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PREFACE AND SUMMARY 

This Memorandum is one in a continuing series of RAND 
* 

publications dealing with theoretical and computational 

questions which have arisen in connection with the RAND 

program of research on rocket fuels and propellents and 

in biology and physiology. It details a method by which 

a multi- or single-phase chemical equilibrium problem with 

a large number of different chemical species can be re- 

placed by one with relatively few species. 

of this research is to find methods for transforming com- 

plex problems into problems which are more amenable to 

The purpose 

numerical solution. 

This Memorandum is concerned with a technique first 

developed in an earlier Paper, On the Reduction of Certain 

MultiplLcat€ve Chemical E<luilibrium Systems to Mathematically 

Equivalent Additive Systems, P-2419, by G. B. Dantzig and 

J. C. DeHaven. The present Memorandum generalizes the 

technique to systems more complex than those to which the 

technique of the earlier paper is readily applicable. The 

basic approach of the previous paper is described briefly, 

-- * 
Far example, see Refs. 2-8. 
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but the reader should be familiar with P-2419 for certain 

explanatory and illustrative materra1 which has not been 

included in the present paper. 
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A GEXERALIZED TECHNIQUE FOR ELIMINATING SPECIES IN 
COMPLEX EQUILIBRIUM CALCULATIONS 

I. INTRODUCTION 

We will consider multi- or single-phase Ghemical 

equilibrium problems, showing that, under certain circum- 

stances, a problem involving a very large number of dif- 

ferent chemical species may be replaced by one involving 

relatively few species. The new problem will then be 

much more amenable to numerical solution than the original 

problem. We will use the same approach in formulating 

complex chemical equilibrium problems as was used in c11. 

It is briefly described here primarily in order to intro- 

duce our notation and terminology. 

Consider a problem involving certain chemical species, 

Xl, ..., Xt, ...,%, in one or more phases. 

of generality to assume that no species can occur in more 

than one phase. 

liquid phase and a gaseous phase, we assume, as is fre- 

quently done, that we are dealing with two distinct species, 

H20-liquid and H 0-vapor, and we formulate the mass balance 

It is no loss 

For example, if H20 occurs in both a 

2 
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equations (see below) in such a way that H 0-liquid is 

transferable into or from H 0-vapor. 2 

2 

Thus, we assume that 

species in distinct phases are distinct. 

In [l] it was shown that any chemical equilibrium 

could be formulated from the following three types of 

information : 
&* 

I. A specification of which species occur in whrc 

phases. 

For a L' 11. Certain constants al,...,az,...,~ 

discussion of the meanings and the various interpretations 

of these constants, as well as the methods by which they 

may be obtained, see c21. Because one way of looking at 

the at's depends on the Gibbs free energy function, we 

will call cyc the free energy parameter associated with 

Xt. In fact, cut = - RT 
111. A set of N linear equations of the form 

where x 

straints of the type (1) may represent, for example, mass 

balance constraints, or may, for example, express the 

condition that a certain phase be electrically neutral. 

is the (unknown) number of moles of X Con- 
t Z *  
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Thus, if n of Eq. (1) is a mass balance constraint, 

S might be the number of atoms of some chemical element 

in each molecule of X4., and s would be the total number 

of atoms (measured in moles) of that element in the system 

under consideration. In practice, of course, it is ordin- 

4.,n 

O,n 

arily more convenient to base the mass balance equations 

on various radicals rather than on individual atoms. In 

any case, all the mass balance constraints are of the 

form (1); that is, they are linear equations in the x 's. 4. 

If equation n of (1) is an electro-neutrality con- 

L,n 
dition on some phase, then s would be zero, except for 

those 4. for which X4. occurs in that phase, and X 

ion. In that case, s 

appropriate sign. 

is an 

is the valence of X with the 
4. 

4' 4,n 

st' If, for each C, 0 5. 4 5 L, we define a vector, 

whose components are s 1 5 n 5 N, then Eq. (1) may be 

written as 
n,L' 

1 

Notice then, that S, is essentially the "empirical formula" 

for XI, 

We will call S L  the constraint vector associated with X4. 
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Repeating, a chemical equilibrium problem may be 

completely specified by the following three types of in- 

formation : 

I. The specification of which species occur in 

which phases. 

