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ABSTRACT

In this thesis, the three-dimensional nonlinear wave model has been parallelized

and extended to include wave breaking and energy dissipation. The model has been ex-

amined with simulations of solitary wave and energy focusing nonbreaking wave group

in laboratory experiment for accuracy and performance test. The vertical acceleration

has been used as a criterion to detect the likely occurrence of wave breaking in nu-

merical simulations. Adding pressure against the wave field is the technique used to

dissipate energy.

The model has been applied to simulate energy focusing breaking wave groups

from laboratory experiments and ocean sea surfaces generated from real spectrum

measured in the Kauai Acoustic Communications MURI experiment (KAM11). The

predicted and measured total wave energy has been studied for the numerical sim-

ulations of laboratory experiments. For the field observation, ocean sea surface and

breaking region have been presented. Percent of breaking points in a numerical domain

and energy dissipation have been computed.
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Chapter 1

INTRODUCTION

Ocean wave field evolution involves many complicated physical processes, includ-

ing wind input via air-sea interactions, nonlinear energy transfer through wave-wave

interactions and energy dissipation due to wave breaking. Due to these dynamic pro-

cesses, accurate prediction of the ocean wave field is a very challenging task. In recent

years, considerable progress has been made toward prediction of ocean wave field using

phase-resolving nonlinear wave models. Various numerical methods which can be used

to trace the temporal evolution of wave motion have been proposed. Among them,

there are two methods widely accepted in literatures for the phase-resolving nonlinear

wave models: a high-order spectral method (HOS) developed by Dommermuth and Yue

(1987) and a method using Dirichlet-Neumann operator introduced and expanded by

Craig and Sulem (1993). Both models are based on Zakharov’s equations (Zakharov,

1968).

By extending the Zakharov/mode-coupling idea, Dommermuth and Yue (1987)

developed a direct numerical approach which is a combination of canonical evolution

equations and mode coupling idea. The model was generalized to include nonlinear

interaction up to an arbitrary order M in wave steepness provided that the Taylor

series expansion of the velocity potential on the free surface about the mean water

level remains valid. In the study, they indicated that M = O(10) is adequate for waves

up to approximately 80% of Stokes limiting steepness (ka < 0.35), beyond which con-

vergence is poorer and eventually fails. The efficiency and accuracy of the method is

demonstrated by comparisons to fully nonlinear semi-Lagrangian computations, calcu-

lations of long-time evolution of wavetrains using the modified (fourth-order) Zakharov

equations, and experimental measurements of a travelling wave packet.
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Zakharov’ s formulation has been reworked numerous times, including by Craig

and Sulem (1993), who posed the Hamiltonian for the water waves problem in terms

of the Dirichlet-Neumann operator (DNO) in the two-dimensional setting. Craig and

Sulem described the Taylor expansion of the Dirichlet-Neumann operator in homoge-

neous powers of the surface elevation η. Each term in this Taylor series can be obtained

from a recursion formula and can be efficiently computed by a pseudospectral method

using the fast Fourier transform. In the study, the method was illustrated by computing

the long time evolution of modulated wave packets and of approximations to the Stokes

steady wave train. By imposing a surface pressure they observed surface steepening in

large amplitude evolution, and wake and bow wave development for flows with a close

to critical Froude number and gave an example of nonlinear evolution of the distribu-

tion of energy among normal modes. Later, Schanz (1997) performed time-dependent

simulations using a three–dimensional extension of Craig and Sulem’s model. Nicholls

(1998) applied numerical continuation methods to traveling wave solutions of Craig and

Sulem’s model to find hexagonal solutions of a water wave problem. Xu and Guyenne

(2009) developed and implemented a symplectic, implicit, fourth-order Runge-Kutta

scheme for the time integration of the Hamiltonian equations, performed extensive

numerical tests on the convergence of the DNO and on the accuracy of the time inte-

gration method, including an examination of the effects of de–aliasing and filtering, and

applied the model to study a number of three-dimensional, nonlinear wave solutions

ranging from crescent waves in deep water to hexagonal waves in shallow water.

In a numerical simulation of ocean wave fields, wave breaking effects have to

be included in the model in order to provide a reliable prediction. Due to inherent

limitations in the mathematical models mentioned above, it cannot predict an over

turning surface and an occurrence of spray induced by wave breaking. The presence

of wave breaking may cause the computations to terminate abruptly. Therefore, wave

breaking effects have to be dealt with for the calculations to proceed. In this aspect,

a twofold approach is necessary: detecting the likely occurrence of wave breaking and

then absorbing energy locally from waves that are about to break.
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Many criteria have been proposed for the detection of wave breaking events

based on field observations, laboratory experiments and numerical studies. Wu and

Nepf (2002) segregated three classes of wave breaking criteria : the geometry, kinemat-

ics, and dynamics of waves. The geometric criteria are based on local wave shape

and global wave steepness. The kinematic criteria are based on particle and phase

velocities. The dynamic criteria are based on acceleration at the crest, momentum

and energy growth rate, and higher harmonic energy evolution. However, wave break-

ing criteria based on geometric and kinematic properties are not easily applicable to

oceanic observations, mainly due to uncertainties in identifying individual waves and

unknown threshold values. Most accessible is the dynamic criterion. As pointed out by

Snyder and Kennedy (1983) that among possible threshold variables for breaking crite-

ria, vertical acceleration appears an eminently reasonable candidate. Longuet-Higgins

(1963) shows that for a Stokes wave of maximum amplitude the particle acceleration

near the vertex is 0.5g and is directed radially away from the vertex. This result sug-

gests negative vertical acceleration as a threshold variable with a critical level of 0.5g.

