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Figure 6.19 Effects of decreasing GF bioavailability. (A) Decreased GF production 

causes a delay in regeneration. (B) As GFs become less available, (C) 

fewer hepatocytes enter the cell cycle, decreasing peak of regenerating 

cells. The synchronicity of hepatocyte entry into the cell cycle, 

however, is affected only slightly. (D-E) To decrease the 

synchronicity of entry into the cell cycle, it is necessary to decrease 
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value (0.75 vs. 0.66). Mouse BrdU incorporation, however, continues 

longer than rat. Similarly, humans show a reduced peak replication 

response (note change of scale) but a lengthened regeneration period, 

leading to similar overall recovery. ....................................................... 208 

Figure 6.21 Relationships between fitted parameters and body mass across species. 

(A) Metabolic demand shows a negative exponential relationship with 
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Figure 6.22 Alternate parameter changes that can reproduce experimental liver 

regeneration profiles in humans. Parameters were varied to fit 
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hypotheses about how human liver regeneration differs from rat: the 
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MSE=0.25x10-3), the hypothesis that humans have a longer cell 
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transition rate between physiological states as was assumed by 

Periwal et al. (2014) (magenta, MSE=12.16x10-3), and the hypothesis 
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experimental data (Pomfret et al, 2003). (B) Mass recovery over the 

first 30 days following resection. (C) Fraction of replicating cells 

(simulated BrdU incorporation) post-resection. (D) IL-6 levels post-

resection. (E) GF levels post-resection. (F) ECM accumulation post-
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hypotheses by measuring at 30 days post-resection (G) IL-6, (H) GF, 

and (I) ECM. To differentiate between the high transition time 

hypotheses (green) and the hypothesis presented by Periwal et al. 

(orange), it may also be necessary to measure mass recovery. 

Approximately two weeks post-resection showed the maximum 

difference between mass recovery between these two hypotheses. 

MSE = Mean Squared Error between experimental and simulated 
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Delayed. (C) Ehanced. (D) Delayed and Enhanced. (E) No response. 
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Figure 6.24 Effects of transient increases in metabolic demand on (A) suppressed 
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(D) Genes contributing to discrimination among functional states. (E) 
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by hierarchical clustering with Pearson correlation. Gene annotations 

are colored based on functional annotations. Green = growth factors, 

gray = collagen-related genes, orange = Tgfb signaling, blue = matrix-

modulating genes. .................................................................................. 291 

Figure 8.5 Linear discriminants for LD1, LD2, LD3, used to discriminate among 

HSC functional states ............................................................................ 292 

Figure 8.6 Significance of clustering results assessed by silhouette score. Our 

silhouette score falls well outside the range generated from 

randomizing our data 1,000 times. This gives an empirical p-value of 

less than 0.001. ...................................................................................... 293 

Figure 8.7 Validation of single cell results using 10 cell pools of HSCs collected 

from the same animals. Pools of HSCs showed a stronger gene 

expression signal, but a higher variability than single cells. (A) 

Manual clustering of functional HSC states into four states: Quiescent 

(low GF/low collagen), Pro-regenerative (high GF/low collagen), 

Anti-regenerative (low GF/high collagen), and mixed (high GF/high 

collagen). (B) Linear discriminant analysis shows separation of the 

four HSC states in two dimensions. (C) LDA shows further separation 

of the four HSC states in three dimensions. (D) Genes contributing to 

discrimination among functional states. (E) Minimum spanning tree 

representation of single HSCs shows relationships between individual 

cells based on gene expression. (F) Significance of clustering results 

assessed by silhouette score. ................................................................. 294 

Figure 8.8 Dendogram showing the definition of gene clusters using a height cutoff 

value of < 0.93. ...................................................................................... 296 



 xlii 

Figure 8.9 Overrepresented functions (GO Terms) for each gene group identified in 

our single cell data compared to the background of all genes 

measured.  * Indicates p-value < 0.05. .................................................. 297 

Figure 8.10 Topical map representation of hepatic stellate cells states shows the 

clustering of HSCs in (A) control animals at 0 hours and 24 hours 

post-PHx and (B) ethanol-fed animals at 0 hours and 24 hours post-

PHx. ....................................................................................................... 303 

Figure 8.11 Kernel estimation of HSC states using HSC-enriched genes and 10 cell 

pools. (A) Kernel estimation. (B-C) Predicted levels of each HSC 

state during different conditions. (D-G) Comparison of predicted state 

balances with experimental data. Error bars are 95% confidence 

intervals. ................................................................................................ 306 

Figure 8.12 New kernels from smaller set of genes. (A) Kernel estimation. (B-C) 

Predicted levels of each HSC state during different conditions. (D-G) 

Comparison of predicted state balances with experimental data. Error 

bars are 95% confidence intervals. ........................................................ 309 

Figure 8.13 Regression technique applied to single HSCs. (A) Kernel for single 

HSCs compared to the kernel from pooled HSCs. (B) Predicted Levels 

in control rats. (C) Predicted levels in ethanol-fed rats. (D-G) 

Predicted levels compared to experimental data. Error bars are 95% 

confidence intervals. .............................................................................. 311 

Figure 8.14 Regression technique applied to single HSCs using the selected genes 

only. (A) Kernel for single HSCs compared to the kernel from pooled 

HSCs. (B) Predicted Levels in control rats. (C) Predicted levels in 

ethanol-fed rats. (D-G) Predicted levels compared to experimental 

data. Error bars are 95% confidence intervals. ...................................... 313 

Figure 8.15 Relative HSC transcriptional strength predicted using the NNLS 

regression approach. Error bars represent 95% confidence intervals. .. 315 



 xliii 

Figure 8.16 Implications of HSC activation results and model predictions for 

chronic ethanol-treated rats. (A) Chronic ethanol use leads to 

increased levels of pro-inflammatory and anti-inflammatory cytokines 

following PHx. (B) Chronic ethanol appears to lead to a deficient pro-

regenerative HSC response following PHx. (C) The effects of 

increased cytokine production, imbalanced HSC functional states, and 

changes to the tissue microenvironment combine to suppress 

regeneration following ethanol adaptation. The simulated regeneration 

profile of ethanol adapted rats is consistent with results from (Yang et 

al, 1998b). .............................................................................................. 318 

Figure 8.17 Effects of chronic ethanol consumption on liver regeneration control 

and tissue microenvironment. ................................................................ 319 

Figure 8.18 Simulations lead to the prediction that there is more apoptosis of HSCs 

in the ethanol-fed rats than controls. ..................................................... 320 

Figure 8.19 Potential hepatic stellate cell transition patterns. (A) Star-type 

transitions could allow any functional state to shift its transcriptional 

profile into any other functional state. (B) A cyclic transition pattern, 

like the cell cycle, could allow for distributions of cells aiding 

hepatocyte regeneration or homeostatic renewal. Getting “stuck” in 

one phase of the cycle could lead to cell exit into apoptosis or pre-

fibrotic phenotypes. (C) A cell fate commitment pattern would allow 

cells to transition only one way. In such a pattern, quiescent cells 

would have to be continuously replenished. Perhaps hepatic stem cells 

(or oval cells) play a role in this replenishment. ................................... 321 

Figure 9.1 Homeostatic renewal model. (A) Model schematic showing two 

populations of hepatocytes: Axin2+ and Axin2-. Each population can 

replicate at a specific rate and each has a specific apoptosis rate. 

Axin2+ cells are able to transition to Axin2- cells, but not the reverse. 

(B) Equations governing model behavior. (C) Steady-state behavior of 

the model shown using phase plane. There are multiple steady states 

but no stable attractor. Blue arrows represent the sign of the local 

derivative in the y-direction, red arrows represent the sign of the local 

derivative in the x-direction. (D) In response to a transient stress, like 

increased apoptosis rate, the system shifts to a new steady-state. (E) 

Phase-plane representation of model behavior in response to a 

transient apoptosis stress shows the transition to a new state. .............. 335 



 xliv 
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Liver resection is used in the clinic for treatment of hepatocellular carcinoma 

and for live liver transplant. In otherwise healthy patients following resection, the liver 

initiates a program of regeneration that involves multiple cell types interacting across 

multiple length and time scales. As early as 30 seconds after injury, signaling cascades 

become active within the liver. Dynamic molecular changes continue for 

approximately 1 week following injury, restoring liver mass to the pre-injury levels. 

The dynamics of several molecular mediators of this process has been investigated 

previously to identify transient activation of inflammatory molecules for a few hours 

and a sustained activation of growth factors over several days. Yet much remains to be 

understood as to how the regulation of multiple molecular factors is coordinated to 

control liver repair mechanisms. Additionally, cell-types within the liver can each take 

on multiple distinguishable phenotypes either contributing to or inhibiting repair. The 

contributions of these phenotypes to liver repair and disease progression are just 

beginning to be appreciated.  

 

In contrast to regeneration in otherwise healthy patients, patients requiring 

resection or transplant likely have multiple comorbidities impairing regeneration. 

These comorbidities include chronic diseases and common pharmaceutical and 

recreational drug use (including alcohol abuse). Despite extensive study, the molecular 

mechanisms governing comorbidity-impaired liver regeneration remain incompletely 
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understood. As a result, there are no robust predictors of liver regenerative capacity in 

patients undergoing liver resection. 

 

In light of these complexities, we have taken a systems biology approach to 

understanding liver regeneration in health and disease. We measured the dynamics of 

genome-wide transcription factor binding of an early, pro-inflammatory responder in 

liver regeneration (NF-κB) to identify broad features of the pro-inflammatory 

regeneration response in rat livers. We then investigated a broad range of cytokines, 

chemokines, and growth factors that respond to pro-inflammatory signals in several 

cases of successful regeneration to identify possible changes to the liver 

microenvironment during regeneration. These analyses implicated non-parenchymal 

cells as important mediators of the successful regeneration response (total mass 

recovery). 

 

We therefore developed a computational model of liver regeneration that takes 

into account molecular regulation in hepatocytes contributing to regeneration and 

course-grained estimations of non-parenchymal cell activation. Using this model, we 

predicted experimental liver regeneration profiles across multiple species including 

mice, rats, and humans by tuning a single parameter empirically related to body mass. 

Additionally, we predicted the molecular mechanisms governing impaired liver 

regeneration in multiple chronic disease conditions impairing regeneration, including 

alcoholic steatohepatitis. Our results implicated non-parenchymal cells as important 

regulators of the dynamics of regeneration in addition to overall mass recovery. 
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We extended our computational model to synthesize the intrinsically multi-

scale nature of liver regeneration by simulating connections between physiological-

scale dynamics, transcriptional phenotypes of non-parenchymal cells, and molecular 

signaling networks. Model analysis showed that shifting balances between populations 

of non-parenchymal cell activation phenotypes was sufficient to alter regeneration 

dynamics and overall tissue recovery following partial hepatectomy. As a perturbation 

to regeneration phenotype, we simulated alcohol-mediated suppression of liver 

regeneration by fitting our model to experimental data of liver recovery following 

chronic alcohol consumption and partial hepatectomy. Based on the model 

simulations, we predict that chronic alcohol consumption acts at a cellular-scale by 

shifting Kupffer cells from an M1 phenotype to an M2 phenotype following partial 

hepatectomy and by shifting hepatic stellate cells from a pro-regenerative phenotype 

to an anti-proliferative phenotype. At a molecular-scale, these changes in cell 

phenotypes are paralleled by dynamic increases in anti-inflammatory cytokine 

production and high levels of the anti-regenerative molecules such as fibrous collagens 

and TGFβ. 

 

We tested these predictions using high-throughput measurements following 

partial hepatectomy in ethanol-fed rats and controls. We used laser capture 

microdissection to collect individual hepatic stellate cells from the livers of chronic 

ethanol-fed animals and controls before and after hepatectomy. We then used a high-

throughput gene expression platform to quantify mRNA levels of ~100 genes across 

these individual cells and used multivariate statistics to identify clusters of hepatic 

stellate cell transcriptional phenotypes. Our experimental results indicate that multiple 
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transcriptional phenotypes of hepatic stellate cells arise following partial hepatectomy 

and ethanol exposure, consistent with model predictions. Furthermore, our results 

suggest that one of the main effects of chronic ethanol consumption is to imbalance 

hepatic stellate cell populations prior to resection, leading to altered extracellular 

matrix composition, increased matrix stiffness, and decreased intercalation with pro-

regenerative molecules.  

 

We then used similar modeling techniques to simulate homeostatic renewal of 

hepatocytes in the non-regenerating liver. Our results point to the existence of strong 

feedbacks within hepatocyte populations governing homeostatic renewal and an 

external control of hepatocyte renewal by a non-parenchymal cell network that 

involves multiple cell types and matrix property modulation. Model simulations were 

able to capture recently observed behaviors of tissue renewal involving stem cells 

following induced senescence of hepatocytes.  

 

Taken together, these results provide novel insights into how molecular 

regulation during liver regeneration influences multiple scales to regulate non-

parenchymal cell transcriptional phenotype and overall tissue mass recovery. 
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INTRODUCTION 

1.1 Therapeutic Significance of Liver Regeneration  

The liver is made up of multiple cell types interacting within a highly 

structured tissue architecture. It is one of the largest organs in the body and performs a 

diverse range of functions, including xenobiotic metabolism, glucose storage, bile 

production, and bilirubin removal. All of the blood leaving the stomach and intestines 

passes through the liver, making it the first line of defense for metabolizing toxic 

compounds such as ethanol, which can lead to damage to multiple organs. Because of 

the often toxic environment in which the liver is situated, the liver has an ability 

unique among mammalian organs to augment homeostatic tissue renewal with a 

coordinated regeneration response to tissue damage. In response to toxic or 

mechanical damage of up to 70-80% of its total mass, the liver can enter a program of 

hepatocyte hypertrophy and hyperplasia whereby the original mass of the liver is 

restored. This regenerative ability serves as a valuable tool for physicians in the clinic 

and researchers in the laboratory. 

Liver regeneration following surgical resection can be used to treat several 

liver diseases (hepatocellular carcinoma, metastatic cancer, etc. (Doci et al, 

1991;Ringe et al, 1991)), as well as to facilitate a live donor transplant, which 

normally stimulates regeneration of the remnant liver in the donor and the transplanted 

liver in the recipient (Tanemura et al, 2012). One of the major complications of liver 

resection is post-operative liver failure where the liver fails to return to necessary 
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functional capacity, which has been shown to occur in rates of as high as 30% of 

patients (Dan et al, 2012). Despite this relatively high rate of post-operative liver 

failure, death following resection appears to be fairly uncommon, occurring in 

approximately only 3% of patients (Jaeck et al, 2004). Despite decades of study, an 

increasingly thorough understanding of the mechanisms involved in regeneration, and 

identification of risk factors associated with an increased risk of post-operative liver 

failure, however, there remains a lack of pre-operative predictors of post-operative 

liver failure or death (Kauffmann & Fong, 2014). One reason for this lack of pre-

operative predictors is a failure to integrate current knowledge about liver regeneration 

into a model framework that would allow for understanding what factors predispose a 

liver to regeneration or failure. 

1.2 Features of Liver Regeneration 

In the laboratory, liver regeneration also provides a useful metric to assess 

dynamic liver function. One of the most common methods to induce liver 

regeneration, the 70% partial hepatectomy (PHx), relies on resection of the left lateral 

and medial lobes of the liver in rats or mice (~70% of overall tissue mass). A surgical 

resection allows for a precise estimate of the timing of the initial liver damage and 

does not lead to any toxic or mechanical damage to the remaining portion of the liver, 

thus removing the effects of cell necrosis, neutrophil infiltration, etc. Following 

resection in lab animals, the liver initiates a coordinated response of multiple cell 

types to replace liver mass. This response can be loosely categorized into five phases 

of liver regeneration based on the events occurring over predictable time ranges: 

immediate response, priming, hepatocyte replication, non-parenchymal cell 
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replication, and termination. Table 1.1 shows a summary of the approximate timing of 

each phase and the events occurring within for rats. 

Table 1.1: Timing of liver regeneration can be divided into phases 

Timing of Response In 

Rats 
Regulatory Events 

Immediate Response 

Phase 

(< 30 min) 

Hepatocytes release ATP 

Calcium signaling occurs 

WNT signaling occurs 

Priming Phase 

(0 - 6 hrs) 

LPS levels increase in the liver 

Non-parenchymal cells produce cytokines and chemokines 

NF-kB activated in hepatocytes and non-parenchymal cells 

C/EBP-β to C/EBP-α ratio increases 

JAK-STAT signaling pathway activated in hepatocytes 

Hepatocytes begin to show signs of G0 to G1 transition 

Hepatocyte  

Replication Phase  

(12 - 48 hrs) 

Non-parenchymal cells produce MMPs, cleaving matrix 

Growth factors (HGF, EGF, FGF, et al.) are liberated from 

cleaved matrix 

Additional growth factors are synthesized by non-

parenchymal cells 

New, basement-membrane matrix is deposited to facilitate 

proliferation 

Hepatocytes synchronously enter the cell cycle 

Non-Parenchymal Cell  

Replication Phase 

(48 - 72 hrs) 

VEGF signaling increases 

Angiogenesis occurs 

Non-parenchymal cells enter the cell cycle 

Termination Phase 

(72hrs - ~1 week) 

Matrix accumulates back to baseline levels 

Non-parenchymal cell activation decreases 

C/EBP-β to C/EBP-α ratio decreases to baseline levels 

Hepatocytes exit the cell cycle and return to G0 

Liver mass may overshoot baseline, followed by a wave of 

hepatocyte apoptosis 
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1.3 Effects of Chronic Diseases on Regeneration Capacity 

Although liver regeneration is tightly coordinated in healthy animals and plays 

an important role treating liver diseases in patients, many chronic diseases also impair 

regeneration. Unfortunately, these regeneration-impairing diseases are common 

comorbidities associated with hepatocellular carcinoma and other diseases treatable by 

resection (Montalto et al, 2002). The end stage of chronic liver disease, cirrhosis, 

delays the initiation of regeneration and suppresses overall recovery in laboratory 

animals (Kaibori et al, 1997). In human patients, fibrosis and cirrhosis lead to higher 

risk of death following surgical resection (Poon & Fan, 2004). Even in the early stages 

of liver disease – heptosteatosis or fatty liver – the regenerative potential of the liver 

can be reduced greatly (DeAngelis et al, 2005). Surgeons, therefore, tend to abstain 

from transplanting livers with a significant degree of fat accumulation (McCormack et 

al, 2011). Although research has shown that chronic diseases can impair regeneration, 

even the supposedly healthy livers of some patients do not regenerate for unknown 

reasons, as evidenced by a small number of resection patients who die post-resection 

without any pre-operative complications (Virani et al, 2007). Because of this apparent 

stochasticity in regenerative capacity, surgeons considering resection for a patient 

have few clinically-proven pre-operative predictors of liver regeneration amount 

following resection. Some pre-resection metrics associated with morbidity following 

liver resection include male gender, previous cardiac surgery, and increased bilirubin 

(Virani et al, 2007). Post-resection, the “50-50” criteria has been proposed to predict 

liver failure and death following resection. This metric classifies patients at day 5 

post-resection to have high predicted mortality if prothrombin time is less than 50% 

and if serum bilirubin is greater than 50 μmo/L. Even though this metric has a high 

specificity (98.5%) and high accuracy (97.7%), it suffers from a low selectivity 
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(69.6%) (Balzan et al, 2005). This metrics and others like it do not indicate how to 

prevent the liver from progressing towards failure post-resection, although they are 

useful for the early detection of emerging liver failure.  

One potential chronic disease that can inhibit regeneration is alcoholic liver 

disease (ALD), which is caused by heavy drinking over a long period of time (O'shea 

et al, 2010). The early stage of the disease (alcoholic steatotosis) is characterized by an 

enlarged liver and accumulation of lipid droplets, and may be associated with 

worsening liver metabolic function (O'shea et al, 2010). A tissue biopsy can show 

steatosis (Figure 1.1A) but only a patient history of drinking in the absence of other 

explanations for liver damage can result in a differential diagnosis of alcoholic 

steatohepatitis. Later stages of the disease are characterized by increasing hepatocyte 

death, accumulation of scar tissue, and worsening liver function. These events start 

less severe in fibrosis (Figure 1.1B) but worsen in cirrhosis (Figure 1.1C). Patients 

progressing though the stages of ALD do not all reach cirrhosis. A large portion of 

patients (~60%) do not progress beyond alcoholic steatosis although they continue to 

drink for the rest of their lives. A smaller portion of patients progresses to alcoholic 

fibrosis (~40%). And a still smaller proportion of patients progresses all the way to 

cirrhosis (O'shea et al, 2010). In spite of this low progression rate, liver disease is still 

one of the leading causes of death in the US; liver disease was the 12th most common 

cause of death in the US in 2013 (Xu et al, 2016).  
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Figure 1.1 Pathological features of progressing ALD shown through H&E staining. 

(A) Control rat liver (Liu et al, 2011). (A) Alcoholic steatosis in the rat 

liver shows lipid droplet accumulation and may be accompanied by 

hepatomegaly (Liu et al, 2011). (B) Alcoholic fibrosis in the mouse liver 

causes an increase in hepatocyte apoptosis and areas of increasing scar 

tissue deposition (Liu et al, 2015). (C) Alcoholic cirrhosis in the rat is 

characterized by “chicken-wire” scarring. Note: This image shows 

CCL4-induced cirrhosis as opposed to alcoholic cirrhosis (Bahk et al, 

2011). Until recently, cirrhosis was thought to be unresolvable even if the 

underlying insult was removed. This figure was adapted from the 

references cited in this caption. 

Even at the early stages of ALD, prior to showing gross pathological features, 

liver regeneration is inhibited. In rats fed an ethanol diet with 36% of calories from 

ethanol for 5 weeks, regeneration is suppressed at 24 hrs and 48 hrs post-PHx (Yang et 

al, 1998b). This suppression occurs even though the diet is not maintained long 

enough for gross pathological features beyond macroscopic steatosis (fatty liver) to 

develop in the liver (Apte et al, 2004). Even a much longer amount of time on this diet 

(18 weeks) results in only mild steatosis in rats (Figure 1.2) (Ronis et al, 2011).  
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Figure 1.2 The effects of an 18-week ethanol feeding diet on liver pathology. (A) 

Liver sections of control rats. (B) Liver sections of rats fed an ethanol 

diet with 36% of calories from ethanol for 18 weeks. Arrow indicates 

fatty accumulation. This figure was adapted from (Ronis et al, 2011). 

Some of the molecular and cellular events leading to suppressed regeneration 

due to ethanol-adaptation have been identified. For example, ethanol adaptation leads 

to an increased cytokine response post-PHx (Yang et al, 1998b), a change in binding 

patterns of the transcription factor NF-κB during the priming phase (Kuttippurathu et 

al, 2016a), and large changes to the expression levels of many genes during the course 

of regeneration (Kuttippurathu et al, 2016c). There remains, however, much that is 

unknown about how chronic ethanol abuse leads to suppressed regeneration. One 

reason is that despite clinical relevance and much study, there is still much to be 

learned about how molecular regulation and cellular interactions govern liver 

regeneration, how diseases suppress the liver’s innate repair ability, and how to rescue 

livers adapted to chronic disease.  

1.4 Thesis Overview 

This thesis presents a combined computational modeling and high-throughput 

data analytics approach to identify how molecular and cellular coordination regulates 
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liver regeneration and how regeneration can be dysregulated by chronic disease, using 

ethanol adaptation as an example. 

Chapter 2 describes our work investigating the molecular regulation of liver 

regeneration in laboratory rats. 

Chapter 3 describes our work using an existing computational model of liver 

regeneration to predict the effects of a genetic knockout of the gene Adiponectin on 

regenerative capacity in mice. 

Chapter 4 describes our experimental work investigating molecular regulation 

of liver regeneration in wild-type and Adiponectin knockout mice. 

Chapter 5 describes our work using high-throughput ELISA to investigate the 

differences in regulation of priming between Adiponectin knockout mice and controls 

in an unbiased manner. 

Chapter 6 describes our work extending the previously-published 

computational model of regeneration to fit experimental data and explore regeneration 

regulation in multiple disease states and species. 

Chapter 7 describes our work developing a computational model based on our 

previous model extension to predict the effects of non-parenchymal cell transcriptional 

phenotypes on regeneration dynamics. 

Chapter 8 describes our experimental testing of our model predictions in 

ethanol-fed and control rats.  

Chapter 9 describes our work using computational models to investigate tissue 

homeostasis in the context of cell networks and population balances.  
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Chapter 10 describes our conclusion based on our research, the implications of 

the work described within this dissertation, and potential future work that could extend 

our findings.  
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NF-κB BINDING DURING THE PRIMING PHASE OF LIVER 

REGENERATION IN RATS 

This chapter was adapted from Cook, D. J., Patra, B., Kuttippurathu, L., Hoek, 

J. B., & Vadigepalli, R. (2015). A novel, dynamic pattern-based analysis of NF-κB 

binding during the priming phase of liver regeneration reveals switch-like functional 

regulation of target genes. Frontiers in physiology, 6. All experimental work featured 

in this chapter was performed by B. Patra. 

2.1 Introduction 

Liver resection followed by regeneration is used in the clinic for a variety of 

conditions, including treatment of hepatocellular carcinoma and live liver transplant. 

Despite its clinical relevance and decades of study, however, the molecular 

mechanisms governing liver regeneration following resection remain incompletely 

characterized. In the laboratory, 70% partial hepatectomy (PHx) of rodents has 

become a standard model to study liver resection and regulation.  PHx provides an 

ideal model to study the liver’s regenerative response because the regenerative 

stimulus is precisely defined and cell proliferation can be studied without the influence 

of parenchymal injury or excessive inflammatory cell infiltration.  

Liver regeneration following partial resection typically follows a well-

documented set of steps involving hepatocytes and non-parenchymal cells, details of 

which can be found in chapter 1, and occurs in three phases: priming, replication, and 

termination. Early in the priming phase, the liver initiates an activation of the innate 
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immune response, which is predominantly driven by cytokines derived from Kupffer 

cells but may be complimented by production of cytokines and other mediators by 

sinusoidal endothelial cells, hepatic stellate cells, parenchymal cells, and other resident 

cell types (Michalopoulos, 2007b;Taub, 2004c). Among the early intrahepatic 

intercellular signals detectable following PHx is an increase in pro-inflammatory 

cytokines, including TNF-α (Michalopoulos, 2007b). This early cytokine signaling 

induces a response in hepatocytes (and other hepatic cells) that includes NF-κB 

signaling and downstream transcription of NF-κB target genes (Juskeviciute et al, 

2008). These NF-κB target genes have been implicated in priming hepatocytes to enter 

the cell cycle (Michalopoulos, 2007b). Previous studies of liver regeneration in rats 

have shown that an increase in NF-κB binding activity was detectable in whole-tissue 

extracts as early as 30 min following carbon tetrachloride (CCl4) injection, peaked at 

approximately 1 hr post injection, and gradually decreased activity until beyond 48 hrs 

post injection, suggesting that NF-κB acts predominantly during the priming phase of 

liver regeneration (Salazar-Montes et al, 2006). Additionally, after 70% PHx in rats, 

NF-κB activation was evident within 15 minutes of surgery, peaked at 1 hour post-

PHx, remained elevated at 2 hours post-PHx, and decreased to near baseline levels at 4 

hours post-PHx before increasing again at 6 hours post-PHx, suggesting that NF-κB 

may play several roles during early priming, late priming, and early G1 phase of the 

cell cycle, possibly representing activation in different cell types in the liver 

(Juskeviciute et al, 2008). 

When NF-κB signaling is disrupted, the regenerative ability of the liver is 

impaired. Although genetically deleting the p50 subunit of NF-κB caused no 

deficiencies in liver regeneration following CCl4 injection, there was a compensation 
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of overall NF-κB activity by increased levels of the p65 subunit (DeAngelis et al, 

2001). We speculate that following deletion of the p50 subunit, the p65 subunit may 

bind the same genes normally bound by the p50 subunit. Similarly, inactivation of the 

p65 subunit through a conditional knockout also did not impair liver regeneration 

(Ringelhan et al, 2012). In this case, NF-κB p50 may have compensated for the 

depleted p65 subunit. These results suggest that, although the NF-κB p65/p50 dimer is 

known to regulate immune response, there may be a compensatory effect if only one 

of the NF-κB p50 and p65 subunits is available during liver repair (Hayden & Ghosh, 

2004). As these studies suggest, when all NF-κB signaling was suppressed by 

inducing IkBa (an inhibitor of NF-κB), hepatocyte proliferation following PHx was 

decreased resulting in impaired liver regeneration (Yang et al, 2005). The authors of 

this study suggested that the impaired regeneration was mediated primarily by 

decreased Kupffer cell activation and IL-6 signaling. These results underscore the 

importance of understanding the binding of each NF-κB isoform. Our present study 

focuses on identifying the dynamic binding targets of NF-κB p65 during liver 

regeneration.  

Despite its important role governing liver regeneration, the targets of NF-κB 

during liver regeneration have not been adequately characterized. In this study we 

report a genome-wide analysis of NF-κB binding during the priming phase of liver 

regeneration. We used chromatin immunoprecipitation followed by microarray 

analysis (ChIP-chip) to identify how NF-κB dynamically binds to genes following 

PHx in rats. We then related this binding to previously published profiles of gene 

expression in hepatectomized rats to identify how the dynamic profiles of NF-κB 

binding relates to regulation of gene expression. Our study demonstrates that NF-κB 
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binding can be classified into dynamic binding switches. Furthermore, these switches 

appear to dynamically regulate functional pathways associated with liver regeneration. 

Therefore, NF-κB activation should be interpreted in the context of its dynamic 

functional binding during liver regeneration. 

2.2 Methods 

2.2.1 Animals 

All animal studies were approved by the Institutional Animal Care and Use 

Committee (IACUC) at Thomas Jefferson University. Jefferson’s IACUC is 

accredited by the Association for Assessment and Accreditation of Laboratory Animal 

Care and experiments were designed using the Guide for the Care and Use of 

Laboratory Animals.  

Adult (8-10 week old) Sprague-Dawley rats were given ad-libitum access to 

food (Chow) and water. When their weight reached 275-350 g, they were anesthetized 

and subjected to 70% PHx by surgical removal of medial and left lateral lobes as per 

standard procedure (Higgins & Anderson, 1931;Juskeviciute et al, 2008). The medial 

and left lateral lobes were flash frozen using liquid nitrogen-cooled aluminum clamps 

to serve as within-animal, 0 hour controls. At 1 hour, 2 hours, 4 hours, and 6 hours 

post-PHx, rats were again anesthetized and the remnant liver tissue was excised and 

flash-frozen as before. Following excision of the remaining liver mass, rats were 

sacrificed by cervical dislocation. Liver tissue from 0h, 1h, 2h, 4h, and 6h post-PHx 

was subjected to chromatin immunoprecipitation. Immunoprecipitated samples (ChIP) 

from 0h, 1h, and 6h post-PHx were used to identify genome-wide NF-κB binding sites 



 14 

using microarrays (ChIP-chip). Immunoprecipitated samples from 0h, 1h, 2h, 4h, and 

6h post-PHx were used for validation and extension of ChIP-chip results using qPCR.  

2.2.2 Chromatin Immunoprecipitation (ChIP) 

Chromatin immunoprecipitation (ChIP) assays were performed using total 

liver tissue to map the in vivo distribution of NF-κB/DNA interactions using a Magna 

ChIP G Chromatin Immunoprecipitation kit (Merck Millipore) according to 

manufacturer’s instructions. Approximately 50 µg minced liver tissue was fixed for 10 

minutes with 1% formaldehyde, which crosslinks DNA and chromatin binding 

proteins to ensure co-immunoprecipitation. Glycine (1x in accordance with the EMD 

Millipore protocol) was then added to quench unreacted formaldehyde. Cells were 

lysed and chromatin was sheared by sonication to generate fragments of 200-1000 bp 

(40 min. of sonication using a 30s on, 30s off cycle). Fragments bound by NF-κB were 

immunoprecipitated using a ChIP-grade NF-κB antibody (Cat#ab7970, Rabbit 

polyclonal NF-κB p65 antibody and negative control IgG antibody from Abcam Inc, 

Cambridge, MA) in combination with Protein G conjugated solid support matrix 

magnetic beads enriched for the antibody of interest using electrophoresis on a 1% 

agarose gel. This NF-κB antibody has been employed extensively in previous studies 

to specifically detect NF-κB proteins in Western blots and immunohistochemistry 

assays, as well as for chromatin immunoprecipitation assays (Burdelya et al, 

2013;Kasama et al, 2014;Luo et al, 2014). Negative controls in the absence of the 

primary antibody showed negligible signal intensity (Figure 2.1). 
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Figure  2.1 Quality control for NF-κB ChIP assay for measuring NF-κB binding post-

PHx. (A) Sonication optimization for the ChIP procedure. (B) The NF-

κB p65 antibody used is specific for NF-κB binding. (C) Representative 

PCR gel showing ChIP of NF-κB on the SOD2 gene from 0-6 hours post-

PHx. (D) Representative PCR gel showing ChIP of NF-κB on the NOS2 

gene from 0-6 hours post-PHx. (C) Representative PCR gel showing 

ChIP of NF-κB on the G0S2 gene from 0-6 hours post-PHx. (C) 

Representative PCR gel showing ChIP of NF-κB on the IGFBP1 gene 

from 0-6 hours post-PHx. ChIP = NF-κB antibody-treated, IGG = 

negative control, Sonicated = positive control.     

2.2.3 Identification of NF-κB Binding Sites using Microarrays (ChIP-chip) 

Purified ChIP DNA was amplified using the GenomePlex Complete Whole 

Genome Amplification (WGA) kit from Sigma that allows for nearly 500-fold 

amplification of genomic DNA using OmniPlex Library molecules flanked by 

universal priming sites. Genome-wide promoter enrichment was measured using the 

Roche Nimblegen Promoter array platform, which has 720,000 probes (Rat ChIP-chip 

3x720K RefSeq Promoter Arrays - 3 identical arrays per glass slide with 72,000 

probes per array, Roche NimbleGen, Inc., 504 South Rosa Road, Madison, WI). 

Experimental ChIP and total DNA samples are labeled using 9-mer primers that have 

Cy3 and Cy5 dyes attached and Klenow added. The labeled experimental ChIP and 

total DNA samples were co-hybridized to the array for 16 - 20 hours at 420ºC, 

washed, and scanned using an Agilent scanner (Agilent Technologies) following 

manufacturer instructions.  

Array images were used for data extraction as paired files; genomic feature 

format files were then produced for analysis of scaled log2-ratio data. The intensity 

ratio of immunopreciptated to total DNA (not taken through immunoprecipitation 

steps) was calculated at each genomic position to identify regions where increased 

signal (i.e. DNA fragment enrichment) was observed relative to the control sample. 
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Peak regions identified as statistically significant binding sites were generated from 

the scaled log2-ratio data, and peaks were mapped to the nearest gene’s transcription 

start site.  

Roche NimbleGen arrays were used because their proprietary, light-mediated 

synthesis process produces high-density microarrays of long oligonucleotide probes 

(50-75mer). These long oligo arrays, when used in combination with high-stringency 

hybridization protocols, produce results of unparalleled sensitivity and specificity. In 

addition, because Roche NimbleGen performs ChIP-chip experiments using a two-

color protocol, where control and test samples are co-hybridized to the same array, 

inter-array variation is eliminated. As a result, NimbleGen ChIP-chip service can 

readily detect enrichment as low as two-fold of the target binding site in a ChIP 

sample. 

Data generated from these experiments as well as processed data used to draw 

the conclusions of this study were deposited in the Gene Expression Omnibus 

repository and are publically available at www.geo.ncbi.org. 

2.2.4 Genome-wide Mapping and Peak Detection:  Identification of Binding 

Sites  

The possible binding regimes (peaks) that correspond to the binding targets 

were detected if 4 or more probes showed a signal above the cutoff value ranging from 

90% to 15% using a 500bp sliding window. Cut-off values were set as a fraction of the 

hypothetical maximum signal (mean signal plus six standard deviations). An empirical 

false discovery rate (FDR) was calculated for each peak using a bootstrapping method, 

which randomized the probe signals 20 times. The calculated FDR is an 

approximation of the probability of a false positive. To minimize false positives while 
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maximizing NF-κB binding signal, an FDR cutoff of 0.05 was used for all analyses 

(See Figure 2.2). Any FDR cutoff higher than 0.05 would have led to an exponentially 

increased number of false positive NF-κB bound genes. Although steps were taken to 

limit false positives, some of these binding sites identified during peak detection might 

mediate higher-order genomic interactions and influence chromosome structural 

modifications. 

 

Figure 2.2 Analysis of optimum FDR to maximize binding peaks identified and 

minimize false positives. Maximum FDR cutoff was varied from 0 to 0.2 

in increments of 0.01. An FDR cutoff at 0.05 allows for identification of 

a large number of NF-κB binding peaks while minimizing the expected 

number of false positives. 

2.2.5 Peak Annotation  

Peaks were annotated with candidate target genes with the assumption that the 

distance between a center of binding peak and the transcription start site (TSS) of the 
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gene is shorter than a threshold cutoff.  We defined these “gene regions” as spanning 

from 5kb upstream of the TSS to 1.5 kb downstream of the end of transcription. The 

peak files were annotated with Ensembl version 5.0 (Rnor_5.0) transcript genes using 

a 5000 base pair cutoff distance from the TSS using the Chip Peak Anno Bioconductor 

package in R (Gentleman et al, 2004b;R Core Team, 2014;Zhu et al, 2010). The peaks 

were then annotated with detailed characteristic genomic features: peak region 

location, gene annotation of nearest transcript (intron, exon, intragenic, etc.), 

chromosome, start and end of genes, nearest transcripts and transcript boundaries, 

distance from TSS, RefSeq IDs, Entrez IDs, TSS, trophoblast-specific element (TSE)  

and average phastcon scores obtained. 

2.2.6 Dynamic Pattern Analysis 

We used a dynamic pattern-based strategy to analyze the dynamic NF-κB 

binding post-PHx. We first discretized NF-κB binding by identifying genes as bound 

(1) or unbound (0) at each time point post-PHx. To be identified as bound, NF-κB 

binding had to be seen in 2 out of 3 biological replicates at a time point (FDR < 0.05). 

Additionally, we analyzed how our choice of FDR cutoff would influence our pattern-

based analysis and found that choice of FDR cutoff has minimal effect on the fraction 

of NF-κB bound genes in each of several binding pattern (Figure 2.3).  
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Figure 2.3 Analysis of how FDR affects relative fraction of genes in each binding 

pattern. Selecting an FDR cutoff between 0.01 and 0.20 does not 

dramatically change the relative fractions of genes in binding patterns 2-

6. Increasing the FDR causes a decrease in the fraction of genes bound in 

pattern 1 and an increase in the fraction of genes bound in patter 7; 

however, at an FDR cutoff near 0.05, the fractions of genes in patterns 1 

and 7 are relatively stable.  
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We found that setting the FDR cutoff too low appeared to remove useful 

pathways from the analysis, but setting the cutoff to high appeared to include 

pathways that may represent data from false positives (Tables 2.1-3). An FDR cutoff 

of 0.05 struck a balance between these extremes. Because discretized NF-κB binding 

has 2 distinct states (0, unbound; 1, bound) and we analyzed 3 time points, we 

generated 8 (23) dynamic binding patterns where NF-κB was identified as bound or 

unbound at each time: 000, 001, 010, 011, 100, 101, 110, 111. Each pattern was then 

described by both a binary string (i.e. 011) and its digital representation (i.e. Pattern 

3). Because Pattern 0 contains no NF-κB bound genes, it was not considered in the 

subsequent analyses. Each gene bound by NF-κB was sorted into its binding pattern. 

Because the patterns are mutually exclusive, each binding pattern of each gene can 

match only one binding pattern. 

Table 2.1 FDR cutoff pathway analysis for Pattern 1 

 

FDR = 0.01 FDR = 0.02 FDR = 0.05 FDR = 0.10 

Acute inflammatory 

response 

Acute inflammatory 

response 

Acute inflammatory 

response 

Acute Inflammatory 

Response 

Argenine and proline 

metabolism       

Carboxylic acid 

boisynthesic process       

Lipoprotein 

metabolic process 

Lipoprotein 

metabolic process     

Mitochondrion Mitochondrion Mitochondrion Mitochondrial Part 

Negative regulation 

of apoptosis   

Negative regulation 

of apoptosis   

Nucleosome       

Plasma       

Regulation of blood   Regulation of blood   
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vessel size vessel size 

Response to insulin 

stimulus 

Response to insulin 

stimulus     

Ribosome Ribosome Ribosome Ribosome 

RNA Processing RNA processing RNA processing   

rRNA processing rRNA processing rRNA binding   

Triglyceride 

metabolic process       

Urea cycle Urea cycle     

  

Benzene and 

derivative metabolic 

process     

  

Glucuronate 

metabolic processes     

  

Peptidase inhibitor 

activity     

  Protein stabilization     

  

Regulation of 

fibroblast 

proliferation     

  Ribosome assembly     

    

Positive regulation of 

apoptosis 

Induction of 

Apoptosis 

    

Positive regulation of 

protein kinase 

cascade   

    

Response to 

xenobiotic stimulus   

      

Androgen receptor 

binding 

      

Glucosamine 

metabolic process 

      

GPI anchor 

biosynthesis 

      JmjC 

      

Negative regulation 

of protein binding 
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Table 2.2 FDR cutoff pathway analysis for Pattern 5 

 

FDR = 0.01 FDR = 0.02 FDR = 0.05 FDR = 0.10 

Fibrinogen complex Fibrinogen complex     

Gluconeogenesis       

Liver Liver     

Positive regulation 

of adaptive immune 

response       

Protein catabolic 

process       

  

Carboxylic acid 

binding 

Carboxylic acid 

binding 

Carboxylic acid 

binding 

  

Inflammatory 

response 

Inflammatory 

response   

  Response to ethanol Retinol metabolism   

    

Olfactory receptor 

activity 

Olfactory receptor 

activity 

    

Pheromone receptor 

activity 

Pheromone receptor 

activity 

      GPCR 

      

Monocarboxylic acid 

binding 

      

Phenylalanine 

metabolism 

      

Protein complex 

assembly 
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Table 2.3 FDR cutoff pathway analysis for Pattern 7 

 

FDR = 0.01 FDR = 0.02 FDR = 0.05 FDR = 0.10 

Lung development       

  

Acute inflammatory 

response 

Acute inflammatory 

response 

Acute inflammatory 

response 

  

Transcription factor 

complex   

Transcription factor 

TFIIA complex 

    

Protein complex 

activity 

Protein complex 

assembly 

    Antimicrobial 

Defense response to 

bacteria 

    Liver Liver 

    

Protein catabolic 

process 

Protein catabolic 

process 

    

Regulation of JAK-

STAT cascade   

      

ATPase, AAA-type, 

core 

      

Negative regulation 

of apoptosis 

      

Negative regulation 

of DNA binding 

      

Sensory Perception 

of Smell 

      UBL Conjugation 

 

2.2.7 Integration with Expression Data 

Because transcription factor binding does not cause immediate changes in gene 

expression level, we looked for previously published gene expression data from time 

points after 1 and 6 hours post-PHx. Illumina RNA-seq gene expression data for the 

liver following PHx was downloaded from GEO (Accession: GSE54673) (Edgar et al, 

2002). Normalized average gene expression for 0h (baseline), 4h (following 1h NF-κB 

binding), and 12h (following 6h NF-κB binding) post-PHx was reported in reads per 
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million mapped reads (RPKM) (Naugler, 2014). Fold change over baseline was 

calculated for each time point by subtracting the log-transformed 0h expression value 

from the corresponding datum at 4h or 12h post-PHx. Genes were identified as 

differentially expressed if they had a fold-change > 2 above or below baseline (Figure 

2.4).  

 

Figure 2.4 Differentially expressed genes (Fold change cutoff = 2) at 4 hours and 12 

hours post-PHx. 

Gene IDs from the expression data were converted to Refseq mRNA IDs using 

Clone/Gene ID Converter (Alibes et al, 2007). Each gene bound by NF-κB was then 

matched to a differentially expressed gene from the RNA-seq dataset using the RefSeq 

ID. Unless otherwise specified, non-differentially expressed genes were excluded from 

further analyses. 
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2.2.8 Pathway Analysis and Functional Association Identification 

Functional associations between genes in each binding pattern were carried out 

using the online pathway analysis tool DAVID (Database for Annotation, 

Visualization and Integrated Discovery) (Huang et al, 2009). Because DAVID v6.7 

provides a comprehensive set of functional annotation tools for investigators to 

understand biological meaning behind large list of genes, the DAVID software was 

used to identify enriched biological functions for each NF-κB binding pattern, 

particularly focused on gene ontology (GO) terms and KEGG pathways (Ashburner et 

al, 2000;Kanehisa & Goto, 2000;Kanehisa et al, 2014). A clustering p-value cutoff of 

0.05 was used to filter the gene function list to only functions highly enriched in each 

pattern.  

2.2.9 Motif Discovery 

To find the binding sites enriched by NF-κB along with other transcription 

factors potentially associated with transcriptional regulation during liver regeneration, 

we used the de novo motif discovery program DME (Discriminating Motif 

Enumerator) using default parameters and a string length of 10 (Smith et al, 2005). 

DME is particularly well suited to our analysis because it is a de novo motif discovery 

program based on an enumerative algorithm that identifies optimal motifs from a 

discrete space of matrices with a specific lower bound on information content. It is 

therefore well suited for analyzing large datasets. This string length was chosen as 10 

because it robustly identified NF-κB as a major binding motif in our data. 

Peaks were filtered prior to using DME as follows. First, only peaks with an 

FDR < 0.05 in at least 2 out of 3 biological replicates were considered in the analysis. 

Next, the peaks with the strongest peak scores were chosen for final analysis. Scree 
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plots of peak score were used to identify appropriate peak score cutoffs for each time 

point (Figure 2.5). 

 

Figure 2.5 Scree plots of peak scores for NF-κB binding at 0h, 1h, and 6h post-PHx. 

At each time point, a cutoff value for peak score was chosen based on 

when a “knee” occurred in the scree plot and maintaining 500-1,000 NF-

κB peaks. 

Once de novo motifs were found, associated transcription factors were 

predicted by scanning the motifs against the TRANSFAC databases containing 

documented transcription factor binding sites using the clustering program STAMP 

with default parameters matching to TRANSFAC v11.3 (Mahony & Benos, 

2007;Matys et al, 2006). Any motifs co-occurring with the NF-κB binding motif were 

considered to be potential co-regulators with NF-κB of a particular set of genes. 

2.2.10 Quantitative PCR Validation of NF-κB Binding 

Quantitative PCR primer sets for 21 genes across all 8 NF-κB binding patterns 

were designed using TRANSFAC, a Biobase software (Matys et al, 2006). 

Quantitative analysis of promoter binding was performed through real-time PCR on an 
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ABI Prism 7000 (Applied Biosystems, Foster City, CA) according to manufacturer’s 

instructions and using iTaq SYBR Green super mix from Bio-rad (Bio-Rad 

Laboratories, Inc., 2000 Alfred Nobel Drive, Herles, CA 94547). Primer sequences 

can be found in Table 2.4. 

Table 2.4 Primer Sequences 

Gene Symbol Foreword Sequence 
 

Reverse Sequence 
ALDH1A1 GTC TCG TGT GTG GGA 

CAT T 
 AAG GAC AGT GGC AAG 

GAG TG 
ATF4 CTC TGC CTT GCT CTC CAA 

TTA 
 CCG GGG TAA TGA GCA 

GTA AA 
BTG2 GAG CTC TGC TTG TGT CTG 

TCC 
 GCT CAG GGG AAA CAG 

AAC T 
CEBPB AGG AAA TCT TGG AGG 

GCT TC 
 CAG TGC TCC CTA TTC CCT 

CA  
CYP4B1 TGT TAT TAC CTT TCC CGG 

TTT CCA AGC A 
 TTG GTC CTG CCA AGA 

CTG AAC CC 
DSTN TAG GGT GAC TCA TCT 

CAC TCA GCA 
 GCT GTG AAT GTC TAA 

ACT TGC ACT GAA GAG 
FOXE1 ACT TCT TTG GAA GTC 

TGG AGG GCA 
 ACC TCG GTT TGC TTG GAG 

ACC TTT 
G0S2 GGG CTT GTA AGA GTG 

CAT GAA GGT GAC A 
 TTT GCA GGC TAG GGT TGT 

GGA GTA CA 
GDA GCA CTC ATT AAT TGC 

CTG TAG TGC TTC 
 AGC AGA CCT GAA CAC 

CAG CTA ACA 
IGFBP1 CGT CCT GTT GTG GTT TTG 

TG 
 CCT CCG CAC TAA GAA 

ACA TTG 
JUNB TAA GTC TTT GGC AGC 

TGT GTG GGA 
 TTG CTG GGT CTT CTT GGA 

AAC AGG CT 
KLF3 GAG ATA GGG TCT TGA 

TAT GTA GCC CAG G 
 TTC TCC TGA GAA AGT 

GGC CC 
KNG1 TGC TTT GAC CCT TAG TAA 

CCC GGA 
 TGT AGA CTC ACT CCC 

AGG ACA GTC A 
MT1A AGG CAT CCA GGT TGA 

GTC TG 
 GGC ATT AAC GGC TGG 

TTT TA 
MT3 GCC GGG CTC CTA GTA  AGG CTC AAC AAG CAG 
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CTT TT AAA CAG 
NOS2 GGA ACC ATG GGA TGA 

TGA GT 
 TAC ATG GCA TGG GAT TTT 

CC 
SOD2 CCG GAA GAG GAC ACA 

GCT GAG ATC ATT GTA 
 TGA GGA AAG GTG GCT 

CTG ACG GTAT T 
STAT3 ACC AAG ATA GAA CTC 

ACT GAT GGG C 
 TGA ACC CAG ATC TCT 

GGC ACT CAT GT 
THBD GCC TGT AGG TAA GCC 

CAT GA 
 CAG GAC CAC CAG CCT 

AAG AG 
VIM TTC TTT CTC AGC ACC CAA 

GG 
 GGA TCG AGC ACA GTC 

CTG TTA 
ZPF36 TCA CGG GAC CAG CCC 

AGG AA 
 TGT GTG TAT GTG TGT GTG 

TGT GTG CG 

 

2.3 RESULTS 

2.3.1 NF-κB binding following partial hepatectomy  

NF-κB is an important regulator and mediator of cytokine response to injury. 

We investigated how NF-κB binding responded to PHx by quantifying the number of 

genes bound by NF-κB at each time measured post-PHx. The genes bound at each 

time point included both genes unique to that time point and common among time 

points. We found that the total number of genes bound by NF-κB during the first six 

hours post-PHx was similar at each time point investigated, with 2518 genes bound by 

NF-κB at baseline (0 hr), 2440 genes bound at 1 hour post-PHx, and 2396 genes 

bound at 6 hours post-PHx (using an FDR cutoff < 0.05), although, as the priming 

phase progressed, the numbers of genes bound by NF-κB decreased. Thus, although 

NF-κB has been shown to become activated quickly following PHx and maintain its 

activity until at least the end of the priming phase, the overall number of genes bound 

by NF-κB during the priming phase of liver regeneration remained similar in our 
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analysis. What changed, however, was the distance from the binding site to the 

transcription start site (TSS) of the nearest gene (Figure 2.6).  

 

Figure 2.6 Distance to transcription start site (TSS) at each time measured post-PHx. 

At 1 hour post-PHx, the peak distance to TSS appears to decrease with 

more NF-kB binding close to the regulated gene both upstream and 

downstream.  

At 0h and 6h post-PHx, NF-κB binding occurs with two peaks with similar 

frequency: one upstream of the TSS and one downstream. At 1h post-PHx, NF-κB 

binds to both upstream and downstream of the TSS but the downstream binding is 

clustered closer to the TSS than for 0h and 6h. Additionally, the upstream and 

downstream peaks appear higher at 1h than at 0h or 6h, indicating that NF-κB binds 

more genes close to their TSS at 1h (Figure 2.6). Transcription factors binding closer 

to the TSS of a gene have a stronger effect on regulation of gene expression (Cheng et 
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al, 2012;Cheng & Gerstein, 2012). Taken together, our data suggest that at 1 h 

following PHx NF-κB has a stronger effect on bound genes. This correlates with 

previous studies showing increased NF-κB activity at 1h post-PHx (Juskeviciute et al, 

2008).  

2.3.2 Dynamic Pattern Analysis of NF-κB binding 

Activation of pro-inflammatory cytokines during the priming phase is a 

dynamic process involving multiple regulatory feedbacks. Therefore, we used a 

dynamic pattern-based strategy to analyze the binding of NF-κB to target genes 

following PHx. We first discretized NF-κB binding by identifying genes as bound (1) 

or unbound (0) at each time point post-PHx. To be identified as bound, NF-κB binding 

had to be seen in 2 out of 3 biological replicates at a time point (FDR < 0.05). Because 

discretized NF-κB binding has 2 distinct states, we were then able to organize NF-κB 

binding into 7 dynamic binding patterns (Figure 2.7). Each pattern is described by 

both a binary string (i.e. 011) and its digital representation. Therefore, the binding 

pattern unbound by NF-κB at 0h and 1h but bound at 6h post-PHx (binary string 001) 

becomes pattern 1, the binary string 010 (0h unbound, 1h bound, 6h unbound) 

becomes pattern 2, and so on until binary string 111 becomes pattern 7 (Table 2.5). 

The number of genes bound by NF-κB in each pattern (Table 2.5) showed that 

transient binding (Pattern 2: 010), immediate unbinding (Pattern 4: 100), and delayed 

binding (Pattern 1: 001) contained the highest number of genes bound by NF-κB. 

Therefore, the major dynamic effects of PHx on NF-κB during the priming phase 

appear to be a large unbinding event followed by a transient binding event and a 

delayed binding event at the end of the priming phase. This suggests that the bound 

NF-κB in the resting liver is not all bound in an active conformation.   
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Table 2.5 Pattern analysis of NF-κB binding during the priming phase post-PHx. 

Digital 

Pattern 

Binary 

Pattern 

NF-κB  

Bound 

Genes 

Differentially 

Expressed 

Genes 

1 001 1067 154 

2 010 1140 155 

3 011 392 53 

4 100 1108 155 

5 101 502 71 

6 110 473 55 

7 111 435 190* 

*Denotes total number of genes bound by NF-κB & measured in RNA-seq, not 

differentially expressed genes. 

 

It should be noted that these binding sequences may represent a pool of 

previously available NF-κB that comes unbound from its normal location on the 

genome and dynamically induces transcription in two distinct sets of genes (one at 1 

hour post-PHx and one at 6 hours post-PHx). All the other binding patterns contained 

approximately the same number of genes bound by NF-κB (Table 2.5, Digital patterns 

3, 5, 6, and 7). These patterns of NF-κB binding may also considerably regulate early 

tissue response to PHx. There were also a considerable number of genes constitutively 

bound by NF-κB (Pattern 7: 111), suggesting that NF-κB binding following PHx 

continues to maintain functions occurring in non-stressed tissue in addition to 

dynamically switching binding locations. 
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2.3.3 Functional Pathways Represented by Genes Bound by NF-κB post-PHx 

We first coupled NF-κB dynamic binding patterns into pairs of NF-κB binding 

switches (Figure 2.7, left panel). This allowed us to characterize NF-κB binding 

switches as an immediate response switch (Figure 2.7 A), a transient response switch 

(Figure 2.7 B), and a delayed response switch (Figure 2.7 C), with constitutive binding 

also occurring (Figure 2.7 D). We then investigated which functional pathways were 

bound and unbound by NF-κB during each switch using the DAVID software to 

identify functional clusters of genes (Huang et al, 2009). One unexpected result was 

that NF-κB binds to many genes within the functional category sensory perception of 

smell, specifically prior to PHx and in the “unbinding” (gray) patterns. Following 

PHx, NF-κB ceased binding to these genes to perform other functions. Overall, we 

found that NF-κB bound to 510 olfactory receptor genes; of these, 9 were 

differentially expressed following PHx (at a 2 fold-change cutoff). We investigated if 

the chromatin was accessible at these genes by comparing our NF-κB binding regions 

and associated gene region to whole-liver DNAse1 hypersensitivity regions in mouse 

livers found by the ENCODE project (Yue et al, 2014). 
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Figure 2.7 NF-κB binding patterns with associated pathways found using DAVID. (A) 

Immediate binding and unbinding (B) Transient Binding and unbinding 

(C) Delayed Binding and Unbinding (D) Constitutive Binding. Our 

analysis revealed that NF-κB binds to many genes involved in sensory 

perception of smell at baseline. Following PHx, however, these targets 

become unbound as NF-κB instead targets pathways previously related to 

be critical to liver regeneration. It is possible that genes involved in 

sensory perception of smell serve as a sink for NF-κB binding so that 

transient pulses to NF-κB binding do not start cascades of inflammation. 

We found that the majority of these NF-κB binding sites had no DNAse1 

hypersensitivity, with only 8 NF-κB binding sites robustly accessible across animal 

replicates (a subset of these genes are shown in Figure 2.8). Of these 8 genes, 6 had 

inaccessible gene regions (Figure 2.8 A), while 2 had open chromatin (DNAse1 

hypersensitivity) at the beginning of the gene region (Figure 2.8 B and C). The 

accessible genes were not differentially expressed. We speculate that NF-κB binding 

sites for these sensory perception of smell genes may act as a buffer for NF-κB 

activation under normal conditions to prevent spurious hepatocyte priming but are 

made unavailable for NF-κB binding following a sustained challenge such as 

hepatectomy by mechanisms such as histone methylation or acetylation. Alternatively, 

recent work has shown functional olfactory receptors in the kidneys of mice which act 

as chemical sensors and can modulate glomerular filtration rate (Pluznick et al, 2009). 

It is possible that olfactory receptors in the liver may also act as chemical sensors to 

modify liver behavior. These results are difficult to interpret at present and require 

more detailed study. 
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Figure 2.8 NF-κB binding regions for olfactory receptor genes compared to DNAse1 

hyperactivity sites from whole-liver tissue in mice from the ENCODE 

project. 
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2.3.4 NF-κB Switches Co-ordinate Dynamic Tissue Function post-PHx 

In light of the role of NF-κB in dynamically regulating tissue function post-

PHx, we next investigated how NF-κB switches regulated gene expression. We first 

used the NF-κB switches to organize genes into binding patterns as before (Figure 2.9, 

left panel). We then identified gene expression levels of genes bound by NF-κB using 

a previously published RNA-seq gene expression data set of rat liver regeneration at 

0h, 4h, and 12h post-PHx (Figure 2.9, center panel; Table 2.5). Genes were identified 

as differentially expressed with a fold-change value > 2 (see Material and Methods for 

rationale). Differentially expressed genes corresponding to each NF-κB switch were 

then analyzed to identify functional clusters of genes using the DAVID software 

(Figure 2.9, right panel) (Huang et al, 2009). For constitutive NF-κB binding, all NF-

κB bound genes were analyzed rather than only differentially expressed genes. This 

association of NF-κB binding with subsequent gene expression was somewhat tenuous 

because of the low sampling frequency and non-identical time points used between 

studies; however, this approach focused our analysis to NF-κB binding that appears to 

have a dynamic functional role in gene expression. 
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Figure 2.9 Switching mechanisms of NF-κB binding post-PHx. (A) NF-κB immediate 

response switch. (B) NF-κB transient response switch. (C) NF-κB 

delayed switch. (D) NF-κB constitutive binding. NF-κB was 

constitutively bound to genes responsible for cell cycle, cellular response 

to stress, and the JAK-STAT pathway. The regulation of these genes by 

NF-κB may be essential for tissue function. 

We found that although NF-κB binding follows switch-like behavior, gene 

expression patterns do not all follow the same switching behavior. In all switches 

analyzed, however, expression levels of those genes unbound by NF-κB tend to 

decrease while expression levels of those genes bound by NF-κB tend to increase (or 

decrease less) (Figure 2.9, Center panel). Several factors may contribute to a weak 

correlation between binding and gene expression. One factor is the time delay between 

measured NF-κB binding and measured gene expression. Although it has been well 

documented that transcription can have delayed effects on gene expression, 3 hours 

and 6 hours following binding events at 1 hour and 6 hours post-PHx may be too long 

for robust correlations between transcription factor binding and gene expression 

(McAdams & Arkin, 1997;Schmitt et al, 2004). Similarly, once transcribed, different 

mRNA may have different regulation, degradation rates, and half-lives. Additionally, 

NF-κB may coordinate with other transcription factors known to be active during liver 

regeneration to dynamically regulate gene expression. 

We found that immediately post-PHx NF-κB stopped regulating genes 

associated with multiple pathways and instead began to regulate genes associated with 

only a few pathways, predominantly with the functions (GO Terms) negative 

regulation of cell growth and inflammatory response (Figure 2.9 A). This result 

suggests that immediately following PHx there may be a limit to NF-κB 
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bioavailability. The binding seen at 1 hour post-PHx occurs before there would be 

significantly increased production of NF-κB protein. This interpretation is consistent 

with mathematical models which can capture short-term dynamics of NF-κB signaling 

without considering additional NF-κB production (Lipniacki et al, 2004). Therefore, 

the available NF-κB may cease to regulate less essential functions like regulation of 

blood pressure and begin to regulate transcription of genes required to prime 

hepatocytes for replication. Additionally, the negative regulation of cell growth may 

ensure that all available metabolic energy goes towards cell replication rather than cell 

growth to meet functional demand (Shestopaloff, 2014). 

Potentially using this same pool of available NF-κB, NF-κB transiently 

switched from regulating genes associated with amino acid binding, ion transport, and 

response to wounding, and began to regulate lipid biosynthetic processes, cell 

projection, circadian rhythm, and induction of apoptosis (Figure 2.9 B). This suggests 

that NF-κB transiently shifts from governing normal tissue functions (like amino acid 

binding and ion transport) to governing an additional response to tissue damage that 

may also modulate normal tissue functions (increasing binding to genes governing 

response to outside stimuli, circadian rhythm, and induction of apoptosis). The 

transient NF-κB switch also regulated functions associated predominantly with hepatic 

stellate cells. Specifically, NF-κB began to regulate lipid synthesis and transport as 

well as cell projections, potential components of modulating hepatic stellate cell 

activation. Because hepatic stellate cells are not thought to begin producing growth 

factors until approximately 12 hours post-PHx, this induced NF-κB binding may act as 

a pioneering signal stimulating a transcriptional cascade that will ensure that hepatic 

stellate cell activation occurs at the proper time post-PHx (Michalopoulos, 2007b). 
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After there has been sufficient time to begin producing additional NF-κB 

protein, NF-κB binding undergoes a delayed response switch (Figure 2.9 C). As 

opposed to the immediate response switch, the delayed switch turns off relatively few 

pathways and turns on multiple pathways. The pathways switched on included 

inflammatory response, positive regulation of protein kinase activity, negative 

regulation of apoptosis, and extracellular structure organization and suggest that by the 

end of the priming phase NF-κB begins to drive production of genes required for 

hepatocyte replication, including protein kinases. Additionally, NF-κB appears to 

switch its role from pro-apoptotic (transient) to anti-apoptotic (delayed). This switch 

may be an important regulator of liver failure after resection.  

NF-κB also displayed constitutive binding to a select set of genes throughout 

the priming phase (Figure 2.9 D). These genes were normally bound by NF-κB and 

remained bound despite PHx, indicating that they may be essential for tissue function. 

They included genes in pathways canonically associated with NF-κB binding, 

including inflammatory response, regulation of the JAK-STAT signaling cascade, 

negative regulation of apoptosis, and the mitotic cell cycle. The constitutive binding to 

genes in these pathways indicates that these pathways, which are typically associated 

with a dynamic stress, may also be critical for normal tissue function.   

2.3.5 NF-κB Binding Motif Analysis 

NF-κB binding motif analysis revealed that NF-κB had multiple cofactors that 

may act to help regulate transcription following PHx (Figure 2.10).  
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Figure 2.10 Pattern-based motif analysis of NF-κB binding sites. Strongly bound sites 

in each binding pattern were matched to known transcription factor 

binding sites using the software DME and the TRANSFAC database. 

Potential co-regulators of NF-κB binding switches were identified for 

each binding pattern. 
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We found several motifs associated with the immediate NF-κB switch in the 

AP-1 and ATF families. AP-2 in particular may be a cofactor helping to regulate genes 

within this switch. C/EBP-gamma was also associated with both the binding (black) 

and unbinding patterns (gray). The binding pattern (black) in the transient response 

switch was associated with transcription factors related to cellular response to stress 

(metabolic Oct-1 or heat HSF), immune response (AIRE, HSF) and the cell cycle 

(MEF-2). Whereas the transient unbinding pattern (gray) was associated with 

transcription factors related to immediate-early gene expression (AP-2a and ATF6) 

and those that may relate to transcriptional control of hepatic stellate cell activation 

(SMAD3 and TAL1). The delayed NF-κB switch was associated with many of these 

same transcription factors (AP-2, AP-3, ATF, ATF-4, SMAD3, and MEF-2) as well as 

several additional transcription factors involved in inflammation (IRF-1) and the cell 

cycle (c-Myc). Constitutive NF-κB binding was associated with similar transcription 

factors (AP-4, ATF, ATF-3, and MEF-2).  

When analyzed at each time point instead of in each pattern, we found multiple 

transcription factors that may act in concert with NF-κB including IRF-1, IRF-2, IRF-

7, ICSBP (IRF-8), HSF, and MEF-2 (Figure 2.11).  
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Figure 2.11 Motif analysis of NF-κB binding sites. The top binding motifs were 

matched to TRANSFAC to identify potential cofactors regulating gene 

expression with NF-κB at each time point (excluding those motifs 

involved in mainly DNA binding and polymerase activity). 
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The IRF family of transcription factors is predominantly involved in interferon 

regulation and may be induced as a response to pro-inflammatory signals. IRF-1 is 

involved in the NF-κB signaling pathway and response to IL-1α. IRF-2 is involved in 

regulation of transcription and may enhance the function of other IRF transcription 

factors. IRF-7 is involved in IFNβ and IFNγ production. ICSBP (also known as IRF-8) 

is involved in the granulocyte-macrophage colony stimulating factor signaling 

pathway and may indicate hepatocyte response to Kupffer cell activation. Similarly, 

HSF is typically involved in cellular response to heat stress but may also be active in 

cellular response to other forms of stress or local inflammation/tissue damage. MEF-2 

is also involved in the cellular response to calcium changes and may bind as a cofactor 

to NF-κB to modulate NF-κB activity when calcium signaling increases, as it does 

following PHx (Diaz-Munoz et al, 1998).  

In addition, we found several motifs to be selectively enriched at 6 hours post-

PHx (Figure 2.11). These motifs included Cdx-2, HFH4, Pax-4, and PPARa. Cdx-2, 

HFH4, and Pax-4 are all involved in hepatocyte entry into the cell cycle. Cdx-2 is 

involved in positive regulation of cell proliferation, HFH4 is involved in cellular 

response to growth factor stimulus, and Pax-4 is involved in negative regulation of 

apoptosis. The selective enrichment of these cofactors at 6 hours post-PHx correlates 

with our results indicating that NF-κB may play a role preparing hepatocytes for entry 

into the cell cycle at the end of the priming phase. In contrast, PPARα binding as a 

cofactor to NF-κB may indicate that these factors work together to regulate correct 

timing of hepatic stellate cell activation post-PHx. PPARα is known to regulate fatty 

acid metabolism (which is increased during stellate cell activation) and may be a 
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therapeutic target to ameliorate alcoholic liver disease, which may proceed through 

activation of hepatic stellate cells (Friedman, 2008c;Nan et al, 2014). 

2.3.6 AP-1 as a Co-regulator of NF-κB Bound Genes Following PHx 

Our motif analysis found several motifs enriched in NF-κB binding sites 

belonging to the AP-1 and ATF transcription factor families. We therefore 

investigated the dynamics of AP-1 and ATF transcription factor family activities 

during the priming phase post-PHx. We found that the AP-1 family of transcription 

factors was strongly activated by 1hour post-PHx in rats and remained activated over 

the course of the priming phase (Figure 2.12 A). This behavior was true for AP-1 

family all transcription factors measured except FOSB and JUNB. FOSB activity 

decreased following PHx, while JUNB activity showed little change (Figure 2.12 B). 

ATF family transcription factor activities were also increased above baseline 

throughout the priming phase. These results coupled with the potential co-regulatory 

binding sites identified with NF-κB indicate that, as expected, AP-1 and ATF family 

transcription factors coordinate with NF-κB in regulating the priming for liver 

regeneration. 
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Figure 2.12 Co-ordinated activation of AP-1 and ATF family transcription factors 

during liver regeneration. Our motif analysis suggested that AP-1 binding 

coincided with NF-κB binding to co-regulate expression of genes during 

the priming phase of liver regeneration. The AP-1 family of transcription 

factors were found to be strongly activated by 1 hour post-PHx in rats. 

This activation was maintained throughout the priming phase for all 

transcription factors except FOSB and JUNB. FOSB activity decreased 

following PHx, which JUNB activity transiently increased before 

returning to baseline levels. *p-value < 0.05, **p-value < 0.01. 

2.3.7 Validation of Selected NF-κB Binding Dynamics Using ChIP-qPCR 

We tested a set of 21 of genes through the use of NF-κB ChIP followed by 

high-throughput qPCR (Figure 2.13, Figure 2.14) (Spurgeon et al, 2008). We found 

that NF-κB bound to the promoter regions of several of these genes with similar 
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dynamics as in the ChIP-chip analysis (Figure 2.13). The similar binding dynamics 

seen between platforms supports the results of our ChIP-chip analysis. We further 

validated our results for promoter enrichment at the Sod2, iNOS, G0S2, and IGFBP1 

gene promoter regions using PCR followed by visualization in a 1% agarose gel 

(Figure 2.1). 

 

Figure 2.13 ChIP qPCR validation. Binding patterns for selected genes were 

investigated using ChIP-qPCR. 
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Figure 2.14 ChIP qPCR validation of NF-κB targets following PHx. 
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2.4 DISCUSSION 

Our results indicate that the acute challenge of a partial hepatectomy causes 

NF-κB binding in the liver to operate as a dynamic switch regulating tissue function. 

The immediate, transient, and delayed NF-κB signaling profiles appear to serve 

different purposes in driving regeneration. Early post-PHx, NF-κB binding 

transitioned from governing many functions to governing mainly those functions 

necessary to set hepatocytes up for entry into the cell cycle. These functions were 

maintained throughout the priming phase. Transiently post-PHx, NF-κB binding 

transitioned away from binding genes involved in maintaining tissue function and 

toward binding genes involved in apoptosis, circadian rhythm, and hepatic stellate cell 

activation. The transient switch may therefore be involved in synchronizing healthy 

cells for entry into the cell cycle while inducing damaged cells to commit apoptosis. 

The transient switch may also ensure proper timing of hepatic stellate cell activation 

following PHx. As the priming phase ended, NF-κB began to regulate many genes 

setting up hepatocytes to enter the cell cycle. This switch may indicate a role for NF-

κB contributing to hepatocyte entry into the cell cycle as regeneration progresses past 

the priming phase. Additionally, several genes involving mitochondrial function that 

are bound and unbound in this switch (including Atp5d, NDUFA10, ACSL5, and 

mfn1) may be important to govern the fraction of metabolic demand delegated to 

regeneration and that delegated to maintenance of tissue function as hepatocytes enter 

the cell cycle (Shestopaloff, 2014). The binding patterns of differentially expressed 

genes with the highest expression (top 20 genes) show dynamic regulation by NF-κB 

throughout the priming phase (Figure 2.15). 
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Figure 2.15 NF-kB binding for the top 20 differentially expressed genes clustered 

according to NF-kB binding pattern (A) NF-kB binding at baseline, (B) 

NF-kB binding at 1 hour post-PHx, (C) NF-kB binding at 6 hours post-

PHx. Black = Bound, Gray = Unbound. 
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In addition to the NF-κB binding switches, we observed constitutive binding, 

where NF-κB was bound before PHx and remained bound throughout the priming 

phase. Because liver tissue function is maintained during regeneration, it is likely that 

these genes consist of an essential set of genes required for NF-κB contributions to 

normal liver function. The pathways constitutively governed by NF-κB suggest that 

NF-κB could be important for maintaining the balance of the innate immune system in 

the liver. The innate immune system must be balanced such that it can respond to 

pathogens or inflammation but not so active that chronic inflammation results. 

Another possibility is that, because the drivers for priming rely on processes in non-

parenchymal cells (especially Kupffer cells), dynamics of NF-κB binding in the innate 

immune system may not be detectable in total tissue extracts. Alternatively, it is 

possible that some of the ‘constitutively bound’ genes still move to different binding 

sites closer to the TSS, or are otherwise activated, either through combinatorial 

binding with other factors, or through chromatin accessibility regulation. 

These results may have implications beyond the field of liver regeneration for 

understanding carcinogenesis during inflammatory conditions. Barash et al. proposed 

that chronic inflammation can increase hepatocyte genomic instability and that these 

genomically unstable hepatocytes can become tumorigenic following liver resection 

(Barash et al, 2010). The results of our study show the binding response of NF-κB to 

liver resection in the first six hours post-resection. This NF-κB binding response can 

serve as a baseline from which to compare NF-κB response to resection during 

conditions of chronic inflammation caused by chronic liver diseases including alcohol 

use, obesity, hepatitis infection, or bile salt export pump deficiency (which causes 

inflammation and carcinogenesis in the absence of external, cancer-predisposing 
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factors) (Iannelli et al, 2014;Kudo et al, 2014;McGivern & Lemon, 2011;Sun & Karin, 

2012). Such a comparison could provide insights into how NF-κB contributes to 

hepatocellular carcinoma genesis during regeneration under chronic inflammatory 

conditions. Further study of these areas will be necessary to determine the dynamic 

contribution of NF-κB to such carcinogenesis. 

Our approach has several strengths and weaknesses that are important to 

consider when interpreting our results. ChIP-chip can be considered as a targeted 

approach for promoter regions of genes; whereas ChIP-seq (next generation 

sequencing) gives a much more global view of transcription factor binding which 

includes the promoter regions and other regions within genes (Ho et al, 2011). ChIP-

chip’s higher coverage of the promoter regions of genes also gives a higher sensitivity 

than ChIP-seq unless a high read count is used. Additionally, both techniques share the 

limitations of low resolution and lack of cell-type specificity. Neither technique can 

differentiate with a base-pair specificity the true NF-κB binding sites within the bound 

regions. Recent techniques, such as ChIP-exo, may allow for identification of NF-κB 

bound motifs on the bound regions (Rhee & Pugh, 2012). The signal from whole-liver 

ChIP approaches likely comes predominantly from hepatocytes with lower abundance 

non-parenchymal cells likely contributing a lesser signal. Cell isolation techniques, 

such as those used in the ENCODE project, may be used in the future to identify the 

contributions of different cell types in the liver to NF-κB binding during regeneration 

(Winter et al, 2013). Additionally, our novel, dynamic pattern-based analysis allowed 

for unique insights into the dynamic switching mechanisms of NF-κB binding during 

the priming phase of liver regeneration. 
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This genome-wide pattern counts analysis revealed several dynamic NF-κB 

switches which occur post-PHx. Using this technique, we were able to identify 

dynamics of NF-κB binding within multiple pathways during liver regeneration. 

Additionally, we were able to identify a subset of genes that may be critical for 

healthy tissue function. This analysis strategy has wide application when analyzing 

transcription factor binding and can be used in other contexts as well as to understand 

dynamic transcriptional regulation.  
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PREDICTING MOLECULAR REGULATION OF LIVER REGENERATION 

IN ADIPONECTIN KNOCKOUT MICE USING AN EXISTING 

COMPUTATIONAL MODEL 

This chapter was adapted from Correnti, J. M., Cook, D., Aksamitiene, E., 

Swarup, A., Ogunnaike, B., Vadigepalli, R., & Hoek, J. B. (2015). Adiponectin fine‐

tuning of liver regeneration dynamics revealed through cellular network 

modelling. The Journal of physiology, 593(2), 365-383. All experimental work 

featured in this chapter was performed by J.M. Correnti.  