11. An energy parameter, o for each species, X,. 4' 

A constraint vector, S,, for each species, X,, 111. 

and a vector S 0' 
Note that the concentration * -  .XI 1 of each species 

0 

X, can be calculated by dividing xp by the sum of all 
0 0 

x 's for which X (this 

sum, of course, includes xJ itself). Thus, the LX,i's 
'0 

are functions of the X,'S (although each ,X,j does not 

depend only on the corresponding xa). 

occurs in the same phase as X, 
4 4 '0 

It was shown in ,2; and i31 that the xi's may be 
efficiently determined, numerically, by minimizing the 

function 

* 
Throughout this paper, we measure concentration in 

mole fractions, 
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subject to the constraints that 

L c X.LSt = so 
4-1 

Before stating and proving our results, we give an 

example of a typical and relatively simple situation to 

which they apply. 

Consider a chemical equilibrium problem involving one 

or more phases. 

which we will arbitrarily call the first phase. 

Consider some particular liquid phase, 

Suppose 

that a certain chemical species, X, ocCurs in the first 

phase. Suppose also that X can combine with oxygen to 

form new species XO 

distinct sites at which hydrogen ionization can occur, 

that X02 has 75 distinct sites at which hydrogen ioniza- 

tion can occur, and that X04 has 100 distinct sites at 

and X04. Suppose that X has 50 2 

which hydrogen ionization can occur. 

Suppose that all these sites are independent, in the 

same sense that ionization at one site does not influence 

the ease or difficulty of ionization at any other site 

on the same molecule. (Note: This assumption of complete 

independence is not necessary in order to apply the methods 
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of this paper. They would also be applicable if various 

types of systematic dependence were assumed.) 

Suppose also that all these sites are of two distinct 

classes--sites of the first class being easier to ionize 

than sites of the second class. But, suppose that all 

sites of the first class are equally easy to ionize and 

that all sites of the second class are equally easy to 

ionize. Thus, each molecule of X might have 20 sites of 

the first class and 30 sites of the second class; each 

X02 molecule might have 30 sites of the first class and 

45 sites of the second class, 

have 50 sites of the first class and 50 sites of the 

Each X04 molecule might 

second class. 

Notice that two molecules ionized 

represent different species; hence, we 
c n  

in different ways i 

are dealing with -- 
a total of 2=” different varieties of X, 2” different 

varieties of X02, and 2 different varieties of X04-- 

or a total of approximately lo3’ distinct chemical species. 

It will turn out that we will be able to formulate a new, 

problem which will be equivalent to the first problem, 

but one in which all these approximately lo3* species will 

be replaced by only seven species. Of course, the first 

phase may itself contain additional species and there may 



-7- 

be other phases. But we will have attained a significant 

reduction in problem complexity. 

We will now leave this special example and proceed 

to state and prove our general results. Although we will 

not again refer to this example, the reader may wish to 

refer back to it from time to time in order to understand 

the applicability of the general and rather abstract dis- 

cussion which follows. 

example is not representative of either the complexity or 

the variety of the situations to which our results may be 

applied. The only purpose of the example is to enable 

the reader to more readily understand the statement of 

our results. 

It should be emphasized that the 
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XI. RESULTS 

Let (0 be some subset (or the entire set) of species 

in one of the phases (which we will arbitrarily call the 

first phase) of a multi- or single-phase equilibrium 

problem in the sense of [l]. 

various sets of species, (0, ,..., ,..., . That is, every 
species 8 of 0 is in exactly one of the sets, oi. 

Let 4 be partitioned into 

oi 41 

Let Al, ..,,%,...,+ be classes of sites (these sites 

are actually abstract entities, and need not--but may-- 

correspond to actual chemical sites). Suppose that a site 

in the class % can have J k possible states: Bkl, 0 , 

B . (For example, a class of sites might be 

the class of all oxylabile sites which are affected in a 

given manner by the presence of 0 the possible 

of a site in this class might then be an ionized 

and an un-ionized state.) 

2; states 

state 

Suppose further that for each i and k, every species, 

8, in the set bi has exactly the same number of sites, 

pik, in the class +. That is, the classification of the 

sites of a species, 8, depends only on which of the sets, 

tbi, that 8 belongs to. 



-9- 

Suppose also, that any species, 8, of 4 is completeLy 
identified by stating the 9, of which it is a d e r  and 

the states of each of its sites. 

Suppose also, that for each oiI all logically possible 
assignments of states to sites (within the limitation that 

if a site is in the class % then its state must be one of 
Bkl I S $ j  ,...,BkJ ) actually occur among the species of 

k 
@i 

Suppose, finally, that the free energy parameter, a8, 

for each 8 of 0 depend , and mass constraint vectors, 

only on which of the qi's that 8 belongs to and on the 

states of the sites of 8; and, that this dependence is an 

additive dependence. To state this assumption more pre- 

cisely, for each species 0 of 0, and for each site class 
%, and for each j, 1 j I; Jk, let h(e,k,j) be the nlrmber 

of sites of 8 of class % which are tn the state Bkj. our 
assumption then states that for each set ai of species 
there is a vector Ti and a number B 
site class \ and each j 1 2 j 5 J 

and that for each 

there is a vector 
i' 

k' 
T and a 
kj 

'e 

number B such that 
bcj 

k-1 j=l 
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and 

We may now state our results. 