Since the Stokes wave is a solution to the full nonlinear equations of motion and be-

cause the breaking criterion is presumably universal, we might expect that in a typical

wind-generated sea the critical level should also be 0.5g. However, according to Snyder

et al. (1983) and Ochi and Tsai (1983), the negative vertical acceleration that triggers

wave breaking is slightly less than this.

A method which can be used to inhibit the development of a breaking wave

is to add a damping term to the free surface boundary conditions. For free surface

wave problem in potential flows, a damping term is added to the free surface dynamic

boundary condition, or to both the dynamic and kinematic boundary conditions. As

pointed out by Cao et al. (1993) that this technique is easy to implement and good

for a wide range of frequencies. Although a fairly large damping zone is needed and

the amount of damping needs to be tuned, the technique has become more popular for

simulations of nonlinear waves because of it ability to handle a wide frequency range.

The objective of this work is to develop a forecasting tool for a nonlinear ocean

3



wave field, which includes:

• develop parallel model and extend to include effects of breaking and wave energy
dissipation

• examine accuracy and performance of the model

• apply the model to forecast nonlinear ocean wave field evolution.

In Chapter 2 of this thesis governing equations of the wave model, their numer-

ical method and wave energy dissipation technique will be explained. Methodology for

parallelization of the model which includes parallel pseudo algorithm, data distribution

and the FFTW-MPI libraries will be presented. In Chapter 3, parallel model testing

in terms of accuracy and performance are presented. An idealized case of solitary wave

and energy focusing nonbreaking wave group obtained from a laboratory experiment

are used for examining an accuracy of the model while an initial Gaussian wave pro-

file is used for checking performance. In Chapter 4, details of wave breaking criterion

are discussed. Wave breaking criterion parameter and method used to approximate

vertical acceleration are presented. In Chapter 5, numerical simulations of laboratory

experiments for energy focusing breaking wave groups and of field observation for ocean

random wave are presented.
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Chapter 2

WAVE MODEL

In this study, we develop a parallel code of a three-dimensional nonlinear wave

model based on the existing code of Xu and Guyenne (2009) and extend the model

to include effects of wave breaking and energy dissipation. In this chapter, governing

equation is presented along with numerical scheme used to solve the model equation

and methods used to control numerical errors. Technique used to dissipate energy

locally from waves that are about to break are discussed. Then, we present method

used to implement the parallel model. Here, we use a domain decomposition technique

for parallelization, MPI for communication between processes and FFTW-MPI (Frigo

and Johnson, 2003) for computation of fft.

2.1 Governing Equation

We consider irrotational wave motion of a homogeneous, incompressible and

inviscid fluid over a horizontal impermeable bottom. The flow can be described by a

velocity potential ϕ(x, z, t) such that within the fluid ϕ satisfies the Laplaces equation.

Here x = (x1, x2) denotes the horizontal plane, z the vertical direction and t time. The

fluid velocity is given by u = ∇ϕ. The velocity potential satisfies the Laplace equation

∇2ϕ = 0 (2.1)
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which is applied throughout the fluid domain bounded below by the bottom at z = −h

and above by the free surface defined by z = η(x, t). The boundary conditions are

∂zϕ = 0 on z = −h (2.2)

∂tη +∇xη · ∇xϕ− ∂zϕ = 0 on z = η (2.3)

∂tϕ+
1

2
|∇ϕ|2 + gη = 0 on z = η (2.4)

where ∇x = (∂x1 , ∂x2)
> and g denotes the acceleration due to gravity. Surface tension

effects are neglected here. We can reduce the dimensionality of the classical potential

flow formulation (2.1)-(2.4) of the water wave problem by considering surface quantities

as unknowns. This can be achieved by introducing the Dirichlet-Neumann operator

(DNO) which takes Dirichlet data ξ(x, t) = ϕ(x, η(x, t), t) at the free surface, solves

the Laplace equation (2.1) for ϕ, and returns the corresponding Neumann data (i.e.

the normal fluid velocity at the free surface). Here the DNO is defined by

G(η)ξ = (−∇xη, 1)> · ∇ϕ|z=η

= (−∇xη · ∇ϕ+∇ϕ)|z=η. (2.5)

Expressing the velocity potential and its derivatives on the free surface in terms of ξ

and G(η)ξ, and knowing that (2.1) and (2.2) are already satisfied through (2.5), then

we can rewrite (2.3) and (2.4) as

∂tη = G(η)ξ, (2.6)

∂tξ = −gη − 1

2(1 + |∇η|2)
[|∇xξ|2 − (G(η)ξ)2 − 2(G(η)ξ)∇xξ · ∇xη

+|∇xξ|2|∇xη|2 − (∇xξ · ∇xη)2] (2.7)

These are Hamilton’s equations in Zakharov’s formulation (Zakharov, 1968) of the
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water wave problem in terms of the canonically conjugate variables. The total mass

and energy of the system,

V =

∫
R2

ηdx (2.8)

and

H =
1

2

∫
R2

[ξG(η)ξ + gη2]dx, (2.9)

are an invariant of motion in the problem. Mass and energy conservation can be used

to check the global accuracy of the numerical model.

Coifman and Meyer (1985) showed that the Dirichlet-Neumann operator is an-

alytic as a function of η if the supremum norm and Lipschitz norm of η are bounded

by a constant. Therefore G(η) can be written in terms of a convergent Taylor series

G(η) =
∞∑
j=0

Gj(η), (2.10)

where each term Gj(η) is homogeneous of degree j.

