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Abstract

The present study develops an extension of the approach pioneered by Farris [Trans. Soc. Rheol. 12, 281–301 (1968)] to model the viscosity

in polydisperse suspensions. Each smaller particle size class is assumed to contribute to the suspension viscosity through a weighting

function in two ways: first, indirectly, by altering the background viscosity, and second, directly, by increasing the contribution of the larger

particles to the suspension viscosity. The weighting functions are developed in a consistent fashion as a power law with the exponent, h, a

function of the relative volume fraction ratio and the base, g, a function of the solid particle size ratio. The model is fit to available

theoretical and experimental results for the viscosity of several binary suspensions and shows good to excellent agreement depending on the

functions g and h chosen. Once parameterized using binary suspension viscosity data, the predictive capability to model the viscosity of

arbitrary continuous size distributions is realized by representing such distributions with equivalent ternary approximations selected to match

the first six moments of the actual size distribution. Model predictions of the viscosity of polydisperse suspensions are presented and

compared against experimental data. VC 2016 The Society of Rheology. [http://dx.doi.org/10.1122/1.4938048]

I. INTRODUCTION

The theoretical study of the rheology of suspensions has a

long history. It dates back to the seminal work by Einstein

who first described theoretically the relationship between

viscosity and the solids volume fraction in dilute suspensions

of solid spheres [1,2]. Subsequent works on understanding

higher order effects in more concentrated systems include

the work of Batchelor [3] and Happel and Brenner [4]. It is

clear from experimental evidence that the total solids’ frac-

tion is not the only factor affecting the rheological properties

of suspensions [5]. Particle size polydispersity is also an im-

portant factor with immediate consequences in numerous

industrial processes including the handling of slurries and in

the food industry. In many applications, it is important to

determine the particle size distribution (PSD) that minimizes

the viscosity of a given particulate formulation. Therefore, it

is not surprising that attempts to model the limit of no-flow

(maximum packing) in particulate systems [6,7] and more

generally polydispersity effects on rheology [8–10] comprise

a longstanding area of inquiry. More recently, alternative

models have been proposed to describe the effects of poly-

dispersity on viscosity, including works by Qi and Tanner

[11], D€orr et al. [12], and Farr [13].

Experimental measurements [10,14–16] and simulation

results [17] show that polydispersity induces significant

changes in suspension rheology, when compared to monodis-

perse systems. For example, computer simulations by Chang

and Powell [17] starting from initially random configurations

indicate that the formation of clusters of large and small

particles in a mixed suspension under flow is a plausible

microstructural explanation for the reduction in suspension

viscosity upon mixing two particles of different size. At the

moment, no first principles theory is available to predict the

effects of polydispersity except in certain limiting cases.

More specifically, Wagner and Woutersen [18] presented

exact calculations for the effects of polydispersity on the vis-

cosity of Brownian suspensions in the dilute regime.

However, the development of first principles theories for

concentrated suspensions remains an open question despite

being of great practical relevance. In the absence of such the-

ories, there are three main phenomenological approaches

that have been used to understand and model the effects of

polydispersity on suspension rheology. These are the maxi-

mum packing fraction approach, the Mooney approach [8],

and the Farris approach [9]. A common feature of the most

successful of these approaches is the use of multiplicative

calculations to account for the effect of size separation on

viscosity. The main difference between these approaches

arises from the treatment of the maximum packing fraction

either as a constant or as a variable that depends on the PSD.

The use of a variable maximum packing fraction repre-

sents the simplest methodology toward accounting for the

effects of particle size polydispersity on suspension rheol-

ogy. From the theoretical point of view, there has always

been an interest to evaluate the limit of flowability in dis-

persed systems [6,7], leading to the development of models

to predict the maximum packing fraction of particulate sys-

tems. Based on these models, rheologists have used the max-

imum packing fraction to model the viscosity of binary

suspensions [10,15,16]. In the first variant of this approach,

the viscosity is assumed to obey any one of the empirical or

semiempirical viscosity correlations for monodisperse hard

sphere suspensions [19–21]. A review of these and other

a)Author to whom correspondence should be addressed; electronic mail:

beris@udel.edu

VC 2016 by The Society of Rheology, Inc.
J. Rheol. 60(2), 225-240 March/April (2016) 0148-6055/2016/60(2)/225/16/$30.00 225

 Redistribution subject to SOR license or copyright; see http://scitation.aip.org/content/sor/journal/jor2/info/about. Downloaded to IP:  128.175.82.78 On: Mon, 28 Mar 2016

