Vitu—v2 .71
The second elliptic integral to be reduced to normal
form is the area of the surface of revolution of a roulette
of conics. As before suggested, practically the same
substitutions that were used on the elliptic integral ex-

pressing the length of an arc of a curve, will suffice
here.

Assume first that the eccentricity of conic is less
than unity or, in other words, that the conic is reduced
to an ellipse. Recalling that the general expression for
the area of the surface of revolution (12) of the roulette
of any conic is

[/

de
S: =27 p? f

o (1 —2e cost + ez)% :

proceed as with the are, using first (14) which gives

(27)
i Verp2 A du

-
N

u (1—2eu-e?) 1+-e2

) (u?—1)
e
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and the additional substitution (16) reduces the above to

27p2 [ (t+1)2dt
Q—e?)2J  (t—1)2vT

where T and t; are given by (17). Now multiply both
numerator and denominator of the integrand by (t-+1)2,
in order that it may be divisible into odd and even func-
tions. It becomes

i 27 p2 f‘ (t+1)4dt
TR (1—e2)2 ) (t2—1)2VT

Divide the denominator of the integrand into the
numerator and

2 p2 ¥ (82t2+t)d
(1—1::;)2 [f J ﬁ;—?‘c]

e

which after separating the odd and even functions
becomes

27 p2 4 t2dt i 241)d
_lwg;z[f f *+4f t(t+1)t].
(1—e2) Ye (1—t2)2VT Ve (1—t2)2VT

Now separate the second integral into its partial frac-

tions and to the third, or the odd function, apply the
substitution

(28)
¥ =it

and the above expression becomes

27 p2 5

= — o f
(1—e?)? L,e IR Y, (l—i2)2yT

1/e

2 dt (y+1) dy
e (1—2) VT e (1—=y)2V (1—y) (1—e2y)

Integrate the non-elliptic integral and call the re-
sults C; which has the value
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G = {V?hz(Y—e‘—’)—zxu—eﬂy) 1|
i 8(1—y)2(1—e?) f1/e2
and the expression for the area of the surface of revo-

lution of the roulette of an ellipse turns out to be, in
Legendre’s symbols,

2 7 p2
(1—e2)?2
Using reduction formulas on the Z’s, it reduces to

G 2 7 p2 [8e(1+e2)(Y 1 + 3+5e2 40l
e o s

(29) Si= [ Yo+ 8Zy—8Z; 4 Cy].

where

t VT (e2t2+t2—2e2) }tl il VY (e2y+3y—3e2—1) }tx
i 1/e /e

(1—e2) (1—t2)2 2(1—y?2) 2(1—t2)
and the final result can be written in normal form as

(30)
16 x p2 5-+43e2

e lee)E 8

1+e2

F(kt) +——E(kt) +C
1—e2

where k and t are supplied by (20).

Consider e, in the general equation of the conics,
greater than unity. The substitutions of the “length of
an arc” of a hyperbola apply here as do the remarks
concerning the sign of the radicand.

Rewriting (28) which is an expression for the sur-
face of revolution generated by the roulette of any conic,

2 ! 2 dt
= [f sz sl e o
(1—e2)2 e (1—2)2VT (1—t2) VT

1/e

and applying the substitution (21) the surface of revo-
lution of the roulette of a hyperbola is

2 2 d ZL dz Z1 dz
sx=.__£r_p__[f 2 ——8 f e — +eCl]
e(i—e2l) 7 Y q—e2vZ ¢ (Q—)VZ

1

where Z’ and z; are given by (22).
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Writing the above in Legendre’s symbols it becomes

s o R SRR
x = m [ 0 D 1 + ey ] &
By applying reduction formulas on Z; and Z, the area
of the surface of revolution of the roulette of the hyper-

bola is reduced to the normal form

(31)
16 2 3+5e2
MG e i R
3e(1—e2)3 8

where

2 2
e—i—H——e)-E(k,z) +¢]

€222 V 7' (22+22e2—2e4) l’"‘l eVY (e2y+8y—3e2—1) ) t?

(e2—z2)2 i z(1—e?) (1—y)2 {
The area of the surface of revolution of the roulette
of a parabola, or the case of the conics in which e—1,
is found without effort since it reduces in the same man-
ner as does the “length of the are” of a parabola.

From the general result for the surface of revolu-
tion of the roulette of conics, the expression true for the
parabola is obtained, setting e — 1 in (27), or

S
V2 ¥ (1—u)2vitu
which in terms of J is
2
Sx — i J
V2

where J is given by (25).
Whence the area of the surface of revolution of the
roulette of a parabola is

(32)
4 wp2 [ Vitu 14 Vitu+ v2 (1 m

eEn | 2% ST ganille

=1l 4C)

The third elliptic integral to be reduced to normal
form is that which expresses the volume of solids of
revolution of roulettes of conics. The remarks concern-
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ing the method of attack used in the case already re-
duced apply here.