Craig and Sulem (1993) showed that explicit expressions for the Gi’s can be

obtained using a recursion formula, which was generalized to three dimensions by

Nicholls (1998):

For j = 2r > 0,

G2r(η) =
1

(2r)!
G0(|Dx|2)r−1Dx · η2rDx

−
r−1∑
s=0

1

(2(r − s))!
(|Dx|2)r−sη2(r−s)G2s(η) (2.11)

−
r−1∑
s=0

1

(2(r − s)− 1)!
G0(|Dx|2)r−s−1η2(r−s)−1G2s+1(η)
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and, for j = 2r − 1 > 0,

G2r−1)(η) =
1

(2r − 1)!
(|Dx|2)r−1Dx · η2r−1Dx

−
r−1∑
s=0

1

(2(r − s)− 1)!
G0(|Dx|2)r−s−1η2(r−s)−1G2s(η) (2.12)

−
r−2∑
s=0

1

(2(r − s− 1))!
(|Dx|2)r−s−1η2(r−s−1)G2s+1(η)

where Dx = −i∇x and G0 = G(0) = |Dx| tanh (h|Dx|) represent Fourier multiplier

operators, in the infinite-depth case (h = +∞), G0 reduces to |Dx|.

2.2 Numerical Method

2.2.1 Spatial Discretization

We assume periodic boundary conditions in x and use a pseudospectral method

for spatial discretization of the DNO as well as the equations of motion. This is a

natural choice for the computation of G since each term in its Taylor series expansion

consists of concatenations of Fourier multipliers with powers of η. More specifically,

both function η and ξ are expanded in truncated Fourier series

 η

ξ

 =
∑
k

 η̂k

ξ̂k

 eik·x, (2.13)

where k = (k1, k2) denotes the wavenumber. Application of Fourier multipliers are

performed in Fourier space, while nonlinear products are calculated in physical space

on a grid N1 ×N2 points, equally spaced in each direction.

In computations, the Taylor series of G is also truncated by only retaining a

finite number of terms,

G(η) ≈ GM(η) =
M∑
j=0

Gj(η) (2.14)
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where the order of truncation M is chosen according to the physical problem under

consideration.

2.2.2 Time Integration

Time integration of system is performed in Fourier space, so the linear terms

can be solved exactly by integrating factor technique. To this aim, we first separate

the linear and nonlinear parts and define u = (η, ξ). The equations of motion can be

written in the form

∂tu = L(u) +N(u) (2.15)

where the linear contribution L(u) is defined by

L(u) = Au =

 0 G0

−g 0

 η

ξ

 (2.16)

and the nonlinear contribution N(u) by

N(u) =


(G(η)−G0)ξ

− 1
2(1+|∇xη|2) [|∇xξ|2 − (G(η)ξ)2 − 2(G(η)ξ)∇xξ · ∇xη

+|∇xξ|2|∇xη|2 − (∇xξ · ∇xη)2]

 (2.17)

Then taking the Fourier transform and making the change of variables

ûk(t) = φ(t)v̂k(t) (2.18)
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where

φ(t) =

 cos(t
√
gG0)

√
G0

g
sin(t
√
gG0)

−
√

g
G0

sin(t
√
gG0) cos(t

√
gG0)

 (2.19)

is the fundamental matrix of the linear system

∂tûk = Aûk (2.20)

and we obtain the following nonlinear system for v̂k

∂tv̂k = φ−1N(φv̂k) = N(v̂k). (2.21)

(2.21) is solved numerically in time using RK4. We note that including nonlinear terms

in the computation posts difficulties in solving the model. First, the implementation

is much more complicated since we cannot solve the equation directly. The time inte-

gration scheme is needed. Second, time needed to compute those terms is quite large.

Last, it brings an error inherit with numerical method. It is hard to control error

efficiently. However, the real ocean process is nonlinear so it is still needed to include

in the study.

2.2.3 Error Controlling

There are two major sources of numerical error in the present model: alias-

ing and spurious growth of high wavenumber errors. Methods widely used to reduce

aliasing error are computing de-aliased products and filtering, while the effects of high

wavenumber errors are usually controlled by filtering alone. In order to control aliasing

error in our study, we implement de-aliasing using zero-padding technique in evaluating

the Dirichlet-Neumann operator (DNO) and other products in the evaluation of the
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nonlinear terms. For reducing the growth of high-wavenumber error, we use a low-pass

filter of the form

γk =

1 if |k| ≤ ν|kmax|,

0 if |k| > ν|kmax|,
(2.22)

with typically ν = 0.9. This filter is applied to η̂ and ξ̂ in wavenumber space at every

time step.

2.3 Energy Dissipation

To dissipate wave energy in our numerical simulation, we employ a variation of

the numerical absorbing beach used by Cao et al.(1993) in order to dissipate energy

locally. The basic idea consists of exerting an additional, external pressure on the

wave in the vicinity of the location where the likelihood of wave breaking has been

detected. By causing the wave to work against this external pressure, the energy

necessary to prevent the wave from breaking is extracted from the fluid in a local

absorbing patch. Mathematically, this consists of the inclusion of an additional term

Pdamp in the dynamic free-surface boundary condition. Pdamp is non-existent outside

the absorbing patch. Within the patch, we prescribe the following form to the damping

term:

Pdamp = σ|∇ξ|2sgn(
∂ξ

∂n
) (2.23)

The |∇ξ|2 term determines the magnitude of the damping. σ is a coefficient that may

be varied to increase or decrease the amount of damping. In our simulations, we use

σ=0.3, 1.0 and 2.0. The signum function ensures that the pressure is acting against
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the wave. When the damping term is included to the free surface dynamic boundary

condition, (2.7) can be written as

∂tξ = R + Pdamp (2.24)

where R represents the right hand side of (2.7).