3.1 Introduction 

Liver regeneration is a unique repair mechanism that allows a damaged liver to 

recover following traumatic or toxic injury or hepatic surgical procedures. This 

process is clinically important in liver mass recovery in both donor and recipient 

following live donor liver transplantation. After partial hepatectomy (PHx) normally 

quiescent hepatocytes are activated to reenter the cell cycle through a highly 

synchronized pro-proliferative response, which requires precise timing of cytokine and 

growth factor (GF) signals. This response is orchestrated through a dynamic pattern of 

activation and inhibition of a wide range of signaling processes coordinated across 

multiple cell types in the liver, including hepatocytes, Kupffer cells and hepatic 

stellate cells (Taub, 2004a). Kupffer cells are primary coordinators of the dynamic 

cytokine microenvironment following tissue damage (see chapter 2). Hepatic stellate 

cells produce growth factors critical to induce hepatocyte replication. Once lost tissue 
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mass is recovered, hepatic stellate cells also produce factors terminating regeneration 

(Taub, 2004a). In addition, signals from extra-hepatic tissues, including adipokines, 

play a role in modulating this coordinated cellular response. Because adipokines 

originate from outside the liver, treatment of hepatic surgery patients with adipokines 

is an attractive option to modulate liver regenerative ability following surgical 

intervention without the complications involved in modifying liver function directly. 

One of the factors implicated in modulating both liver cytokine 

microenvironment and growth factor bioavailability is the serum adipokine 

adiponectin (Adn) (Yamauchi & Kadowaki, 2013). Adn is a 30 kD protein produced 

primarily by adipose tissue that circulates as low molecular weight (trimeric), middle 

molecular weight (hexameric), and high molecular weight oligomers (Turer & 

Scherer, 2012). Adn directly sensitizes the body to insulin, and Adn levels are low in 

patients with Type II diabetes (Kadowaki et al, 2006). It is thought to act in large part 

through two identified adiponectin cell surface receptors, adiponectin receptor 

(AdipoR) 1 and AdipoR2. Additionally, Adn has been shown to increase acute 

inflammation (Awazawa et al, 2011;Park et al, 2007) and is known to modulate 

balances of cytokines and growth factors critical to liver regeneration and repair. 

There is evidence that Adn also can act through direct binding and inhibition of 

growth factors. Taken together, these findings suggest Adn may have both pro- and 

anti-proliferative effects during liver regeneration (Kajimura et al, 2013;Landskroner-

Eiger et al, 2009). Consistent with this hypothesis, previous studies suggested both 

reduced and increased Adn levels can impair regeneration. Adn -/- mice were reported 

to exhibit a delayed liver regeneration phenotype (Ezaki et al, 2009;Shu et al, 2009a), 

whereas treatment with the antidiabetic drug rosiglitazone, which is thought to act at 
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least in part by elevating serum Adn (Nawrocki et al, 2006;Yamauchi & Kadowaki, 

2013), inhibits liver mass recovery (Turmelle et al, 2006). By contrast, rats with 

induced diabetes show a delayed initiation of hepatocyte replication after PHx, which 

is corrected by an increased replication from 36-72 hours post-surgery (Barra & Hall, 

1977). We hypothesize that low Adn levels may have contributed to the regeneration 

dynamics observed in these diabetic animals. 

The apparently conflicting actions through which Adn impacts liver 

regeneration points to nonlinear effects that are difficult to parse out with typical 

over/under-expression experimental analyses. In this study, we aim to develop a 

deeper understanding of the multifaceted impact of Adn on liver regeneration using an 

integrated computational modeling and experimental approach to characterize the 

molecular mechanisms underlying the Adn-mediated fine-tuning of liver regeneration 

dynamics. 

Molecular mechanisms underlying liver regeneration are both redundant and 

complex, making prediction of effects of molecular or cellular manipulations difficult. 

For example, in studies using CI2MDP-liposomes to eliminate Kupffer cells from the 

liver, IL-6, TNFα, and HGF were all significantly decreased; however, mass recovery 

appeared to be only delayed but not blunted (Meijer et al, 2000a). Similarly, mice 

harboring a hepatocyte-specific deletion of c-Met were expected to show little or no 

regeneration following CCl4 injection. These mice, however, showed similar kinetics 

and magnitude of proliferation following a single CCl4 injection, indicating multiple 

compensatory mechanisms (Huh et al, 2004). After more extensive injury, the c-Met 

deficient mice did show lower recovery, but this was likely due to decreased cell 

motility rather than decreased proliferation. 
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Our computational modeling approach was designed to account for the net 

effect of such molecular redundancies and complex cellular interactions governing 

liver regeneration. We did not expect hepatocyte size increase to be a significant factor 

differentiating between regeneration in Adn-/- mice and control mice. We therefore 

use the computational model developed by Furchtgott et al. for the majority of this 

chapter (Furchtgott et al, 2009). Through model simulations and sensitivity analysis of 

the computational model of cellular interactions during liver regeneration, we 

investigate how changes to relative balances and timing of multiple regulatory 

mechanisms contribute to shaping the liver regeneration dynamics. Using this cellular 

interaction framework, the model acts as a bridge connecting the kinetics of molecular 

regulation to the regeneration dynamics.  

We used Adn -/- mice to examine the kinetics of liver regeneration response 

after PHx through the priming and replicative phase and applied these experimental 

data to the computational model. We utilized the recently developed Pulsatile 

Sensitivity Analysis (PSA) to investigate which regulatory balances are critical for the 

effect of Adn on liver regeneration, and in what temporal intervals the specific 

changes to regulatory balances have the greatest impact on regeneration. 

3.2 Materials and Methods 

3.2.1 Animals  

All animal studies were approved by the Institutional Animal Care and Use 

Committee (IACUC) at Thomas Jefferson University.  Jefferson’s IACUC is 

accredited by the Association for Assessment and Accreditation of Laboratory Animal 
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Care and experiments were designed using the Guide for the Care and Use of 

Laboratory Animals. 

10-12 week old male Adn-/- mice (B6.129-Adipoqtm1Chan), bred from mice 

kindly donated by Dr. Lawrence Chan, or C57BL/6J mice (Jackson Laboratories, Bar 

Harbor, Me) underwent partial hepatectomy based on surgical methods outlined by 

Mitchell and Willenbring (Mitchell & Willenbring, 2008). Briefly, animals were 

anesthetized by inhalation of 5% isoflurane in an induction chamber and anesthetic 

plane was confirmed by toe pinch.  Anesthesia was maintained during surgery by 

continual inhalation of 2% isoflurane administered by nose cone. A midline incision 

was made followed by the sequential ligation and excision of the left-lateral and 

medial lobes of the liver. The abdominal cavity was rinsed with warm lactated 

Ringer’s solution, the abdominal muscle layer was sutured and the skin was closed 

with wound clips. Following surgery, animals were given subcutaneous lactated 

Ringer’s solution (1 mL/animal) and placed in a fresh cage under a heat lamp with ad 

libitum access to hydrogel (Contact ClearH20, Portland, Me) and food. At specified 

times after PHx, animals were anesthetized with isoflurane as described for partial 

hepatectomy (induction and maintenance).  While anesthetized, animals were weighed 

and sacrificed. The livers were either immediately (within 10 sec) freeze clamped 

using liquid nitrogen-cooled aluminum clamps as previously described (Crumm et al, 

2008), preventing rapid post-mortem changes in cytokine or growth factor levels and 

protein phosphorylation, or the livers were fixed in 10 percent neutral buffered 

formalin (NBF) for assessment of BrdU labeling. For determination of liver to body 

weight ratios, the liver was dissected out and weighed prior to freeze clamping.  
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Blood was collected from the tail vein of live animals and from the vena cava 

under anesthesia at sacrifice. Collected blood was incubated at room temperature for 

30 min, then centrifuged at 1500 rpm for 5 minutes. Serum was isolated and flash 

frozen for further analysis. In some cases, animals were given intraperitoneal 

injections of Bromodeoxyuridine (BrdU) solution (Sigma, St. Louis, Mo) (150 mg/kg) 

in sterile 0.9 percent saline two hours prior to sacrifice. 

3.2.2 Histological analysis 

Samples fixed in 10% NBF were paraffin-embedded, sectioned, and stained for 

hematoxylin and eosin by the Kimmel Cancer Center pathology core facility (Thomas 

Jefferson University) for analysis of hepatosteatosis. BrdU staining was performed 

using Impact DAB staining (Vector Laboratories, Burlingame, CA) according to 

manufacturer’s instructions. For BrdU quantitation, five 20x fields were scored per 

animal. 

3.2.3 Biochemical analysis 

For Western blotting, tissue lysates were generated by homogenizing frozen 

tissue in RIPA buffer (Sigma) supplemented with phosphatase and protease inhibitor 

cocktails (Sigma). Protein was normalized using BCA Protein Assay Reagent (Pierce 

Biotechnology, Rockford, IL). 20 µg of protein was loaded onto an SDS-PAGE gel 

and Western blotting for cell cycle markers was performed as previously described 

(Crumm et al, 2008).  

Data were compared using Student’s t-test on raw data (BrdU incorporation 

and liver-to-body weight ratios) or log-transformed data (molecular measurements). 
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Paired statistics were used when appropriate. Data are presented as mean +/- standard 

error of the mean (SEM). 

 

3.2.4 Computational modeling of liver regeneration 

For a description of the computational model used in this study, see Chapter 4, 

Section 2.1 “Computational model development”, excluding cell growth and the 

original model derivation in (Furchtgott et al, 2009). 

3.2.5 Sensitivity analyses for identifying key factors controlling regeneration 

phenotype  

Parametric sensitivities were estimated based on a dynamic local sensitivity 

analysis (Zak et al, 2005), phase-based sensitivity (Gunawan & Doyle, 2007), and 

pulsatile sensitivity methodologies (Perumal & Gunawan, 2011). To calculate the 

dynamic local sensitivities (DLS), parameters were changed by +/- 10% and 

sensitivity was calculated as the change in overall liver recovery normalized to the 

number of cells at each time in the nominal regeneration profile divided by the 

percentage change in the parameter (20%), according to Equation 3.1. 

𝐷𝐿𝑆i(𝑡) =
Δ𝑁(𝑡)/𝑁(𝑡)

Δ𝑝𝑖/𝑝𝑖
   (3.1) 

where N(t) is the nominal fraction of hepatocytes at any given time, and ΔN(t) 

is the deviation from nominal caused by the parameter change. 

Phase-based sensitivities (PBS) were calculated following the formulations of 

(Gunawan & Doyle, 2007;Perumal & Gunawan, 2011). Simulations were run with the 

value of a single parameter increased by 10% of its nominal value within one of the 

three phases of regeneration: the priming phase (0-6 hours post-PHx), the regeneration 

phase (12-100 hours post-PHx), and the termination phase (100-200 hours post-PHx). 
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The simulations were then run again with the same parameter decreased by 10% 

within the same phase. These two simulations were repeated for every parameter. 

Sensitivities were estimated as the change in overall liver faction recovered at 300 

hours post-PHx normalized to the nominal regeneration profile divided by the 

percentage change in parameter value for the phase when the change occurs (20%), as 

shown in Equation 3.2. 

𝑃𝐵𝑆𝑖 =
Δ𝑁(𝑡=300)/𝑁(𝑡=300)

Δ𝑝𝑖/𝑝𝑖
   (3.2) 

Pulsatile sensitivities (PS) were calculated using an approach modified from 

(Perumal & Gunawan, 2011). In this modified approach, we altered each model 

parameter by + or – 10% of the corresponding nominal value at each hour following 

PHx for one hour, where 𝜏 represents the beginning of the time step where the 

parameter was changed. We estimated the pulsatile sensitivity at each time point after 

the pulsatile parametric change (at time 𝜏) according to Equation 3.3. 

𝑃𝑆𝑖(𝑡, 𝜏) =
Δ𝑁(𝑡,𝜏)/N(t,τ)

Δ𝑝𝑖,𝜏/𝑝𝑖,𝜏
    (3.3) 

While this equation appears similar to that used to calculate DLS, the pulsatile 

sensitivity values (PSi) take on nonzero values only after the time of the pulse change 

in the corresponding parameter value. 

 

3.2.6 Parameter estimation to match Adn-/- regeneration phenotype 

To estimate parameters characterizing the Adn-/- mice, Sobol sampling was 

used to search the parameter space of sensitive model parameters (Bratley & Fox, 

1988). Each parameter was allowed to vary from its nominal value over approximately 

one order of magnitude (10x). Simulations were then run with each of ten thousand 
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parameter sets, and the resulting regeneration profiles were compared to the 

experimental Adn-/- mouse regeneration profile generated in this study. Parameter sets 

generating similar regeneration profiles were then analyzed for common molecular 

regulation governing tissue behavior. The search of the parameter space resulted in 

multiple parameter sets that could simulate regeneration profiles similar to that seen 

experimentally, but these multiple parameter sets contained similar parameters and 

caused similar molecular regulation. Therefore, parameter sets generating regeneration 

profiles similar to that observed in the experiments were further explored using a 

combination of manual manipulation and local optimization (fminsearch in Matlab). 

The parameter set resulting in the lowest mean squared error between simulation and 

experimental observations of liver regeneration in Adn-/- mice was reported as the 

parameter set for Adn-/- mice. 

3.3 Results 

3.3.1 Hepatocyte proliferation is delayed after PHx in Adn -/- mice 

The dynamics of liver regeneration in Adn-/- and WT mice after PHx were 

assessed by BrdU pulse labeling and expression of cell cycle marker proteins between 

24-54 hours post-PHx. BrdU incorporation increased in WT mice at 30 hours post-

PHx relative to baseline levels. However, Adn-/- mice showed no increase at 30 hours 

(Figure 3.1 A and B). WT and Adn-/- mice showed similar levels of BrdU 

incorporation 36 hours post-PHx (Figure 3.1 A and B). Adn-/- mice incorporated 

significantly more BrdU at 42 hours post-PHx (Figure 3.1 A and B). By 54 hours post-

PHx, WT and Adn-/- mice again showed no difference in BrdU incorporation. When 

compared to WT mice, Adn-/- mice also expressed significantly lower levels of G1-
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phase cell cycle markers proliferating cell nuclear antigen (PCNA) and cyclin D1 at 24 

hours post-PHx (Figure 3.1 C and D). Both PCNA and cyclin D1 levels were 

renormalized by 30 hours post-PHx and PCNA levels remained similar at all 

subsequent times (Figure 3.1 C and D). Similarly, Adn-/- mice expressed cyclin A, an 

important S phase cyclin, at lower levels than WT mice at 30 hours post-PHx; cyclin 

A levels were renormalized by 36 hours post-PHx and remained similar at 42 hours 

(Figure 3.1 C and D). Liver to body weight ratio was assessed as a measure of liver 

mass recovery. By 54 hours post PHx, both WT and Adn-/- mouse livers had 

approximately doubled in mass (Figure 3.1E). No significant difference was detected 

between WT and Adn-/- liver mass recovery at this time. 
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Figure 3.1 Analysis of hepatocyte replication after PHx in WT and adiponectin KO 

mice. (A) Representative histological sections from mice at various times 

after PHx and injected with BrdU 2 hrs prior to sacrifice were stained 

using BrdU-specific antibodies. (B) The percentage of BrdU positive 

hepatocytes was calculated by quantifying BrdU positive nuclei and total 

nuclei from 5 representative fields at 20x magnification (n=4/group). (C) 

Western blot of representative liver samples probed with antibodies 

specific for cyclin D1, PCNA, Cyclin A and GAPDH. (D) Quantitation 

of western blots for cyclin D1, PCNA, Cyclin A (n=3/group). (E) Liver 

to body weight ratio. Data are presented as mean +/- SEM.  NS: not 

significant, * P<0.05, *** P<0.01 adiponectin -/- significantly different 

from WT. 

Taken together, these results suggest that the onset of hepatocyte proliferation 

after PHx is delayed in Adn-/- relative to WT mice but that the cell cycle may be 

accelerated in Adn-/- mice to renormalize regeneration after a delayed cell-cycle 

onset. However, the dynamic changes to molecular balances underlying Adn fine-

tuning control of liver regeneration remain unclear. 

3.3.2 Pulsatile Sensitivity Analysis reveals critical time-windows of molecular 

effects on liver regeneration 

We pursued a computational modeling approach to investigate which 

molecular balances are critical to alter regeneration dynamics and the time-windows 
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over which regenerating hepatocytes are responsive to these signals. We employed 

Pulsatile Sensitivity Analysis (Perumal & Gunawan, 2011) to analyze a recently 

developed computational model of liver regeneration (Furchtgott et al, 2009). The 

computational model simulates liver regeneration as a series of regulatory events 

initiated in non-parenchymal cells and influencing hepatocyte quiescence, priming and 

replication (Figure 3.2A). The initiation of regeneration is governed by a mismatch 

between “metabolic demand” (M) of the organism and the total number of hepatocytes 

(N) available to meet this demand. In this scheme, the “metabolic load” per hepatocyte 

(M/N) increases proportional to the mass of the liver removed, initiating non-

parenchymal cell activation following PHx. Once activated, non-parenchymal cells 

respond to liver damage by early induction of IL-6 (representative of the inflammatory 

milieu observable post-PHx and its effect on hepatocytes), later production of GF 

(representative of the growth factor environment and effect post-PHx), and ECM 

remodeling (Figure 3.2A). These molecular signals induce hepatocytes to proceed 

from quiescence (Q) to a primed state (P), from the primed state to a replicating state 

(R) to recover lost liver tissue, and finally from primed and replicating states back to 

quiescence. This computational model uses representative molecular components to 

describe archetypical classes of signaling during liver regeneration. While the 

metabolic load parameter has no direct molecular correlate, it likely captures the 

effects of the molecular drivers of liver metabolism and mitochondrial activity such as 

AMPK activation or ATP levels or ATP/ADP ratio. Modulation of metabolic load by 

perturbing this metabolic demand parameter may therefore be considered to reflect a 

general metabolic challenge. 
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Figure 3.2 Identifying the key control factors through sensitivity analysis of a 

computational model of liver regeneration. (A) Schematic representation 

of the network model of liver regeneration following PHx incorporates 

contributions of non-parenchymal cells to catalyze hepatocyte 

replication. (B) Pulse changes to the metabolic demand parameter (M) 

caused delayed regeneration if administered early post-PHx, and 

enhanced regeneration if administered late post-PHx. (C) (Upper panel) 

The nominal profiles of IL-6, STAT3 and fractional recovery. (Lower 

Panel) Hour-long, 50% pulsatile decreases in IL-6 production rate (kIL6) 

caused a temporary decrease in the IL-6 levels, independent of when the 

pulsatile change was introduced (note the consistent blue diagonal). Such 

a temporary reduction in IL-6 led to a much longer and more pronounced 

decrease in STAT3 phosphorylation, with earlier IL-6 changes leading to 

longer STAT3 transients, and ultimately delayed regeneration. The 

earlier the pulsatile reduction in IL-6 and subsequent transient decrease in 

STAT3, the longer the regeneration deficit persisted. (D) Phase-based 

sensitivity analysis showed that the timing of alterations to the key 

controlling factors leads to a phase-dependent effect on overall 

regeneration. In general, changes to these key factors during the priming 

phase had opposite effects on regeneration as compared to the effect of 

changes during the replicating and termination phases. 
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We initially employed local parametric sensitivity analysis to identify the 

regulatory balances that control the dynamics of regeneration. We altered each model 

parameter to +/- 10% of the corresponding nominal value and calculated the 

normalized sensitivity at each time point according to: 

𝑆𝑖(𝑡) =
(

ΔN(t)

N(t)
)

Δ𝑝𝑖
𝑝𝑖

  (3.4) 

where N(t) is the nominal fraction of hepatocytes at any given time, and ΔN(t) 

is the deviation from nominal caused by the parameter change. This dynamic 

sensitivity metric considers how the time profile of liver regeneration responds to 

changes in the network parameters. We defined liver regeneration profile as “highly 

sensitive” to a given parameter if the maximum value of the corresponding normalized 

sensitivity coefficient had a magnitude greater than 0.15 at any time point. Our 

analysis identified 12 out of 32 parameters as significantly controlling the dynamics of 

liver regeneration. These included both molecular parameters -- metabolic load (M), 

IL-6 production rate (kIL6), concentration of monomeric STAT3 ([proSTAT3]), ECM 

degradation rate by MMPs (κdeg), ECM constitutive degradation rate (κECM), GF 

production rate (kGF), and GF degradation rate (κGF) -- and physiological parameters 

governing hepatocyte phenotypic state and apoptosis -- kP, kR, kprol, θap, and βap -- 

(Figure 3.3). 
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Figure 3.3 Normalized sensitivity values of the top-ranked controlling factors. Overall 

regeneration was highly sensitive to both molecular and physiological 

parameters. More molecular parameters were identified as key 

controlling factors, but the alterations in physiological parameters kprol 

and kR produced the largest effects of all parametric changes. 

One consideration in the above sensitivity analysis is that the network 

parameters are altered as a step change throughout the regenerative response time. 

While the effect on the regeneration is dynamic, it is not possible to deconvolute the 

changes leading to instantaneous effects vs those altering response at later times. To 

address this issue, we employed a recently developed Impulse Sensitivity Analysis and 

modified the scheme to consider finite pulses of parameter changes in defined 

temporal intervals. In this modified approach, we altered each model parameter by + 

or – 10% of the corresponding nominal value at each hour following PHx for one 

hour. We estimated the pulsatile sensitivity at each time point after the pulsatile 

parametric change according to: 
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𝑆𝑖′(𝑡) =
(

ΔN(t)

N(t)
)

Δ𝑝𝑖
𝑝𝑖

   (3.5) 

While this equation appears similar to equation 3.4, the pulsatile sensitivity 

values (S’) take on nonzero values only after the time of the pulse change in the 

corresponding parameter value. The pulsatile sensitivity analysis revealed that 

magnitude and timing of changes to parameters were both key controlling factors in 

fine-tuning the regeneration profile. Among the parameters evaluated for their 

pulsatile sensitivity, the metabolic demand parameter showed a unique sensitivity 

profile. A short pulse or longer step increase in metabolic demand caused a decreased 

early regenerative response post-PHx, but led to an enhanced regeneration response at 

later times (Figure 3.2B and Figure 3.4).  
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Figure 3.4 Time-dependent effects of pulsatile changes to the key controlling 

parameters on molecular variables as well as overall regeneration. The 

effect of a 50% pulsatile increase in metabolic demand (M) on overall 

regeneration was dependent on when the pulse was administered. Early 

increases during the priming phase led to a transient decrease in the 

fractional recovery due to a temporary increase in cell death. Later 

increases in metabolic demand led to a higher overall regeneration, 

stimulated by increase in replication. Pulsatile increases in IL-6 

production (kIL6), growth factor production (kGF), and pro-STAT3 levels 

led to increased overall regeneration, with differences in magnitude of 

effects based on when the pulse occurred. Increasing growth factor or IL-

6 degradation, in contrast, decreased overall regeneration with a 

maximum effect occurring when the pulsatile change was introduced in 

the early phase following PHx. 

Such a time interval-dependent effect occurred through multiple processes 

affected by metabolic demand changes. Within the 0-50 hours post-hepatectomy 

period, additional increases in the metabolic demand led to a transient increase in 

hepatocyte apoptosis and delayed regeneration, but a renormalization (or moderately 

enhanced regeneration) caused by increased IL-6 signaling and hepatocyte priming. 

Additional increase of metabolic demand at later time intervals between 75-150 hours 

post-PHx caused increased GF signaling leading to enhanced liver regeneration. In 

contrast, a 50% impulse decrease in IL-6 production rate caused a transient decrease in 

IL-6 levels that was quickly renormalized (Figure 3.2C). Downstream STAT3 

phosphorylation, however, showed a much larger magnitude decrease that persisted 

for several hours before renormalization. The time-window during which these 

changes consistently resulted in observable changes to regeneration profile were 

limited to the first 50 hours of regeneration (Figure 3.2C). In contrast, a 50% impulse 

increase in GF production rate caused a sustained increase in hepatocyte number when 

GF production was increased between 0-50 hours or at certain time points between 50-



 73 

127 hours post-PHx (Figure 3.4). These results suggest that fine-tuning signaling 

dynamics by modulating the timing and temporal balances of non-parenchymal cell 

activation can have significant functional consequences, with persistent impact on 

regeneration dynamics and tissue mass recovery. 

While all of the molecular parameters apart from metabolic load showed 

similar pulsatile sensitivity profiles, the key subset identified as significant controlling 

factors by the parametric sensitivity analysis displayed a phase-dependent sensitivity 

(Figure 3.2D and Figure 3.4). For example, a transient increase in IL-6 production rate 

during the priming phase (0-6 hours) caused an early increase in IL-6 levels followed 

by a persistent decrease below nominal levels. This persistent decrease in IL-6 levels 

caused a persistently decreasing rate of hepatocyte replication and a blunted overall 

tissue recovery (Figure 3.5). In contrast, transiently increasing IL-6 production rate 

during the replication phase (12-100 hours) caused IL-6 levels to remain elevated 

above nominal levels. This persistent elevation caused a persistently increasing rate of 

hepatocyte replication and enhanced overall tissue recovery (Figure 3.5). This phase-

dependent effect predicts that mistiming of enhanced factor production influences pro- 

or anti-regenerative effects. Therefore, our computational modeling and sensitivity 

analysis revealed the dynamic balances of initiation-related and replication-related 

factors that must be closely regulated to ensure the dynamics and magnitude of the 

normal liver regeneration profile. 
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Figure 3.5 Time-dependent effects of transient increases in IL-6 production rate during 

different phases of liver regeneration. (A) Transient increases in IL-6 

production rate (kIL6) during the priming and replication phase. (B) 

Transiently increasing IL-6 production rate during the priming phase (0-6 

hours) caused a transient increase in IL-6 levels followed by a persistent 

reduction in IL-6 levels. Transiently increasing IL-6 production rate 

during the replication phase (12-100 hours) caused a sustained increase in 

IL-6 levels. (C) Persistent reduction in IL-6 levels from increased 

production during priming caused a persistent decrease in hepatocyte 

replication rate and a blunted overall tissue recovery. Sustained increase 

in IL-6 levels caused a persistent increase in hepatocyte replication rate 

and an enhanced overall tissue recovery. 
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3.3.3 Computational modeling of the altered regenerative response in the Adn -

/- mice reveals the key controlling molecular regulatory balances  

We predicted the factors governing molecular control of the Adn-/- 

regeneration phenotype by considering simultaneous alterations to multiple molecular 

parameters identified as sensitive in the above analyses. Our Monte Carlo approach 

ensured efficient sampling coverage of the physiologically reasonable parameter space 

by using a Sobol sampling strategy to modify sensitive parameter values 

simultaneously (Bratley & Fox, 1988). We analyzed the simulation results for similar 

model parameter values that led to the Adn-/- regeneration phenotype. Our results 

revealed that the magnitude and timing of IL-6 signaling controlled the priming 

response of hepatocytes and therefore fine-tuned the timing of initiation of 

regeneration (Figures 3.6 – 3.8). Timing and magnitude of the GF peak controlled the 

hepatocyte entry into the replicating phase and therefore fine-tuned the overall tissue 

regeneration rate and magnitude (Figures 3.6 – 3.8).  
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Figure 3.6 Cells entering the replicating phase too early as compared to the 

experimental measurements of Adn-/- hepatocyte entry into the cell 

cycle. (A) Hepatocyte replication was delayed early post-PHx and 

recovered by 60 hours post-PHx, but with replication levels higher than 

seen experimentally in Adn-/- mice. (B) This high replication was 

induced by increased GF signaling. 
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Figure 3.7 Regeneration profile renormalizing too late as compared to the 

experimental measurements of Adn-/- liver to body weight recovery. (A) 

The replication profile appeared to match experimental measures of Adn-

/- hepatocyte cell cycle entry, but renormalization occurred well beyond 

60 hours post-PHx due to the decreased priming response early post-PHx 

and the length of the cell cycle. (B) The decreased priming was caused by 

decreased IL-6 signaling decreasing STAT3 phosphorylation. 
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Figure 3.8 Regeneration profile with an initial delay and an overshoot. (A) These 

parameters induced a transient wave of apoptosis early post-PHx coupled 

with enhanced replication, which led to a delayed liver recovery but an 

increase in final liver recovery. (B) This profile was caused by a large 

increase in apoptosis (not shown), enhanced IL-6 signaling and STAT-3 

phosphorylation, and large increases in GF signaling. 
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However, modulating these molecular parameters did not adequately account 

for the observed regeneration profile of Adn-/- mice. In all of the simulated scenarios, 

the hepatocytes entered the cell cycle either too early (Figure 3.6), renormalized too 

late (Figure 3.7), or showed a large increase in cell death in the early phase post-PHx 

coupled with a large overshoot in recovery (Figure 3.8). These regeneration profiles 

were inconsistent with the experimental observations in the Adn-/- mice. Because the 

length of the cell cycle was modeled as lasting approximately 30 hours, any molecular 

changes that allow renormalization of regeneration by 54 hours cause regeneration to 

increase earlier than was seen experimentally in the Adn-/- mice. To account for this 

difference, we increased the replication rate of hepatocytes in the Adn-/- condition. By 

increasing hepatocyte replication rate by 15%, the model captured the experimentally 

observed regenerative profile, including a delay in initiation of regeneration, similar 

replication by 36 hours post-PHx, and renormalization by 54 hours post-PHx (Figure 

3.9A). Table 3.1 contains the key parameters and their modified values for which the 

model simulations exhibit an Adn-/- regeneration phenotype that is consistent with the 

experimental observations. 

Table 3.1: Modified parameter values 

Parameter Original Value  Adn-/- Value 

M 16.8 19.3365 

kIL6 1.5 0.7326 

κIL6 0.9 0.0017 

κdeg 7 15.2973 

κECM 33 37 

kGF 0.113 0.04 

κGF 0.23 0.05 

kup 0.06 0.0561 

kprol 0.02 0.023 
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Figure 3.9 Modeling the dynamics of the Adn-/- regeneration phenotype. (A) 

Simulated profile for Adn-/- mice showed delayed onset of liver 

regeneration, followed by renormalized liver mass at approximately 60 

hours post-PHx and enhanced recovery thereafter. This profile was 

mediated by delayed and suppressed priming as well as replication during 

the first 20 hours post-PHx and enhanced replication beyond 30 hours 

post-PHx. (B) The Adn-/- phenotypic changes were governed by 

decreased IL-6 signaling in the priming phase, causing decreased STAT3 

phosphorylation, and increased GF signaling during peak hepatocyte 

replication. 

Simulations with these parameters predicted that one of the key features 

driving the Adn-/- regeneration phenotype was a slightly decreased IL-6 level, 

detectable by 3 hours after PHx (Figure 3.9B). This moderate decrease (~2% decrease 

in peak levels) led to a simultaneous decrease in tyrosine phosphorylation of STAT3 

by 3 hours post-PHx (Figure 3.9B). Despite this decrease, the levels of phosphorylated 

STAT3 (pSTAT3) remained at sufficient levels to induce production of Suppressor Of 

Cytokine Signaling-3 (SOCS-3) at levels nearly identical to that in the wild-type mice 

(Figure 3.9B). The combination of lower IL-6 and normal SOCS-3 synergistically 

inhibited STAT-3 phosphorylation (~25% decrease in peak levels) and thus its 
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activity, leading to the impaired priming response in simulated Adn-/- mice underlying 

the delayed regeneration. It should be emphasized that the IL-6 levels in the model are 

representative of the production of multiple inflammatory molecules, release, 

diffusion, receptor binding, and cellular response. Hence, the effects of changing the 

cytokine milieu post-PHx may be seen as relatively small changes in many 

inflammatory signaling levels instead of an isolated change in the IL-6 protein levels.  

Our simulations pointed to an increase in the GF levels, detectable by 12 hours 

post-PHx and peaking at approximately 24 hours post-PHx as another key feature 

driving the Adn-/- regeneration profile (Figure 3.9B). This increased GF 

bioavailability stimulated the hepatocytes in the primed state to begin replication. Our 

analysis predicted that an increased number of replicating hepatocytes in Adn-/- mice, 

coupled with an increase in proliferation rate, can compensate for the initial delay in 

regeneration. Similar to the modeled changes in the IL-6 levels, increased GF levels in 

the simulated scenarios do not necessarily represent a single growth factor but rather 

reflect a strengthening of the growth factor milieu and their effects on hepatocyte 

replication. Based on the model predictions, we postulate that an increased 

bioavailability of growth factors associated with cell-cycle progression may also 

contribute to the enhanced cell-cycle rate seen in Adn-/- mice. 

3.4 Discussion 

The partial hepatectomy studies reported here demonstrate that Adn-/- mice 

have a delayed onset of hepatocyte proliferation compared to WT mice after PHx but 

show no difference in BrdU incorporation or liver mass recovery 54 hours after PHx. 

Our simulations using the computational model of liver regeneration suggest that the 

loss of Adn suppresses the processes associated with priming of the liver, at least in 
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part through a deregulation of STAT3 signaling. In our simulations of Adn-/- mice, 

however, cell-cycle kinetics eventually accelerate to normalize the regenerative 

response. Based on model simulations, we predict that this acceleration is likely due to 

sustained increases in critical pro-proliferative growth factors.   
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TESTING MODEL PREDICTIONS IN ADIPONECTIN KNOCKOUT MICE 

AND CONTROLS 

This chapter was adapted from Correnti, J. M., Cook, D., Aksamitiene, E., 

Swarup, A., Ogunnaike, B., Vadigepalli, R., & Hoek, J. B. (2015). Adiponectin fine‐

tuning of liver regeneration dynamics revealed through cellular network 

modelling. The Journal of physiology, 593(2), 365-383. Experimental work featured in 

this chapter was performed predominantly by J.M. Correnti with some experiments 

performed by E. Aksamitiene and A. Swarup.  

4.1 Introduction 

The utility of models lies in their ability to describe the physical world. As a 

descriptor of a real process, one way to validate a model is to compare model 

predictions with results from real-world processes. In chapter 3, we describe delayed 

but accelerating regeneration kinetics in Adn-/- mice and the use of a computational 

model of liver regeneration to predict the dysregulation underlying these dynamics. 

Based on model simulations, we predict that the regeneration dynamics in Adn-/- mice 

are due to (1) decreased cytokine signals transduced by hepatocytes during the 

priming phase of regeneration and (2) increased growth factor bioavailability at later 

times post-PHx. This chapter describes our experimental efforts testing these 

predictions.  

Chapter 4 
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4.2 Materials and Methods 

4.2.1 Animals  

All animal studies were approved by the Institutional Animal Care and Use 

Committee (IACUC) at Thomas Jefferson University.  Jefferson’s IACUC is 

accredited by the Association for Assessment and Accreditation of Laboratory Animal 

Care and experiments were designed using the Guide for the Care and Use of 

Laboratory Animals. 

10-12 week old male Adn-/- mice (B6.129-Adipoqtm1Chan), bred from mice 

kindly donated by Dr. Lawrence Chan, or C57BL/6J mice (Jackson Laboratories, Bar 

Harbor, Me) underwent partial hepatectomy based on surgical methods outlined by 

Mitchell and Willenbring (Mitchell & Willenbring, 2008). Briefly, animals were 

anesthetized by inhalation of 5% isoflurane in an induction chamber and anesthetic 

plane was confirmed by toe pinch.  Anesthesia was maintained during surgery by 

continual inhalation of 2% isoflurane administered by nose cone. A midline incision 

was made followed by the sequential ligation and excision of the left-lateral and 

medial lobes of the liver. The abdominal cavity was rinsed with warm lactated 

Ringer’s solution, the abdominal muscle layer was sutured and the skin was closed 

with wound clips. Following surgery, animals were given subcutaneous lactated 

Ringer’s solution (1 mL/animal) and placed in a fresh cage under a heat lamp with ad 

libitum access to hydrogel (Contact ClearH20, Portland, Me) and food. At specified 

times after PHx, animals were anesthetized with isoflurane as described for partial 

hepatectomy (induction and maintenance).  While anesthetized, animals were weighed 

and sacrificed. The livers were either immediately (within 10 sec) freeze clamped 

using liquid nitrogen-cooled aluminum clamps as previously described (Crumm et al, 
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2008), preventing rapid post-mortem changes in cytokine or growth factor levels and 

protein phosphorylation, or the livers were fixed in 10 percent neutral buffered 

formalin (NBF) for assessment of BrdU labeling. For determination of liver to body 

weight ratios, the liver was dissected out and weighed prior to freeze clamping.  

Blood was collected from the tail vein of live animals and from the vena cava 

under anesthesia at sacrifice. Collected blood was incubated at room temperature for 

30 min, then centrifuged at 1500 rpm for 5 minutes. Serum was isolated and flash 

frozen for further analysis. In some cases, animals were given intraperitoneal 

injections of Bromodeoxyuridine (BrdU) solution (Sigma, St. Louis, Mo) (150 mg/kg) 

in sterile 0.9 percent saline two hours prior to sacrifice. For rosiglitazone treatment, 

animals were administered rosiglitazone (10 mg/kg, Cayman Chemical, Ann Arbor, 

MI) or vehicle (1:1 mixture of 1x phosphate buffered saline and polyethylene glycol, 

Sigma) by gavage twice daily beginning 2 days before surgery.  

4.2.2 Biochemical analysis 

For Western blotting, tissue lysates were generated by homogenizing frozen 

tissue in RIPA buffer (Sigma) supplemented with phosphatase and protease inhibitor 

cocktails (Sigma). Protein was normalized using BCA Protein Assay Reagent (Pierce 

Biotechnology, Rockford, IL). 20 µg of protein was loaded onto an SDS-PAGE gel 

and Western blotting for cell cycle markers and pSTAT3/STAT3 was performed as 

previously described (Crumm et al, 2008). Alternatively, for comparison of growth 

factor expression time-course, 50 µg of protein was resolved by LDS-PAGE, 

transferred onto nitrocellulose membrane using Multi-Strip Western blotting approach 

as described previously (Aksamitiene et al, 2007) and probed with mouse monoclonal 

antibodies against HGF (SBF5) (Thermo Fisher Scientific, Rockford, IL), FGF-2 (6) 
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(sc-136255, Santa Cruz Biotechnology, Dallas, TX), ANG I (C-1) (sc-74528, Santa 

Cruz Biot.), GAPDH (6C5) (EMD Millipore, Billerica, MA) or rabbit polyclonal 

antibodies against β-Actin (D6A8) (Cell Signaling, Danvers, MA). ELISA kits were 

used for measurement of adiponectin (B-Bridge International) and TNFα 

(eBioscience, San Diego, CA) according to manufacturer’s instructions.  Transcription 

factor binding activity was assessed from nuclear extracts prepared from frozen tissue 

using a nuclear extraction kit (Origene, Rockville, MD). NF-κB DNA binding activity 

in 100 µg of nuclear extract was measured using the NF-κB transcription factor assay 

kit (Cayman Chemical) according to manufacturer’s instructions. Some samples were 

sent to Raybiotech for analysis of cytokine and chemokine levels using Quantibody® 

Multiplex ELISA Array (Raybiotech, Norcross, GA).  

For RT-PCR analysis, RNA was extracted from frozen tissue using the RNeasy 

RNA extraction kit (Qiagen, Valencia, CA, USA). 2 µg of RNA was reverse 

transcribed with EasyScript Plus Reverse Transcriptase (Applied Biological Materials 

Inc.). cDNA was preamplified with TaqMan PreAmp Master Mix (Applied 

Biosystems, Foster City, CA, USA) and PCR reactions were performed using 

BioMark™ Dynamic Arrays (Fluidigm, South San Francisco, CA, USA). Primer 

sequences are shown in Table 4.1. CT values were calculated using Real-Time PCR 

Analysis software (Fluidigm) and normalized to the expression of housekeeping genes 

TBP and β2-microglobulin using the established -ΔΔCT method (Livak & Schmittgen, 

2001a). 

Data were compared using Student’s t-test on raw data (BrdU incorporation 

and liver-to-body weight ratios) or log-transformed data (molecular measurements). 



 87 

Paired statistics were used when appropriate. Data are presented as mean +/- standard 

error of the mean (SEM). 

Table 4.1 Primer sequences 

Primer Foreword Reverse 

SOCS3 
CTACGCATCCAGTGTGA

GGG 

TGAGTACACAGTCGAAG

CGG 

β2-Microglobulin 
GTCGCTTCAGTCGTCAGC

AT 

TTTCAATGTGAGGCGGGT

GG 

TBP 
CCCCTTGTACCCTTCACC

AAT 

GAAGCTGCGGTACAATT

CCAG 

 

4.3 Results 

4.3.1 Biochemical analysis revealed an altered balance of cytokine and growth 

factor profiles in Adn-/- mice, consistent with computational model 

predictions  

We analyzed biological correlates of the predicted control factors from the 

computational analysis. We focused on cytokine production and response during 

priming (0-6 hours post-PHx) and growth factor levels leading up to and during peak 

hepatocyte replication (6-42 hours post-PHx). We evaluated the changes in the 

inflammatory cytokines TNFα and IL-6 as well as several growth factors implicated in 

liver repair: hepatocyte growth factor (HGF), Angiogenin-1 (Ang-1), and fibroblast 

growth factor 2 (FGF-2 or bFGF). TNFα and IL-6 are the main inflammatory-type 

molecules identified as priming hepatocytes to enter the cell cycle. HGF is a potent 

mitogen and strongly contributes to hepatocyte entry into the cell cycle 

(Michalopoulos, 2007a;Taub, 2004a). Ang-1 contributes to regulation of angiogenesis 

in a variety of pathological conditions and has been shown to be involved in several 
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processes involved in liver recovery from hepatectomy, including wound healing and 

negative regulation of inflammation (Lee et al, 2014;Pan et al, 2012). In contrast to 

these two growth factors, FGF2 is not typically associated with liver repair, and 

genetic deletion does not impair regeneration post-PHx (Sturm et al, 2004). When 

FGF2 is deleted, however, VEGF increases post-PHx above that in WT mice, 

indicating that FGF2 may act synergistically with VEGF to maintain liver architecture, 

activate non-parenchymal cells, and induce hepatocyte replication. 

Levels of TNFα protein, a driver of priming following PHx, were measured in 

liver tissue lysates. TNFα levels declined 1 hour after PHx in Adn-/- mice (Figure 

4.1A). Both WT and Adn-/- mice showed reduced TNFα levels by 3 hours after PHx 

that remained reduced relative to baseline levels 6 hours after PHx (Figure 4.1A). No 

difference in liver TNFα levels was noted between WT and Adn-/- at 3 or 6 hours 

post-PHx (Figure 4.1A). Our data are consistent with membrane-bound TNFα present 

at baseline being cleaved and degraded following receptor activation. Serum IL-6 

levels were significantly elevated relative to baseline levels at 3 and 6 hours after PHx 

in both WT and Adn-/- mice, with the peak observed levels occurring 3 hours after 

PHx (Figure 4.1B). No significant differences in IL-6 levels were noted between WT 

and Adn-/- mice (Figure 4.1B).  
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Figure 4.1 Altered TNFα and IL-6 signaling and enhanced growth factor kinetics 

following PHx in the Adn-/- mice. (A) TNFα protein levels after PHx 

were measured in liver lysates by ELISA and normalized to total sample 

protein levels. (B) Serum IL-6 levels were analyzed by Quantibody® 

Multiplex ELISA Array.  Each point represents an individual animal and 

horizontal bars represent mean IL-6 levels at each time point. (C) NF-κB 

DNA binding activity in liver nuclear extracts. (D) Western blot of 

representative liver samples probed with antibodies specific for 

phosphor-STAT3 (Tyr 705), STAT3 protein and GAPDH. (E) 

Quantitation of pSTAT3 normalized to total STAT3 protein (n=3/group). 

(F) SOCS3 transcripts were assessed by RT-PCR and normalized to WT 

control transcript levels. (G) Quantitation of Western blots of liver 

lysates for ANG-1. (H) Quantitation of Western blots of liver lysates for 

FGF-2. (I) Quantitation of Western blots of liver lysates for HGFα. Data 

are presented as mean +/- SEM. *: p<0.05, ***: p<0.01 compared with 

control of respective genotype; #:p<0.05, ###: p<0.01 Adn -/- different 

from WT at same time point (n=3/group). 
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We assessed intracellular response to these cytokines by measuring NF-κB 

DNA binding and Tyrosine 705 phosphorylated STAT3 (pSTAT3), important 

mediators of TNFα and IL-6 action, respectively (Fausto et al, 2006). A significant 

increase in NF-κB DNA binding activity was observed 1 hour after PHx in both Adn-

/- and WT mice (Figure 4.1C), simultaneous with the observed reduction in tissue 

levels of TNFα protein (Figure 4.1A). NF-κB activity remained elevated at 3 and 6 

hours after PHx, with no significant differences in NF-κB DNA binding activity 

detected between WT and Adn-/- mice (Figure 4.1C). Although pSTAT3 levels at 

baseline were low in both genotypes, Adn-/- mice had significantly lower baseline 

pSTAT3 level than WT mice (Figure 4.1D and E). pSTAT3 levels increased relative 

to baseline levels in Adn-/- but not WT mice 1 hour after PHx (Figure 4.1D and E). 

Liver pSTAT3 was significantly elevated in WT mice relative to baseline at 3 and 6 

hours after PHx (Figure 4.1D and E), coinciding with elevated serum IL-6 levels 

(Figure 4.1B). Despite similar IL-6 levels in WT and Adn-/- mice at 3 and 6 hours 

after PHx (Figure 4.1B), pSTAT3 was significantly lower in Adn-/- mice than WT 

mice at these times (Figure 4.1D and E), possibly leading to reduced hepatocyte 

priming. 

To assess factors that could contribute to these reduced pSTAT3 levels, we 

analyzed transcript levels of SOCS-3, which codes for an inhibitor of STAT-3 

phosphorylation (Fausto et al, 2006). At 3 hours after PHx, SOCS-3 transcripts in 

Adn-/- mice were elevated four-fold over baseline levels and were significantly higher 

than in WT mice (Figure 4.1F), coincident with reduced pSTAT3in Adn-/- mice. To 

test the model prediction of higher growth factor signaling in Adn-/- mice, we 

measured levels of multiple growth factors known to influence liver regeneration: 
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Ang-1, FGF-2, and HGF. We observed a transient elevation in Ang-1 levels in WT 

mice at 6 h, however Adn-/- mice showed significantly elevated and persistent Ang-1 

levels at 24, 30 and 42 hours after PHx (Figure 4.1G). Adn-/- mice also showed FGF-2 

levels higher than WT mice at all times examined after PHx (Figure 4.1H). Expression 

of HGF proceeded similarly in WT and Adn-/- mice up to 24 hours post-PHx. The 

increase in HGF levels persisted in Adn-/- mice, however, at both 30 and 42 hours 

post-PHx (Figure 4.1I), suggesting a sustained HGF signal in Adn-/- mice. Thus, our 

results show decreased STAT3 phosphorylation during the priming phase coupled 

with sustained elevation in several growth factors, consistent with our model 

predictions of their putative contributions to the altered Adn-/- regeneration 

phenotype. Increased levels of SOCS-3 may contribute to decreased STAT3 

phosphorylation, which may induce lower hepatocyte priming. Additionally, elevated 

growth factors in Adn-/- mice coincident with accelerated cell cycle progression 

provide a potential mechanism underlying the observed acceleration of cell cycle 

progression in Adn-/- animals. 

4.3.2 Computational analysis predicts that overexpression of adiponectin 

disrupts the regeneration by dysregulating the cytokine and growth factor 

profiles 

We speculated that Adn-mediated fine-tuning of liver regeneration may be 

nonlinear, with increasing Adn levels leading to profoundly different effects than that 

of lowering Adn levels by the same degree. We explored this possibility using the 

computational model by simulating the putative effects of increased Adn levels during 

liver regeneration. We evaluated the effect of deviations to parameters in opposite 

direction to those required for matching the Adn-/- regeneration. This scenario 

approximated an increase of Adn to twice the normal physiological levels of serum 
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Adn prior to PHx. The resulting regeneration profile showed that increased Adn led to 

an initially accelerated regeneration (6-12 hours post-PHx) followed by a suppression 

of tissue mass recovery (Figure 4.2A).  

 

Figure 4.2 Modeling the regeneration dynamics corresponding to the rosiglitazone-

induced supraphysiological Adn phenotype. (A) The key controlling 

factors corresponding to the Adn-/- phenotype were altered in the 

opposite manner to simulate the effect of increase in Adn levels. 

Simulated profile for rosiglitazone-treated mice showed suppressed liver 

regeneration. Although rosiglitazone treatment initially caused a slight 

lead in liver recovery due to increased priming, ultimately reduced 

replication suppressed liver recovery from PHx. (B) These phenotypic 

changes were governed by sustained IL-6 signaling but decreased GF 

signaling throughout regeneration. 

The underlying molecular changes, however, were not merely the opposite of 

that of the Adn-/- scenario. Our simulation results revealed that increasing Adn levels 

will lead to a relatively minor decrease in IL-6 signaling and STAT-3 phosphorylation 

during the first 12 hours post-PHx, without significant effect on the hepatocyte 
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priming response during this time (Figure 4.2B). Increasing Adn levels also 

lengthened the priming response by sustaining IL-6 signaling and STAT-3 

phosphorylation post-PHx, detectable by 48 hours post-PHx. In spite of this increased 

priming response, our simulations predicted that GF levels will be decreased at all 

times post-PHx counteracting any potentially beneficial effects of increased priming 

and leading to deficient regeneration in mice with increased Adn levels. 

4.3.3 Rosiglitazone-induced super-physiological levels of adiponectin inhibited 

hepatocyte replication in WT but not Adn-/- mice 

We tested the model predictions on the effects of elevation of Adn on 

hepatocyte replication after PHx by pharmacologically increasing serum Adn levels in 

WT and Adn-/- mice. We utilized rosiglitazone, an anti-diabetic drug known to elevate 

serum Adn levels (Nawrocki et al, 2006;Tao et al, 2010). Animals were administered 

rosiglitazone (10mg/kg) or vehicle by gavage twice a day during the two days 

preceding PHx. Blood samples were taken before treatment and at harvest, and livers 

were assessed for BrdU incorporation and cyclin A expression at the peak of S phase, 

36 hours after PHx. Rosiglitazone treatment was associated with a 60 percent 

elevation in serum Adn in WT mice relative to controls both before surgery and at 

harvest (Figure 4.3A).  
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Figure 4.3 Effects of rosiglitazone treatment on hepatocyte replication after PHx in 

WT and Adn -/- mice. (A) Serum samples taken from tail blood of WT 

mice at various times were assessed for adiponectin by ELISA. (B) The 

percentage of BrdU positive hepatocytes was calculated from liver 

sections stained for BrdU and quantifying BrdU positive nuclei and total 

nuclei from 5 representative fields at 20x magnification (n=4/group). (C) 

Quantitation of Western blots for cyclin A (n=3/group). (D) Quantitation 

of Western blots for Cyclin D1 (n=3/group). (E) Western blot of 

representative liver samples probed with antibodies specific for FGF-2 

and β-Actin. (Lower) Quantification of Western blots for FGF-2 

(n=3/group). (F) Western blot of representative liver samples probed with 

antibodies specific for HGF-α and β-Actin. (Lower) Quantification of 

Western blots for HGF-α (n=3/group). Data are presented as mean +/- 

SEM.  ***P<0.01* P<0.05 significantly different from WT veh treated.  

### P<0.01 compared to vehicle treated Adn-/-. 

No serum Adn was detected in Adn-/- mice at any time, which is consistent 

with previous studies of rosiglitazone effects in Adn-/- mice (Tao et al, 2010). 
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Rosiglitazone treatment was associated with significant reductions in both BrdU 

incorporation (Figure 4.3B) and cyclin A protein levels (Figure 4.3C) 36 hours after 

PHx in WT mice compared to vehicle-treated controls. Adn-/- mice showed no 

differences relative to vehicle-treated controls (Figure 4.3C and D). Cyclin D1 protein 

levels were also reduced in rosiglitazone-treated WT mice relative Adn-/- mice 

(Figure 4.3D). 

We additionally investigated the effects of elevated Adn on growth factors at 

36 hours post-PHx. Consistent with the model-based predictions, rosiglitazone 

treatment decreased both FGF-2 and HGF levels in WT animals at 36 hours post-PHx 

(Figure 4.3E and F). Adn-/- animals, however, showed a more complex response with 

no change to FGF-2 levels but a marked decrease in HGF levels (Figure 4.3E and F). 

This indicates that in addition to stimulating Adn to decrease HGF levels, 

rosiglitazone may both indirectly (through Adn) and directly inhibit HGF production. 

This is in direct conflict with a recent study reporting that rosiglitazone induces HGF 

production in vitro in isolated lung fibroblasts (Bogatkevich et al, 2012). Other 

studies, however, have found that rosiglitazone treatment in vitro inhibits HGF 

production by patient-derived primary effusion lymphoma cells (Bhatt et al, 2010). 

Together with our data, these studies indicate potential cell or tissue-type specific 

effects of rosiglitazone treatment on HGF production. 

Our data show that rosiglitazone treatment elevates serum Adn levels in WT 

mice and, consistent with model-based predictions, inhibits PHx-induced GF 

bioavailability, cyclin A expression, and BrdU incorporation in WT mice. 

Rosiglitazone-treated Adn-/- mice, on the other hand, show no inhibition of cyclin A 

expression or BrdU incorportation but a differential GF response to PHx, with normal 
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levels FGF-2 and low levels of HGF (compared to untreated Adn-/- mice) at 36 hours 

post-PHx. These results suggest that elevated Adn inhibits hepatocyte proliferation 

through decreasing growth factor response to PHx but that rosiglitazone has one or 

more additional inhibitory effect on some growth factor levels that are independent of 

Adn. 

4.4 Discussion  

During hepatocyte priming, Adn-/- mice have similar serum IL-6 levels to WT 

mice; however, they have reduced pSTAT3, coupled with increased expression of the 

STAT3 inhibitor SOCS3. The computational model suggests that small deficiencies in 

IL-6 signaling transduction during the priming phase (modeled as ~2% decrease in IL-

6 levels) in Adn-/- mice may be responsible for larger decreases in downstream 

STAT3 phosphorylation (up to ~25% decrease, based on the model). Two clear 

implications arise from these results. The first implication is that subtle, unobservable 

changes in upstream signaling may cause large, significant changes downstream. 

Therefore, it is important to consider systems-level interactions when unraveling 

complex disease phenotypes. The second implication is that interventions with 

relatively small effect on targeted upstream regulators may be effective at 

renormalizing the altered regeneration phenotypes. 

Our data showing delayed onset of hepatocyte proliferation after PHx is 

consistent with previous reports involving Adn-/- mice (Ezaki et al, 2009;Shu et al, 

2009a). In addition, Shu et al. also observed reduced STAT3 activation coordinate 

with SOCS3 upregulation at 24 and 48 hours after PHx in Adn-/- mice relative to WT. 

However, STAT3 phosphorylation at these times is much lower than STAT3 
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phosphorylation at 3 and 6 hours after PHx (Aoyama et al, 2009), and the functional 

importance of the later phosphorylation remains unclear.   

Additionally, other signaling processes may contribute to the observed profile. 

Adn may also regulate changes in liver ceramide levels after hepatectomy (Correnti et 

al, 2014). TNFα is a potent activator of sphingomyelinase which hydrolyzes 

sphingomyelin to ceramide. Therefore, inflammatory signals early after PHx likely 

promote increases in cellular ceramide, which have been observed after PHx 

(Alessenko et al, 1999). We expect this effect to be enhanced in Adn-/- mice because 

of the absence of Adn receptor-dependent ceramidase activity (Holland et al, 2011). 

Increased ceramide levels have also recently been linked to elevated levels of the 

tyrosine phosphatase SHP-1 (Gopalan et al, 2013). Increased SHP-1, which can 

dephosphorylate STAT3, provides an additional potential mechanism for the 

abrogated STAT3 signaling observed in Adn-/- mice.  

While hepatocytes are in the replicating stage of regeneration, Adn-/- mice 

have sustained higher levels of growth factors that are known drivers of regeneration 

as well as growth factors not typically associated with regeneration. HGF is one of 

only a few potent mitogens which can induce hepatocyte proliferation without the 

benefit of cofactors (Court et al, 2002). It is produced predominantly in hepatic stellate 

cells, can be bound to the ECM, and is released from ECM matrix metalloproteases 

produced by non-parenchymal cells. HGF signals through the c-Met receptor in 

hepatoctyes to stimulate regeneration (Michalopoulos, 2007a;Taub, 2004a). The 

sustained increase in HGF suggests hepatocytes from Adn-/- mice receive a more 

sustained growth signal, which may both promote cell cycle entry and contribute to 

the accelerated cell cycle progression in Adn-/- mice. Ang-1 is one of the highest 
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expressed genes in activated hepatic stellate cells in vitro and contributes to 

vascularization in tissues (Jiang et al, 2006a;Pan et al, 2012). Higher Ang-1 levels 

likely correspond to increased tissue remodeling in Adn-/- mice to maintain liver 

architecture during later periods of enhanced regeneration. In contrast to these two 

growth factors, FGF2 has been shown to have little effect during liver regeneration in 

wild-type animals. It is therefore not surprising that FGF2 levels were not altered after 

PHx in WT mice. In contrast, Adn-/- mice expressed elevated FGF2 following PHx, 

suggesting that Adn negatively regulates the FGF2 response. Also, an earlier report of 

an increase in VEGF after PHx in mice carrying a genetic deletion of FGF2 suggests 

that FGF2 can act similarly to VEGF to regulate liver structure and non-parenchymal 

cell activity. By measuring these three growth factors, we were able to characterize 

classical growth factor signaling to hepatocytes, remodeling growth factor signaling 

influencing non-parenchymal cell activity, and compensatory or additional growth 

factor signaling (Sturm et al, 2004). The sustained bioavailability of these growth 

factors in Adn-/- mice suggests that cells producing these growth factors 

(predominantly hepatic stellate cells) may be constitutively activated or activated to an 

alternate phenotype following PHx in the absence of Adn (Friedman, 2008a;Jiang et 

al, 2006a).  

A recent study suggests that Adn may inhibit hepatic stellate cell activation 

and induce apoptosis by binding to AdipoR1 and AdipoR2, inducing activation of 

PPAR-α (Ding et al, 2005). It is possible that the absence of Adn removes this 

inhibition on stellate cell activation thus enabling stellate cell-produced factors to 

persist longer in the liver, including the growth factors FGF-2, Ang-1, and HGF. The 

altered dynamics of growth factor signaling during the first 20 hours post-PHx, 



 99 

however, indicates that the modulatory effect of Adn on stellate cells is more complex 

than a simple activation/deactivation relationship.  

Adn has also been shown to directly inhibit growth factor-mediated 

proliferation in part through direct binding of growth factors and inhibiting their 

association with their cognate receptors (Fayad et al, 2007;Wang et al, 2005). We 

observed significant decreases in serum Adn during the onset of S phase in WT mice, 

30h post-PHx. While these decreases were modest, because serum Adn levels are 

tightly regulated, small decreases in Adn may have larger effects on sequestering GFs 

(Nawrocki et al, 2006). Although GFs were higher in Adn-/- mice, we noted no 

differences in cyclin D1 expression between genotypes at this time, suggesting the 

effect of elevated Adn is to block hepatocyte cell cycle after G1, potentially at the 

G1/S transition. We have investigated intracellular pathways classically activated by 

growth factors (ERK, JNK, Akt) but have found no differential regulation between 

WT and Adn-/- mice. 

Rosiglitazone also modulates liver regeneration, likely in part through raising 

serum adiponectin. Rosiglitazone-treated mice show higher levels of serum 

adiponectin and opposite changes in the progression of regeneration to that observed 

in Adn-/- mice. Rosiglitazone-treated mice have lower growth factor levels and lower 

regeneration markers than WT mice. Our data show that deficient regeneration is 

associated with a significant elevation of serum adiponectin in WT mice and is 

abrogated in the Adn-/- mice, suggesting that adiponectin is required for this effect. 

This is also consistent with a growing body of literature demonstrating that 

adiponectin is required for the full beneficial effects of rosiglitazone treatment in 

diabetic patients (Combs et al, 2002;Hoo et al, 2007;Nawrocki et al, 2006;Tao et al, 
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2010). Rosiglitazone, however, may have an additional inhibitory effect on HGF 

production that is independent of Adn.  

These results have further implications the systemic effects of rosiglitazone 

(and possibly other drugs of the glitazone class that act through increasing Adn 

levels). Rosiglitazone, which likely has tissue-specific effects, does not specifically 

target the liver. Previous studies have shown that rosiglitazone treatment increases risk 

of myocardial infarction and subsequent death from cardiovascular causes in humans 

(Nissen & Wolski, 2007), decreases the extent of lung injury in animals (Honiden & 

Gong, 2009), and may be protective in cancer (Monami et al, 2008), in addition to 

blunting liver repair as we have shown in the present study and has been shown 

previously (Turmelle et al, 2006). Additionally, our study suggests that Adn is 

required for the suppressive effect of rosiglitazone on liver regeneration. It is possible 

that the sustained inflammatory response to injury and reduced GF response that we 

observed may parallel the effect of rosiglitazone on other tissues as well, which may 

also be mediated by Adn.  

Our integrated experimental and computational modeling demonstrates that 

Adn regulates liver regeneration through modulating multiple opposing hepatocyte 

signaling inputs from non-parenchymal cells governing the rate of progression through 

the cell cycle, cytokine signaling, and growth factor bioavailability. Adn likely fine-

tunes the dynamics of regeneration by enhancing onset of hepatocyte proliferation 

during the priming phase by increasing STAT3 phosphorylation but suppressing 

overall liver regeneration through sequestration of GFs and decreasing GF persistence 

in the liver. 
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AN UNBIASED COMPARISON OF MOLECULAR REGULATION OF 

PRIMING IN ADN-/- MICE AND CONTROLS 

All experimental work featured in this chapter was performed by J.M. 

Correnti. 

5.1 Introduction 

As discussed in chapter 1, liver regeneration following surgical resection can 

be used to treat several liver diseases (hepatocellular carcinoma, metastatic cancer, etc. 

(Doci et al, 1991;Ringe et al, 1991)), as well as to facilitate a live donor transplant, 

which normally stimulates regeneration of the remnant liver in the donor and the 

transplanted liver in the recipient (Tanemura et al, 2012). Although liver regeneration 

is tightly coordinated in healthy animals and plays an important role treating liver 

diseases in patients, many chronic diseases also impair regeneration. Unfortunately, 

these regeneration-impairing diseases are common comorbidities associated with 

hepatocellular carcinoma and other diseases treatable by resection (Montalto et al, 

2002).  

One chronic disease associated with a worse resection outcome is fatty liver. A 

high fat diet (and subsequent fatty liver) leads to significant changes in transriptome-

wide gene expression levels during regeneration in rats (Kuttippurathu et al, 2016). 

Through these changes, a fatty liver can reduce greatly the liver’s regenerative 

potential (DeAngelis et al, 2005). Surgeons, therefore, tend to abstain from 

transplanting livers with a significant degree of fat accumulation (McCormack et al, 

 



 102 

2011). The development of a fatty liver (especially non-alcoholic fatty liver) is 

associated with obesity, which is in turn associated with the balance between two 

adipokines linked to appetite: Adiponectin (Adn) and Leptin (Lep) (Fabbrini et al, 

2010;Ryan et al, 2003). Adn stimulates appetite in the brain, whereas Lep suppresses 

appetite (Kubota et al, 2007;Minokoshi et al, 2004). This acute effect of Adn and Lep 

appears to reverse in obesity, which is associated with low Adn levels in the serum 

and high serum Lep levels (Ryan et al, 2003). On the other hand, deleting Lep in mice 

(so called ob/ob mice) results in obesity, likely due to the loss of appetite control by 

Lep (Lindstrom, 2007). Low Adn and high Lep levels in obesity, therefore, likely 

indicate a failure of the appetite control system rather than a reversal of the roles of 

Adn and Lep. 

In addition to contributing to appetite and obesity, the balance of Adn and Lep 

affects systemic inflammation and function of multiple organs. In macrophages, Adn 

has been shown to suppress synthesis of the pro-inflammatory cytokines TNF-α and 

IFN-γ and to stimulate synthesis of the anti-inflammatory cytokine IL-10 (Tilg & 

Moschen, 2006). Lep, on the other hand, induces pro-inflammatory cytokine 

production by macrophages, including IL-6 and TNF- α. Lep has also been shown to 

modulate the adaptive immune response in mice by influencing proliferation rates of 

multiple types of T cells (Tilg & Moschen, 2006). Adn has been shown to be directly 

cardioprotective when administered prior to ischemia-reperfusion injury in the heart 

(Shibata et al, 2005). Similarly, Lep administered after ischemia-reperfusion injury in 

the heart is also cardioprotective (Smith et al, 2006). The liver is also affected by Adn 

and Lep. High serum levels of Adn are associated with a low incidence of fatty liver, 

and delivery of Adn to mice with fatty liver causes reduced hepatomegaly and 
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steatosis (Musso et al, 2005;Xu et al, 2003). Lep, meanwhile, has the capacity to 

activate hepatic stellate cells to produce extracellular matrix and can promote fibrosis 

(Saxena et al, 2002). 

In chapters 3 and 4, we identify an important role for Adn in fine-tuning liver 

regeneration dynamics in response to liver resection using a combination of 

computational modeling and experimental investigation. We find that Adn-/- mice 

exhibit deficiencies in priming and a delayed onset of liver regeneration in response to 

liver resection (Correnti et al, 2015). Chapter 4 presents a targeted approach for 

investigating these deficient priming signals, measuring protein levels and mRNA 

levels involved in the IL6 signaling cascade through the JAK-STAT pathway, 

including the inhibitor SOCS3. We find that Adn-/- mice during the priming phase of 

regeneration have low levels of IL6 signaling in the serum, similar levels of SOCS3 

transcript, and deficient STAT3 phosphorylation. We determine that this combination 

is sufficient to delay regeneration using our computational model-based approach. 

This delayed regeneration is renormalized at later times post-PHx due to enhanced 

growth factor signaling in Adn-/- mice (Correnti et al, 2015). Although our targeted 

approach to investigate molecular regulation of regeneration is useful, changes in 

cytokine, chemokine, and growth factor signaling are likely coordinated across many 

molecules due to changes in cell activation phenotype (for example M1 vs. M2 

activated Kupffer cells). In this chapter, we take an unbiased approach to understand 

how the molecular regulation of priming differs in these two mouse genotypes through 

simultaneous measurement of a panel of cytokines, chemokines, and growth factors 

during the priming phase.  
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5.2 Materials and Methods 

5.2.1 Animals  

All animal studies were approved by the Institutional Animal Care and Use 

Committee (IACUC) at Thomas Jefferson University.  Jefferson’s IACUC is 

accredited by the Association for Assessment and Accreditation of Laboratory Animal 

Care and experiments were designed using the Guide for the Care and Use of 

Laboratory Animals. 

PHx was carried out on Adn-/- and control mice as described in previous 

chapters (Chapter 3) and shown schematically (Figure 5.1A). 

5.2.2 Biochemical analysis 

Tissue lysates were generated by homogenizing frozen tissue in RIPA buffer 

(Sigma) supplemented with phosphatase and protease inhibitor cocktails (Sigma). 

Protein was normalized using BCA Protein Assay Reagent (Pierce Biotechnology, 

Rockford, IL). Samples were then sent to Raybiotech for analysis of cytokine and 

chemokine levels using Quantibody® Multiplex ELISA Array (Raybiotech, Norcross, 

GA).  

5.2.3 Data normalization and batch correction 

Tissue and serum samples were measured on multiple arrays in two batches. 

These batches were measured on two separate days and contained multiple 

overlapping samples. Data from each array was normalized using the standard curve 

provided by Raybiotech along with every array measured. We analyzed the data from 

overlapping samples measured in both batches, and found a significant batch effect. 

We therefore calculated the mean expression value of all proteins measured in all the 
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overlapping samples for each batch (giving a batch correction value for each batch) 

and subtracted this value from all expression values in each batch. The batch 

correction shifted the expression values for all samples, making the absolute 

expressions less useful. Therefore, protein expression values were converted to fold-

change above wild-type baseline levels.  

5.2.4 Multivariate data analysis 

One-factor ANOVA (factor = time) with Tukey post-hoc testing was 

performed on log-transformed expression data to identify proteins with dynamic 

expression changes in either wild-type or Adn-/- mice. Traditionally, analysis of this 

type of data would be performed using a two-factor ANOVA (factors = time, 

genotype), and the results would be analyzed to find proteins whose expression was 

dependent on time, genotype, or a combination of both. We chose instead to use an 

approach considering the expression modes of proteins in each mouse genotype. Our 

approach organizes protein expression into distinct modes, then compares how 

proteins are regulated differently or similarly across genotypes based on these 

expression modes.  

5.2.5 Correlation network analysis 

Correlation networks were calculated for Adn-/- and wild-type mice using 

Pearson correlation on a per-animal basis, according to the following equation. 

Correlations were calculated separately for protein interactions in the tissue and 

protein interactions in the serum. 

𝜌𝑋𝑌 =
𝑐𝑜𝑣(𝑋,𝑌)

𝜎𝑋𝜎𝑌
    (5.1) 
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Where ρXY is the correlation between two random variables X and Y, cov(X,Y) 

is the covariance between these two variables, and σi is the standard deviation of the 

variable i = X or Y.  

Additionally, pairwise correlation between pairs of proteins was calculated 

using the newly developed segmentation method for comparison of pseudo-time series 

data. For more information about the segmentation method, see Appendix B.  

5.3 Results 

5.3.1 Adn-/- mice dynamically regulate protein levels differently following 

resection than wild-type controls  

We measured the levels of 80 cytokines, chemokines, and growth factors in the 

tissue and serum of Adn-/- mice and controls prior to liver resection and at 1hr, 3hrs, 

and 6hrs post-PHx. We find that Adn-/- mice and controls dynamically regulate 

approximately the same number of proteins post-PHx, but that only about half of these 

proteins are in common between the two genotypes (Figure 5.1B). This is true in both 

serum and tissue samples. We were interested to see that there are no proteins 

measured in wild-type mice that show dynamic expression changes in both the serum 

and tissue. Adn-/- mice, similarly, show only two proteins that have dynamic 

expression changes in the serum and tissue post-PHx. These results suggest that there 

may be a core priming response to resection in both genotypes and a genotype-specific 

contribution to priming that fine-tunes regeneration dynamics. 
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Figure 5.1 Effects of adiponectin knockout on protein expression following 70% PHx. 

(A) Experimental design. Wild-type and Adn-/- mice were subjected to 

70% PHx and samples were taken throughout the priming phase. (B) 

Proteins measured in serum and tissue that show statistically discernable 

dynamic changes. (C) Differences in protein expression in the serum of 

wild-type and Adn-/- mice prior to PHx. Adn-/- mice expressed proteins 

(1) below the limit of detection, (2) at lower levels than wild-type mice, 

or (3) at higher levels than wild-type mice. 
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5.3.2 Adn knockout preconditions tissue microenvironment 

5.3.2.1 Proteins highly down-regulated in Adn-/- mice may inhibit liver 

responsiveness to PHx 

We find several proteins that are expressed in the serum of control animals, but 

are below the limit of detection in Adn-/- mice (Figure 5.1C, mode 1). Most of the 

proteins expressed below the limit of detection in Adn-/- mice relate to recruitment of 

non-resident cells to the liver (the notable exceptions are AR and FASLG). CSF3 

(formerly GCSF) stimulates hematopoiesis thereby increasing the number of white 

blood cells and growth and differentiation of neutrophils (Kindt et al, 2007). Within 

the liver tissue, CSF3 has been shown to stimulate MMP9 production in hepatic 

stellate cells (Jiao et al, 2009). Therefore, CSF3 likely has a dual role in maintaining 

liver function: maintaining a population of neutrophils in the liver and promoting 

homeostatic matrix remodeling through mmp9 degradation of collagens. Similarly 

aiding in matrix remodeling, KITLG (formerly SCF) functions in the recruitment of 

mast cells, which have been shown to promote collagen deposition (Franceschini et al, 

2006). As an extreme example of this collagen deposition, researchers have shown 

that KITLG overexpression contributes to fibrosis development, presumably through 

activation of resident hepatic stellate cells either directly or through mast cell 

recruitment and activation (Friedman, 2008c). Another protein involved in recruitment 

Interleukin-21 (IL21) enhances proliferation of and IFNG production by T cells and 

NK cells (Kindt et al, 2007). IFNG has been shown to inhibit hepatic stellate cell 

activation and promote Kupffer cell activation, potentially aiding in priming following 

liver resection (Paschos et al, 2010). Taken together, these protein deficiencies in Adn-

/- mice suggest a homeostatic condition deficient in inflammatory cell recruitment that 

could be responsible for blunted priming in response to tissue damage. 
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Two recruitment proteins deficient in Adn-/- mice merit special mention: 

ICAM1 and TPO. ICAM1 is deficient in Adn-/- mice and involved in the recruitment 

of monocytes (Galkina & Ley, 2007). This has important implications for liver 

regeneration because research has shown that monocytes are recruited heavily 

following an acute carbon tetrachloride liver damage leading to a modified immune 

environment in the liver, which could influence regeneration dynamics (Cook et al, 

2015;Karlmark et al, 2009). If such monocyte recruitment also occurs following 

resection, a homeostatic deficiency in ICAM1 could lead to a decreased population of 

recruited monocytes following resection and could help explain the deficient priming 

seen in this strain of Adn-/- mice (Correnti et al, 2015). Another protein important to 

wound healing and deficient in Adn-/- mice, thrombopoietin (TPO), stimulates platelet 

production leading to blood clotting and can aid in wound repair (Anitua et al, 

2004;Tsai et al, 2016). In the field of liver regeneration, high preoperative levels of 

TPO are associated with an enhanced liver mass recovery in mice at 48 hours post-

PHx (Murata et al, 2008). This effect could be caused in part through enhanced PDGF 

production by platelets and subsequently enhanced bioavailability to non-parenchymal 

cells. Other studies have found that pretreatment with TPO speeds liver recovery in 

rats through enhanced levels of HGF, likely through platelet to non-parenchymal cell 

interactions (Shimabukuro et al, 2009). Thus TPO deficiency could have detrimental 

effects on liver wound healing, non-parenchymal cell behavior post-PHx, and 

regeneration dynamics. 

Other proteins deficient in Adn-/- mice include adrenergic receptor alpha (AR) 

and Fas ligand (FASLG). AR allows for norepinephrine signaling in the liver. 

Blockading AR prior to resection delays the peak of hepatocyte replication from 24 
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hours to 72 hours post-PHx. Additionally, hepatocytes are highly sensitive to the 

TGFB-inhibiting effects of norepinephrine at 12-16 hours post-PHx, indicating that 

AR production in the priming phase may be the event that predisposes hepatocytes to 

norepinephrine sensitivity (Michalopoulos, 1990). A lack of AR in the homeostatic 

liver could negatively affect hepatocyte priming post-PHx. In contrast to the other 

proteins deficient in Adn-/- mice during homeostasis, FASLG deficiency seems like it 

would be beneficial to liver regeneration. FASLG promotes cell death through 

apoptosis; therefore, lower levels of FASLG should lead a lower rate of apoptosis in 

Adn-/- mice livers. This potential decrease in apoptosis could be one reason why Adn-

/- have been shown to have a higher propensity to develop liver cancer (Kamada et al, 

2007;Sun & Lodish, 2010). Although within tumors derived from introducing either 

B16F10 melanoma cells or Lewis Lung Carcinoma cells, there appears to be no 

difference in apoptosis amount in Adn-/- mice (Sun & Lodish, 2010). 

5.3.2.2 Proteins down-regulated in Adn-/- mice may cause impaired neutrophil 

and NKT cell recruitment 

We also find proteins that are expressed in Adn-/- mice, but at consistently 

lower levels than controls (Figure 5.1C, mode 2). Similar to the proteins deficient in 

Adn-/- mice, several of the proteins down-regulated in Adn-/- mice are related to cell 

recruitment. CCL2 (formerly MCP1) can be produced by Kupffer cells and acts to 

recruit monocytes (Deshmane et al, 2009). Another chemoattractant protein down 

regulated in Adn-/- mice is CXCL16. This protein signals to recruit and enhance 

adhesion of CD8+ T cells and NK cells (Sahin et al, 2010). E-selectin (SELE) is also 

down-regulated in Adn-/- mice. SELE has been shown to recruit neurophils in chronic 

plus binge drinking and may contribute to pro-inflammatory cytokine expression in 
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response to resection (Bertola et al, 2013). The relationship between ADN and SELE, 

however, is not clear currently. Pioglitizone, which works by increasing ADN levels, 

inhibits the expression of SELE in vascular endothelial cells in response to TNFA 

(Nawa et al, 2000). Therefore, we would expect that removing ADN would lead to an 

increase in SELE. More research into the relationship between ADN and SELE is 

required to fully flush out their relationship. 