13:46:55

http://dx.doi.org/10.1122/1.4938048
http://dx.doi.org/10.1122/1.4938048
http://dx.doi.org/10.1122/1.4938048
mailto:beris@udel.edu
http://crossmark.crossref.org/dialog/?doi=10.1122/1.4938048&domain=pdf&date_stamp=2016-01-14


viscosity correlations is presented by Faroughi and Huber

[22]. The auxiliary information on the PSD only enters into

the viscosity calculation via a modification of the maximum

packing fraction based on various models [6,7,23]. Despite

some early successes, shortcomings have been identified

with some of these maximum packing models. Qi and

Tanner [11] identified shortcomings in the maximum pack-

ing model by Ouchiyama and Tanaka [7]. In particular, this

model yields unphysical predictions in the limit of vanishing

values of the small particle volume fraction in a binary sus-

pension. On the other hand, the model by Furnas [6] is based

on geometrical arguments and is inherently limited to sus-

pensions with large differences between consecutive particle

sizes. In the case of binary suspensions, this model predicts a

single maximum packing fraction that corresponds to the

theoretical maximum attainable packing.

Qi and Tanner [11,24] developed a model that provides a

method to directly calculate the suspension viscosity in bi-

nary and multimodal suspensions by consecutively account-

ing for the effects of the different size classes on the overall

viscosity in a multiplicative fashion. Starting from the larger

size particles, where the maximum packing fraction is

assumed to be random close packing, each subsequent

smaller particle size is assumed to have an adjusted maxi-

mum packing fraction that depends on the volume fractions

and the particle sizes present in the system. The suspension

viscosity is then calculated as a multiplicative product of the

contributions of each individual size class to the relative vis-

cosity of the suspension. Related to the Qi and Tanner

approach is the work of D€orr et al. [12] who have developed

an effective medium approach that considers the contribution

of each size class to suspension viscosity explicitly. In their

model, the suspension viscosity is computed recursively

based on the addition of particles of a larger size class to an

effective suspension of smaller size particles. This approach

is different from that of Qi and Tanner [11,24], who use a

multiplicative rule. Their model also uses a modified maxi-

mum packing fraction that is associated with the stepwise

addition of each size class and is computed based on

excluded volume arguments. However, like the Furnas maxi-

mum packing model [6], this model is currently limited to

suspensions with large size differences between successive

classes. A unique additional contribution of this work is the

matched asymptotic expansion to a generalized viscosity

correlation that allows one to arbitrarily choose the second

order Taylor coefficient (Huggins coefficient), in addition to

satisfying the Einstein limit. This provides an additional flex-

ibility to account for different interparticle interactions pres-

ent in real systems and introduces an interesting paradigm to

systematize the analysis of viscosity measurements across a

wide variety of systems.

Mooney [8] presented an alternative to the maximum

packing fraction models by using a “crowding factor” to

describe the effect of adding particles to a Newtonian me-

dium. Using symmetry arguments as constraints, he derived

an expression to describe the suspension viscosity taking

into account explicitly the contributions of each size class.

This was essentially a renormalization of the Einstein dilute

limit result to describe the relative viscosity in a

monodisperse suspension through an exponential function of

the volume fraction. However, instead of the 2.5/ depend-

ence [2], the effective volume fraction is increased up to

2:5/=ð1� k/Þ, where k is a crowding factor that is chosen

to represent concentration effects in monodisperse suspen-

sions. For polydisperse suspensions, Mooney postulated a

dependence of the crowding factor on the relative particle

sizes. Finally, the total suspension viscosity is calculated

from multiplicative contributions from each size class. Even

though Mooney alluded to the extension of his approach to

polydisperse suspensions, he never completely addressed

this aspect in the original publication. Following Mooney’s

work, Farr [13] extended the original approach with two

main contributions. First, he proposed a model for how the

crowding factor depends on size ratios for arbitrary size dis-

tributions, completing an important aspect of Mooney’s orig-

inal idea. Second, Farr allowed for additional complexity in

the modeling of the suspension viscosity by including a

“dispersity effect” to account for the heterogeneity of parti-

cle interactions in a polydisperse suspension, therefore intro-

ducing more flexibility to allow for better fits to

experimental data. Faroughi and Huber [25] have also

recently described a theoretical argument for a crowding-

based rheological model for binary suspensions. They estab-

lish the crowding effect as the reduction in the “dead fluid

volume” that is associated with a given level of packing, and

are able to show good agreement with experimental data.

Farris [9] described another alternative theoretical

approach toward calculating the effect of polydispersity on

the suspension viscosity. His model was motivated by previ-

ous work on sedimentation in binary suspensions [26] where

the large particles, in the presence of much smaller particles,

are observed to behave in a manner that suggests that they

are interacting with an effective Newtonian viscosity corre-

sponding to a suspension of the smaller particles. The total

suspension viscosity is computed as a product of the relative

viscosity of the large particles multiplied by an effective vis-

cosity of the renormalized medium. The attractive feature of

this approach is that it provides a methodology toward con-

structing the viscosity of a polydisperse suspension of par-

ticles by explicitly considering the effect of each particle

size class during the viscosity calculation. However, it is cur-

rently limited to suspensions with large size differences

between successive particle size classes. Although Farris

demonstrated the possibility of introducing crowding factors

to extend his model applicability to systems with arbitrary

size distributions, no systematic methodology was provided

to achieve this, leaving this modeling approach incomplete.