2.4 Parallel Implementation

We develop the parallel code based on the existing model of Xu and Guyenne

(2009). The numerical method of the model is described in the previous section. In

addition to previous description, issues with parallelization and communication have

to be dealt with. Here, we use MPI for communication between processes. To perform

FFT in parallel, we use the FFTW-MPI (version 2.1.5) developed by Frigo and Johnson

(2003). The FFTW-MPI is a C subroutine library for computing the DFT in one or

more dimensions, for both real and complex data, and for arbitrary input size. In our

application, we use only real two-dimensional transform.

2.4.1 Parallel Pseudo Algorithm

An implementation of the parallel model can be described with parallel pseudo

algorithm as following.

1. MPI is initialized.

2. MPI process 0 reads simulation parameters from an input file and broadcasts
these.

3. Local memory allocations at each process are done. Detail of how to distribute
data is described below.

4. Main program begins.

• MPI process 0 reads initial surface elevation and velocity potential and
broadcasts these.

• Time integration loop begins. FFTW-MPI library is used in this step. Detail
of how to use the library is described below.
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Figure 2.1: Data distribution for N processes in the FFTW-MPI solver.

• Surface elevation and velocity potential are updated and written to a file.

• If simulation is not over, go to 4.

5. Simulation finished and MPI is terminated.

2.4.2 Data Distribution

For the program to run correctly, the data distribution has to be the way FFTW-

MPI defines. The typical decomposition for performing FFT in parallel is slab-wise.

With a slab decomposition, the data is partitioned along a single axis. For example, if

the global matrix is of size Nx × Ny, the local matrix would be Nx/N × Ny, where

N is the number of processes. The global field matrix is divided among the processes

as depicted in Fig. 2.1.

The FFTW-MPI provides the following routine to define how much data resides

on the current process:

fftwnd mpi local sizes(fftwnd mpi plan p,

13



int *local nx,

int *local x start,

int *local ny after transpose,

int *local y start after transpose,

int *total local size);

We note that total local size is the number of elements which much be used to allocate

local data.

2.4.3 Using the FFTW-MPI Libraries

Usage of the FFTW-MPI routines is similar to that of the uniprocessor FFTW.

The following routines are required to perform parallel real two-dimensional transform:

alloc local = fftwnd mpi local sizes(. . .);

data = (fftw real*) malloc(sizeof(fftw real) * total local size);

solver forward = rfftwnd mpi create plan (. . ., FFTW REAL TO COMPLEX);

solver backward = rfftwnd mpi create plan (. . ., FFTW COMPLEX TO REAL);

To execute the solver, we simply state:

rfftwnd mpi (solver forward, data, data);

rfftwnd mpi (solver backward, data, data);

14



Chapter 3

PARALLEL MODEL TESTING

A variety of tests have been performed to characterize accuracy and performance

of the parallel model. The simulation results presented in this study were performed

on the Mills cluster (mills.hpc.udel.edu) which is the University of Delaware high per-

formance computing (HPC) community cluster. It is a distributed memory system

consisting of 200 SMP compute nodes with 5,136 cores in total. The Mills cluster uses

Scientific Linux6, an open-source Linux distribution of Red Hat Enterprise Linux, as

its operating system.

3.1 Accuracy

To examine an accuracy of the parallel model, we performed two different tests

with solitary wave and energy focusing wave group in laboratory experiment. For soli-

tary wave we monitor the conserved quantities which are mass and energy for accuracy.

For experimental laboratory, we compute the surface variance, which is proportional

to the total energy passing a wave station and compare with measured data from the

experiment.

3.1.1 Solitary Wave

We consider the propagation of a progressive solitary wave with the same setup

as done in Xu and Guyenne (2009). The initial condition is a numerically exact solitary

wave generated by Tanaka’s method (Tanaka, 1986). The initial wave has amplitude

of 0.3 m propagating in shallow water of depth 1 m. The spatial domain considered

is of dimension 82 m × 1.6 m with the number of grid points 256 × 16. The spatial

resolution of the simulation is therefore ∆x = 0.32 m and ∆y = 0.1 m. The nonlinear
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Figure 3.1: Evolution of a solitary wave.

wave field is simulated for an evolution time up to 1000 s with a time step of ∆t =

0.01 s. Nonlinear wave-wave interactions are considered up to the fifth order. The

initial wave shape and the wave at the end of the simulation are shown in Fig. 3.1. We

can see that the initial wave shape is preserved very well up to t = 1000 s. Mass and

energy are also conserved very well, with relative errors of O(10−12%) and O(10−7%)

respectively. There is no filtering required to stabilize the numerical solution. Over the

time interval [0, 1000], this wave has propagated a dozen times through the periodic

domain [0, 82m].

3.1.2 Energy Focusing Wave Group

We consider simulations of the energy focusing wave groups which are conducted

at Korea Advanced Institute of Science and Technology (KAIST) in a two-dimensional

wave tank. As described in Tian et al. (2012), the wave tank is 15 m long, 1.5 m

wide, and has a water depth of 0.62 m. Waves are generated with frequencies ranging

from 1.0 to 2.4 Hz. The surface elevation is measured using 14 wave probes. The first

wave station is located at 1.83 m downstream of the wavemaker. The distance between

two adjacent probes ranges from 60 cm to 85 cm. The surface elevation of the wave
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Figure 3.2: Surface elevation of the wave measured at the first wave station.

measured at the first wave station is shown in Fig. 3.2.