Theorem 1. Let xe be the number of moles of species 

8 present in the first phase at equiltbrium. For each set 

0, of species let 

P 

and for each state B let 
k j 

(4) 

(Note that yi is then the total number of moles of species 

in @i, and that y 

state B 

which these aites occur.) 

is the total number of sites in the 
kj 

--measured in moles--regardless of the species on 
k 3 

Then, the following relationships hold: 

I 
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for all site classes, %; 

for all sets 0, and all species 

Jk 
where d denotes 1 ykj . k 

j -1 

Theorem 2. If we replace the original problem by a 

new problem, as follows: 

Eliminate all the species 9 of 0 from the first 
phase ; 

For each o,, add to the first phase a new species 

i with constraint vector Ti and energy parameter 

Pi. 
i in the new problem; 

Let yi then be the number of moles of species 

For each k, 1 k 5 K, introduce a new phase whose 

the constraint 
kj ’ 

species will be the states B 
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kj vector and energy parameter associated with B 

being T and respectively. Let y then 

be the number of moles of species B 

problem; 

kj w ’ kj 
in the new 

kJ 

d) All the species of the original problem (except 

those in 0) will be retained in the new problem 
with their original constraint vectors and energy 

parameters; 

e) For each %, a new constraint, Eq. (7), is intro- 

duc ed ; 

- then, the two problems will be equivalent in the following 

senses: 

I. The minimum free energy of the original problem 

is the same as the minimum free energy for the new problem. 

11. The number of moles of all the species (and 

their concentrations), except for those species in 0 
which do not occur in the new problem, will be the same 

at equilibrium in the two problems. 

111. If x8 is the amount of species 8 in the first 

problem at equilibrium, and if yi and y are the amounts 
kj 

of species i and Bkj, respectively, in the new problem at 

equilibrium, then these quantities are related by Eqs. 

(4)-(8). (Equation (7) holds, of course, simply because 
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it was imposed as a constraint on the new problem.) 

- Note: It should be observed that having replaced the 

old problem by the new problem and having solved the new 

problem, we may recover the original x 's by direct sub- 

stitution in IIq. (8). 
e 
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ZIP, PROOFS 

c 

Throughout this section we will assume that each Ti 

and each T is a given vector and that the So's are given 
kj 

by Eq. (2). 

B 
We will also assupee that each Bi and each 

is a given number and that the ae's are given by Eq. (3). 
kj 

We will allow the yi's, ykj Is, and xe's to be vari- 

ables. We will make explicit various different assumptions 

about the manner in which they are related to each other 

in the various I-s. Thus, at times we will am3ume that 

the y's are defined in tenns of the x's by Eqe. (4) and 

(5); and, at times we will assume that the x's are defined 

in ternus of the y's by Eq. (8). 

However, we will always regard 0 as being defined by k 

and for all k. 

-0 Proof This is simply a restatement of the assumption that 

a species in $i has pFk sites in the class % of sites. 
We will find it convenient to introduce a polynomial 

in several variables, R(z) , where the components of z are 



for k-1,. .. ,K and jml,.. . ,Jk; 
kj 

for i=l,. . .,I, and z 

K 
thus, z has a total of I + 1 Jk components. We deftne: 

k=l 

I K 

I K 

Leraaa 3. 

k=l -1 

RQof. Note that we have 

the same Oi have the same 
thit fox each 8 of 4, and 

assumed that all the 8's in 

classification of sites. Imagine 

for each site of 0 we write 

(with a very small pen!) the sum 
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if the site is in the class %. 
written each sum Pik times on each 8 of 0,. 
develop the product 

Note that we will have 

Let us then 

7 

as follows. 

For each 8 of ai, write a product of 2's over the 

cor- sites of 8 by choosing cat each site that term z 

responding to the state 

then add the resulting products for all 8 of 0,. 
one hand it is clear, from the definition of h($,k,j), that 

kj 
that the site is in. Let u8 

On the 
% 

the resulting sum will be: 

8tOi k-1 j-1 

On the other hand, since we have assumed that as 8 varies 

over 0, all possible permissible assignments of sites to 

atates QCCUL exactly once, it is not hard-to see that the 
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process has also evaluated the product, (10). * Thus, the 

quantities (10) and (11) are equal. 