In our work, a modification and extension of the Farris

approach is presented. As in the original approach, we start

by requiring the relative viscosity of the monodisperse sus-

pension to be a function of volume fraction represented by

one of the many empirical formulae available, depending on

the nature of the suspension. In a monodisperse suspension,

the relative viscosity incorporates the additional effect of the

particles on the suspending medium. With two differently

sized particles, i.e., a bimodal suspension, the definition of

the relative viscosity may be extended by renormalizing the

effect of the smaller particles as contributing toward
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changing the medium as well as the larger particles through

appropriate weighting functions. More specifically, upon

addition of larger particles to a suspension, the weighting

functions relegate a fraction of the already present smaller

particles to interact directly with the added particle volume

fraction, with the remaining fraction contributing toward

increasing the effective background viscosity. A key element

of our approach is the use of formulae that by construction

preserve the consistency of the model for all possible limit-

ing cases. Still these constraints are not sufficient to uniquely

define the weighting function. Thus, by necessity, the

weighting function involves fitting parameters that need to

be determined empirically. This can be achieved using theo-

retical results as well as experimental and/or simulation data

on binary suspensions. Once parameterized based on binary

viscosity data, our model can predict the viscosity of suspen-

sions containing particles with multiple sizes, e.g., ternary

suspensions. The success of such an approach here indicates

the power of linking the complex behavior of systems to that

of known limiting cases and then systematically interpolat-

ing in a consistent fashion based on a limited set of empirical

parameters. This is an especially useful first approach when

faced with complex systems for which there is little guidance

from first principles theory on how to develop a comprehen-

sive model of the phenomena to be described.

The rest of the paper is organized as follows: in Sec. II,

we present the relevant theory (model development) for bi-

nary and ternary suspensions, as well as the details of its

implementation to polydisperse suspensions. In Sec. III, we

describe the parametrization of the model based on theoreti-

cal calculations of the Huggins coefficient by Wagner and

Woutersen [18]. In the same section, we also show how the

model can be parameterized based on experimental viscosity

data of a binary suspension. In Sec. IV, we validate the

model by comparing its predictions for binary suspension

viscosities against those obtained with recent alternative

models from the literature. In Sec. V, we develop predictions

of the viscosity of polydisperse suspensions, we compare

them against available experimental data, and we demon-

strate their insensitivity to the details of the implementation.

Finally, our conclusions follow in Sec. VI.

II. MODEL DEVELOPMENT

A. Proposed approach and underlying physical
picture

The general framework within which we have developed

our viscosity model assumes the presence within the suspen-

sion of multiple particle size classes, with the viscous effects

attributable to hydrodynamic interactions only. Therefore,

strictly speaking, the model is currently limited to ideal non-

colloidal as well as colloidal suspensions in the plateau vis-

cosity region at high shear rates (or Peclet numbers). Similar

to the maximum packing fraction models, the starting point

of the proposed constitutive equation is provided by the rela-

tive viscosity relationship of a monodisperse suspension. A

number of such empirical and semiempirical relationships

exist [19,20,27,28]. For example, Singh and Nott [29] fit the

volume fraction / dependence of the shear viscosity gr from

measurements on noncolloidal suspensions using Eilers’

equation

gr ¼ 1þ 1:5/ 1� /
/max

� ��1
" #2

; (1)

with /max ¼ 0:58. Owing to differences seen in the monodis-

perse viscosities of real noncolloidal suspensions in experi-

ments, one must admit some flexibility in the choice of the

functional form of gr as needed for practical applications.

Once selected, the particular relative viscosity model, e.g.,

Eq. (1), can then be used to define a hydrodynamic function

for a single-size particle suspension, fu, as

gr � expðfuÞ: (2)

Through this definition, the Farris model [9] can now be

recast using the formalism of hydrodynamic functions.

The original approach used by Farris [9] to calculate binary

suspension viscosity assumed that the smallest particles act to

change the effective suspending medium in which the larger

particles exist. Mathematically, we can define a binary hydro-

dynamic function, fbi;Farris, to represent Farris’ approach as

fbi;Farris � fuð/LÞ þ fuð/SÞ; (3)

where

/S ¼
1� wð Þ/d

1� /D � w/dð Þ ; /L ¼ w/d þ /D: (4)

The subscripts d and D denote the small and large particle

diameters, respectively, in the suspension and w is a suitable

weight function that depends on the relative size ratio, d/D.