Prolactin (PRL) is also down-regulated in Adn-/- mice and is unique among 

the proteins measured because it is not produced in the liver. Instead it is produced by 

other tissues, such as the pituitary glands (Simon-Holtorf et al, 2006). PRL is one of 

only a few identified direct hepatocyte mitogens. It acts to activate JAK2 leading to 

STAT5 production, inducing hepatocyte proliferation and increasing hepatocyte DNA 

replication rate in already replicating hepatocytes (Olazabal et al, 2009). Although it 

has been shown to enhance hepatocyte replication, there are several inconsistencies 

that make its role in liver regeneration unclear. It has been shown to suppress cytokine 

signaling in Kupffer cells, which could inhibit hepatocyte priming (Zhu et al, 1996). 

Additionally, post-PHx PRL has been shown to activate STAT3 but not STAT5, 

calling into question the pathways through which its mitogenic effects operate during 

recovery from PHx (Olazabal et al, 2009).  

5.3.2.3 Proteins up-regulated in Adn-/- mice may modify non-parenchymal cell 

state balances 

We find three proteins that are expressed at higher levels in Adn-/- mice than 

in controls in the homeostatic liver: interleukin 12b (IL12B, formerly IL12P40), 

chemokine ligand 22 (CCL22, formerly MDC), and leptin (LEP) (Figure 5.1C, mode 

3). It is possible that the high expression levels of IL12B and CCL22 are 



 112 

compensatory mechanisms to counteract the low expression levels of IL21 and 

CXCL16. Similar to IL21, IL12B induces IFNG production by T and NK cells (Kindt 

et al, 2007). IL21 is produced predominantly by B cells and CD4+ T cells, while 

IL12B has been shown to be produced in B cells, monocytes, macrophages, and 

neutrophils (Yeo et al, 2011). This difference in cellular production may be a result of 

Adn-/- mice having a lower number of infiltrated immune cells. Similar to CXCL16, 

CCL22 is chemotactic for dendritic cells and NK cells (Sahin et al, 2010). CCL22 

overexpression may be responding to a lack of NK cell infiltration coupled with a low 

expression of CXCL16 to enhance NK cell recruitment. As a result of this alternate 

recruitment, the baseline immune cell composition of the liver may be different in 

Adn-/- mice than in wild-type mice. Also, CCL22 has been shown to have some anti-

inflammatory effects, suggesting that, in addition to having an altered immune cell 

composition, the baseline immune environment of the Adn-/- liver is in a state less 

ready for priming in response to liver resection. 

The altered LEP levels in Adn-/- mice may be due to altered regulation in 

adipocytes. Adipocytes are the primary producers of LEP (although it can also be 

produced by hepatic stellate cells in the liver) (Oh et al, 2007). LEP has been shown to 

help regulate body weight, modulate immune response, and influence the 

neuroendocrine response to fasting in human patients (Mantzoros et al, 2011). LEP is 

especially interesting to us because ADN and LEP have been shown to be inversely 

related in several diseases affecting liver function (Tsochatzis et al, 2006). In the liver, 

LEP stimulates STAT3 in hepatic stellate cells, activates hepatic stellate cells, and 

induces hepatic stellate cell production of alpha (I) collagen (Saxena et al, 2002). The 

baseline increase in LEP may therefore predispose Adn-/- livers to have baseline 
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increased hepatic stellate cell activation, localized extracellular matrix increased 

stiffness, and a predisposition to develop fibrosis. This increased LEP level due to 

adiponectin knockout may contribute to fibrosis development in multiple organs in 

Adn-/- mice, including liver, kidney, and heart (Fujita et al, 2008;Kamada et al, 

2003;Ohashi et al, 2007).  

Other proteins followed similar expression trends in the homeostatic livers of 

Adn-/- and wild-type mice (either up-regulated or down-regulated following 

adiponectin knockout), but none of the other protein differences were statistically 

discernable (p-value < 0.05) (Figure 5.2). 
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Figure 5.2 Proteins with trends towards differences in baseline expression between 

wild-type and Adn-/- mice. Not all of the differences in these protein 

levels are statistically discernable. All non-corrected p-values <= 0.30. 

5.3.2.4 Protein variability in the homeostatic liver suggests constrained and 

deregulated control in Adn-/- mice 

We measured protein levels in 3 Adn-/- mice and 4 controls prior to resection. 

Three proteins show statistically discernable differences in expression variability 
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between genotypes: CXCL9 (formerly MIG), IGF1, and TNFRSF1B (formerly 

TNFR2) (Figure 5.3).  

 

Figure 5.3 Proteins that may have different variances at baseline between genotypes. 

CXCL9 appears to be more tightly regulated in WT mice, while IGF1 

and TNFRSF1B appear to be more tightly regulated in Adn-/- mice. P-

values are indicated as uncorrected/corrected by the Bonferroni method. 

No discernable differences in variance between genotypes were found 

after p-value correction. 

Of these, CXCL9 has higher variability in Adn-/- mice, while IGF1 and 

TNFRSF1B have higher variability in wild-type mice. Low variability in protein 

expression may indicate a strong regulatory constraint on protein production. None of 

the differences between Adn-/- and wild-type mice, however, are statistically 

discernable (p-value < 0.05) following correction for multiple tests. 

5.3.3 Protein level responses following PHx are constrained into dynamic 

expression modes 

We used hierarchical cluster to organize the expression levels of proteins in the 

liver post-PHx indo dynamic expression modes. Although many modes of expression 
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are possible, each protein measured in this study followed one of only six dynamic 

modes (Figure 5.4).  

 

Figure 5.4 Modes of response for proteins following 70% partial hepatectomy. Other 

modes are possible, but the proteins measured in this study all follow 

these expression modes. 

Most of the differentially expressed proteins in wild-type mice following 

resection behave consistent with Mode 1 (Rising), increasing throughout the priming 

phase (Figure 5.5). A smaller number behave consistent with Modes 2 and 3 (Rising 

or Falling with a peak). Only one protein, VEGF, behaves consistent with Mode 4 

(Falling), decreasing throughout the priming phase.  
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Figure 5.5 Heatmap showing WT serum response to resection organized into modes of 

expression. 

More proteins show similar expression trends, but not all are statistically 

discernable (Figure 5.6). 
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Figure 5.6 Heatmap showing WT serum responses organized into modes including all 

proteins measured. Proteins are grouped within an expression mode if the 

ANOVA p-value was <= 0.30. 

 

5.3.3.1 Mode 1: Rising 

The proteins that increase steadily during the priming phase post-PHx are 

related to two main functions: inflammation and immune cell recruitment (Figure 5.5, 

Mode 1). Among the pro-inflammatory proteins increasing during the priming phase is 

interleukin 6 (IL6). IL6 is perhaps the most studied cytokine in liver regeneration. It 

has been shown to be important for liver regeneration dynamics and overall recovery 

(Fausto et al, 2006). IL6 is thought to be produced primarily by Kupffer cells in the 
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liver post-PHx and primes hepatocytes to respond to growth factors by entering the 

cell cycle (Malik et al, 2002). It may also co-ordinate the behavior of other non-

parenchymal cells during regeneration (See chapter 7). Several other interleukins (ILs) 

increase through the priming phase. IL23A has been shown to induce production of 

TNFA in Kupffer cells and to differentiate T cells to a state conducive to IL6 and 

TNFA production (Husted et al, 2006;Langrish et al, 2005). IL2RA is induced by 

IFNG and is the receptor for IL2, which has been shown to stimulate growth and 

differentiation of T cells, B cells, and NK cells (Kindt et al, 2007;Kmieć, 2001). 

IL12B has been shown to be produced by macrophages (and other cell types) and to 

induce IFNG production by T and NK cells (Kmieć, 2001). IL5, on the other hand, is 

antagonistic to IFNG (Reiman et al, 2006).  

Several of the cytokines measured are related to development of fibrosis, likely 

through sustained inflammation. In addition to its other functions, IL5 may recruit 

eosinophils to the liver, potentially contributing to the development of fibrosis 

(Reiman et al, 2006). Similarly, CXCL1 (formerly KC) is a pro-inflammatory 

cytokine that has been shown to activate hepatic stellate cells and may contribute to 

fibrosis (Stefanovic et al, 2005). AXL is the receptor for GAS6 and induces 

macrophage inflammation and recruitment, eventually leading to fibrosis (Fourcot et 

al, 2011).  

Proteins increasing during the priming phase also include proteins related to 

chemotaxis and attraction of circulating immune cells to the liver. CCL22 (formerly 

MDC) is chemotactic for dendritic and NK cells, MIP3A may be attractant to 

lymphocytes and may be involved in T-cell trafficking into the liver, and TARC is 

chemoattractant for monocytes, dendritic cells, B cells, and NK cells (Sahin et al, 
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2012). Taken together, this increase in proteins related to chemoattraction indicates 

that attracting circulating immune cells to the liver may be an important early step in 

liver regeneration.  

Another protein that increases throughout the priming phase is TNFRSF8 

(formerly CD30T). TNFRSF8 modifies immune responses but its exact function 

remains unclear (Fabrega et al, 2007). It has been shown that TNFRSF8 increases in 

patients prior to transplant rejection (including liver transplant rejection) and it is high 

in conditions associated with sustained liver inflammation, such as alcoholic liver 

disease (De Lazzari et al, 2002). What affect this has on priming the liver for 

regeneration, however, is unclear. 

5.3.3.2 Mode 2: Rising with a peak 

The levels of several proteins increase early post-PHx but then either level off 

or decrease to an intermediate level by the end of the priming phase (Figure 5.5, Mode 

2). Among these are proteins that have been shown to induce hepatic stellate cell 

activation: LEP and CCL2. Also among these proteins are IL20, a promoter of 

angiogenesis, and CXCL9, an inhibitor of angiogenesis (Hsieh et al, 2006;Sahin et al, 

2012). These proteins may be segregated spatially in the liver to promote angiogenesis 

only where it is required during regeneration. 

5.3.3.3 Mode 3: Falling with a peak 

We are interested to see that expression levels of CCL12 (formerly MCP5) fall 

during the priming phase, especially during the early hours post-PHx (Figure 5.5, 

Mode 3). CCL12 is involved in monocyte recruitment (Simpson et al, 2003). This 

decrease is in contrast to other monocyte recruiting proteins increasing throughout 
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priming (e.g. CCL17, formerly called TARC). Additionally, a pair of proteins related 

to MMP9 production by hepatic stellate cells fall early post-PHx before recovering 

somewhat. CSF3 (formerly GCSF) is most well-known for stimulating hematopoiesis 

and growth and differentiation of neutrophils (Kindt et al, 2007). It also functions in 

collaboration with HGF to stimulate MMP9 production in hepatic stellate cells, 

leading to matrix remodeling (Jiao et al, 2009). In contrast, IL1RAP (formerly IL1RA) 

has been shown to block MMP9 production in activated hepatic stellate cells (Lee et 

al, 2003). Taken together, these protein dynamics suggest that MMP9 production by 

hepatic stellate cells may be inhibited during the priming phase of regeneration. This 

is consistent with serum and tissue measures of MMP9 in wild-type mice, which show 

a trend towards decreasing levels during the priming phase, especially at 3hrs post-

PHx; none of these MMP9 dynamics, however, are statistically discernable meaning 

that more studies are necessary to determine if there is an actual effect. Furthermore, 

alternate MMPs could compensate for any decreased matrix remodeling activity 

caused by decreases in MMP9. 

5.3.3.4 Mode 4: Falling 

VEGF levels decrease throughout the priming phase of regeneration (Figure 

5.5, Mode 4). VEGF has been shown to be a potent inducer of angiogenesis 

(Corpechot et al, 2002). Therefore, this decrease suggests that angiogenesis does not 

occur during the priming phase. It is possible that the increase in blood volume 

traveling through the remnant liver induces the decrease in VEGF levels because there 

is an increased delivery of nutrients and oxygen and therefore no need for increased 

angiogenesis. As the liver begins to grow, VEGF will likely be induced at the leading 

edge of the tissue.  
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5.3.4 Proteins in liver tissue following PHx show dynamic expression changes in 

wild-type mice 

5.3.4.1 Proteins with similar expression dynamics in serum and tissue post-PHx 

in wild-type mice 

Upon inspection, many of the proteins measured showed similar dynamics in 

both serum and tissue; however, there are no proteins for which these dynamics are 

statistically discernable in both the tissue and serum. Therefore, this section will focus 

on proteins that showed statistically discernable dynamics in the tissue of wild-type 

mice post-PHx. 
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5.3.4.1.1 Mode 3: Falling with a peak 
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Figure 5.7 Several of the proteins measured in wild-type mice showed similar 

expression trends in animal tissue and serum. This similarity indicates 

that the liver is the main producer of these proteins following resection 

and transport into the tissue is relatively fast. 

Two proteins measured in this study show behavior consistent with mode 3: 

TNFRSF1A (formerly TNFR1) and VCAM1 (Figure 5.7). TNFRSF1A is the main 

receptor for TNFA, and transduces the pro-inflammatory TNFA signal leading to 

STAT3 and NFKB activation (Kmieć, 2001). It has been implicated in Kupffer cell 

activation, hepatic stellate cell activation, and hepatocyte priming (Fausto et al, 

2006;Tarrats et al, 2011). We expected TNFRSF1A levels to increase post-PHx in the 

tissue, especially at 1hr post-PHx, because 1hr post-PHx is the peak of TNFA levels in 

the tissue. TNFRSF1A decreasing post-PHx indicates that following traumatic 

damage, TNFA signaling may proceed through an alternate pathway. Alternatively, 

TNFRSF1A levels decreasing could indicate an increase in TNFRSF1A bound to 

TNFA and signaling actively, meaning that lower protein levels could indicate a 

higher biological activity at a given time. Levels of TNFRSF1A appear to return to 

baseline levels by the end of the priming phase. The same general trend is seen for 

TNFRSF1A in the serum, but the dynamics are not statistically discernable. VCAM1 

is also important for pro-inflammatory response as a recruiter of monocytes (Kindt et 

al, 2007). Its decrease during the priming phase, especially at 1hr post-PHx, indicates 

that during the priming phase monocyte recruitment to the liver could be reduced or 

there could be other compensating recruitment proteins whose levels increase. There 

are no discernable dynamics for VCAM1 in the serum, but two animals did express 

low levels of VCAM1 in the serum at 1hr post-PHx.  
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5.3.4.1.2 Mode 5: Cyclic 

SPP1 (formerly OPN) levels decrease in the tissue at 1hr post-PHx, increase 

back to baseline at 3hrs post-PHx, and again decrease by 6hrs post-PHx (Figure 5.7). 

A suggestion of this cyclic behavior can be seen in the serum levels of SPP1, but these 

dynamics are not statistically discernable. SPP1 is associated with hepatic stellate cell 

activation and has been shown to induce collagen deposition by hepatic stellate cells 

(Lee et al, 2004). It is produced in the liver by Kupffer cells and hepatic stellate cells 

predominantly (Kmieć, 2001). The dynamics of SPP1 suggest that hepatic stellate cell 

activation propensity is decreased during the priming phase of regeneration but that 

there could be some complex dynamics of hepatic stellate cell behavior even as early 

as 3hrs post-PHx. Decreasing hepatic stellate cell activation following traumatic liver 

injury could allow for hepatocyte renewal in the absence of TGFB prior to renewing 

the substrate with healthy matrix (COL4 rich basement membrane) or scar tissue 

(COL3 and COL6 rich fibrous matrix) depending on the extent of hepatocyte renewal 

and maintained tissue damage.  

5.3.4.2 Proteins with opposite expression in serum and tissue post-PHx in wild-

type mice 

The proteins that show opposite expression trends in the serum and tissue of 

wild-type mice post-PHx likely have a more complex regulation than those that show 

the same dynamic behavior (Figure 5.8). These proteins could be regulated through 

selective secretion into the serum or organs other than the liver could contribute to the 

serum expression of these proteins. 
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Figure 5.8 Several of the proteins measured in wild-type mice showed opposite 

expression trends in animal tissue and serum. This dissimilarity indicates 

that the liver may not be the main producer of these proteins following 

resection or that transport into the tissue is relatively slow. 
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5.3.4.2.1 Mode 3: Falling with a peak 

Similar to TNFRSF1A levels, TNFRSF1B (formerly TNFR2) levels decrease 

at 1hr post-PHx before returning to baseline levels at 3hrs post-PHx and remaining at 

that level through the remainder of the priming phase. TNFRSF1B is an alternative 

receptor for TNFA. Although it has been shown to have similar effects as TNFRSF1A 

in some cases, in other cases it appears to be non-essential for TNFA signaling 

(Schümann et al, 2000;Tarrats et al, 2011). The decrease in TNFRSF1B levels at 1hr 

post-PHx could indicate a greater amount of TNFRSF1B bound in an active signaling 

complex. More work is required to confirm if this is occurring. We are interested to 

see a trend of increasing levels of TNFRSF1B in the serum of wild-type mice that is 

most pronounced at 1hr post-PHx, the opposite of the tissue expression dynamics. 

Although the serum dynamics are not statistically discernable, this result suggests 

there could be an alternate source of TNFRSF1B in the serum of wild-type mice post-

PHx. 

5.3.4.2.2 Mode 4: Falling 

Levels of both ICAM1 and CCL9 (formerly MIP1G) decrease throughout the 

priming phase in the tissue of wild-type mice. Serum levels, however, appear to 

increase slightly during this same time (this increase is not statistically discernable; 

therefore, levels may not change in the serum). These proteins are both involved in 

recruiting cells to the liver; ICAM1 recruits monocytes while CCL9 recruits dendritic 

cells (Kindt et al, 2007;Zhao et al, 2003). The reduced levels of these proteins during 

the priming phase suggest that cell recruitment during the priming phase may be 

decreased compared to baseline. 
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5.3.4.3 Proteins with tissue dynamics post-PHx in wild-type mice and no 

expression change in serum 

P-Selectin (SELP) shows a cyclic behavior in the tissue during the priming 

phase, but no discernable dynamics in the serum (Figure 5.9). SELP has been shown 

to be involved in tethering circulating immune cells to the liver tissue (Kindt et al, 

2007). Levels decrease at 1hr and 6hrs post-PHx, which is consistent with other 

recruitment proteins decreasing early post-PHx as well (e.g. ICAM1, VCAM1, and 

CCL9). The transient increase at 3hrs post-PHx may indicate a transient recruitment of 

circulating immune cells. The lack of specific recruitment proteins correlated with 

SELP expression in the tissue, however, suggests a non-targeted recruitment of cells 

rather than a target approach to recruit a specific type of immune cell.  

 

Figure 5.9 P-selectin showed cyclic dynamics post-PHx in wild-type mouse tissue, but 

no discernable dynamics in serum. 

5.3.5 Different proteins regulate priming in Adn-/- mice 

We measured levels of the same 80 proteins in the serum of Adn-/- mice 

during the priming phase of liver regeneration and found that proteins regulated 
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priming in Adn-/- mice are expressed following similar dynamic modes as in wild-

type mice. The individual proteins behaving in these modes, however, is different 

between wild-type and Adn-/- mice (Figure 5.10).  

 

Figure 5.10 Heatmap showing Adn-/- serum response to resection organized into 

modes of expression (p <= 0.05) 

For a visualization of how the wild-type expression modules behave in Adn-/- 

mice, see Figure 5.11.  
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Figure 5.11 Heatmap showing Adn-/- serum response to resection organized into WT 

modes of expression (p-value <= 0.05). 

For a visualization of dynamic protein expression in the serum of Adn-/- mice 

for proteins with possible dynamics (p-value < 0.30), see Figure 5.12. 
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Figure 5.12 Heatmap showing the behavior of proteins in Adn-/- mice. Proteins were 

included in a group if the p value calculated using an ANOVA was <= 

0.30. 
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5.3.5.1 Proteins with similar expression dynamics in the serum of wild-type and 

Adn-/- mice may represent robust features of priming 

Several proteins display mode 1 behavior in both wild-type and Adn-/- mice 

(Figure 5.13). TNFRSF8 (formerly CD30T), IL2RA, CCL22 (formerly MDC), and 

CCL20 (formerly MIP3A) all increase throughout the priming phase. These proteins 

are related to recruitment of lymphocytes and T cells (CCL20) and dendritic and NK 

cells (CCL22). This module of protein expression may also be involved in cell 

activation (IL2RA) and modulating the tissue immune response (TNFRSF8).  
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Figure 5.13 Many of the proteins measured in wild-type and Adn-/- mice show similar 

expression trends in animal serum. 
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Figure 5.14 Many of the proteins measured in wild-type and Adn-/- mice show similar 

expression trends in animal serum. 

Other proteins display mode 1 behavior following PHx (increasing steadily 

throughout priming) but show baseline differences between mouse genotypes (Figure 

5.14). CSF3 (formerly GCSF) levels are high in wild-type mice at a baseline and 

below the limit of detection in Adn-/- mice. Similarly, CCL12 (formerly MCP5) levels 

are high in wild-type mice, but low in Adn-/- mice. Following PHx, levels of both 

proteins drop in wild-type mice and remain low in Adn-/- mice. These levels 

subsequently increase until 6hrs post-PHx. CSF3 aids in growth and differentiation of 

neutrophils and has been found to enhance MMP9 production by hepatic stellate cells, 
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while CCL12 has is involved in monocyte recruitment (Jiao et al, 2009;Kindt et al, 

2007;Simpson et al, 2003). The baseline imbalance between genotypes likely indicates 

a difference in tissue microenvironment prior to PHx, with low inflammatory cell 

recruitment and low tissue remodeling. Following PHx, increasing levels of these 

proteins may result in increased neutrophil and monocyte infiltration and matrix 

remodeling as the priming phase progresses. 

 

Figure 5.15 Proteins with similar expression trends but altered timing in the serum of 

wild-type and Adn-/- mice. 
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Two proteins related to a pro-inflammatory response increase early in the 

serum of Adn-/- mice when compared to wild-type mice: IL6 and CXCL1 (formerly 

KC) are increased at 1hr post-PHx in Adn-/- mice but not until 3hrs post-PHx in wild-

type mice (Figure 5.15). Increasing levels of these pro-inflammatory proteins are 

thought to enhance liver regeneration, therefore earlier increases should enhance 

priming (Fausto et al, 2006;Malato et al, 2008). We have previously reported, 

however, how a slight decrease in IL6 levels at 3hrs post-PHx in Adn-/- compared to 

wild-type mice could lead to similar SOCS3 expression and an overall decrease in 

hepatocyte priming in Adn-/- mice (Correnti et al, 2015). It is possible that similar 

mechanisms affect CXCL1, impeding its effects enhancing priming. 
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Figure 5.16 Mode 1 behavior in Adn-/- mouse serum post-PHx, but no statistically 

discernable dynamics in wild-type mice. Nevertheless, the expression 

trends in wild-type animals are similar, tending to increase throughout 

the priming phase. 

Several proteins show mode 1 behavior in Adn-/- mouse serum post-PHx, but 

no statistically discernable dynamics in wild-type mice. Nevertheless, the expression 

trends in wild-type animals are similar, tending to increase throughout the priming 

phase (Figure 5.16).  CXCL4 (formerly PF4), CXCL13 (formerly BLC), CD40, 

IGFBP6, and TNFRSF11B (formerly OPG) all fall into this group. It is possible that 

these proteins behave similarly between genotypes, but more power is required to 

confirm or refute this possibility. In Adn-/- mice, increasing levels of these proteins 
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may lead to increased stellate cell activation (CXCL4 and CD40), increased B cell 

recruitment (CXCL13), decreased hepatocyte apoptosis (TNFRSF11B), and decreased 

angiogenesis (IGFBP6) during the priming phase (Herr et al, 2007;Sahin et al, 

2010;Sakai et al, 2012;Schwabe et al, 2001;Zaldivar et al, 2010;Zhang et al, 2012). 

We speculate that the hepatic stellate cell “activation” occurring during the priming 

phase in this case is a transition to a pro-regenerative state (See chapters 7 and 8). 

CD40 has been shown to induce hepatic stellate cell production of IL8 and MCP1, 

both aiding in regeneration, and CXCL4 has been shown to aid in hepatic stellate cell 

proliferation but not matrix deposition, indicating a transition to a non-matrix 

producing state (Schwabe et al, 2001;Zaldivar et al, 2010). This potential pro-

regenerative stellate cell behavior during the priming phase could set up stellate cells 

to be able to produce high levels of growth factors later during regeneration (Correnti 

et al, 2015). 
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Figure 5.17 Several proteins show mode 1 behavior in wild-type mice, but no 

statistically discernable dynamics in Adn-/- mice. These proteins in Adn-

/- mice, however, do show increasing trends throughout the priming 

phase. 

Additionally, several proteins show mode 1 behavior in wild-type mice, but no 

statistically discernable dynamics in Adn-/- mice (Figure 5.17). The proteins are IL23, 

TARC, AXL, IL20, IL5, CCL2 (formerly MCP1), and CXCL9 (formerly MIG). These 

proteins in Adn-/- mice, however, do show increasing trends throughout the priming 

phase. Further experiments with higher power are necessary to determine if any of 

these proteins in fact increase during the priming phase in Adn-/- mice. 

5.3.5.2 Proteins with different expression dynamics in wild-type and Adn-/- 

mice 

We find no proteins with statistically discernable dynamics in both wild-type 

and Adn-/- mouse serum that behave oppositely in the two genotypes. Several proteins 

appear to behave differently in Adn-/- mice, but further experiments with more power 

are needed to confirm or refute these potential differences.  

Proteins increasing during the priming phase in Adn-/- mice that do not 

increase in wild-type mice (or may decrease slightly) are related to modulating stellate 

cell behavior (SPP1 [formerly OPN] and MMP9 [formerly PROMMP9]), hepatocyte 

proliferation (CXCL5 [formerly LIX] and PRL), and recruitment of circulating 

immune cells (CXCL16 and CXCL5) (Figure 5.18).  
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Figure 5.18 Proteins increasing during the priming phase in Adn-/- mice that do not 

increase in wild-type mice (or may decrease slightly).  

SPP1 is associated with hepatic stellate cell activation, while MMP9 is 

produced by hepatic stellate cells and acts to cleave extracellular matrix – specifically 

collagen 4 and denatured collagens making up basement membrane (Hemmann et al, 

2007). When increased together, they suggest a transition of hepatic stellate cells to a 

pro-regenerative state that is involved actively in remodeling the tissue matrix. Such a 

remodeling could contribute to the early release of growth factors and other pro-

regenerative molecules stored in the extracellular matrix, enhancing liver regeneration 
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(Fausto et al, 2006;Michalopoulos, 1990). CXCL5 and PRL have both been shown to 

enhance hepatocyte proliferation in vitro and in vivo (Olazabal et al, 2009;Simpson et 

al, 2003). The increased expression of PRL over baseline levels in Adn-/- mice 

suggests the involvement of other tissues in enhancing hepatocyte proliferation 

following PHx in these animals. PRL is one of only a few known direct hepatocyte 

mitogens, and it may contribute to enhanced liver regeneration during pregnancy 

(GERSHBEIN, 1958). Therefore, we are interested to see that its levels dynamically 

change during priming in Adn-/- mice. It is possible that the altered immune response 

of Adn-/- mice to PHx leads to a whole-body response to enhance liver regeneration. 

What organ is the source of PRL and how it contributes to hepatocyte proliferation in 

Adn-/- mice, however, remain open questions. The increasing levels of CXCL5 and 

CXCL16 in Adn-/- mice indicate immune cell recruitment is occurring post-PHx in 

Adn-/- mice. This recruitment could be compensating for reduced immune cell 

recruitment prior to PHx (Figure 5.1C).  
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Figure 5.19 Adn knockout inhibits dynamic expression of some proteins. 
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Although Adn knockout appears to enhance expression of proteins aiding in 

regeneration, it also inhibits dynamic expression of others (Figure 5.19). Levels of 

IL12B (also known as IL12P40) increase throughout the priming phase in wild-type 

mice but do not change in Adn-/- mice. As it is produced predominantly by Kupffer 

cells in the liver, IL12B levels being low in Adn-/- mice may indicate a decreased 

Kupffer cell activation in response to PHx (Kmieć, 2001). IL1RAP (formerly IL1RA) 

levels are reduced in the serum of wild-type mice at 3hrs post-PHx; this decrease may 

not occur in Adn-/- mice or it may be a sustained decrease (more experiments with 

higher power are required to determine which). IL1RAP is involved in inflammation 

and may contribute to hepatocyte priming; therefore, low levels during the priming 

phase could inhibit priming (Kmieć, 2001). On the other hand, a reduced level of 

IL1RAP could lead to enhanced MMP9 production and matrix remodeling, aiding in 

regeneration (Lee et al, 2003). VEGFA (VEGF), a potent angiogenic growth factor, 

decreases in the serum of wild-type mice post-PHx but remains at the same levels in 

Adn-/- mice. This decrease could be due to resources being redirected towards 

regeneration processes, which would not happen in Adn-/- mice.  

We were interested to compare the dynamics of LEP in the serum of wild-type 

and Adn-/- mice post-PHx. Although we find no statistically discernable dynamics in 

Adn-/- mice post-PHx, the expression trend is opposite that of wild-type mice. In wild-

type mice, LEP levels start low then increase post-PHx, reach a peak at 3hrs post-PHx, 

then decrease to near nominal levels at 6hrs post-PHx. In contrast, LEP levels in Adn-

/- mice start high then appear to decrease post-PHx before returning to nominal levels 

at 6hrs post-PHx. It is important to note that these dynamics in Adn-/- mice are not 

statistically discernable and more experiments are required to confirm or refute their 
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behavior. If, though, there is a difference in LEP expression dynamics in wild-type 

and Adn-/- mouse serum post-PHx, it is possible that altered regulation in adipocytes 

could be the cause. This potential altered LEP expression could lead to dynamic 

changes in hepatic stellate cell behavior in the liver post-PHx, as LEP has been shown 

to modulate hepatic stellate cell behavior (Saxena et al, 2002).  

5.3.6 Proteins in liver tissue following PHx show dynamic expression changes in 

Adn-/- mice 

In contrast to wild-type mice, several proteins measured in Adn-/- mice show 

statistically discernable dynamics in both serum and liver tissue post-PHx (Figures 

5.20 and 5.21).  

5.3.6.1 Proteins with similar expression dynamics in serum and tissue post-PHx 

in Adn-/- mice 

Levels of SPP1 (formerly OPN) and SELP increase in the serum and tissue of 

Adn-/- mice post-PHx. Levels peak at 3hrs post-PHx and remain elevated at 6hrs post-

PHx (Figure 5.20). Because tissue and serum levels behave so similarly, it is possible 

that the liver is the main producer of these proteins post-PHx in Adn-/- mice. 

Similarly, MMP9 increases at 1hr post-PHx and remains elevated for the rest of the 

priming phase in both serum and tissue of Adn-/- mice. MMP9, also, may be produced 

predominantly in the liver of these animals. In contrast, CXCL4 (formerly PF4) 

increases in the serum at 1hr post-PHx and in the tissue at 3hrs post-PHx in Adn-/- 

mice. It remains elevated in both for the duration of the priming phase. It is possible, 

therefore, that there may be an extrahepatic source of CXCL4 during liver 

regeneration in addition to tissue-produced CXCL4. More research is necessary to 

explore this possibility. 
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Figure 5.20 Several of the proteins measured in Adn-/- mice show similar expression 

trends in animal tissue and serum. This similarity indicates that in And-/- 

mice the liver is the main producer of these proteins following resection 

and transport into the tissue is relatively fast. 

5.3.6.2 Proteins with opposite expression in serum and tissue post-PHx in Adn-

/- mice 

CXCL16 increases in the serum of Adn-/- mice post-PHx but decreases in the 

liver tissue (Figure 5.21). Therefore, it is possible that the liver is not the predominant 

source of CXCL16 in the serum post-PHx in Adn-/- mice. This is consistent with 

serum concentration of CXCL16 in each animal being a factor of between ~1.2 to ~30 

higher than tissue concentration, measured in pg/mL.  

 

Figure 5.21 One proteins measured in Adn-/- mice shows opposite expression trends 

in animal tissue and serum. This similarity indicates that in Adn-/- mice 

the liver is either not the main producer of these proteins following 

resection or transport into the tissue is relatively slow. 
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5.3.6.3 Proteins with dynamic expression changes in tissue but no serum 

changes post-PHx in Adn-/- mice 

Additionally, there are proteins with discernable dynamics in the liver of Adn-

/- mice, but no discernable dynamics in the serum post-PHx (Figure 5.22).  

 

Figure 5.22 Several proteins measured in Adn-/- mice show dynamic expression 

trends in animal tissue. These dynamics are not reflected in the serum. 

Although there are no discernable dynamics in the serum, the expression trends 

appear similar for all the following proteins in tissue and serum. IL7, TNFRSF1A 
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(formerly TNFR1), TNFRSF1B (formerly TNFR2), CCL17 (formerly TARC), and 

CSF1 (formerly MCSF) all increase throughout the priming phase, behaving in mode 

1 in the tissue of Adn-/- mice. TNFRSF1A, however, decreases at 1hr post-PHx in 

some animals. IL23 and VCAM1 increase early post-PHx, but appear to peak prior to 

the end of the priming phase, behaving in mode 2. Taken together, these protein 

dynamics indicate an increased immune response (IL7, IL23, TNFRSF1A, and 

TNFRSF1B), an increased immune cell recruitment (CCL17 and VCAM1), and an 

increased angiogenesis ability (CSF1). Although, as discussed previously, high levels 

of the TNFA receptors TNFRSF1A and TNFRSF1B could be caused by a small 

amount of these receptors bound by TNFA and participating in active signaling. 

5.3.7 Adn knockout leads to different tissue regulation of the priming phase 

In the liver tissue of wild-type and Adn-/- mice post-PHx, levels of 

TNFRSF1A show the trend of decreasing at 1hr post-PHx, then increasing throughout 

the rest of the priming phase (Figure 5.23).  



 153 

 

Figure 5.23 Adn knockout leads to different tissue regulation of the priming phase. 
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This is consistent with TNFRSF1A being bound in a signaling complex early 

post-PHx, contributing to Kupffer cell activation and hepatocyte priming (Fausto et al, 

2006;Muppidi et al, 2004). SELP increases in the tissue of wild-type and Adn-/- mice 

at 3hrs post-PHx. It returns to baseline levels at 6hrs post-PHx in wild-type mice, but 

remains elevated in Adn-/- mice, indicating sustained immune cell recruitment in Adn-

/- mice. VCAM1 and TNFRSF1B have baseline differences between genotypes, but 

their behavior is similar post-PHx. Both of these proteins are low at 1hr post-PHx but 

increase through the rest of the priming phase. SPP1 (formerly OPN), on the other 

hand, shows different dynamics in the tissue of wild-type and Adn-/- mice post-PHx, 

decreasing in wild-type mice and increasing in Adn-/- mice. It is possible that this 

increase in SPP1 in Adn-/- mice is one of the factors predisposing hepatic stellate cells 

to produce high levels of growth factors at later times during liver regeneration 

(Correnti et al, 2015).  

5.3.8 Priming for liver regeneration in Adn-/- mice appears to be controlled by 

a different regulatory network structure 

We used a heatmap to visualize the correlation network of protein expression 

in wild-type and Adn-/- mice during the priming phase of regeneration post-PHx 

(Figure 5.24). We calculated correlations for proteins within the serum (Figure 5.24, 

lower triangular matrix), within the tissue (Figure 5.24, upper triangular matrix), and 

between the tissue and serum for each protein (Figure 5.24, diagonal). Most, but not 

all tissue and serum samples come from the same animals. In some cases, the average 

of two tissue samples was used as a pseudo-tissue sample for calculating correlation. 

Similar correlation networks appear to be operating in tissue and serum; however, the 

correlations in the tissue are sparser than in the serum because the data from the tissue 
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had more missing expression values. Wild-type mice show several modules of 

correlated proteins likely corresponding to the modes of expression identified 

previously. Adn-/- mice, in contrast, show fewer proteins highly correlated within the 

same modules. Although the correlation network appears similar between species, the 

strength of correlations in Adn-/- mice appears weaker. This indicates that there could 

be regulatory mechanisms damping the regulatory network response to PHx in Adn-/- 

mice. One protein that could contribute to this effect is SOCS3, which we show in 

chapter 4 is up-regulated in Adn-/- mice during the priming phase of regeneration. 
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Figure 5.24 The differences in protein expression in wild-type and Adn-/- mice during 

the priming phase of regeneration may be caused by an altered regulatory 

network governing dynamic protein expression. The structure of the 

regulatory network can be represented using a clustered correlation 

heatmap among proteins. In this schematic, the lower triangular matrix 

represents correlations among proteins in the serum, the upper triangular 

matrix represents correlations among the proteins in the tissue, and on the 

diagonal of the matrix is a representation of the correlation between 

tissue and serum for each protein. Gray pixels represent NA values in the 

data. 

We also calculated the correlation-based protein network in wild-type and 

Adn-/- mice using the segmentation method for calculating correlation from time-

series, biological data (Figure 5.25), detailed in Appendix B. Using this method takes 

advantage of the time-series nature of the data to construct pseudo-longitudinal 

samples. Multiple correlation values are then calculated for each pair of proteins and 

averaged to estimate true correlation. In Appendix B, we show that this method is 

robust to missing data, technical and biological noise, and small sample sizes. 
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Figure 5.25 The differences in protein expression in wild-type and Adn-/- mice during 

the priming phase of regeneration may be caused by an altered regulatory 

network governing dynamic protein expression. The structure of the 

regulatory network can be represented using a clustered correlation 

heatmap among proteins. These networks were calculated using the 

segmentation method detailed in Appendix B with pseudo-samples (see 

text for details). In this schematic, the lower triangular matrix represents 

correlations among proteins in the serum, the upper triangular matrix 

represents correlations among the proteins in the tissue, and on the 

diagonal of the matrix is a representation of the correlation between 

tissue and serum for each protein. 

The segmentation method for calculating correlation assumes explicitly that 

each biological replicate is indistinguishable from the others, i.e. the only source of 

variance among animal replicates is technical and biological noise. Other methods to 

calculate correlation from biological samples assume this relationship implicitly, but 

the segmentation method makes the assumption explicit. We therefore further 

employed this assumption to construct pseudo-samples from which to calculate 
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correlation. We measured proteins in the serum of three wild-type and three Adn-/- 

mice at baseline (0 hours post-PHx). We measured more animals during regeneration 

(4-6 animals per time point). We therefore used three animals from each time point for 

the segmentation method but “borrowed” protein measurements from the animals not 

included in the analysis when protein measurements from the included animals were 

missing (i.e. NA values).  

The resulting correlation network using the segmentation is similar to the 

correlation network calculated using standard Pearson’s correlation. There are, 

however, some differences. Using the segmentation method, we estimate that the 

relationships among the measured proteins are not as strong as estimated using the 

standard method. Furthermore, the segmentation-based results suggest that there is a 

strong negative relationship among many of the proteins estimated to be positive using 

the standard method (Figure 5.25, upper left quadrant). The loss of correlation 

estimated in Adn-/- mice (Figure 5.24, upper left quandrant) was even more 

pronounced using the segmentation method (Figure 5.25, upper left quadrant). The 

implications of these altered networks and which method accurately captures 

biological relationships in mice post-PHx remains to be determined. 

 

5.4 Discussion 

Using an unbiased approach to investigate cytokine, chemokine, and growth 

factor dynamics in wild-type and Adn-/- mice during liver regeneration, we find both 

baseline differences and dynamic differences in protein expression. Prior to resection, 

we find that Adn-/- mice express lower levels of proteins related to the recruitment of 

monocytes, neutrophils, and other immune cells. This finding helps to explain the 
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observation that Adn-/- mice are deficient in recruiting macrophages the site of 

melanoma and lung cancer tumors, promoting tumor growth (Sun & Lodish, 2010). It 

is possible that Adn-/- mice are also deficient in recruiting circulating immune cells 

during liver regeneration or following drug induced liver injury; more research, 

however, is needed to determine if this is the case.  

The finding that Adn-/- mice express low levels of immune cell recruiting 

proteins is unexpected based on previous research. Levels of adiponectin and leptin in 

the serum are typically, but not always, inversely related in both health and disease 

(Chen et al, 2006;Haque et al, 2002;Matsubara et al, 2002;Silha et al, 2003;Vendrell et 

al, 2004). High leptin (and presumably low adiponectin) has shown to play a role in 

activation and chemotaxis of monocytes, neutrophils, and other immune cells 

(Fernandez-Riejos et al, 2010). Low leptin (and presumably high adiponectin) in ob/ob 

mice, on the other hand, has been shown to cause low neutrophil infiltration and high 

levels of ischemic-reperfusion injury in steatotic livers (Hasegawa et al, 2007). Our 

results showing that Adn-/- mice (low Adn, high Lep) express low levels of immune 

cell recruiting proteins suggests a more complex relationship between adiponectin and 

leptin and immune cell recruitment than previously thought. 

During regeneration, we find several proteins that monotonically increase in 

both wild-type and Adn-/- mice. These include the pro-inflammatory proteins IL6, 

CCL20, and CCL22 and the receptor TNFRSF8. Wild-type and Adn-/- mice both 

express monotonically increasing levels of other pro-inflammatory cytokines during 

priming, which may act as redundant signals to activate the same or similar pathways 

to induce priming in hepatocytes. Adn-/- mice express increasing levels of SPP1 

following PHx, which may indicate a role for hepatic stellate cells during priming in 
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these animals; there is no statistically discernable increase in SPP1 in wild-type 

animals, suggesting that any contribution of stellate cells during the priming phase is 

subtler. Wild-type and Adn-/- mice also express other proteins with different 

dynamics. We are especially interested to see that levels of PRL increase during the 

priming phase in Adn-/- mice. PRL has been shown to be a direct hepatocyte mitogen 

and could help to explain the accelerated regeneration that occurs in Adn-/- mice 

(Correnti et al, 2015;Olazabal et al, 2009). Taken together, our results suggest a 

different protein regulatory network governing regeneration in these two genotypes, 

leading to an altered priming response to resection due to Adn knockout.  
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A COMPUTATIONAL MODEL TO SIMULATE LIVER REGENERATION 

ACROSS PHENOTYPES 

Portions of this chapter were adapted from Cook, D., Ogunnaike, B. A., & 

Vadigepalli, R. (2015). Systems analysis of non-parenchymal cell modulation of liver 

repair across multiple regeneration modes. BMC systems biology, 9(1), 1. and Cook D, 

Vadigepalli R. Computational Modeling as an Approach to Study the Cellular and 

Driving Liver Regeneration. In: Liver Regeneration Basic Mechanisms, Relevant 

Models and Clinical Applications. 2015. p. 185–98. 

6.1 Introduction 

Liver regeneration involves a highly coordinated response to tissue damage 

involving multiple cell types (parenchymal, non-parenchymal, and extra-hepatic), 

multiple size scales (from molecular signaling at the atomic level to overall tissue 

function at the macro-scale), and multiple time scales (from nearly instantaneous 

release of ATP from hepatocytes following a partial hepatectomy to the weeks, 

months, or years it may take for humans to regrow lost liver mass following a 

resection). Understanding the complexity of the liver’s regenerative response to tissue 

damage and being able to predict the outcome of resection would provide an 

invaluable tool to patients undergoing partial liver resection for hepatocellular 

carcinoma or live liver transplant. Computational modeling provides a framework to 

help understand the complex, multi-scale interactions (molecular, cellular, and organ 

to organ) governing the liver’s innate regenerative ability. Computational modeling 
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enables researchers to collect and organize the available phenomenological as well as 

mechanistic knowledge, evaluate a wide range of scenarios in simulations that are 

experimentally intractable, predict the impact of altering particular underlying 

mechanisms on the cellular as well as the whole tissue response, and design 

experiments to test the model-predicted hypotheses on the key control mechanisms 

governing the overall physiological response. 

Researchers in recent decades have made significant progress towards building 

computational representations of the regulatory events that are known to occur during 

liver regeneration. These models span a wide spectrum of detail incorporated into the 

model including spatial aspects, molecular processes and whole-tissue scale 

phenomena (Figure 6.1A). At one end of the spectrum, agent-based models allow for 

high spatial resolution, but often for only a section of tissue. At the other end, 

physiological models account for the regeneration of the whole liver, but offer limited 

molecular mechanistic insight into how these responses are orchestrated. Models 

based on the so-called ‘omics’ data provide a middle ground with high resolution of 

molecular events (e.g., transcriptome, proteome, metabolome) while empirically 

accounting for whole-tissue response. A broader challenge of connecting the ‘omics’-

based modeling to tissue-scale and organ-scale physiology in a multi-scale framework 

remains unsolved. 
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Figure 6.1 Computational models of liver regeneration. (A) Computational limitations 

require a trade-off between high-resolution (molecular or spatial) and the 

ability to predict whole-tissue function. (B) Agent-based models, such as 

that developed by (Hoehme et al., 2010) based on CellSys, allow for high 

spatial resolution, but often for only a section of tissue. (C) Models based 

on ‘omics’ data, such as Hepatonet1 developed by (Gille et al., 2010), 

provide a middle ground where there is high resolution of molecular 

events at the desired scale (transcriptome, proteome, metabolome) and 

the molecular regulation can be extrapolated to whole tissue. (D) 

Physiological models, such as that developed by (Furchtgott et al., 2009), 

predict the regeneration of the whole liver, but offer limited mechanistic 

insight into the molecular events. (E) Outputs from the physiological 

model can show cells in discrete physiological states as well as (F) 

molecular regulation governing those cell state transitions. Figure 1C was 

reproduced from (Gille et al., 2010). 
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A computational model recently published by the Drasdo lab took an agent-

based modeling approach to simulating liver regeneration following carbon 

tetrachloride administration (Hoehme et al, 2010). This model integrated three 

disparate scales of data: liver lobule architecture, cell processes, and physical forces 

(Figure 6.1B). Liver architecture was reconstructed in 3-D from 

immunohistochemically stained confocal microscope images of livers. Liver 

architecture was considered as a fixed parameter as carbon tetrachloride does not 

drastically alter this aspect. Several cellular processes considered in the model were 

spatially distributed cell replication, necrosis following toxin administration, and 

hepatocyte-sinusoid contact area and orientation. The cell replication and necrosis 

were modeled as stochastic processes for each cell in the model, while hepatocyte-

sinusoid orientation was simulated as a directed stochastic process with orientation 

biased towards an alignment along sinusoids. In addition, this model considered 

individual forces acting between cells. Each cell was modeled as a polarized, 

deformable sphere (with the bile canalicular structure oriented towards other 

hepatocytes and the basolateral membrane oriented towards the sinusoid). Physical 

forces, governed by cell adhesion, compression, and deformation were considered 

between cells. Model simulations predicted that hepatocytes must have a strong 

propensity for alignment along the sinusoid in order to capture the observed 

regeneration phenotype following chemical injury. Hoehme et al. (2010) speculated 

that endothelial cells that survive the toxic liver damage contribute to such an 

alignment propensity.  

Omics” based modeling involves a more detailed account of molecular aspects. 

In this approach, high dimensional gene or protein expression data or metabolomics 
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data are used to train or inform a model structure and parameters. Often, these models 

are algebraic because they necessarily contain a large number of terms, not amenable 

for typical ordinary differential equation based dynamic modeling. An example of an 

‘omics’ model of liver function is the HepatoNet model constructed by the Holzhutter 

lab (Gille et al, 2010). This model contains 2539 individual reactions and 777 

metabolites to simulate the metabolic function of the liver (Figure 6.1C). The reactions 

were formulated into a stoichiometric matrix of fluxes and flux balance analysis was 

used to match the externally measure metabolites under an optimization objective of 

minimizing internal fluxes. The authors employed this model to investigate the 

robustness of the metabolic network active in hepatocytes by simulating single-

enzyme knockouts. This model, though molecularly detailed, did not connect 

molecular regulation to the whole tissue function in the context of regeneration. 

As an example at the other end of the modeling spectrum, the Periwal group 

developed a physiologically based model that simulates tissue-scale liver regeneration 

following partial hepatectomy (Furchtgott et al, 2009). This model includes the JAK-

STAT signaling pathway induced by IL-6 and growth factors (GF) produced by non-

parenchymal cells as drivers of regeneration and includes extracellular matrix (ECM) 

as a negative regulator of regeneration (Figure 6.1D). Hepatocytes were considered as 

existing in one of three physiological states: Quiescent (Q), Primed (P), or Replicating 

(R), with shifts between these states governed by factors produces by non-

parenchymal cells, specifically Kupffer cells (KC) and hepatic stellate cells (HSC). 

This physiologically based model allowed the authors to connect the dynamic 

hepatocyte regeneration state (Figure 6.1E) to molecular regulation (Figure 6.1F). 

Using this model, Furchgott, Chow, and Periwal predicted that two smaller resections 
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can result in faster recovery than a single large resection and that decreasing metabolic 

load in the liver through fasting could lead to recovery following massive 

hepatectomy. 

Other studies have also used computational modeling to explore liver function 

beyond the context of regeneration. For example, the Hunt lab used a game-theory 

model to explore the zonated liver metabolism of toxin clearance (Sheikh-Bahaei et al, 

2009). Their model consisted of multiple agents that can either eliminate a toxin 

(using nutrients) or ignore the toxin. Each hepatocyte (agent) in the model learned 

rules for eliminating toxins through a reinforcement learning rule to optimize long-

term toxin elimination. They found that, for certain classes of toxins with specific 

harm to nutrient cost ratios, the most efficient elimination strategy is a zonated 

approach. In contrast to utilizing an agent based approach, the Kuepfer lab developed 

a spatially-resolved model of the liver architecture coupled with a physiologically-

based pharmacokinetic model to simulate blood flow and drug perfusion in the liver 

using partial differential equations (Schwen et al, 2014). This model was employed to 

assess and make predictions on how increasingly severe chronic liver disease would 

affect liver drug metabolism. In the context of liver fibrosis, the Vodovotz lab used an 

agent-based model to investigate the progression of and treatment for fibrosis (Dutta-

Moscato et al, 2014). This model takes into account multiple cell types in the liver 

(hepatocytes, KCs, and HSCs) as well as multiple cell states (i.e. M1 and M2 

polarization of KCs). Model simulations indicated that treating fibrotic livers with 

anti-TNF-α could lead to decreased collagen deposition. However, clinical treatment 

of patients with alcoholic steatohepatitis using anti-TNF-α have been poorly received 
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due to a suppressed immune system and increased likelihood of severe infections 

(Naveau et al, 2004). 

In addition to the classes of models and examples summarized above, there 

exist several opportunities where the disparate models with varying level of detail can 

be combined or merged to more accurately represent liver function during 

regeneration (Figure 6.1A). For example, it is possible to combine the metabolomic 

modeling methods with the agent-based models by incorporating the detailed 

metabolic model into each hepatocyte component. This formulation may be able to 

capture the pericentral to periportal gradient of hepatocyte metabolism seen in the 

homeostatic liver and predict how this gradient may change in response to tissue 

resection. Alternatively, physiologically based models could be expanded to include 

data from transcriptomic or proteomic studies to account for a larger context of 

molecular mechanisms governing physiological changes. In such an extended multi-

scale framework, the combined physiological-molecular modeling could be used to 

inform and prioritize where additional molecular details are required to iteratively 

expand the molecular detail, connecting the physiological scale phenomenology with 

molecular scale mechanisms. 

In this chapter, we employ a physiologically based model to explore and 

understand the control principles governing liver regeneration. In contrast to ‘omics’ 

data analysis studies aimed at identifying global molecular changes in the liver during 

regeneration, the present approach employs a targeted approach to identify classes of 

molecular regulatory events that strongly contribute to liver regeneration or 

deficiencies in liver repair. We extended the cell phenotype based computational 

model of liver regeneration first proposed by (Furchtgott et al, 2009) to include both 
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cell growth and replication. We employ this extended model to investigate 

quantitatively how altering the molecular regulation of hepatocytes affects the liver's 

innate repair ability. Our extended model maintains the structure of the original model 

by combining classes of molecular signals with physiological observations of 

regeneration to capture dynamic regeneration phenotypes.  

6.2 Methods 

6.2.1 Computational model development 

We used an extended computational model of liver regeneration (represented 

schematically in Figure 6.2) to investigate quantitatively how altering the molecular 

regulation of hepatocytes affects the liver's innate repair ability.  
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Figure 6.2 Schematic representation of the changes occurring during liver regeneration 

following PHx. (A) Detailed schematic. (1) Following PHx, hepatocytes 

respond within 30 seconds of tissue damage. Early post-PHx, previous 

work has shown release of ATP, increases in WNT signaling, and ionic 

Calcium release from hepatocyte mitochondria. (2) These responses in 

hepatocytes are likely to be driven by an increase portal blood flow, an 

increase in portal pressure, and an increase in metabolic demand per cell 

(increased nutrient availability, increased toxin flux, and increased extra-

hepatic signals including LPS). (3) Signals from the blood and from 

hepatocytes activate non-parenchymal cells to produce factors governing 

hepatocyte entry into the cell cycle (including priming). (B) Simplified 

schematic diagram. This schematic shows the relationships included in 

the computational model. Several important pathways are lumped or 

represented as physiological transitions rather than including truly 

mechanistic detail. This physiological approach allows for insight into 

control principles of regeneration governed by archetypal signaling 

pathways. The gray matrix-bound factor (MBF) signaling was added to 

the model to investigate the contribution to liver mass recovery of 

matrix-bound signaling, but because of a relatively small impact on the 

dynamic mass recovery was excluded from further analyses. 
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A detailed explanation of initial model derivation and parameter estimation is 

available in (Furchtgott et al, 2009). Our extended model maintains the framework of 

the previously published initial model by allowing hepatocytes to exist in one of three 

states: Quiescent (Q), Primed (P), or Replicating (R). Factors produced by non-

parenchymal cells in response to liver metabolic load (metabolic demand per cell or 

M/N) shift hepatocytes between states, according to the following equations.  

𝑑

𝑑𝑡
𝑄 =  −𝑘𝑄𝑃([𝐼𝐸] − [𝐼𝐸0])𝑄 + 𝑘𝑅𝑄[𝐸𝐶𝑀]𝑅 + 𝑘𝑟𝑒𝑞𝜎𝑟𝑒𝑞𝑃 − 𝑘𝑎𝑝𝜎𝑎𝑝𝑄 (6.1) 

𝑑

𝑑𝑡
𝑃 =  𝑘𝑄𝑃([𝐼𝐸] − [𝐼𝐸0])𝑄 − 𝑘𝑃𝑅([𝐺𝐹] − [𝐺𝐹0])𝑃 −  𝑘𝑟𝑒𝑞𝜎𝑟𝑒𝑞𝑃 − 𝑘𝑎𝑝𝜎𝑎𝑝𝑄 

  (6.2) 

𝑑

𝑑𝑡
𝑅 =  𝑘𝑃𝑅([𝐺𝐹] − [𝐺𝐹0])𝑃 − 𝑘𝑅𝑄[𝐸𝐶𝑀]𝑅 + 𝑘𝑝𝑟𝑜𝑙𝑅 −  𝑘𝑎𝑝𝜎𝑎𝑝𝑅 (6.3) 

Where [IE] represents the concentration of immediate early genes expressed in 

response to STAT-3 transcriptional regulation and [ECM] represents the amount of 

extracellular matrix. σap and σreq are sigmoidal functions defined as:  

𝜎𝑎𝑝 = 0.5 ∗ (1 + tanh (
(𝜃𝑎𝑝− 𝑀 𝑁⁄ )

βap
))   (6.4) 

𝜎𝑟𝑒𝑞 = 0.5 ∗ (1 + tanh (
(𝜃𝑟𝑒𝑞−[𝐺𝐹])

βreq
))   (6.5) 

The parameters β and θ in each of these equations are tuned so that when 

metabolic load is high, σap is high; conversely, when [GF] is high, σreq is low. 

Therefore, when cells are highly stressed (high metabolic load), apoptosis occurs at a 

high rate; when GFs are available, cells remain in the “Replicating” state. 

The JAK-STAT signaling pathway, GF production, and ECM production are 

modeled as a combination of first order and Michealis-Menton kinetics, as shown in 

the following equations. For a schematic of the JAK-STAT signaling pathway, see 

Figure 6.4A.  
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𝑑

𝑑𝑡
[𝐼𝐿6] = 𝑘𝐼𝐿6

𝑀

𝑁
−

𝑉𝐽𝐴𝐾[𝐼𝐿6]

[𝐼𝐿6]+𝑘𝑀
𝐽𝐴𝐾 − 𝜅IL6[𝐼𝐿6] + 𝑘1  (6.6) 

𝑑

𝑑𝑡
[𝐽𝐴𝐾] =

𝑉𝐽𝐴𝐾[𝐼𝐿6]

[𝐼𝐿6]+𝑘𝑀
𝐽𝐴𝐾 − 𝜅𝐽𝐴𝐾[𝐽𝐴𝐾] + 𝑘2   (6.7) 

𝑑

𝑑𝑡
[𝑆𝑇𝐴𝑇3] =

𝑉𝑆𝑇3[𝐽𝐴𝐾][𝑝𝑟𝑜𝑆𝑇𝐴𝑇3]2

[𝑝𝑟𝑜𝑆𝑇𝐴𝑇3]2+𝑘𝑀
𝑆𝑇3(1+[𝑆𝑂𝐶𝑆3] 𝑘𝐼

𝑆𝑂𝐶𝑆3⁄ )
 −

𝑉𝐼𝐸[𝑆𝑇𝐴𝑇3]

[𝑆𝑇𝐴𝑇3]+𝑘𝑀
𝐼𝐸 −

𝑉𝑆𝑂𝐶𝑆3[𝑆𝑇𝐴𝑇3]

[𝑆𝑇𝐴𝑇3]+𝑘𝑀
𝑆𝑂𝐶𝑆3 −

𝜅𝑆𝑇3[𝑆𝑇𝐴𝑇3] + 𝑘3   (6.8) 

𝑑

𝑑𝑡
[𝑆𝑂𝐶𝑆3] =  

𝑉𝑆𝑂𝐶𝑆3[𝑆𝑇𝐴𝑇3]

[𝑆𝑇𝐴𝑇3]+𝑘𝑀
𝑆𝑂𝐶𝑆3 − 𝜅𝑆𝑂𝐶𝑆3[𝑆𝑂𝐶𝑆3] + 𝑘4  (6.9) 

𝑑

𝑑𝑡
[𝐼𝐸] =

𝑉𝐼𝐸[𝑆𝑇𝐴𝑇3]

[𝑆𝑇𝐴𝑇3]+𝑘𝑀
𝐼𝐸 − 𝜅𝐼𝐸[𝐼𝐸] + 𝑘5   (6.10) 

𝑑

𝑑𝑡
[𝐺𝐹] = 𝑘𝐺𝐹

𝑀

𝑁
− 𝑘𝑢𝑝[𝐺𝐹][𝐸𝐶𝑀] − 𝜅𝐺𝐹[𝐺𝐹] + 𝑘7  (6.11) 

𝑑

𝑑𝑡
[𝐸𝐶𝑀] =  −𝑘𝑑𝑒𝑔 [𝐼𝐿6][𝐸𝐶𝑀] − 𝜅𝐸𝐶𝑀[𝐸𝐶𝑀] + 𝑘6 (6.12) 

Where [proSTAT3] represents the concentration of monomeric STAT-3 

available to dimerize following IL-6 signaling. It should be noted that in the original 

model our [IL-6] term representing cytokine signaling was called [TNF]. 

Cannonically, TNF signals through the NF-κB cascade, while IL-6 signals through the 

JAK-STAT cascade. As previously described in (Furchtgott et al, 2009) and in 

(Correnti et al, 2015), the [IL-6] variable should be considered a lumped variable 

representing the physiological impact of general cytokine signaling rather than an 

exact analogue to IL-6 protein levels. Therefore, we used the name [IL-6] for this 

variable with parameters derived from TNF.  

The overall cell mass, N, was modified from the initial model to include cell 

growth of primed and replicating cells in response to metabolic load as follows:  

𝑁 = 𝑄 + 𝐺(𝑃 + 𝑅)   (6.13) 

Where G represents the relative cell mass, which is initially set to 1. 
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Additionally, when considering the contribution of matrix bound factors to the 

priming phase of regeneration (Figure 6.2B, gray portion), the following equations 

were added.  

𝑑𝑀𝐵𝐹𝐸𝐶𝑀

𝑑𝑡
=  −𝑘𝑀𝐵𝐹 (

1

[𝐸𝐶𝑀]
−  [𝐸𝐶𝑀]0) +  𝑘𝑢𝑝[𝐺𝐹][𝐸𝐶𝑀]  (6.14) 

Where MBFECM represents the matrix-bound signals, which are released from 

the matrix when matrix is degraded at a rate of kMBF. We assumed that these signaling 

factors, which could contain growth factors such as HGF and FGF, were replenished 

at a rate equivalent to growth factor uptake by the ECM. 

𝑑𝑀𝐵𝐹𝐹𝑟𝑒𝑒

𝑑𝑡
= 𝑘𝑀𝐵𝐹 (

1

[𝐸𝐶𝑀]
−  [𝐸𝐶𝑀]0) −  𝜅𝑀𝐵𝐹[𝑀𝐵𝐹𝐹𝑟𝑒𝑒]  (6.15) 

Where MBFFree represents the signaling factors released from matrix and κMBF 

is the degradation rate of MBFFree once they have been released.  

These additional signals (specifically, MBFFree) act to prime hepatocytes. We 

assumed that the transition rate from quiescent to primed was similar no matter 

whether MBF or IE gene signals were driving the transition. We therefore modified 

equations 6.1 and 6.2 as follows to take this additional signaling into account. 

𝑑

𝑑𝑡
𝑄 =  −𝑘𝑄𝑃([𝐼𝐸] − [𝐼𝐸0])𝑄 − 𝑘𝑄𝑃[𝑆𝐹𝑟𝑒𝑒]𝑄 + 𝑘𝑅𝑄[𝐸𝐶𝑀]𝑅 + 𝑘𝑟𝑒𝑞𝜎𝑟𝑒𝑞𝑃 −

𝑘𝑎𝑝𝜎𝑎𝑝𝑄  (6.1a) 

𝑑

𝑑𝑡
𝑃 =  𝑘𝑄𝑃([𝐼𝐸] − [𝐼𝐸0])𝑄 + 𝑘𝑄𝑃[𝑆𝐹𝑟𝑒𝑒]𝑄 −  𝑘𝑃𝑅([𝐺𝐹] − [𝐺𝐹0])𝑃 −  𝑘𝑟𝑒𝑞𝜎𝑟𝑒𝑞𝑃 −

𝑘𝑎𝑝𝜎𝑎𝑝𝑄  (6.2a) 

All simulations were performed in Matlab (Mathworks, Natick, MA). Model 

equations were set up to prevent molecular levels from becoming negative; however, 

some parameter sets combined with the integration tolerances of ode15s led to GF 

levels becoming negative at longer simulation times (greater than 150 hours). These 

impossible GF levels did not significantly impact the regeneration profile because 
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most of the growth had concluded by the time GF became negative. Because of these 

numerical instabilities, however, GF levels were constrained to a minimum of 1. 

6.2.2 Transforming published data on liver regeneration into fractional 

recovery of tissue mass 

6.2.2.1 High fructose-induced steatosis (NASH) and Controls  

In the study by Tanoue et al. (2011), male Sprague-Dawley rats (8 weeks old) 

were fed either a high fructose diet (total calories from 66% fructose, 11% fat, and 

19% protein) or a control diet (chow with total calories from 10% fructose, 12% fat, 

and 19% protein) for a period of four weeks. Rats with high fructose-induced non-

alcoholic steatohepatitis (NASH) showed high serum triglycerides, accumulation of 

hepatic fat, and more severe insulin resistance, indicating a disease state similar to 

human NASH. Following four weeks of their respective diets, rats were anesthetized 

with ether and a 70% partial hepatectomy was performed. Following resection, rats 

were fed a standard CE-2 diet. During recovery from resection, rats were sacrificed 

and their regenerating livers were removed and weighed. The data reported in this 

study were given in "liver regeneration rate", which is the percentage of liver mass 

recovered as normalized to the initial remnant liver mass immediately following 

hepatectomy, according to equation 6.16 (Tanoue et al, 2011).  

𝐿𝑖𝑣𝑒𝑟 𝑅𝑒𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒 =  100% {
𝐹𝑖𝑛𝑎𝑙 𝑊𝑒𝑖𝑔ℎ𝑡−(𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑊𝑒𝑖𝑔ℎ𝑡−𝐸𝑥𝑐𝑖𝑠𝑒𝑑 𝑊𝑒𝑖𝑔ℎ𝑡)

𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑊𝑒𝑖𝑔ℎ𝑡
}  

  (6.16) 

Liver regeneration rate is the fractional mass recovery minus the remnant liver 

fractions; therefore, we added 30% to the reported liver regeneration rate to convert 

liver regeneration rate to fractional mass recovery. 
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6.2.2.2 Ethanol-induced steatosis (ASH) 

In the study by Yang et al. (1998), Sprague-Dawley rats (125g body weight) 

were fed either a liquid ethanol diet (355 kcal ethanol, 115 kcal carbohydrates, 

360kcal fat, and 180 kcal protein per liter) or a control diet (470 kcal carbohydrates, 

360 kcal fat, and 180 kcal protein per liter) for a period of five weeks. After a five 

week adaptation to these diets, rats were anesthetized using ether and a 70% PHx was 

performed. Rats were sacrificed at 24 hours and 48 hours post-PHx, and liver weight 

was measured. The data presented by Yang et al. (1998) were given in percentage of 

initial weight at 24 and 48 hours post-hepatectomy (Yang et al, 1998b). We assumed 

that the initial % of initial liver weight was 30% because a 70% PHx was performed. 

Therefore, to convert from % initial liver weight to fractional recovery, we divided % 

initial liver weight by 100%. Although we imposed no further constraints on 

regeneration in rats with ASH, based on observations of 3H-thymadine incorporation 

from previous studies, we surmise that it is unlikely that significant hepatocyte 

replication occurs beyond 48 hours post-hepatectomy in alcohol-fed rats (DUGUAY 

et al, 1982). 

6.2.2.3 Toxin-Induced Cirrhosis 

In the study by Kaibori et al. (1997), 6 week old male Sprague Dawley rats 

(150-200g body weight) were injected with thioacetamide (4% thioacetamide at 

20mg/100g body weight) thrice weekly for 10 weeks. The rats were then kept for an 

additional 3 weeks to allow for thioacetamide washout. Cirrhosis was then confirmed 

by histology. Following development of cirrhosis, rats were anesthetized with ether 

and 45% partial hepatectomy was performed. Rats were sacrificed and their livers 

were excised and weighed at 1, 2, 3, 5, and 7 days post-PHx (Kaibori et al, 1997). 
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At the time of PHx, remnant cirrhotic livers from 10 additional rats were 

weighed as a measure of original remnant liver weight. Liver regeneration rate was 

calculated as follows: 

𝐿𝑖𝑣𝑒𝑟 𝑅𝑒𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒 = (
𝑅𝑒𝑚𝑛𝑎𝑛𝑡 𝑤𝑒𝑖𝑔ℎ𝑡

𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑤𝑒𝑖𝑔ℎ𝑡
) ∗ 100%  (6.17) 

Therefore, the only conversion necessary to convert liver regeneration rate to 

fractional mass recovery was to divide by 100%.  

6.2.2.4 Toxin-Induced Type 1 Diabetes 

In the study by Johnston et al. (1986), diabetes was induced in male Wistar rats 

(200-300g body weight) by administering a single dose of streptozotocin (65mg/kg 

body weight) injected into the tail vein under light anesthesia (ether). Rats then 

received 0.28 M glucose to drink. Partial hepatectomy was performed five days 

following streptozotocin administration. During recovery, rats were sacrificed and dry 

liver weight was measured at 12, 24, and 48 hours post-resection. The data reported in 

this study were given in liver dry weight percent of total body weight.  

To convert these data to fractional recovery, we first calculated the baseline 

liver dry weight to total body weight percent. From the 10 week-old organ weights of 

the Phenome project at the National BioResource Project for the Rat in Japan 

(www.anim.med.kyoto-u.ac.jp/nbr), we found that the average liver to body weight 

percent across rat strains (and specifically for the WST.F334-Kmch/Kyo strain) is 

approximately 3%. Johnston et al. (1986) states that water content in the livers of 

sham-operated rats was 64.9%. Thus, the following two equations were constructed to 

solve for initial dry liver to body weight percent.  

(𝐷𝑟𝑦 𝐿𝑖𝑣𝑒𝑟)+(𝑊𝑎𝑡𝑒𝑟)

𝐵𝑜𝑑𝑦 𝑊𝑒𝑖𝑔ℎ𝑡
= 3%   (6.18) 
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𝐷𝑟𝑦 𝐿𝑖𝑣𝑒𝑟
25.1%⁄ =  𝑊𝑎𝑡𝑒𝑟

64.9% ⁄   (6.19) 

where Dry Liver and Water are the weights of the dry tissue and water content 

of the tissue. Equation 6.19, can be rearranged as follows. 

𝑊𝑎𝑡𝑒𝑟 = 2.586(𝐿𝑖𝑣𝑒𝑟)   (6.20) 

Thus, equation 6.18 can be solved for baseline dry liver to body weight 

percentage by inserting equation 6.20 into equation 6.18 to yield baseline dry liver to 

body weight percentage was 1.16% in the rats used in this study. A 70% PHx yields a 

starting dry liver to body weight percentage of 0.348% corresponding to a fractional 

recovery of 0.3. All data in this study were therefore scaled by a factor of 0.3/0.348% 

to convert the dry liver to body weight percentage to fractional recovery (JOHNSTON 

et al, 1986).  

Previous studies have suggested that alloxan-induced diabetic rats showed a 

delay in regeneration but that diabetes did not suppress overall recovery (BARRA & 

HALL, 1977). We therefore constrained recovery at 300 hours post-PHx in diabetic 

rats to be the same as for wild-type rats.  

6.2.2.5 Mouse Liver Regeneration 

Male mice aged 8-12 weeks (129S1) were fed standard mouse chow ad 

libitum. Mice were anesthetized by pentobarbital and 70% PHx was performed. The 

data from Shu et al. (2009) for control mice were given in liver to body weight ratio 

(Shu et al, 2009b). To convert these data to fractional recovery, these data were scaled 

by 0.3 divided by initial value for liver-to-body weight ratio. 
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6.2.2.6 Human Liver Regeneration 

The data presented by Periwal et al. (2014) were already given as the fraction 

of original liver volume, hence requiring no conversion (Periwal et al, 2014). 

Similarly, the data presented by Pomfret et al. (2003) were given in percent 

regeneration, which is defined as remnant volume divided by original volume 

(x100%) (Pomfret et al, 2003). No conversion was required for these data as well. 

6.2.3 Sensitivity Analysis 

Normalized sensitivity coefficients were estimated by changing each parameter 

(pi) by +/- 10% of its nominal value and calculating sensitivity at each simulation time 

point according to equation 6.21. 

𝑆i(𝑡) =
Δ𝑀𝑎𝑠𝑠(𝑡)/𝑀𝑎𝑠𝑠(𝑡)

Δ𝑝𝑖/𝑝𝑖
   (6.21) 

Mass(t) represents the nominal mass fraction of hepatocytes at any given time, 

t, and ΔMass(t) is the deviation from nominal caused by the parameter change. The 

result is a dynamic parametric sensitivity, showing how the profile of liver 

regeneration responds to changes in parameters as a function of time. 

6.2.4 Statistical Methods 

We performed a log-likelihood ratio test to assess whether our extended model 

described the experimental data significantly better than the previous model. This test 

takes into account the number of parameters used in the model and the model error in 

fitting the experimental data. We assumed that the residuals from the fitted models 

followed a Gaussian distribution (i.e. there was no non-random pattern to the 

residuals) and used one degree of freedom, corresponding to the cell growth parameter 

we added to the model. In the case of this model comparison, the original model has 1 
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fewer parameters than the extended model, we therefore considered the extended 

model as the unrestricted model. For each model, the log-likelihood function was used 

to calculate the model fit to experimental data from Tanoue et al. (2011) in accordance 

with equation 6.22. 

𝑙(𝜇, 𝜎2; 𝑥1, 𝑥2, … , 𝑥𝑛) =  −
𝑛

2
ln(2𝜋) −

𝑛

2
ln(𝜎2) −

1

2𝜎2  ∑ (𝑥𝑗 − 𝜇)
2𝑛

𝑗=1     (6.22) 

Where μ and σ2 were estimated from the residuals for each model.  

The ltestratio function in Matlab was used to compare the likelihood of the two 

models. 

6.3 Results 

6.3.1 Model Implementation 

Our computational model extends the model previously published by 

Furchtgott, Chow, and Periwal by adding terms describing the contributions of cell 

growth and initially matrix-bound factors to liver regeneration following resection 

(Furchtgott et al, 2009). Our computational model consists of 11 ODEs (described in 

detail in the Methods section), 43 parameters (Appendix A), and 12 variables 

representing molecular levels and cell abundances (Appendix A). All variables 

representing molecular levels, except matrix bound factors (MBF), have an initial 

steady-state level of 1 and any change thereafter is a fold-change over baseline. 

Determination of MBF initial level is described in the following section. The initial 

level of quiescent hepatocytes is 1, while initial levels of primed and replicating 

hepatocytes are 0. All simulations were performed using Matlab (Mathworks, Natick, 

MA).  
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6.3.2 Extended model predicts the importance of Kupffer cell-mediated 

signaling during the priming phase 

The importance of direct intercellular signaling leading to IE gene expression 

has been widely studied. Direct interventions to intercellular signaling have been 

shown to impact liver regeneration dynamics significantly (Meijer et al, 2000b). 

Whereas, the effects of matrix bound factors (MBF) are less well appreciated but 

appear to have a more subtle effect on regeneration dynamics (Zhou et al, 2015). 

Therefore, we reasoned that the effects of MBF are likely less than the effects of IE 

genes on driving regeneration. We tested model behavior if the effects of MBFs are 

just as important to regeneration as IE gene effects. Rather than match parameters for 

MBF signaling to a particular MBF (i.e. WNT) we tuned the model parameters initial 

MBF levels, production rate, and degradation rate such that the relative magnitude of 

the priming signal from initially MBF signaling and IE gene production were of the 

same order of magnitude during the timeframes when they were contributing to 

hepatocyte priming (Figure 6.3).  
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Figure 6.3 Relative levels of IE genes (Fold Change) and signals released from the 

ECM (Relative Amount) during the priming phase. Model parameters 

were scaled in such a way that priming signals from Kupffer cells and 

from initially matrix-bound factors had relatively equal contributions to 

hepatocyte priming. The peak of MBF signaling occurred at 

approximately 45 minutes post-PHx. 

Appendix A contains the parameters that correspond to this phenotypic 

behavior. This parameter choice relies on the assumption that MBF signaling is as 

important as IE gene production to induce hepatocyte priming, and MBFs are depleted 

following the priming phase. Unbinding of MBF peaked approximately 45 minutes 

post-PHx and lasted over the duration of the priming phase (6 hours post-PHx), while 

IE gene levels peaked close to 3 hours post-PHx and remained high throughout the 

early stages of liver regeneration (>12 hours post-PHx). We found that including MBF 

signaling altered the dynamic mass recovery only slightly, leading to a sustained offset 

in mass recovery compared to the case without MBF signaling (Figure 6.4). The effect 

of MBF signaling in our model is slight most likely because the duration of MBF 

signaling is shorter than the duration of cytokine signaling. Because of the negligible 



 181 

effect that MBF signaling had on liver regeneration dynamics, we excluded its 

contributions from the subsequent model analyses. 