The general expression for the volume of solids of
revolution of all conics has been determined and is given
by (18). The case of the ellipse will be considered first,
that is, when e < 1. Recalling the general expression
(13),

0

o k (1 —e cosd) do
L e
1 —2e cosd + e2V1—2e cosd + e

apply to it substitution (14) and it reduces to

(33)
mp3 2 (1—eu) du

il f
V2e J (1—2en + e2) ‘J(U——- 1+-e2
2

) (u*—1)
e

Employing (16) and multiplying both numerator and
denominator by (t-1)2 it becomes

3~ (t4+3t343t2+t)dt
P TE f L
1—e® ¢ (t2—1)2VT
where Y and t; are given by (17).

Divide the above integral into odd and even funec-
tions and after reducing the rational part of the inte-
grand to a proper fraction the integral takes the form

Ny d (s—1)d ? t(st3+1)dt
dt t2—1)dt

W= i = [ —_— 4 f + 4 . ]
1— Ly, U 5. (2—1)2vT He (B12VT L

Breaking the even functioned integral into its partial
fractions and using substitution (28) on the odd func-
tioned part of the above expression, gives

x =

e lliym ol Ty @) VT e (BAVY
where Y — (1—y) (1—e2y). Call the non-elliptic in-

A 4 2 (3y+1)d
x P dt .—5f s y y ]



Vi=

21
a D3
Vz= . f
1—e? "

e(l——e2)
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tegral K; and integrate. It is found that
VY (5+8e2—9y-+e2y) | #°
3(1—e?) (1—y)2 1/e2

Using Legendre’s symbols the expression for the volume
can be written as

(34) Ky=—

= D3

(35)  Va=- 2 [Yo+4Z,—52,—K; ]

and upon reduction becomes

(36)
Vo= B e vkt R
T s (aak GRS
where
t1 t12
t VT (—8—be2+7t2+e2t2) L \/Y(5+3e2—9y+e2y)}
i (1—t2)2(1—e?) J (1—y)?2
1/e 1/e2

and k and t are as given by (20).

Now assume the eccentricity greater than unity,
which reduces the general case of conics to the hyperbola,
when a value greater than one is assigned to e.

In determining the volume of the solid of revolu-
tion of the roulette of an ellipse it has been found that

—5 — K
(1 —t2)2VT f (1—t2) VT ]
which in this case is not in legitimate form since e > 1.

To change the radical to the desired form, substitu-
tion (21) is employed, which reduces the above expres-
sion to

[f ) z1 +_5f+_eKl]

VA 0. Sy | T ey
e2 o2

where Z’ and z are given by (22), and K by (33).
Writing this in Legendre’s symbols
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T 3e(1—e2)
and after applying the reduction formula on the Z’s, the
volume of the solid of revolution of the roulette of an
hyperbola may be written in normal form as
(37)
7rp3

i 3e (1—e2)

[ Yo+ 4Z —b5Z; —eKi ]

x

[ (3+e2) F(k,z) + e2(7+e2) E(k,z) +K']

x

where
i 1 it £:2
2z V 7' (—8e2—>bet--Tz2+e222) ") eVY (5+43e2—9y-te?y)

(e*—22)2 (1—e?) (1—y)2
z

and k and z are given by (24).

1/e2

The last assumption on the eccentricity e of the case
of the volumes of solids of revolution of roulettes of
conics is that it shall be equal to unity. The parabola
again becomes integrable and easily handled.

Letting e — 1 in the general expression for the vol-
ume of the solid of revolution of the roulette of conics,
the following expression is obtained

x p3 i du

x =

2% (1—u)2Vitu
and recalling (25) the above expression is seen to be

3
Nttt
25
Inserting the value of J which is given by (25) the
volume of the solid of revolution of the roulette of the

parabola is
(38)
#p? (Vidu+ ve Vidu+ vz 1™

V= = log
2 \yvidu-— vz vitu— vz /?
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SUMMARY
Cda Standard Form
B 16 2 5+362 1-t-e2
Ellipse Wl AV F(kt) + E(kt) +C]
(30) 3(1—e2)?2 8 b
Avrea of
Surface of
Revolution Hyperbola 16 = p2 3+5e? b Wl
Plgz) — E(k,z) + C
of Roulette 4/ 3e(1—e7) [ . (k, z) 1—e2 (k, z) 1
of Conics
Parabola il J
(22) V2
Ellipse m p3 sl
——— [—(7+5e?) F(k,t) + —— E(k,t) + K]
(36) TP it oo
Volume of
Solids of ! b (7+e2)
f e e
Revolution Hagsebold ) jimB [ 3+e?) F(k,z) + ——— E(k z) +K’]
of Conics (37) 3e(1—e?)2 o
Parabola i