If (10) and (11) are set equal and multiplied by zi, 

and the result is added over i, we arrive at the identity 

asserted in Lemma 3. 

Lmma 4. If the relationships of Q s .  (4) and (5) 

hold, then: 

I K 

- Proof. 

from 4 s .  (4) and (5). 

This follows by expanding Sg, using Eq. (21, crnd 

Lemna 5, If the relationships of Eqs. (4) and (5) 

hold, then 

I K 'k 

6 
Recall that as 9 varies over Oi, each possible 

assignment of states to sites is attained exactly once. 
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Lemma 6. If Eqs. (4) and (5) hold, then so does 

Eq. (7). 

Proof. Lennna 1. - 
Lerrnna 7. If Eq. (4) holds, then so does Eq. (6). 

Lemma 8. If the xe's are the quantities associated 

with the original problem and if the y's are defined by 

Eqs. (43 and (S), then Eq. (8) holds. 

- Proof. We know that for an appropriate Lagrangian vector, n, 

Mere, a denotes the total number of moles at equilibrium 

in compartment one of the first problem. 

Hence, using Eqs. (2) and (3) (and letting 8 be in Qi): 

k-1 j=l 

or, letting 

Ti-Bi 
v - e  > o  i 



Y 

G 

-19- 

and letting 

we get 

K Jk 

k-1 j-1 

Let ck, 1 5. k K, be arbitrary positive numbers and 

set Wk) * CkVkj. Also, set 

K 
OPik , wi a n C k  s 

then, using Lemma 1, Eq. (12) becomes 

K 'k 

k=1 j=1 

Now, by taking 



we have 

Jk 

1 wkj = l  

j-1 

From Eq. (14) and from L m  3 we get 

I 

From Eqs. (4) and (13) it follows that 
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aR(w) 
= (From the definition of R) wi aw 

i 

= (From (16)) wi . 

Next, by using Eqs. (5) and (13), we get 

Combining (17), (l$), and Leuuna 6 

Jk 

Combining (20) and (19) 

Ykl . 
wkj Ok ' 

then, (lS), (21), and (13) yield (8). QED 
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Lezlnna 9. If Eqs. (7) and (8) hold, so do Eqs. (4) 
-I__ 

Then 

and (5). 
'k Proof. Let w = and let wi = yi. 
k kj (3 

and Eq. (8) becomes 

K Jk 

Next 

I 

QfOi . 

J- K k 

aR(w) 

k j 
kj aw = (By Lemma 2) w 

By Lemma 3 and Eq. (22) 
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This and Eq. (24) yield (5). 

Finally, from (23), 

K Jk 

. . . .  

€IC@i k-1 j-1 

bR(w) 
i 

= (From the definition of R) w i aw 

But, Lemma 3 and Eq. (22) yield bRO = 1. This and 
bWi 

the fact that wi = yi yield (4). 
Lemma 10. (A) If Eqs. (4) and (5) hold and if the 

are those associated with the equilibrium solution in x8 
the original problem; or (B) if Eqs. (7) and (8) hold, 

then: 

I K Jk 

and 

i-1 k-1 j=1 
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where by "a" we mean the sum of all amounts of all species 

in the first compartment of the original problem. 

Note 1: By Lemmas 6 and 8, (A) implies (B). Hence, 

we need only prove that (B) implies (25) and (26). But, 

by Lemma 9, (B) implies Eqs. (4) and (5) and by Leuma 7 

Eqs. (4) and (5) imply Eq. (6). Hence, in proving Lemma 

Note 2: By Eq. (6), a is also the sum of all the 

amounts of all the species in the first phase in the new 

pr ob 1 em <, 

Equation (25) follows at once from Lemma 4. 

To prove Eq. (26), observe that by employing Lemma 5 

and Eq. (26) we need only prove that 

K 

+I 
k-1 

To prove Eq. (27), note that from Eq. (8) we get 
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k=l j=1 \ 

I K Jk ., 

L. i=l k=l j=1 

which is Eq. (27). QED. 

Theorem 1 follows from Lemmas 7, 6, and 8. 

To prove Theorem 2, observe that, given a solution 

of the old problem, we may define the y’s by means of 

Eqs. (4) and (5) to obtain a solution to the new problem. 

Conversely, by means of Eq. (8) we may obtain a solution 

to the old problem given a solution to the new problem. 

Lemmas 4, 6, 8, 9, and 10 assure the validity of this 

process and of the various assertions of Theorem 2. 
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