 

Figure 6.4 Comparison of simulated mass recovery with and without considering 

Matrix Bound Factors (MBF). (A) Including EBF signaling in the 

computational model did not significantly change the overall dynamic 

mass recovery profile. (B) Including EBF signaling impacted the onset 

timing of regeneration leading to a small offset between dynamic 

regeneration including and excluding EBF signaling. This small offset 

(~0.006 mass recovery fraction) remained throughout regeneration. 

6.3.3 Extended model with cell growth better accounts for rat liver regeneration 

profile 

Although the original model proposed by Furchgott, Chow, and Periwal (2009) 

captured the broad features of liver regeneration in rats, it considered relative 

hepatocyte number as a measure of tissue response rather than overall mass. 

Comparing this simulated number of hepatocytes to experimental data is difficult 

because the experimentally available measurement closest to cell number is relative 

tissue mass. When compared to relative tissue mass recovery, this model fails to match 

the mass recovery dynamics accurately: specifically, the model without cell growth 
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fails to capture the experimental observation that the rat liver doubles in mass by 24 

hours post hepatectomy (Figure 6.5, “No cell growth” & “Experimental data”) 

(Furchtgott et al, 2009;Tanoue et al, 2011). Our extended model incorporating cell 

growth could better account for the dynamic profile of liver mass recovery in rats by 

more accurately simulating mass recovery dynamics (Figure 6.5, “Cell growth”).  

 

Figure 6.5 Comparison of experimental data of liver regeneration in rats from Tanoue 

et al. (2011) (Experimental data) to the models proposed by Furchgott et 

al. (2009) (No cell growth) and proposed in this work (Cell growth). The 

model proposed in this work is able to fully capture the dynamics of liver 

repair following 70% partial hepatectomy in rats. 

We performed a log-likelihood ratio test to assess whether our extended model 

described the experimental data significantly better than the previous model. This test 

takes into account the number of parameters used in the model and the model error in 

fitting the experimental data. We assumed that the residuals from the fitted models 
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followed a Gaussian distribution (i.e. there was no non-random pattern to the 

residuals) and used one degree of freedom, corresponding to the cell growth parameter 

we added to the model. For further explanation of the test, see the Methods section. 

We found that the original model had a log-likelihood of 4.42, while our extended 

model had a log-likelihood of 9.64. The results of log-likelihood ratio test showed that 

our extended model was able to capture the experimental data more accurately than 

the previous model, with a p-value of 0.0012 (G2 = 10.53). The ability to compare our 

simulated regeneration profiles to experimental mass recovery profiles allowed us to 

simulate experimentally observed cases of deficient liver regeneration and predict 

molecular and physiological deficiencies underlying these cases. 

6.3.4 Exploring the state space of liver regeneration reveals distinct 

regeneration modes 

We sampled the model’s parameter space within a range of biologically 

reasonable parameter values using a Latin hypercube sampling method to sample each 

parameter uniformly from +/- 50% of its nominal value. We then simulated liver 

regeneration following 70% PHx using 150 parameter sets and classified the resulting 

regeneration dynamics. We found that liver regeneration is classifiable into several 

distinct modes of response to PHx: four regenerating modes (Figure 6.6A-D): delayed, 

suppressed, enhanced, and delayed and enhanced; and two non-regenerating modes 

(Figure 6.6E and F): unresponsive and liver failure. 
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Figure 6.6 Model-predicted modes of regeneration revealed through sampling model 

parameters (+/- 50% of nominal values). Varying model parameters 

simultaneously revealed distinct regeneration modes, including (A) 

delayed, (B) suppressed, (C) enhanced, (D) delayed and enhanced, (E) 

unresponsive, and (F) liver failure. The dashed line is the nominal 

profile; the gray areas indicate +/- 1 standard deviation.  

Next, we investigated the molecular regulation governing the distinct 

regeneration modes (Figure 6.7). We found that for most of the regeneration modes 

the variability in molecular regulation was high, often overlapping both the nominal 

regeneration case and zero levels (Figure 6.7C). These results show that there is no 

single molecular profile that gives rise to a particular regeneration mode and that 

imbalances in a combination of factors can have large effects on regeneration 

dynamics. Based on these results, we conclude that the balance and timing of multiple 
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factors acting in combination is critical in shaping the regeneration mode following 

resection.  

 

Figure 6.7 Molecular regulation governing altered regeneration profiles. (A) Average 

mass recovery, (B) One representative instance of mass recovery, (C) 

Average molecular regulation for regeneration modes: (1) Delayed, (2) 

Suppressed, (3) Enhanced, (4) Delayed and Enhanced. Dashed line 

represents nominal profile, black line represents average (or [B] one 

instance of the) profile, gray area represents +/- 1 standard deviation. 
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We further investigated specific molecular imbalances that could lead to 

instances of each altered regeneration modes. Each regeneration mode consists of 

many possible individual regeneration dynamics. The following figures show our 

simulations of some of these individual regeneration possibilities. Delayed 

regeneration can occur when there is enhanced priming but inhibited hepatocyte 

replication (Figure 6.8A, left panel), when there is delayed priming (Figure 6.8A, 

center panel), and when there is nominal priming but inhibited hepatocyte replication 

(Figure 6.8A, right panel). Enhanced priming and inhibited hepatocyte replication is 

associated with decreased IL6 signaling but increased STAT3 phosphorylation (Figure 

6.8B, left panel), likely caused by extreme IL6 sensitivity. This regeneration profile 

also exhibits suppressed GF signaling and high ECM levels, leading to the suppressed 

mass recovery rate. GF levels, however, are maintained at levels slightly above 

nominal for a long time, allowing for eventual recovery to original liver mass. Delayed 

priming is associated with low levels of STAT3 phosphorylation (Figure 6.8B, center 

panel). Again, GF levels remain above nominal for the course of regeneration, 

allowing for complete mass recovery. We were interested to see that this specific 

profile also showed high levels of IL6, which could correspond to a liver consisting of 

hepatocytes with high inflammation resistance. Nominal priming but inhibited 

hepatocyte replication was associated with nominal levels of IL6, but low levels of 

STAT3 phosphorylation (Figure 6.8B, right panel). This recovery profile also 

exhibited high levels of GF signaling, likely meaning that the hepatocytes in this liver 

were resistant to GF signaling. This set of parameters could correspond to an aged 

liver (Bucher et al, 1964;BUCHER & GLINOS, 1950;Ono et al, 2011a). 
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Figure 6.8 Model-predicted molecular regulation profiles underlying delayed 

regeneration response. (A) Mass recovery of specific delayed cases of 

liver regeneration compared to nominal and (B) molecular regulation for 

each regeneration profile. Deficiencies in either priming signals or 

growth factor bioavailability can lead to delayed regeneration. Note that 

parameters related to hepatocyte response to these signals change in 

addition to parameters governing molecular regulation. Dashed line 

represents nominal profile, black line represents the profile 

corresponding to delayed regeneration. 
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Suppressed regeneration can occur with normal priming and suppressed 

replication (Figure 6.9A, left panel), with delayed priming and suppressed 

regeneration (Figure 6.9A, center panel), and with delayed priming and early 

termination (Figure 6.9A, right panel). The profile with normal priming and 

suppressed regeneration is governed by nominal levels of IL6 signaling and STAT3 

phosphorylation but low levels of GF signaling (Figure 6.9B, left panel). In this 

scenario, cells are primed but few go on to progress through the cell cycle. In contrast, 

the other two profiles both show deficient priming, as seen in low levels of STAT3 

phosphorylation (Figure 6.9B, center and right panels). Both of these profiles also 

show increased GF levels that are sustained high for a long time. The problem in these 

regeneration scenarios is that there are few primed cells to respond to the GF 

signaling. The differences in regeneration dynamics in these two cases are likely 

caused by a different priming propensity in response to STAT3 downstream signaling 

and different cell cycle kinetics (simulated as changes in the hepatocyte proliferation 

rate).  
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Figure 6.9 Model-predicted molecular regulation profiles underlying suppressed 

regeneration response. (A) Mass recovery of specific suppressed cases of 

liver regeneration compared to nominal and (B) molecular regulation for 

each regeneration profile. Suppressed regeneration can be caused by 

deficient priming signals or deficient growth factor bioavailability. 

Dashed line represents nominal profile, black line represents the profile 

corresponding to suppressed regeneration. 
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Some parameter sets lead to enhanced recovery following resection. This 

enhanced recovery is often associated with nominal priming followed by regeneration 

that exceeds the nominal recovery by increasing the rate of replication (Figure 6.10A, 

left panel), maintaining replication for longer (Figure 6.10A, center panel), or 

recoverying a high mass followed by a decrease in total mass prior to stabilizing 

(Figure 6.10A, right panel). Enhanced recovery due to increased recovery rate is 

associated with enhanced priming and enhanced GF signaling (Figure 6.10B, left 

panel). Enhanced recovery due to a maintained replication is associated with a 

decreased priming and nominal GF signaling (Figure 6.10B, center panel). This 

maintained replication is therefore likely caused by a reduced requiescence rate of 

replicating hepatocytes. Enhanced recovery with a mass decrease at the end of 

regeneration is associated with low priming and high GF signaling (Figure 6.10B, 

right panel). The mass loss is associated with a spike in ECM production; ECM itself, 

however, likely does not cause the mass decrease directly. The mass decrease is likely 

caused by a decreased in individual cell mass (the variable G), which could be caused 

by an ECM buildup reducing suddenly the numbers of primed and replicating cells.  
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Figure 6.10 Model-predicted molecular regulation profiles underlying enhanced 

regeneration response. (A) Mass recovery of specific enhanced cases of 

liver regeneration compared to nominal and (B) molecular regulation for 

each regeneration profile. Enhanced regeneration can be regulated by 

enhanced GF bioavalability or by enhanced hepatocyte response to the 

presence of growth factors. Dashed line represents nominal profile, black 

line represents the profile corresponding to enhanced regeneration. 
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Some profiles were delayed initially, but later recovered and exhibited 

enhanced recovery. This recovery mode can be caused by a delay in priming and a 

later acceleration of hepatocyte replication (Figure 6.11A, left and right panels), which 

is similar to the type of regeneration profile we observed experimentally in Adn-/- 

mice (See Chapters 3 and 4) (Correnti et al, 2015). This recovery mode can also be 

caused by a low replication rate that is maintained throughout recovery (Figure 6.11A, 

center panel). All three of these profiles are associated with enhanced GF signaling, 

either at the same time as the nominal case but a higher magnitude (Figure 6.11B, 

center and right panels) or delayed from nominal (Figure 6.11B, left panel). The 

delayed regeneration profiles are both associated with impaired priming (Figure 

6.11B, left and right panels). The low but sustained replication profile is associated 

with enhanced priming signals (likely leading to similar priming phases) but 

maintained high levels of ECM (Figure 6.11B, center panel). These high ECM levels 

likely impair hepatocyte transition to the replicating state, leading to the slow 

replication rate. 

Certain parameter combinations led to no response following resection (Figure 

6.12A) or complete liver failure (Figure 6.13A). The profiles following the 

unresponsive regeneration mode are characterized by a lack of priming response, GF 

response, and ECM restructuring (Figure 6.12B). Profiles following the liver failure 

mode are characterized by steadily increasing levels of IL6 and GF as non-

parenchymal cells try to enable hepatocyte replication prior to liver failure (Figure 

6.13B). The main parameters leading to liver failure are related to hepatocyte 

apoptosis rate. 
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Figure 6.11 Model-predicted molecular regulation profiles underlying delayed and 

enhanced regeneration response. (A) Mass recovery of specific delayed 

and enhanced cases of liver regeneration compared to nominal and (B) 

molecular regulation for each regeneration profile. One model-predicted 

cause of this profile is deficient priming signals coupled with enhanced 

growth factor bioavailability. Dashed line represents nominal profile, 

black line represents the profile corresponding to delayed and enhanced 

regeneration. 
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Figure 6.12 Model-predicted molecular regulation profiles underlying unresponsive 

regeneration response. (A) Mass recovery of specific unresponsive cases 

of liver regeneration compared to nominal and (B) molecular regulation 

for each regeneration profile. Both regeneration profiles and molecular 

regulation appear to be unresponsive in the profiles investigated. Dashed 

line represents nominal profile, black line represents the profile 

corresponding to unresponsive regeneration. 
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Figure 6.13 Model-predicted molecular regulation profiles underlying liver failure. (A) 

Mass recovery of specific liver cases of liver failure compared to nominal 

regeneration and (B) molecular regulation for each liver failure profile. 

As the liver fails, Kupffer cells and hepatic stellate cells attempt to rescue 

the liver by producing more pro-regenerative factors. Dashed line 

represents nominal profile, black line represents the profile 

corresponding to liver failure. 
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6.3.5 Sensitivity analysis reveals that molecular and physiological regulation 

strongly affects dynamic mass recovery 

We performed a local parametric sensitivity analysis to identify additional 

factors and network balances significantly affecting the liver regeneration dynamics. 

We found that the addition of cell growth to the extended model did not have a strong 

effect on the maximum local sensitivity coefficients of model parameters (Figure 

6.14A). The exception to this observation is the maximum sensitivity of the metabolic 

demand parameter (M), which changed from positive to negative with the addition of 

cell growth. Sensitivity values computed for both the original model and the extended 

model including cell growth revealed that both molecular and physiological 

parameters showed high sensitivity.  
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Figure 6.14 Dynamic local sensitivity analysis of the regeneration model with and 

without cell growth. (A) Maximum normalized sensitivities were 

calculated for each parameter. (B) Normalized local sensitivity of 

metabolic demand when not considering cell growth. Metabolic demand 

is inhibitory for the first 53 hrs post-PHx, likely through increases in cell 

apoptosis. After 53 hrs, metabolic demand enhances regeneration, likely 

through increased production of growth factors. (C) Normalized local 

sensitivities of metabolic load and growth rate reveal a dynamic 

competition between replication and growth. From 43-87 hrs post-PHx 

growth rate and metabolic demand both drive regeneration. During 

initiation and termination, however, imbalances between growth and 

metabolic load can inhibit regeneration. 
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The model’s physiological parameters showed the highest absolute 

sensitivities, suggesting that such a lumped approach to studying tissue behavior may 

exclude detailed predictions about important biological processes. Model parameters 

related to production of factors from non-parenchymal cells as well as model 

parameters related to hepatocyte response to these factors showed high sensitivity, 

suggesting that parenchymal and non-parenchymal cell regulation are both important 

for governing liver regeneration. Specifically, we identified a potential antagonism 

between GF production rate (kGF) and degradation rate (κGF) and between IL-6 

production rate (kIL-6) and IL-6 degradation rate (κIL-6) (Figure 6.15). Increasing the 

production rates of IL-6 and GF enhanced overall regeneration, while increasing 

degradation rates inhibited overall regeneration.  

 

Figure 6.15 Potential antagonism between pairs of parameters. We used a local 

sensitivity analysis to identify pairs of parameters that impact the levels 

of a single factor or are closely related but have opposing effects on 

overall mass recovery. In addition to metabolic demand and growth rate 

(Figure 6.14 C) this analysis identified (A) IL-6 production and 

degradation and (B) GF production and degradation as potentially 

antagonistic parameter pairs. 
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We investigated how the inclusion of cell growth modified the dynamic 

sensitivity of the metabolic demand parameter (M). When cell growth is not 

considered, increased metabolic demand was inhibitory to liver recovery during the 

first 53 hours post-PHx, largely due to increased hepatocyte apoptosis (Figure 6.14B). 

After 53 hours, increased metabolic demand enhanced regeneration. With cell growth 

considered, the initial inhibitory effect of increasing metabolic demand lasted only for 

the first 43 hours post-PHx, after which it enhanced mass recovery but to a lower 

extent than the model without cell growth (Figure 6.14C). The inclusion of cell growth 

also allowed us to recognize a potential dynamic antagonism between metabolic 

demand and cell growth rate. Early post-PHx, hepatocyte growth was a positive 

contributor to liver regeneration, while metabolic demand negatively affected 

progression of regeneration. At this early time, metabolic demand acted in hepatocytes 

predominantly to induce apoptosis in damaged cells through high metabolic load, 

causing reduced liver mass. After approximately 43 hours post-PHx, high metabolic 

load induced high response in non-parenchymal cells causing increased priming and 

regeneration. From approximately 43 to 87 hours post-PHx, metabolic load and 

hepatocyte growth acted synergistically to promote liver regeneration. Near the 

termination stage of liver regeneration, however, hepatocyte growth inhibited liver 

regeneration by inducing hepatomegaly and decreasing the driving force for 

regeneration.  

6.3.6 Paired parameter analysis reveals control principles governing the 

network balances driving liver regeneration 

We investigated the organizational principles during liver regeneration by 

independently varying the pairs of antagonistic parameters identified from the 
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sensitivity analysis. We varied each parameter over an order of magnitude and 

simulated overall liver mass recovery (Figure 6.16).   

 

Figure 6.16 Heatmaps show the overall liver mass recovered is sensitive to 

combinatorial effects of (A) Metabolic load and hepatocyte growth rate, 

(B) IL-6 turnover rate, and (C) GF turnover rate. All parameter changes 

are displayed in Fold change [FC] over nominal parameter value. (A) The 

proper balance between regenerative drive and cell growth in response to 

stress is required for normal regeneration. (B) IL-6 and (C) GF 

production rates have large-scale effects on overall recovery, while 

degradation rates act as fine tuning. 

We found that although increasing metabolic demand and hepatocyte growth 

rate had opposing effects during the beginning and end of liver mass recovery, 

simultaneously increasing these parameters tended to cause an increase in overall mass 

recovery (Figure 6.16A). When changed together, metabolic demand has a much 

stronger effect on overall mass recovery than cell growth rate, for metabolic demand 

parameter values lower than approximately 40 (or an approximate fold change of 2). 

When metabolic demand was high (> 2 fold change), regeneration is typically 

enhanced but certain growth rates coupled with these high metabolic demands could 

cause complete liver failure or govern the magnitude of the enhanced recovery. When 
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metabolic demand was high (> 3 fold change) and growth rate was low (< 0.05, or 

approximately 200 fold change), growth rate was not able to compensate for increased 

apoptosis caused by high metabolic demand and liver failure occurred. Based on the 

results near nominal parameter values for metabolic demand and cell growth rate, 

metabolic demand leading to cell replication appears to be a primary driver of liver 

repair following damage, while cell growth may be a secondary or compensatory 

driver.  

When we investigated the relationship between IL-6 and GF production and 

degradation, we found that relatively slight increases to both IL-6 (Figure 6.16B) and 

GF (Figure 6.16C) production rate increased mass recovery, while degradation had to 

increase much more to cause an equivalent magnitude decrease in mass recovery. This 

antagonism was more pronounced in IL-6 balance, but was relatively subtle in GF 

balance. For further visualization of the effects of GF production and degradation 

balance, see Figure 6.17.  
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Figure 6.17 Heatmap comparison of overall liver mass recovered for altered GF 

production and degradation rates. (A) Heatmap with rescaled color 

mapping showing a subtle effect of coarse-grained control of 

regeneration by GF production and fine-tuned control by GF degradation 

(legend below), (B) Mass recovery holding one parameter constant at 20 

and varying the other, and (C) Mass recovery holding one parameter 

constant at 20 and varying the other between 0-20. All parameter changes 

are displayed in Fold change [FC] over nominal parameter value. The 

black line indicates when GF production rate fold change equals GF 

degradation rate fold change. Asymmetry around this line, as in (A), 

indicates a differential effect of GF production and degradation. 

These relationships reveal an organizational principle whereby production of 

molecules acts as a means of achieving coarse-grained control of molecular levels 

while degradation acts to achieve fine-tuned control. These results suggest that non-

parenchymal cells may act predominantly as coarse-grained controllers of liver 

regeneration, while hepatocyte responsiveness and miRNA or other regulation may act 

to achieve fine-tuned control of liver regeneration. 

We further investigated the mechanisms through which cytokines and growth 

factors affect regeneration dynamics. We found that the immediate inflammatory 

response to partial hepatectomy, represented in the model by IL-6 signaling (Figure 
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6.18A), controlled the timing of the regeneration response (Figure 6.18B) by 

controlling the magnitude of the priming response (Figure 6.18C). In simulations, a 

slight reduction in IL-6 production rate (causing an ~25% decrease in peak IL-6 

levels) led to significantly decreased STAT-3 phosphorylation (~75% reduced) and a 

lower priming response (~10% reduced) caused by decreased IE gene signaling 

(Figure 6.18C). In addition, this decrease in IL-6 levels not only lowered the priming 

response (Figure 6.18C) but also slightly delayed the peak of priming, from 7 hours to 

8 hours post-PHx. This early impaired priming response propagated through the time 

course of regeneration, lengthening the recovery for IL-6 signaling deficient cases 

(Figure 6.18B). This result indicates that relatively small upstream events can have a 

substantial effect on overall recovery. It is important to consider, however, that many 

biological processes (including inflammatory molecule production and secretion, 

receptor binding, competition with anti-inflammatory molecules and signaling 

pathways, and cellular responsiveness to inflammation) contribute to the simulated IL-

6 signaling. Deficiencies in any steps within these processes could lead to the deficient 

priming indicated by the model simulation. 
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Figure 6.18 Effect of decreasing IL-6 production. (A) IL-6 signals through the JAK-

STAT signaling pathway to prime hepatocytes for replication. (B) 

Reduced IL-6 production causes delayed regeneration, with delays 

increasing as regeneration progresses.  (C) A slight decrease in IL-6 

production (25% reduction in peak levels) amplifies as the signal 

propagates through the JAK-STAT cascade. Ultimately, this slight IL-6 

decrease results in reduced STAT-3 phosphorylation (75% reduction in 

peak) and reduced priming (~10% reduction at peak). This reduced 

priming leads to delayed recovery and a slightly reduced overall mass 

recovery (~5%). 

Growth factor bioavailability, in contrast, did not affect the priming phase but 

became important later in the regeneration process. Deficiencies in GF production led 

to a linearly increasing delay in liver mass recovery (Figure 6.19A). This delay 
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eventually led to a suppression of overall mass recovery. Low GFs mediated this 

suppression by reducing the fraction of hepatocytes in the replicating phase of the cell 

cycle (Figure 6.19B and C). Unlike inflammatory signaling, however, GF signaling 

deficiencies did not change the timing of peak regeneration. In order to shift the timing 

of peak regeneration, it was necessary to lengthen the duration of the cell cycle (Figure 

6.19D). Decreasing the cell cycle progression rate coupled with a decrease in GF 

bioavailability not only decreased the magnitude of the cell cycle response, but also 

delayed the peak response by desynchronizing hepatocyte entry into the cell cycle 

(Figure 6.19E).  

 

Figure 6.19 Effects of decreasing GF bioavailability. (A) Decreased GF production 

causes a delay in regeneration. (B) As GFs become less available, (C) 

fewer hepatocytes enter the cell cycle, decreasing peak of regenerating 

cells. The synchronicity of hepatocyte entry into the cell cycle, however, 

is affected only slightly. (D-E) To decrease the synchronicity of entry 

into the cell cycle, it is necessary to decrease the proliferation rate. 
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6.3.7 Translating Among Species Using the Computational Model 

We tested whether translating among species can potentially be achieved 

simply by adjusting model parameters in the extended computational model. Prior to 

simulation, we sought to identify which parameters likely change among species. The 

cell cycle duration is known to be fairly consistent across mammalian species; 

therefore, we maintained this parameter at nominal levels (Alexiades & Cepko, 

1996;Novak & Tyson, 2004;Singhania et al, 2011;ZETTERBERG & LARSSON, 

1985). Similarly, the JAK-STAT pathway is understood to be ubiquitous in 

mammalian species. Therefore, we maintained JAK-STAT signaling pathway 

parameters constant across species. Additionally, while the physiological parameters 

used to approximate multiple pathways may indeed change between species, there is 

little reason to believe that the essential mechanisms of these pathways differ any 

more than the JAK-STAT signaling pathway does. Therefore we maintained the 

physiological parameters at nominal levels as well. This assumption of consistent 

pathway behavior across species does not take into account any differences in network 

dynamics caused by species-specific molecular dynamics, for example rat IL-6 half-

life in rat macrophages compared to human IL-6 half-life in human macrophages.  

We considered an approach where all molecular driving events were 

maintained constant between species, leaving the metabolic demand parameter and the 

cell growth rate parameter as the only ones available for modification. It has been 

shown that metabolic demand of an organism is proportional to the mass of the 

organism raised to an exponential power (estimated to be between 2/3 and 3/4); this is 

true for both plants and animals and appears to be an organizing principle of biology 

(Kolokotrones et al, 2010;Reich et al, 2006;White & Seymour, 2003). The metabolic 

demand parameter is a lumped parameter approximating extrinsic signals that occur in 
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parenchymal and non-parenchymal cells and intrinsic hepatocyte capacity to respond 

to these signals; however, a portion of these signals may be caused by increased 

nutrient and toxin flux. Therefore, this term represents, at least in part, a metabolic 

response to these fluxes, which may vary among species according to overall mass. 

Lumping extrinsic and intrinsic drivers of regeneration into one parameter makes it 

difficult to simulate experiments where hepatocytes from one species are transplanted 

into another, but such a technique is appropriate when considering each species 

individually (Weglarz & Sandgren, 2000). In addition to metabolic demand potentially 

changing across species, it is possible that cell growth rate may also differ across 

species. We were able to find no studies reporting grossly observable differences in 

cell growth rates, while several studies have suggested that the cell growth rate across 

species appeared to be fairly similar among mammalian species (TYSON, 1985;Wilk 

et al, 2014). These results led us to believe that cell growth rate likely changes among 

mammalian species, but that change is likely not orders of magnitude different. 

Therefore, we changed the cell growth rate and metabolic demand parameters across 

species in our model to simulate regeneration in multiple species. 

We fit regeneration profiles of rats, mice, and humans by simultaneously 

changing only the hepatocyte growth rate and metabolic demand parameters and 

minimizing the sum of squared error between experimental data and simulation 

output. For rats and mice, the growth rates estimated using this least squares approach 

were fairly similar (G = 3.5x10-4 and 9.7x10-4 mass equivalent doublings/minute, 

respectively). The optimum fit for humans, however, resulted in a much higher 

estimated growth rate (G = 2.5x10-2 mass equivalent doublings/minute). This 

estimation is inconsistent with literature suggesting cell growth rate is fairly similar 
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among mammalian species (TYSON, 1985;Wilk et al, 2014). We therefore 

constrained human hepatocyte growth rate to the average of rat and mouse growth 

rates (G = 6.6x10-4 mass equivalent doublings/minute) (Table 6.1) and changed only 

the metabolic demand parameter to fit human regeneration data.  

 

Figure 6.20 Cross-species comparison of (A) rat, (B) mouse, and (C) human (upper 

panel) mass recovery profiles with experimental liver regeneration data 

(Pomfret et al, 2003;Shu et al, 2009b;Tanoue et al, 2011) and (lower 

Panel) predicted fraction of replicating hepatocytes for each species. This 

model suggests that the key difference governing regeneration profiles 

between species is an altered balance between proliferative and 

replicative balance in hepatocytes. This species-specific balance alters 

the levels of GFs available during regeneration thereby altering the BrdU 

incorporation of hepatocytes post-PHx. Rats and mice have similar 

metabolic loads and growth rates causing similar BrdU incorporation 

with several slight differences. Rats have a slightly later peak BrdU than 

mice (30h vs. 28h) and a higher peak value (0.75 vs. 0.66). Mouse BrdU 

incorporation, however, continues longer than rat. Similarly, humans 

show a reduced peak replication response (note change of scale) but a 

lengthened regeneration period, leading to similar overall recovery. 
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Table 6.1 Parameter changes to simulate regeneration in multiple species 

Parameter Rat Mouse Human 

M 20.8217 23.0294 5.8507 

G 3.4742x10-4 9.6607x10-4 6.5675x10-4 

 

By modifying only hepatocyte growth rate and metabolic demand parameters, 

and appropriately scaling the apoptosis parameter θap, we were able to fit regeneration 

profiles from rats, mice, and humans post-hepatectomy (Figure 6.20A-C) (Pomfret et 

al, 2003;Shu et al, 2009b;Tanoue et al, 2011). We scaled the apoptosis parameter θap 

by multiplying θap by the ratio of Mmouse/human to Mrat. Both rats and mice regenerate to 

the initial level of liver mass within ~168 hours post-hepatectomy (7 days), while 

humans take nearly 100 days to recover mass fully. Both rats and mice had a robust 

response to partial hepatectomy, with an early spike in regenerating cells (peaking 

near 30 hours post-PHx). Rats appeared to have a slightly higher regeneration peak 

(Figure 6.20A), while mice appeared to sustain regeneration slightly longer than rats 

(Figure 6.20B). Although these results did not capture the shift in peak hepatocyte 

replication from 24 hours post-PHx in rats to 48 hours post-PHx in mice, fitting the 

mass recovery dynamics between these two rodent species underscore the similarity in 

regeneration response between them. Humans, on the other hand, showed lower peak 

regeneration but sustained regeneration across many months rather than days (Figure 

6.20C). 

After fitting the metabolic demand parameter to experimental data, we 

determined an empirical relationship for determining the metabolic demand parameter 
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from the organism body mass, Equation 6.23 (Figure 6.21). We used a power-law 

expression to describe the relationship between these terms because of the well-known 

power-law relationship between organism mass and metabolic function.  

𝑀𝑒𝑡𝑎𝑏𝑜𝑙𝑖𝑐 𝐷𝑒𝑚𝑎𝑛𝑑 = 47.315 ∗ 𝑀𝑎𝑠𝑠−0.1825 (6.23) 

 

Figure 6.21 Relationships between fitted parameters and body mass across species. 

(A) Metabolic demand shows a negative exponential relationship with 

body mass following the equation: 𝑀𝑒𝑡𝑎𝑏𝑜𝑙𝑖𝑐 𝐷𝑒𝑚𝑎𝑛𝑑 = 47.315 ∗
𝑀𝑎𝑠𝑠−0.1825 (R2 = 0.95). (B) Cell growth rate for humans was estimated 

as the average growth for mouse and rat because there is little difference 

in cultured hepatocyte growth rates between species. 

We have shown that it is possible that the difference in time necessary to 

regenerate fully is due predominantly to the differential functional demands of the 

liver across species. Rodents, which live in an environment more prone to infection 

and liver injury, may require a higher metabolic demand (a component of which is the 

nutrient delivery per cell) to maintain healthy liver function than humans, which live 
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in a relatively clean environment. Because blood flow and overall nutrient delivery 

does not change following PHx, a smaller number of cells are receiving a relatively 

increased nutrient delivery in all species. It is possible that post-PHx the relative 

increase in metabolic demand per cell—and therefore the driving force for 

regeneration—may be higher in rodents than in humans.  

Liver mass recovery is a much longer process in humans than in rats, lasting 

months rather than weeks. While our assumptions allowed us to model liver 

regeneration in humans, other alternative hypotheses about the differences in liver 

regeneration between rats and humans remain possible. We therefore tested several 

alternate hypotheses that may be able to explain the differences in regeneration 

profiles between rats and humans. We tested the hypotheses that humans have an 

altered stress response compared to rats (Hyp 1); that humans have altered matrix 

remodeling dynamics and ECM-GF binding compared to rats (Hyp 2); that human 

hepatocytes have an altered transition time between physiological states (Hyp 3); and 

that human hepatocytes have a longer cell cycle, a higher apoptosis rate, a higher 

requiescence rate, and an altered transition rate between physiological states, as was 

assumed by Periwal et al. (2014) (Hyp 4) (Periwal et al, 2014). The study by Periwal 

et al. (2014) reduced the values of parameters controlling the hepatocyte cell cycle 

rate, apoptosis rate, and requiescence rate by a factor of 24, roughly the difference in 

lifespan between rats and humans. Additionally, they used clinical data to fit the three 

physiological parameters governing the rate of hepatocyte transition between states 

(kP, kR, and kQ), reasoning that since these parameters abstract multiple signaling 

pathways and regulation, these parameters are most likely to be altered between 

species. Recent research from the Periwal lab, however, has agreed with our view that 
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cell growth and metabolic demand can be used to translate among species (Young & 

Periwal, 2015a). Table 6.2 contains the parameters used to test these hypotheses. We 

compared these hypotheses to our hypothesis that an altered metabolic demand can 

account for differences in liver regeneration dynamics between humans and rats (Hyp 

5).  
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Table 6.2 Summary of parameters used to simulate alternate hypotheses of how human 

liver regeneration differs from rat liver regeneration 

Hyp 1:  

Altered 

cytokine 

response 

Hyp 2: 

Altered GF 

storage and 

ECM balance 

Hyp 3:  

Altered state 

transition rate 

Hyp 4:  

From Periwal et 

al. (2014) 

Hyp 5:  

Reduced 

metabolic 

demand 

kIL6 = 0.1435 κdeg = 4.955 kQP = 1.4x10-3 kQP = 1.1x10-3 M = 20.8217 

κIL6 = 0.4942 κECM = 56.30 kPR = 1.5x10-3 kPR = 2.6x10-3 G = 3.474x10-4 

VJAK = 

1.364x103 

kGF = 3.288x10-

3 
kRQ = 70.9x10-3 kRQ = 135x10-3 

 

Km
JAK = 

7.565x103 

κGF = 2.139x10-

3  
kreq = 4.17x10-3 

 

κJAK = 0.0398 kup = 0.1008 
 

kap = 4.17x10-3 
 

[STAT3] = 

2.031 
  kprol = 8.33x10-3  

kSTAT3 = 

1.109x103 
    

Km
STAT = 

0.5178 
    

κSOCS = 0.1682     

KI
SOCS3 = 

0.0569 
    

kIE = 18.60     

Km
IE = 88.13     

κIE = 1.148     
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Figure 6.22 Alternate parameter changes that can reproduce experimental liver 

regeneration profiles in humans. Parameters were varied to fit 

experimental data of human mass recovery to test several possible 

hypotheses about how human liver regeneration differs from rat: the 

hypothesis that humans have a higher stress response than rats (blue, 

MSE=6.1x10-3), the hypothesis that humans store a greater quantity of 

growth factors in the ECM that is liberated early post-PHx and may have 

an altered ECM production/degradation balance (red, MSE=6.25x10-3), 

the hypothesis that human hepatocytes have a higher transition time 

between physiological states (green, MSE=0.25x10-3), the hypothesis 

that humans have a longer cell cycle, a higher apoptosis rate, a higher 

requiescence rate, and a higher transition rate between physiological 

states as was assumed by Periwal et al. (2014) (magenta, 

MSE=12.16x10-3), and the hypothesis that only the metabolic demand 

parameter changes (black, MSE=4.91x10-3). (A) Simulated mass 

recovery compared to experimental data (Pomfret et al, 2003). (B) Mass 

recovery over the first 30 days following resection. (C) Fraction of 

replicating cells (simulated BrdU incorporation) post-resection. (D) IL-6 

levels post-resection. (E) GF levels post-resection. (F) ECM 

accumulation post-resection. It may be possible to differentiate between 

most of these hypotheses by measuring at 30 days post-resection (G) IL-

6, (H) GF, and (I) ECM. To differentiate between the high transition time 

hypotheses (green) and the hypothesis presented by Periwal et al. 

(orange), it may also be necessary to measure mass recovery. 

Approximately two weeks post-resection showed the maximum 

difference between mass recovery between these two hypotheses. MSE = 

Mean Squared Error between experimental and simulated data. 

We found that all of the proposed hypotheses were able to explain human liver 

regeneration fairly well (Figure 6.22A). The early dynamics of regeneration, however, 

were able to differentiate between many of the hypotheses (Figure 6.22B and C). At 

two weeks post-PHx (14 days), the liver mass recovery should be able to differentiate 

between several of the hypotheses (Figure 6.22B). The biological variability in human 

liver mass recovery, however, may make this approach challenging. If liver biopsies 

are available, the fraction of replicating hepatocytes in these samples could be used to 
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identify which (if any) of these hypotheses is correct. Because biopsies of regenerating 

livers may not be beneficial to regeneration, it may be more clinically feasible to 

investigate cytokine and growth factor levels in the blood, assuming that they correlate 

to what is in the liver. Our model predicts that investigating cytokine levels (Figure 

6.22D and G), growth factor levels (Figure 6.22E and H), and ECM accumulation 

(Figure 6.22F and I) at two weeks post-PHx will provide a surrogate for replication 

fraction to differentiate between hypotheses. The hypotheses that cell transition time 

differs between species (Hyp 3) and that cell transition time, replication rate, 

requiescence rate, and apoptosis rate differ between species (Hyp 4) gave similar 

predictions for molecular regulation at 30 days post-PHx; therefore, to differentiate 

between these hypotheses, it may be necessary to also investigate mass recovery or 

replicating fraction of cells. Furthermore, when measuring molecular levels in blood 

of patients, the fold changes may not match exactly the fold changes predicted to exist 

in the tissue from model simulations. What should allow for differentiation of 

hypotheses is the patterns of molecular regulation across multiple proteins. 

We varied sets of model parameters to fit simulated regeneration dynamics to 

experimental human liver regeneration data to predict how human liver regeneration 

would have to differ from rat liver regeneration for these hypotheses to hold true. If 

the human cytokine response to PHx is entirely responsible for human to rat 

differences in regeneration dynamics (Hyp 1), then the production of pro-

inflammatory cytokines should be suppressed in humans. Similarly, the hepatocyte 

response to these inflammatory cytokines should be suppressed as well. This would 

lead to decreased pro-inflammatory cytokine signaling (Figure 6.22 G – Hyp 1), 

causing low expression of MMPs and sustained high levels of ECM (Figure 6.22I – 
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Hyp 1). If ECM remodeling and GF signaling is entirely responsible for human to rat 

differences (Hyp 2), then GF production in humans should be slower than rats and 

human ECM should be more efficient in binding GF than rat ECM. This would lead to 

low levels of GF (Figure 6.22H – Hyp 2) and high levels of ECM (Figure 6.22I – Hyp 

2). If the only difference between human and rat regeneration is hepatocyte transition 

time between physiological states (Hyp 3), then the transitions from Q to P and P to R 

promoting regeneration should be slower, while the transition from R to Q should be 

faster in humans than rats. If the assumptions made by Periwal et al. are true (Hyp 4), 

then the transition times should respond the same way. These longer transition times 

promoting regeneration lead to similar molecular profiles for these two cases, with 

high levels of cytokines and growth factors. Therefore, it becomes necessary to 

measure mass recovery to differentiate between these two hypotheses. The hypothesis 

that cell show altered transition times (Hyp 3) predicts a higher mass recovery at two 

weeks than the hypothesis proposed by Periwal et al. (Hyp 4). The difference in mass 

recovery at two weeks is caused by the assumption of a slower cell cycle, requiescence 

rate, and apoptosis rate by Periwal. et al. (Figure 6.22B – Hyp 4). Our hypothesis that 

lower metabolic demand is responsible for the differences between human and rat 

regeneration (Hyp 5) caused a lower overall response to PHx in human than in rats, 

but one that was sustained over a longer time period. This would lead to suppressed 

cytokine and GF signaling (Figures 6.22G and H – Hyp 5) as well as relatively high 

levels of ECM (Figure 6.22I – Hyp 5), because of low cytokine-induced MMP 

production. Patterns of molecular regulation that could differentiate hypotheses are 

summarized in Table 6.3. We recognize, however, that further experimental results in 

humans and further model refinement to include absolute molecular quantification and 
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factors not included in the current model may be required to differentiate fully 

between hypotheses. 

Table 6.3 Patterns of molecular regulation (30 days) and mass recovery (14 days) that 

could differentiate hypotheses of mechanisms underlying liver 

regeneration in humans 

Hypothesis 
IL-6 / 

Inflammation 
GF ECM 

Mass 

Recovery 

(1) Altered 

Inflammation 
Moderate High High High 

(2) Altered ECM 

remodeling and GF 

storage 

High Moderate High Moderate 

(3) Altered transition 

times 
High High Moderate High 

(4) Parameter 

changes assumed in 

Periwal et al. (2014) 

High High Moderate Low 

(5) Lower metabolic 

demand 
Moderate Moderate High Moderate 

 

6.3.8 Simulating regeneration in hundreds of human patients 

Using hypothesis 5, that only metabolic demand differs among mammalian 

species, we simulated hundreds of human patients. We first sampled combinations of 

model parameters from their nominal values +/- 50% to identify how shifting balances 

of molecular and physiological regulators of regeneration influences regeneration 

dynamics. Each simulation with unique parameter values can be viewed as a virtual 

patient with a slightly different medical history and tissue physiology. We classified 
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liver regeneration in our virtual patients into distinct modes (Figure 6.23): suppressed, 

delayed, enhanced, delayed and enhanced, no response, and liver failure. 

 

Figure 6.23 Regenerative modes of simulated human patients. (A) Supressed. (B) 

Delayed. (C) Ehanced. (D) Delayed and Enhanced. (E) No response. (F) 

Liver failure. Dashed line represents nominal regeneration, solid line 

represents mean, gray area represents +/- one standard deviation. 
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6.3.9 Simulating surgical interventions to enhance regeneration in a subset of 

human patients 

Metabolic demand per cell can be modulated in the clinic by altering blood 

flow through the liver. Portal vein embolization (PVE) increases the blood flow 

through a section of the liver thereby increasing metabolic demand per cell. We 

therefore investigated whether a sustained perturbation to metabolic demand could act 

to rescue suppressed regeneration or unresponsive livers by doubling metabolic 

demand in the model at several times following resection (Figure 6.24). We found that 

increasing metabolic demand early post-resection caused increased apoptosis and 

organ failure, whereas increasing metabolic demand later was able to rescue 

suppressed regeneration by increasing growth factor bioavailability. This intervention 

had negligible effect on the no response mode, likely due to low baseline metabolic 

demand. Therefore, increasing blood flow through the liver after the first 100 days 

following resection (by methods such as PVE) may enhance recovery in patients with 

an otherwise suppressed regenerative response. 

 

Figure 6.24 Effects of transient increases in metabolic demand on (A) suppressed 

regeneration and (B) no response. Dashed line represents nominal profile, 

solid line represents altered profile, arrows represent metabolic demand 

increase times. 
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6.3.10 Predicting effects of chronic disease on liver repair following partial 

hepatectomy 

Just as non-alcoholic steatohepatitis (NASH), alcoholic steatohepatitis (ASH), 

cirrhosis, and diabetes affect liver function differently, each affects liver repair 

differently as well (Figure 6.25). Both non-alcoholic and alcoholic steatohepatitis 

suppress liver repair following partial hepatectomy as early as 48 hours post-surgery 

and lead to a sustained mass recovery deficit (Figure 6.25A and B). Toxin-induced 

cirrhosis also suppresses regeneration, causing a sustained offset from wild-type 

regeneration (Figure 6.25C). The simulated regeneration profile for diabetic rats 

suggests that the disease enhances early regeneration but delays full recovery (Figure 

6.25D). These predictions are consistent with literature reporting that alloxan-induced 

diabetic rats show a delay in regeneration but no suppression of overall recovery 

(BARRA & HALL, 1977). In humans, studies have shown that diabetes results in a 

higher risk of post-operative liver failure and death in the first 90 days following liver 

resection, but when followed for longer than 6 months, diabetes causes no increase in 

the risk of complication or death, indicating that diabetes may impact the early stages 

of regeneration greater than the later stages (Allard et al, 2013;NAGASUE et al, 

1993).  



 222 

 

Figure 6.25 Model fit to disease regeneration profiles revealed altered non-

parenchymal cell activity coupled with imbalances in the 

growth/replication propensity of hepatocytes was sufficient to explain 

disease-induced inhibition of regeneration. (A) Non-alcoholic 

steatohepatitis (Tanoue et al, 2011), (B) Alcoholic steatohepatitis (Yang 

et al, 1998b), (C) Cirrhosis (Kaibori et al, 1997), and (D) Diabetes 

(JOHNSTON et al, 1986). 

We tested the hypothesis that alterations to non-parenchymal cell activation are 

sufficient to explain altered regeneration in these disease phenotypes. We found that 

despite the differences in repair dynamics, each of these regeneration phenotypes 

could be modeled by changing a relatively small number of parameters (9 out of 33), 

including metabolic load, hepatocyte growth rate, and parameters associated with non-

parenchymal cells (Table 6.4). This result indicates that altered non-parenchymal cell 

activation is sufficient to explain altered regeneration in these disease phenotypes.  
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Table 6.4 Parameter changes to simulate alternate regeneration conditions 

Parameter NASH ASH Cirrhosis Diabetes 

M 23.1645 14.4017 18.0454 16.4539 

G 25x10-4 14x10-4 4.358x10-4 8.92x10-4 

kIL6 0.3095 0.7900 2.1565 1.5892 

κIL6 2.3633 0.2073 1.0430 0.03699 

kdeg 1.7312 10.5646 0 6.4571 

κECM 9.5395 77.7923 83.5649 1.8271x10-6 

kGF 0.0793 0.0002 0.0690 1.7519x10-7 

κGF 0.1679 0.1196 0.2456 0.5044 

kup 0.0075 0.0071 0.0027 0.1218 

 

We investigated how these parameters change between disease conditions to 

predict of how diseases could impair regeneration by modulating non-parenchymal 

cell activation (Figures 6.26-6.29). A summary of our predictions of disease-impaired 

regeneration characteristics is available in Table 6.5.  
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Table 6.5 Summary of predicted disease effects on liver regeneration 

Disease Model 
Mass 

Recovery 
Priming 

Repli-

cation 

IL-6 

Signaling 
GF ECM 

(1) Non-

alcoholic  

      

Steatohepatitis 

Suppressed Low Low Low High High 

(2) Alcoholic  

      

Steatohepatitis 

Suppressed Sustained Low Sustained Low High 

(3) Toxin-

induced    

      Cirrhosis 

Suppressed High Low High Low High 

(4) Allotaxin-

induced  

      Diabetes 

Delayed High 
Delay 

& low 
Sustained Low Low 

 

NASH inhibited regeneration mainly through impaired priming (Figure 6.26). 

NASH also caused an inhibited replication response following PHx, which was likely 

caused by low priming rather than GF deficiencies.  Impaired priming and reduced 

replication caused a majority of mass recovery to occur through cell growth rather 

than replication.  
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Figure 6.26 Regeneration profiles for healthy livers and those with high fat, fructose-

induced steatosis. (A) NASH causes an inhibited replication response 

following PHx. The majority of mass recovery is caused by cell growth 

rather than replication. (B) This regeneration profile is driven by a lack of 

inflammatory signaling, leading to reduced priming. Although GFs are 

available, the low priming means that few hepatocytes are available to 

enter the replication stage. (MSE=2.25x10-4). 

Although its regeneration profile is similar to NASH’s, ASH showed a robust 

priming response, but it inhibited regeneration mainly through deficiencies in GF 

bioavailability and ECM remodeling (Figure 6.27). The slight increase in liver mass 

was caused predominantly by cell growth rather than replication.  
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Figure 6.27 Regeneration profiles for healthy livers and those with alcohol-induced 

steatosis. (A) Alcoholic steatosis causes suppressed liver regeneration, 

with little mass recovery. The slight increase in liver mass is caused 

predominantly by cell growth rather than replication. (B) This profile is 

driven by sustained inflammatory signaling, lack of growth factor 

bioavailability, and increased matrix deposition following wounding.  

(MSE=8.82x10-5). 

Toxin-induced cirrhosis caused an enhanced priming response in hepatocytes 

but a reduced replication response (Figure 6.28). Reduced GF bioavailability coupled 

with high levels of ECM reduced the overall regenerative potential of cirrhotic livers. 
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In contrast to NASH and ASH, the mass recovery in cirrhosis was mainly due to cell 

replication rather than mass increase.  

 

Figure 6.28 Regeneration profiles for healthy livers and those with toxin-induced 

cirrhosis. (A) Fibrosis causes a delay in the initiation of regeneration 

(note change in time scale) but ultimately little change in overall mass 

recovery. Mass recovery is due mainly to hepatocyte replication rather 

than cell growth. (B) This profile is driven by a sustained inflammatory 

response, a lack of growth factor bioavailability, and impaired matrix 

deposition following wounding. (MSE=2.50x10-3). 
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Diabetes also inhibited regeneration through deficiencies in GF signaling 

(Figure 6.29). These GF deficiencies caused a delay in the initiation of replication. It is 

likely that the early enhanced mass recovery in diabetic rats may be due 

predominantly to hepatomegaly, while eventual mass recovery may be due to 

replication. Although the exact timing and magnitude of deficiencies in inflammation 

and GF signaling were not the same for all chronic disease states, all the chronic 

diseases simulated here showed deficiencies in both signaling pathways. This result 

suggests that many chronic diseases that affect the liver’s repair ability do so in a 

combinatorial manner, altering the dynamics of inflammatory response and GF 

signaling.  
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Figure 6.29 Regeneration profiles for healthy livers and those with diabetes. (A) 

Diabetes causes enhanced priming but delayed proliferation and delayed 

mass recovery. (B) This profile is driven predominantly by sustained 

cytokine signaling and a lack of growth factor bioavailability. 

(MSE=4.05x10-4). 

Adaptation to chronic diseases also appears to influence the liver’s ability to 

recover a normal baseline function after an acute challenge. At long times post-PHx, 

NASH was characterized by sustained high levels of GF signaling, ASH was 

characterized by sustained high levels of IL-6 and reduced ECM accumulation, and 

diabetes was characterized by reduced ECM accumulation (Figures 6.26, 6.27, and 
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6.29). Cirrhosis, on the other hand, was characterized by all molecular levels returning 

to baseline (Figure 6.28). Our prediction of a sustained high inflammatory response in 

ASH simulations is consistent with previous reports of relatively high levels of 

inflammatory molecules found in the serum of patients with ASH (McClain et al, 

2004). This result suggests that one of the fundamental mechanisms of disease 

progression between ASH and NASH may be a difference in inflammatory response 

of non-parenchymal cells. 

Although our model simulations showed that altered non-parenchymal cell 

behavior is sufficient to cause impaired regeneration dynamics that are consistent with 

NASH, ASH, diabetes, and cirrhosis, parenchymal cells likely also contribute to 

impaired regeneration. We therefore tested whether alterations in hepatocyte response 

to non-parenchymal cells are sufficient to explain altered regeneration in these same 

disease phenotypes by changing parameters related to hepatocyte response to non-

parenchymal cells (14 out of 33 parameters, Table 6.6).  
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Table 6.6 Hepatocyte-specific parameter changes to simulate alternate regeneration 

conditions 

Parameter NASH ASH Cirrhosis Diabetes 

VJAK 4.28x104 2.50x104 3.94x103 7.33x104 

KM
JAK 4.35x100 0.99 609.5 1.05x104 

κJAK 0.55 1.02 0.46 0.69 

[STAT3] 2.54 4.00 4.18 1.67 

VST3 723.5 443.4 790.7 3.5 

KM
ST3 0.35 0.45 0.56 5.03x10-3 

κST3 0.04 0.14 1.9x10-5 0.17 

VSOCS3 3.14x104 2.14x104 2.26x104 1.53x104 

KM
SOCS3 3.21x10-4 1.54x10-4 11.55x10-4 8.56x10-4 

κSOCS3 1.0x10-3 2.5x10-10 0.67 0.12 

KI
SOCS3 0.015 0.010 0.007 0.004 

VIE 255.7 309.7 20.6 364.7 

KM
IE 43.2 28.5 28.6 0.53 

κIE 6.8 6.9 8.2 1.8 
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Figure 6.30 Simulations using hepatocyte-specific parameter alterations compared to 

disease regeneration profiles. Model fits to disease regeneration profiles 

reveals altered hepatocyte response to non-parenchymal cell signaling is 

sufficient to explain disease-induced inhibition of regeneration in (A) 

Non-alcoholic steatohepatitis (MSE=1.96x10-2), (B) Alcoholic 

steatohepatitis (MSE=1.89x10-2), and (C) Chirrhosis (MSE=5.14x10-2), 

but not in (D) Diabetes (MSE=1.19). In all cases, the previous set of 

parameters (Table S2) gave lower MSE than the hepatocyte-specific 

parameter alterations (Table S3). MSE = Mean Squared Error between 

experimental and simulated data. 

We found that for NASH, ASH, and cirrhosis, alterations in hepatocyte 

response to non-parenchymal cells was also sufficient to explain altered regeneration 

in these disease phenotypes (Figure 6.30A-C). Altering these hepatocyte response 
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parameters was insufficient to explain diabetes-impaired regeneration dynamics 

(Figure 6.30D). In all cases, the previous set of parameters (Table 6.4) gave lower 

mean squared error (MSE) than the hepatocyte-specific parameter alterations (Table 

6.6). It was interesting to note that the parameter sets used to simulate NASH and 

ASH eventually resulted in liver failure, with hepatocyte numbers continuing to 

decrease as the simulation progressed. The results of these simulations, together with 

the simulations altering non-parenchymal cell behavior and experiments from 

literature, suggest that disease conditions likely alter the dynamic function of non-

parenchymal cells and hepatocytes during liver regeneration. Therefore when 

investigating liver disease states and response to surgical interventions, a systems-

based approach that explicitly accounts for cell-cell interactions is necessary to 

account for the underlying processes fully. 

6.3.11 Comparison of regeneration in multiple genotypes of Adn-/- mice 

This new model also has interesting implications for the study of regeneration 

in Adn-/- mice. We are not the first to study the effects of liver resection in Adn-/- 

mice. The results of our study (Chapter 4) appear to be in conflict with the results of a 

previous study (Shu et al, 2009b). We therefore attempt to use our computational 

model developed in this chapter to reconcile the divergent findings about liver 

regeneration dynamics in Adn-/- mice. The first strain of mice to be studied was an 

Adn-/- strain on the 129S background (Shu et al, 2009b). This strain was created by a 

replacement of a part of the second and third exons in Adn with a full length LacZ 

gene (Ren et al, 2005). When subjected to 70% liver resection, the Adn-/- 129S mice 

showed a suppressed regeneration at every time point measured. The second strain to 

be studies as a knockout of Adn on the C67BL/6J background (Strain: B6;129-
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Adipoqtm1Chan/J, The Jackson Laboratory, Bar Harbor, Maine). These Adn-/- C67BL/6J 

mice were created by replacing the second exon in Adn with a PGKneo cassette in 

embryonic stem cells derived from 129S mice. The embryonic stem cells were then 

injected into blastocyst and the resultant chimeric mice were then bred with C57BL/6J 

mice.  These mutant mice were then back-crossed to maintain the Adn-/- on a 

C67BL/6J background. There are, however, some indications of an incomplete 

backcross, meaning that some background from the 129S mice could contaminate a 

true C67BL/6J genotype. In contrast to the suppressed regeneration displayed by the 

Adn-/- 129S mice, following 70% resection, Adn-/- C67BL/6J mice delayed initiation 

of regeneration but subsequently accelerated hepatoctye progression through the cell 

cycle (Correnti et al, 2015). 

We evaluated whether our previously published computational model of liver 

regeneration could predict the molecular regulation underlying the different 

regeneration dynamics caused by differences in genetic background and gene 

knockout procedures. In Correnti, Cook et al. (2014), Adn-/- C67BL/6J mice showed 

an initial delay in regeneration, but a liver mass indistinguishable from wild-type mice 

at 54 hours post-PHx (Figure 6.31A). In contrast, Adn-/- 129S mice used by Shu et al. 

(2009) showed suppressed regeneration at all times post-PHx (Figure 6.31B).  
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Figure 6.31 Cross-species validation of model utility can predict changes to 

organizational principles of liver function by differentiating liver 

regeneration modes in two strains of Adn-/- mice. (A) Mass recovery 

from Adn-/- C67BL/6J from Correnti, Cook et al. (2014) and (B) from 

Adn-/- 129S mice from Shu et al. (2009). (C) Predicted molecular profile 

for IL-6 and GF for both Adn-/- mouse strains and wild-type mice. 

By altering computational model parameters, we predicted that the 

distinguishing factor discriminating between these two phenotypes was a difference in 

GF bioavailability (Figure 6.31C). Simulations of both genotypes showed an impaired 

inflammatory response leading to impaired priming early post-PHx (Figure 6.31C). 

We predicted, based on simulations, that the Adn-/- C67BL/6J mice compensated for 

this impaired priming by producing higher levels of growth factors than WT 

C67BL/6J mice at 24-48 hours post-PHx. We further predicted, however, that the 

Adn-/- 129S mice would have deficiencies in growth factor bioavailability at 12-36 

hours post-PHx. 
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We have previously tested these predictions in Adn-/- C67BL/6J mice, where 

we showed inhibition of STAT-3 phosphorylation and sustained increases in HGF, 

FGF-2, and ANG1 in Adn-/- C67BL/6J mice following resection (See chapter 4). We 

predict that the levels of these same growth factors in the Adn-/- 129S mice following 

resection will be lower than in WT mice.   

Whether or not GF bioavailability is indeed different at ~12-36 hours post-PHx 

between mouse strains, the results of studying GF levels in these two strains would 

have implications for how translatable knockout studies are across background strains, 

across species, and across knockout techniques. We would remain unsure whether the 

different response to resection was a result of strain differences or knockout 

techniques or whether there was another confounding factor, such as laboratory space 

or equipment or animal care. We believe, however, that this study is a useful first step 

towards an investigation of these issues. 

 

6.4 Discussion 

Our study provides an investigation into the organizational principles and 

molecular regulation underlying liver regeneration following resection across multiple 

species and disease states. Our study identified altered modes of regeneration and 

investigated disease states that cause regeneration to follow these altered modes. This 

study, however, only addresses surgical resection of the liver and has not been applied 

to drug-induced liver injury (DILI). Because similar archetypal processes also likely 

govern liver regeneration following DILI, it is possible that some of the results of our 

modeling study can be generalized to inform principles underlying regeneration 

following DILI as well. The altered regeneration dynamics following DILI indicate 
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that additional processes need to be added to the model to accurately capture the 

complete physiology (for example, clearance of injured or necrotic hepatocytes and 

immune cell infiltration).  

This study investigated liver regeneration through a computational model 

involving archetypal signaling pathways that represent classes of molecular signaling. 

Therefore, the simulations in this study suggest relative balances and timing of 

molecular signals that may be deregulated in disease or altered across species.  

Our study suggests several organizational principles of regeneration. Initiation 

of regeneration appears to be governed by the number of hepatocytes entering the 

priming phase, which in turn is largely driven by the inflammatory response (modeled 

as IL-6 signaling). The computational model simulations further suggest that IL-6 

signaling activity is amplified at the level of STAT-3 phosphorylation, so that small 

changes in inflammatory response can cause large changes to STAT-3 

phosphorylation and significantly alter the regeneration profile. The timing and 

magnitude of GF response appears critical to replication, with low or late GF response 

suppressing overall regeneration. Our results led us to predict that chronic diseases 

impair liver regeneration through a combination of deficient inflammatory signaling 

and growth factor bioavailability. We further predicted that these deficiencies are 

shared between non-parenchymal cell activation and hepatocyte responsiveness to 

extracellular stimuli. 

Our approach allowed us to investigate several hypotheses about how 

regeneration differs between rats and humans. By maintaining molecular and 

phenomenological parameters constant across species and modifying metabolic load 

and hepatocyte growth rate, we were able to fit experimental regeneration profiles 
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across species. This approach has the benefit of conserving hepatocyte-related 

signaling pathways including the JAK-STAT signaling kinetics across species. These 

results revealed that regenerative capacity is likely related to animal mass, with larger 

species having fewer energetic resources to devote to regeneration. This explanation is 

consistent with identification of peak regeneration in pigs and dogs occurring later 

than in rats and mice (3 days post-PHx in pigs and dogs, as opposed to 1 day in 

rodents)  (KAHN et al, 1988). Alternate hypotheses about differences between rat and 

human liver regeneration dynamics, however, offer different predictions about 

dynamic tissue behavior post-PHx. We predicted that tissue biopsies and scans taken 

at two weeks post resection or molecular measurements at one month post resection in 

humans could differentiate between these hypotheses.  

Another factor governing the length of regeneration time is how rapidly 

hepatocytes are able to increase their functional mass to compensate for lost tissue. 

Large mass may not be beneficial to liver repair if much of the extra mass does not 

contribute to liver function; therefore, the mass regained in this simulation can be seen 

as functional mass increase that contributes to liver function. As opposed to the 

metabolic demand parameter, hepatocyte growth rate was not related to animal mass. 

Growth rate may therefore be governed by other factors, such as maximum glucose 

metabolic flux possible, mitochondrial activity and number of mitochondria, and the 

relative amount of nutrients available post PHx. By incorporating cell growth, the 

model proposed in this work was able to capture the rapid increase in tissue mass 

humans are capable of, up to 70% of liver mass restored by 30 days after 70% PHx 

(Pomfret et al, 2003). Experiments measuring growth rates of hepatocytes in vitro or 

further hepatectomy experiments performed using pigs or other species can be used to 
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test and refine the simple relationship proposed between metabolic demand and body 

mass. 

According to our analysis, the number of parameters that need to be changed to 

translate across species is relatively small (a minimum of two). Furthermore, the 

minimum set of parameters changed were physiological parameters, M and G. This 

does not mean that there are no differences in molecular regulation across species; it 

does, however, suggest that the differences are the result of similar processes across 

species responding to species-specific physiology. This results in altered molecular 

and regeneration dynamics across species. In contrast, we changed multiple 

parameters, including parameters related to molecular signaling, to simulate disease 

effect on liver regeneration. Taken together, these results suggest that biological 

processes behaving normally can account for differences across species but cannot 

account for disease effects on regeneration phenotypes.  

Although the model describes fairly well experimental data, the model 

description of the cell cycle does not contain specific phases of the cell cycle. The rate 

of cell proliferation in the model contains all the steps from exit from the G0 phase to 

a complete cell division. Therefore, this rate also includes any additional time taken 

for a quiescent hepatocyte to dedifferentiate, divide, and redifferentiate. Little is 

known about how long any dedifferentiation and redifferentiation takes or if the time 

needed for these processes varies across species. Therefore, the overall rate of cell 

proliferation may vary between species. Although we did not explicitly address this 

possibility in the current study, further studies could explore this as a potential 

contribution to the difference in peak hepatocyte replication times between rats and 

mice.  
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Parametric sensitivity analysis of the computational model revealed that 

regeneration is dynamically controlled and that not all factors respond the same across 

all times. This result coupled with the pulsatile sensitivity analysis recently performed 

on the original model proposed by Furchgott et al. (2009) indicates that treatments 

designed to improve regenerative ability during chronic disease or following liver 

transplant may need to be dynamic as well (Correnti et al, 2015). Extending the results 

of simulations of chronic disease states in rats to the human model may assist in 

scheduling treatments for patients suffering from chronic diseases post-transplantation 

to maximize regeneration. For example, during the first week (the apparent priming 

phase in humans) it might be necessary to renormalize hepatocyte response to 

inflammation signals while later treatments (replication phase) may need to increase 

growth factor levels.  

Our model-based approach offers unique insights into the mechanisms of liver 

disease progression in the context of chronic disease; however, there are several 

limitations inherent to this approach. The first limitation is that only the JAK-STAT 

signaling pathway is explicitly considered in this model. Although this pathway has 

been shown to be critical for a normal repair phenotype, even a hepatocyte-specific 

STAT-3 knockout does not completely inhibit regeneration (Haga et al, 2005). In this 

genotype, signaling through ERK compensates for the lack of STAT-3. The 

importance of the liver's repair mechanism ensures that multiple compensatory 

signaling pathways are available to act (Taub, 2004c). Our model can be extended to 

include additional signaling pathways to account for compensatory signaling and 

cross-talk. We note, however, that the present simplification involving cell phenotype 

transitions sufficiently captures major features of the liver regeneration process. Such 
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simplified models have led to important insights into biological regulation in other 

contexts as well (Furchtgott et al, 2009;Kumar et al, 2004;Thakar et al, 2007).  

Another limitation is that the current model takes into account only linear 

responses of non-parenchymal cells during liver repair. Many reviews highlight the 

important role of timing of non-parenchymal cell signaling during liver repair 

(Michalopoulos & DeFrances, 1997;Taub, 2004c). For instance, the critical 

contribution of non-parenchymal cells has been demonstrated using animals where 

Kupffer cells have been depleted, thereby significantly delaying regeneration 

following hepatectomy (Meijer et al, 2000b). The current simulations suggest that 

Kupffer cells are largely responsible for priming hepatocytes. Hepatic stellate cells 

appear to be the main regulator of hepatocyte regeneration, governing both 

proliferation through control of growth factor bioavailability and termination of 

regeneration through ECM production and degradation.  Therefore, moving towards a 

more comprehensive computational model of liver repair in health and chronic disease 

requires inclusion of alternative regulatory mechanisms within hepatocytes, as well as 

the activation and signaling of non-parenchymal cells. To facilitate this integration, 

one could consider the existing models of macrophage or Kupffer cell activation and 

hepatic stellate cell activation. For instance, macrophage activation has been studied 

using a computational model of the cytokine-mediated pathways (Kuttippurathu et al, 

2014;Marino et al, 2015). Specific to the liver, our group has recently developed a 

computational model of cytokine-mediated hepatic stellate cell activation that 

incorporates multiple pathways with cross-talk as well as microRNA mediated 

regulation (Kuttippurathu et al, 2014;Marino et al, 2015).  
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Our computational model was able to match liver regeneration profiles across 

multiple chronic disease models and across species. This modeling framework can act 

as a tool to translate results from rodent experiments to clinically actionable 

hypotheses in primates or humans. Our study suggests that liver regeneration is 

dynamically controlled by factors produced by non-parenchymal cells. Inflammatory 

signaling (predominantly from Kupffer cells) governs the priming response of 

hepatocytes, while growth factors (predominantly produced by hepatic stellate cells) 

govern hepatocyte entry into the cell cycle. The synchronicity of hepatocyte entry into 

the cell cycle is governed by both growth factor levels and timing as well as 

proliferation rate of hepatocytes. These findings underscore the importance of non-

parenchymal cells to recovering the liver’s repair ability from a diseased state. 

Therefore, future computational work should explicitly take contributions from non-

parenchymal cells into account. 
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EXTENDING THE COMPUTATIONAL MODEL TO INCLUDE NON-

PARENCHYMAL CELL TRANSCRIPTIONAL PHENOTYPES 

7.1 Introduction 

Following resection, there is a coordinated response of liver cells (hepatocytes 

and non-parenchymal cells) that involves cell activation, intercellular signaling, 

hypertrophy, and hyperplasia, which have been well reviewed previously (Fausto, 

2000;Michalopoulos, 2010;Taub, 2004c). Perhaps because such a coordinated 

response is required for effective regeneration, patients undergoing a liver resection 

exhibit a wide range of regeneration responses in the clinic, with some achieving 

effective regeneration and some failing to regenerate at all (Chenard‐Neu et al, 1996). 

In lab animals, however, there is a much lower degree of variability in response to 

resection. Our approach is therefore to use a computational model to identify control 

principles and network properties governing regeneration, test these predictions at a 

lab-scale using rodents, then use our computational model to scale-up our results to 

humans, both in terms of liver size and subject variability. This type of approach has 

been previously successful in identifying phenotypically conserved principles of liver 

regeneration using a simplified model of liver regeneration (Cook et al, 2015).  

There are multiple benefits for taking a systems-level computational modeling-

centric approach to investigating liver regeneration. This systems perspective allows 

for integration of knowledge gained through experiments from multiple labs and even 
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across species. Computational modeling of this complex network allows for emergent 

behavior due to network properties. Investigating this emergent behavior allows for 

non-intuitive insights into liver regeneration. Additionally, and perhaps most 

importantly, cell network-based computational modeling allows for systematic 

investigation into the contributions of individual cell types to regeneration physiology. 

7.2 Materials and Methods 

7.2.1 Computational Model Description 

Our computational model was extended from (Cook et al, 2015). The previous 

model included only a linear response of non-parenchymal cells to resection. Our 

extended model explores non-parenchymal cell behavior more fully. We maintained 

the original model architecture and hepatocyte equations. All simulations were 

performed in Matlab (Mathworks, Natick, MA).  

7.2.1.1 Hepatocyte Equations 

Our extended model maintains the framework of the previously published 

initial model by allowing hepatocytes to exist in one of three states: Quiescent (Q), 

Primed (P), or Replicating (R). Factors produced by non-parenchymal cells in 

response to liver metabolic load (metabolic demand per cell or M/N) shift hepatocytes 

between states, according to the following equations.  

𝑑

𝑑𝑡
𝑄 =  −𝑘𝑄𝑃([𝐼𝐸] − [𝐼𝐸0])𝑄 + 𝑘𝑅𝑄[𝐸𝐶𝑀]𝑅 + 𝑘𝑟𝑒𝑞𝜎𝑟𝑒𝑞𝑃 − 𝑘𝑎𝑝𝜎𝑎𝑝𝑄 (7.1) 

𝑑

𝑑𝑡
𝑃 =  𝑘𝑄𝑃([𝐼𝐸] − [𝐼𝐸0])𝑄 − 𝑘𝑃𝑅([𝐺𝐹] − [𝐺𝐹0])𝑃 −  𝑘𝑟𝑒𝑞𝜎𝑟𝑒𝑞𝑃 − 𝑘𝑎𝑝𝜎𝑎𝑝𝑄 (7.2) 

𝑑

𝑑𝑡
𝑅 =  𝑘𝑃𝑅([𝐺𝐹] − [𝐺𝐹0])𝑃 − 𝑘𝑅𝑄[𝐸𝐶𝑀]𝑅 + 𝑘𝑝𝑟𝑜𝑙𝑅 −  𝑘𝑎𝑝𝜎𝑎𝑝𝑅 (7.3) 
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Where [IE] represents the concentration of immediate early genes expressed in 

response to STAT-3 transcriptional regulation and [ECM] represents the amount of 

extracellular matrix. σap and σreq are sigmoidal functions defined as:  

𝜎𝑎𝑝 = 0.5 ∗ (1 + tanh (
(𝜃𝑎𝑝− 𝑀 𝑁⁄ )

βap
))  (7.4) 

𝜎𝑟𝑒𝑞 = 0.5 ∗ (1 + tanh (
(𝜃𝑟𝑒𝑞−[𝐺𝐹])

βreq
))   (7.5) 

The parameters β and θ in each of these equations are tuned so that when 

metabolic load is high, σap is high; conversely, when [GF] is high, σreq is low. 

Therefore, when cells are highly stressed (high metabolic load), apoptosis occurs at a 

high rate; when GFs are available, cells remain in the “Replicating” state. 

 The JAK-STAT signaling pathway, GF production, and ECM 

production are modeled as a combination of first order and Michealis-Menton kinetics, 

as shown in the following equations. 

𝑑

𝑑𝑡
[𝐼𝐿6] = 𝑘𝐼𝐿6

𝑀

𝑁
−

𝑉𝐽𝐴𝐾[𝐼𝐿6]

[𝐼𝐿6]+𝑘𝑀
𝐽𝐴𝐾 − 𝜅IL6[𝐼𝐿6] + 𝑘1  (7.6) 

𝑑

𝑑𝑡
[𝐽𝐴𝐾] =

𝑉𝐽𝐴𝐾[𝐼𝐿6]

[𝐼𝐿6]+𝑘𝑀
𝐽𝐴𝐾 − 𝜅𝐽𝐴𝐾[𝐽𝐴𝐾] + 𝑘2   (7.7) 

𝑑

𝑑𝑡
[𝑆𝑇𝐴𝑇3] =

𝑉𝑆𝑇3[𝐽𝐴𝐾][𝑝𝑟𝑜𝑆𝑇𝐴𝑇3]2

[𝑝𝑟𝑜𝑆𝑇𝐴𝑇3]2 + 𝑘𝑀
𝑆𝑇3(1 + [𝑆𝑂𝐶𝑆3] 𝑘𝐼

𝑆𝑂𝐶𝑆3⁄ )
 

−
𝑉𝐼𝐸[𝑆𝑇𝐴𝑇3]

[𝑆𝑇𝐴𝑇3]+𝑘𝑀
𝐼𝐸 −

𝑉𝑆𝑂𝐶𝑆3[𝑆𝑇𝐴𝑇3]

[𝑆𝑇𝐴𝑇3]+𝑘𝑀
𝑆𝑂𝐶𝑆3 − 𝜅𝑆𝑇3[𝑆𝑇𝐴𝑇3] + 𝑘3   (7.8) 

𝑑

𝑑𝑡
[𝑆𝑂𝐶𝑆3] =  

𝑉𝑆𝑂𝐶𝑆3[𝑆𝑇𝐴𝑇3]

[𝑆𝑇𝐴𝑇3]+𝑘𝑀
𝑆𝑂𝐶𝑆3 − 𝜅𝑆𝑂𝐶𝑆3[𝑆𝑂𝐶𝑆3] + 𝑘4   (7.9) 

𝑑

𝑑𝑡
[𝐼𝐸] =

𝑉𝐼𝐸[𝑆𝑇𝐴𝑇3]

[𝑆𝑇𝐴𝑇3]+𝑘𝑀
𝐼𝐸 − 𝜅𝐼𝐸[𝐼𝐸] + 𝑘5    (7.10) 

𝑑

𝑑𝑡
[𝐺𝐹] = 𝑘𝐺𝐹

𝑀

𝑁
− 𝑘𝑢𝑝[𝐺𝐹][𝐸𝐶𝑀] − 𝜅𝐺𝐹[𝐺𝐹] + 𝑘7   (7.11) 

𝑑

𝑑𝑡
[𝐸𝐶𝑀] =  −𝑘𝑑𝑒𝑔 [𝐼𝐿6][𝐸𝐶𝑀] − 𝜅𝐸𝐶𝑀[𝐸𝐶𝑀] + 𝑘6   (7.12) 
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Where [proSTAT3] represents the concentration of monomeric STAT-3 

available to dimerize following IL-6 signaling. 

 Hypoxia inducible factor (HIF-1α or HIF) is modeled as increasing 

when the liver mass increases faster than vascularization. HIF-1α then stimulates 

VEGF production within hepatocytes. 

𝑑

𝑑𝑡
[𝐻𝐼𝐹] =

(𝑁−𝑁0)

𝐻𝐿
𝑘𝐻𝐼𝐹(1 − tanh(3 ∗ 𝑉𝑎𝑠𝑐𝑢𝑙𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛)) −

𝑉𝑉𝐸𝐺𝐹[𝐻𝐼𝐹]

𝐾𝑀
𝑉𝐸𝐺𝐹+ [𝐻𝐼𝐹]

−

 𝜅𝐻𝐼𝐹[𝐻𝐼𝐹] +  𝐾𝑆𝑆
𝐻𝐼𝐹   (7.13) 

Where HL is the tissue hypoxia load or tissue oxygen demand, kHIF is the 

maximum HIF production rate, the 3 in the tanh function is a scaling term to ensure 

HIF production stops when the vascularization is appropriate for the organ mass, 

VVEGF and KM
VEGF are the michaelis-menton parameters for VEGF production from 

HIF, κHIF is the degredation rate of HIF, and KSS
HIF is the steady state HIF production 

of the organ. VEGF production from HIF in hepatocytes is modeled according to 

michealis-menton kinetics.  

𝑑

𝑑𝑡
[𝑉𝐸𝐺𝐹] =

𝑉𝑉𝐸𝐺𝐹[𝐻𝐼𝐹]

𝐾𝑀
𝑉𝐸𝐺𝐹+ [𝐻𝐼𝐹]

−  𝜅𝑉𝐸𝐺𝐹[𝑉𝐸𝐺𝐹] +  𝐾𝑆𝑆
𝑉𝐸𝐺𝐹   (7.14) 

Where κVEGF is the degradation rate of VEGF and KSS
VEGF is the steady-state 

VEGF production.  

7.2.1.2 Tissue Equations 

The overall cell mass, N, includes hypertrophy and cell growth (hyperplasia) of 

primed and replicating cells in response to metabolic load as follows:  

𝑁 = 𝑄 + 𝐺(𝑃 + 𝑅)    (7.15) 

Where G represents the relative cell mass, which is initially set to 1. 



 247 

 Vascularization is promoted by increased levels of VEGF and proceeds 

through a phenotypic rate (kvas). 

𝑑

𝑑𝑡
[𝑉𝑎𝑠𝑐𝑢𝑙𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛] =  𝑘𝑣𝑎𝑠([𝑉𝐸𝐺𝐹] − [𝑉𝐸𝐺𝐹0])  (7.16) 

7.2.1.3 Kupffer Cell Equations 

Kupffer cells were modeled to exist in one of three phenotypic states: 

Quiescent, Active, and Replicating. Kupffer cells become active initially due to 

physiological cues and early signaling events post-PHx, which we modeled using a 

lumped parameter (similar to the hepatocyte equations above). In addition to 

physiological signals, Kupffer cell states are governed by molecular parameters.  