(38) i
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FOR CONICS
Case ; Explanation of Construction
='e t=t1 > 1/e
Bllipse  , _ tVT(eH 41227 jia VY (e2y+3y—3e2—1) | ***
(30) T a—eya—me e 21— (I—y?) v
k=1/e z=et; >1
Hyperbola ., €%V Z (e2z2+z2—2e?) 12 eVY (e2y+3y—3e2—1) | °
(31) T (e2—22)2(1—e2) 1 z(1—e2) (1—y) 2 1/e2
Parabole. 3 _ hiaulon o log w e
(32) 2(1—w) 2% vitu— V2 [:

Ellipse & tV T (—3—5e2+Tt2+e2t2) }‘1 \/’Y(5+3e2_9y+ezy)}nz

(36) i (1—t2) 2 (1—e2) e (1—y)2 1/e2
Hyperbola g’ ez V Z' (—3e?—bet+T2>—e?2?) } i e VY (5+3e2—9y+e2y) | 1*

(37) o (e2—22)2(1—e?) 1 (1—y)2 1/e2
Parabola BT il

(28)
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1V. Historical Remarks on Roulettes

A roulette (“little wheel”) is a very common curve
and in our ordinary experience is frequently seen. A
nail in the rim of a wheel, in fact at any fixed point of
the wheel, describes a roulette as the wheel rolls. More
generally the roulette is the curve R, described by the
path of a point, which is rigidly attached in the plane
of a curve C, as the curve C rolls, without sliding, on any
other curve B. If restrictions be placed on the general
roulette such that the curve C is to be a circle, B a
straight line, and P a point on the circumference of the
circle, then a very important particular roulette, called
the cycloid, is generated by the point P. The nail in
the rim of the wheel mentioned above describes a cycloid
as the wheel rolls.

Fig. 2

A moment’s reflection on the particular roulette, or
the cycloid, suggests that its early history might, very
likely, have been connected with an experimental attempt
to measure the circumference of a circle by the use of
a wheel. It is possible that wheels were the practical
circles of early geometers. As far back as Rameses II,
chariot wheels (1) * have always had six spokes, seldom
four, which has an interesting geometric association. In
the writings of the ancients, however, there seems to be
but one passage which indicates that the roulette was

* The numerals in parentheses in this section refer to the
numbered list of references at the end of this paper.
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known. Iamblicus (2), in speaking of the quadrature
of the circle, says, “Carpos (has accomplished it) by
means of a line which he calls simply ‘of double mo-
tion.”” It is probable that these three words describe
a roulette, and to justify this statement let us consider
for a moment some of the curves known to the ancient
Greeks.

If the curves of the Greeks are analyzed, they are
found to be generated by certain selected points as mo-
tions of translation and rotation with given speeds and
directions are applied separately to points, lines, or cir-
cles. For example, rotate one line E about its end
point, translate another line F in the direction of the
arrows in Figure 3, and if the speeds be such that the
lines arrive at PB simultaneously, the point of intersec-
tion of E and F generates a quadratrix. Or rotate a
line and assign a translatory motion along the line to
a point in the line, and the point generates a spiral. By
varying the directon or speed of the translation and
rotation, as well as the points, lines, or circles to which
the motions are applied, one obtains the curves famous
among the Greeks; cissoid, conchoid, witch, and others.

7
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Fig. 3
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Now if the rotation and translation be both applied
to the same line, the resulting motion of the line might
be described, in the words of Carpos, as a “double mo-
tion,” or better as a rolling motion. In the same man-
_ ner in which the quadratrix and the spiral are obtained,
that is, by applying the motions of translation and rota-
tion separately, a roulette may be obtained by combining
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these motions and applying them together. Tannery be-
lieves Carpos’ curve to be a cycloid. (3) J

Though the cycloid was known to the Greeks, its
properties were very likely uninvestigated, and we pass
to the second period in the history of the roulette, which
may be characterized as one of independent discovery
and frequent disputes.

Three names were given to the curve in this period,
each at base meaning “wheel.”” The first name recorded
was “cycloid” which was applied to the curve in 1590
by Galileo. “Roulette” was added in 1615 by Pater Mer-
senne, and Roverval chose to call it “trochoid” (1634).
Very aptly, however, this curve has been called the “Helen
of Geometers” because of its beautiful properties* and
the many controversies over it. (4)

In his history of roulettes, Pascal (5) said that Mer-
senne had the gift of framing beautiful questions and,
having remarked this curve while watching the rolling
of wheels, had first proposed it to the world as a curve
whose properties should be investigated. From Italy
came Torricelli’s (6) declaration that his most illustrious
teacher, Galileo, had known the cycloid in 1590 and with
material figures had tried to determine its properties ex-
perimentally. John Wallis (7) pointed out that early
manuscripts indicated it was neither of the above-
mentioned men, but rather Cardinal Cusa and Charles
de Bouvelles who first recognized roulettes.