To perform numerical simulations, initial conditions for surface elevation and

velocity potential are generated using the surface elevation measured at the first wave

probe located at 1.83 m of the wave tank. The numerical simulation is performed in

a numerical wave tank of 50 m long. The domain from 20 to 35 m corresponds to

the physical wave tank. Fig. 3.3 illustrates a sketch of the numerical wave tank. The

numerical domain is discretized with 4096 points and a time step of 0.01 s is used in the

simulations. The simulation period is 40.96 s. The nonlinear wave-wave interactions

are considered up to the fifth order. The surface elevation at time t = 0, 10 and 20 s

is shown in Fig. 3.4.

Fig.3.5 provides a comparison of the predicted and measured long time inte-

gration of the surface variance, which is proportional to the total energy passing a

wave station according to linear wave theory. The total potential energy as a func-

tion of space is predicted well in the simulation. Fig.3.6 presents the predicted surface

elevation at wave stations along the tank.
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Figure 3.3: Sketch of the numerical wave tank. The domain from 20 to 35 m corre-
sponds to the experimental wave tank. The blue dots indicate locations
of wave probes.

3.2 Performance

To investigate performance of the parallel model, we perform numerical simula-

tions of the initial Gaussian wave profile using different number of processors (1, 2, 4,

8, 16, 32, 64 and 128 processors). The nonlinear wave-wave interactions are considered

up to the third order with the number of grid points 4096 × 4096. The performance

results of the parallel model are measured by the parallel speedup. The speedup of n

processors is defined as the ratio of the execution time of the parallel model running on

a single processor to the execution time of the parallel model running on n processors.

We can see from the plot in Fig. 3.7 that the parallel model have a good scaling

with the number of processors increasing until 32. However, the speedup slightly

decreases for 64 and 128 processors. We also observe the ratio of time spent in linear

to nonlinear model. We found that 91% of simulation time is used for solving nonlinear

terms. As we expect in terms of performance of the parallel model, the nonlinear model

simulation gives lower speedup. This is because the computation of nonlinear terms

involves more FFT computations which require more communication than other parts.

The procedure we use to parallelize the model is to distribute the data over all of

the processors and proceed as the serial code does, but with all FFTs done in parallel.

The obvious advantage of this procedure is that it adapts well to large problems since

it can store more data in memory. However, this style of parallelization tends to not

give a good speedup for small problems or even for large problems where large number
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(a)

(b)

(c)

Figure 3.4: Surface elevation of the wave in the numerical wave tank at time (a)
t=0s, (b) t=10s and (c) t=20s. The red dots indicate locations of wave
probes.
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Figure 3.5: Comparison of the predicted (red) and measured (blue) long time inte-
gration of the surface variance.

Figure 3.6: Evolution of predicted surface displacement.
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Figure 3.7: Speedup and time spent for each time step of the parallel model for the
grid size 4096 × 4096.

of processors is used which brings the ratio of communication time to computation

time high. Using hybrid method may help improve the speedup. The second level of

parallelization could be to parallelize the evaluation of the Dirichlet-Neumann operator

as suggested by Nicholls (1998).

We note that our speedup test still have aliasing errors in the results. When we

test the speedup we turn off the de-aliasing part since that part will need a lot of global

communication. In terms of speed it will be not good to include it. This part will need

to be improved in the future to efficiently scale with the number of processors. What

may help to improve this is FFTs-alias-free version developed by Roberts (2012). It

is a parallel block-based FFTs with C++ based on an openMPI implementation of a

block decomposition based parallel FFT code, including option for including implicitly

de-aliased convolutions. This will reduce communication costs for both full-data FFTs,

and remove all aliasing from communications for zero-padded data. It requires only

12% the bandwidth of conventional techniques.
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Chapter 4

DETECTION OF BREAKING EVENTS IN MODELED SEA

As mentioned in Chapter 1, there are several breaking criteria used to detect

wave breaking events. However, for random ocean waves, some criteria are not practical

to apply. Here, we use the vertical acceleration criterion. In this chapter, the wave

breaking criterion and method used to approximate vertical acceleration are discussed.

4.1 Wave Breaking Criterion Parameter

As pointed out by Snyder and Kennedy (1983), among possible threshold vari-

ables for breaking criteria summarized in their paper, vertical acceleration appears to

be an eminently reasonable candidate. The idea is that if the local surface accelera-

tion at a wave crest reaches some fraction of the gravitational acceleration g, the wave

would then break. In order to detect breaking waves in our numerical simulations, we

apply the vertical acceleration criterion and scale it with g. In other words, waves will

break when the downward acceleration at the crest of the wave is less than −αg, i.e.

az = −αg (4.1)

in which α is a constant. According to Snyder et al. (1983), α varies from 0.4 to 0.52,

while laboratory experiments of Ochi and Tsai (1983) provide the value α ≈0.4.

4.2 Approximation of Vertical Acceleration

It should be pointed out there are two different vertical accelerations depending

on the measurement procedure, i.e. the apparent acceleration measured by a fixed

vertical probe, and the real acceleration of the fluid particles, as measured by a small,
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free-floating buoy following the sea surface (Longuet-Higgins, 1985). In linearized

theory these two accelerations are equal. We apply the apparent acceleration as a

criterion for wave breaking in our study.

In two dimensions, consider steady, uniform gravity waves traveling with phase-

speed c in the positive x-direction. If the surface elevation is z = η(x, t) then the

apparent vertical acceleration, as seen by a fixed vertical wave gauge, is ηtt. Trans-

forming to a frame of reference moving with speed c, the fluid motion becomes steady.