𝑑

𝑑𝑡
𝑄𝐾𝐶 =  −𝑘𝑄𝐴 [([𝑇𝑁𝐹] −  [𝑇𝑁𝐹0]) +  (

𝑀

𝑁
 −  𝑀)] 𝑄𝐾𝐶 +  𝑘𝑟𝑒𝑞𝜎𝑟𝑒𝑞𝐴 − 𝑘𝑎𝑝𝜎𝑎𝑝𝑄    

  (7.17) 

𝑑

𝑑𝑡
𝐴𝐾𝐶 =  𝑘𝑄𝐴 [([𝑇𝑁𝐹] −  [𝑇𝑁𝐹0]) +  (

𝑀

𝑁
 −  𝑀)]  + 𝑘𝑅𝐴[𝐸𝐶𝑀]𝑅𝐾𝐶 − 𝑘𝑟𝑒𝑞𝜎𝑟𝑒𝑞𝐴𝐾𝐶 −

𝑘𝐴𝑅([𝑉𝐸𝐺𝐹] − [𝑉𝐸𝐺𝐹0])𝐴𝐾𝐶 − 𝑘𝑎𝑝𝜎𝑎𝑝𝐴𝐾𝐶   (7.18) 

𝑑

𝑑𝑡
𝑅𝐾𝐶 = 𝑘𝐴𝑅([𝑉𝐸𝐺𝐹] − [𝑉𝐸𝐺𝐹0])𝐴𝐾𝐶 − 𝑘𝑅𝐴[𝐸𝐶𝑀]𝑅𝐾𝐶 + 𝑘𝑟𝑒𝑝𝑅𝐾𝐶 − 𝑘𝑎𝑝𝜎𝑎𝑝𝑅𝐾𝐶  

  (7.19) 

Where QKC, AKC, and RKC represent quiescent, activated, and replicating 

Kupffer cells, respectively. Requiescence, apoptosis, and replication are governed 

similar to hepatocytes with [VEGF] replacing [GF] in the sigmoidal requiescence 

function, see equation 5. Once activated, Kupffer cells secrete multiple molecules at 

different rates. 

𝑑

𝑑𝑡
[𝑇𝑁𝐹] = 𝑘𝑇𝑁𝐹𝐴𝐾𝐶 (

𝑘𝑇𝑁𝐹
𝑁𝑜𝑚+[𝐼𝐿10]

[𝐼𝐿10]
) − 𝜅𝑇𝑁𝐹[𝑇𝑁𝐹] + 𝐾𝑆𝑆

𝑇𝑁𝐹   (7.20) 

𝑑

𝑑𝑡
[𝐼𝐿6] = 𝑘𝐼𝐿6𝐴𝐾𝐶 − 𝜅𝐼𝐿6[𝐼𝐿6] + 𝐾𝑆𝑆

𝐼𝐿6     (7.21) 
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𝑑

𝑑𝑡
[𝐼𝐿10] = 𝑘𝐼𝐿10𝐴𝐾𝐶 − 𝜅𝐼𝐿10[𝐼𝐿10] + 𝐾𝑆𝑆

𝐼𝐿10   (7.22) 

𝑑

𝑑𝑡
[𝑇𝐺𝐹𝛽] = 𝑘𝑇𝐺𝐹𝐴𝐾𝐶 − 𝜅𝑇𝐺𝐹[𝑇𝐺𝐹𝛽] + 𝐾𝑆𝑆

𝑇𝐺𝐹    (7.23) 

Each protein is produced at a phenotypic rate kxx, where xx is the species of 

interest. Each protein is degraded according for first order kinetics at a rate κxx and 

produced or degraded at a steady-state rate of Kss
xx. In addition, the production of 

[TNF] is slowed by [IL-10] such that when [IL-10] is close to its initial value of 1, 

[TNF] is produced at a nominal rate according to kTNF
Nom. 

7.2.1.4 Hepatic Stellate Cell Equations 

HSCs were simulated as existing in a quiescent state, two active states (pro-

regenerative and anti-regenerative), and two replicating states (one from each 

activation state). Shifts between these states are catalyzed by molecular abundances, as 

shown in the equations below. 

𝑑

𝑑𝑡
𝑄𝐻𝑆𝐶 =  −𝑘𝑄→𝑃𝑅([𝐼𝐿6] − [𝐼𝐿60])𝑄𝐻𝑆𝐶 + 𝑘𝑃𝑅→𝑄𝜎𝑟𝑒𝑞𝑃𝑅𝐴 − 𝑘𝑄→𝐴𝑅([𝑇𝐺𝐹𝛽] −

[𝑇𝐺𝐹𝛽0])𝑄𝐻𝑆𝐶 + 𝑘𝐴𝑅→𝑄𝜎𝑟𝑒𝑞𝐴𝑅𝐴 − 𝑘𝑎𝑝𝜎𝑎𝑝𝑄𝐻𝑆𝐶      (7.24) 

𝑑

𝑑𝑡
𝑃𝑅𝐴 = 𝑘𝑄→𝑃𝑅([𝐼𝐿6] − [𝐼𝐿60])𝑄𝐻𝑆𝐶 −  𝑘𝑃𝑅→𝑄𝜎𝑟𝑒𝑞𝑃𝑅𝐴 + 𝑘𝑃𝑅𝑅→𝑃𝑅[𝐸𝐶𝑀]𝑃𝑅𝑅 −

𝑘𝑃𝑅→𝑃𝑅𝑅([𝑃𝐷𝐺𝐹] − [𝑃𝐷𝐺𝐹0])𝑃𝑅𝐴 − 𝑘𝑎𝑝𝜎𝑎𝑝𝑃𝑅𝐴   (7.25) 

𝑑

𝑑𝑡
𝑃𝑅𝑅 = 𝑘𝑃𝑅→𝑃𝑅𝑅([𝑃𝐷𝐺𝐹] − [𝑃𝐷𝐺𝐹0])𝑃𝑅𝐴 − 𝑘𝑃𝑅𝑅→𝑃𝑅[𝐸𝐶𝑀]𝑃𝑅𝑅 + 𝑘𝑝𝑟𝑜𝑙𝑃𝑅𝑅 −

𝑘𝑎𝑝𝜎𝑎𝑝𝑃𝑅𝑅   (7.26) 

𝑑

𝑑𝑡
𝐴𝑅𝐴 = 𝑘𝑄→𝐴𝑅([𝑇𝐺𝐹𝛽] − [𝑇𝐺𝐹𝛽0])𝑄𝐻𝑆𝐶 −  𝑘𝐴𝑅→𝑄𝜎𝑟𝑒𝑞𝐴𝑅𝐴 +

𝑘𝐴𝑅𝑅→𝐴𝑅[𝐸𝐶𝑀]𝐴𝑅𝑅 − 𝑘𝐴𝑅→𝐴𝑅𝑅([𝑃𝐷𝐺𝐹] − [𝑃𝐷𝐺𝐹0])𝐴𝑅𝐴 − 𝑘𝑎𝑝𝜎𝑎𝑝𝐴𝑅𝐴   (7.27) 

𝑑

𝑑𝑡
𝐴𝑅𝑅 = 𝑘𝐴𝑅→𝐴𝑅𝑅([𝑃𝐷𝐺𝐹] − [𝑃𝐷𝐺𝐹0])𝐴𝑅𝐴  − 𝑘𝐴𝑅𝑅→𝐴𝑅[𝐸𝐶𝑀]𝐴𝑅𝑅  + 𝑘𝑝𝑟𝑜𝑙𝐴𝑅𝑅 −

𝑘𝑎𝑝𝜎𝑎𝑝𝐴𝑅𝑅   (7.28) 

Where 𝑘𝑋→𝑋𝑋 is the transition propensity from cell states X to cell state XX. Q 

is the quiescent state, ARA is the anti-regenerative activation state, PRA is the pro-
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regenerative activation state, and ARR and PRR are the anti-regenerative replicating 

state and the pro-regenerative replicating state, respectively. 

Once activated, HSCs produce pro-regenerative or anti-regenerative molecules 

depending on the activation state.  

𝑑

𝑑𝑡
[𝐻𝐺𝐹] = 𝑘𝐻𝐺𝐹 (

𝑘𝐻𝐺𝐹
𝑛𝑜𝑚+[𝑇𝐺𝐹𝛽]

[𝑇𝐺𝐹𝛽]
) 𝑃𝑅𝐴 − 𝑘𝑢𝑝[𝐻𝐺𝐹][𝐸𝐶𝑀] − 𝜅𝐻𝐺𝐹[𝐻𝐺𝐹] + 𝐾𝑆𝑆

𝐻𝐺𝐹  

  (29) 

𝑑

𝑑𝑡
[𝑇𝐺𝐹𝛽] = 𝑘𝑇𝐺𝐹𝐴𝑅𝐴 − 𝜅𝑇𝐺𝐹[𝑇𝐺𝐹𝛽] + 𝐾𝑆𝑆

𝑇𝐺𝐹  (30) 

𝑑

𝑑𝑡
[𝐸𝐶𝑀] = 𝑘𝐸𝐶𝑀𝐴𝑅𝐴 − 𝜅𝑑𝑒𝑔[𝑇𝑁𝐹][𝐸𝐶𝑀] − 𝜅𝐸𝐶𝑀(𝐸𝐶𝑀) + 𝐾𝑆𝑆

𝐸𝐶𝑀  (31) 

Each protein is produced at a phenotypic rate kxx, where xx is the species of 

interest. Each protein is degraded according for first order kinetics at a rate κxx and 

produced or degraded at a steady-state rate of Kss
xx. In addition, the production of 

[HGF] is slowed by [TGFβ] such that when [TGFβ] is close to its initial value of 1, 

[HGF] is produced at a nominal rate according to kTNF
Nom. Furthermore, [HGF] can be 

sequestered in the ECM with an uptake rate of kup. This model does not allow 

explicitly for sequestered HGF to be re-released during regeneration. 

7.2.2 Parameter Estimation 

Where possible, parameters related to species found in the original model 

(Chapter 6) were tuned using a gain-matching technique. Parameters were selected so 

that the production of molecules included in the original model occurred with 

approximately the same dynamics during the first 10 hours post-PHx in both models 

and followed previously-studied dynamics (Figure 7.1). 
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Figure 7.1 Comparison of model dynamics between this model and previous model 

during the first 25 hours post-resection (Chapter 6). 

All other parameters were estimated using order of magnitude estimates so that 

the parameters were of the same magnitude as the parameters above. These remaining 

parameters were tuned manually to match experimentally observed molecular profiles 

or physiological observations during liver regeneration. A complete table of model 

parameter values used and physiological interpretations can be found in Appendix A. 

7.2.3 Sensitivity Analysis 

Global sensitivity coefficients were estimated by sampling the model’s 

parameter space within 10% to 1,000% of each parameter’s nominal value using a 
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Latin hypercube sampling method to sample each parameter uniformly over three 

orders of magnitude. We then simulated liver regeneration following 70% PHx using 

150 parameter sets for the sensitivity analyses including kap and 1,500 parameter sets 

for the sensitivity analyses excluding kap. We calculated the overall mass recovery 

(Ni) for each case of liver regeneration and the time to liver failure (ti) for each case of 

failed regeneration. We then calculated regeneration sensitivity coefficients and failure 

sensitivity coefficients for each parameter according to the partial rank correlation 

coefficient (PRCC) formulation using the “partialcorr” function in Matlab. 

7.3 Results 

7.3.1 A New Multiscale Cellular and Molecular Network Model of Liver 

Regeneration 

We developed a computational model of liver regeneration that includes both 

hepatocyte hypertrophy and hyperplasia (Figure 7.2A and B) (Cook et al, 2015). 

Briefly, each cell type (hepatocytes, Kupffer cells, and HSCs) exists in discrete 

physiological states and factors they secrete initiate intracellular signaling cascades 

that lead to transitions among states for each cell type. These cells also respond to 

physiological perturbations by transitioning among states, increasing mass, or 

committing apoptosis. Each cell type was simulated to take on discrete states in 

response to regulation by distinct molecules, which we included in our model based on 

previous research identifying these molecules as important during liver regeneration or 

chronic ethanol abuse. The formalism for representing the physiological perturbations 

and Hepatocyte functional states were adapted from (Furchtgott et al, 2009). See the 

Materials and Methods section for details of the model and equations, and Appendix A 

for model parameters. 
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Figure 7.2 Cell network model of non-parenchymal cell activation contributing to liver 

regeneration. (A) Full network diagram showing cell states, transitions 

among states, and molecules promoting or inhibiting cell transitions. (B) 

Cell signaling models showing a schematic representation of molecular 

interactions occurring within each cell type considered. Solid lines 

represent direction signaling; dashed lines represent indirect production. 

(C) Simulated liver mass recovery profiles compared to experimental 

data from (Tanoue et al, 2011). (D) Simulated cytokine dynamics 

following resection. (E) Simulated dynamics of growth factors and 

collagens following resection. (F) Simulated profile of HSC state 

dynamics following resection. 

7.3.1.1 Metabolic Demand 

Our model uses a lumped parameter, the metabolic demand (M), to represent 

the physiological state of the animal. The metabolic demand can be viewed as the 

normal stress put on a healthy liver to maintain physiological functions; it is likely 

related to a combination of external factors such as portal blood flow, portal pressure, 

nutrient availability, toxin flux (such as lipopolysaccharide) and intrinsic factors 

including hepatocyte metabolic capacity, functional history, and transcriptional state. 

In our model, the metabolic load (defined as metabolic demand per cell, or M/N, 

where N is the functional mass of the liver) increases following partial hepatectomy 

and is the driving force for liver regeneration. 

7.3.1.2 Hepatocytes 

The simulated hepatocyte state transition network in our model follows the 

framework presented by Cook, Ogunnaike, and Vadigepalli, which allows hepatocytes 

to exist as quiescent, primed, or replicating (Figure 7.2A) (Cook et al, 2015). IL-6 

acting through the JAK-STAT signaling cascade initiates immediate early (IE) gene 

signals in hepatocytes that catalyze their transition from the quiescent state to the 
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primed state (Figure 7.2B, Hepatocytes). Primed hepatocytes can either return to 

quiescence, which occurs at a constitutive rate, or primed hepatocytes can enter the 

replicating state in response to sufficient levels of growth factors (GF) produced by 

non-parenchymal cells and liberated from the ECM. However, hepatocyte replication 

is inhibited by increased amounts of Transforming Growth Factor β (TGF-β) (Bissell 

et al, 1995). Replicating hepatocytes double their number approximately every 30 

hours, and return to quiescence at a constitutive rate, which can be increased by ECM 

buildup. Hepatocytes in the primed and replicating states are also able to increase 

mass to respond to an increased metabolic demand driving liver regeneration. Such a 

framework allows a system representation where hepatocytes can respond to 

metabolic challenges through replication and through increasing functional capacity 

(mass) of each cell. This framework is also applicable in disease contexts, where 

replication may be impaired, providing a capability for hepatocytes to ameliorate 

damage to tissue in the absence of a regeneration response. Other models have been 

developed that include cell hyperplasia by representing primed and replicating 

hepatocytes with discrete size increases instead of allowing for a continuum of 

hyperplasia (Young & Periwal, 2015b). These models, however, have not yet been 

shown to be able to capture disease-specific dynamics of liver response to resection. 

In addition, within this framework, hepatocytes are able to sense and respond 

to hypoxia (Liu et al, 2014). During liver regeneration, hepatocytes may begin hypoxic 

signaling when they have expanded into areas that are not yet vascularized fully 

(Maeno et al, 2005). In our model, the hypoxic signaling is considered as follows: 

hepatocytes responding to a low vascularization by inducing Hypoxia Inducible Factor 
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1α (HIF-1α), which induces hepatocytes production of VEGF and therefore NPC 

replication to replace lost tissue architecture (Copple et al, 2009). 

7.3.1.3 Kupffer Cells 

Kupffer cell activation during liver regeneration and in response to chronic and 

acute stresses has been studied extensively (Barnes et al, 2015;Melgar-Lesmes & 

Edelman, 2015;Sica et al, 2014;Wang et al, 2014;Yang et al, 1998a). Our model 

accounts for two functional states of Kupffer cells: quiescent and active (Figure 7.2A). 

In this scheme, active Kupffer cells can transition along a gradient of M1 to M2 

activation in response to the autocrine feedback of the cytokines they produce. 

Activated Kupffer cells return to quiescence at a constitutive rate (Figure 7.2B). In our 

model, Kupffer cells are activated in response to an increased metabolic load; and 

once activated, they begin to produce cytokines associated with an M1 activation 

phenotype, high production rate of IL-6 and Tumor Necrosis Factor α (TNF-α), and 

low production rate of Interleukin 10 (IL-10) and TGF-β (Sica et al, 2014). TNF-α 

interacts with several receptors to mediate physiological response in Kupffer cells. 

TNF-α further increases numbers of activated Kupffer cells within a population by 

binding to TNF receptors (TNFRI and TNFRII) leading to NF-κB activation, 

transcription of NF-κB target genes (including IL-6, IL-10), immediate early (IE) gene 

expression, and Kupffer cell activation (Aggarwal, 2003;Chen & Goeddel, 2002). 

TNF-α also induces the production of AP-1 and its downstream targets, including 

osteopontin (OPN or SPP1), IL-10, and GM-CSF, which induce production of TGF-β 

in Kupffer cells (Bozinovski et al, 2002;Ogawa et al, 2005;Xing et al, 1997). We 

model the effects of these pathways by simulating activated Kupffer cells as 

constitutively expressing TNF-α, IL-6, IL-10, and TGF-β. Kupffer cell activation is 
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also modulated by negative feedback, most prominently by IL-10 impeding TNF-α 

production (Fiorentino et al, 1991). Our model includes a description of IL-10 

antagonism of TNF-α production. Biologically, even high levels of IL-10 do not lead 

to complete inhibition of TNF-α production; therefore, our mathematical model 

considers a nominal amount of TNF-α production that occurs even at high levels of 

IL-10 (de Waal Malefyt et al, 1991). 

Kupffer cells respond to other external factors in addition to activation signals. 

In response to poor vascularization, Kupffer cells produce HIF-1α, leading to 

production and secretion of PDGF (Copple et al, 2009). Activated Kupffer cells also 

respond to external VEGF, produced by hepatocytes. VEGF induces Kupffer cells to 

enter a replicating state, which results in a cell doubling in ~30 hours (Yang et al, 

2004). Replicating Kupffer cells return to the activated state at a constitutive rate, 

which is increased by ECM buildup. These processes and state transitions are 

incorporated into the network model as detailed in the Materials and Methods. 

7.3.1.4 Hepatic Stellate Cells 

HSCs have been called the “protean, multifunctional, and enigmatic cells of 

the liver” (Friedman, 2008c), primarily because they contribute to liver function and 

disease through multiple mechanisms. In healthy livers, stellate cells contribute to 

ECM turnover, retinoid storage and transport, regulation of the tissue 

microenvironment through cytokine and growth factor production, and potentially to 

regulating blood flow through the liver. In liver fibrosis and cirrhosis, HSC activation 

causes increased buildup of fibrous ECM, which impairs hepatocyte replication (Issa 

et al, 2003). During development of hepatocellular carcinoma, HSCs may contribute 

to the tissue microenvironment promoting tumor growth and metastasis (Engelmann et 
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al, 2015). Although much work has focused on characterizing HSC activation into 

fibrotic or pro-fibrotic states, several studies have also found that HSCs contribute to 

liver regeneration through the production of growth factors that enhance regeneration, 

including HGF, EGF, and FGF (Li & Friedman, 1999;Reeves & Friedman, 2002). 

These disparate HSC functions led us to postulate the existence of two mutually 

exclusive HSC functional states: a pro-regenerative state, producing growth factors, 

and an anti-regenerative state, producing collagens and TGF-β (Figure 7.2A). 

In our model, HSCs are considered as transitioning into distinct states in 

response to distinct external stimuli. IL-6 signals through the JAK-STAT signaling 

cascade to induce production of growth factors, such as HGF and FGF, and immediate 

early (IE) genes, which transition HSCs to a pro-regenerative phenotype. These 

interactions are represented in our model as a physiological transition between states 

(Figure 7.2B). Studies investigating contributions of NPCs to liver regeneration 

(Malik et al, 2002) have hinted at IL-6 induction of this pro-regenerative state. HSC 

transition to an anti-regenerative state, in contrast, occurs through TGF-β signaling via 

the SMAD2/3 pathway, considered in our model as a state transition (Figure 7.2B). 

The functional effects of this anti-regenerative state on the liver regeneration dynamics 

were matched to the known effects of pro-fibrotic HSC activation on hepatocyte 

proliferation and liver regeneration, which have been investigated rigorously in vitro 

and in vivo (De Minicis et al, 2007;Jiang et al, 2006b). 

In our modelling framework, HSCs can enter a replicating phenotype from 

either the pro-regenerative or the anti-regenerative states in response to increased 

PDGF levels. Replicating HSCs transition from their replicating states back to their 

respective functional states (pro-regenerative or anti-regenerative) at a constitutive rate 
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and a matrix-dependent rate. These matrix-dependent rates are increased by ECM 

buildup, leading to a reduction in levels of HSCs replicating. 

7.3.1.5 Tissue-scale Response 

Maintenance of ECM and ECM-bound factors involves several cell types 

orchestrating the composition and properties of the ECM. Many cell types within the 

liver contribute to matrix degradation both through constitutive degradation and 

through active degradation using matrix metalloproteases (MMPs) (Haruyama et al, 

2000;Malik et al, 2002;Sakaida et al, 2003;Wang & Keiser, 2000;Xu et al, 2005). 

Consequently, we modeled matrix degradation as a cell-independent process. Intrinsic 

matrix degradation was modeled as a constitutive rate of ECM removal, and extrinsic 

matrix degradation as TNF-α inducing MMP production, which increases ECM 

removal. The matrix itself is an active contributor to liver regeneration by sequestering 

and releasing growth factors at baseline and during the regeneration response. Our 

model includes matrix contribution to growth factor production by implicitly 

representing GF produced by HSCs as coming directly from these cells and from freed 

matrix-bound factors. Matrix sequestration of growth factors is included explicitly via 

a term that allows GF to be bound and sequestered by ECM. 

Vascularization was modeled at the physiological scale by introducing a 

parameter representing the extent of vascularization within the tissue (i.e. the total 

volume of blood vessels and their distribution within the tissue). The amount of 

vascularization increases in response to the amount of VEGF produced by hepatocytes 

themselves responding to hypoxia. As vascularization increases, hypoxia decreases, 

causing VEGF levels to return to baseline. This feedback mechanism acts to maintain 

vascularization levels in the regenerating liver. 
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7.3.2 Dynamic Balance of Hepatic Stellate Cell States during Regeneration 

Our computational model was able to match the dynamics of experimentally 

observed liver mass recovery following resection in rats (Figure 7.2C). Simulation 

results showed that the dynamic distribution of hepatocyte functional states matched 

the experimental observations. Priming peaked early post-PHx (within the first 12 

hours) and was maintained at lower levels as regeneration progressed. This early 

priming peak is consistent with reports showing an approximate 16-hour delay 

between resection and DNA replication in rats (Fausto, 2001). Hepatocyte replication 

peaked at ~26 hours post-PHx, which agrees with the results of many studies showing 

that BrdU incorporation following 70% PHx in rats peaks at 24 hours post-PHx in 

young adult rats (Fausto, 2001). Our simulation results are also consistent with the 

observations on the tissue microenvironment following PHx: we show that TNF-α and 

IL-6 increase early post-PHx, with peaks at ~6 hours post-PHx (Figure 7.2D), 

corresponding closely with TNF-α and IL-6 peaks in the serum reported at 12 hours 

post-PHx in rats (Yang et al, 1998b). Also, we show that IL-10 increases early post-

PHx but its peak is delayed until ~9 hours post-PHx, matching experimental 

observations that IL-10 increases following TNF-α and IL-6 and has a lower peak 

level than IL-6 (Figure 7.2D) (Yang et al, 1998b). Our simulation results also captured 

the reported dynamic behavior of GF (similar to rat HGF dynamics) and of TGF-β 

(similar to mouse TGF-β dynamics), with both increasing early post-PHx and 

decaying thereafter (Figure 7.2E) (Hayashi et al, 2012;Tomiya et al, 1998). The GF 

profile peaked prior to that of TGF-β and remained elevated longer, facilitating 

hepatocyte entry into the cell cycle. ECM degraded rapidly post-PHx, but had returned 

to nominal levels by the termination of regeneration, in accordance with results from 

previous studies investigating matrix dynamics during liver regeneration (Figure 7.2E) 
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(Rudolph et al, 1999). Our simulations predict the existence of an early transition of 

quiescent HSCs into both pro-regenerative and anti-regenerative states (Figure 7.2F). 

The levels of pro-regenerative HSCs peaked prior to the levels of anti-regenerative 

HSCs, and the balance of cell states favored the pro-regenerative state during the early 

stages of regeneration (0 – 100 hours post-PHx). The fraction of pro-regenerative 

HSCs decreases rapidly, while the fraction of anti-regenerative HSCs decreases more 

slowly. After ~100 hours post-PHx, the ratio of pro-regenerative and anti-regenerative 

HSCs tends to equalize, which may contribute to the slowing and eventual termination 

of regeneration (Figure 7.2C). 

7.3.3 Hepatocyte apoptosis rate bifurcates liver recovery and failure 

We performed global sensitivity analysis to investigate which parameters are 

important regulators of the regeneration dynamics. We sampled the model’s parameter 

space within biologically reasonable parameter value limits using a Latin hypercube 

sampling method to sample each parameter uniformly from a uniform distribution 

with a range of three orders of magnitude around its nominal value (10x to 0.1x 

nominal value). We subsequently simulated liver regeneration following 70% PHx, 

corresponding to each of the 150 parameter sets.  We found that the liver mass profiles 

could be broadly divided into regenerating and non-regenerating responses, and that 

there were more cases of the latter than the former. We therefore calculated the 

Pearson correlation between parameter values and regeneration amount or time to liver 

failure and found that hepatocyte apoptosis rate is strongly correlated with early liver 

failure (Figure 7.3A). We also found that a threshold value of the hepatocyte apoptosis 

rate (in this case, 2 times the nominal value) governs a bifurcating response between 

liver recovery and liver failure (Figure 7.3B).  



 261 

 



 262 

Figure 7.3 Parameters from all cell types contribute to regeneration dynamics and time 

to failure. (A) Hepatocyte apoptosis rate correlates relatively strongly 

with time to liver failure, suggesting that this parameter has a large 

influence causing liver failure. (B) Changing hepatocyte apoptosis rate 

results in a bifurcation between liver recovery following resection and 

liver failure. (C) Removing hepatocyte apoptosis rate from the global 

sensitivity analysis shows that regeneration and time to liver failure are 

sensitive to changes in many parameters. (D) The 20 parameters with the 

highest combined sensitivity coefficients for regeneration among and 

time to liver failure. Of the top 20 most sensitive parameter, 8 are HSC-

related parameters, 7 are hepatocyte-related parameters, and 5 are KC-

related parameters. (E) Time to failure sensitivity coefficients for 

parameter values associated with each cell type. 67% of hepatocyte 

parameters show positive failure sensitivity (compared to 48% for KCs 

and 50% for HSCs). (F) Regeneration sensitivity coefficients for 

parameter values associated with each cell type. 60% of HSC parameters 

show negative regeneration sensitivity (compared to 45% for hepatocytes 

and 43% for KCs). 

We found similar bifurcations of liver mass profiles corresponding to the other 

parameters governing hepatocyte apoptosis (Figure 7.4). 

 

Figure 7.4 Several parameters related to hepatocyte apoptosis cause a separatrix-like 

behavior between liver regeneration and liver failure. (A) Apoptosis rate, 

(B) shape parameter, (C) scale parameter. 
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7.3.4 Co-ordinated Response of Multiple Cell Types is Required for Effective 

Regeneration 

We then performed global sensitivity analysis using the partial rank correlation 

coefficient (PRCC) method (Marino et al, 2008). We simulated regeneration using 

10,000 parameter sets varying all parameters except the hepatocyte apoptosis rate, 

because we have found that varying apoptosis rate has a disproportional effect on our 

analysis. Based on the results from global sensitivity analysis, we identified key 

parameters contributing to regeneration or liver failure (Figure 7.3C). We calculated 

the top 20 parameters contributing to liver regeneration or failure using a sum of 

squares distance metric to understand which parameters affect regeneration dynamics 

most strongly (Figure 7.3D). Parameters that contributed positively to regeneration, 

tended (mostly, but not always) to contribute negatively to liver failure. Although not 

in the top 20 highest sensitivity parameters, monomeric STAT-3 concentration showed 

a positive contribution to both regeneration and liver failure. This finding is consistent 

with previous experimental studies showing that acute inhibition of STAT-3 as well as 

long-term inflammation involving STAT-3 activation both suppress regeneration (Jin 

et al, 2006;Li et al, 2002). 

We examined cell-type specific parameters to identify which cell types 

contribute the most to liver failure and regeneration. We found that hepatocyte and 

HSC parameters tended to have the highest sensitivity coefficients for the liver failure 

response, with 8 of the top 20 parameters associated with hepatocytes, and 8 of 20 

associated with HSCs. This suggests that hepatocyte and HSC preconditioning prior to 

resection plays a significant role in determining whether a liver will regenerate or fail 

(Figure 7.3E). Among the most sensitive parameters affecting time to liver failure 

were steady-state production of Tgfb by HSCs (KSS
Tgfb), concentration of monomeric 
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STAT3 ([STAT3]), IE gene activation rate (VIE), and quiescent-to-primed transition 

rate (kQ→P). In addition, we found that there was no cell type whose parameters had a 

disproportionally large effect on regeneration dynamics, indicating that regeneration 

requires a coordinated regulation of all cell types in the liver (Figure 7.3F). Among the 

most sensitive parameters affecting liver regeneration were the hepatocyte parameters 

Km
JAK, Km

SOCS3, and βap; the Kupffer cell parameters kKC
Q-A and hypoxia load (HLKC); 

the HSC parameters θHSC
req, kECM; κECM, and κdeg; and the physiological parameters 

representing metabolic demand (M) for all three cell types. 

7.3.5 Dynamic Tissue Microenvironment Cycles Underlie Regeneration 

Dynamics 

For successful regeneration cases, we investigated how HSC states and the 

tissue microenvironment respond to resection. We found that levels of pro-

regenerative and anti-regenerative HSCs peak prior to or at 24 hours post-PHx, and 

decrease thereafter (Figure 7.5A). The phase-plane representation in Figure 7.5A 

allows us to visualize the coordinated behavior of the two cell states. The levels of 

cells in both states increase early post-PHx, with pro-regenerative levels peaking 

earlier than anti-regenerative levels. This corresponds with an earlier and higher 

magnitude peak transition rate in pro-regenerative cells (Figure 7.5B). Together, these 

cell states contribute to a successful regeneration response that matches the 

experimentally observed mass recovery dynamics following partial hepatectomy in 

rats (Figure 7.5C). The distribution of cell functional states affects the molecular state 

of the tissue microenvironment, which in turn regulates the transition between cell 

states. Figures 7.5D-I show the coordinated regulation of the tissue microenvironment 

following resection. Each pair of factors shows a cyclic response to resection, with 
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levels of these factors eventually returning to normal. The relationship of TGF-β to 

GFs, however, appears slightly more complex than the relationships between other 

pairs of factors (Figure 7.5G). Both TGF-β and GFs increase early following resection 

(< 24 hrs), but GF levels decrease more rapidly than TGF-β levels, causing a crossover 

in the phase plane. This crossover occurs ~72 hrs. post-PHx, and may correspond to 

the end of hepatocyte replication and the beginning of the termination of regeneration. 

 

Figure 7.5 Phase planes behavior during successful liver regeneration. Dynamic tissue 

microenvironment influences and is shaped by cell state balances. Dots 

on the phase planes represent time = 0hr, 24hr, 48hr, 72hr, and 168hr 

following resection. 



 266 

7.3.6 Hepatic Stellate Cell State Balances Modulate Regeneration Dynamics 

We used our model to investigate how altering HSC dynamics could contribute 

to impaired liver regeneration. We sought to simulate enhanced liver regeneration 

through altering the baseline balance cells in the pro-regenerative and anti-

regenerative HSC states.  
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Figure 7.6 Model analyses show the impact of imbalances among multiple hepatic 

stellate cell transcriptional states on liver regeneration dynamics. (A) 

HSC behavior is constrained prior to 24 hr post-PHx even after 

increasing the baseline fraction of pro-regenerative HSCs. This behavior 

assumes the absence of other changes associated with changing baseline 

amounts. (B) Similar to the phase plane behavior, transition dynamics 

converge prior to 24 hr post-PHx. (C) Increasing the baseline amount of 

pro-regenerative HSCs has little effect on the dynamic regeneration 

profile. (D) HSC behavior is constrained prior to 24 hr post-PHx even 

after increasing the baseline fraction of anti-regenerative HSCs. This 

behavior assumes the absence of other changes associated with changing 

baseline amounts. (E) Similar to the phase plane behavior, transition 

dynamics converge prior to 24 hr post-PHx. (F) Increasing the baseline 

amount of anti-regenerative HSCs has little effect on the dynamic 

regeneration profile. (G) Increasing the quiescent to anti-regenerative 

transition rate leads to a dynamic change in HSC transcriptional state 

balances. (H) HSC transition dynamics change based on the balance of 

transition rates. (I) Increasing the quiescent to anti-regenerative transition 

rate causes a suppressed regeneration profile. This type of profile can be 

seen in diseased states. 

We increased the baseline fraction of pro-regenerative HSCs while maintaining 

the baseline anti-regenerative fraction at zero. Our model predicted that increasing the 

pro-regenerative fraction of HSCs at baseline, in the absence of other changes, 

resulted in a rapid evolution of HSC state distribution to match the nominal case 

(Figure 7.6A), which was accomplished through dynamic changes to the pro-

regenerative transition rates (Figure 7.6B), without yielding a noticeable effect on the 

mass recovery profile (Figure 7.6C). We then sought to simulate impaired 

regeneration through increasing the baseline amount of cells in the anti-regenerative 

phenotype, consistent with our experimental results in ethanol-fed rats. Similar to the 

previous case, changing the baseline level of anti-regenerative HSCs in the absence of 

other changes resulted in a constrained evolution of HSC state distribution prior to 24h 
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post-PHx to eventually follow the nominal trajectory, due to changes in both pro-

regenerative and anti-regenerative transition rates (Figure 7.6D and E). As before, this 

baseline imbalance resulted in no discernible change the mass recovery profile (Figure 

7.6F). The constrained HSC behavior in both cases was likely the result of similar 

Kupffer cell regulation. Regardless of initial HSC conditions, similar Kupffer cell 

signaling constrained HSC balances towards nominal case, leading to an effective 

regeneration response (Figures 7.7 and 7.8). Neither increasing the initial fraction of 

pro-regenerative HSCs nor increasing the initial fraction of anti-regenerative HSCs 

resulted in a significant change in liver mass recovery dynamics. It should be noted 

that this result should hold true only in the absence of other changes to the liver 

microenvironment caused by changing the initial balances of cells in each of these cell 

states. 

In contrast, changing the balance of pro-regenerative and anti-regenerative 

transition propensities resulted in a shift in the behavior of HSC dynamics post-PHx 

(Figure 7.6G, Figure 7.9). By increasing the anti-regenerative transition propensity of 

HSCs, fewer HSCs transition to the pro-regenerative state and more transition to the 

anti-regenerative state. Furthermore, because of the positive feedback created by the 

production of TGF-β, HSCs tend to remain in the anti-regenerative state rather than 

return to quiescence. This leads to a slight decrease in the apparent pro-regenerative 

transition rate, likely caused by the reduced number of quiescent HSCs due to anti-

regenerative transition rate increases (Figure 7.6H). This increase in anti-regenerative 

HSCs leads to a suppressed liver mass recovery post-PHx (Figure 7.6I). 
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Figure 7.7 Effects of increasing initial fraction of pro-regen HSC on dynamic tissue 

microenvironment 
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Figure 7.8 Effects of increasing initial fraction of anti-regen HSC on dynamic tissue 

microenvironment 
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Figure 7.9 Effects of increasing the anti-regen HSC transition rate on tissue 

microenvironment 

These results have implications for the study of multiple liver diseases that 

impair the liver’s regenerative capacity. For example, both non-alcoholic 

steatohepatitis (NASH) and alcoholic steatohepatitis (ASH) are characterized by the 

accumulation of lipid droplets in the liver in humans and lead to the suppression of 
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liver mass recovery in the first 48 hours post-PHx in rats (Reddy & Rao, 2006;Tanoue 

et al, 2011;Yang et al, 1998a). It is possible that the lipid-rich microenvironment 

available to HSCs could modulate their ability to take on pro-regenerative or anti-

regenerative states. Lipid-rich environments likely alter HSC metabolism and could 

suppress transition to a pro-regenerative state or enhance transition to an anti-

regenerative state. Such an altered transition landscape could be one of the driving 

factors that induce progression of liver disease following a “second hit” in NASH or 

ASH. Similarly, the progression of fibrosis or cirrhosis may be exacerbated by HSCs’ 

imbalanced transition propensities, potentially caused by metabolic imbalances or 

insufficiencies, by altered transcriptional regulation, by changes to tissue stiffness and 

tissue microenvironment, or by a combination of these and other factors. 

7.3.7 Discussion 

In this chapter, we present a new mathematical model for studying liver 

regeneration physiology as a distribution of cells in multiple functional states 

interacting in a dynamic network. Conventionally, it was thought that HSCs existed in 

one of two distinct states: quiescent and activated. Quiescent HSCs were known to 

assist in storage and transport of retinoids as well as in modulating the innate immune 

response (Hendriks et al, 1985;Paik et al, 2003;Paik et al, 2006). Activated HSCs alter 

gene and protein expression profiles, change morphology, and deposit fibrous 

collagens, causing scarring and worsening fibrosis and cirrhosis (Bataller & Brenner, 

2005). In this chapter, we propose a framework involving three hepatic stellate cells 

functional states: quiescent, pro-regenerative, and anti-regenerative. Simulations using 

our computational model showed that the balance of these transcriptional states can 

affect regeneration dynamics. This is in agreement with experimental studies 
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suggesting that HSCs can enhance hepatocyte and HepG2 cell replication but that 

livers adapted to chronic diseases characterized by active HSCs (fibrosis and cirrhosis) 

exhibit impaired regeneration (Engelmann et al, 2015;Kaibori et al, 1997;Maher, 

1993;Malik et al, 2002;Mullhaupt et al, 1994). 
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TESTING MODEL PREDICTIONS IN ETHANOL-ADAPTED RATS 

8.1 Introduction 

Recent technological developments have enabled the study of transcriptional 

and proteomic profiles of single cells within a tissue at an unprecedented scale. Many 

cell types from diverse organs, developmental stages, and disease contexts have been 

profiled, revealing a high amount of heterogeneity in gene and protein expression 

(hereafter referred to as molecular variability) among single cells within a population. 

(For examples, see (Amir et al, 2013;Patel et al, 2014;Tang et al, 2010;Treutlein et al, 

2014). Analysis of molecular variability at the single-cell scale has revealed that the 

coordinated expression of genes within single cells allows cells to be organized into 

multiple sub-phenotypes, with different sub-phenotypes likely arising in response to 

different cellular inputs (Park et al, 2015a;Park et al, 2014), spatial location in the 

tissue (Satija et al, 2015;Zeisel et al, 2015a), developmental stage (Bendall et al, 

2014), and other intrinsic and extrinsic factors. The view now emerging is that during 

development, as well as in the biological function of a terminally differentiated tissue, 

cellular heterogeneity and the distribution of functional phenotypes are shaped by 

unique cellular inputs within an interacting network of cells constituting a tissue 

(Martinez-Jimenez & Odom, 2016). This cellular network interacts with physiological 

features important to tissue function (e.g., blood flow, extracellular matrix stiffness, 

and oxygen content), as well as the molecular cues within the tissue microenvironment 

(such as cytokine, paracrine, calcium, or electrical signals), to shape tissue and cellular 

Chapter 8 
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behavior. Put another way, the molecular state of each individual cell arises as a result 

of the cell’s internal regulatory network interacting with unique physiological features 

of the local tissue microenvironment and with surrounding cells. The molecular states 

of individual cells do not appear to vary randomly; they can often be organized into 

cellular subtypes, which often still exhibit some amount of molecular variability. This 

cell-to-cell molecular variability has been proposed to enable effective tissue-scale 

response to perturbations in a manner that may not be possible in tissues comprised of 

cells that do not exhibit high molecular variability (Dueck et al, 2015). 

Despite significant research efforts, it remains an open question how the 

variability intrinsic to molecular states of single cells translates to a tightly constrained 

tissue response to perturbations. For instance, neuroscience researchers have long 

grappled with this question when studying the electrical activity of brain circuits, 

which is unpredictable at the scale of individual ion channels and single neurons but is 

more coherent at the population level (Kreiman et al, 2000;Panzeri et al, 2001;Ramer 

et al, 2000). A prevailing view in neuroscience is that individual cellular variability is 

averaged out in cell populations, producing a net rate code of electrical activity that 

governs circuit function (Silberberg et al, 2004). Such a view of integrated cellular 

behavior is supported by studies of other cell types, which show that while NF-kB 

regulation oscillates over a wide range in single cells in response to stimulation, at the 

population level the response is damped, i.e., oscillates less and is therefore more 

homogenous (Paszek et al, 2010). In contrast to the view that molecular variability at 

the cell scale is integrated out at the tissue scale, emerging results point to the 

important contribution of heterogeneity in cellular subtypes in determining overall 

tissue function (Dueck et al, 2015;Skene & Grant, 2016). Recent studies have shown 
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that the variability observed in measurements of gene expression in single neurons 

allows for individual neurons to be clustered into multiple cellular functional states, 

where the gene expression patterns of each state are tuned on a gradient between the 

gene expression patterns of canonical archetypes (Park et al, 2014). One emerging 

view of the tissue scale physiological impact of single cell heterogeneity is that the 

balance among populations of cell functional states governs tissue function. These 

balances can be dynamic, changing in response to a physiological perturbation in order 

to contribute to overall tissue recovery.  

While the tissue-scale response to a physiological perturbation is often well 

characterized or longitudinally observable, single cell-scale molecular regulation data 

are available often only at a few discrete times during recovery. Consequently, how to 

interpret the “snapshot” data of single cell transcriptional changes systematically for 

insights into the dynamics of overall tissue response to perturbations remains a 

challenge. To address this challenge, we collected and analyzed single cell data sets 

for distributions of functionally relevant phenotypes and evaluated the impact of shifts 

in these distributions on tissue function, using the computational model of the cellular 

networks underlying overall tissue response developed in chapter 7. 

The role of non-parenchymal cells is becoming increasingly recognized as 

crucial to controlling the dynamics of liver regeneration (Malik et al, 2002). Depleting 

Kupffer cells from the liver has been shown to alter regeneration dynamics, with 

different studies reporting depletion delaying regeneration (Meijer et al., 2000) and 

enhancing regeneration (Rai et al., 1996). These opposite effects may be due to two 

different techniques used to deplete Kupffer cells, which targeted distinct Kupffer cell 

functional states. Delayed regeneration occurred following targeted depletion of both 
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M1 and M2 polarized Kupffer cells, while enhanced regeneration occurred following 

targeted depletion of just the M2 polarized Kupffer cells. Kupffer cell depletion 

affecting regeneration dynamics is likely due to the important role played by M1 

polarized Kupffer cells during the priming phase, which includes secreting pro-

inflammatory cytokines to prime hepatocytes for regeneration. Similar to Kupffer 

cells, endothelial cells have been shown to influence regeneration dynamics, although 

they do so through the production of hepatocyte growth factor (HGF) (DeLeve, 2013), 

Wnt2 (Ding et al, 2010), and angiopoietin 2 (Hu et al, 2014). Our own work using 

mathematical modeling to understand regeneration dynamics has identified hepatic 

stellate cells (HSCs) as key controllers of the regeneration dynamics (Cook et al, 

2015;Correnti et al, 2015). While there is some recognition of HSCs as 

multifunctional cells with diverse contributions to liver homeostasis, repair, and 

disease etiology, the molecular and cellular dynamics of HSCs have largely been 

studied in the context of liver fibrosis, emphasizing a canonical view of HSCs as either 

quiescent (storing retinol) or activated (producing matrix) (Friedman, 2008b). Recent 

work challenges this two-state view by defining a new HSC state, termed the “inactive 

state”, which is molecularly distinct from the quiescent state and whose response to 

activation signals is different from that of quiescent HSCs (Kisseleva et al, 2012). In 

the context of regeneration, several questions about HSC behavior remain: What are 

the identities of HSC functional states during liver regeneration? How do these HSC 

functional states and state transitions contribute to the dynamics of liver functional 

mass recovery? How is the balance of functional HSC states connected to defective 

overall tissue regenerative responses observed in disease cases? This chapter attempts 

to answer these questions. 
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8.2 Materials and Methods 

8.2.1 Animal Use 

All animal studies were approved by the Institutional Animal Care and Use 

Committee (IACUC) at Thomas Jefferson University. Jefferson’s IACUC is 

accredited by the Association for Assessment and Accreditation of Laboratory Animal 

Care and experiments were designed using the Guide for the Care and Use of 

Laboratory Animals.  

Adult (8-10 week old) Sprague-Dawley rats were subjected to a standard 

Leiber-DeCarli pair feeding protocol with 36% of calories provided by ethanol or 

carbohydrates (glucose). Following 5-7 weeks of ethanol feeding, rats were 

anesthetized and subjected to 70% PHx by surgical removal of medial and left lateral 

lobes as per standard procedure (Higgins & Anderson, 1931;Juskeviciute et al, 2008). 

The medial and left lateral lobes were quickly frozen in OCT blocks (TissueTek, 

QIAGEN, Valencia, CA) over a dry ice and methanol bath to serve as within-animal, 0 

hour controls. At 24 hours post-PHx, rats were again anesthetized and the remnant 

liver tissue was excised and frozen as before. Following excision of the remaining 

liver mass, rats were sacrificed by cervical dislocation. Tissue was stored at -80°C 

until further use. 

 

8.2.2 Immunohistochemical Staining 

Frozen liver tissue in OCT blocks was sectioned 10 μm thick using a cryostat 

set at -20°C and thaw mounted on glass slides. Sliced tissue was stored at -80°C for up 
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to two weeks. Immunohistochemical staining was performed using a rapid staining 

protocol taking approximately 30 minutes to complete to preserve RNA integrity. 

Slides were first fixed in cold acetone and hydogen peroxide (Sigma-aldrich, St. 

Louis, MO, 50ml: 50µl) for 30 seconds, then blocked and permeabilized with PBS 

containing 2% BSA (Sigma–Aldrich, St. Louis, MO) for 1 minute. Afterwards, liver 

sections were incubated with the primary antibody anti-glial fibrillary acidic protein 

(Gfap) (ab4674, Abcam, Cambridge, MA), an HSC marker, for 4 minutes at room 

temperature. Then the slides were washed, and were incubated for 4 minutes at room 

temperature in the dark with the secondary antibody Cy3 anti-chicken 1/200 with 

DAPI 1/10,000, phalloidin 2.5/100, and PBS containing 2% BSA. Then slides were 

rinsed with PBS and dehydrated in graduated ethanol concentrations (70-100%) and in 

xylene for 5 min. 

 

8.2.3 Laser Capture Microdissection (LCM) 

The LCM process was performed using a PixCell system and CapSure Macro 

LCM caps (Arcturus Engineering, Mountain View, CA). Single cells or 10 cell pools 

of cells with positive staining (GFAP+) were lifted individually on caps. HSCs from 

the first 7 layers of hepatocytes around the portal or central vein were lifted and their 

position was annotated for future analyses. The annulus for the Laser was adjusted to 

the size of HSCs (approximately 10μm, HSCs were lifted and screened for quality as a 

whole cell on the cap after capture and only accepted if the cell target was fully lifted. 

During single cell sampling both the tissue and the corresponding cap were inspected 

for the removed cell body to ensure that the fluoresced HSC of interest is collected. 

Lysis buffer was added onto the single cell on the cap (5.5µl; Life Technologies, 
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Grand Island, NY) and cooled on ice before storage at -80°C. Hepatocytes, which 

stained negative for Gfap (Gfap-) and were discernable by size and morphology, were 

collected according to the same procedure.  

 

8.2.4 High-throughput quantitative PCR 

Our sample preparation calls for processing the single cells directly in a 

reverse transcriptase reaction rather than extracting RNA. Following reverse 

transcriptase reactions, cells were subjected to realtime PCR for targeted amplification 

and detection using primers designed to target specific genes using PrimerBlast (Ye et 

al, 2012). Official gene symbols (from the Nucleotide database of NCBI) were used to 

denote target genes throughout the manuscript. Refseq IDs are available in Appendix 

C. Where possible, primers were designed with intron-spanning PCR primers (Primer 

sequences can be found in Appendix C). The standard BioMark™ protocol was used 

to pre-amplify cDNA samples for 20 cycles using TaqMan® PreAmp Master Mix per 

the manufacturer’s protocol (Applied Biosystems, Foster City, CA). qPCR reactions 

were performed using 96.96 BioMark™ Dynamic Arrays (Fluidigm®, South San 

Francisco, CA) enabling quantitative measurement of multiple mRNAs and samples 

under identical reaction conditions (Spurgeon et al. 2008). Each run consisted of 40 

amplification cycles (15s at 95°C, 5s at 70°C, 60s at 60°C). Ct values were calculated 

by the Real-Time PCR Analysis Software (Fluidigm). Four 96.96 BioMark™ Arrays 

were used to measure gene expression across the ~300 single cell samples included. 

The same serial dilution sample set was included to verify reproducibility and test for 

technical variability. 
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8.2.5 Data Analysis and Statistical Methods 

8.2.5.1 Data Normalization 

Individual qRT-qPCR reactions were examined to ensure the quality of each 

qRT-PCR reaction. Each reaction was manually passed or failed based on the 

qualitative nature of the reaction curves obtained from the PCR. Any reaction below 

the limit of detection based on the CT-value of DNA suspension buffer undergoing 

qPCR procedure (no template control) was manually failed. Following this pass/fail 

analysis, samples having greater than 25% failed reactions and gene assays having 

greater than 80% failed reactions were excluded from the present analysis. This 

exclusion step further increases the quality and confidence in the data used for 

analysis. A total of 139 single cell samples (36 Ethanol 0h, 31 Ethanol 24h, 38 Control 

0h, and 34 Control 24h) and 72 different gene assays were included in the present 

analysis. 

Data was normalized using a modified -ΔΔCT method (Livak & Schmittgen, 

2001b). The median of the highest quality genes (pass in greater than 45% of samples) 

was used as a pseudo-housekeeping gene to account for differences in cell size, 

incomplete cell lifting, and BioMark™ Assay loading variation. We normalized the 

raw CT values by subtracting them from the pseudo-housekeeping gene value on a per 

sample basis. We then removed any effects of relative expression levels across genes 

by median centering the expression value of each gene to give our normalized -ΔΔCT 

value for each reaction.  
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8.2.5.2 Cell Type Specificity Analysis 

Markers for four cell types were included in our qRT-PCR assays: Apoa4 for 

hepatocytes, Itgam for Kupffer cells, Pecam1 for endothelial cells, and Actb and Gfap 

for HSCs. Each individual hepatocyte or HSC captured expressed high levels of its 

marker gene(s) and low levels of marker genes for other cell types, often below the 

limit of detection (Figure 8.1B). We measured 42 gene assays in both hepatocytes and 

HSCs using two BioMark™ Arrays, one for each cell type. Batch effects were 

removed by normalizing the dilution curves for the overlapping gene assays to each 

other. This strategy worked because the same dilution series was used for both arrays. 

We then imputed missing data as the minimum value for each assay minus 1 CT 

(approximate limit of detection). This strategy of imputing missing values as equal to 

the limit of detection was used because in our data failed reactions were often caused 

by transcripts being expressed below the limit of detection rather than other causes of 

reaction failure. We then performed principal component analysis (PCA) on the 

collated raw CT values from these cells to identify using an unsupervised method if 

cell type was a major contributor to the variability in the data (Figure 8.1C). This 

analysis also allowed for us to identify genes that contribute significantly to the 

variability in the data (Figure 8.1D). Similar results were found when analyzing 10-

cell pools of HSCs and individual hepatocytes from the same BioMark™ Array.   

 

8.2.5.3 Linear Discriminant Analysis 

High fidelity samples and assays were identified using a threshold of > 30% of 

assays working per sample, and > 10% of cells expressing each gene. Gene expression 

identified as below the limit of detection was called as "NA" in the original data, but 
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we imputed values below the limit of detection by assuming each non-expressed gene 

had a CT value of the maximum (for that gene) plus one, indicating that the gene is at 

least 1-fold below the limit of detection. 

Linear discriminant analysis was then performed on these data using the 

‘MASS’ package in the computing language R (Gentleman et al, 2004a;R Core Team, 

2012;Venables & Ripley, 2002). 

 

8.2.5.4 Silhouette Score Analysis 

We calculated the silhouette score of the clusters identified in our linear 

discriminant analysis to quantify the separation of the identified clusters. We used the 

'MASS' package in R for this calculation (Venables & Ripley, 2002). We then 

randomized our data 1,000 times and re-performed our linear discriminant analysis 

and silhouette score calculation. We calculated an empirical p-value for our silhouette 

score by finding the number of random scores equal to or greater than that calculated 

for our data. 

 

8.2.5.5 Minimum Spanning Tree Analysis 

We calculated minimum spanning trees to identify a possible progression of 

activation of single HSCs using Euclidian distance in the spantree function from the 

package 'Vegan' in R (Oksanen et al, 2013). Minimum spanning trees are a graphical 

approach that connects all nodes (single cells) in a data set that maintains a minimum 

weight between edges, where weight is a measure of unfavorable connections. Highly 
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correlated nodes are connected by edges, making this technique appropriate to 

hypothesize progression of a single cell through highly correlated nodes. 

 

8.2.5.6 Topological Maps 

Topological maps were produced from 2-dimensional kernel densities of all 

HSCs in the linear discriminant space using the R package MASS (Venables & 

Ripley, 2002). 

8.3 Results 

8.3.1 Hepatic Stellate Cell Isolation and Identification Reveals High 

Transcriptional Variability within a Cell Type 

We set out to identify signatures of HSC states through their transcriptional 

regulation by collecting and analyzing a high-dimensional dataset of gene expression 

from single HSCs. We used laser capture microdissection (LCM) coupled with high-

throughput qPCR (BiomarkTM) to isolate and transcriptionally characterize single 

HSCs from rat livers in each of four conditions: ethanol-fed rats prior to and and 24 

hrs post 70% PHx and control fed rats to and 24 hours post 70% PHx (Figure 8.1A). 

We chose the time point 24 hours post-PHx, corresponding to the peak of hepatocyte 

replication in rats post-PHx (Fausto, 2001). To confirm cell-type specificity, we also 

isolated and transcriptionally characterized single hepatocytes from the same tissue. 

Using this novel approach, we were able to measure, with high reproducibility, ~100 

gene assays in each of ~140 single HSCs (Figure 8.2). LCM made possible the capture 

of single HSCs and hepatocytes with low levels of contamination (Figure 8.1B) and a 

high degree of cell type specificity (Figure 8.1C).  
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Figure 8.1 Isolation of single / pooled hepatic stellate cells and hepatocytes. (A) 

Representative images showing LCM isolation of single hepatic stellate 

cells. DAPI and Phalloidin staining were used to identify nuclei and cell 

boundaries. Co-localization of DAPI and Gfap was used to identify 

HSCs. (B) Single HSCs and hepatocytes were collected from the same 

tissue and tested for cell type marker genes using high throughput qPCR. 

Cells expressed high levels of marker genes in a cell-type specific 

manner. (C) Using PCA on expression levels of 34 genes measure in both 

hepatocytes and HSCs separated cell types. The variability within a cell 

type appeared to be higher than variability between cell types. (D) PCA 

scores shows the genes contributing to the PCA plot. (E) Different genes 

showed unique patterns when comparing cell types. TNFR1 showed 

different mean CT values but similar variability. (F) PDGFA showed 

similar mean CT values and similar variability. (G) ALDH1A1 showed 

different mean CT values and different variability. 
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Figure 8.2 Technical reproducibility of the experimental strategy within a Biomark 

array and across Biomark arrays. (A) One sample run twice on the same 

array. (B) One sample run twice on the same array. (C) One sample run 

on two different arrays. (D) One sample run on two different arrays. 

Principal component analysis (PCA) was used to identify variability between 

cell types and to quantify major sources of variability within the data (Figure 8.3). We 

found that, although there is clear separation between HSCs and hepatocytes, the 

variability within a cell type was of the same order of magnitude as the variability 

between cell types (Figure 8.1C). This surprising finding suggests that the variability 

of gene expression within a cell type may be as large as the differences in cell 
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behavior between cell types. Several of the major contributors to variability in gene 

expression within a cell type and between cell types are ethanol metabolism genes 

(Cyp1a1, Aldh1a1, Adh1a, Cyp2e1), genes associated with HSC activation (Actb, 

Smad1, Ppara), and growth factors (Ang, Pdgfa, TGFb1) (Figure 8.1D). The 

distributions of expression of certain single genes within a cell type were different 

between HSCs and hepatocytes. Some genes were expressed at different levels with 

similar distribution ranges (Figure 8.1E), some were expressed at similar values with 

similar distribution ranges (Figure 8.1F), and some were expressed at different levels 

with different distribution ranges (Figure 8.1G). These results point to a potential 

coordination of cellular behavior of different types within the liver that may be 

regulated, at least in part, through transcriptional regulation. 
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Figure 8.3 Principal Component scores for PCs 1-6, used to discriminate between 

HSCs and hepatocytes. 

8.3.2 Hepatic Stellate Cells Function in Discernible Transcriptional States 

We used a guided clustering technique to identify transcriptional states of 

HSCs across all conditions: ethanol-fed and control rats prior to and post-PHx.  
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Figure 8.4 Gene expression in single hepatic stellate cells reveals functional 

transcriptional states. (A) Manual clustering of functional HSC states 

reveals four states: Quiescent (low GF/low collagen), Pro-regenerative 

(high GF/low collagen), Anti-regenerative (low GF/high collagen), and 

mixed (high GF/high collagen). (B) Linear discriminant analysis shows 

separation of the four HSC states in two dimensions. (C) LDA shows 

further separation of the four HSC states in three dimensions. (D) Genes 

contributing to discrimination among functional states. (E) Minimum 

spanning tree representation of single HSCs shows relationships between 

individual cells based on gene expression. (F) Cyclic representation of 

HSC functional states shows the potential distribution of individual HSCs 

as they progress through the cycle. (G) Heatmap representation of gene 

expression values for individual HSCs. Cells are grouped based on 

functional state. Genes are grouped by hierarchical clustering with 

Pearson correlation. Gene annotations are colored based on functional 

annotations. Green = growth factors, gray = collagen-related genes, 

orange = Tgfb signaling, blue = matrix-modulating genes. 

First, we categorized each cell based on the expression of fibrous collagen-

related genes (Col3a1, Col14a1, and Ecm1) and growth factors (Hgf, Igf1, and Vegf) 

(Figure 8.4A). This allowed us to organize cells into four categories: GF high, 

collagen low (pro-regenerative); GF low, collagen high (anti-regenerative); GF high, 

collagen high (mixed); and GF low, collagen low (quiescent). Next, we calculated 

Pearson correlations of the expression of all genes in each sample to the centroid of 

gene expression of each sample category and reclassified samples with sufficiently 

high correlations (p-value < 0.05) into the category to which they most closely 

correlated. We then used linear discriminant analysis to visualize the transcriptional 

behavior of each single cell and how they organized into states based on the 

expression level of all genes measured (Figure 8.4B and C). In addition to the genes 

used for classification, we identified several discriminant genes that may be useful as 
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biomarkers to differentiate among these states, including Actb, Mmp14, Mmp2, Igf1, 

Tnfr1 and Tgfbr2 (Figure 8.4D, Figure 8.5). 

 

Figure 8.5 Linear discriminants for LD1, LD2, LD3, used to discriminate among HSC 

functional states 
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Next, to ensure that the separation we observed among HSC states was not an 

artifact of our data analysis technique, we randomized our data 1,000 times, re-

performing our analysis on the randomized data, and calculating a silhouette score for 

each randomization. The silhouette score is a measure of the “betweeness” of clusters 

normalized by a commensurate measure of the “withiness” of clusters; therefore, a 

high silhouette score indicates clear separation among tightly packed clusters. The 

silhouette score from our data fell outside the distribution calculated from randomized 

data (Figure 8.6), giving an empirical p-value less than 0.001 meaning that the 

organization of the gene expression is important for identifying cell clusters. Such a 

relatively high silhouette score indicates that the cell states do not overlap significantly 

in the LD-space, suggesting that HSC states are governed by distinct transcriptional 

regulation.  

 

Figure 8.6 Significance of clustering results assessed by silhouette score. Our 

silhouette score falls well outside the range generated from randomizing 

our data 1,000 times. This gives an empirical p-value of less than 0.001. 
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We further validated these results using 10 cell pools of HSCs (Figure 8.7), 

which showed results similar to those using single cells.  

 

Figure 8.7 Validation of single cell results using 10 cell pools of HSCs collected from 

the same animals. Pools of HSCs showed a stronger gene expression 

signal, but a higher variability than single cells. (A) Manual clustering of 

functional HSC states into four states: Quiescent (low GF/low collagen), 

Pro-regenerative (high GF/low collagen), Anti-regenerative (low GF/high 

collagen), and mixed (high GF/high collagen). (B) Linear discriminant 

analysis shows separation of the four HSC states in two dimensions. (C) 

LDA shows further separation of the four HSC states in three 

dimensions. (D) Genes contributing to discrimination among functional 

states. (E) Minimum spanning tree representation of single HSCs shows 

relationships between individual cells based on gene expression. (F) 

Significance of clustering results assessed by silhouette score. 
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We sought to understand how an individual cell may transition across states by 

using a minimum spanning tree projection (Figure 8.4E). The minimum spanning tree 

projection connects each cell with its nearest neighbors according to an algorithm that 

minimizes the total connectivity of the network and prevents connection cycles. This 

type of projection may indicate how individual cells within a population could 

transition between states to minimize the transcriptional changes required to move 

from one state to another. The minimum spanning tree projection suggests a dynamic 

HSC transcriptional behavior shift whereby HSCs transition from a quiescent 

phenotype to either a pro-regenerative phenotype or an anti-regenerative phenotype. 

The connectivity of the spanning tree further suggests that pro-regenerative cells can 

transition to a mixed state then to an anti-regenerative state. It is possible that this 

activation trajectory culminates in a fully fibrotic “activated” phenotype, but cell 

tracing studies are needed to explore the trajectory within a single cell fully. It is also 

possible that, in contrast to a linear progression through states, HSC transitions occur 

in a cycle analogous to the cell cycle. If such a cycle is the case, the balance of HSCs 

may be represented as a distribution of states within a cycle (Figure 8.4F). Further 

work is needed to determine if either of these scenarios captures HSC state transitions. 

We next investigated what modules of gene expression govern cell behavior 

within each state (Figure 8.4G). We grouped genes using hierarchical clustering based 

on Spearman rank correlation (Figure 8.8). We then colored genes according to their 

annotated and previously reported functions (Growth factors – light green, Tgfb 

signaling – light orange, collagens & matrix-related genes – light red, and matrix 

remodeling – light blue). In addition, we used DAVID to identify any functional 

annotations enriched within each group compared to all the genes we measured as an 
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unbiased approach to investigate gene module functions (Figure 8.9) (Huang et al, 

2009).  

 

Figure 8.8 Dendogram showing the definition of gene clusters using a height cutoff 

value of < 0.93. 
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Figure 8.9 Overrepresented functions (GO Terms) for each gene group identified in 

our single cell data compared to the background of all genes measured.  

* Indicates p-value < 0.05. 

We then grouped cells within each state by hierarchical clustering using 

Spearman rank correlation. We found that distinct HSC states tended to express 

distinct functional modules of genes. Quiescent HSCs tended to express high levels of 

the basement membrane gene Col4a2 and the matrix metalloprotease responsible for 

regulating Collagen-4 (Mmp2) and its regulator (Timp2), which has been shown to 

work with Mmp2 to degrade collagens. This suggests that quiescent HSCs play a more 

dynamic role in maintaining basement membrane architecture than previously 
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suspected in addition to their canonical role storing vitamin A. Pro-regenerative HSCs 

expressed genes aiding in regeneration, including the growth factors Igf1, Arg1, 

Vegfa, and Hgf. Cells within these clusters also expressed other genes, including 

Stat3, Socs3, and Tnfr1, suggesting that interleukins could be primary drivers of HSC 

transition to the pro-regenerative state from the quiescent state. Anti-regenerative 

HSCs were characterized by high expression levels of Col3a1, Col14a1, and Ecm1. 

Several of these cells also showed high expression of Mmp2, and Mmp3, suggesting 

that cells in the anti-regenerative state remodel existing matrix and deposit fibrous 

matrix. The anti-regenerative state cells also tended to express high levels of Spp1, 

which has been shown to activate HSCs to a pro-fibrotic state, suggesting a positive 

feedback from the anti-regenerative state to recruit more cells to this phenotype. Cells 

in the anti-regenerative state also tended to express high levels of the TGF-β receptors 

Tgfbr2 (as did pro-regenerative and mixed stellate cells), but not the ligand Tgfb, 

which is highest in pro-regenerative and mixed state stellate cells. This indicates that 

cells in this state may be sensitive to TGF-β signaling, but may not be the source of 

TGF-β in the tissue. The mixed phenotype expressed high levels of both the collagen 

deposition module and growth factor production modules. What separates this state 

from the anti-regenerative state is the high expression of genes related to TGF-β 

signaling, cytokine signaling, and retinol metabolism, including Rara and Rbp1. If 

cells must indeed transition through the mixed phenotype before becoming activated 

to a pro-fibrotic phenotype, then high levels of retinol metabolism-related genes 

indicate that this state may be where HSCs lose their lipid droplets and assume an 

activated morphology. Additionally, because several cells in the mixed and pro-

regenerative states express Tgfb, there may be a coordination of anti-regenerative 
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HSCs and either mixed or pro-regenerative HSCs required for sustaining anti-

regenerative HSC populations during chronic liver disease. 

Understanding the additional molecular regulation underlying each state 

suggests additional annotations that may be appropriate to label the cell states. HSCs 

with high MMPs may be classified as quiescent or as matrix-modulating. HSCs with 

high GFs may be classified as pro-regenerative in the context of response to PHx or as 

cytokine-regulated HSCs or GF depositing HSCs in the context of normal tissue 

function. HSCs with high levels of collagens may be classified as anti-regenerative in 

the context of response to PHx, as TGF-β response primed HSCs in the context of 

normal tissue function, or as pre-fibrotic in the context of disease progression.  HSCs 

that express high levels of GFs and collagens may be classified as a mixed phenotype 

in the context of regeneration or as a hyper-functional HSC or adaptive HSC in the 

context of normal liver function. These adaptive HSCs may produce high levels of 

multiple functional gene modules in order to be able to respond to external stimuli 

efficiently without having to produce additional transcripts. 

8.3.3 HSC State Dynamics during Effective Regeneration 

We next investigated how the balance of HSC states progresses during liver 

mass recovery (Table 8.1). We expected a high proportion of HSCs in the livers of 

control animals prior to resection to be in the quiescent state; however, what we found 

was that HSCs were distributed among all the possible states with a small fraction of 

cells in the quiescent state (11% of total cells). Control livers at baseline had a high 

proportion of cells in the mixed state (39%), a high proportion of cells in the pro-

regenerative state (29%), and a slightly smaller proportion of cells in the anti-

regenerative state (21%). Following resection, control livers showed a strong response 
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of pro-regenerative cells (38%) and maintained a large population of mixed cells 

(35%). Relatively few cells were found in the anti-regenerative state (6%). The 

balance of cells in the pro-regenerative and mixed states appeared to have shifted at 24 

hours post-PHx compared to baseline; at 24 hours post-PHx the ratio of numbers of 

pro-regenerative cells to mixed cells is higher than at baseline. Following resection, it 

is possible that cells in the mixed state shift to the pro-regenerative state. This shift 

may correspond to lifting a “brake” on growth factor effectiveness, allowing for 

hepatocytes to progress through the cell cycle. 

Table 8.1 Distribution of hepatic stellate cell states in each condition 

State Control 0h Ethanol 0h Control 24h Ethanol 24h 

Quiescent 0.11 0.31 0.21 0.29 

Pro-Regen 0.29 0.17 0.38 0.39 

Anti-Regen 0.21 0.33 0.06 0.00 

Mixed 0.39 0.19 0.35 0.32 

     Total Cell 

Number 38 36 34 31 

 

We postulate that the dynamic transition of HSCs between these states may 

correspond to phenotypic phases of liver regeneration characterized in the literature. In 

such a scheme, during the priming phase of regeneration (0 -12 hours post-PHx), 

HSCs would be predominantly in the pro-regenerative and quiescent states, making 

GFs available for hepatocyte entry into the cell cycle and remodeling basement matrix 

to allow for effective regeneration. During the replication phase (12-72 hours post-

PHx), HSCs would be predominantly in the mixed state, continuing to produce GFs 

for hepatocyte replication but also actively producing additional scaffolding for new 
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hepatocytes to use for adherence. During the termination of regeneration (following 

~96 hours post-PHx), HSCs would be predominantly in the anti-regenerative state, no 

longer producing GFs but still remodeling and producing matrix to allow for 

hepatocyte migration and mass increase as well as allowing for revascularization of 

the tissue. The hypothesis that at termination, HSCs exist primarily in the anti-

regenerative state is consistent with studies showing that Tgfb and extracellular matrix 

can both inhibit hepatocyte proliferation. Whether Tgfb signaling (within hepatocytes 

or in a non-parenchymal cell network) or matrix deposition contribute to the 

termination of regeneration alone or in combination with other factors upregulated in 

the anti-regenerative state remains a topic of active research (Michalopoulos, 2013;Oe 

et al, 2004). Further experiments looking at the balances of HSC states during the 

termination phase is needed to confirm whether this rebalancing occurs during 

termination. 

8.3.4 HSC State Dynamics during Ethanol-impaired Regeneration 

We next investigated how hepatic stellate cell population balances shift in one 

particular disease condition that suppresses liver regeneration, chronic ethanol 

consumption. Following chronic adaptation to ethanol consumption, the regenerative 

ability of the liver is greatly reduced, leading to deficiencies in mass recovery that are 

apparent by 24 hours post-PHx and exaggerated by 48 hours post-PHx (Kuttippurathu 

et al, 2016b;Yang et al, 1998a). We investigated how chronic ethanol use alters the 

balance numbers of cells in different HSC states at baseline and at 24 hours post-PHx 

(Table 8.1). In contrast to control rats, ethanol-fed rats had a high proportion of cells 

in the anti-regenerative state (33%) prior to resection. This condition also showed a 

reduced fraction of cells in the pro-regenerative (17%) and mixed states (19%). This 
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result suggests that chronic ethanol use enhances HSC transition to the anti-

regenerative state and inhibits other states. Such a cell state population balance after 

chronic adaptation to ethanol may result in a preconditioning of the ECM in such a 

way as to impair regeneration following resection. 

Experimental results were not consistent with our model predictions on the 

distribution of HSC states post-PHx in ethanol group – specifically, analysis of single 

cell data showed that the proportion of anti-regenerative HSC state was not increased 

at 24h post-PHx in ethanol-fed rats. Instead, ethanol-fed rats showed a similar HSC 

response to resection as control rats, albeit with more quiescence (29% quiescent in 

ethanol-fed rats compared to 21% quiescent in control rats). Ethanol-fed rats also had 

high proportions of cells in the pro-regenerative state (39%) and mixed state (32%) 

and no cells in the anti-regenerative state (0%). These results indicate that HSCs may 

have a dynamic transition insufficiency following resection, resulting in a greater cell 

quiescence. At 24 hours post-PHx, the numbers of cells sampled show this dynamic 

insufficiency only subtly but analysis of other measurements, such as tissue-scale gene 

expression, may be able to shed further light on this behavior. The dynamic HSC 

insufficiency could be due to an altered transition propensity of HSCs from their 

baseline states or a dynamic insufficiency in intercellular signaling that contributes to 

suppressed transitions. The larger magnitude differences between ethanol and control 

HSC population balances at baseline than at 24 hours post-PHx indicates that chronic 

HSC imbalances may have more of an effect impairing regeneration than any dynamic 

insufficiencies. 
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8.3.5 Transcriptional variability following ethanol adaptation and resection 

In addition to altered balances of HSC states caused by chronic ethanol intake 

followed by resection, we also investigated how the transcriptional state of HSCs may 

be constrained in different conditions (Figures 8.10A and B). Both ethanol-fed and 

control groups had similar within-state cellular variability prior to resection. The exact 

structure of this variability may not be the same following ethanol treatment, however. 

For example, the transcriptional space occupied by quiescent cells in control rats 

appears distinct from the transcriptional space occupied by quiescent cells in ethanol-

fed rats at baseline. Following resection, there appeared to be similar variability in 

both treatments as prior to resection. 

 

Figure 8.10 Topical map representation of hepatic stellate cells states shows the 

clustering of HSCs in (A) control animals at 0 hours and 24 hours post-

PHx and (B) ethanol-fed animals at 0 hours and 24 hours post-PHx. 

8.3.6 Independent dataset used to validate cell population balances 

We were surprised that our results point to baseline imbalances among hepatic 

stellate cell states as the main contributor to impaired regeneration in ethanol-adapted 

rats. We therefore used an independently generated dataset to attempt to corroborate 

these findings.  Previously, our lab generated microarray-based datasets describing 
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gene expression during liver regeneration in control rats and ethanol-fed rats post-

PHx. The ethanol diet, animal housing conditions, and surgical procedure for PHx 

were identical in these animals and the ones used in our study. We used a non-

negative least squares (NNLS) regression approach to identify different strengths of 

each HSC transcriptional state from the microarray data. Our NNLS approach begins 

by using data from 10-cell pools of HSCs to identify a kernel estimate of gene 

expression for each HSC transcriptional state. This kernel estimate is simply the 

median gene expression from all pools within each state. We then limit our kernel to 

genes that are expressed predominantly in HSCs (HSC-enriched genes) and were 

measured in both the high-throughput qPCR experiment and the microarray 

experiment. Using these genes, we then perform NNLS regression to estimate the 

contributions of each HSC transcriptional state to the microarray-based expression of 

HSC-enriched genes within the whole liver tissue, according to equations 8.1. 

𝑌 = 𝜃𝑋 + 𝜖          (8.1) 

Where X is the kernel estimate for the HSC states, Y is the gene expression in 

each animal from the microarray data, and θ is the weighting vector describing the 

contribution of each cell population to whole-tissue expression.  

The solution for this regression problem is the solution to a constrained least 

squares problem, constraining all θ to be non-negative, seen below in equation 8.2. 