About 1450 Cardinal Nicolas of Cusa used a curve
generated by a point p, on the circumference of a circle,
as the circle rolled from a, on a straight line, until p
again came into contact with the line at the point b.
(See Fig. 4) Careful investigation of Cusa’s works have
satisfied historians (8) that to Cusa this curve was but
an auxilliary line in his solution of the quadrature of
the circle, and as a distinct curve it was unknown to him.

The discovery of the roulette is therefore credited
to Charles de Bouvelles, who observed the cycloid in

* In addition to its properties, we might mention that Galileo
considered its form a most beautiful arch for use in architecture.
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Fig. 4
(Cusa's Construction)

1503. Bouvelles was a man of keen mind, and his intel-
lectual activities held him high in the regard of his
contemporaries. As he tells of his discovery one can
almost place the atmosphere about it. “I was sitting,
one time, on a little bridge of Paris watching the wheel
of a coach turning on the flat pavement; there came to
me a clear and easy method of realizing my intention
(the quadrature of the circle). It is known that when
a wheel has made a complete turn it is equal to the cir-
cumference of the said wheel. Whence there remained
only to find exact incidences of the points of the quad-
rant, and of the half, and of the whole wheel upon the
pavement, so that by this means we can find a straight
line equal to the parts and also to the whole of the cir-
cumference. I returned to my lodgings and on a bronze
table, with the aid of a ruler and compass, I found what
I sought.” In this solution of the quadrature he con-
structed and recognized the cycloid. (9)

The quadrature of the cycloid was the subject of
many controversies. Descartes and Fermat found them-
selves at odds on this score, for each had an independent
solution. In a very gentlemanly way, Torricelli con-
ceded Roberval priority on the same point when the lat-
ter had harshly accused him of publishing work not his
own. Torricelli, however, stoutly maintained he had not
stolen, but had effected his own solution. Again when
Descartes suggested that Roberval’s quadrature was not
a brilliant one, there was another quarrel and a frequent
exchange of letters. Probably the first quadrature was
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an experimental one by Galileo who is said to have ob-
tained the quadrature of the cycloid to be nearly three
times that of the generating circle by comparing the
weights of their respective paper figures.

Another discussion was provoked by the prize
offered by Blaise Pascal. Pascal (3) proposed the prob-
lem of finding the area CZY (see Fig. 5) and its center
of gravity, the volume of the solid of revolution of CZY
around ZY or CY, and finally the center of gravity of
halves of the areas and solids. Forty pistoles of Spanish
gold was the first prize, and twenty pistoles the second.
Pascal agreed to publish his work if no solutions were
offered before the end of the contest, October 1, 1658.
The only competitors were Wallis and LaLoubere, but
their work scarcely merited a prize and consequently no
prize was awarded. Pascal published his own findings,
according to his promise, and they were accepted imme-
diately as both final and elegant.

Other outstanding achievements in this period were
the construction of the normal to the cycloid by Descartes
in 1637 and its tangent in the following year by Fermat.
The cycloid was rectified in 1658 by Christopher Wren,
the architect of St. Paul’'s Cathedral in London, and in
1659 Wallis found its solid of revolution.

The discovery of the Calculus marks the beginning
of a period of expansion. More powerful methods served
to clarify and to generalize the work already done while
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a volume of new theorems were added to its properties.
The cycloid now became a particular case of the roulette,
and attention was directed toward the general form, that
is to say, when any curve was rolling.

The important work in this period was done by
Huygens, Leibnitz and the Bernoulli brothers. The work
of Huygens deserves particular mention. In a book (10)
dedicated to King Louis XIV. of France, dated March 25,
1673, many new theorems appear, among which, theo-
rems 15 and 25 are noteworthy. If any curve C rolls on
a straight line, according to theorem 15, and if the point
on the line which it continually touches be called P and
the point on the surface of the curve C that generates
the roulette R, be called P’, then the line PP’ is always
normal to the roulette R.* Theorem 25 points out the
tautochrone property of the cycloid. Huygens also
showed that the cycloid was generated by its own evo-
lute.

Roulettes, and in particular cycloids, have been care-
fully investigated and the properties uncovered found so
beautiful, that they have been drawn upon constantly
when a nice illustration or an example was needed. When
the followers of Leibnitz and Newton were challenging
each other with new problems involving Calculus, many
roulette problems were hurled back and forth by the
contenders.

There have been many papers written on roulettes
during the nineteenth and twentieth centuries, including
a treatise on Roulettes and Glissettes by Besant in 1890,
but its role has now become a secondary one, and its field
scarcely yields with the same fertility as in its earlier
days.

# This theorem arises and is developed quite elegantly in Sec-
tion I (page 6) of this paper.
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