In the new coordinates, ηt is replaced by −cηx. The apparent vertical velocity is thus

proportional to the surface slope ηx. The apparent acceleration a(E) (Longuet-Higgins,

1985) is given by

a(E) = c2ηxx. (4.2)

In our study, we use the phase speed cp = ωp/kp at the peak of the spectrum where the

peak frequency ωp = 2πfp and from the linear dispersion relation the peak wavenumber

kp = 4π2f 2
p/g. For three dimensional application, ηxx in (4.2) is simply replaced by

∇2
xη.

We note that practical criteria of wave breaking cannot be based on the instan-

taneous surface for irregular waves since it will produce a very noisy signal (Massel,

2007). Therefore, it is useful to filter out some random components by suitable smooth-

ing technique. In our case, we use a bandpass filtering with upper and lower cutoffs at

0.5fp and 2.0fp, where fp is the peak spectral frequency.
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Chapter 5

NUMERICAL SIMULATIONS

Two cases are studied in this Chapter: laboratory experiments and field obser-

vation. The laboratory experiments for energy focusing wave groups were conducted

at Korea Advanced Institute of Science and Technology (KAIST) (Tian et al., 2012).

The field observation of ocean random wave was conducted in the 2011 Kauai Acoustic

Communications MURI experiment (KAM11). Data from both cases is used to gen-

erate an initial condition for a numerical simulation. The parallelized model is used

to propagate waves in a numerical domain. Detection of wave breaking events in the

simulations is done using vertical acceleration criterion and wave energy is dissipated

locally. For the laboratory experiment case, we compare wave energy obtained from

the simulations with the one obtained from the experiments. For the field observa-

tion of ocean random waves, we observe percentage of breaking point in the numerical

domains and energy dissipation varied with different parameters.

5.1 Testing 1D Wave Breaking

In this Section, details of laboratory experiment setup are presented. The pro-

cess of generating initial condition for numerical simulations from experimental data

is also described. Then, we describe numerical simulation setup and present results.

5.1.1 Laboratory Experiments

As described in Tian et al. (2012), the wave tank used in the experiments is 15

m long, 1.5 m wide, and has a water depth of 0.62 m. Breaking wave groups due to
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wave energy focusing are generated. The surface elevation, η, is defined as

η(x, t) =
N∑
n=1

an cos(knx− ωnt− φn). (5.1)

Here, an is the amplitude of the nth wave component; kn is the wavenumber; ωn = 2πfn

is the angular frequency and f ranges from 1.0 to 2.4 Hz; N = 128 is the total number

of frequency components; and φn is the initial phase to be determined. The linear

dispersion relation is used to relate ωn and kn. Wave steepness, εn = knan, for each

of the components is the same and can be adjusted. Two breaking wave groups from

the experiment are used in our numerical simulations, referred to as BG1 and BG2.

Wave steepness, εn of BG1 and BG2 is 0.0045 and 0.0058, respectively. During the

experiments, the surface elevation is recorded using 14 wave probes. The first wave

probe is located at 1.83 m downstream of the wavemaker. The distance between two

adjacent probes ranges from 60 cm to 85 cm. Fig. 5.1 shows the surface elevation of

the breaking wave groups BG1 and BG2 measured at the first wave probe.

5.1.2 Initial Condition and Numerical Simulation Setup

To perform numerical simulations, initial conditions for surface elevation and

velocity potential are generated using the recorded temporal surface elevations at the

first wave probe located at 1.83 m of the wave tank. Based on linear wave theory, after

it is Fourier decomposed into sinusoidal components, the measured surface elevation

can be used to predict the surface elevation using

η(x, t0) =
N∑
n=1

an cos(kn(x− xp)) (5.2)

and velocity potential using

ξ(x, t0) =
N∑
n=1

g

ωn
an sin(kn(x− xp)). (5.3)
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(a)

(b)

Figure 5.1: Surface elevation of the breaking wave groups (a) BG1 and (b) BG2
measured at the first wave station in the laboratory experiments.
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Here, we use t0 = 0 and xp = 15. The simulations are performed in a numerical wave

tank of 50 m long. The domain from 20 to 35 m corresponds to the experimental wave

tank (see Fig. 3.3 for sketch of the numerical wave tank). The numerical domain is

discretized with 4096 points and a time step of 0.01 s is used in the simulations. The

simulation period is 40.96 s which is sufficient for the wave groups to completely pass

the last wave probe. The nonlinear wave-wave interactions are considered up to the

fifth order.

During the simulation, at each time step, the model will detect the likely occur-

rence of wave breaking based on limiting vertical acceleration criterion. The threshold

of α = -0.4 is used in the simulations. The vertical acceleration is approximated using

curvature of surface displacement at each time. After breaking regions are defined, the

model will determine the appropriate amount of local damping. The damping constant

σ = 0.3 is used in the simulations.

To match the surface elevation measured at the first wave gauge, the linear

model is solved over the spatial domain from 0 to 21.83 m. In the remainder of the

numerical tank, the fifth order model is solved. A transition layer is applied from 21.83

to 22.08 m to avoid any transition irregularity of the surface profile.

5.1.3 Results

Simulations of the breaking wave groups BG1 and BG2 are performed. The

surface elevation at time t = 0, 10 and 20 s of the wave groups BG1 and BG2 are

shown in Fig. 5.2 and Fig. 5.3, respectively.