𝜃𝐶𝐿𝑆 = 𝜃 + (𝑋𝑇𝑋)−1𝐿𝑇[𝐿(𝑋𝑇𝑋)−1𝐿𝑇]−1(𝑣 − 𝐿𝜃)     (8.2) 

In practice, this was implemented using the “nnls” package in R. Multiple rats 

were analyzed at each time point using microarrays, allowing construction of 

confidence intervals for the estimates of θ. Use of a NNLS regression approach is 

based on the assumption that each cell within a state adds linearly to the overall gene 
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expression signal from that state. Put another way, the assumption underlying NNLS 

is that measuring the gene expression from two cells then summing gives the same 

value as pooling the two cells, then measuring gene expression. This approach allows 

for the prediction of fractions of cells in each state and relative HSC transcriptional 

strength in each condition, by summing all θ within a given condition. 
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Figure 8.11 Kernel estimation of HSC states using HSC-enriched genes and 10 cell 

pools. (A) Kernel estimation. (B-C) Predicted levels of each HSC state 

during different conditions. (D-G) Comparison of predicted state 

balances with experimental data. Error bars are 95% confidence intervals. 
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We used this methodology to estimate kernels for each HSC transcriptional 

state based on the data from our 10 cell pools of HSCs (Figure 8.11A). The Quiescent 

HSC kernel is characterized by high levels of basement membrane-related genes 

(Col4a2, Lama1, Timp2), HSC marker genes (Gfap, Lrat, Npy), Tgfb signaling-related 

genes (Smad1, Smad7, Bambi), and retinol metabolism genes (Rara, Rbp2). The Pro-

regenerative kernel is characterized by high levels of growth factors (Hgf, Igf1, 

Vegfa), but also high levels of several Tgfb-related genes (Tgfb2, Tgfbr2) and 

basement-membrane associated genes (Col4a1, Vim). The Anti-regenerative kernel is 

characterized by high levels of fibrotic matrix-associated genes (Col3a1, Col14a1), 

Dcn, and Lep. The Mixed kernel is shows high expression of genes in the Pro-

regenerative and Anti-regenerative kernels, with some differences. Notably, Col4a1 is 

down-regulated in the Mixed kernel compared to the Pro-regenerative kernel, Lep is 

down-regulated in the Mixed kernel compared to the Anti-regenerative kernel, and 

Actb and Rdh10 are up-regulated in the Mixed kernel compared to all other kernels.  

Using the NNLS regression technique, we predicted that most HSCs in control 

rats at baseline are in the mixed state (Figure 8.11B) and at 24 hours post-PHx these 

cells have all shifted to an even balance between the quiescent and pro-regenerative 

states. We predicted that ethanol adaptation leads to most HSCs at baseline exhibiting 

the anti-regenerative state (Figure 8.11C), shifting to all HSCs becoming quiescent at 

24 hours post-PHx. We compared our predicted population balances to the balances 

calculated from the single HSCs sampled earlier. It should be noted that the limited 

number of genes used in the NNLS analysis does not allow for a clear distinction 

between the mixed and pro-regenerative states in the NNLS-based predictions, we 

therefore summed the cells in the pro-regenerative and mixed states from our 
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experimental data and from our NNLS-based predictions for comparison. Our 

predictions of cell balances match our experimental results for control rats at baseline 

(Figure 8.11D) and ethanol-fed rats at baseline (Figure 8.11E) fairly well. At 24 hours 

post-PHx, however, our predictions of cell balances overestimate the fraction of cells 

that are quiescent and underestimate the fraction of cells that are pro-regenerative and 

mixed (Figure 8.11F and G).  

We therefore selected a subset of genes that would allow for our NNLS-based 

predictions to match experimental results. We selected HSC-enriched genes that were 

informative of HSC function (collagens, growth factors, and Tgfb receptors) and 

added HSC-enriched genes that caused a decreased error between predicted balances 

and fractions calculated from experiment. In this way, we found a subset of HSC-

enriched genes that could be used to calculate HSC population kernels and estimate 

HSC population balances of from whole tissue measurements (Figure 8.12A).  
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Figure 8.12 New kernels from smaller set of genes. (A) Kernel estimation. (B-C) 

Predicted levels of each HSC state during different conditions. (D-G) 

Comparison of predicted state balances with experimental data. Error 

bars are 95% confidence intervals. 
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Using the NNLS regression technique with the reduced kernels, we predicted 

that most HSCs in control rats at baseline are distributed among states (Figure 8.12B) 

and at 24 hours post-PHx these cells have all shifted to predominantly pro-

regenerative. We predicted that ethanol adaptation leads to a higher fraction of HSCs 

at baseline exhibiting the anti-regenerative state and a lower fraction exhibiting the 

mixed state (Figure 8.12C). At 24 hours post-PHx, we predicted that the balances in 

ethanol-adapted rats matched control rats closely. As before, we compared our 

predicted population balances to the balances calculated from the single HSCs 

sampled earlier. Our new predictions match experimental measurements closely 

(Figure 8.12D-G).  

We next sought to understand how our kernel estimates and predicted balances 

change if using data from single HSCs rather than pools of 10 HSCs. Using all HSC-

enriched genes measured in both the high-throughput qPCR and microarray 

experiments, we found similar gene expression signatures for the HSC state kernels 

(Figure 8.13A). Although the trends of expression in the kernels is similar, the 

differences between kernels is more apparent using the 10 cell pools. It is possible that 

this is caused by the 10 cell pools picking up a stronger signal of gene expression than 

the single HSCs, resulting in more clear kernel signatures. 
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Figure 8.13 Regression technique applied to single HSCs. (A) Kernel for single HSCs 

compared to the kernel from pooled HSCs. (B) Predicted Levels in 

control rats. (C) Predicted levels in ethanol-fed rats. (D-G) Predicted 

levels compared to experimental data. Error bars are 95% confidence 

intervals. 
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Similar to our predictions using all HSC-enriched genes and 10 cell HSC 

pools, using single cells considering all HSC-enriched genes we predict that control 

rats at baseline exhibit all HSC transcriptional states but 24 hours post-PHx cells are 

evenly distributed between the quiescent and pro-regenerative states (Figure 8.13B). 

Using single cells leads us to predict that ethanol adapted rats have a similar 

distribution of states as control rats at baseline and a high fraction of quiescent cells at 

24 hours post-PHx (Figure 8.13C). As with our predictions using 10 cell pools and all 

HSC-enriched genes, these predictions based on single cell kernels do a fairly good 

job predicting fractions of transcriptional states at baseline in control rats (Figure 

8.13D), but do a poor job predicting all other conditions (Figure 8.13E-G).  

We also tested whether the reduced kernel could lead to better predictions in 

single cells compared to all HSC-enriched genes. As with all HSC-enriched genes, the 

single cell-based kernel is similar to the 10 cell pool-based kernel, but the signal 

differences among the four kernels are not as strong in the single cell-based kernel as 

in the pool-based kernels (Figure 8.14A). 
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Figure 8.14 Regression technique applied to single HSCs using the selected genes 

only. (A) Kernel for single HSCs compared to the kernel from pooled 

HSCs. (B) Predicted Levels in control rats. (C) Predicted levels in 

ethanol-fed rats. (D-G) Predicted levels compared to experimental data. 

Error bars are 95% confidence intervals. 



 314 

When considering this reduced kernel, we predict a high level of mixed cells at 

the baseline in control rats and cells distributed among the quiescent, pro-regenerative, 

and mixed states at 24 hours post-PHx (Figure 8.14B). In contrast, we predict a higher 

fraction of cells in the anti-regenerative state in ethanol-adapted rats at baseline 

(Figure 8.14C). We predict that this ethanol-adapted imbalance recovers by 24 hours 

post-PHx (Figure 8.14C). Comparison of these predictions with experimental results 

again yields fairly good agreement. Our method underestimates slightly the fraction of 

anti-regenerative HSCs at baseline in both diets (Figure 8.14D and E). We also 

overestimate the fraction of pro-regenerative and mixed HSCs in ethanol-adapted rats 

at baseline (Figure 8.14D). At 24 hours post-PHx, our method overestimates slightly 

the fraction of quiescent cells (Figure 8.14F and G). In general, though, our predicted 

results show the same trends comparing the baseline levels of ethanol-adapted and 

control rats at baseline as seen in our experimental work. Ethanol-adapted rats have a 

higher fraction of cells in the anti-regenerative state than control rats. This validation 

of our experimental results with an externally generated dataset increased our 

confidence that the results from our single cell experiment are representative of the 

true biology. 

8.3.7 Transcriptional strength across conditions 

Even though our predictions of HSC state balances using the microarray data 

match closely our cell state balances found experimentally, the finding that HSC 

balances are similar between ethanol-adapted and control rats at 24 hours post-PHx 

appears to contradict the previous interpretation of the microarray data (Kuttippurathu 

et al, 2016c). Previously, these data were interpreted to suggest an imbalance in pro-

regenerative and anti-regenerative HSC states at 24 hours post-PHx in ethanol-adapted 
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rats. To reconcile these interpretations of the microarray data, we use a feature of the 

NNLS regression approach: NNLS allows for predicting fractions of HSCs in 

transcriptional states and overall transcriptional strength of HSCs in each condition. 

We used the reduced kernel from the 10 HSC pools and the single HSCs to calculate 

two estimates of the transcriptional strength of HSCs across all conditions, by 

summing the θs from each condition (Figure 8.15).  

 

Figure 8.15 Relative HSC transcriptional strength predicted using the NNLS 

regression approach. Error bars represent 95% confidence intervals. 

Both the pool-based estimation and the single cell-based estimation of relative 

HSC transcriptional strength indicate that there is a slightly higher HSC transcriptional 

strength in the ethanol-adapted state at baseline. At 24 hours post-PHx, the pool-based 

estimate suggests that ethanol-adapted rats have a slight deficiency in HSC 

transcriptional state transitions. This agrees with our experimental single-cell data, 
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which suggests that post-PHx, more HSCs in ethanol-adapted rats exhibit the 

quiescent state than in control rats. The single cell-based estimate, in contrast, shows 

no statistically discernable differences in the predicted HSC transcriptional strengths 

between conditions at 24 hours post-PHx. We should note that several of the genes 

interpreted from the microarray as relating to HSC activation are highest in the 

quiescent kernel (Spp1 and Serpine1). Their increase at 24 hours post-PHx in the 

microarray data therefore agrees with the interpretation from the single cell data that 

suggests a state transition insufficiency caused by ethanol adaptation. 

8.3.8 Computational Modeling in Combination with Experimental Results 

Suggests Matrix Preconditioning and Dynamic Hepatic Stellate Cell 

Transition Insufficiency Contribute to Suppressed Liver Regeneration 

Although our single cell gene expression analysis uncovered imbalances in 

HSCs states at the baseline as characterizing the disease versus control conditions, our 

simulations suggest that these differences are not sufficient to alter the response to 

resection (see Chapter 7). This indicates that the regeneration deficit in the ethanol 

group may be due to multiple hits that alter HSC behavior: the first hit to precondition 

the ECM by increasing the fraction of HSCs in the anti-regenerative state at the 

baseline chronic ethanol-adapted state, and the second hit is dynamically decreasing 

HSC functional state transitions post-resection. If the altered matrix composition in the 

ethanol-adapted state results in a stiffer or denser matrix, it is possible that growth 

factors and other matrix-bound factors are less able to intercalate into the matrix to be 

available to promote cell growth post-resection. Furthermore, such a dense matrix may 

slow degradation due to metalloproteases. Using our computational model, we 

investigated whether this matrix preconditioning and dynamic transition insufficiency 

were sufficient to explain ethanol-induced suppression of liver regeneration by 
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changing parameters consistent with our hypotheses (Parameter changes are shown in 

Table 8.2).  

Table 8.2 Matrix-associated features predicted in chronic ethanol use and 

corresponding parameter values 

Feature Control Ethanol Parameter 

Value in 

Ethanol  

(% of nominal) 

ECM Density Sparse Dense kECM 400% 

ECM 

Composition 

Enriched in 

basement 

membrane 

Enriched in 

fibrous 

collagens 

κdeg 10% 

Tissue 

Stiffness 
Relatively low 

Areas of high 

stiffness 

kQ→PR 

kQ→AR 

65% 

25% 

Availability of 

Matrix-bound 

factors 

High Low Kup 70% 

Growth factor 

intercalation 
High Low kup 70% 

 

We maintained parameters related to Kupffer cell activation constant from our 

previous simulations to maintain ethanol-induced increases in Kupffer cell activation 

post-PHx, resulting in high levels of IL-6 and IL-10 (Figure 8.16A). We then altered 

parameters related to matrix deposition, matrix metalloprotease function, and HSC 

transition propensity in accordance with our experimental results (Table 8.2, Figure 

8.17). We also reduced the value of the parameter governing JAK activation rate in 

hepatocytes in response to IL-6 because studies have shown that ethanol-adapted 
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hepatocytes have a deficient STAT3-pathway response to cytokine signaling (Chen et 

al, 1997;Horiguchi et al, 2007).  

 

Figure 8.16 Implications of HSC activation results and model predictions for chronic 

ethanol-treated rats. (A) Chronic ethanol use leads to increased levels of 

pro-inflammatory and anti-inflammatory cytokines following PHx. (B) 

Chronic ethanol appears to lead to a deficient pro-regenerative HSC 

response following PHx. (C) The effects of increased cytokine 

production, imbalanced HSC functional states, and changes to the tissue 

microenvironment combine to suppress regeneration following ethanol 

adaptation. The simulated regeneration profile of ethanol adapted rats is 

consistent with results from (Yang et al, 1998b). 
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Figure 8.17 Effects of chronic ethanol consumption on liver regeneration control and 

tissue microenvironment. 

Tuning these parameters allowed us to match our experimental observations 

that HSC population levels were dynamically insufficient post-PHx, (Figure 8.16B). 

Based on simulation results, one reason for this dynamic insufficiency may be 

increased HSC apoptosis in ethanol-adapted rats (Figure 8.18).  
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Figure 8.18 Simulations lead to the prediction that there is more apoptosis of HSCs in 

the ethanol-fed rats than controls. 

These simulations then matched to experimentally observed mass recovery 

data following 70% PHx in rats (Figure 8.16C) (Yang et al, 1998a). Our simulations 

captured experimental observations that chronic ethanol use suppresses hepatocyte 

priming (Figure 8.16D), impairs hepatocyte replication post-PHx (Figure 8.16E), and 

results in hepatomegaly (Figure 8.16F) (Chen et al, 1997;Israel et al, 1979;Yang et al, 

1998a). Model simulations suggest, however, that hepatocyte size increases early in 

control rats in response to PHx but that the hepatomegaly caused by ethanol adaptation 

is a delayed response to PHx. Altered cell network behavior in ethanol-adapted animal 

simulations led to dramatic differences in tissue microenvironment (Figure 8.16G, H 

& Figure 8.17) but little difference in final amount of tissue vascularization (Figure 

8.16I), suggesting that chronic ethanol consumption does not impair revascularization 

of the liver. 
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8.4 Discussion 

Our study has shown that HSCs can exhibit transcriptional behavior that 

appears to correlate with the cellular functional state. What is less clear is the path of 

progression of HSCs through these functional states. One possibility is that HSCs 

could exist in a “transcriptional continuum” where cells can transition between any 

two states in response to internal and external stimuli (Figure 8.19A). Alternatively, 

HSCs could progress through a series of states beginning at quiescent state and 

moving towards an anti-regenerative state (Figure 8.19B).  

 

Figure 8.19 Potential hepatic stellate cell transition patterns. (A) Star-type transitions 

could allow any functional state to shift its transcriptional profile into any 

other functional state. (B) A cyclic transition pattern, like the cell cycle, 

could allow for distributions of cells aiding hepatocyte regeneration or 

homeostatic renewal. Getting “stuck” in one phase of the cycle could lead 

to cell exit into apoptosis or pre-fibrotic phenotypes. (C) A cell fate 

commitment pattern would allow cells to transition only one way. In such 

a pattern, quiescent cells would have to be continuously replenished. 

Perhaps hepatic stem cells (or oval cells) play a role in this 

replenishment. 

In such a scheme, progression to the anti-regenerative state requires 

transcriptional regulation into the pro-regenerative and mixed states before reaching 
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the anti-regenerative state. Regeneration could be enhanced by maintaining cells in the 

pro-regenerative intermediate states for a longer period of time or impaired by 

speeding the progression through these states. Furthermore, such a progression may 

correspond to the physiological stages of regeneration, which may mean that such an 

ordered progression does not necessarily hold true for disease contexts that yield 

diminished regeneration. It is also possible that HSCs could progress through 

committed fate transitions from a quiescent phenotype to a mixed phenotype (Figure 

8.19C). In this scheme, the only way to rebalance the distribution of HSC states is 

though cell death of terminally differentiated HSCs. Further investigation, however, is 

needed to identify which, if any, of these hypotheses are correct. As an additional 

consideration, the effects of tissue microenvironment, including tissue stiffness, may 

also be important to determine how cells can transition between states. 

Several opportunities exist for extending our current study. We considered a 

select set of transcripts to define HSC functional states. Future studies could benefit 

from a more comprehensive transcriptomic characterization of single HSCs, for 

example, using single cell RNAseq. It should be noted, however, that even when 

considering transcriptomic data, only a fraction of the transcripts (a few tens to 

hundreds, depending on the context) contribute to separation of functional states, as 

evidenced by typical factorization analysis of these data sets using strategies such as 

Principal Component Analysis, Multi-dimensional Scaling, and Stochastic Embedding 

(Patel et al, 2014;Tang et al, 2010;Treutlein et al, 2014;Zeisel et al, 2015b). The 

identity of functional states depends on the subset of the transcriptome that is 

considered as relevant to a specific context under study. For example, fractionation of 

cell states based on metabolic pathways may yield a different hierarchy of cell states 
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than fractionation based on transcription factors, cell surface receptors, signaling 

pathway components, or a combination thereof. Our analysis of cellular functional 

states based on select set of approximately 100 transcripts could be considered as 

parallel to single cell cytometry studies of select (~20-100) proteins using the CyTOF 

approach that have uncovered new insights into the cellular hierarchy of multiple cell 

types, including immune cells and stem cells (Han et al, 2015;Qiu et al, 2011;Yao et 

al, 2014). 

Another opportunity is to extend the computational model to incorporate our 

novel experimental data describing single HSC gene expression. The model includes 

only three HSC states, excluding the mixed HSC state identified as a major contributor 

to HSC population balances. Accounting for this additional state, however, may 

require a more thorough understanding of how HSCs transition across these states. To 

this end, future investigations need to develop temporally informative data, for 

example through cell lineage tracing techniques, to identify the dynamics governing 

progression of individual HSCs through different states. Additionally, we considered 

hepatocyte replication following resection as a uniform property of all hepatocytes, 

although recent studies have begun to appreciate the contributions of liver “stem cell-

like” cells contributing to regeneration (Wang et al, 2015a;Yimlamai et al, 2014). Our 

combined single-cell based transcriptional analysis and computational modeling 

approach could be a powerful tool to investigate the contributions of these “stem cell-

like” hepatocytes as well as additional hepatocyte transcriptional states to liver 

regeneration and dynamic liver function. Further extensions of our approach could be 

used to study the relationship between spatial heterogeneity in the liver and 

regeneration. Using our approach, we collected single cells from portal and central 
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regions of multiple liver lobes and record exact spatial information about each cell. 

Coupling such data with a spatially resolved cell network model would allow for in-

depth investigation into how spatial heterogeneity affects regeneration and vice versa. 

Finally, our study has several implications for studying the mechanisms 

driving chronic liver diseases such as fibrosis, cancer, and others. Our results 

demonstrate that the dynamic liver function is governed by multiple levels of 

physiological controls: molecular, intracellular, and inter-cellular networks. Molecular 

control of liver function has been widely studied, but has yet to progress to promising 

therapies for severe liver disease (Jain et al, 2015;Zhu et al, 2015). Previous studies 

have focused on the effects of canonical cell types interacting or the effects of other 

organs, such as adipose tissue, on liver function (Chiang et al, 2011;Engelmann et al, 

2015). Our work takes a different approach, using a data-driven understanding of cell 

functional states to gain insights into how the dynamic distributions of cells in various 

functional states contribute to overall tissue function. This study presents the first steps 

towards understanding the contributions of cell states and interactions among many 

types of cells in multiple states to tissue function. It is possible that modifying the 

population balances of cells in different states may be an effective strategy to 

influence disease progression and remission. This novel concept of cell state 

population imbalances contributing to disease progression suggests a new way to think 

about treating chronic diseases. Disease regression may be achievable through 

inhibiting certain cell states and enhancing others rather than targeting specific 

molecular pathways. 
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IMPLICATIONS FOR NON-PARENCHYMAL CELL NETWORKS IN 

TISSUE HOMEOSTASIS 

9.1 Introduction 

Day to day tissue renewal is accomplished through a program of homeostatic 

renewal involving adult cells, stem cells, and increasingly recognized subpopulations 

of cells that display characteristics of both stem cells and adult cells, so called “stem-

cell-like” cells. Cell turnover rates in the body can vary from days to years. Certain 

tissues, like the intestinal epithelium, have a high turnover rate (average lifespan ~ 5 

days), while some tissues, like the intercostal skeletal muscle, have a much slower 

turnover rate (average lifespan ~ 30 years) (Spalding et al, 2005). The majority of this 

replacement occurs through homeostatic renewal. In humans, only one organ, the 

liver, is able to regenerate lost mass through other means (Michalopoulos, 2013). 

Despite the ubiquitous presence of homeostatic renewal in biology and decades of 

study, researchers are still investigating the mechanisms underlying homeostatic 

renewal and how different cell populations interact with tissue microenvironments to 

govern the renewal process. 

One interesting organ in which to study homeostatic renewal is the liver. The 

liver is one of the main detoxifying organs of the body and is therefore exposed to 

potential toxins. This sometimes toxic environment requires a robust homeostatic 

renewal process. Facilitating a robust homeostatic renewal, the liver contains multiple 

stages of developed cells contributing to renewal, including stem cells (or oval cells), 

Chapter 9 
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“stem-cell-like” cells, and fully differentiated parenchymal cells (mature hepatocytes) 

(Fausto & Campbell, 2003;Miyajima et al, 2014;Wang et al, 2015b). Additionally, a 

large body of literature exists investigating regeneration following mechanical or toxic 

damage in the liver, reviewed in (Michalopoulos, 2013;Taub, 2004b). Studies on 

regeneration have shed light onto how hepatocytes progress through the cell cycle 

(Loyer et al, 1994), how and when stem cells contribute to regeneration (Wang et al, 

2003), and how the tissue microenvironment can inhibit regeneration as in the case of 

liver fibrosis (Friedman, 2008b). Recently, our lab used a combined mathematical 

modeling and single-cell based gene expression approach to investigate how the 

balance of non-parenchymal cells governs regeneration (for details, see Chapters 7 and 

8). We find that imbalances among different subpopulations of hepatic stellate cells 

impair the liver’s regenerative ability. These imbalances are most striking in the liver 

after chronic ethanol use but before resection, suggesting that it is long-term, baseline 

imbalances that impair regeneration. We therefore wonder whether imbalances in cell 

populations could have an effect on homeostatic renewal in the liver. We seek to 

explore this question using a mathematical modelling approach. 

9.2 Materials and Methods 

9.2.1 Model development 

We developed a new mathematical model of liver homeostatic renewal that 

takes into account two recently described populations of hepatocytes: Axin2+ (HA2+) 

and Axin2- (HA2-) hepatocytes (Wang et al, 2015b). Hepatocytes renew predominantly 

by replication of Wnt-responsive Axin2+ “stem-cell-like” hepatocytes, which have 

been shown to cluster pericentrally and respond to factors produced by pericentral 
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endothelial cells (i.e. WNT-2a). As Axin2+ hepatocytes renew, some of the daughter 

cells migrate from the pericentral region and lose Wnt responsiveness, becoming 

Axin2- cells. These Axin2- hepatocytes subsequently terminally differentiate to 

become mature hepatocytes and populate the remainder of the liver. It remains an 

open topic of research whether stem cells participate in homeostatic renewal and to 

what extent (Kopp et al, 2016).  

We used an ODE-based approach to describing the dynamics of Axin2+ and 

Axin2- hepatocyte populations during homeostatic renewal. Although cell replication 

and apoptosis is an intrinsically stochastic process at the level of individual cells, at 

the population level these processes can be represented using deterministic modeling. 

Multiple studies have used this approach previously to simulate cell growth in vitro 

and in vivo (Baranyi & Roberts, 1994;Johnston et al, 2007;Lovrics et al, 2006).  

In our modeling scheme, each population of hepatocytes maintains a 

proliferation rate (kprol) and an apoptosis rate (kap). Additionally, we simulated Axin2+ 

hepatocytes as constitutively transforming to Axin2- hepatocytes according to a 

transition rate (kT). This gives rise to the differential equations below. 

𝑑𝐻𝐴2+

𝑑𝑡
= [𝐻𝐴2+]𝑘𝑝𝑟𝑜𝑙

𝐴2+ − [𝐻𝐴2+]𝑘𝑎𝑝
𝐴2+ −  [𝐻𝐴2+](𝑘𝑇)  (9.1) 

𝑑𝐻𝐴2−

𝑑𝑡
= [𝐻𝐴2+](𝑘𝑇) +  [𝐻𝐴2−]𝑘𝑝𝑟𝑜𝑙

𝐴2− −  [𝐻𝐴2−]𝑘𝑎𝑝
𝐴2−  (9.2) 

We also included an exploration of potential feedback mechanisms that could 

be at work during homeostatic renewal. Biological justification for each feedback 

explored and equations describing each can be found in the Results section. 
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9.2.2 Parameter constraints 

9.2.2.1 Literature-based constraints 

Table 9.1 Parameter values for each model considered in this study 

Parameter 0 A B C D Robust 
k

+

prol
 0.071429 0.214258 0.071429 0.071429 0.071429 0.214258 

K
+

cap
 -- 0.075 -- -- -- 0.075 

K
-

cap
 -- 1.425 -- -- -- 1.425 

k
-

prol
 0.035714 0.107129 0.035714 0.035714 0.035714 0.107129 

k
+

ap
 0.0375 0.0375 0.0375 0.0375 0.0375 0.044629 

k
-

ap
 0.0375 0.0375 0.0375 0.0375 0.0375 0.044629 

k
T
 0.033887 0.033887 0.033984 0.033887 0.034277 0.169629 

k
P

env -- -- 0.14502 1 -- 0.434961 
k

T

env -- -- -- 0.95 -- 0.95 
k

A
 -- -- 0.1 -- -- 0.1 

C1 -- -- -- -- 100 -- 
C2 -- -- -- -- 8 -- 
k

Renew
 -- -- -- -- 8 -- 

 

All parameters values used in this study are listed in Table 9.1. Several of the 

parameters used in our model have direct biological correlates and have been 

measured experimentally. From the study by Wang et al., it has been estimated that 

Axin2+ hepatocytes replication takes approximately 14 days, giving an observed 

proliferation rate (kprol
A2+) of 1/14 doublings/day (Stanger, 2015). Similarly, Axin2- 

cells were estimated to double every 28 days, giving an observed proliferation rate of 

1/28 doublings/day (Stanger, 2015). These estimates appear to agree with previous 
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studies showing that the average lifespan of a hepatocyte in mice is between 

approximately 200 and 400 days (Malato et al, 2011).  

Total apoptosis rate must balance with total proliferation rate to ensure the 

liver maintains homeostatic mass. Also, there is no study suggesting a differential 

homeostatic apoptosis rate due to liver zonation. Therefore, we simulated the 

homeostatic apoptosis rate for both Axin2+ hepatocytes and Axin2- hepatocytes are 

equal. Apoptosis rate was calculated to ensure a steady-state tissue mass. 

One of the feedback mechanisms we consider is a cell competition constraint 

using the logistic equation, which includes carrying capacity for each population 

(Kcap
A2+ and Kcap

A2-) (See Equations 1 and 2). In these equations, the carrying 

capacities were estimated to be 1.5x the steady-state value of the tissue. We chose 1.5x 

because infiltration of greater than 50% of hepatocytes by fat occurs rarely, occurring 

in only 33% of morbidly obese patients (Fris, 2004). We also explored the effect of 

changing the carrying capacities on model behavior. 

Another feedback mechanism we consider is replacement of Axin2+ 

hepatocytes by a population of stem cells. Studies have shown no major contribution 

of stem cells to homeostatic renewal in the liver, we therefore chose parameters that 

would make the effect of stem cells zero at steady-state, but increase exponentially if 

liver mass decreases (See equation 9.13 and Table 9.1).  

 

9.2.2.2 Steady-state constraints 

The other model parameters were estimated similar to how we estimated 

apoptosis rate. Values were constrained so that d/dt(HA2+) and d/dt(HA2-) equaled zero, 

corresponding to steady-state. We simulated multiple possible models exhibiting all 
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feedback combinations and, in most cases, there was only one set of parameters that 

satisfied the steady-state constraints. When multiple parameter sets were possible, we 

chose the parameter set that maintained parameter values close to the other possible 

models.  

 

9.2.3 Model selection for robustness 

We used a systematic design of experiments-based (DOE) approach to 

investigate the system behavior under all possible combinations of feedback 

configurations, specifically characterizing system recovery in response to a wide 

variety of disturbances. We considered each feedback to be a factor with one of two 

levels: 1 (present) or 0 (absent). We considered four possible feedbacks, resulting in a 

2^4 full factorial design. We then simulated a transient (30 day) increase in apoptosis, 

decrease in apoptosis, increase in proliferation, and decrease in proliferation and 

measured the system response. The metric we used to evaluate model response to 

multiple individual disturbances is given in equations 9.16 and 9.17 in the Results 

section. We also varied parameter values to simulate how robust the model is to slight 

deviations in parameters corresponding to potentially different regulation of 

homeostatic renewal in different patients. We created 9 additional parameter sets by 

sampling each parameter from a normal distribution with a mean at the parameter’s 

nominal value and a standard deviation of 1% of the nominal value. We then re-

performed the full 2^4 DOE for each parameter set. We used an ANOVA approach to 

identify feedbacks that contributed significantly to model response to transient 

disturbances.  
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9.2.4 Global and parametric sensitivity analyses 

9.2.4.1 Global sensitivity analysis 

The Sobol method for calculating was used to estimate sensitivity of model 

output to parametric changes based on output variance. A detailed description of Sobol 

sensitivity can be found in (Bilal, 2014;Sobol, 2001). Briefly, the total effect index 

(TEI) was calculated for each parameter by sampling 1,000 parameter sets from a 

normal distribution for each parameter with a mean value of the nominal parameter 

value and a standard deviation of 10% of its nominal value. We then simulated 

homeostatic renewal with each parameter set and recorded the resulting change in 

steady state levels of Axin2+ cells, Axin2- cells, and overall liver mass. A 

complimentary parameter set was generated for each parameter maintaining that 

parameter constant at the nominal level while all others varied. The sensitivity was 

then calculated according to equation 9.3. 

𝑆𝑇(𝑖) = 1 −
𝑉𝑎𝑟𝑝~𝑖(𝐸𝑝𝑖

(𝑀𝑎𝑠𝑠|𝑝~𝑖))

𝑉𝑎𝑟(𝑀𝑎𝑠𝑠)
    (9.3) 

Where ST(i) is the TEI for each parameter, Mass represents the nominal mass 

fraction of Axin2+ cells, Axin2- cells, or total liver mass at the new steady state, p 

represents each parameter, and p~i respresents all parameters except pi. Thus, the total 

sensitivity index can be viewed as the variance in model behavior caused all other 

parameters except i varying subtracted from the total variance caused by all 

parameters changing normalized to the total variance.  
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9.2.4.2 Parametric sensitivity analysis 

Normalized sensitivity coefficients were estimated by changing each parameter 

(pi) by +/- 10% of its nominal value and calculating sensitivity at each simulation time 

point according to equation 9.4. 

𝑆i =
Δ𝑀𝑎𝑠𝑠/𝑀𝑎𝑠𝑠

Δ𝑝𝑖/𝑝𝑖
   (9.4) 

Mass represents the nominal mass fraction of either Axin2+ or Axin2- 

hepatocytes at the new steady state and ΔMass is the deviation from nominal caused 

by the parameter change. The result is a parametric sensitivity, showing how the 

steady state of Axin2+ or Axin2- cells changes in response to a parameter change. 

 

9.2.5 Non-parenchymal cell controllers 

Non-parenchymal cell controllers were modelled as PI controllers with set 

points equal to the nominal Axin2+ or Axin2- populations. Controllers were tuned 

using the automatic tuning function in Simulink.  

 

9.2.6 Model simulation 

All simulations were carried out using Matlab and Simulink (Mathworks, 

Natick, MA). 

9.3 Results 

9.3.1 Feedback is required to maintain a steady state 

We first tested the behavior of our model in the absence of feedback (Figure 

9.1). In this scheme both Axin2+ and Axin2- hepatocytes can proliferate, and each has 

a constitutive apoptosis rate (Figure 9.1A and B). In addition, Axin2+ hepatocytes can 
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transform or differentiate to Axin2- hepatocytes. We used a phase-plane approach to 

investigate model behavior at steady-state and find that, in the absence of feedback, 

the initial condition is an unstable steady-state (Figure 9.1C). The system is unable to 

respond to a challenge and maintain homeostatic liver mass. For example, a transient 

apoptosis challenge results in a permanent decrease in the populations of both Axin2+ 

and Axin2- hepatocytes (Figure 9.1D and E). Therefore, feedback is required to 

maintain steady state. 
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Figure 9.1 Homeostatic renewal model. (A) Model schematic showing two 

populations of hepatocytes: Axin2+ and Axin2-. Each population can 

replicate at a specific rate and each has a specific apoptosis rate. Axin2+ 

cells are able to transition to Axin2- cells, but not the reverse. (B) 

Equations governing model behavior. (C) Steady-state behavior of the 

model shown using phase plane. There are multiple steady states but no 

stable attractor. Blue arrows represent the sign of the local derivative in 

the y-direction, red arrows represent the sign of the local derivative in the 

x-direction. (D) In response to a transient stress, like increased apoptosis 

rate, the system shifts to a new steady-state. (E) Phase-plane 

representation of model behavior in response to a transient apoptosis 

stress shows the transition to a new state. 

 

9.3.2 Different types of feedbacks result in different system dynamics 

We investigated four potential feedback mechanisms that could confer stability 

to the system. We chose to investigate feedbacks that simulated different classes of 

biological processes rather than multiple types of feedback within a biological class 

(i.e. Michaelis-menton type feedback on cell proliferation vs. Hill-type feedback).  

 

9.3.2.1 Capacity constraint OR implicit competition within hepatocyte 

populations (Model A) 

In this scheme, hepatocytes within a subpopulation compete for limited 

resources, potentially including nutrients, space, or cofactors. Such competition for 

limited resources can be simulated using the logistic growth equation (Equations 9.5 

and 9.6).  

𝑑𝐻𝐴2+

𝑑𝑡
= [𝐻𝐴2+]𝑘𝑝𝑟𝑜𝑙

𝐴2+ (1 −
[𝐻𝐴2+]

𝐾𝑐𝑎𝑝
𝐴2+ ) − [𝐻𝐴2+]𝑘𝑎𝑝

𝐴2+ −  [𝐻𝐴2+](𝑘𝑇)  (9.5) 

𝑑𝐻𝐴2−

𝑑𝑡
= [𝐻𝐴2+](𝑘𝑇) +  [𝐻𝐴2−]𝑘𝑝𝑟𝑜𝑙

𝐴2− (1 −
[𝐻𝐴2−]

𝐾𝑐𝑎𝑝
𝐴2− ) −  [𝐻𝐴2−]𝑘𝑎𝑝

𝐴2−  (9.6) 
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Where Kcap
A2+ and Kcap

A2- are the carrying capacities for Axin2+ and Axin2- 

hepatocytes, respectively. Steady-state analysis of this model shows that there are 

three potential steady-states (1) the trivial state where all hepatocytes have died, (2) 

the initial condition steady state, and (3) a steady state where all Axin2+ hepatocytes 

have died, but Axin2- hepatocytes are able to repopulate the liver at a lower mass 

(Figure 9.2A).  
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Figure 9.2 Response to stressors (A) Response of Model A increased apoptosis (left 

column), increased proliferation (middle column), and initial imbalanced 

populations (right column). (B) Response of model B. (C) Response of 

Model C. (D) Response of model D. Points represent t = 0 days, 10, 40, 

and 60 days then every 30 days until 1 year, then points represent each 

subsequent year. Gray arrows represent the direction of motion on the 

phase plane. 

This third steady state may correspond to homeostatic renewal in patients who 

have had a liver transplant and now suffer from small-for-size syndrome, such as 
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recipients from older liver donors (Ono et al, 2011b). If pericentrally clustered Axin2+ 

hepatocytes are lost during the transplant, it might be possible that liver zonation 

would be dysregulated as well. In such patients we might expect to see impaired 

metabolic functions consistent with imbalances in liver zonation. A transient apoptotic 

challenge to this model results in relatively small hepatocyte loss and recovery in 

approximately 50 days after the challenge ends (Figure 9.2B). In healthy subjects, the 

initial condition is a stable steady-state (Figure 9.2C).  

 

9.3.2.2 Product inhibition of proliferation OR negative feedback of 

differentiated cells on “stem-cell-like” cells (Model B) 

In this scheme, proliferation of Axin2+ hepatocytes slows down as liver mass 

increases according to equations 9.7 and 9.8. 

𝑑𝐻𝐴2+

𝑑𝑡
= [𝐻𝐴2+]𝑘𝑝𝑟𝑜𝑙

𝐴2+ (
𝑘𝑒𝑛𝑣

𝑃

[𝐻𝐴2+]+𝑘𝐴[𝐻𝐴2−]
) − [𝐻𝐴2+]𝑘𝑎𝑝

𝐴2+ −  [𝐻𝐴2+](𝑘𝑇)  (9.7) 

𝑑𝐻𝐴2−

𝑑𝑡
= [𝐻𝐴2+](𝑘𝑇) +  [𝐻𝐴2−]𝑘𝑝𝑟𝑜𝑙

𝐴2− −  [𝐻𝐴2−]𝑘𝑎𝑝
𝐴2−  (9.8) 

Where kP
env is the microenvironment effect on proliferation parameter, which 

tells the relative effect of the microenvironment on Axin2+ cell proliferation 

compared to the effect of cell populations. kA is the area parameter, which tells the 

relative contribution of HA2- cells to impaired Axin2+ proliferation compared to HA2+ 

cells. The value of kA was set to 0.1 because we reasoned that HA2+ cells have a larger 

proportional feedback on their own proliferation than HA2- cells.  

Model B has only one steady state, which is at the initial condition (Figure 

9.2D). A transient apoptotic event leads to a relatively high hepatocyte loss that takes 

approximately 3 years to fully recover (Figure 9.2E). This steady state is stable, and 

starting with any population imbalance will result in a return to balanced levels 
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(Figure 9.2F). Axin2+ hepatocyte renewal occurs prior to Axin2- renewal, and in 

some cases there is an overshoot of Axin2+ populations above the steady-state.  

 

9.3.2.3 Product inhibition of cell transitions OR Axin2+ maintenance 

microenvironment signaling saturation (Model C) 

This scheme corresponds to the case where a signal from the 

microenvironment or lack of signal induces transition of hepatocytes from an Axin2+ 

state to an Axin2- state. Here as Axin2- cell populations build up, the transition signal 

(kT
env) is diluted and the observed transition rate decreases according to equations 9.9 

and 9.10. 

𝑑𝐻𝐴2+

𝑑𝑡
= [𝐻𝐴2+]𝑘𝑝𝑟𝑜𝑙

𝐴2+ − [𝐻𝐴2+]𝑘𝑎𝑝
𝐴2+ −  [𝐻𝐴2+](𝑘𝑇) (

𝑘𝑒𝑛𝑣
𝑇  

[𝐻𝐴2−]
)  (9.9) 

𝑑𝐻𝐴2−

𝑑𝑡
= [𝐻𝐴2+](𝑘𝑇) (

𝑘𝑒𝑛𝑣
𝑇  

[𝐻𝐴2−]
) +  [𝐻𝐴2−]𝑘𝑝𝑟𝑜𝑙

𝐴2− − [𝐻𝐴2−]𝑘𝑎𝑝
𝐴2−  (9.10) 

We evaluated this model for stability and find that there is a single steady-state 

at the initial condition (Figure 9.2G) but it is an unstable steady-state (Figure 9.2H and 

I). We explored whether this instability is the result of the specific functional form 

used by re-performing the stability analysis using Hill-type inhibition with Hill 

coefficients between 1 and 3. We find that the instability remains regardless of the 

functional form of the feedback (Figure 9.3). Therefore, it is unlikely that product 

inhibition of cell transitions alone governs liver homeostatic renewal. 
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Figure 9.3 A different specific form of the feedback on the transition rate (Model C) 

gives rise to similar systems behavior. We investigated how a Hill-type 

inhibition would affect system behavior. We show that Hill coefficient of 

(A) one, (B) two, or (C) three give rise to similar system behavior (D). In 

addition, this unstable steady state is similar to that seen using a simpler 

inhibition term (See Figure 9.2F). 
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9.3.2.4 Exogenous populations supplying Axin2+ populations or stem cell-led 

renewal (Model D) 

The most widely studied process in homeostatic renewal in multiple organs is 

stem cell-led renewal, although some organs like the pancreas renew by self-

duplication rather than by stem cell differentiation (Dor et al, 2004;Poss, 2010;Ritsma 

et al, 2014). In the liver it is widely recognized that self-duplication governs 

homeostatic renewal; however, there may still be a role for stem cell renewal (Kopp et 

al, 2016;Miyajima et al, 2014). We simulated the effect of an exogenous populations 

of cells supplying the Axin2+ hepatocyte population using an inverse exponential 

function, Equations 9.11-13. 

𝑑𝐻𝐴2+

𝑑𝑡
= [𝐻𝐴2+]𝑘𝑝𝑟𝑜𝑙

𝐴2+ − [𝐻𝐴2+]𝑘𝑎𝑝
𝐴2+ −  [𝐻𝐴2+](𝑘𝑇) + 𝑓([𝐻𝐴2+])   (9.11) 

𝑑𝐻𝐴2−

𝑑𝑡
= [𝐻𝐴2+](𝑘𝑇) +  [𝐻𝐴2−]𝑘𝑝𝑟𝑜𝑙

𝐴2− −  [𝐻𝐴2−]𝑘𝑎𝑝
𝐴2−  (9.12) 

𝑓([𝐻𝐴2+]) = 𝑘𝑅𝑒𝑛𝑒𝑤 (
1

1+exp(𝐶1∗[𝐻𝐴2+]+𝐶2)
)  (9.13) 

Where the parameters for the exponential function were chosen so that at 

steady-state there is no contribution of the exogenous populations to Axin2+ cells but 

there is an exponentially increasing contribution of the exogenous cells to renewal 

when Axin2+ populations fall below a certain threshold (in our model this threshold is 

~4% of liver mass).  

It should be noted that the exogenous population does not have to refer only to 

stem cells. Research from Dr. Forbes’ lab as well as from other labs has shown that 

stem cells can be an important contributor of cell renewal, but they are far from the 

only one (Fausto & Campbell, 2003). Research suggests that other exogenous cell 

types may contribute to liver renewal, including hybrid hepatocytes (Baldo et al, 

2010;Font-Burgada et al, 2015;Thorgeirsson & Grisham, 2006), transformation of 
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biliary cells into hepatocytes and vice versa (Michalopoulos et al, 2005;Yanger et al, 

2013), and mesenchymal to epithelial transition of hepatic stellate cells into 

hepatocytes (Choi & Diehl, 2009;Yang et al, 2008). Any of these mechanisms could 

contribute to the effect of an exogenous cell population on homeostatic renewal. 

We find that this model also displays a stable steady-state at the initial 

condition (Figure 9.2J). Following an apoptotic challenge, the liver is able to recover 

but recovery takes a relatively long time (Figure 9.2K). When deviations from the 

steady-state were small, there is an asymmetric dynamic response to return to steady-

state (Figure 9.2L). When deviations became larger, however, the system responds 

asymmetrically with low Axin2+ cell populations recovering in a more direct manner 

than high Axin2+ cell populations.  

 

9.3.2.5 Timing of recovery from an insult 

In addition to showing different behavior trajectories on a phase plane, each 

individual feedback results in different recovery time following an insult. Model A 

recovers from a transient insult the most quickly (< 1 year to recover from 30 days of 

increased apoptosis or proliferation), followed by model B (3 years to recover from 

each), then model D (6 years to recovery from increased apoptosis and 15 years to 

recover from increased proliferation) (Figure 9.4). Model C does not recover from 

either challenge. 
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Figure 9.4 Response to stressors (A) Response of Model A increased apoptosis (left 

column), increased proliferation (middle column), and initial imbalanced 

populations (right column). (B) Response of model B. (C) Response of 

Model C. (D) Response of model D. Points represent t = 0 days, 10, 40, 

and 60 days then every 30 days until 1 year, then points represent each 

subsequent year. Gray arrows represent the direction of motion on the 

phase plane. 

We further find that, for model A, the distance between the carrying capacity 

of each population and the steady-state values influences the magnitude of the 
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response to disturbance. When the deviation between carrying capacity and steady-

state value is large, the response to disturbance is large as well. In contrast, when 

steady-state cell populations are already close to the carrying capacity, there is a 

smaller response to insult (Figure 9.5).  

 

Figure 9.5 Effect of carrying capacity on response to transient apoptosis challenges. 

As carrying capacity increases above the steady-state population 

balances, the system response to disturbances increases as well. Gray 

arrows represent the direction of motion on the phase plane. 
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9.3.2.6 Parameter selection 

For each of these models, parameters had to be constrained to slightly different 

values to allow for a steady state at the initial conditions. All model parameter values 

can be found in Table 9.1.  

 

9.3.3 Combinations of feedback result in a system that is robust to multiple 

biological challenges/disturbances 

From an evolutionary point of view, having a system able to respond to many 

challenges (optimized for robustness) is more favorable than having an efficient 

system that is not able to respond to challenges well (optimized for efficiency). In 

biology, there are many systems that appear to be optimized for robustness including 

protein coding (Goymer, 2007), DNA repair (Friedberg et al, 2005), and even whole 

transcriptional systems (Laranjeiro & Whitmore, 2014). We reason that the 

homeostatic renewal process in the liver would be optimized for robustness to 

disturbances, allowing the liver to maintain a steady mass even in the face of a toxic 

challenge. We therefore investigated which combination of feedbacks shows the most 

robust recovery following multiple types of challenges. We call the resulting model 

the “robust model” and use it for subsequent analyses. 

We used a systematic design of experiment-based (DOE) approach to explore 

all possible combinations of model feedbacks to find the robust model. We used a 2^4 

full factorial design where each feedback was a factor with two levels: on (1) or off 

(0). We then simulated a transient (30 day) increase in apoptosis, decrease in 

apoptosis, increase in proliferation, and decrease in proliferation and measured the 
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system response. The metric we used to evaluate model response to multiple 

individual disturbances is given in equations 9.14 and 9.15. Results of the DOE 

simulations are shown in Table 9.2. 

𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦 𝑉𝑜𝑙𝑢𝑚𝑒 =  ∑ ∫ 𝑑𝐻𝐴2+ ∗ ∫ 𝑑𝐻𝐴2− ∗ ∫ 𝑑𝑡𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑎𝑛𝑐𝑒𝑠
𝑖=1   (9.14) 

𝑅𝑜𝑏𝑢𝑠𝑡𝑛𝑒𝑠𝑠 =
1

𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦 𝑉𝑜𝑙𝑢𝑚𝑒
   (9.15) 

Where there are four disturbances, and the recovery volume for each 

disturbance is the hypercube of deviation in the HA2+ and HA2- space multiplied by 

recovery time.  
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Table 9.2 DOE Results – A low recovery score indicates an overall lower recovery 

volume and more robust performance 

Design of Experiment Results [log
10

(Recovery Volume)] 
Std Model Increased Decreased Increased Decreased Total Recovery 
Order A B C D Apoptosis Apoptosis Proliferation Proliferation Volume 
1 0 0 0 0 4.98 5.70 6.41 5.37 6.53 
2 1 0 0 0 1.93 1.30 1.01 2.51 2.64 
3 0 1 0 0 5.70 5.99 5.98 5.74 6.48 
4 1 1 0 0 1.74 1.12 0.89 2.32 2.45 
5 0 0 1 0 5.75 79.25 80.01 5.75 80.08 
6 1 0 1 0 2.08 1.41 1.07 2.59 2.74 
7 0 1 1 0 5.22 5.89 5.86 5.38 6.28 
8 1 1 1 0 1.74 1.18 0.94 2.36 2.48 
9 0 0 0 1 6.64 7.96 5.54 6.75 8.01 
10 1 0 0 1 1.86 1.22 1.02 2.47 2.60 
11 0 1 0 1 5.74 6.22 6.19 5.78 6.64 
12 1 1 0 1 1.62 1.07 0.83 2.27 2.39 
13 0 0 1 1 5.18 79.25 79.96 5.18 80.04 
14 1 0 1 1 2.04 1.36 1.08 2.56 2.70 
15 0 1 1 1 5.19 5.89 5.88 5.32 6.28 
16 1 1 1 1 1.63 1.11 0.91 2.31 2.43 
 

In addition to performing the DOE using nominal parameter values, we also 

varied parameter values to simulate how robust the model is to slight deviations in 

parameters corresponding to potentially different regulation of homeostatic renewal in 

different patients. We created 9 additional parameter sets by sampling each parameter 

from a normal distribution with a mean at the parameter’s nominal value and a 

standard deviation of 1% of the nominal value. We then re-performed the full 2^4 

DOE for each parameter set. This approach allows us to find a model that is robust to 
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physiological and parametric disturbances. It also allows us to use ANOVA to analyze 

which feedback mechanisms affect model behavior significantly.  
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Figure 9.6 Selection of the “Robust model” of homeostatic renewal for further 

analysis. (A) Robustness of system response to multiple transient 

disturbances and variance in the response in simulated patients with 

altered physiological parameters. The systems that responded with the 

smallest deviation (highest robustness) also show the smallest normalized 

variance in response to altered parameters. (B) ANOVA shows that 

feedbacks A, B, and C are significant as are their interactions. Feedback 

D and its interactions do not affect model output significantly. (C) 

Robust model (Model A+B+C) response to transiently increased and 

transiently decreased apoptosis. (D) Robust model response to transiently 

increased and transiently decreased proliferation. (E) Robust model 

response to initial population imbalances shows that multiple starting 

conditions converge on a steady-state. Points represent t = 0 days, 10, 40, 

and 60 days then every 30 days until 1 year, then points represent each 

subsequent year. Gray arrows represent the direction of motion on the 

phase plane. MRS is the Mean Recovery Score, which is the sum of the 

recovery volumes for all disturbances. 
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We find that the combination models that included implicit competition 

(Model A) are able to recover from physiological disturbances with the most 

robustness and lowest variance caused by parametric changes (Figure 9.6A). Our 

ANOVA results show that all combinations of feedbacks A (implicit competition), B 

(product inhibition of proliferation), and C (product inhibition of transitions) are 

significant but feedback D (exogenous populations) is not significant (Figure 9.6B). 

We therefore include in our robust model all feedbacks except feedback from 

exogenous populations, according to equations 9.16 and 9.17. 

𝑑𝐻𝐴2+

𝑑𝑡
= [𝐻𝐴2+]𝑘𝑝𝑟𝑜𝑙

𝐴2+ (1 −
[𝐻𝐴2+]

𝐾𝑐𝑎𝑝
𝐴2+ ) (

𝑘𝑒𝑛𝑣
𝑃  

[𝐻𝐴2+]+𝑘𝐴[𝐻𝐴2−]
)  −

[𝐻𝐴2+]𝑘𝑎𝑝
𝐴2+ −  [𝐻𝐴2+](𝑘𝑇) (

𝑘𝑒𝑛𝑣
𝑇  

[𝐻𝐴2−]
)   

   (9.16)  

𝑑𝐻𝐴2−

𝑑𝑡
= [𝐻𝐴2+](𝑘𝑇) (

𝑘𝑒𝑛𝑣
𝑇  

[𝐻𝐴2−]
) +  [𝐻𝐴2−]𝑘𝑝𝑟𝑜𝑙

𝐴2− (1 −
[𝐻𝐴2−]

𝐾𝑐𝑎𝑝
𝐴2− ) −  [𝐻𝐴2−]𝑘𝑎𝑝

𝐴2−   (9.17) 

We were interested to see that the effect of product inhibition of cell transitions 

(Model C) by itself is to decrease model robustness but that it acts synergistically with 

implicit competition (Model A) and product inhibition of proliferation (Model B) to 

enhance model robustness to physiological disturbances. Implicit competition (Model 

A) and product inhibition of proliferation (Model B) show the opposite effect, where 

they each individually enhance robustness but their interaction term decreases 

robustness (Figure 9.6B).  

We simulated the response of the robust model to apoptosis challenges (Figure 

9.6C), proliferation challenges (Figure 9.6D), and imbalanced initial conditions 

(Figure 9.6E). We find that the robust model is able to recover from transient 

apoptosis and proliferation challenges with relatively small deviations in cell numbers 
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compared to individual feedbacks. Additionally, most of the recovery occurs in the 

first 20 days following the end of the challenge.  

 

9.3.4 Systemic properties of homeostatic renewal revealed through model 

analyses 

9.3.4.1 Sensitivity analyses show largely independent behavior of cell states 

We investigated the parametric sensitivity of the model to changes in 

parameter values around the steady state. We find that each parameter showed a 

largely independent effect on each of the cell states (Figure 9.7A). The highest 

positive sensitivities are carrying capacity and proliferation rate for each cell type, but 

each parameter set seems to affect mainly its own cell type. This observation holds for 

the total effect index (TEI) calculated using a variance-based global sensitivity 

approach (Figure 9.7B). Additionally, the parametric sensitivity analysis shows that 

several of the model parameters have the same sensitivity values, suggesting that these 

parameters can be combined to allow for model reduction. We do not combine these 

parameters, however, because the physical meaning of the microenvironment 

parameters (kT
env and kP

env) makes them useful as control parameters. We also 

calculated the TEI for each parameter and find that steady state liver mass is most 

sensitive to cell population carrying capacities (KCap
A2+ and KCap

A2-) and apoptosis rate 

of Axin2- cells (kap
A2-). The parameter with the highest sensitivity is Axin2+ carrying 

capacity (KCap
A2+) followed by apoptosis rate of Axin2- cells (kap

A2-). Changing any of 

these parameters, for example KCap
A2-, results in changes to hepatocyte population 

balances before any insults and after recovery from a transient insult (Figure 9.7C). 

Our results suggest that overall liver mass can be viewed as being governed by a 
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balance between maintenance of “stem-cell-like” hepatocyte population and mature 

hepatocyte apoptosis. 

 

Figure 9.7 Model analyses of the robust model. (A) Parametric sensitivity analysis 

shows that model parameters tend to affect either Axin2+ steady-state 

populations or Axin2- steady-state populations. Carrying capacity and 

proliferation rate have the large effects on cell populations, as does the 

apoptosis rate of Axin2- cells. (B) Variance-based global sensitivity 

estimates corroborate the findings from the parametric sensitivity 

analysis, suggesting that population levels of each hepatocyte state are 

affected by their individual governing parameters. (C) The effect of 

changing Axin2- carrying capacity in the absence of other changes on 

overall liver mass. (D) Increasing the carrying capacities of Axin2+ and 

Axin2- hepatocytes can lead to an unstable system.  
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9.3.4.2 Stability analysis shows a co-ordination between model responsiveness 

to disturbances and stability 

We next linearized the model to estimate model stability. The individual 

equations making up the Jacobian are shown below (Equations 9.18-21). 

𝑑

𝑑𝐻+ (
𝑑𝐻+

𝑑𝑡
) =

𝑘𝑝𝑟𝑜𝑙
𝑠 [𝑊𝑁𝑇](1−

𝐻0
𝑠

𝐾𝐶𝑎𝑝
𝑠 )

𝐻0
𝑠+𝑘𝐴𝐻0

𝑚  −
𝐻0

𝑠𝑘𝑝𝑟𝑜𝑙
𝑠 [𝑊𝑁𝑇](1−

𝐻0
𝑠

𝐾𝐶𝑎𝑝
𝑠 )

(𝐻0
𝑠+𝑘𝐴𝐻0

𝑚)
2 −
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Where H0
A2+ and H0

A2- are the steady-state values of Axin2+ and Axin2- 

hepatocytes.  

We then varied pairs of parameters and calculated the eigenvalues of the 

resultant Jacobian to identify parametric changes that result in unstable model 

behavior. We find that the only two model parameters able to induce instability in the 

model are the carrying capacities of Axin2+ and Axin2- cells (Kcap
A2+ and Kcap

A2-). The 

system is stable for small carrying capacities, but unstable when the carrying 

capacities increase (Figure 9.7D). We are interested to see a co-ordination between 

model stability and responsiveness. As carrying capacities increase, the system 

responds to disturbances with a slower recovery rate (Figure 9.5) and across a certain 

threshold of carrying capacities the model becomes unstable (Figure 9.7D). This 
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behavior suggests a co-ordination between aggressiveness of response and stability of 

the system.  

9.3.4.3 Frequency analysis shows that high insult frequencies impair systemic 

homeostatic renewal 

We next simulated how a chronic insult would affect homeostatic renewal. We 

simulated apoptosis rate as a sinusoidal input at increasing frequencies and 

investigated the resulting behavior of Axin2+ and Axin2- hepatocytes. Figure 9.8 

shows a representation the behavior of apoptosis rate over the course of one week at 

different frequencies.  

 

Figure 9.8 Visualizations of what frequencies mean with respect to one week. Each 

frequency is interpreted in the context of alcohol binges per week 

(leading to an increased apoptosis). 

These frequencies can then be interpreted in the context of a common toxin 

introduced into the liver: alcohol. For example, a frequency of f = 2.0 cycles/day 

corresponds to a daily alcohol binge leading to a peak in apoptosis once per day 

(Figure 9.8). We investigated model response when Axin2+ hepatocytes are 

selectively targeted (Figure 9.9), when Axin2- hepatocytes are selectively targeted 
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(Figure 9.10), and when apoptosis rate of both cell populations change (Figure 9.11). 

In all cases, the system response to apoptosis challenges begins to become unstable at 

a frequency around 2.0 cycles/day (or a daily binge).  

Toxic challenges likely do not cause a sinusoidal change to apoptosis but 

rather a transient increase in apoptosis rate while the toxin is active. We therefore 

simulated different frequencies of insult using step functions (Figure 9.12). We find 

that the system often falls into an attractor cycle that deviates from the steady-state 

following this type of insult. Furthermore, as the insult frequency increases, the system 

is less and less able to maintain a stable attractor state. It is possible that such a 

sustained deviation from healthy balances could contribute to disease progression in 

the face of steady insults, but more research is needed to explore this possibility.  

The previous analysis shows the effect of changing the frequency of insult 

when total insult remained constant. Chronic diseases may result in a given insult 

magnitude at varying frequencies. Such an insult pattern would increase total damage 

at high frequencies. We investigated this type of insult and find that low frequency 

apoptotic events allow for system recovery, while higher frequencies do not allow for 

this recovery and result in attractor states below nominal levels (Figure 9.13). We also 

investigated the effects of changing the magnitude of damage per apoptotic event for a 

given frequency (Figure 9.14). We find that the qualitative phase behavior of the 

system is governed by the frequency of insult but that the magnitude of that response 

is based on the magnitude of insult.  
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Figure 9.9 Simulating multiple Axin2+ apoptosis frequencies. At frequencies > 1.4 

cycles/day (between binge drinking daily and every other day), the 

Axin2+ hepatocyte population begins to become unstable. 
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Figure 9.10 Simulating multiple Axin2- apoptosis frequencies. At frequencies > 2.0 

cycles/day (between binge drinking daily), the Axin2- hepatocyte 

population begins to become unstable. 
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Figure 9.11 Simulating multiple whole liver apoptosis frequencies. At frequencies > 

2.0 cycles/day (binge drinking daily), the Axin2+ and Axin2- hepatocyte 

populations begin to become unstable. 
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Figure 9.12 Simulating multiple whole liver apoptosis events. Apoptotic events likely 

follow a step-like function rather than a sinusoidal function. At low 

frequencies, the liver has a chance to recover between apoptotic events. 

At high frequencies (f ~ 2.0 cycles/day and above), the hepatocyte 

populations are unable to recover between events and population levels 

become unstable. 



 360 

 

Figure 9.13 Simulating multiple whole liver apoptosis events. For a given amount of 

damage per event, the frequency of the event determines the overall 

damage to the tissue. Low frequency events allow for nearly complete 

recovery between apoptotic events, while high frequency events to not 

allow for this recovery. 
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Figure 9.14 Simulating multiple whole liver apoptosis events. For a given frequency 

of damage (1.0 cycles per day in this figure), the damage per event 

changes homeostatic liver mass. The pattern of insult and recovery 

appears similar for all damage amounts. The stable populations of 

hepatocytes, however, become smaller with increasing damage amounts. 
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9.3.5 Model simulations capture behavior of induced hepatocyte senescence 

Having developed a model of homeostatic renewal that is robust to individual, 

transient disturbances, we next investigated whether our model could capture 

experimentally observed behavior of liver homeostatic renewal. Under normal 

conditions, it has been shown that stem cells are not required for homeostatic renewal. 

Recent research from Dr. Forbes’ lab, however, showed that stem cells are able to 

repopulate the liver when senescence is induced in hepatocytes (Wang et al, 2015b). In 

this study, hepatocyte senescence was induced using βNF. This treatment left 

approximately 99% of the hepatocytes in the liver unable to replicate, presumably both 

Axin2+ and Axin2- hepatocytes were affected. The livers were then dosed with βNF, 

to induce liver damage and subsequent regeneration. The livers of these mice had 

recovered their original mass by 90 days after toxin dosing. Cell lineage tracing was 

able to show that the new hepatocytes originated from stem cells. 

We modified our model to be able to investigate the case of induced 

hepatocyte senescence. Our previous model analyses showed that, under normal 

conditions, stem cell proliferation does not have a significant effect on homeostatic 

renewal. We investigated the model response to challenges including and excluding 

stem cell renewal to ensure that model behavior is not significantly affected by 

including this term (Figure 9.15). As we expected, the inclusion of stem cell renewal 

does not cause changes to model response behavior or timing. We also included two 

additional populations of hepatocytes in our model senescent Axin2+ hepatocytes and 

senescent Axin2- hepatocytes. Senescent hepatocytes do not replicate, but senescent 

Axin2+ hepatocytes can still transition to senescent Axin2- hepatocytes. Model 

equations for the modified model are given below (Equations 9.22-25). 
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Figure 9.15 Comparison of the robust model response to disturbances with and 

without stem cell renewal. The addition of stem cell renewal does little to 

affect system behavior and response to transient individual disturbances. 

Points represent t = 0 days, 10, 40, and 60 days then every 30 days until 1 

year, then points represent each subsequent year. Gray arrows represent 

the direction of motion on the phase plane.  

𝑑𝐻𝐴2+

𝑑𝑡
= [𝐻𝐴2+]𝑘𝑝𝑟𝑜𝑙

𝐴2+ (1 −
[𝐻𝑇𝑜𝑡

𝐴2+]

𝐾𝑐𝑎𝑝
𝐴2+ ) (

𝑘𝑒𝑛𝑣
𝑃  

[𝐻𝑇𝑜𝑡
𝐴2+]+𝑘𝐴[𝐻𝑇𝑜𝑡

𝐴2−]
)  −

[𝐻𝐴2+]𝑘𝑎𝑝
𝐴2+ −  [𝐻𝐴2+](𝑘𝑇) (

𝑘𝑒𝑛𝑣
𝑇  

[𝐻𝑇𝑜𝑡
𝐴2−]

) + +𝑓([𝐻𝑇𝑜𝑡
𝐴2+])    

 (9.22)  

𝑑𝐻𝐴2−

𝑑𝑡
= [𝐻𝐴2+](𝑘𝑇) (

𝑘𝑒𝑛𝑣
𝑇  

[𝐻𝑇𝑜𝑡
𝐴2−]

) +  [𝐻𝐴2−]𝑘𝑝𝑟𝑜𝑙
𝐴2− (1 −

[𝐻𝑇𝑜𝑡
𝐴2−]

𝐾𝑐𝑎𝑝
𝐴2− ) −  [𝐻𝐴2−]𝑘𝑎𝑝

𝐴2−   (9.23) 

𝑓([𝐻𝑇𝑜𝑡
𝐴2+]) = 𝑘𝑅𝑒𝑛𝑒𝑤 (

1

1+exp(𝐶1∗[𝐻𝑇𝑜𝑡
𝐴2+]+𝐶2)

)    (9.24) 

𝑑𝐻𝑠

𝑑𝑡
= 𝑘𝑎𝑝

𝐴2−[𝐻𝑠]   (9.25)  

Where HS are senescent hepatocytes, HTot
A2+ is the sum of senescent and non-

senescent Axin2+ hepatocytes ([HA2+] + 0.05x [Hs]), and HTot
A2- is the sum of 

senescent and non-senescent Axin2- hepatocytes ([HA2-] + 0.95x [Hs]). Both Axin2+ 

and Axin2- apoptosis rates are equal in our model, so we arbitrarily chose kap
A2- to use 

for senescent hepatocyte apoptosis rate in the following simulations. 
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Using this framework, we simulated homeostatic renewal following induced 

hepatocyte senescence in the absence of other insults and following a toxic injury to 

40% of the liver (Figure 9.16).  

 

Figure 9.16 Homeostatic renewal recovers liver mass when hepatocytes in the liver 

become senescent coupled with a large apoptotic event. This model uses 

the robust model + stem cell renewal. Researchers from Dr. Forbes’ lab 

showed complete renewal in 90 days post-injury, which our model also 

shows. No damage is shown in black, removal of 40% of the hepatocytes 

is shown in blue. Our model predicts that stem cells become active even 

without an additional apoptotic challenge and that the timeframe of 

recovery is slightly longer. Points represent t = 0 days, 10, 40, and 60 

days then every 30 days until 1 year, then points represent each 

subsequent year. Gray arrows represent the direction of motion on the 

phase plane. 

We find that constitutive apoptosis alone is enough to trigger stem cell renewal 

into Axin2+ hepatocytes followed by a repopulation of hepatocytes with non-

senescent cells (Figure 9.16A, black lines). When no additional insult occurs, the liver 

fully recovers its replicating cells in approximately 120 days (Figure 9.16A, black 

lines), with Axin2+ hepatocytes beginning to recover more quickly followed by 

Axin2- hepatocytes (Figure 9.16B, black line). Our model simulations predict that a 
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significant amount of liver mass will be lost, however, prior to stem cells being able to 

repopulate enough replicating cells to overcome constitutive apoptosis (Figure 9.16C, 

black lines). When the additional insult of a 40% toxic shock is added to induce 

senescence, the liver responds in much the same way. Repopulation of the liver with 

replicating cells, however, begins more rapidly (Figure 9.16A, blue lines). Although 

the phase trajectory of recovery is similar between the two cases, adding an additional 

insult appears to speed recovery (Figure 9.16B, blue line). Simulations suggest that 

adding the additional insult decreases the maximum liver mass lost (45% remaining as 

opposed to 39%) and speed recovery time (90 days as opposed to 120 days) (Figure 

9.16C, blue line). This simulated recovery time following dual insults matches the 

previously reported recovery time (Wang et al, 2015b).  

 

9.3.6 Non-parenchymal cells act to enhance disturbance rejection 

Our previous work investigating balances of hepatic stellate cell population 

balances in health and disease suggests that non-parenchymal cells contribute to the 

effects of chronic diseases though tuning the properties of the extracellular matrix and 

the molecular milieu of the microenvironment accessible to hepatocytes (for details, 

see Chapters 7 and 8). It is possible that such balances of non-parenchymal cells 

modulate not only regeneration but also homeostatic renewal. We postulate that such 

tuning of the liver’s microenvironment could also contribute to the progression of 

chronic diseases. The structure of our homeostatic renewal model suggests two places 

where the non-parenchymal cell network could modulate homeostatic renewal 

dynamics (Figure 9.17A). The first is by modifying the tissue microenvironment local 

to the central vein. The effect of the pericentrally located non-parenchymal cell 
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network could be to modify the behavior of pericentral sinusoidal endothelial cells, 

leading to altered secretion of factors promoting Axin2+ cell renewal (WNT-2a and 

others).  
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Figure 9.17 Non-parenchymal cell control of hepatocyte homeostatic renewal. (A) The 

biological process underlying the control system representation. (B) A 

control systems representation of liver homeostatic renewal controlled by 

non-parenchymal cell networks. In this representation, apoptosis rate 

increases and decreases are a disturbance to normal homeostatic renewal. 

(C) Ability of the non-parenchymal cell network controller to mitigate 

the effects of a periodic apoptosis challenge. Controller action causes an 

attractor state with minimal deviation around the steady-state. In the 

absence of non-parenchymal cell control, hepatocyte populations fall into 

an attractor cycle below steady-state levels. 

The second way a non-parenchymal cell network could modulate homeostatic 

renewal is through changing the bulk properties of the liver’s extracellular matrix 

thereby changing the transition rate of Axin2+ hepatocytes to Axin2- hepatocytes 

through altering the molecular diffusion of pro-transition and anti-transition molecules 

through the tissue. Non-parenchymal cell modulation of the tissue microenvironment 

adds an additional layer of control to the system such that the system has intrinsic 

stability plus external control to maintain tissue functional mass. A control system 

representation of this scheme is shown in Figure 9.17B. PI controllers were used to 

represent the NP cell networks. Tuned controller parameters are given in Table 9.3. 

Table 9.3 Control system parameters 

Controller P I N 

Central SEC 37.5 20.8 100 

KC/HSC 15.9 2.5 100 

    

Adding non-parenchymal cell control to the system allows for smaller overall 

deviation from steady state when homeostatic renewal is disturbed. Transient 

disturbances result in a deviation from nominal values at both the start and end of the 
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disturbance because the microenvironment has to return to normal following the end 

of the disturbance (Figure 9.18). The amount of deviation caused to Axin2+ cells is 

similar with and without non-parenchymal cell control. In contrast the deviation 

caused to Axin2- cells (which make up the bulk of the liver) is much lower when 

including non-parenchymal cell control in the model.  

 

Figure 9.18 Non-parenchymal cell control of homeostatic renewal allows for 

disturbance rejection (faster recovery, smaller perturbations) compared to 

the case without external control. The control action of both controllers is 

similar for a transient increase in apoptosis, suggesting that the local non-

parenchymal cell networks in the pericentral zone and in the bulk tissue 

respond following similar dynamics in response to an apoptotic 

challenge. 

During a periodic pulsatile increase in apoptosis rate in the absence of non-

parenchymal cell control, both Axin2+ and Axin2- hepatocyte populations oscillate 

within a limit cycle well below the healthy steady-state value (Figure 9.17C, gray 

lines). When non-parenchymal cell control is available to modulate renewal dynamics, 

however, there is a transient decrease in cell population numbers that recover after 
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approximately 30 days. Following this transient decrease, cell populations oscillate in 

a limit cycle near the steady state (Figure 9.17C, gray lines). The control action 

necessary to drive the system to this limit cycle is an early increase in control 

parameter values, then an oscillation around the higher values (Figure 9.17C). In this 

simulation, apoptotic events occur at a frequency of 1.0 events/day, with each event 

lasting ½ day. The controller response also has a frequency of approximately one 

cycle per day. For the controller governing kP
env, this is not an unreasonable frequency 

because cytokine profiles can change much more rapidly than daily. For the controller 

governing kT
env, this is also not an unreasonable frequency. Transition between Axin2+ 

and Axin2- cells is likely governed by a gradient of WNT-2a responsiveness. This 

WNT-2a responsiveness may be due to WNT-2a amounts produced by central 

endothelial cells, diffusivity of WNTs governed by matrix stiffness and density and 

pressure gradients, and motility of hepatocytes across sinusoids that could also be 

governed by matrix cues. While it may be difficult to imagine matrix properties 

changing within the span of one day, it is not outside the realm of possibility that 

factors controlling diffusivity and cell motility could change this quickly. 

Another time when non-parenchymal control becomes important is during a 

sustained challenge. Without non-parenchymal cell control, both Axin2+ and Axin2- 

hepatocytes reach a new steady state resulting in lower total liver mass (Figure 9.19, 

dashed lines). In contrast when non-parenchymal cell control is present, there is an 

initial deviation from steady state that rapidly renormalizes (Figure 9.19, solid lines). 

This renormalization is achieved by non-parenchymal cells modifying the 

microenvironment to first facilitate cell transitions and then to induce Axin2+ 

hepatocyte proliferation (Figure 9.19, Controller Action). These changes allow for 
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long-term response to a sustained insult, such as a chronic infection, but they also 

modify the structure of the tissue microenvironment, which could lead to diseases such 

as fibrosis and cirrhosis. 

 

Figure 9.19 Non-parenchymal cell control can mitigate the effects of a sustained 

apoptosis challenge. 

Chronic disease states do not only result from sustained challenges to the liver, 

they also alter non-parenchymal cell responses to disturbances. Our own lab has 

shown that the chronic insult of ethanol adaptation leads to an altered hepatic stellate 

cell response to resection (See Chapter 8). One way to capture such changes to the 

non-parenchymal cell network is to change the controller parameters describing the 

non-parenchymal control system (Figure 9.20). Changing parameters involved in the 

kP
env controller has a large effect on Axin2+ response to periodic apoptosis challenges, 

but little effect on Axin2- populations. Such parameter changes could describe the 

early stages of chronic liver disease where the populations around the central vein 

receiving the highest dose of toxins (such as ethanol) begin to be affected but bulk 

liver function is not disturbed. In contrast, changing parameters involved in the kT
env 
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controller affects both Axin2+ and Axin2- cells. Changes to this controller might be 

reflective of later disease states, when all areas of the liver are affected equally.  
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Figure 9.20 Changing controller parameters affects the early dynamics of chronic 

injury. 
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We tested how non-parenchymal cell control would work in a variety of 

situations. Cell apoptosis is an intrinsically stochastic process. We therefore tested 

how our non-parenchymal cell controllers responded to white noise added to cell 

apoptosis rates. We find that the addition of a controller makes the system response to 

white noise worse than the system response without a controller (Figure 9.21A). This 

is because feedback control amplifies white noise. We therefore implemented a 1% 

band gap around the steady-state and retested the controller. We find that in this case, 

the controller does not amplify the white noise (Figure 9.21B). In this scenario, the 

band gap represents an activation threshold that is often seen in biological systems 

(Félix & Barkoulas, 2015).  
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Figure 9.21 Controller function (A) Response to band-limited white noise (Apoptosis 

rate standard deviation = 10% of nominal). Non-parenchymal cell control 

can respond to random variation in apoptosis rate by causing larger 

fluxuations in Axin2+ populations. The non-parenchymal cell controller, 

however, maintains Axin2- populations closer to nominal than in the 

absence of a controller. (B) Response to band-limited white noise 

(Apoptosis rate standard deviation = 10% of nominal) using a bandpass 

filter of +/- 0.5% of the setpoint. (C) Simulating chronic apoptosis 

challenges in 100 patients. Model parameters were sampled from a 

normal distribution with mean at the nominal parameter value and 

standard deviation of 1% of nominal values. Simulating multiple patients 

shows that the controller can maintain tissue populations near nominal 

levels even during a chronic apoptotic insult. The main effect of altered 

parameters is a change in the dynamics of initial response to the 

apoptosis challenge. 

We next tested how our non-parenchymal cell controller is able to maintain 

hepatocyte populations across 100 simulated patients. We simulated liver homeostatic 

renewal in 100 unique patients by sampling parameters from a normal distribution for 

each parameter with mean of the nominal parameter value and standard deviation of 

1% of the nominal parameter value. We sampled every parameter in each patient, so 

each of the 100 patients had a unique parameter set governing homeostatic renewal. 

We then subjected each patient to a pulsatile apoptotic challenge. We find that the 

non-parenchymal cell controllers are able to maintain hepatocyte populations within a 

limit cycle around the required steady-state level (Figure 9.21C). We are interested to 

see that, although there is wide variability in maximum liver damage, all patients 

eventually reach the same limit cycle. When the variability is increased substantially 

(10% vs. 1%), however, different modes of response are seen (Figure 9.22). This 

indicates that if tissue parameters vary substantially among patients, a single tuning of 

the non-parenchymal cell based control system is unlikely.  
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Figure 9.22 Simulated homeostatic renewal in 100 patients. Model parameters were 

sampled from a normal distribution with mean at the nominal parameter 

value and standard deviation of 10% of nominal values. Simulating 

multiple patients shows that the controller can maintain tissue 

populations near nominal levels even during a chronic apoptotic insult. 

The large variability in patient parameters, however, leads to poor 

controllability in many cases. 

 

9.4 Discussion 

Our findings suggest that multiple feedback mechanisms are active during 

tissue homeostatic renewal. Simulations of our mathematical model in the absence of 

feedback show that no feedbacks lead to a tissue with no steady-state and no ability to 

respond to disturbances. In contrast, simulations with multiple types of feedback result 

in a tissue that is able to respond robustly to several different disturbances, both 

transient and periodic. Intrinsic stability caused by multiple feedbacks on hepatocytes, 

however, is not enough to handle a sustained disturbance to homeostatic renewal, such 

as increased apoptosis caused by a sustained viral infection.  In addition to intrinsic 

stability, there must be an external control that maintains hepatocyte populations in 
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such a condition. We propose that control of the extracellular microenvironment by a 

network of non-parenchymal cells could act as such a control circuit. 

Our model is able to capture the experimentally observed behavior of the liver 

following induced hepatocyte senescence. Following induced senescence and toxic 

damage to a large portion of the liver, the liver is able to recover its original 

hepatocyte populations and overall mass in approximately 90 days. Although all of the 

replicating hepatocytes come from stem cells, based on model simulations, we predict 

that only Axin2+ cells are generated directly from stem cells. Replicating Axin2- cells 

are generated by transition from Axin2+ cells. We also predict that induced 

senescence without any additional damage will result in stem cell activation and 

differentiation, but that the time to repopulate the liver with replicating cells will be 

longer, on the order of 120 days. 

Our model implicates control of homeostatic renewal by non-parenchymal 

cells as an important contributor to maintaining liver mass during chronic challenges. 

Many liver diseases are chronic issues and may affect the behavior of the non-

parenchymal cell network. This can be seen by the number of liver diseases that result 

in fibrosis and cirrhosis if left untreated (Seki & Brenner, 2015). Work from our own 

lab and from others’ on chronic alcoholism has shown that chronic alcoholism shifts 

the balances of non-parenchymal cell populations; for our work, see Chapters 7 and 8 

(Saha et al, 2015). Future studies could investigate extracellular matrix properties 

during chronic insults and how these properties could influence non-parenchymal cell 

balances. Additionally, our study used only the automatic controller tuning in Matlab. 

A more robust control strategy could better control cell populations and may be a 

more realistic representation of the underlying biology. 
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Our study takes the first steps towards generating an integrated view of liver 

homeostatic renewal in the context of intercellular networks. Maintaining balances 

among cellular populations appears to be critical to maintain a healthy homeostatic 

renewal process. It is likely that interactions between parenchymal and non-

parenchymal cells, interactions among each cell type, and interaction with the 

extracellular matrix are important for governing homeostatic renewal. Additionally, 

non-parenchymal cell control of the tissue microenvironment is likely spatial in nature 

leading to unique control actions depending on the needs of the tissue within a local 

neighborhood. 
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CONCLUSIONS AND FUTURE WORK 

10.1 Conclusions 

Taken as a whole, the work presented in this dissertation suggests an integrated 

way to understand biological regulation of dynamic tissue function. Traditionally, 

tissue regulation has been seen as a multi-scale process, where molecular, electrical, 

and mechanical signals act through a network of parenchymal and non-parenchymal 

cells to govern tissue function. Our work suggests an additional level of complexity, 

where molecular, electrical, and mechanical signals are interpreted by cells in 

distinguishable transcriptional states prior to their integration into the cell network. 

The inclusion of cell state in understanding tissue dynamic behavior is important 

because each transcriptional state has a different transcriptional starting point, 

potentially leading to different responses to the same signal. The variability inherent 

within the transcriptional states and the relative balances among states could both 

contribute to the apparent “context specificity” that is often seen in biological response 

to a certain factor. For example, adiponectin has been shown to be anti-inflammatory 

in the liver, but its loss leads to a decreased pro-inflammatory response during the 

priming phase of liver regeneration (Correnti et al, 2015;Park et al, 2015b). 

Our work also suggests a more complex regulation of dynamic liver function 

than previously suspected. Although the non-parenchymal cell network modulating 

liver regeneration has been studied previously, this work is the first to our knowledge 

to suggest a high amount of heterogeneity in non-parenchymal cell transcriptional 

Chapter 10 
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behavior (Malik et al, 2002). Our studies of transcriptional regulation in single hepatic 

stellate cells in the homeostatic liver and during regeneration suggest that the balance 

among distinguishable cell functional states governs tissue dynamics. Even within a 

functional state, however, there is a surprising amount of transcriptional variability. 

This variability likely arises from each individual cell inhabiting a unique 

microenvironment with a unique history of signaling (Park et al, 2014). What this 

variability means for tissue function is not yet fully clear. One possible reason for this 

variability is to make a population of stellate cells less susceptible to a virus or 

apoptosis event by making each cell as unique as possible while still carrying out a 

desired function.  

Additionally, our work has shown a previously unidentified pro-regenerative 

hepatic cell state that appears to enhance liver regeneration. Previous studies have 

shown that growth factors enhance liver regeneration and suggest that sinusoidal 

endothelial cells are a major source of these growth factors (Kaibori et al, 1997). Our 

work suggests that hepatic stellate cells produce growth factors directly during 

regeneration and contribute to growth factor diffusion by modifying matrix properties. 

Furthermore, our studies suggest that imbalances in hepatic stellate cell functional 

states is a major contributor to impaired regeneration in disease conditions. 

Finally, our work suggests computational modeling of cell states as an efficient 

method to integrate knowledge about single-cell based cell transcriptional states with 

cell networks to understand dynamic tissue function. We have demonstrated this 

technique in the context of liver regeneration (Chapters 7 and 8) and liver homeostatic 

renewal (Chapter 9).  
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10.2 Future Work 

The work presented in this thesis gives a fresh understanding of the network 

contributions to dynamic liver function. There remains much work that could be done 

to further increase our understanding. As with any experimental work, more data 

could be collected. More hepatic stellate cells could be sampled to improve our 

understanding of the variability in gene expression among cell states. More cell types 

within the liver could be isolated to give a better understanding of the cell-to-cell 

communication that could result in coupled cell states. More time points during 

regeneration could be sampled to give a more detailed understanding of the dynamics 

of population balances during regeneration. Furthermore, our studies have focused on 

only a subset of functionally relevant genes. Future work could use genome-wide 

transcriptional profiling (using for example single cell RNA seq) to better understand 

the genome-wide regulation of each cell state and perhaps discover additional cell 

states. On the mathematical modeling side, there are many improvements that could be 

made to the models presented in this thesis. Our models use cell state transitions and 

archetypal signaling cascades to approximate complex, dynamic molecular signaling 

events leading to state transitions. More complexity could be added to the model, both 

in terms of molecular signaling (intercellular and intracellular) and in terms of cell 

states. Our model currently does not consider all the stellate cell states we found 

experimentally, and it is likely that all cell types in the liver also exhibit multiple 

transcriptional states. Finally, much more exact estimates for model parameters could 

be found to more closely mirror biology. 

Rather than focus on how to improve or continue to refine the work presented 

in this thesis, however, this section will focus on how the results obtained during the 

development of this thesis can be used to extend research efforts.  
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10.2.1 Testing model predictions 

Our computational modeling work has allowed us to make several predictions 

that can be tested experimentally. Based on simulations conducted using our cell-

growth model of liver regeneration, we predict that different Adn-/- mouse genotypes 

produce growth factors differently in response to PHx (Chapter 6). We propose testing 

growth factor levels (specifically HGF, FGF2, and ANG1) in the genotype used by 

Shu et al. at 24-48 hours post-PHx to determine if this prediction is accurate. If it is 

accurate, it implies that the effect of knocking out a gene is dependent on the 

background genotype of the mouse, the method of knockout, or other as-yet 

unidentified factors.  

Based on simulations conducted using our non-parenchymal cell network 

model of liver regeneration, we make several predictions about the effects of chronic 

ethanol adaptation on liver tissue properties. We predict that chronic ethanol 

adaptation leads to baseline imbalances in stellate cell states thereby changing the 

properties of the ECM in such a way that it inhibits regeneration. We predict that 

localized areas of ECM become populated by different collagen balances, stiffer, more 

crosslinked or denser, and less decorated by pro-regenerative molecules and growth 

factors. Several experiments could test these predictions. One such experiment would 

be to measure tissue elasticity using shear wave elasticity imaging ultrasound in 

ethanol-adapted animals and controls. This type of experiment could give information 

about the local tissue stiffness in ethanol-adapted livers. Another experiment to test 

these predictions would be to measure the levels of many collagen types in the livers 

of ethanol-adapted and control animals. Such measurements could be collected using 

techniques such as HPLC-MS/MS (Pataridis et al, 2008).  We also predict that 

ethanol-adaptation leads to deficient stellate cell state transitions in response to a 
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second stressor (like PHx). This prediction could be tested by subjecting ethanol-

adapted laboratory animals to several different stresses, such as acetaminophen 

administration, LPS injection, or TGFB induction and measuring HSC response using 

the methods described in this thesis.  

Based on simulations using our model of liver homeostatic renewal, we predict 

that chronic ethanol abuse leads to an adaptation of the liver resulting in increased 

Axin2+ hepatocyte proliferation and an increased transition rate of Axin2+ 

hepatocytes to Axin2- hepatocytes. Fate tracing studies like those performed by Wang 

et al. could be used to test these predictions (Wang et al, 2015b). 

10.2.2 Simulating regeneration in humans 

One feature of our model is that instead of predicting regeneration outcome as 

a binary event (success or failure), our model is able to capture multiple modes of 

regeneration. Such variability in overall recovery following resection is a feature of 

liver resection in human patients. Future work could use time-rich data from human 

liver regeneration to estimate model parameters for patients exhibiting different modes 

of regeneration. Parameter features common to many patients within each mode could 

then be used to identify systemic issues leading to deficient regeneration or features 

leading to enhanced regeneration.  

10.2.3 Clinical implementation of modeling 

One important consideration of modeling human liver regeneration is that we 

want a predictive model, not only a descriptive model. Therefore, future work could 

be done to take parameter features related to deficient regeneration modes and relate 

them to clinically measurable physiology or biological assays. For example, changes 
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in the metabolic demand parameter in the model can have dramatic effects on 

regeneration capacity; therefore, an assay or test relating liver function and 

regeneration-specific metabolic demand could be informative for modeling 

regeneration prior to a resection surgery. Some tests like this could include a glucose 

challenge or hypoxic stress measured by HIF1A levels in the liver following a stress 

test. Not only will tests or assays need to be developed that will be informative of 

model parameters, but results from these assays need to be related to model 

parameters in a quantitative, semi-quantitative, or empirical way. If a patient-specific 

model can be developed, it could serve as a resource for physicians when they are 

deciding how much of a liver to resect for surgeries such as live liver transplant or 

cancer removal. 

10.2.4 Drug targeting for regeneration and beyond 

Our single cell experiments characterizing the transcriptional states of hepatic 

stellate cells suggest that each stellate cell transcriptional state is governed by modules 

of co-expressed genes. Furthermore, our computational modeling suggests that the 

dynamic balance among states is an important regulator of tissue function. Therefore, 

it should be possible to modulate tissue function by rebalancing among cell 

transcriptional states. The implication of these findings is that drugs targeting a single 

pathway or molecule may not be the only way to design drugs. Our results suggest that 

designing drugs that target modules of co-expressed genes that are over-expressed in 

one or more transcriptional states could be a method to change tissue behavior. In the 

context of the work included in this thesis, one such intervention could be to treat 

ethanol-adapted rats with miRNAs that specifically target the genes up-regulated in 

the anti-regenerative stellate cell state to attempt to renormalize regeneration capacity 
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post-PHx. This strategy could be applied further to many organ systems and disease 

conditions and provides an alternative strategy for targeted drug design. 
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MODEL PARAMETERS 

Table A.1 Model parameters for the Cell Growth Model of liver regeneration (Chapter 

6) 

Parameters  
  

Name  

Nominal or 

Starting 

Value  

Approximate Biological Correlate  

M  20.8 (rat)  
Relative nutrient and toxin delivery/absorption 

rate in the liver  

G  3.5x10-4 (rat)  
Growth rate of hepatocyte mass [mass equivalent 

doublings/min] 

kIL6  1.5  

Rate at which non-parenchymal cells (primarily 

Kupffer cells) are able to modify the cytokine 

milieu post-PHx  

κIL6  0.9  Rate of cytokine degradation  

VJAK  2x104  Maximum JAK activation rate  

Km
JAK  104  JAK Michaelis concentration  

κJAK  0.4 Rate of JAK degradation  

[STAT3]  2  
Relative concentration of monomeric STAT3 in 

the liver  

Appendix A 
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VSTAT3  7.5x102  Maximum STAT3 phosphorylation rate  

Km
STAT3  0.4  pSTAT3 Michaelis concentration  

κSTAT3  0.1  Rate of pSTAT3 dephosphorylation  

VSOCS3  2.4x104  Maximum SOCS3 activation rate  

Km
SOCS3  7x10-4  SOCS3 Michaelis concentration  

κSOCS3  0.4  Rate of SOCS3 degradation  

KI
SOCS3  1.5x10-2  

SOCS3 Inhibition effect on  

STAT3 phosphorylation  

VIE  2.5x102  Maximum IE gene activation rate  

Km
IE  18  IE gene Michaelis concentration  

κIE  5  Rate of IE gene degradation  

κDEG  7  Rate of ECM degradation by MMPs  

κECM  33  Rate of constitutive ECM degradation  

kGF  0.113  

Rate at which non-parenchymal cells (primarily 

hepatic stellate cells) directly & indirectly 

produce growth factors post-PHx  

κGF  0.23  Rate of growth factor degradation  

kup  6x10-2  
Rate of growth factor absorption/binding to the 

ECM  

kQ  7x10-3  
Maximum rate of hepatocyte transition from 

Quiescence to Primed [cells/min]  
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kP  4.4x10-3  
Maximum rate of hepatocyte transition from 

Primed to Replicating [cells/min]  

kR  5.4x10-3  
Maximum rate of hepatocyte transition from 

Replicating to Quiescence [cells/min]  

kprol  2x10-2  
Rate of hepatocyte progression through the cell 

cycle [doublings/min]  

kreq  0.1  
Requiescence rate of Primed hepatocytes 

[cells/min]  

θreq  8  None  

βreq  3  None  

kap  0.1  Apoptosis rate of damaged hepatocytes  

θap  9x10-3  None  

βap  4.5x10-3  None  

kMBF  1  
Rate of release of matrix bound factors during 

ECM remodeling  

κMBF  1  
Degradation rate of matrix bound factors once 

they are released from the ECM  

Variables  
  

Name  

Nominal or 

Starting 

Value  

Approximate Biological Correlate  

Q  1  Fraction of hepatocytes in the Quiescent state  

P  0  
Fraction of hepatocytes in the  

Primed state  

R  0  Fraction of hepatocytes in the Replicating state  
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[IL-6]  1  Cytokine microenvironment of the liver  

[JAK]  1  
Relative levels of activated receptors for 

cytokine signals in hepatocytes  

[pSTAT3]  1  

Relative levels of phosphorylated STAT-3 

compared to monomeric STAT-3 or other 

downstream effectors of cytokine signaling (i.e. 

NF-κB)  

[SOCS3]  1  
Relative levels of SOCS3 or other inhibitors of 

cytokine signaling  

[IE]  1  
Relative levels of immediate early genes induced 

in hepatocytes (e.g. cFOS, cJUN, and AP-1)  

[GF]  1  
Relative bioavailability of growth factors 

promoting hepatocyte proliferation  

[ECM]  1  

Relative levels of extracellular matrix buildup of 

matrix composed of collagens inhibitory to 

regeneration  

[MBFECM]  50  
Relative levels of matrix bound factors priming 

hepatocytes  

[MBFFree]  0  
Relative levels of free matrix bound factors that 

were initially bound by ECM  
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Table A.2 Hepatocyte model parameters for the Non-Parenchymal Cell Model of liver 

regeneration (Chapter 7) 

 

Parameter Value Physiological Interpretation 

M Species-specific Metabolic demand 

kIL6
Hepatocyte 0.3 

IL-6 production rate by 

hepatocytes 

VJAK 6x104 JAK activation rate 

Km
JAK 104 JAK Michaelis constant 

κJAK 0.4 JAK degradation rate 

[STAT] 2 
Concentration of monomeric 

STAT3 

VSTAT 7.5x102 STAT3 activation rate 

Km
STAT 0.4 STAT3 Michaelis constant 

κSTAT 0.1 STAT3 degradation rate 

VSOCS 2.4x104 SOCS3 activation rate 

Km
SOCS 7x10-4 SOCS3 Michaelis constant 

κSOCS 0.4 SOCS3 degradation rate 

KI
SOCS 1.5x10-2 

SOCS3 inhibition of STAT3 

signaling 
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VIE 2.5x102 
Immediate early (IE) gene 

expression rate 

Km
IE 18 IE gene Michaelis constant 

κIE 5 IE gene degradation 

kQ→P 7x10-3 Hepatocyte priming rate 

kP→R 4.4x10-3 
Hepatocyte replication transition 

rate 

kR→Q 5.4x10-2 
Hepatocyte requiescence of 

replicating cells 

kprol 2x10-2 Hepatocyte proliferation rate 

kreq 0.1 
Hepatocyte requiescence of 

primed cells 

θreq 8 Requiescence shape parameter 

βreq 3 Requiescence scale parameter 

kap 0.1 Hepatocyte apoptosis rate 

θap 9x10-3 Apoptosis shape parameter 

βap 4.5x10-3 Apoptosis scale parameter 
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Table A.3 Kupffer cell model parameters for the Non-Parenchymal Cell Model of 

liver regeneration (Chapter 7) 

Parameter Value Physiological Interpretation 

M Species-specific Metabolic demand 

HL 2 Hypoxia load 

k
TNF

 16 TNFa production rate 

κ
TNF

 2 TNFa degradation rate 

k
IL6

KC 180 IL-6 production rate by Kupffer cells 

κ
IL6

 0.9 IL-6 degradation rate 

k
IL10

 20 IL-10 production rate 

κ
IL10

 0.9 IL-10 degradation rate 

K
I

IL10 3 IL-10 inhibition of TNFa production 

k
TGF

KC 30 TGF-β production rate by Kupffer cells 

k
PDGF

 15 PDGF production rate 

κ
PDGF

 0.9 PDGF degradation rate 

k
Q→A

KC 7x10
-3 Kupffer cell activation rate 

k
A→R

KC 2.2x10
-2 Kupffer cell replication transition rate 
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k
R→Q

KC 5.4x10
-2 

Kupffer cell requiescence of replicating 

cells 

k
prol

KC 2x10
-2 Kupffer cell proliferation rate 

k
req

KC 0.3 Kupffer cell requiescence of primed cells 

θ
req

KC 8 Kupffer cell requiescence shape 

parameter 

β
req

KC 3 Kupffer cell requiescence scale parameter 

k
ap

KC 0.1 Kupffer cell apoptosis rate 

θ
ap

KC 9x10
-3 Kupffer cell apoptosis shape parameter 

β
ap

KC 4.5x10
-3 Kupffer cell apoptosis scale parameter 
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Table A.4 Hepatic stellate cell model parameters for the Non-Parenchymal Cell Model 

of liver regeneration (Chapter 7) 

Parameter Value Physiological Interpretation 

M Species-specific Metabolic demand 

k
HGF

 25 HGF production rate 

κ
HGF

 0.23 HGF degradation rate 

k
up
 0.6 HGF uptake by ECM 

k
TGF

HSC 8 TGF-β production rate by hepatic stellate cells 

κ
TGF

 0.9 TGF-β degradation rate 

K
I

TGF 5 TGF-β inhibition of HGF production 

k
ECM

 100 ECM production rate 

k
degrad

 7 ECM degradation rate by MMPs 

κ
ECM

 3 Constitutive ECM degradation rate 

k
Q→PR

 7x10
-2 

State transition rate: Quiescent to Pro-

regenerative 

k
Q→AR

 3x10
-2 

State transition rate: Quiescent to Anti-

regenerative 

k
PR→PRR

 4.4x10
-3 

State transition rate: Pro-regenerative to 

Replicating 

k
AR→ARR

 4.4x10
-3 

State transition rate: Anti-regenerative to 

Replicating 
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k
PRR→PR

 5.4x10
-2 

State transition rate: Replicating to Pro-

regenerative 

k
ARR→AR

 5.4x10
-2 

State transition rate: Replicating to Anti-

regenerative 

k
prol

 8.5x10
-3 Hepatic stellate cell proliferation rate 

k
req

 0.2 Requiescence rate of pro- and anti-regenerative 

cells 

θ
req

HSC 8 Hepatic stellate cell requiescence shape 

parameter 

β
req

HSC 3 Hepatic stellate cell requiescence scale 

parameter 

k
ap

HSC 0.1 Hepatic stellate cell apoptosis rate 

θ
ap

HSC 9x10
-3 Hepatic stellate cell apoptosis shape parameter 

β
ap

HSC 4.5x10
-3 Hepatic stellate cell apoptosis scale parameter 
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SEGMENTATION METHOD FOR CALCULATING CORRELATIONS 

FROM TIME-SERIES BIOLOGICAL DATASETS: MITIGATING THE 

EFFECTS OF TERMINAL SAMPLES, FEW TIME POINTS, AND LIMITED 

REPLICATES 

This work was performed under the supervision of Arun K. Tangirala. 

Systems biology uses high-throughput data gathering techniques coupled with 

computational modeling to interrogate the complex biological mechanisms underlying 

physiology. One of the key tools used in systems biology is the construction of gene 

regulatory networks (Kitano, 2002). Often, these networks rely on the pair-wise 

correlation between the expression of genes to identify co-regulation and mutual 

antagonism (Hecker et al, 2009). These networks can then be interrogated to identify 

how progression of a disease can be associated with imbalances within gene 

regulatory networks. To identify imbalances in networks during disease progression, 

researchers take high-throughput measurements from animals over a time course of 

disease progression. To collect these high-throughput measurements, a typical 

procedure involves sacrificing an animal, flash freezing its tissue, and subjecting that 

tissue to biological assays (e.g. high-throughput qPCR or microarrays). This brings up 

a serious challenge for the calculation of correlation from these data: one animal is not 

followed throughout the time-series, but rather biological replicates are sacrificed at 

each time point to construct a pseudo-time series of biological response.  

Appendix B 

B.1 Introduction 
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Typically, correlation is calculated between expression of gene pairs by 

calculating correlation of mRNA levels across all animal replicates (Stuart et al, 2003). 

One constraint of this method is that calculating correlation across animals rather than 

across time points gives up the temporal nature of the data. Another challenge for 

calculating correlation from biological replicates is that, due to time and money 

constraints, often only a limited number of samples can be taken (Freeman et al, 2012). 

Thus the number of replicates at each time point and the number of time points 

investigated is highly limited. Often, as few as 3 replicates per time point and 2-5 time 

points are used in biological experiments. This gives 6-15 animals with which to 

calculate correlation, which may not give an accurate estimate of true correlation 

(Bonett & Wright, 2000).  

In light of these challenges, this study presents a novel method of estimating 

pair-wise correlation between biological assays from terminal, pseudo-time series 

measurements which takes into account the time-series nature of the data. This method 

segments the data into pseudo time-series profiles, then estimates pairwise gene 

correlation by averaging correlation estimates for two mRNA levels between all pairs 

of their pseudo time-series profiles. The segmentation method of estimating 

correlation gives a more accurate estimate of true correlation for datasets with few 

time points and limited replicates and is more robust to biological noise than standard 

correlation estimation methods. 

B.2 Materials and Methods 

B.2.1 Standard Method to calculate correlation 
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To calculate correlation between a pair of genes using the standard method, the 

gene expression data are arranged according to animal ID for each mRNA, as shown 

in Figure B.1A. In this method, the order of the data does not affect the calculation as 

long as the order is the same for each mRNA. The Pearson product moment 

correlation coefficient is then estimated between pairs of mRNA across N animals 

according to Equation B.1. Notice that the standard method does not take into account 

the time-series nature of the data. 

 

𝐸{𝑝𝑥𝑦} =  
∑ (𝑥𝑖− �̅�)(𝑦𝑖−�̅�) 𝑁

𝑖=1

√∑ (𝑥−�̅�)2𝑁
𝑖=1 ∗√∑ (𝑦−�̅�)2𝑁

𝑖=1

      (B.1) 

To calculate correlation between a pair of mRNA using the segmentation 

method, the gene expression data are arranged according to the time at which the 

sample was taken after treatment. The data are then segmented into k vectors, each 

containing the mRNA expression levels of one animal per time point. This gives a 

pseudo time-series with expression levels from one animal at each time point in a 

vector with N/k elements, as shown in Figure B.1B. Between each pair of pseudo 

time-series for two mRNA, the Pearson product moment correlation coefficient is 

estimated. This gives k2 estimates of correlation between two mRNA. These k2 

estimates are then averaged to give one estimate of correlation, according to Equation 

B.2. 

 

𝐸{𝑝𝑥𝑦} =  
1

𝑘2
∑  

∑ (𝑥𝑖− �̅�𝑗)(𝑦𝑖−�̅�𝑗) 
𝑁/𝑘
𝑖=1

√∑ (𝑥−𝑥𝑗̅̅ ̅)
2𝑁/𝑘

𝑖=1
∗√∑ (𝑦−𝑦𝑗̅̅ ̅)

2𝑁/𝑘
𝑖=1

𝑘2

𝑗=1      (B.2) 

B.2.2 Segmentation Method to calculate correlation 
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Figure B.1 Procedure for calculating estimates of correlation based on (A) the standard 

method and (B) the segmentation method (with k=3 segments). Gene 

expression values are based on the –ΔΔCT method; 12 animals were used 

over a time series of 6 hours post stimulus, with 3 biological replicates at 

each time point. 

A cutoff of ρ > 0.5 was used to define high correlation. This cutoff was chosen 

so that genes identified as highly correlated would have greater than half of their 

expression pattern linearly related to each other. Because it is likely that correlated 

genes are regulated by the same regulatory mechanisms, the majority of their 

relationship should be able to be explained by a linear relationship.  

B.2.3 Definition of high correlation 
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To ensure that the segmentation method does not degrade the accuracy of the 

correlation estimate in the absence of noise, correlation between phase-shifted sine 

waves was calculated using both the standard method and the segmentation method.  

Two sine waves were generated using 40 data points to span one period. One sine 

wave was phase shifted from the other between 0 and 180 degrees, as shown in Figure 

B.2A. Three simulated biological replicates were used such that each estimate of 

correlation used 120 data points. Figure B.2B shows that, in the absence of noise, the 

standard method and the segmentation method give the same estimate of correlation. 

These results are robust to changes in number of data points per period, number of 

periods, and number of segments used. 

 

Figure B.2 Correlation estimates between sine waves phase-shifted between 1-180̊ 

using the standard method and the segmentation method are equal in the 

absence of noise. 

B.2.4 Calculating Correlation from Standard Method and Segmentation 

Method 

B.3 Results and Discussion 
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A simulated sinusoidal profile of gene expression with a magnitude of 10 was 

generated spanning a period of four hours, as shown by the solid line in Figure B.3A. 

To simulate biological sampling, the value of the sin wave at 1, 2, 3, and 4 hours was 

taken 3 times, for a total of 12 samples. Noise was added to each of these samples by 

introducing random fluctuations from a normal distribution with mean 0 and standard 

deviation 5. This corresponds to sampling from a gene expression profile like that 

shown by the data points in Figure B.3A. The resulting gene expression profile has a 

signal to noise ratio (SNR) of 4, which is representative of the level of noise 

commonly seen in biological experiments. To test the efficacy of the segmentation 

method to estimate correlation, this sampling procedure was performed on (1) two sine 

waves to simulate an experiment on two genes with a true correlation of 1 (Figure 

B.3B), (2) one sin wave and one cosine wave to simulate an experiment on two genes 

with a true correlation of 0 (Figure B.3C), and (3) one sine wave and one negative sine 

wave to simulate an experiment on two genes with a true correlation of -1 (Figure 

B.3D). Correlation was then calculated using both the standard method and the 

segmentation method for each condition. This process was repeated 1,000 times for 

each sampling procedure. Figure B.3E shows a scatterplot of correlation estimates 

calculated by the standard and segmentation methods for each trial. If all points lay 

along the x=y line, as in Figure B.2B, the two estimates of correlation would be 

equivalent. However, the segmentation method estimates a higher correlation when 

true correlation is 1 and a lower correlation when true correlation is -1. When true 

correlation is 0, there appears to be no difference in the estimates of the two methods. 

B.3.1 Application of Segmentation Method to a Simulated Dataset 
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When the number of samples taken and the number of segments used increase, these 

trends become even more pronounced, Figure B.3F. 
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Figure B.3 (A) Gene expression with white noise introduced around the mean 

expression level, (B) two genes with a correlation = 1 prior to the 

introduction of noise, (C) correlation of 0, (D) correlation of -1, (E) 

scatterplot of correlation estimate comparing the standard method and 

segmentation method with 12 simulated animals and 3 segments, (F) the 

same correlation comparison with 120 simulated animals and 30 

segments. 

To ensure that the trends seen in the data are statistically significant, 

histograms of the estimated correlations for the standard method and segmentation 

method were generated, as shown in Figure B.4A-F.  
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Figure B.4 Estimates of correlation for the standard method and segmentation method 

when (A-B) true correlation = 1, (C-D) true correlation = 0, and (E-F) 

true correlation = -1. 



 440 

The histograms for true correlation = 1 suggest the segmentation method yields 

a more accurate estimate of correlation than the standard method. Using Fisher’s 

transformation to shift the distribution to an approximate t-distribution and using a 2 

sample t-test confirmed that the two distributions are significantly different (p-value < 

2.2e-16).  However, an F-test showed no difference in variance between the two 

transformed distributions (p-value = 0.625). The same tests on the histograms for true 

correlation = -1 confirmed that the two distributions are significantly different (p-

value = < 2.2e-16) with no difference in variance (p-value = 0.228). It has been shown 

that the distribution of correlation estimates when true correlation is zero follows a 

normal distribution (Pearson, 2011). Therefore, in this case no transformation of the 

data was necessary. A t-test identified no difference between the means of these two 

populations (p-value = 0.871); however, the segmentation method has a slightly higher 

standard deviation – 0.248 vs. 0.228 – identified as significant using an F-test (p-value 

= 0.025). 

Often in biological datasets, the signal to noise ratio is lower than desired. This 

is partly due to variability between animals or culture conditions and partly due to the 

often large number of processing steps needed to generate the dataset (Novak et al, 

2002). To test the robustness of the segmentation method to high noise systems, the 

Signal to Noise Ratio (SNR, defined as the signal divided by the variance) was varied 

between high levels of noise (SNR ~ 0.5) and low levels of noise (SNR ~ 100). At all 

levels of noise, the segmentation method outperformed the standard method with a 

more accurate estimate of correlation regardless of the sample size and number of 

segments used (Table B.1). However, at low noise levels this difference became 

B.3.2 Robustness of the Segmentation Method 
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biologically insignificant. The performance of the segmentation method improves 

when using a larger number of samples and a larger number of segments for all signal 

to noise levels. 

Table B.1: Correlation estimates using the standard and segmentation methods (true 

correlation is 1) 

   Correlation 

Coefficient 

Standard 

Deviation 

 

Sample 

# 

Segment

# 

SNR Std Seg Std Seg p-value 

12 2 111.11 0.999 0.999 0.001 0.000 1.16E-04 

12 2 40.00 0.996 0.997 0.002 0.001 5.07E-03 

12 2 20.41 0.992 0.994 0.004 0.003 8.27E-04 

12 2 12.35 0.988 0.990 0.006 0.005 1.61E-02 

12 2 8.26 0.982 0.985 0.009 0.007 2.84E-04 

12 2 5.92 0.976 0.979 0.012 0.009 7.96E-03 

12 2 4.44 0.965 0.973 0.015 0.012 1.03E-03 

12 2 3.46 0.960 0.967 0.022 0.016 1.32E-04 

12 2 2.77 0.946 0.956 0.024 0.018 3.15E-03 

12 2 2.27 0.934 0.945 0.028 0.022 1.21E-03 

12 2 1.89 0.932 0.940 0.034 0.026 3.02E-02 

24 2 111.11 0.998 0.999 0.001 0.000 2.63E-02 

24 2 40.00 0.996 0.996 0.001 0.001 1.07E-01 

24 2 20.41 0.991 0.993 0.003 0.002 3.09E-03 

24 2 12.35 0.986 0.987 0.004 0.003 1.04E-01 

24 2 8.26 0.981 0.982 0.006 0.005 2.42E-02 

24 2 5.92 0.971 0.974 0.009 0.008 3.08E-02 

24 2 4.44 0.964 0.967 0.011 0.009 2.87E-02 

24 2 3.46 0.951 0.955 0.015 0.012 2.11E-02 

24 2 2.77 0.943 0.945 0.017 0.014 6.91E-02 

24 2 2.27 0.933 0.937 0.023 0.018 1.62E-02 

24 2 1.89 0.918 0.925 0.025 0.022 1.71E-01 

48 2 111.11 0.998 0.998 0.000 0.000 1.17E-01 

48 2 40.00 0.995 0.996 0.001 0.001 8.54E-02 

48 2 20.41 0.991 0.991 0.002 0.002 4.83E-01 
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48 2 12.35 0.986 0.986 0.003 0.002 9.81E-03 

48 2 8.26 0.979 0.980 0.004 0.004 2.34E-01 

48 2 5.92 0.970 0.971 0.006 0.005 1.82E-01 

48 2 4.44 0.961 0.963 0.009 0.008 1.01E-01 

48 2 3.46 0.950 0.951 0.009 0.008 3.80E-01 

48 2 2.77 0.936 0.941 0.013 0.011 6.37E-02 

48 2 2.27 0.926 0.927 0.016 0.013 1.50E-01 

48 2 1.89 0.911 0.912 0.019 0.017 7.35E-01 

12 3 111.11 0.999 0.999 0.001 0.000 5.20E-13 

12 3 40.00 0.997 0.998 0.001 0.001 7.56E-21 

12 3 20.41 0.993 0.997 0.003 0.002 1.92E-14 

12 3 12.35 0.988 0.993 0.005 0.004 8.34E-14 

12 3 8.26 0.984 0.990 0.008 0.005 1.01E-10 

12 3 5.92 0.977 0.987 0.011 0.006 2.13E-16 

12 3 4.44 0.974 0.982 0.014 0.008 3.39E-09 

12 3 3.46 0.961 0.977 0.017 0.011 7.20E-09 

12 3 2.77 0.951 0.970 0.022 0.014 1.63E-13 

12 3 2.27 0.943 0.965 0.025 0.016 7.54E-13 

12 3 1.89 0.930 0.959 0.031 0.019 2.42E-14 

24 3 111.11 0.998 0.999 0.000 0.000 2.36E-05 

24 3 40.00 0.995 0.996 0.001 0.001 8.86E-07 

24 3 20.41 0.992 0.993 0.003 0.002 5.05E-05 

24 3 12.35 0.986 0.989 0.004 0.003 2.70E-06 

24 3 8.26 0.978 0.982 0.006 0.004 2.27E-05 

24 3 5.92 0.971 0.976 0.008 0.006 1.78E-07 

24 3 4.44 0.962 0.970 0.012 0.010 8.57E-06 

24 3 3.46 0.953 0.961 0.014 0.010 1.40E-04 

24 3 2.77 0.940 0.951 0.020 0.015 1.25E-05 

24 3 2.27 0.929 0.939 0.026 0.020 3.28E-04 

24 3 1.89 0.919 0.929 0.027 0.021 2.12E-03 

48 3 111.11 0.998 0.999 0.000 0.000 1.54E-03 

48 3 40.00 0.995 0.996 0.001 0.001 8.60E-04 

48 3 20.41 0.991 0.992 0.002 0.001 3.93E-03 

48 3 12.35 0.985 0.987 0.004 0.003 2.90E-03 

48 3 8.26 0.978 0.981 0.004 0.004 2.03E-04 

48 3 5.92 0.970 0.972 0.007 0.005 1.15E-03 

48 3 4.44 0.960 0.962 0.010 0.007 8.75E-02 

48 3 3.46 0.950 0.953 0.012 0.008 2.72E-02 
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48 3 2.77 0.936 0.941 0.013 0.011 7.87E-03 

48 3 2.27 0.927 0.932 0.018 0.013 9.85E-02 

48 3 1.89 0.910 0.915 0.022 0.017 1.00E-02 

12 4 111.11 0.999 1.000 0.001 0.000 1.81E-34 

12 4 40.00 0.996 0.998 0.002 0.001 6.28E-32 

12 4 20.41 0.992 0.997 0.004 0.002 2.55E-28 

12 4 12.35 0.986 0.995 0.006 0.003 6.46E-32 

12 4 8.26 0.980 0.992 0.009 0.005 3.72E-26 

12 4 5.92 0.975 0.990 0.013 0.007 2.92E-26 

12 4 4.44 0.965 0.985 0.015 0.008 5.64E-26 

12 4 3.46 0.957 0.982 0.019 0.010 2.49E-25 

12 4 2.77 0.943 0.977 0.025 0.013 8.17E-28 

12 4 2.27 0.935 0.975 0.028 0.016 1.20E-27 

12 4 1.89 0.914 0.967 0.033 0.018 3.30E-28 

24 4 111.11 0.998 0.999 0.001 0.000 1.14E-11 

24 4 40.00 0.996 0.997 0.002 0.001 9.96E-11 

24 4 20.41 0.992 0.994 0.003 0.002 8.00E-15 

24 4 12.35 0.986 0.989 0.004 0.003 4.38E-12 

24 4 8.26 0.980 0.985 0.006 0.005 1.19E-09 

24 4 5.92 0.970 0.978 0.008 0.006 5.27E-15 

24 4 4.44 0.962 0.972 0.011 0.008 1.44E-09 

24 4 3.46 0.951 0.964 0.014 0.010 1.96E-10 

24 4 2.77 0.939 0.954 0.018 0.013 1.63E-07 

24 4 2.27 0.928 0.945 0.020 0.017 4.56E-10 

24 4 1.89 0.910 0.934 0.027 0.019 9.33E-11 

48 4 111.11 0.998 0.999 0.000 0.000 3.64E-07 

48 4 40.00 0.996 0.996 0.001 0.001 5.19E-05 

48 4 20.41 0.991 0.992 0.002 0.001 6.42E-05 

48 4 12.35 0.985 0.987 0.003 0.002 1.65E-05 

48 4 8.26 0.978 0.981 0.005 0.004 4.68E-07 

48 4 5.92 0.972 0.974 0.005 0.004 1.78E-05 

48 4 4.44 0.961 0.966 0.008 0.006 4.39E-06 

48 4 3.46 0.951 0.956 0.011 0.007 4.85E-04 

48 4 2.77 0.939 0.948 0.012 0.008 9.15E-07 

48 4 2.27 0.929 0.939 0.017 0.012 1.14E-04 

48 4 1.89 0.910 0.924 0.018 0.014 3.74E-07 
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Another challenge posed by biological datasets is missing data, which can have 

many causes. Assays fail, animals die prematurely, cultures are contaminated, and 

sensors break. To test the robustness of the segmentation to missing data, between 1-4 

measurements were randomly selected and removed from the simulated dataset prior 

to calculating correlation (Table B.2).     

 

Table B.2: Correlations calculated from missing data study 

Missing data points 1 2 3 4 

Standard Method Corr. 
Standard Method Stdev 

0.728 
0.128 

0.727 
0.139 

0.725 
0.147 

0.729 
0.153 

Segmentation Method Corr. 
Segment Method Stdev 

0.795 
0.120 

0.792 
0.145 

0.763 
0.200 

0.707 
0.247 

P-value : 2 sample t-test on 
Fisher transformed data 

~0 ~0 ~0 0.001 

P-value: F-test for equal 
variance on Fisher 
transformed data 

0.002 ~0 ~0 ~0 

For 1 missing data point, the segmentation method still provides a better 

estimate of correlation, with the deletion affecting the variability of the segmentation 

method less than that of the standard method. For 2 or 3 missing data points, the 

segmentation method gives a more accurate but less precise estimate of correlation. 

The accuracy of the segmentation method makes it the better choice for this scenario. 

For > 4 missing data points, the segmentation method provides a worse correlation 

estimate with higher variability. Because there are only 4 data points in each pseudo-

time series, when greater than 3 data points are missing it becomes highly likely that at 

least 1 pseudo-time series will have only 2 data points. Estimating correlation from 

only 2 points is a poor way to estimate, which is why the performance of the 
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segmentation method suffers more than the standard method’s performance for many 

missing data points. For no true correlation, there is no difference between the 

distributions of the correlation estimate for the two methods with 1-4 missing data 

points. 

To ensure that these results were not specific to the use of sin waves as a 

model, the above analyses were repeated for linear profiles of gene expression. Similar 

results were obtained. 

The segmentation method provides a robust, accurate estimation of correlation 

for time series biological data. Compared to the standard method used to calculate 

correlation from biological data, the segmentation method is less susceptible to noise 

and is more accurate in identifying correlations. However, because of the 

segmentation the data is subject to, it is less robust to missing data points after a 

certain threshold of missing data is reached. This study focused on calculating Pearson 

correlation, the underlying mathematics, however, may be applied to other methods of 

calculating relationships between time-series data, such as Spearman’s rank 

correlation or mutual information.  

B.4 Conclusion 
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PRIMER SEQUENCES FOR HIGH-THROUGHPUT QPCR EXPERIMENTS 

Table C.1 Primer sequences and RefSeq IDs of mRNA measured in Chapter 8 

Gene RefSeq ID Forward Sequence Reverse Sequence 

Actb NM_031144 

AAGGCCAACCGTGAAA

AGAT 

ACCAGAGGCATACAGG

GACA 

Adamts1 NM_024400 

GGACAGGTGCAAGCTT

ACCT 

CACAGCCAGCTTTCACA

CAC 

Adamts13 XM_006233879 

ACCCTCTCAGGAGGCTA

AAT 

GTGACTGGGATTCTGGT

TAGTG 

Adh1a NM_019286 

GATGCCGACTTGGACAT

TGC 

TGGCTCGCTCAACACTC

TTT 

Alb NM_134326 

TGGCACAATGAAGTGG

GTAA 

GGGCGATCTCACTCTTG

TGT 

Aldh1a1 NM_022407 

GCCATCACTGTGTCTTC

TGC 

CATCTTGAATCCACCGA

AGG 

Aldh2 NM_032416 

TTACCTGTCCCAAGCTC

TGC 

GCACGCCACTTTACGAG

TTC 

Aldh7a1 NM_001271105 

GGAATCATCACTGCCTT

CAAC 

AGTTGTTGGTGCTCCTT

TCC 

Ang1 NM_001006992 

CGTCCTCTGTTGTCGGT

TTT 

CGTGTACCTGGGGTCGT

C 

Apoa4 NM_012737 

AGCCCCTGGGGGATAA

GT 

CCAGCTGCTGCCTGAAC

T 

Arg1 NM_017134 

GGTAGAGAAAGGTCCC

GCAG 

CAGACCGTGGGTTCTTC

ACA 

Bambi NM_139082 

AGCAGAAACCTCATCAC

TAAGG 

GCTGTAGTGCAAACGA

GAGA 

Bmp6 NM_013107 

CAG CAA CAA TCG CAA 

CAG AC 

GGG AGT TGT AGA GAT 

CCA GCA 

Casp3 NM_012922 

TCTACCGCACCCGGTTA

CTA 

TGACTGGATGAACCATG

ACC 

Ccl3 NM_013025 CGC CAT ATG GAG CTG GTG GAA TTT GCC GTC 

Appendix C 
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ACA C CAT AG 

Ccnd1 NM_171992 

TGTGATATGTACCAGCC

ACAGG 

CGAACAGACGACGGCA

TACT 

Cdkn1a NM_080782 

GCGCCCTCCGTTTCTTA

CTT 

TCGCAGACCTCTAGCAT

CCA 

Ch25h NM_001025415 

CTGCACTGGAACAGGG

CTAA 

ACTGCCCAGCAGGAAC

AAAT 

Clcn3 NM_053363 

GACTGTCTCTCTGGTGG

TTATTG 

GCCAGGGTTGTATGAGT

GAA 

Col14a1 NM_001130548 

CAG GCC AGA GGG GAT 

TTC 

AAT GCC AAT TGG TCC 

AGG T 

Col3a1 NM_032085 

ATGTGGGACCTGGTTTC

TTC 

CAGTCTAGTGGCTCATC

ATCAC 

Col4A1 NM_001135009 

CCA GCG GTG GTT ATG 

ACT TC 

GGC CAC CAT CTT GAG 

ACT TC 

Col4A2 XM_001076134 

CTG TCA GCA AAT GGG 

CAC T 

TTA GGA GGT GGG TGT 

TAG CAG 

Csf1 NM_023981 

CTGACTCTGGTAGGGAA

GGATA 

GAGACCAAGGAGCAAG

TAAGAG 

Csf2 NM_053852 

CTA ATG AGT TCT CCA 

TCC AGA GG 

CCC GTA GAC CCT GCT 

TGT AT 

Csf3 NM_017104 

GGTTTTCCTGACCCCGT

AGG 

TAGGCCAGCAAGCGCT

AAAA 

Csrp2 NM_177425 

ACATGGACCGTGGTGA

GAG 

GTAGGCCTGTGAGGTTG

AGC 

Cxcl1 NM_030845 

ACTCAAGAATGGTCGCG

AGG 

ACGCCATCGGTGCAATC

TAT 

Cxcl12 NM_001033882 

GGC CTC TGG GCA CAG 

TTA 

TGG TGG AAG GTT GCT 

ACT CC 

Cyp1a1 NM_012540 

CTCCCTGGGGTCCTAGA

GAACA 

CTCTGTGGCTGATGTGA

AGGC 

Cyp1a2 NM_012541 

GGAACACTATCAAGACT

TCAACAAGA 

AATCCAGCTCCAAAGAT

GTCA 

Cyp27b1 NM_053763 

GGCTCCTATGCCCACCT

C 

CACAGCCTTTAGCAGGG

GTA 

Cyp2b1 NM_001134844 

CGGACCTTTTCCCTCCT

AAG 

GGAACCCAGAGAAGAA

CTCAAA 

Cyp2e1 NM_031543 

CTGACTGTCTCCTCATA

GAGATGG 

TCACAGAAACATTTTCC

ATTGTGT 

Dcn NM_024129 

CGGTGGCAAATACCCG

GATTA 

TCTGCTCAAATGGTCCA

GCC 

Ecm1 NM_053882 TGACCCGTGACCAGTTC GGTGCTGCATAGCCTAC
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TTAC TTC 

Erlin2 NM_001106088 

CCCAGAAACAGAAGGT

GGTG 

GCAACCTGTGCCACTTT

TTC 

Fap NM_138850 

GAA GAG GAA ATG CTT 

GCT ACA AA 

TGG TAT GTC CGA ATC 

ATT AAA TTC 

Fn1 NM_019143 

CAGCCCCTGATTGGAGT

C 

TGGGTGACACCTGAGTG

AAC 

Fos NM_022197 

GGGACAGCCTTTCCTAC

TACC 

GATCTGCGCAAAAGTCC

TGT 

Gapdh NM_017008 

TGGCCTCCAAGGAGTAA

GAA 

GGCCTCTCTCTTGCTCT

CAG 

Gfap NM_017009 

AAGATCCCGAGGCAAA

GAAT 

TCGTCAGGGTTCTTCCA

GAT 

Got1 NM_012571 

ACGAATCACCTGGTCCA

ATC 

GCCATTGTCTTCACGTT

TCC 

Hgf NM_017017 

TGATCCAAACATCCGAG

TTG 

CCATTGCCACGATAACA

ATCT 

Hif1a NM_024359 

CATGATGGCTCCCTTTT

TCA 

CATAGTAGGGGCACGG

TCAC 

Igf1 NM_001082477 

CACACTGACATGCCCAA

GAC 

TCTCCTTTGCAGCTTCCT

TT 

Il10 NM_012854 

CAGATTCCTTACTGCAG

GACTTTA 

CAAATGCTCCTTGATTT

CTGG 

Il1a NM_017019 

AAATACTCAGCTCTTTG

TGAGTGC 

TGTGATGAGTTTTGGTG

TTTCC 

Il1r1 NM_013123 

ATAGACAGACATAGAG

GCTTTGGGG 

CAGTGTAGCTTGGGATT

TCACC 

Il6 NM_012589 

CACTTCACAAGTCGGAG

GCT 

TCTGACAGTGCATCATC

GCT 

Irf1 NM_012591 

GAGCTGGGCCATTCACA

C 

CGATGTCTGGTAGGGAG

TTCA 

Itgad NM_031691 

CCGGTGGAGTTGTGATC

CTC 

CGATGGGTTCCTCCACA

TCC 

Itgam NM_012711 

ATTGGGGCCCCTCATCA

CTA 

CCACCGTGCTCTCCCCC

TA 

Klf6 NM_031642 

TTGAAAGCACATCAGCG

CAC 

AGGTGGTCAGACCTGG

AGAA 

Kras NM_031515 

GGAGGGCTTTCTTTGTG

TATTTG 

CCCATAACTCCTTGCTA

ACTCC 

Lama1 NM_001108237 

AGATTGGCTAAGACCGC

ACA 

AGCTGCTTCAGCATTAG

GGG 

Lep NM_013076 TGTCTTCAACGGAGGAG GTCCCGAGCACTTTGGA
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AAAG TAA 

Lrat NM_022280 

TCCTGATAGTCAATTTG

CTAGGC 

CAACCAATCCAAACTTC

CTTACA 

Mapk1 NM_053842 

GGCATGGTTTGTTCTGC

TTATG 

GTCTCCATGAGGTCCTG

TACTA 

Mmp13 NM_133530 

TTG AGT TGG ACT CAC 

TGT TGG T 

CTT CCT CAG ACA AGT 

CAT CAT CA 

Mmp14 NM_031056 

ACA AAG ATG CCC CCT 

CAA C 

CCA TAG GTG GGG TTT 

CTG G 

Mmp2 NM_031054 

CTG GTT GGA GGA GAA 

CCA AG 

TCC CAT GGG GAA CTG 

TTA AA 

Mmp3 NM_133523 

TGTGTTTCAGCTGACCC

TGAT 

TGCTAGAGTAAGGAAA

CCACTTCA 

Mrc1 NM_001106123 

CCCTGCTCCTGGCTTTT

ATCT 

CTGAACGGAGATGGCG

CTTA 

Nfkb2 NM_001008349 

CCACTGCATCTAGCCAC

AGA 

ATTCACATTAGCATGGA

GCTTG 

Npy NM_012614 

TGTGAAACCAGTCTGCC

TGT 

GAAATGGGTCGGAATC

CAG 

Pdgfa NM_012801 

GGACAGGACGCGTAGA

ACAA 

CGGGTTGCTCGAGGTCT

TAG 

Pdgfc NM_031317 

GCAAGTTGCAGCTCTCC

AG 

TGGATGCTCCCATTACC

AG 

Pecam1 NM_031591 

GCCTCACCAAGAGAAC

GGAA 

ATTGGATGGCTTGGCCT

GAA 

Pklr NM_012624 

GATACGAACCGGAGTCT

TGC 

ACCTGTGAGCCCTTCAC

AAT 

Ppara NM_013196 

CTGTCCCCAAAATGCCT

GTG 

ATTTTTCGCAAGGCCAC

GTT 

Ptn NM_017066 

GAAGCAGTTTGGAGCTG

AGTG 

GCTTGGGCTTGGTGAGT

TTG 

Rara NM_031528 

CGGCTGAGTGACGAGA

GC 

GACTTCTACACTTTCGT

ACATCTTGC 

Rbp1 NM_012733 

CACGCTGAGCACTTTTC

G 

CCCAGCTCACTGTGGTC

A 

Rbp2 NM_012640 

AGTGGGTCGAGGGAGA

CAA 

TTGAACACTTGTCGACA

CACC 

Rdh10 NM_181478 

TTCAGAGGCTGCCGAAT

CAG 

GTACATGAGACGAGGG

GTGC 

Serpine1 NM_012620 

CACCCTTTGAAAAAGAT

GTGC 

ATGAGCTCAGCGTCCAA

AAT 

Serpinh1 NM_017173 TTTTTGAGTTTTTCAAG TGTTTTGAAAGCAATAA
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GAATGG AGGCTTC 

Smad1 NM_013130 

AGAAAGGGGCCATGGA

AG 

AGCGAGGAATGGTGAC

ACA 

Smad4 NM_019275 

TCA CAA TGA GCT TGC 

ATT CC 

TCA AAG TAA GCA ATG 

GAA CAC C 

Smad7 NM_030858 

CCCTGCTGTTGTTGCTG

TC 

ATGACCTCCGCACACCA

T 

Sosc3 NM_053565 

AATCCAGCCCCAATGGT

C 

GGCCTGAGGAAGAAGC

CTAT 

Spp1 NM_012881 

ATCGACAGTCAGGCGA

GTTC 

GCTGTGAAACTCGTGGC

TCT 

Stat3 NM_012747 

GGGCCATCCTAAGCACA

AA 

AGACTGGATCTGGGTCT

TGC 

Tbp NM_001004198 

CCCACCAGCAGTTCAGT

AGC 

CAATTCTGGGTTTGATC

ATTCTG 

Tgfb1 NM_021578 

GTCAACTGTGGAGCAAC

ACG 

GACAGCCACTCAGGCGT

ATC 

Tgfb2 NM_031131 

CCATACAGTCCCAGGTG

CTC 

GCAAGCGAAAGACCCT

GAAC 

Tgfbr2 NM_031132 

AGAAGCCGCAGGAAGT

CTG 

GGCAAACGGTCTCCAG

AGTA 

Timp2 NM_021989 

GTAGTGATCAGGGCCA

AAGC 

GATGGGGTTGCCATAGA

TGT 

Tlr9 NM_198131 

ACCTGTCTCGGAACAAC

CTG 

AGATGGGAGAGGTTGA

CGAA 

Tnf NM_012675 

CCCTGGTACTAACTCCC

AGAAA 

TGTATGAGAGGGACGG

AACC 

Tnfr1 NM_013091 

AATGAGTGCACCCCTTG

C 

CCTGGGGGTTTGTGACA

TT 

Ubqln1 NM_053747 

GAAGGAAGAGTTCGCT

GTGC 

TGAAACGTTTTGAGATT

TCCTCT 

Vcl NM_001107248 

TACCAAGCGGGCACTTA

TTC 

CCTTCACTGTGGACAGG

ATTT 

Vegfa NM_001110333 

AAAAACGAAAGCGCAA

GAAA 

TTTCTCCGCTCTGAACA

AGG 

Vim NM_031140 

CGA GAA AAA TTG CAG 

GAG GA 

GAA TGA CTG CAG GGT 

GCT CT 
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MATLAB CODE FOR MATHEMATICAL MODELS DEVELOPED IN THIS 

THESIS 

 

function [t,cell,conc,G] = HepatRegenGrowth(initialFraction) 

% Author:       Daniel Cook 

% Date:         10/08/2015 

% Copyright:    Creative Commons Share Alike 

% To run, use:  [t,cell,conc,G] = HepatRegenGrowth(0.3); 

% Modified from "A Model of Liver Regeneration" (2009) by Furchtgott et al. 

  

% Citation: Cook, D.; Ogunnaike, B.A.; Vadigepalli, R.  

% Systems Analysis of Non-Parenchymal Cell Modulation of Liver Repair 

% across Multiple Regeneration Modes, BMC Systems Biology, 2015 

  

% Set species: 1=rats, 2=mice, 3=humans 

setSpecies = 1; 

  

% Set disease (for use only with rats) 

% 1= no disease 

% 2= non-alcoholic steatohepatitis (NASH) 

% 3= alcoholic steatohepatitis (ASH) 

% 4= cirrhosis 

% 5= toxin-induced diabetes 

setDisease = 1; 

  

% Set alternate hypotheses (for use only with humans) 

% Hypothesis 5 is the default human parameter set 

% 1= altered stress response 

% 2= altered ECM remodeling and storage of GFs 

% 3= altered transition times 

% 4= longer cell cycle, higher apoptosis rate, et al. 

% 5= lower metabolic demand 

setHypotheses = 5; 

Appendix D 

D.1 Cell Growth Model of Liver Regeneration 
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% Plot results: 1=yes, 2=no 

shouldPlot = 1; 

  

% Define model parameters 

k = zeros(41,1); 

% Table 1: Molecular parameters 

k(1) = initialFraction; % Fraction of liver mass remaining (N) 

k(2) = 16.8; % Metabolic load (M) 

k(3) = 1.5; % TNF production 

k(4) = 0.9; % TNF mRNA degrad 

k(5) = 2e4; % JAK activation rate (V_JAK) 

k(6) = 1e4; % Km JAK 

k(7) = 0.4; % JAK degrad 

k(8) = 2; % Conc. of monomeric STAT3 

k(9) = 7.5e2; % STAT3 activation rate 

k(10) = 0.4; % Km STAT3 

k(11) = 0.1; % STAT3 degrad 

k(12) = 2.4e4; % SOCS activation rate 

k(13) = 7e-4; % Km SOCS3 

k(14) = 0.4; % SOCS3 degrad. 

k(15) = 1.5e-2; % SOCS3 inhibition constant 

k(16) = 2.5e2; % IE response gene expression rate 

k(17) = 18; % Km for IE genes 

k(18) = 5; % IE gene degrad 

k(19) = 7; % ECM degrad by MMPs 

k(20) = 33; % ECM degrad 

  

% Table 2: Cellular parameters 

k(21) = 0.113; % GF production 

k(22) = 0.23; % GF degrad 

k(23) = 6e-2; % k_up - GF uptake/production rate by ECM 

k(24) = 7e-3; % k_Q 

k(25) = 4.4e-3; % k_P 

k(26) = 5.4e-2; % k_R 

k(27) = 2e-2; % k_prol - specifies length of mitotic cycle 

k(28) = 0.1; % k_req - requiescence rate 

k(29) = 8; % theta_req (for sigma_req) 

k(30) = 3; % beta_req (for sigma_req) 

k(31) = 1e-1; %1e-2; % k_ap - apoptosis rate 

k(32) = 9e-3; % theta_ap 

k(33) = 4.5e-3; % beta_ap 

  



 453 

% Growth rate and metabolic load for rats 

if setSpecies == 1 

    k(2) = 20.8217; % Metabolic demand 

    k(41) = 3.4742e-4; % Growth rate 

end 

  

% Growth rate and metabolic load for mice 

if setSpecies == 2 

    k(2) = 23.0294; % Metabolic demand 

    k(41) = 9.6607e-4; % Growth rate 

    k(32) = k(32)*21.3671/k(2); % Scaled apoptosis rate 

end 

  

% Growth rate and metabolic load for humans 

if setSpecies == 3 

    k(2) = 5.8507; % For fitting data from Pomfret 

    k(41) = 6.5675e-4; % For fitting data from Pomfret 

    k(32) = k(32)*20.8217/k(2); % Scale the apoptosis response 

end 

  

% Set parameters for fructose-induced steatosis (NASH) 

if setDisease == 2 

    k(2) = 23.1645;  

    k(41) = 0.0025; 

    k(3) = 0.3095; 

    k(4) = 2.3633; 

    k(19) = 1.7312; 

    k(20) = 9.5395; 

    k(21) = 0.0793; 

    k(22) = 0.1679; 

    k(23) = 0.0075; 

end 

  

% Set parameters for Alcohol-induced steatosis (ASH) 

if setDisease == 3 

    k(2) = 14.4017; 

    k(41) = .0014; 

    k(3) = 0.79; 

    k(4) = 0.2073; 

    k(19) = 10.5646; 

    k(20) = 77.7923; 

    k(21) = 0.0002; 

    k(22) = 0.1196; 
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    k(23) = 0.0071; 

end 

  

% Parameters for cirrhosis-impaired regeneration (rat) 

if setDisease == 4 

    k(2) = 18.0454;  

    k(41) = 4.358e-06; 

    k(3) = 2.1565; 

    k(4) = 1.043; 

    k(19) = 0; 

    k(20) = 83.5649; 

    k(21) = 0.069; 

    k(22) = 0.2456; 

    k(23) = 0.0027; 

end 

  

% Set parameters for Diabetes-impaired regeneration 

if setDisease == 5 

    k(2) = 16.4539;  

    k(41) = 8.92e-4; 

    k(3) =  1.5892; 

    k(4) =  0.3699; 

    k(19) = 6.4571; 

    k(20) = 1.8271e-6; 

    k(21) = 1.7519e-7; 

    k(22) = 0.5044; 

    k(23) = 0.1218; 

end 

  

% Hypothesis testing (humans) 

% Hyp1: humans have a higher stress response than rats 

if setHypotheses == 1 

    k(2) = 20.8217; % Metabolic demand 

    k(41) = 3.4742e-4; % Growth rate 

    k(32) = 9e-3; % theta_ap 

    k(3) = 0.1435; % TNF production 

    k(4) = 0.4942; % TNF mRNA degrad 

    k(5) = 1.3637e3; % JAK activation rate (V_JAK) 

    k(6) = 7.5654e3; % Km JAK 

    k(7) = 0.0398; % JAK degrad 

    k(8) = 2.031; % Conc. of monomeric STAT3 

    k(9) = 1.1091e3; % STAT3 activation rate 

    k(10) = 0.5178; % Km STAT3 
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    k(11) = 0.035; % STAT3 degrad 

    k(12) = 6.3042e3; % SOCS activation rate 

    k(13) = 6.8196e-4; % Km SOCS3 

    k(14) = 0.1682; % SOCS3 degrad. 

    k(15) = 0.0569; % SOCS3 inhibition constant 

    k(16) = 18.6019; % IE response gene expression rate 

    k(17) = 88.1259; % Km for IE genes 

    k(18) = 1.1482; % IE gene degrad 

end 

% Hyp2: humans store a greater quantitiy of GFs in ECM & Potentially 

% altered ECM synthesis 

if setHypotheses == 2 

    k(2) = 20.8217; % Metabolic demand 

    k(41) = 3.4742e-4; % Growth rate 

    k(32) = 9e-3; % theta_ap 

    k(19) = 4.9548; % ECM degrad by MMPs 

    k(20) = 56.2986; % ECM degrad 

    k(21) = 3.288e-7; % GF production 

    k(22) = 2.1389e-7; % GF degrad 

    k(23) = 0.1008; % k_up - GF uptake/production rate by ECM 

end 

% Hyp3: humans have a higher transition time 

if setHypotheses == 3 

    k(2) = 20.8217; % Metabolic demand 

    k(41) = 3.4742e-4; % Growth rate 

    k(32) = 9e-3; % theta_ap 

    k(24) = 1.4e-3; % k_Q 

    k(25) = 1.5e-3; % k_P 

    k(26) = 70.9e-3; % k_R 

end 

% Hyp4: longer cell cycle, higher apoptosis rate, et al. 

if setHypotheses == 4 

    k(2) = 20.8217; % Metabolic demand 

    k(41) = 3.4742e-4; % Growth rate 

    k(32) = 9e-3; % theta_ap 

    k(28) = 0.00417; %k_req 

    k(27) = 0.00833; %k_prol 

    k(31) = 0.00417; %k_apop 

    k(24) = 1.1e-3; %k_q 

    k(25) = 2.6e-3; %k_p 

    k(26) = 135e-3; %k_r 

end 
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% Table 3: Steady-State parameters 

k(34) = -k(3)*k(2) + k(5)/(1+k(6)) + k(4); %-22.3; % TNF production 

k(35) = -k(5)/(1+k(6)) + k(7); %-1.6; % JAK production 

k(36) = -k(9)*k(8)^2/(k(8)^2+k(10)*(1+1/k(15))) + ... 

    k(16)/(1+k(17)) + k(12)/(1+k(13)) + k(11); %2.39e4; % STAT3 production 

k(37) = -k(12)/(1+k(13)) + k(14); %2.4e4; % SOCS production 

k(38) = -k(16)/(1+k(17)) + k(18); %-8.16; % IE gene production 

k(39) = k(19) + k(20); %40; % ECM production 

k(40) = -k(21)*k(2) + k(23) + k(22); %-1.6; % GF production 

  

% Set initial hepatocyte states, cell = (Q,P,R) 

% and concentrations, conc = [IE,GF,ECM,TNF,JAK,STAT3,SOCS3] 

cell = [k(1),0,0]; 

conc = ones(1,7); 

G = 1; 

x0 = [cell,conc,G]'; 

  

tStart = 0; 

if setSpecies == 3 

    tEnd = 400*24; % for humans 

else tEnd = 300; % for rats/mice 

end 

  

% Call ODE solver 

[t,x] = ode15s(@(t,x)odefun(t,x,k,x0), [tStart:.1:tEnd], x0); 

  

% Organize results 

cell = x(:,1:3); 

% Remove negative values not used in calculations 

cell(cell(:,2) < 0,2) = 0; 

cell(cell(:,3) < 0,3) = 0; 

% End of removing negative values 

conc = x(:,4:10); 

G = x(:,11); 

  

% Plot results here 

if shouldPlot == 1 

     

    Stylez = 'k-'; % How to plot results 

    Stylez2 = '-'; 

    if setSpecies == 3 

        xAxisText = 'Time post-PHx (days)'; 

        t = t/24; 
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    else xAxisText = 'Time post-PHx (hrs)'; 

    end 

     

    figure(1); hold on; 

    

plot(t,cell(:,2),Stylez2,t,cell(:,3),Stylez2,t,cell(:,1)+cell(:,2)+cell(:,3),Stylez,'linewidth',

3) 

    set(gca,'FontSize',12) 

    xlabel(xAxisText,'FontSize',14);ylabel('Fraction of Liver','FontSize',14); 

    ylim([0 1.10000001]) 

    title('Regeneration Profile','FontSize',18); 

    legend('Primed','Replicating','Total','Location','Best'); 

  

    figure(2) 

    plot(t,(conc),'linewidth',3) 

    set(gca,'FontSize',12) 

    xlabel(xAxisText,'FontSize',14);ylabel('Fold Change','FontSize',14); 

    title('Molecular Levels','FontSize',18); 

    legend('IE','GF','ECM','TNF','JAK','STAT3','SOCS3','location','best') 

  

    figure(3);hold on; 

    plot(t,cell(:,1)+G.*(cell(:,2)+cell(:,3)),Stylez,'linewidth',3) 

    set(gca,'FontSize',12) 

    xlabel(xAxisText,'FontSize',14);ylabel('Fraction of Liver','FontSize',14); 

    ylim([0 1.10000001]) 

    title('Regeneration Profile','FontSize',18); 

  

    brdu = cell(:,3)./(sum(cell')'); 

    brduMax = find(brdu >= max(brdu),1); 

    disp('Maximum Brdu Incorporation is at') 

    disp(t(brduMax)) 

  

    figure(4);hold on; 

    plot(t,brdu,Stylez,'linewidth',3) 

    set(gca,'FontSize',12) 

    xlabel(xAxisText,'FontSize',14);ylabel('Fraction of Cells Replicating','FontSize',14); 

    title('Replicating Hepatocytes','FontSize',18); 

end %Ends plotting if statement 

end 

  

%% ODE Function to solve 

function dxdt = odefun(t,x,k,x0) 

% Set variable names 
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G = x(11); 

Q=max(0,x(1)); P=max(0,x(2)); R=max(0,x(3)); N=Q+G*(P+R); 

IE=x(4); GF=max(1,x(5)); ECM=x(6); TNF=x(7); JAK=x(8); STAT=x(9); 

SOCS=x(10); 

IE0=x0(4); GF0=x0(5); ECM0=x0(6); TNF0=x0(7); JAK0=x0(8); STAT0=x0(9); 

SOCS0=x0(10); 

  

% Calculate sigmas 

sr = 0.5*(1+tanh((k(29)-GF)/k(30))); % sigma_req 

sa = 0.5*(1+tanh((k(32)-((N)/k(2)))/k(33))); % sigma_ap 

  

% Calculate reaction rates 

r1 = k(24)*(IE-IE0)*Q; % Priming of Quiescent cells 

r2 = k(26)*ECM*R; % Replicating cell returning to Quiescence 

r3 = k(28)*sr*P; % Requiescence of Primed cells 

r4 = k(25)*(GF-GF0)*P; % Primed cells begining Replication 

r5 = k(27)*R; % Doubling of Replicating cells 

ra1 = k(31)*sa*Q; % Apoptosis of Quiescent cells 

ra2 = k(31)*sa*P; % Apoptosis of Primed cells 

ra3 = k(31)*sa*R; % Apoptosis of Replicating cells 

  

r6 = k(3)*k(2)/(N); % TNF production by stimulus 

r7 = k(5)*TNF/(TNF+k(6)); % TNF production of JAK 

r8 = k(4)*TNF; % TNF degradation 

r9 = k(7)*JAK; % JAK degredation 

r10 = k(9)*JAK*k(8)^2/(k(8)^2+k(10)*(1+SOCS/k(15))); % STAT3 production by 

JAK 

r11 = k(16)*STAT/(STAT+k(17)); % IE production by STAT3 

r12 = k(12)*STAT/(STAT+k(13)); % SOCS3 production by STAT3 

r13 = k(11)*STAT; % STAT3 degredation 

r14 = k(14)*SOCS; % SOCS3 degredation 

r15 = k(18)*IE; % IE degredation 

r16 = k(19)*TNF*ECM; % ECM degredation by TNF activated MMPs 

r17 = k(20)*ECM; % ECM degredation 

r18 = k(21)*k(2)/N; % GF production by stimulus 

r19 = k(23)*GF*ECM; % GF uptake/production by ECM 

r20 = k(22)*GF; % GF degredation 

  

% Set differential equations 

dxdt(1) = -r1 + r2 + r3 - ra1; % Q Phase 

dxdt(2) = r1 - r4 - r3 - ra2; % P Phase 

dxdt(3) = r4 - r2 + r5 - ra3; % R Phase 
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dxdt(4) = r11 - r15 + k(38); % IE genes 

dxdt(5) = r18 - r19 - r20 + k(40); % GF 

dxdt(6) = -r16 - r17 + k(39); % ECM 

  

dxdt(7) = r6 - r7 - r8 + k(34); % TNF 

dxdt(8) = r7 - r9 + k(35); % JAK 

dxdt(9) = r10 - r11 - r12 - r13 + k(36); % STAT3 

dxdt(10) = r12 - r14 + k(37); % SOCS3 

  

dxdt(11) = (k(2)/(N))*k(41) - k(2)*k(41); % Cell Mass (M) 

  

dxdt = dxdt'; 

end 
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function [t,cellh,conch,cellk,conck,cells,concs,IL6,TGFb,celle,G] = 

LiverRegenGrowthFull(initialFraction,para) 

% Author:       Daniel Cook 

% Date:         08/08/2016 

% Copyright:    Creative Commons Share Alike 

  

% This function computes cellular regeneration following PHx 

% It is an extension of the model from "A Model of Liver Regeneration" (2009) by 

Furchtgott et al. 