Fig. 5.4 presents a comparison of the predicted and measured long time ingration

of the surface variance, which is proportional to the total energy passing a wave station

according to linear wave theory. The total potential energy as a function of space for

both wave gropus is predicted well in the simulations. The results indicate that the

breaking model simulates reasonably well the total energy dissipation in the breaking

events.
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(a)

(b)

(c)

Figure 5.2: Surface elevation of the breaking wave group BG1 in the numerical wave
tank at time (a) t=0s, (b) t=10s and (c) t=20s. The red dots indicate
locations of wave probes.
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(a)

(b)

(c)

Figure 5.3: Surface elevation of the breaking wave group BG2 in the numerical wave
tank at time (a) t=0s, (b) t=10s and (c) t=20s. The red dots indicate
locations of wave probes.
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Figure 5.4: Comparison of the predicted (red) and measured (blue) long time inte-
gration of the surface variance of case BG1 and BG2.

5.2 Simulation of Sea State

The problem of nonlinear random fields of surface gravity wave is studied in

this Section. Details of field observation data are given. The method used to construct

initial wave field from constructed from the 2011 Kauai Acoustic Communications

MURI experiment (KAM11) is described. Then, the numerical simulation setup and

results are presents.

5.2.1 Field Observation Data

A dataset we studied in this Section was collected from the experiment on

July 11 at 02:00. This dataset was selected to study because it was the most violent

case in the period of the acoustic propagation under water experiment. A wave-rider

buoy recorded directional surface displacement throughout KAM11. Fig. 5.5 shows

surface power spectral density and direction. The power spectral density from the

period of interest shows that the majority of the energy within the surface waves was

concentrated in frequency ranges of around 0.1 to 0.3 Hz. From the observed data, the

following characteristics are determined. The significant wave height (Hs) is 1.36 m.

The peak frequency (fp) is 0.13 Hz and the zero-upcross period (Tz) is 4.94 s.
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Figure 5.5: Surface power spectral density and direction.

The significant spectral peak steepness, which is an indicator of wave group

nonlinearity, is defined as

εp =
Hskp

2
(5.4)

where Hs is the significant wave height and kp is the peak wavenumber corresponding

to the peak frequency fp by kp = (2πfp)
2/g. In our case, εp is 0.05.

5.2.2 Construction of Initial Wave Field in 3D

We begin with a power spectral density of the wave field that is frequency-

dependent and direction-dependent. From the frequency spectrum S(ω), we can obtain

a wavenumber spectrum S(k) by considering the energy equality under both curves

which leads to

S(ω)
dω

dk
= S(k) (5.5)
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The relationship between ω and is given by dispersion relationship

ω2 = gk tanh(kh) (5.6)

from which the expression for group velocity can be derived

∂ω

∂k
= Cg =

1

2
(1 +

2kh

sinh(2kh)
)
ω

k
. (5.7)

In 3D, we need to consider directional spreading of waves and work in terms of direc-

tional wave spectra. Directional wave spectra S(k, θ) can be described by

S(k, θ) = S(k)D(θ) (5.8)

where D(θ) is the directional spreading function. Following Donelan et al. (1985), we

use the following form for the directional spreading function

D(θ) =
β

2
sech2(β(θ − θ)) (5.9)

where θ is the mean wave direction and

β =


2.61( ω

ωp
)1.3 ; 0.56 < ω

ωp
< 0.95

2.28( ω
ωp

)−1.3 ; 0.95 < ω
ωp
< 1.6

1.24 ; otherwise.

(5.10)

We note that in our study the direction at the peak frequency is used instead of the
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mean wave direction in (5.9). Next, energy equality is used to transfer from S(k, θ) to

S(kx, ky) via division by the Jacobian of the transformation |J | which is given by

|J | =

∣∣∣∣∣∣ cos θ sin θ

−k sin θ k cos θ

∣∣∣∣∣∣ = k. (5.11)

From S(kx, ky) to the two-dimensional amplitude spectrum

1

2
a2l,m = S(ldkx,mdky)dkxdky (5.12)

where l = −Nx

2
,−Nx

2
+ 1, . . . , Nx

2
− 1, m = −Ny

2
,−Ny

2
+ 1, . . . , Ny

2
− 1, dkx = 2π/Lx

and dky = 2π/Ly. Nx is the total number of wave components in x direction, Ny is

the total number of wave components in y direction and Lx, Ly are lengths of periodic

domain in x and y directions, respectively.

Complex amplitude are computed by using (5.12). A uniformly distributed

random number generator with numbers generated in the interval of [0, 2π] is used in

order to obtain a random representation of the surface by using

Al,m =
al,m

2
exp[iΘl,m]. (5.13)

Similarly for the complex amplitudes used in the construction of surface velocity po-

tential, we have

Bl,m = − ig

ωj,n

al,m
2

exp[iΘl,m]. (5.14)

Then, initial surface elevation can be obtained by

ηp,q =

Nx/2−1∑
l=−Nx/2

Ny/2−1∑
m=−Ny/2

Al,m exp(iklxp + ikmyq) (5.15)
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and initial surface velocity potential can be obtained by

ξp,q =

Nx/2−1∑
l=−Nx/2

Ny/2−1∑
m=−Ny/2

Bl,m exp(iklxp + ikmyq). (5.16)

where p = 0, 1, . . . , Nx − 1 and q = 0, 1, . . . , Ny − 1, xp = pdx, yq = qdy, dx = Lx/Nx

and dy = Ly/Ny. In order to get real values for η and ξ complex amplitudes A and B

have to be complex conjugates. Computation of (5.15) and (5.16) are done by making

use of 2D Inverse Fast Fourier Transforms to obtain η and ξ.