% Initial fraction is the fraction of liver removed (ie 0.7) 

% To run this code: [t,cellh,conch,cellk,conck,cells,concs,IL6,TGFb,celle,G] = 

LiverRegenGrowthFull(0.7); 

  

% Plot results (1=plot, 2=do not plot) 

shouldPlot = 2; 

  

% Set species (1=rat, 2=mouse, 3=human) 

setSpecies = 1; 

  

% Set disease state (1=healthy, 2=ALD) 

setDisease = 1; 

  

% Set para to a default value of 0 if the "para" input is missing 

if nargin == 1 

    para = 0; 

end 

  

% Call parameter setting functions (also set disease states) 

[cellh0,conch0,kh] = 

hepatocyteParameters(initialFraction,para,setSpecies,setDisease); 

[cellk0,conck0,kk] = kupfferParameters(initialFraction,para,setSpecies,setDisease); 

[cells0,concs0,ks] = stellateParameters(initialFraction,para,setSpecies,setDisease); 

[celle0,ke] = endothelialParameters(initialFraction,para); 

G = 1;  

  

% Set initial conditions vector 

x0 = [cellh0,conch0,cellk0,conck0,cells0,concs0]';  

x0(end+1) = (x0(5) + x0(15))/2; % Combined IL6 

x0(end+1) = (x0(17) + x0(25))/2; % Combined TGFb 

D.2 Non-parenchymal Cell Model of Liver Regeneration 



 461 

x0(end+1) = celle0; % Endothelial cells 

x0(end+1) = G; % Hepatocyte size 

  

% Set start, step, and end time 

tStart = 0; 

tStep = 1; 

if setSpecies == 3 

    tEnd = 10000; % for humans 

else 

    tEnd = 300; % for rats/mice 

end 

  

% Run ODE solver 

[t,x] = ode15s(@(t,x)odefun(t,x,kh,kk,ks,ke,x0), [tStart:tStep:tEnd], x0); 

  

% Split output results into readable components 

split1=length(cellh0)+length(conch0);  

split2=split1+length(cellk0); split3=split2+length(conck0);  

split4=split3+length(cells0); split5=split4+length(concs0); 

  

cellh=x(:,1:length(cellh0)); conch=x(:,(length(cellh0)+1):split1); 

cellk=x(:,(split1+1):split2); conck=x(:,(split2+1):split3); 

cells=x(:,(split3+1):split4); concs=x(:,(split4+1):split5); 

IL6=x(:,split5+1); TGFb=x(:,split5+2); celle = x(:,split5+3); G=x(:,split5+4); 

  

%% Plot Results 

  

% Plot results 

if shouldPlot == 1 

     

    % Change time scale to days for humans 

    xAxisLabel = 'Time post-PHx (hrs)'; 

    if setSpecies == 3 

        t = t/24; 

        xAxisLabel = 'Time post-PHx (days)'; 

    end 

     

    % Plot hepatocyte mass recovery 

    if setDisease == 1 

        figure(1);hold on; plot(t,cellh(:,1)+G.*(cellh(:,2)+cellh(:,3)),'k-','linewidth',3); 

    end 

    if setDisease == 2 
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       figure(1);hold on; plot(t,cellh(:,1)+G.*(cellh(:,2)+cellh(:,3)),'-','color',[.5 .5 

.5],'linewidth',3); 

    end  

    title('Liver Mass Recovery','fontsize',22) 

    xlabel(xAxisLabel,'fontsize',18);ylabel('Mass Recovery','fontsize',18); 

    set(gca,'fontsize',18,'linewidth',2);box off; xlim([0 t(end)]) 

     

    % Plot experimental results 

    controlTime = [0,1,3,7]*24; 

    controlMean = [0.3,0.447,0.757,0.923]; 

    control95CI = [0,0.089,0.135,0.21]; 

    ashTime = [0, 24, 48]; 

    ashMean = [0.3,0.4,0.424]; 

    ash95CI = [0,0.082,0.028]; 

    if setDisease == 1 && setSpecies == 1;  

        errorbar(controlTime,controlMean,control95CI,'ko','linewidth',3);  

    end 

    if setDisease == 2 && setSpecies == 1;  

        errorbar(ashTime,ashMean,ash95CI,'o','color',[.5 .5 .5],'linewidth',3);  

    end 

     

    % Plot cell states 

    figure(2); hold on; plot(t,cellh(:,2),'b-','linewidth',3);  

    plot(t,cellh(:,3),'-','linewidth',3,'color',[.25 .75 .25]); 

    plot(t,cellh(:,1)+cellh(:,2)+cellh(:,3),'k-','linewidth',3); 

    legend('Primed','Replicating','Total');set(gca,'fontsize',18); 

    title('Hepatocyte Dynamics','fontsize',22) 

    xlabel(xAxisLabel,'fontsize',18);ylabel('Fraction Recovery','fontsize',18); 

    set(gca,'fontsize',18,'linewidth',2);box off; xlim([0 t(end)]) 

     

    % Generate Figures from paper 

    figure(3); hold on; plot(t,cells(:,2)./sum(cells')','-','color',[.25 .75 .25],'linewidth',2) 

    figure(3); hold on; plot(t,cells(:,4)./sum(cells')','r-','linewidth',2) 

    set(gca,'fontSize',18,'linewidth',2);box off 

    xlabel('Time post-PHx (hrs)'); ylabel('Fraction of total') 

    title('Stellate Cell Dynamics','fontsize',22) 

  

    figure(4); hold on; plot(t,conck(:,3),'k-','linewidth',2) 

    figure(4); hold on; plot(t,IL6,'b-','linewidth',2) 

    set(gca,'fontSize',18,'linewidth',2);box off 

    xlabel('Time post-PHx (hrs)'); ylabel('Fold Change') 

    title('Cytokine Dynamics','fontsize',22) 
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    figure(5); hold on; plot(t,cellh(:,2),'k-','linewidth',2) 

    set(gca,'fontSize',18,'linewidth',2);box off 

    xlabel('Time post-PHx (hrs)'); ylabel('Fraction of Original Mass') 

    title('Hepatocyte Priming','fontsize',22) 

  

    figure(6); hold on; plot(t,cellh(:,3),'k-','linewidth',2) 

    set(gca,'fontSize',18,'linewidth',2);box off 

    xlabel('Time post-PHx (hrs)'); ylabel('Fraction of Original Mass') 

    title('Replicating Hepatocytes','fontsize',22) 

  

    figure(7); hold on; plot(t,(G-1).*(cellh(:,2)+cellh(:,3)),'k-','linewidth',2) 

    set(gca,'fontSize',18,'linewidth',2);box off 

    xlabel('Time post-PHx (hrs)'); ylabel('Fraction of Original Mass') 

    title('Liver Hypertrophy','fontsize',22) 

     

end 

  

end 

  

function dxdt = odefun(t,x,kh,kk,ks,ke,x0) 

%% Call cellular subfunctions 

% Combine variables of secreted factors 

x(end-3) = (x(5) + x(15))/2; % Combined IL6 

x(end-2) = (x(17) + x(25))/2; % Combined TGFb 

  

% Call hepatocyte cellular & molecular equations 

dx1 = hepatocyteEquations(t,x,x0,kh); 

dx2 = kupfferEquations(t,x,x0,kk); 

dx3 = stellateEquations(t,x,x0,ks); 

dxe = endothelialEquations(t,x,x0,ke); 

dxg = growthEquations(t,x,x0,kh); 

  

dxdt = [dx1;dx2;dx3;dx1(5)+dx2(5);dx2(7)+dx3(7);dxe;dxg]; 

end 

  

function [cellh,conch,kh] = 

hepatocyteParameters(initialFraction,para,setSpecies,setDisease) 

%% Set Hepatocyte Parameters 

kh = zeros(41,1); 

% Table 1: Molecular parameters 

kh(1) = 1-initialFraction; % Fraction of liver mass remaining (N) 

kh(2) = 16.8; % Metabolic load (M) 

kh(3) = 0.3; % IL6 production (Changed from Vipul) 
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kh(4) = 0; % IL6 mRNA degrad (Changed from Vipul) 

kh(5) = 6e4; %2e4; % JAK activation rate (V_JAK) 

kh(6) = 1e4; % Km JAK 

kh(7) = 0.4; % JAK degrad 

kh(8) = 2; % Conc. of monomeric STAT3 

kh(9) = 7.5e2; % STAT3 activation rate 

kh(10) = 0.4; % Km STAT3 

kh(11) = 0.1; % STAT3 degrad 

kh(12) = 2.4e4; % SOCS activation rate 

kh(13) = 7e-4; % Km SOCS3 

kh(14) = 0.4; % SOCS3 degrad. 

kh(15) = 1.5e-2; % SOCS3 inhibition constant 

kh(16) = 2.5e2; % IE response gene expression rate 

kh(17) = 18; % Km for IE genes 

kh(18) = 5; % IE gene degrad 

  

% Table 2: Cellular parameters 

kh(19) = 7e-3; % k_Q 

kh(20) = 4.4e-3; % k_P 

kh(21) = 5.4e-2; % k_R 

kh(22) = 2e-2; % k_prol - specifies length of mitotic cycle 

kh(23) = 0.1; % k_req - requiescence rate 

kh(24) = 8; % theta_req (for sigma_req) 

kh(25) = 3; % beta_req (for sigma_req) 

kh(26) = 1e-1; %1e-2; % k_ap - apoptosis rate 

kh(27) = 9e-3; % theta_ap 

kh(28) = 4.5e-3; % beta_ap 

  

% Set metabolic demand and growth rates 

if setSpecies == 1 

    kh(2) = 23.21; %M, Metabolic Load Rat 

    kh(42) = 8.29e-4; %G, Growth Rate Rat 

elseif setSpecies == 2 

    kh(2) = 25.24; %M, Metabolic Load Mouse 

    kh(42) = 16.83e-4; %G, Growth Rate Mouse 

elseif setSpecies == 3     

    kh(2) = 1.432; %M, Metabolic Load Human 

    kh(42) = 12.56e-4; %G, Growth Rate Human 

end 

  

% Scale the apoptosis response 

kh(27) = kh(27)*23.21/kh(2);  

  



 465 

% Alter Hepatocyte parameters (ALD) 

if setDisease == 2 

    kh(8) = kh(8)*.7; % JAK activation rate (V_JAK) 

end 

  

% Table 3: Steady-State parameters 

kh(29) = -kh(3)*kh(2) + kh(5)/(1+kh(6)) + kh(4); %-22.3; % IL6 production 

kh(30) = -kh(5)/(1+kh(6)) + kh(7); %-1.6; % JAK production 

kh(31) = -kh(9)*kh(8)^2/(kh(8)^2+kh(10)*(1+1/kh(15))) + ... 

    kh(16)/(1+kh(17)) + kh(12)/(1+kh(13)) + kh(11); %2.39e4; % STAT3 production 

kh(32) = -kh(12)/(1+kh(13)) + kh(14); %2.4e4; % SOCS production 

kh(33) = -kh(16)/(1+kh(17)) + kh(18); %-8.16; % IE gene production 

  

% Parameters for Production of VEGF 

kh(34) = 2; % Hypoxia Load (HL) 

kh(35) = 15; % HIF production rate 

kh(36) = 0.9; % HIF degradation rate 

kh(37) = 2e4; % VEGF activation rate 

kh(38) = 1e4; % Km VEGF 

kh(39) = 0.4; % VEGF degradation rate 

kh(40) = kh(37)/(1+kh(38)) + kh(36); % Steady state of HIF 

kh(41) = -kh(37)/(1+kh(38)) + kh(39); % Steady state of VEGF 

  

% Set initial hepatocyte states, cell = (Q,P,R) 

% and concentrations, conc = [IE,IL6,JAK,STAT3,SOCS3,HIF,VEGF] 

cellh = [kh(1),0,0]; 

conch = ones(1,7); %mRNA levels all start at a FC value of 1 

end 

  

function dx1 = hepatocyteEquations(t,x,x0,kh) 

%% Hepatocyte Equations 

% Set aliases 

G = x(30); 

Q=x(1); P=x(2); R=x(3); N=Q+G*(P+R); 

IE=x(4); HGF=x(24); ECM=x(26); IL6=x(27); JAK=x(6); STAT=x(7); SOCS=x(8); 

IE0=x0(4); HGF0=x0(24); ECM0=x0(26); IL60=x0(27); JAK0=x0(6); STAT0=x0(7); 

SOCS0=x0(8); 

HIF=x(9); VEGF=x(10); HIF0=x0(9); VEGF0=x0(10); 

k=kh; 

EC = x(29);  

  

sr = 0.5*(1+tanh((k(24)-HGF)/k(25))); % sigma_req 

sa = 0.5*(1+tanh((k(27)-(N/k(2)))/k(28))); % sigma_ap 
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if (IE >= IE0)  

    r1 = k(19)*(IE-IE0)*Q; % Priming of Quiescent cells 

else r1 = 0; end; 

r2 = k(21)*ECM*R; % Replicating cell returning to Quiescence 

r3 = k(23)*sr*P; % Requiescence of Primed cells 

if (HGF >= HGF0) 

r4 = k(20)*(HGF-HGF0)*P; % Primed cells begining Replication     

else r4 = 0; end; 

r5 = k(22)*R; % Doubling of Replicating cells 

ra1 = k(26)*sa*Q; % Apoptosis of Quiescent cells 

ra2 = k(26)*sa*P; % Apoptosis of Primed cells 

ra3 = k(26)*sa*R; % Apoptosis of Replicating cells 

  

r6 = k(3)*k(2)/N; % IL6 production by stimulus 

r7 = k(5)*IL6/(IL6+k(6)); % IL6 production of JAK 

r8 = k(4)*IL6; % IL6 degradation 

r9 = k(7)*JAK; % JAK degradation 

r10 = k(9)*JAK*k(8)^2/(k(8)^2+k(10)*(1+SOCS/k(15))); % STAT3 production by 

JAK 

r11 = k(16)*STAT/(STAT+k(17)); % IE production by STAT3 

r12 = k(12)*STAT/(STAT+k(13)); % SOCS3 production by STAT3 

r13 = k(11)*STAT; % STAT3 degradation 

r14 = k(14)*SOCS; % SOCS3 degradation 

r15 = k(18)*IE; % IE degradation 

% r16 = (N-k(1))/k(34)*k(35)*(1-tanh(3*(x(11)+x(12)+x(13)))); % HIF production 

(Uses KC growth as a surrigate for blood vessel growth) 

r16 = (N-k(1))/k(34)*k(35)*(1-tanh(3*EC)); % HIF production (Uses EC growth as a 

surrigate for blood vessel growth) 

r17 = k(37)*HIF/(HIF+k(38)); % HIF activation of VEGF 

r18 = k(36)*HIF; % HIF degradation 

r19 = k(39)*VEGF; % VEGF degradation 

  

dx1(1) = -r1 + r2 + r3 - ra1; % Q Phase 

dx1(2) = r1 - r4 - r3 - ra2; % P Phase 

dx1(3) = r4 - r2 + r5 - ra3; % R Phase 

dx1(4) = r11 - r15 + k(33); % IE genes 

dx1(5) = r6 - r7 - r8 + k(29); % IL6 

dx1(6) = r7 - r9 + k(30); % JAK 

dx1(7) = r10 - r11 - r12 - r13 + k(31); % STAT3 

dx1(8) = r12 - r14 + k(32); % SOCS3 

dx1(9) = r16 - r17 - r18 + k(40); % HIF1a 

dx1(10) = r17 - r19 + k(41); % VEGF 
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% Set differential equations 

dx1 = dx1'; 

end 

  

function [cellk,conck,kk] = 

kupfferParameters(initialFraction,para,setSpecies,setDisease) 

%% Set Kupffer cell parameters 

kk = zeros(30,1); 

% Table 1: Molecular parameters 

kk(1) = 1-initialFraction; % Fraction of liver mass remaining (N) 

kk(2) = 16.8; % Metabolic load (M) 

kk(3) = 2; % Hypoxic load (HL) 

kk(4) = 16; %8; % TNF production 

kk(5) = 2; % TNF mRNA degrad 

kk(6) = 180; %90; % IL6 production 

kk(7) = 0.9; % IL6 degradation 

kk(8) = 20; %1; % IL10 production 

kk(9) = 0.9; % IL10 degradation 

kk(10) = 30; %3; % TGFb production 

kk(11) = 0; % TGFb degradation 

kk(12) = 15; % PDGF production 

kk(13) = 0.9; % PDGF degradation 

  

% Table 2: Cellular parameters 

kk(14) = 7e-3; % k_Q 

kk(15) = 2.2e-2; % k_A 

kk(16) = 5.4e-2; % k_R 

kk(17) = 2e-2; % k_prol - specifies length of mitotic cycle 

kk(18) = 0.3; % k_req - requiescence rate 

kk(19) = 8; % theta_req (for sigma_req) 

kk(20) = 3; % beta_req (for sigma_req) 

kk(21) = 1e-1; % k_ap - apoptosis rate 

kk(22) = 9e-3; % theta_ap 

kk(23) = 4.5e-3; % beta_ap 

kk(24) = 0.1; % IL10 antagonism to IL6 (This parameter no longer used) 

  

% IL10 inhibition of TNFa 

kk(30) = 3; %1.5; % IL10 inihbition of TNFa 

  

% Increase both pro- and anti-inflammation 

if setDisease == 2 

    kk(4) = kk(4)*2; 
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    kk(6) = kk(6)*1.25; 

    kk(8) = kk(8)*3; 

    kk(10) = kk(10)*3; 

end 

  

% Table 3: Steady-State parameters 

kk(25) = kk(5); % TNF production 

kk(26) = kk(7) + kk(24); % IL6 production 

kk(27) = kk(9) + kk(24); % IL10 production 

kk(28) = kk(11); % TGFb production 

kk(29) = kk(13); % PDGF production 

  

% Set metabolic demand 

if setSpecies == 1 

    kk(2) = 23.21; %M, Metabolic Load Rat 

elseif setSpecies == 2 

    kh(2) = 25.24; %M, Metabolic Load Mouse 

elseif setSpecies == 3     

    kk(2) = 1.432; %M, Metabolic Load Human 

end 

  

% Scale the apoptosis response 

kk(22) = kk(22)*23.21/kk(2);  

  

% Set initial hepatocyte states, cell = (Q,P,R) 

% and concentrations, conc = [TNF, IL6, IL10, TGFb, PDGF] 

cellk = [kk(1),0,0]; 

conck = ones(1,5); % mRNA levels all start at a FC value of 1 

end 

  

function dx2 = kupfferEquations(t,x,x0,kk) 

%% Kupffer Cell Equations 

% Set aliases 

Q=x(11); A=x(12); R=x(13); % Kupffer cell states 

N=x(1)+x(30)*(x(2)+x(3)); % N is based on the total number of hepatocytes 

TNF=x(14); IL6=x(27); IL10=x(16); TGFb=x(28); PDGF=x(18); VEGF=x(10); 

ECM=x(26); 

TNF0=x0(14); IL60=x0(27); IL100=x0(16); TGFb0=x0(28); PDGF0=x0(18); VEGF0 

= x0(10); 

HGF=x(24); 

k=kk; 

EC=x(30); 
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sr = 0.5*(1+tanh((k(19)-(k(2)/N/10 + TNF))/k(20))); % sigma_req 

sa = 0.5*(1+tanh((k(22)-(N/k(2)))/k(23))); % sigma_ap 

  

if (TNF >= TNF0) 

    r1 = k(14)*((TNF-TNF0) + (k(2)/N-k(2)))*Q; % Activation of Quiescent cells 

else r1 = 0; end; 

r2 = k(16)*ECM*R; % Replicating cell returning to Activation 

r3 = k(18)*sr*A; % Requiescence of Activated cells 

if (VEGF >= VEGF0) 

    r4 = k(15)*(VEGF - VEGF0)*A; % Activated cells begining Replication 

else r4 = 0; end; 

r5 = k(17)*R; % Doubling of Replicating cells 

ra1 = k(21)*sa*Q; % Apoptosis of Quiescent cells 

ra2 = k(21)*sa*A; % Apoptosis of Activated cells 

ra3 = k(21)*sa*R; % Apoptosis of Replicating cells 

  

r6 = k(4)*A*((k(30)+IL10)/IL10); % TNF production by Activated cells 

r7 = k(5)*TNF; % TNF degradation 

r8 = k(6)*A; % IL6 production 

r9 = k(7)*IL6; % IL6 degradation 

r10 = k(8)*A; % IL10 production 

r11 = k(9)*IL10; % IL10 degradation 

r12 = k(10)*A; % TGFb production 

r13 = k(11)*TGFb; % TGFb degradation 

r14 = (N-k(1))/k(3)*k(12)*(1-tanh(3*EC)); % PDGF production in response to 

hypoxia (Uses EC as a surragate for blood vessel growth) 

r15 = k(13)*PDGF; % PDGF degradation 

  

dx2(1) = -r1 + r3 - ra1; % Q Phase 

dx2(2) = r1 + r2 - r4 - r3 - ra2; % A Phase 

dx2(3) = r4 - r2 + r5 - ra3; % R Phase 

  

dx2(4) = r6 - r7 + kk(25); % TNF 

dx2(5) = r8 - r9 + kk(26); % IL6 

dx2(6) = r10 - r11 + kk(27); % IL10 

dx2(7) = r12 - r13 + kk(28); % TGFb 

dx2(8) = r14 - r15 + kk(29); % PDGF 

  

% Set differential equations 

dx2 = dx2'; 

end 
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function [cells,concs,ks] = 

stellateParameters(initialFraction,para,setSpecies,setDisease) 

%% Set Stellate cell parameters 

ks = zeros(27,1); 

% Table 1: Molecular parameters 

ks(1) = 1-initialFraction; % Fraction of liver mass remaining (N) 

ks(2) = 16.8; % Metabolic load (M) 

ks(3) = 25; % HGF production 

ks(4) = 0.23; % HGF degrad 

ks(5) = 60e-2; %6e-2; % k_up - HGF uptake/production rate by ECM 

ks(6) = 8; %1.5; % TGFb production 

ks(7) = 0.9; % TGFb degradation 

ks(8) = 100; %50; % ECM production 

ks(9) = 7; % ECM degrad by MMPs 

ks(10) = 3; % ECM degrad 

  

% Table 2: Cellular parameters 

ks(11) = 7e-2; % 7e-3; % k_QP (Quiescent to Pro-proliferative) 

ks(12) = 3e-2; %7e-3; % k_QA (Quiescent to Anti-proliferative) 

ks(13) = 4.4e-3; % k_AP 

ks(14) = 4.4e-3; % k_AA 

ks(15) = 5.4e-2; % k_RP 

ks(16) = 5.4e-2; % k_RA 

ks(17) = 0.85e-2; %2e-2; % k_prol - specifies length of mitotic cycle 

ks(18) = 0.2; %0.1; % k_req - requiescence rate 

ks(19) = 8; % theta_req (for sigma_req) 

ks(20) = 3; % beta_req (for sigma_req) 

ks(21) = 1e-1; %1e-2; % k_ap - apoptosis rate 

ks(22) = 9e-3; % theta_ap 

ks(23) = 4.5e-3; % beta_ap 

ks(24) = 5; % TGFb inhibition of HGF production 

  

% Matrix preconditioning and GF deficiency (with increased macrophage activation) 

if setDisease == 2 

    ks(11) = ks(11)*.65; 

%     ks(12) = ks(12)*.35; 

    ks(12) = ks(12)*.25; 

    ks(5) = ks(5)*.7; 

    ks(8) = ks(8)*4; 

    ks(9) = ks(9)*0.1; 

end 

  

% Table 3: Steady-State parameters 
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ks(25) = ks(4) + ks(5); %-22.3; % HGF production 

ks(26) = ks(7); % TGFb production 

ks(27) = ks(9) + ks(10); % ECM production 

  

% Set metabolic demand 

if setSpecies == 1 

    ks(2) = 23.21; %M, Metabolic Load Rat 

elseif setSpecies == 2 

    kh(2) = 25.24; %M, Metabolic Load Mouse 

elseif setSpecies == 3     

    ks(2) = 1.432; %M, Metabolic Load Human 

end 

  

% Scale the apoptosis response 

ks(22) = ks(22)*23.21/ks(2);  

  

% Set initial stellate cell states, cell = (Q,Pro-R,Pro-R-Rep,Anti-R,Anti-R-Rep) 

% and concentrations, conc = [HGF,TGFb,ECM] 

cells = [ks(1),0,0,0,0]; 

concs = ones(1,3); %mRNA levels all start at a FC value of 1 

end 

  

function dx3 = stellateEquations(t,x,x0,ks) 

%% Stellate Cell Equations 

% Set aliases 

Q=x(19); AP=x(20); RP=x(21); AA=x(22); RA=x(23); % Stellate cell states 

N=x(1)+x(30)*(x(2)+x(3)); % N is based on the total number of hepatocytes 

HGF=x(24); TGFb=x(28); ECM=x(26); PDGF=x(18); TNF=x(14); 

HGF0=x0(24); TGFb0=x0(28); ECM0=x0(26); PDGF0=x0(18); TNF0=x0(14); 

IL6=x(27); IL60=x0(27); 

k=ks; 

  

sr = 0.5*(1+tanh((k(19)-PDGF)/k(20))); % sigma_req 

sa = 0.5*(1+tanh((k(22)-(N/k(2)))/k(23))); % sigma_ap 

  

if (IL6 >= IL60) 

r1 = k(11)*(IL6-IL60)*Q; % Pro-proliferative (PP) Activation of Quiescent cells     

else r1 = 0; end; 

r2 = k(15)*ECM*RP; % Replicating cell returning to PP Activation 

r3 = k(18)*sr*AP; % Requiescence of PP Activated cells 

if (PDGF >= PDGF0) 

    r4 = k(13)*(PDGF-PDGF0)*AP; % PP Activated cells begining Replication 

%%%%%%%%%%% This should be k(13) %%%%%%%%%%% 
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else r4 = 0; end; 

r5 = k(17)*RP; % Doubling of PP Replicating cells 

ra1 = k(21)*sa*Q; % Apoptosis of Quiescent cells 

ra2 = k(21)*sa*AP; % Apoptosis of PP Activated cells 

ra3 = k(21)*sa*RP; % Apoptosis of PP Replicating cells 

  

if (TGFb >= TGFb0) 

    r6 = k(12)*(TGFb-TGFb0)*Q; % Anti-proliferative (AP) Activation of Quiescent 

cells 

else r6 = 0; end; 

r7 = k(16)*ECM*RA; % Replicating cell returning to AP Activation  

r8 = k(18)*sr*AA; % Requiescence of AP Activated cells 

if (PDGF >= PDGF0) 

    r9 = k(14)*(PDGF-PDGF0)*AA; % AP Activated cells begining Replication 

%%%%%%%%%%% This should be k(14) %%%%%%%%%%% 

else r9 = 0; end; 

r10 = k(17)*RA; % Doubling of AP Replicating cells 

ra4 = k(21)*sa*AA; % Apoptosis of AP Activated cells 

ra5 = k(21)*sa*RP; % Apoptosis of AP Replicating cells 

  

r11 = k(3)*AP*((k(24)+TGFb)/TGFb); % HGF production by Activated cells 

r12 = k(4)*HGF; % HGF degradation 

r13 = k(5)*HGF*ECM; % HGF uptake by ECM 

r14 = k(6)*AA; % TGFb production by Activated cells 

r15 = k(7)*TGFb; % TGFb degradation 

r16 = k(8)*AA; % ECM production by Activated cells 

r17 = k(9)*ECM*TNF; % ECM degradation by TNF actived MMPs 

r18 = k(10)*ECM; % ECM degradation rate 

  

dx3(1) = -r1 + r3 - r6 + r8 - ra1; % Q Phase 

dx3(2) = r1 + r2 - r4 - r3 - ra2; % PA Phase 

dx3(3) = r4 - r2 + r5 - ra3; % RP Phase 

dx3(4) = r6 + r7 - r9 - r8 - ra4; % AA Phase 

dx3(5) = r9 - r7 + r10 - ra5; % RA Phase 

  

dx3(6) = r11 - r12 - r13 + k(25); % HGF 

dx3(7) = r14 - r15 + k(26); % TGFb 

dx3(8) = r16 - r17 - r18 + k(27); % ECM 

  

% Set differential equations 

dx3 = dx3'; 

end 
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function [celle,ke] = endothelialParameters(initialFraction,para) 

%% Set Endothelial Cell Parameters 

ke = zeros(2,1); 

ke(1) = 1 - initialFraction; % Fraction of liver mass remaining (N) 

ke(2) = 2e-2; % k_prol - specifies length of mitotic cycle 

celle = ke(1); % Fraction of initial endothelial cells 

end 

  

function dxe = endothelialEquations(t,x,x0,ke) 

%% Hepatocyte Equations 

% Set aliases 

VEGF=x(10); VEGF0=x0(10); 

  

if (VEGF >= VEGF0)  

    r1 = ke(2)*(VEGF - VEGF0); % Endothelial Cell proliferation 

else r1 = 0; end; 

  

dxe = r1; % Endothelial cell proliferation 

end 

  

function dxg = growthEquations(t,x,x0,kh) 

G = x(30); 

Q=x(1); P=x(2); R=x(3); N=Q+G*(P+R); 

  

dxg(1) = (kh(2)/N)*kh(42) - kh(2)*kh(42); 

end 
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function [t,cellh,k] = Hepat_HR_full(feedBackInput,insultInput,startBal) 

% Author: Daniel Cook 

% Date: 01/01/2016 

% Copyrighted under Creative Commons Share Alike 

  

% To run, use: [t,cellh,k] = Hepat_HR_full([1,1,1,0],1,[.05 .95]); 

% k = parameter values, R1-R4 = Robustness per disturbance, OR = overall 

robustness 

  

% Set plotting and printing (1=show results, 2=suppress results) 

shouldPlot = 1; colorChoice = 'k'; 

shouldPrint = 2; 

  

% Feedback mechanisms 

% F(1) = implicit competition (Model A) 

% F(2) = product inhibition of proliferation (Model B) 

% F(3) = product inhibition of transitions (Model C) 

% F(4) = alternate populations (i.e. stem cells) (Model D) 

  

% Insults 

% 0 = no insult 

% 1 = increased apoptosis, 2 = decreased apoptosis 

% 3 = increased proliferation, 4 = decreased proliferation 

% 5 = periodic apoptosis increase 

% 6 = periodic apoptosis increase w/ same width 

% 7 = Periodic apoptosis increase w/ differing magnitudes 

% 8 = Periodic apoptosis decrease 

% 9 = Sinusoidal apoptosis rate 

% 10= Unit step change in apoptosis rate 

  

%% Section 1: Set parameter values given which feedbacks are present 

% Declare global variables & input values 

global F y0 insult insultFrequency 

F = feedBackInput; 

insult = insultInput; 

  

% Set insult frequency 

% Natural frequencies = 1.4224 & 0.3086 

insultFrequency = 2.0; % 2 = 1/2 day on, 1/2 day off 

D.3 Liver Homeostatic Renewal Model 
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% Use blue for high frequency (>1), red for low frequency (<1) 

  

  

% Set time (in days) 

tStart = 0; 

tEnd = 365*1; % Number of years to run simulation 

  

% Table 1: Initial hepatocyte states, cell = (A2+,A2-) 

init_A2plus = .05; % Initial level 

cellh = [init_A2plus,1-init_A2plus]; 

x0 = cellh; 

% Set steady-state conditions for changing starting points 

y0 = x0; 

  

% Change starting concentrations if startBal parameter is used 

x0(1) = startBal(1); 

x0(2) = startBal(2);  

  

% Define model parameters 

k = zeros(13,1); 

  

% Table 2: Physiological parameters 

% Rates are in doublings/day 

k(1) = (1/14);  % k_prol^A2+ 

k(2) = .05*1.5; % K_cap^A2+ (carrying capacity of A2+ hepatocytes) 

k(3) = .95*1.5; % K_cap^A2- (carrying capacity of A2- hepatocytes) 

  

% Table 3: Literature and steady-state constrained parameters 

k(4) = .5*k(1); % k_prol^A2- (Proliferation rate is half of A2+) (Lit.) 

  

% Additional parameters for specific feedbacks 

k(8) = 1;       % k_P-env: Tissue microenvironment effect Axin2+ proliferation 

k(9) = 0.95;    % k_T-env: Tissue microenvironment effect on cell transition 

k(10) = 0.1;    % k_A 

k(11) = 100;    % C1 

k(12) = 8;      % C2 (This starts renewing H+ cells at ~.025) 

k(13) = 8;      % kRenew 

  

% Set feedback conditions 

if F(1) == 0 

    feedBack1a = 1; feedBack1b = 1; 

elseif F(1) == 1 

    feedBack1a = (1-cellh(1)/k(2)); 
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    feedBack1b = (1-cellh(2)/k(3)); 

end 

if F(2) == 0 

    feedBack2 = 1; 

elseif F(2) == 1 

    feedBack2 = k(8)/(cellh(1)+k(10)*cellh(2)); 

end 

if F(3) == 0 

    feedBack3 = 1; 

elseif F(3) == 1 

    feedBack3 = (k(9))/cellh(2); 

%     hillCoeff = 1; 

%     feedBack3 = 2*k(9)^hillCoeff/(k(9)^hillCoeff+cellh(2)^hillCoeff); % Alternate 

feedback 

end 

if F(4) == 0 

    feedBack4 = 0; 

elseif F(4) == 1 

    feedBack4 = k(13)*(1/(1+exp(k(11)*cellh(1)+k(12)))); 

end 

  

% Set steady-state constrained parameters 

% Set effective proliferation rate equal to observed proliferation rate 

if F(1) == 1 && F(2) == 0 

    solverfun1a = @(x)abs(x*feedBack1a*feedBack2 - k(1)); 

    [k(1),fval] = fminsearch(solverfun1a,1); 

    solverfun1b = @(x)abs(x*feedBack1b - k(4)); 

    [k(4),fval] = fminsearch(solverfun1b,1); 

end 

if F(2) == 1 && F(1) == 0 

    solverfun1c = @(x)abs(k(1)*feedBack1a*x/(cellh(1)+k(10)*cellh(2)) - k(1)); 

    [k(8),fval] = fminsearch(solverfun1c,1); 

    feedBack2 = k(8)/(cellh(1)+k(10)*cellh(2)); 

    solverfun1b = @(x)abs(x*feedBack1b - k(4)); 

    [k(4),fval] = fminsearch(solverfun1b,1); 

end 

if F(2) == 1 && F(1) == 1 

    solverfun1a = @(x)abs(x*feedBack1a - k(1)); 

    [k(1),fval] = fminsearch(solverfun1a,1); 

    solverfun1c = @(x)abs(k(1)*feedBack1a*x/(cellh(1)+k(10)*cellh(2)) - k(1)); 

    [k(8),fval] = fminsearch(solverfun1c,1); 

    feedBack2 = k(8)/(cellh(1)+k(10)*cellh(2)); 

    solverfun1b = @(x)abs(x*feedBack1b - k(4)); 
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    [k(4),fval] = fminsearch(solverfun1b,1); 

end 

% Solve for kapPlus (using the sum of equations 1 and 2) 

solverfun = @(x)abs(k(1)*cellh(1)*feedBack1a*feedBack2 + feedBack4 - cellh(1)*x 

+ k(4)*cellh(2)*feedBack1b - cellh(2)*x); 

[k(5),fval] = fminsearch(solverfun,1); 

k(6) = k(5); % set kapMinus = kapPlus 

% Solve for kT (using equation 1) 

solverfun2 = @(x)abs(k(1)*cellh(1)*feedBack1a*feedBack2 + feedBack4 - 

cellh(1)*k(5) - cellh(1)*x*feedBack3); 

[k(7),fval2] = fminsearch(solverfun2,1); 

  

  

%% Section 2: Run model 

% Call ODE solver 

timeStep = 0.1; % Days 

[t,x] = ode15s(@(t,x)odefun(t,x,k,x0), [tStart:timeStep:tEnd], x0); 

cellh = x(:,1:2); 

  

%% Section 3: Plot results 

% Plot results 

if shouldPlot == 1 

    % Hepatocyte Populations 

    figure(1); hold on; plot(t,cellh(:,1),'-','color',colorChoice,'linewidth',2); 

    plot(t,cellh(:,2),'--','color',colorChoice,'linewidth',2); 

    set(gca,'fontsize',18,'linewidth',2); box off 

    xlabel('Time (Days)'); ylabel('Hepatocyte Populations') 

    legend('Axin2+','Axin2-') 

  

    % Hepatocyte Population Phase Plane 

    figure(2); hold on; plot(cellh(:,1),cellh(:,2),'-','color',colorChoice,'linewidth',2); 

    set(gca,'fontsize',18,'linewidth',2); box off 

    ylabel('Axin2- Hepatocytes') 

    xlabel('Axin2+ Hepatocytes') 

         

    % If insult is periodic, plot insult period 

    if insult == 5 || insult == 8 

        yTime = 0:.1:tEnd; 

        yInsult = zeros(1,length(yTime)); 

        yInsult(-sin(insultFrequency*3.14*yTime) > 0) = 1; 

        figure(3); hold on; plot(yTime,yInsult,'-','color',colorChoice,'linewidth',3) 

        set(gca,'fontsize',18,'linewidth',2); box off 

        ylabel('Relative apoptosis Rate'); xlabel('Time (Days)') 
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        xlim([0 30]) 

    end 

     

    % If insult is periodic, plot insult period 

    if insult == 6 

        yTime = 0:.1:tEnd; 

        yInsult = zeros(1,length(yTime)); 

        yInsult(-sin(insultFrequency*3.14*yTime) > sin(pi/4*(2-insultFrequency))) = 1; 

        figure(3); hold on; plot(yTime,yInsult,'-','color',colorChoice,'linewidth',3) 

        set(gca,'fontsize',18,'linewidth',2); box off 

        ylabel('Relative apoptosis Rate'); xlabel('Time (Days)') 

        xlim([0 30]) 

    end 

     

    % If insult is periodic, plot insult period 

    if insult == 7 

        yTime = 0:.1:tEnd; 

        yInsult = zeros(1,length(yTime)); 

        yInsult(-sin(insultFrequency*3.14*yTime) > 0) = 2; 

        figure(3); hold on; plot(yTime,yInsult,'-','color',colorChoice,'linewidth',3) 

        set(gca,'fontsize',18,'linewidth',2); box off 

        ylabel('Relative apoptosis Rate'); xlabel('Time (Days)') 

        xlim([0 30]) 

    end 

     

    % If insult is sinusoidal, plot insult period 

    if insult == 9 || insult == 10 

        yTime = 0:.01:tEnd; 

        yInsult = sin(insultFrequency*3.14*yTime)*k(6) + k(6); 

        figure(3); hold on; plot(yTime,yInsult,'-','color',colorChoice,'linewidth',3) 

        set(gca,'fontsize',18,'linewidth',2); box off 

        ylabel('Apoptosis Rate'); xlabel('Time (Days)') 

        xlim([0 30]) 

    end 

end 

  

%% Section 4: Print results 

% Calculate recovery time 

% y0 is the steady-state value for cellh 

recoveryTime = 1; 

temp = length(find(cellh((40/timeStep+1):end,1)./y0(1)>=.99 & 

cellh((40/timeStep+1):end,1)./y0(1)<= 1.1,1)); 

if temp > 0 
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    temp = length(find(cellh((40/timeStep+1):end,2)./y0(2)>=.99 & 

cellh((40/timeStep+1):end,2)./y0(2)<= 1.1,1)); 

    if temp > 0  

        tRecovery(1) = t((40/timeStep+1)+find(cellh((40/timeStep+1):end,1)./y0(1)>=.99 

& cellh((40/timeStep+1):end,1)./y0(1)<= 1.1,1))-40; 

        tRecovery(2) = t((40/timeStep+1)+find(cellh((40/timeStep+1):end,2)./y0(2)>=.99 

& cellh((40/timeStep+1):end,2)./y0(2)<= 1.1,1))-40; 

        recoveryTime = max(tRecovery); 

    end 

end 

  

% Calculate overall deviation 

deviation = zeros(size(cellh,1),size(cellh,2)); 

for i=1:size(cellh,1) 

    deviation(i,:) = abs(cellh(i,:) - y0)*timeStep; 

end 

sumDeviation = sum(deviation); 

  

% Calculate robustness 

if insult == 0 

    R = 'No insult'; 

elseif insult ~= 0 

    R = sumDeviation(1)*sumDeviation(2)*recoveryTime; 

end 

  

% Print results 

if shouldPrint == 1 

    fprintf('\n Robustness metric score follows: \n'); 

    R 

end 

end 

  

function dxdt = odefun(t,x,k,x0) 

% Set global parameters 

global F y0 insult insultFrequency 

  

% Set aliases 

A2Plus = x(1); A2Minus = x(2); 

A2PlusIC = y0(1); A2MinusIC = y0(2); 

kprolPlus = k(1); kCapPlus = k(2); kapPlus = k(5); 

kCapMinus = k(3); kprolMinus = k(4); kapMinus = k(6);  

kT = k(7); 

kPenv = k(8); kTenv = k(9); kA = k(10); 
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kRenew = k(13); C1 = k(11); C2 = k(12); 

  

% Set insults 

% Insult 1: Increased apoptosis rate (50% for 30 days) 

if insult == 1 

    if t >= 10 && t <= 40 

        kapMinus = 1.5*k(6); 

        kapPlus = 1.5*k(5); 

    end 

end 

  

% Insult 2: Decreased apoptosis rate (50% for 30 days) 

if insult == 2 

    if t >= 10 && t <= 40 

        kapMinus = 0.5*k(6); 

        kapPlus = 0.5*k(5); 

    end 

end 

  

% Insult 3: Increased proliferation rate (50% for 30 days) 

if insult == 3 

    if t >= 10 && t <= 40 

        kprolMinus = 1.5*k(4); 

        kprolPlus = 1.5*k(1); 

    end 

end 

  

% Insult 4: Decreased proliferation rate (50% for 30 days) 

if insult == 4 

    if t >= 10 && t <= 40 

        kprolMinus = 0.5*k(4); 

        kprolPlus = 0.5*k(1); 

    end 

end 

  

% Insult 5: Periodic apoptosis increase 

if insult == 5 

    if -sin(insultFrequency*3.14*t) > 0 

        kapMinus = 1.5*k(6); 

        kapPlus = 1.5*k(5); 

    end 

end 
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% Insult 6: Periodic apoptosis increase w/ same width 

if insult == 6 

    if -sin(insultFrequency*3.14*t) > sin(pi/4*(2-insultFrequency)) 

        kapMinus = 1.5*k(6); 

        kapPlus = 1.5*k(5); 

    end 

end 

  

% Insult 7: Periodic apoptosis increase w/ differing magnitudes 

if insult == 7 

    if -sin(insultFrequency*3.14*t) > 0 

        kapMinus = 0.25*(0.5)*k(6)+k(6); 

        kapPlus = 0.25*(0.5)*k(5)+k(5); 

    end 

end 

  

% Insult 8: Periodic apoptosis decrease 

if insult == 5 

    if -sin(insultFrequency*3.14*t) > 0 

        kapMinus = 0.5*k(6); 

        kapPlus = 0.5*k(5); 

    end 

end 

  

% Insult 9: Sinusoidal apoptosis rate 

if insult == 9 

    kapMinus = sin(insultFrequency*3.14*t)*k(6) + k(6); 

    kapPlus = sin(insultFrequency*3.14*t)*k(5) + k(6); 

end 

  

% Insult 10: Unit step change in apoptosis rate 

if insult == 10 

    if t >= 10 

        kapMinus = 0.5*k(6)+k(6); 

        kapPlus = 0.5*k(5)+k(5); 

    end 

end 

  

% Feedback mechanisms 

% F(1) = implicit competition (Model A) 

% F(2) = product inhibition of proliferation (Model B) 

% F(3) = product inhibition of transitions (Model C) 

% F(4) = alternate populations (i.e. stem cells) (Model D) 
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% Set feedback conditions 

if F(1) == 0 

    feedBack1a = 1; feedBack1b = 1; 

elseif F(1) == 1 

    feedBack1a = (1-A2Plus/kCapPlus); 

    feedBack1b = (1-A2Minus/kCapMinus); 

end 

if F(2) == 0 

    feedBack2 = 1; 

elseif F(2) == 1 

    feedBack2 = kPenv/(A2Plus + kA*A2Minus); 

end 

if F(3) == 0 

    feedBack3 = 1; 

elseif F(3) == 1 

    feedBack3 = kTenv/A2Minus; 

%     hillCoeff = 1; 

%     feedBack3 = 2*kTenv^hillCoeff/(kTenv^hillCoeff+A2Minus^hillCoeff); % 

Alternate feedback 

end 

if F(4) == 0 

    feedBack4 = 0; 

elseif F(4) == 1 

    feedBack4 = kRenew*(1/(1+exp(C1*A2Plus+C2))); 

end 

  

% Equations 

r1 = A2Plus*kprolPlus*feedBack1a*feedBack2 + feedBack4; % A2Minus growth 

r2 = A2Plus*kT*feedBack3; % Transition from A2Plus to A2Minus 

r3 = A2Plus*kapPlus; % A2Plus Hepatocyte apoptosis 

r4 = A2Minus*kprolMinus*feedBack1b; % A2Minus growth 

r5 = A2Minus*kapMinus; % A2Minus Hepatocyte apoptosis 

  

% Differential equations 

dxdt(1) = r1 - r2 - r3; % A2+ Hepatocytes 

dxdt(2) = r4 + r2 - r5; % A2- Hepatocytes 

  

dxdt = dxdt'; 

end 
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R CODE USED TO EVALUATE SINGLE HEPATIC STELLATE CELL DATA 

##########  Import Data  ########## 

setwd("C:/Users/…") 

 

# Import data from SH1-HSC-3-2 

hsc.cells <- read.delim("HSC-SingleCell-

SampleData.txt",stringsAsFactors=F,header=T) 

hsc.cells.data <- hsc.cells[,9:dim(hsc.cells)[2]] 

sample.info <- hsc.cells[,1:8] 

 

##########  Perform Quality Control  ########## 

# Identify high fidelity genes 

high.fid.genes <- 

names(which(apply(is.na(hsc.cells.data),2,sum)/dim(hsc.cells.data)[1] <= 0.55)) 

semi.fid.genes <- 

names(which(apply(is.na(hsc.cells.data),2,sum)/dim(hsc.cells.data)[1] <= 0.80)) 

 

# Identify high fidelity samples 

sample.fid.cutoff <- 0.75 

hsc.cells.high.fid.samples <- 

hsc.cells.data[which(apply(is.na(hsc.cells.data[,semi.fid.genes]),1,sum)/dim(hsc.cells.

data[,semi.fid.genes])[2] <= sample.fid.cutoff),] 

 

##########  Normalize Data  ########## 

# Median center each sample by high fidelity genes 

hsc.cells.neg.dct <- -hsc.cells.data + 

apply(hsc.cells.data[,high.fid.genes],1,median,na.rm=T) 

 

# Median center each gene within a Chip 

hsc.cells.neg.ddct <- t(t(hsc.cells.neg.dct) - 

apply(hsc.cells.neg.dct,2,median,na.rm=T)) 

 

# Combine high fidelity data into a single data frame (& combine sample info) 

hsc.cells.neg.ddct <- 

hsc.cells.neg.ddct[as.numeric(rownames(hsc.cells.high.fid.samples)),semi.fid.genes] 

rownames(hsc.cells.neg.ddct) <- 1:dim(hsc.cells.neg.ddct)[1] 

Appendix E 
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sample.info <- sample.info[as.numeric(rownames(hsc.cells.high.fid.samples)),] 

 

##########  Semi-Manually Classify States  ########## 

# Activate libraries 

library(cluster);library(rgl);library(plotrix) 

library('MASS');library(vegan);library(pcaMethods) 

 

# Manual state classification 

cells.gf.high <- 

which(apply(hsc.cells.neg.ddct[,c("HGFa.b","Vegfa","IGF1")],1,max,na.rm=T) >= -

0.01) 

cells.col.high <- 

which(apply(hsc.cells.neg.ddct[,c("Col3a1","Col14a1","Ecm1")],1,max,na.rm=T) >= -

0.01) 

 

cells.act.mixed <- intersect(cells.gf.high,cells.col.high) 

cells.act.pro <- cells.gf.high[!cells.gf.high %in% cells.act.mixed] 

cells.act.anti <- cells.col.high[!cells.col.high %in% cells.act.mixed] 

cells.other <- as.numeric(intersect(rownames(hsc.cells.neg.ddct)[! 

rownames(hsc.cells.neg.ddct) %in% cells.gf.high],rownames(hsc.cells.neg.ddct)[! 

rownames(hsc.cells.neg.ddct) %in% cells.col.high])) 

 

# Cluster additional samples based on similarity to mixed activation state 

r <- 

cor(apply(hsc.cells.neg.ddct[cells.act.mixed,],2,median,na.rm=T),t(hsc.cells.neg.ddct[

cells.other,]),use="pairwise",method="pearson") 

sigma <- 1/sqrt(length(r)-3) 

r.z <- .5*log((1+r)/(1-r)) 

cells.act.mixed.corr <- which(pnorm(r.z,mean=0,sd=sigma) >= 0.975) 

 

# Cluster additional samples based on similarity to pro-regen activation state 

r <- 

cor(apply(hsc.cells.neg.ddct[cells.act.pro,],2,median,na.rm=T),t(hsc.cells.neg.ddct[cell

s.other,]),use="pairwise",method="pearson") 

sigma <- 1/sqrt(length(r)-3) 

r.z <- .5*log((1+r)/(1-r)) 

cells.act.pro.corr <- which(pnorm(r.z,mean=0,sd=sigma) >= 0.975) 

 

# Cluster additional samples based on similarity to anti-regen activation state 

r <- 

cor(apply(hsc.cells.neg.ddct[cells.act.anti,],2,median,na.rm=T),t(hsc.cells.neg.ddct[cel

ls.other,]),use="pairwise",method="pearson") 
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sigma <- 1/sqrt(length(r)-3) 

r.z <- .5*log((1+r)/(1-r)) 

cells.act.anti.corr <- which(pnorm(r.z,mean=0,sd=sigma) >= 0.975) 

 

# Generate clusters [1=quiescent,2=pro,3=anti,4=mixed] 

cluster.vector <- matrix(0,dim(hsc.cells.neg.ddct)[1],1) 

cluster.vector[sort(c(cells.act.pro,cells.other[cells.act.pro.corr])),1]<- 2 

cluster.vector[sort(c(cells.act.anti,cells.other[cells.act.anti.corr])),1]<- 3 

cluster.vector[sort(c(cells.act.mixed,cells.other[cells.act.mixed.corr])),1]<- 4 

cluster.vector[cells.other[!c(1:length(cells.other)) %in% 

c(cells.act.anti.corr,cells.act.pro.corr,cells.act.mixed.corr)]] <- 1 

 

# Identify numbers of samples in each cluster 

cluster.table <- matrix(0,4,4) 

rownames(cluster.table) <- c("Quiescent","Pro-R","Anti-R","Mixed") 

colnames(cluster.table) <- c("Control 0h","Control 24h","Ethanol 0h","Ethanol 24h") 

cluster.table[c(2,3,4),1] <- 

summary(as.factor(cluster.vector[intersect(which(sample.info[,'Treatment'] == 

'Control'),which(sample.info[,'Time'] == '0h'))])) 

cluster.table[,2] <- 

summary(as.factor(cluster.vector[intersect(which(sample.info[,'Treatment'] == 

'Control'),which(sample.info[,'Time'] == '24h'))])) 

cluster.table[c(2,3,4),3] <- 

summary(as.factor(cluster.vector[intersect(which(sample.info[,'Treatment'] == 

'Ethanol'),which(sample.info[,'Time'] == '0h'))])) 

cluster.table[,4] <- 

summary(as.factor(cluster.vector[intersect(which(sample.info[,'Treatment'] == 

'Ethanol'),which(sample.info[,'Time'] == '24h'))])) 

 

#write.table(cbind(sample.info,cluster.vector,hsc.cells.neg.ddct), file="SH1-HSC-3-

singleCell-data-manualSorted.txt", row.names=F, sep="\t") 

 

# Impute missing data using (min - 1) for each gene 

hsc.cells.neg.ddct.min <- hsc.cells.neg.ddct 

gene.mins <- apply(hsc.cells.neg.ddct.min,2,min,na.rm=T) - 1 

for (i in 1:dim(hsc.cells.neg.ddct.min)[1]){ 

  hsc.cells.neg.ddct.min[i,is.na(hsc.cells.neg.ddct.min[i,])] <- 

gene.mins[is.na(hsc.cells.neg.ddct.min[i,])] 

} 

 

# Plot Cells as Growth Factors vs. Fibrous collagens (with mins) 
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x11();plot(apply(hsc.cells.neg.ddct.min[,c("HGFa.b","Vegfa","IGF1")],1,max,na.rm=

T),apply(hsc.cells.neg.ddct.min[,c("Col3a1","Col14a1","Ecm1")],1,max,na.rm=T),pch

=19,cex=1.5,col='black',xlab="",ylab="") 

lines(c(-.01,-.01),c(-30,30),col='black');lines(c(-30,30),c(-.01,-.01),col='black') 

 

# LDA to identify cluster distributions 

fit <- lda(x=as.matrix(hsc.cells.neg.ddct.min),grouping=cluster.vector,CV=F) 

 

# Plot LDA results 

color.scale <- 

c('blue','darkolivegreen','red','orange','lightskyblue','gray','black','magenta','brown') 

x11();plot(hsc.cells.neg.ddct.min %*% fit$scaling, pch=19, 

col=color.scale[cluster.vector],cex=1.5) # Plot results on LD1 and LD2 

points(fit$means %*% 

fit$scaling,type='p',pch=10,col=color.scale[as.numeric(levels(as.factor(cluster.vector))

)],cex=2.5,lwd=2) 

spheres3d(hsc.cells.neg.ddct.min %*% fit$scaling, type='s',pch=19, 

col=color.scale[cluster.vector],radius=0.15) # Plot results on LD1, LD2, and LD3 

axes3d() 

 

# Plot Linear Discriminants 

x11();plot(fit$scaling,type="p",pch=19,cex=1.5) 

text(fit$scaling[,1:2],rownames(fit$scaling),pos=4,offset=0.5)            

 

 

# Represent clusters as a minimum spanning tree 

pc.hsc.all.clusters.span <- spantree(daisy(hsc.cells.neg.ddct.min %*% 

fit$scaling,metric = 'euclidean'),toolong=0) 

x11();plot(pc.hsc.all.clusters.span,type='p',pch=19,col=color.scale[as.numeric(as.facto

r(cluster.vector))],cex=1.5,lwd=2) 

 

# Find BIC score & Sihouette score for random data cluster 

set.seed(10) 

silhouette.score.randomized <- matrix(0,1,1000) 

for (k in 1:1000){ 

  #     Reshuffle data and rerun PCA for shuffled data 

  data.randomized <- 0*hsc.cells.neg.ddct.min 

  for (j in 1:dim(hsc.cells.neg.ddct.min)[1]){ 

    data.randomized[j,] <- 

hsc.cells.neg.ddct.min[j,order(floor(runif(dim(hsc.cells.neg.ddct.min)[2])*10))] 

  } 

  for (j in 1:dim(hsc.cells.neg.ddct.min)[2]){ 



 487 

    data.randomized[,j] <- 

data.randomized[order(floor(runif(dim(hsc.cells.neg.ddct.min)[1])*10)),j] 

  } 

  fit.rand <- lda(x=as.matrix(data.randomized),grouping=cluster.vector,CV=F) 

  silhouette.score.randomized[1,k] <- 

mean(silhouette(cluster.vector,daisy(data.randomized %*% fit.rand$scaling,metric = 

'euclidean'),full=T)[,'sil_width']) 

} 

 

silhouette.score <- mean(silhouette(cluster.vector,daisy(hsc.cells.neg.ddct.min %*% 

fit$scaling,metric = 'euclidean'),full=T)[,'sil_width']) 

 

x11();plot(density(silhouette.score.randomized),type='l',col='black',lwd=1.5,xlim=c(0,

0.7),ylim=c(.7,20))            

lines(c(silhouette.score,silhouette.score),c(0,5),col='black',lwd=1.5) 

points(silhouette.score,5,pch=19,col='black',cex=1.5)            

 

##########  Classify Effect of Ethanol on Transcriptional State-Space  ########## 

# Mesh energy wells for last figure 

library(plot3D) 

control.0h.cells <- intersect(which(sample.info[,'Treatment'] == 

'Control'),which(sample.info[,'Time'] == '0h')) 

control.24h.cells <- intersect(which(sample.info[,'Treatment'] == 

'Control'),which(sample.info[,'Time'] == '24h')) 

ethanol.0h.cells <- intersect(which(sample.info[,'Treatment'] == 

'Ethanol'),which(sample.info[,'Time'] == '0h')) 

ethanol.24h.cells <- intersect(which(sample.info[,'Treatment'] == 

'Ethanol'),which(sample.info[,'Time'] == '24h')) 

 

# Plot Contours and cells from each state 

color.scale <- 

c('blue','darkolivegreen','red','orange','lightskyblue','gray','black','magenta','brown') 

all.density <- kde2d((hsc.cells.neg.ddct.min %*% 

fit$scaling)[,1],(hsc.cells.neg.ddct.min %*% fit$scaling)[,2]) 

x11();contour(all.density$x,all.density$y,all.density$z,drawlabels=F,col='gray') 

points(hsc.cells.neg.ddct.min[control.0h.cells,] %*% fit$scaling, pch=19, 

col=color.scale[cluster.vector[control.0h.cells]],cex=2.5) 

points(hsc.cells.neg.ddct.min[ethanol.0h.cells,] %*% fit$scaling, pch=19, 

col=color.scale[cluster.vector[ethanol.0h.cells]],cex=2.5) 

points(hsc.cells.neg.ddct.min[control.24h.cells,] %*% fit$scaling, pch=19, 

col=color.scale[cluster.vector[control.24h.cells]],cex=2.5) 

points(hsc.cells.neg.ddct.min[ethanol.24h.cells,] %*% fit$scaling, pch=19, 

col=color.scale[cluster.vector[ethanol.24h.cells]],cex=2.5) 
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##########  Plot activation state densities in radians  ########## 

cells.ld <- hsc.cells.neg.ddct.min %*% fit$scaling 

cells.ld.1.cent <- cells.ld[,1] - apply(cells.ld,2,mean)[1] 

cells.ld.2.cent <- cells.ld[,2] - apply(cells.ld,2,mean)[2] 

 

quad.1 <- intersect(which(cells.ld.1.cent >= 0),which(cells.ld.2.cent >= 0)) 

cells.angle.1 <- atan(abs(cells.ld.1.cent[quad.1]/cells.ld.2.cent[quad.1])) 

quad.2 <- intersect(which(cells.ld.1.cent >= 0),which(cells.ld.2.cent <= 0)) 

cells.angle.2 <- pi/2+atan(abs(cells.ld.1.cent[quad.2]/cells.ld.2.cent[quad.2])) 

quad.3 <- intersect(which(cells.ld.1.cent <= 0),which(cells.ld.2.cent <= 0)) 

cells.angle.3 <- pi+atan(abs(cells.ld.1.cent[quad.3]/cells.ld.2.cent[quad.3])) 

quad.4 <- intersect(which(cells.ld.1.cent <= 0),which(cells.ld.2.cent >= 0)) 

cells.angle.4 <- 3*pi/2+atan(abs(cells.ld.1.cent[quad.4]/cells.ld.2.cent[quad.4])) 

 

cells.angle <- 

c(cells.angle.1,cells.angle.2,cells.angle.3,cells.angle.4)[order(c(quad.1,quad.2,quad.3,q

uad.4))] 

 

x11();plot(density(cells.angle[cluster.vector == 

1])$x,density(cells.angle[cluster.vector == 

1])$y,col='blue',lwd=3,type='l',ylim=c(0,5),xlim=c(-0.5,6.5),cex.axis=2) 

lines(density(cells.angle[cluster.vector == 2])$x,density(cells.angle[cluster.vector == 

2])$y,col='forestgreen',lwd=3) 

lines(density(cells.angle[cluster.vector == 3])$x,density(cells.angle[cluster.vector == 

3])$y,col='red',lwd=3) 

lines(density(cells.angle[cluster.vector == 4])$x,density(cells.angle[cluster.vector == 

4])$y,col='orange',lwd=3) 

 

 

##########  Cluster genes and samples (within a state)  using min-1 ########## 

# Calculate correlation / distance to find functional gene modules 

gene.cor.min <- 

cor(hsc.cells.neg.ddct.min,use='pairwise.complete.obs',method='pearson') 

gene.cor.min.dist <- as.dist((1-gene.cor.min)) 

x11();plot(hclust(gene.cor.min.dist),main="Dist = (1 - Correlation)", xlab="") 

 

# Calculate correlation / distance within each cell state 

# Cluster IDs [1=quiescent,2=pro,3=anti,4=mixed] 

clust.1.cor.min <- cor(t(hsc.cells.neg.ddct.min[which(cluster.vector == 

1),]),use='pairwise.complete.obs',method='pearson') 

clust.1.cor.min.dist <- as.dist(1-clust.1.cor.min) 
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clust.2.cor.min <- cor(t(hsc.cells.neg.ddct.min[which(cluster.vector == 

2),]),use='pairwise.complete.obs',method='pearson') 

clust.2.cor.min.dist <- as.dist(1-clust.2.cor.min) 

 

clust.3.cor.min <- cor(t(hsc.cells.neg.ddct.min[which(cluster.vector == 

3),]),use='pairwise.complete.obs',method='pearson') 

clust.3.cor.min.dist <- as.dist(1-clust.3.cor.min) 

 

clust.4.cor.min <- cor(t(hsc.cells.neg.ddct.min[which(cluster.vector == 

4),]),use='pairwise.complete.obs',method='pearson') 

clust.4.cor.min.dist <- as.dist(1-clust.4.cor.min) 

 

# Create order vector for samples 

sample.order.min <- NULL 

sample.order.min <- cbind(which(cluster.vector == 

1),hclust(clust.1.cor.min.dist)$order+100) 

sample.order.min <- rbind(sample.order.min,cbind(which(cluster.vector == 

2),hclust(clust.2.cor.min.dist)$order+200)) 

sample.order.min <- rbind(sample.order.min,cbind(which(cluster.vector == 

3),hclust(clust.3.cor.min.dist)$order+300)) 

sample.order.min <- rbind(sample.order.min,cbind(which(cluster.vector == 

4),hclust(clust.4.cor.min.dist)$order+400)) 

 

sample.sort.min <- sample.order.min[order(sample.order.min[,1]),2] 

 

# Save results and ordering 

results.ordered.min <- 

cbind(sample.info,cluster.vector,sample.sort.min,hsc.cells.neg.ddct[,hclust(gene.cor.m

in.dist)$order]) 

 

# Identify modules of coexpressed genes from the dendogram & Plot 

groups <- cutree(hclust(gene.cor.min.dist), k=6) # cut tree into 6 clusters  

x11();plot(hclust(gene.cor.min.dist),main="Dist = (1 - Correlation)", xlab="") 

rect.hclust(hclust(gene.cor.min.dist), k=6, border="blue") # draw blue borders around 

clusters on dendrogram 
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SAMPLE (TOY) SINGLE CELL DATA 

The real data used in this thesis will be published with the manuscript 

corresponding to Chapter 8. Until then, the following data can be used to test the script 

in Appendix E. 

Table F.1 Sample single cell data for use with the script in Appendix E (Genes 1-6) 

Treatment Time Col14a1 Col3a1 Ecm1 HGFa.b IGF1 Vegfa 

Ethanol 24h NA 19 15 12 18 27 

Ethanol 24h 24 29 9 NA NA 23 

Ethanol 24h 17 NA NA NA 10 NA 

Ethanol 24h 10 27 24 24 NA NA 

Ethanol 24h 24 16 10 19 20 22 

Ethanol 24h 24 18 21 23 14 NA 

Control 0h 28 18 NA 29 NA 12 

Control 0h 27 27 12 12 11 18 

Control 24h 25 23 11 24 13 NA 

Control 24h 26 13 26 29 19 NA 

Control 24h 18 25 NA 11 14 NA 

Control 24h 9 NA 21 NA 12 12 

Control 24h 17 17 17 14 26 14 

Control 24h 11 19 NA 19 19 13 

Control 24h 13 NA 29 NA 12 28 

Control 24h 15 NA 17 10 NA NA 

Ethanol 0h 26 19 13 25 18 14 

Ethanol 24h 29 19 15 20 14 19 

Ethanol 24h NA NA NA NA 22 29 

Ethanol 24h 19 28 27 14 25 27 

Control 0h 20 13 28 13 NA NA 

Control 24h 13 NA 10 29 22 28 
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Control 24h 29 18 10 28 20 NA 

Ethanol 0h NA 27 20 NA 10 14 

Ethanol 0h 26 28 27 18 28 NA 

Ethanol 24h 26 20 18 26 16 NA 

Control 0h 20 18 17 28 NA 24 

Control 0h 20 26 29 24 23 NA 

Control 0h 20 NA 19 20 28 NA 

Control 0h 13 9 23 12 17 NA 

Ethanol 0h NA 13 22 24 16 27 

Ethanol 0h NA 17 24 24 27 22 

Ethanol 24h 19 25 23 27 NA 27 

Ethanol 24h 27 26 NA 10 11 13 

Ethanol 24h 22 9 NA 19 18 16 

Ethanol 24h 13 NA NA 9 20 NA 

Ethanol 24h NA NA 11 11 NA 16 

Control 0h 16 NA 23 12 15 9 

Control 0h 21 19 18 25 NA NA 

Control 0h 10 18 29 29 10 10 

Control 0h NA 10 29 NA 19 NA 

Control 0h 20 21 NA 12 24 25 

Control 24h 11 29 NA 23 10 25 

Control 24h 17 14 22 NA NA 10 

Control 0h NA NA NA NA NA 17 

Control 0h NA 21 13 NA 15 22 

Control 0h NA NA 22 NA 24 28 

Ethanol 24h 17 27 20 NA NA 29 

Ethanol 24h 9 22 19 24 NA 15 

Ethanol 24h 28 25 17 10 10 18 

Control 24h 22 10 NA NA NA NA 

Ethanol 0h NA 15 18 NA 25 18 

Ethanol 0h 25 11 26 26 18 NA 

Ethanol 0h 22 18 29 17 29 NA 

Ethanol 0h 18 17 NA 10 19 28 

Ethanol 0h NA 15 16 13 NA 14 

Ethanol 24h NA 10 NA 16 24 26 

Ethanol 24h NA 11 NA 11 14 26 

Ethanol 24h 24 NA 13 18 21 NA 

Ethanol 24h 12 24 23 29 NA NA 

Control 0h 9 18 NA 15 11 17 
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Control 0h 9 26 19 29 NA 17 

Control 0h 24 19 24 NA 27 NA 

Control 0h 18 29 10 28 16 NA 

Control 0h 29 NA NA NA 17 24 

Control 0h NA 14 18 NA NA NA 

Control 0h 22 28 27 9 25 NA 

Control 0h NA 23 12 26 23 26 

Control 0h 28 NA 12 12 16 15 

Control 24h NA 29 18 17 NA NA 

Control 24h 12 29 21 NA 29 27 

Control 24h 17 10 14 21 22 21 

Control 24h 23 16 NA 10 14 23 

Control 24h 18 NA NA 12 10 19 

Control 24h 19 16 14 15 27 24 

Control 24h 23 21 19 NA 21 NA 

Ethanol 0h 21 10 26 23 11 9 

Ethanol 0h NA 15 22 28 NA NA 

Ethanol 0h 9 28 NA NA 28 19 

Ethanol 0h 29 NA 19 13 9 9 
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Table F.2 Sample single cell data for use with the script in Appendix E (Genes 7-12) 

Treatment Time Actb Tgfb1 Spp1 Rdh10 IL6 IL10 

Ethanol 24h 18 21 NA 25 14 25 

Ethanol 24h NA 25 27 NA 28 22 

Ethanol 24h 13 NA 11 23 27 10 

Ethanol 24h 23 24 17 21 21 29 

Ethanol 24h 20 NA 18 23 15 14 

Ethanol 24h 20 NA 9 17 29 NA 

Control 0h 24 28 24 16 29 20 

Control 0h NA 18 10 25 NA 21 

Control 24h 20 24 25 NA 19 11 

Control 24h 28 17 13 20 15 9 

Control 24h 10 NA 12 NA 9 13 

Control 24h 9 NA 13 24 NA NA 

Control 24h 11 13 NA 25 28 14 

Control 24h NA 12 13 24 NA 17 

Control 24h NA NA 27 27 NA NA 

Control 24h 10 NA 27 NA 22 10 

Ethanol 0h 17 16 18 26 17 17 

Ethanol 24h NA 28 NA NA 11 14 

Ethanol 24h 12 9 19 NA NA NA 

Ethanol 24h 27 15 23 19 24 12 

Control 0h 29 23 20 27 14 23 

Control 24h 13 13 24 29 11 16 

Control 24h 17 10 23 18 NA 9 

Ethanol 0h 12 29 13 27 13 9 

Ethanol 0h NA 14 26 17 18 14 

Ethanol 24h NA 17 16 NA 26 NA 

Control 0h 15 21 20 NA NA 19 

Control 0h 22 28 NA 11 10 16 

Control 0h NA 18 29 NA NA 24 

Control 0h 27 NA 21 28 23 NA 

Ethanol 0h 16 18 NA 22 NA 19 

Ethanol 0h 26 9 21 NA 10 22 

Ethanol 24h 9 20 26 23 23 18 

Ethanol 24h 21 9 20 NA 22 NA 

Ethanol 24h 28 NA 27 NA 28 NA 

Ethanol 24h NA 24 15 NA 29 27 

Ethanol 24h NA 18 13 12 NA 9 
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Control 0h NA 27 12 10 10 18 

Control 0h 22 9 9 24 26 NA 

Control 0h NA 18 NA 18 24 NA 

Control 0h 29 NA 25 9 16 9 

Control 0h 19 NA NA NA 27 12 

Control 24h 21 19 20 16 10 NA 

Control 24h 19 29 21 20 24 28 

Control 0h 19 16 27 14 15 NA 

Control 0h NA 18 22 NA 17 16 

Control 0h 29 29 12 20 11 11 

Ethanol 24h 17 14 12 21 NA 18 

Ethanol 24h NA 23 10 10 27 25 

Ethanol 24h 10 25 NA 23 19 22 

Control 24h 24 23 NA 15 18 10 

Ethanol 0h 26 22 20 NA 20 12 

Ethanol 0h 20 NA 21 19 15 13 

Ethanol 0h 20 17 11 29 10 NA 

Ethanol 0h NA NA 13 24 22 19 

Ethanol 0h 18 22 NA 20 20 26 

Ethanol 24h 17 22 11 NA 23 17 

Ethanol 24h 20 23 NA NA 26 NA 

Ethanol 24h 12 20 NA 18 15 NA 

Ethanol 24h NA 15 10 21 NA 20 

Control 0h 10 18 27 20 13 NA 

Control 0h NA 25 19 18 15 NA 

Control 0h NA 11 29 16 29 NA 

Control 0h NA 23 15 13 13 9 

Control 0h NA NA 18 21 16 NA 

Control 0h 29 17 28 NA 14 NA 

Control 0h NA 10 16 NA 17 28 

Control 0h 15 27 NA NA NA 21 

Control 0h NA 18 25 17 21 21 

Control 24h 10 NA NA NA 15 14 

Control 24h 12 9 NA 18 11 9 

Control 24h 19 26 12 12 23 29 

Control 24h NA 16 16 18 NA 25 

Control 24h NA NA 16 10 NA 26 

Control 24h 15 9 NA 11 25 17 

Control 24h 16 29 NA 19 13 24 
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Ethanol 0h 29 NA 21 12 NA 24 

Ethanol 0h 29 15 14 18 13 25 

Ethanol 0h 29 22 NA 27 13 29 

Ethanol 0h 20 NA 11 25 23 24 
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VERTEBRATE ANIMAL PLAN (F31) AND IACUC PROTOCOL 

All signed copies of the documents contained in this appendix are on file with 

the appropriate institutions.  

Summary of Procedure 

 Two-thirds partial hepatectomy (PHx) will be performed following the 

standard protocol of Higgins and Anderson (1931), Arch. Pathol. 12, 186-202, with 

modifications to comply with current IACUC guidelines.  The rats will be brought 

under anesthesia with 5% isoflurane using a dedicated anesthesia chamber.  Animals 

will be transferred to surgical table with continued anesthesia using a nose cone 

containing 2.5% isoflurane.   Complete anesthesia will be assessed by lack of response 

to tail and toe pinch.  The abdomens, from above the sternum to 1 cm below the 

surgical incision will be shaved using Andis AGC clippers, and removed fur 

discarded.  The shaved and cleaned area will then be sterilized using betadine-soaked 

3x3 gauze pads, with repeated applications, followed by a 70% ethanol wash.  All 

laboratory personnel conducting or assisting in surgical procedures will wear 

designated animal lab coats and surgical gloves.  A small incision will be made with a 

feather #10 sterile scalpel through the skin and muscle layer beginning at the sternum.  

This incision will then be opened with sterilized scissors. The left-lateral and medial 

lobes will be exposed and tied off at the base of each lobe using sterile SP117 non-

absorbable black braided silk surgical thread.  The lobes will then be resected with a 

scalpel and snap frozen by submersion in liquid nitrogen for assay of baseline levels of 

protein and mRNA levels. Following PHx, the muscle layer will be sutured using 

sofsilk 8-0 non-absorbable coated, braided silk and the skin will be surgically stapled 

using micron autoclip 9mm wound clips.  Following surgery, but while under 

anaesthesia, animals will receive 1 ml intraperitoneal (IP) injections of lactated ringers 

solution (LRS) that has been prewarmed to 37°C to ensure hydration following 

surgery. The anesthesia will be removed at the end of the surgical procedure and the 

animal returned to its cage.  After the animal recovers and starts moving, it will be 

monitored closely for signs of distress for the first hour (and for 10 minutes hourly 

thereafter) while it is kept in its cage with access to food and water ad libitum until 

time of sacrifice. Cages will be kept warm with heating lamps for the first 3 hours 
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following surgery. At time of sacrifice, the animal will again be anesthetized, the 

original incision will be reopened and the remnant liver will be removed and frozen. 

The animal will then be euthanized by cervical dislocation and opening of the chest 

cavity. 

 

Performance Site:  

 All work related to experimental treatment, animal handling, single-cell and 

tissue sample collection will be performed at Thomas Jefferson University (TJU). 

 

Proposed Use of Animals: 

 This study will use 64 8-14 week old, male rats of the Sprague Dawley strain 

of Rattus Norvegicus.  

 

Justification of Animal Use, Species, and Number: 

 The molecular signaling systems under study herein are relatively conserved 

across mammalian species;  therefore it is possible to extrapolate from animal models 

to human liver. It is not possible to study the gene expression of liver regeneration in 

lower animals, and, as the system under study involves a dynamic, systemic response 

to several factors (chronic alcohol consumption and partial hepatectomy), it is not 

possible to replicate in vitro. Because the procedures are invasive, terminal, and 

destructive (tissue is destroyed in processing), it is not possible to use human tissue on 

the large scale required herein. Further, due to the need for dynamic data following the 

partial hepatectomy, human postmortem tissue is also not a viable source. Finally a 

large body of existing rat-based data is available in scientific literature to serve as 

reference for the proposed studies.  

 The Sprague Dawley strain of Rattus Norvegicus is the preferred model system 

for several reasons. First, the regenerative response of these animals is highly 

reproducible. Second, the animals are robust in recovery from survival surgery 

allowing for increased chances of survival. Third, the TJU alcohol center and animal 

facility have strong expertise in rat models and the Lieber-DeCarli model specifically 

allowing for high quality animal care and handling. Finally, the large size of rat livers 

simplifies the procedures and provides ample amounts of tissue because the samples 

are neither too large to be analyzed as a single unit nor too small to be useful.  

 Animal requirements are greatly reduced by the use of PCR amplification 

technology. The number of animals actually used will be the minimum required to 

generate statistically valid data. Previous work in our lab was able to detect 

statistically significant changes to gene expression and protein levels in a slightly 

impaired regeneration phenotype using three animals per time point. Any fewer than 

three biological replicates provides only limited information about the variability of 

the data. We propose to use four rats at each time point for several reasons. First, the 

use of an additional animal provides a built-in backup in case of animal death, errors 

in tissue processing, or other experimental errors. Second, the use of four rats per time 

point will allow us to detect  a 20-30% change in molecular levels using a standard 
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two-tailed t-test of log-transformed data, assuming a high standard deviation of 10% 

between animals, power of 0.95, and alpha of 0.05 (Power analysis performed using 

G*power: http://www.psycho.uni-duesseldorf.de/abteilungen/aap/gpower3). This is 

well below what many consider of threshold of biological significance (50% change) 

and below expected changes based on published literature and previous work in our 

lab (Correnti, Cook, et al., In Preparation, 2014,). The estimate of 64 total animals 

includes testing multiple biological assays (protein and gene expression at the tissue 

and single-cell level) at 8 time points early post-PHx in 2 conditions (see table below). 

 

 

Time post-

PHx 
1h 2h 3h 4h 5h 6h 9h 12h Total 

Control Rats 4 4 4 4 4 4 4 4 32 

Alcohol-Fed 

Rats 
4 4 4 4 4 4 4 4 32 

 

Veterinary Care of Animals Involved 

 The animals will be maintained in an AAALAC approved facility under 

direction of a licensed veterinarian and skilled staff. Animals in the study will be fed 

ad libitum (alcohol or control diet). The long-established Leiber-deCarli alcohol pair-

feeding protocol will be used to match alcohol and control fed animals, with alcohol-

fed animals receiving 36% of total calories from alcohol for a period of 5 weeks. All 

animals will be housed in standard shoebox cages in a dedicated temperature- and 

humidity-controlled room on a 12/12 day/night cycle. Animals will be bred within this 

facility or imported from a local outside supplier.  

 

Description of Procedures Limiting Discomfort, Distress, Pain, and Injury   

 Following PHx, animals will be allowed to recover from anesthesia and 

surgery without access to analgesics. Analgesics are generally metabolized in the liver 

and affect cell signaling processes and cellular redox state in a manner that interferes 

with the processes under study. In addition, research from our group and others has 

shown that treatment with different classes of analgesics alters the normal course of 

regeneration.  Treatment with Acetaminophen following PHx leads to increases in 

liver weight compared to controls and increased liver microsomal enzymes (White & 

Gershbein, Research Communications in Chemical Pathology and Pharmacology, 

1985; 48(2):275-289).  Corticosteroid treatment was shown to suppress DNA 

synthesis in rats following PHx (Tsukamoto & Kojo, Gut, 1989; 30:387-390).  Opiate 

treatment has been shown to be hepatotoxic (Zhang et al., Basic and Clinical 

Pharmacology and Toxicology, 2004, 95:53-58), and buprenorphine in particular has 

been shown to interfere in hepatocyte mitochondrial function (Berson et al., Journal of 

Hepatology, 2001; 34:261-269).  Our lab has also tested the topical analgesic EMLA 

cream in the context of partial hepatectomy, and found that 30 min following surgery, 

there was significant elevation in phospho-p38 and phospho-Jun kinase in animals 
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receiving treatment, indicating activation of stress signaling pathways that are critical 

for the onset of regeneration following PHx. In addition, animals showed behavioral 

signs of increased irritation and stress after treatment with EMLA cream.  

 Animals will be closely monitored visually during the first hour post-PHx for 

normal locomotive activity, guarding, abnormal behavior or appearance including 

normal consumption of food and water, urination, piloerection, unkempt coat/rough 

hair, hunched posture, aggression, and self-mutilation.  The surgical wound will be 

monitored for evidence of dehiscence and to ensure that none of the wound clips have 

been removed. The animals will then be monitored for 10 minutes every hour 

thereafter prior to sacrifice. Animal food consumption will be monitored as well as 

signs of dehydration. Any animals that display inability to eat and drink as listed 

above will be given nutragel (Bioserv, Frenchtown, NJ) and lactated ringers solution 

(LRS) at a rate of 100ml/kg/day. 

 Any animal that exhibits any of the following – dehiscence, bleeding from 

the surgical wound or is moribund, not moving, weight loss > 20%, not eating, 

significant lethargy, hunched posture (evidence of dehydration) not responsive to 

fluid administration will be euthanized by pentobarbital injection. Pentobarbital 

injection was chosen to minimize pain and time to euthanasia and is consistent with 

the recommendations of the AVMA Guidelines for Euthanasia of Animals. 
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In submitting an article to any of the journals published by BioMed Central, I certify 

that: 

 

1. I am authorized by my co-authors to enter into these arrangements. 

 

2. I warrant, on behalf of myself and my co-authors, that: 

 

 the article is original, has not been formally published in any other peer-reviewed 

journal, is not under consideration by any other journal and does not infringe any 

existing copyright or any other third party rights; 

 I am/we are the sole author(s) of the article and have full authority to enter into this 

agreement and in granting rights to BioMed Central are not in breach of any other 

obligation; 

 the article contains nothing that is unlawful, libellous, or which would, if published, 

constitute a breach of contract or of confidence or of commitment given to secrecy; 

 I/we have taken due care to ensure the integrity of the article. To my/our - and 

currently accepted scientific - knowledge all statements contained in it purporting to 
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be facts are true and any formula or instruction contained in the article will not, if 

followed accurately, cause any injury, illness or damage to the user. 

3. I, and all co-authors, agree that the article, if editorially accepted for publication, 

shall be licensed under the Creative Commons Attribution License 4.0. In line with 

BioMed Central's Open Data Policy, data included in the article shall be made 

available under the Creative Commons 1.0 Public Domain Dedication waiver, unless 

otherwise stated. If the law requires that the article be published in the public domain, 

I/we will notify BioMed Central at the time of submission, and in such cases not only 

the data but also the article shall be released under the Creative Commons 1.0 Public 

Domain Dedication waiver. For the avoidance of doubt it is stated that sections 1 and 

2 of this license agreement shall apply and prevail regardless of whether the article is 

published under Creative Commons Attribution License 4.0 or the Creative Commons 

1.0 Public Domain Dedication waiver. 
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