5.2.3 Numerical Simulation Setup

After the surface displacement and velocity potential are generated, the wave

is propagated in a numerical domain. Here, the spatial domains considered are of

dimension 500m×500m with the number of grid points 256×256. The spatial resolution

of the simulation is therefore ∆x = ∆y = 1.95 m. The nonlinear wave field is simulated

for an evolution time up to 1200 seconds or 155Tp with a time step of ∆t = 0.02 s or

Tp/385. The nonlinear wave-wave interactions are considered up to the fifth order.

Fig. 5.6 illustrates the initial surface elevation. The color bar represents the scale in

meter.

During the simulation, at each time step, the model will detect the likely occur-

rence of wave breaking based on limiting vertical acceleration criterion. The threshold

of α = -0.4 is used in the simulations. The vertical acceleration is approximated using

curvature of surface displacement at each time. After breaking regions are defined, the

model will determine the appropriate amount of local damping. The damping con-

stants of σ = 0.3, 1.0 and 2.0 are used in the simulations. As mentioned previously

in Chapter 4 that smoothing technique is used in detection of wave breaking, here the

frequency range 0.06 – 0.26 Hz is used.
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Figure 5.6: Initial surface elevation.
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5.2.4 Results

Fig. 5.7 - 5.9 show maps of breaking regions and surface elevations obtained from

the numerical simulations at time 40, 400, and 455 s, respectively. These times are

selected to present because percent of breaking area during these times is higher than

other times. The red patches in Fig. 5.7(a) - 5.9(a) indicate regions in the numerical

domains where the vertical acceleration is less than the threshold of -0.4. The black

circles in Fig. 5.7(b) - 5.9(b) indicate locations where the model detected wave breaking.

We monitor fraction of breaking region as a function of time. Fig. 5.10 shows

percent of breaking point for cases with the strength of the damping constant σ = 0.3,

1.0 and 2.0, respectively. We can see that percent of breaking point of cases σ = 0.3

and 1.0 ranges between 0.0 – 1.5 and between 0.0 – 1.0 for case σ = 2.0. We can also

see from Fig. 5.10 that percent of breaking point of case σ = 2.0 is less than cases σ

= 0.3 and 1.0 and case σ = 1.0 is less than case σ = 0.3. This is because the strength

of the damping constant,σ, indicates the among of energy taken from the wave field.

The larger σ the more wave energy taken.

During the simulations, the mean wave energy density (E) per unit horizontal

area (J/m2) is computed using linear wave theory, E = ρgm0 where m0 is the variance

of the surface elevation. Significant wave height (H0) is computed by Hm0 = 4
√
m0.

The mean wave energy density and the significant wave height of case σ = 0.3, 1.0 and

2.0 are shown in Fig. 5.11.
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(a)

(b)

Figure 5.7: (a) Map of breaking regions at time 40 s. The red patches indicate
regions where the vertical acceleration is less than the threshold of -0.4.
(b) Predicted surface elevation at time 40 s. The black circles indicate
locations where the model detected wave breaking.
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(a)

(b)

Figure 5.8: (a) Map of breaking regions at time 400 s. The red patches indicate
regions where the vertical acceleration is less than the threshold of -0.4.
(b) Predicted surface elevation at time 400 s. The black circles indicate
locations where the model detected wave breaking.
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(a)

(b)

Figure 5.9: (a) Map of breaking regions at time 455 s. The red patches indicate
regions where the vertical acceleration is less than the threshold of -0.4.
(b) Predicted surface elevation at time 455 s. The black circles indicate
locations where the model detected wave breaking.
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(a) σ=0.3

(b) σ=1.0

(c) σ=2.0

Figure 5.10: Percent of breaking point of cases with the strength of the damping
constant (a) σ = 0.3, (b) σ = 1.0 and (c) σ = 2.0.
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Figure 5.11: Energy density and significant wave height (Hm0) as a function of time
for cases with the strength of the damping constant σ=0.3, 1.0 and 2.0.
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Chapter 6

CONCLUSION

In this thesis, a three-dimensional nonlinear wave model has been parallelized us-

ing MPI for communication between processes and FFTW-MPI for computing Fourier

transform. Wave breaking model and wave energy dissipation have been implemented

into the model. The dynamics vertical acceleration criterion has been used to detect

likely occurrence of wave breaking in a numerical domain. Adding pressure against the

wave field is the technique used to absorb energy locally from waves that are about to

break.

The parallelized model has been testing for both accuracy and performance. An

idealized case of solitary wave and energy focusing nonbreaking wave group obtained

from a laboratory experiment are used for examining an accuracy of the model while

an initial Gaussian wave profile is used for checking performance. The results are

satisfactory. The model has been applied to study energy focusing breaking wave

groups from laboratory experiments and ocean random waves from field observation.

It is found that the model predicts well the total energy dissipated in breaking events

in laboratory experiments.

However, when using the large number of processors, speedup of the parallelized

model decreases. Using hybrid method may help improve the speedup. The second

level of parallelization could be either to parallelize the evolution of the Dirichlet-

Neumann operator (DNO) as suggested by Nicholls (1998) or to use OpenMP to take

advantage of SMP nodes as done in Larsgrd (2007). Also, improving de-aliasing part

in the parallelized model will increase speedup. FFTs-alias-free version developed by

Roberts (2012) may be used.
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Further development of the model may involve an extensive testing of the model

over a wide variety of wave conditions and breaking criteria. More realistic wave energy

dissipation needs to be considered and implemented in the model. For simulations of

ocean random waves, wind input during the simulation is another important factor

which should be included in the model. These directions are envisioned for future

work.
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