In Eq. (3), /L and /S are intermediate variables that repre-

sent adjusted volume fractions of the large and small par-

ticles, respectively. They are calculated from the true

volume fractions, /d and /D, of the small and large particles,

respectively, as described in Eq. (4). The total volume frac-

tion / is computed from the sum of /d and /D. In Eq. (3),

fbi;Farris describes the effective hydrodynamic effect in a bi-

nary suspension. Farris [9] primarily discussed the case

where w¼ 0. This represents the limit of large differences

between the two particle size classes, i.e., d/D� 1. The sep-

aration of length scales in such a suspension implies a size-

independent interaction where the larger particles simply

feel an increased apparent viscosity due to the smaller par-

ticles. Therefore, the viscosity in such a suspension can be

described based on excluded volume arguments alone [9].

The equivalent calculation of the viscosity of a binary sus-

pension as described by Farris [9] in terms of the binary

hydrodynamic function is given by

gr;Farris ¼ expðfbi;FarrisÞ: (5)

Although Farris [9] postulated that the weighting function

w appearing in Eq. (4) could be generalized to represent
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suspensions in which the separation of length scales is not

very large, he did not provide a methodology to do so. In this

work, we present an alternative formulation and systemati-

cally develop a viscosity model that is applicable to suspen-

sions with arbitrary separation of scales, as well as

polydisperse and continuous PSDs. The starting point of this

approach is to define a binary hydrodynamic function, fbi, to

be generalized in Sec. II C, which we propose is given by

fbi ¼ fuðb/d þ /DÞ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
A

þ fuð/dÞð1� bÞ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
B

; (6)

where b is a weighting function that is assumed to depend on

both the relative size ratio (d/D) and composition ð/d=/DÞ of

the binary suspension. The splitting in Eq. (6) takes into

account the dual role of adding small particles to a suspension

of larger particles and is justified as follows. The weighting

function, defined by 0 � b � 1, recognizes the fact that we

can add smaller particles to a suspension of larger particles

such that they take up the remaining free volume available to

the larger particles, /max � /D, as well as some of the

excluded volume of the larger particles, 1� /max. This is the

physical origin of the A term f ð/D þ b/dÞ. On the other

hand, the B term, f ð/dÞð1� bÞ, accounts for the enhanced

local dissipation arising from the inclusion of smaller particles

into the excluded volume of the larger particles. The essence

of this approach is summarized in Fig. 1 for the case of a bi-

nary suspension. The viscosity of the binary suspension is

then calculated from

gr;bi ¼ expðfbiÞ: (7)

This exponential multiplicative formula is reminiscent of the

multiplicative rule suggested by Qi and Tanner [11] in their

model.

At the heart of this model is the weighting function, b,

that accounts for the twofold effect of the smaller particles in

(a) increasing the effective volume fraction of the larger par-

ticles [term A in Eq. (6)] and in (b) enhancing the overall

background viscosity [term B in Eq. (6)]. Therefore, the de-

velopment of an appropriate form of the weighting function

is the focus of Sec. II B.

B. Model development for binary suspensions

The success of the proposed model depends on careful

selection of the weighting function. This selection is guided

by observations from experimental measurements of the vis-

cosity in binary suspensions from literature [10,15,30]. The

only constraints explicitly considered in the selection of the

weighting function are those originating from the ability to

recover characteristic limiting behaviors. More specifically,

a binary suspension behaves like a monodisperse suspension

under certain limiting conditions of relative size and compo-

sition of the constituent particles. Therefore, the binary

hydrodynamic function fbi, described in Eq. (6) must fulfill

the four key limits outlined below:

lim
d=D!0

fbi ¼ fu /Dð Þ þ fu /dð Þ lim
d=D!1

fbi ¼ fu /d þ /Dð Þ;

lim
/D!0

fbi ¼ fu /dð Þ lim
/d!0

fbi ¼ fu /Dð Þ:

(8)

Consequently, from the definition of fbi in Eq. (6), the

weighting function, b � bðd=D;/d=/DÞ, for a binary sus-

pension consisting of small particles (d;/d) and large par-

ticles (D;/D) must obey the following limits:

lim
d=D!0

b d=D;
/d

/D

� �
¼ 0 lim

d=D!1
b d=D;

/d

/D

� �
¼ 1;

lim
/d=/D!1

b d=D;
/d

/D

� �
¼ 1 lim

/d=/D!0
b d=D;

/d

/D

� �
¼ constant:

(9)

A versatile and useful form of the weighting function b that

satisfies the above limits is given by a power law

b � g d=Dð Þ½ �h /d=/Dð Þ ¼ gh /d=/Dð Þ; (10)

where the exponent, h, is assumed to depend only on the par-

ticle volume fraction ratio, /d=/D, and the base, g, on the

particle size ratio, d=D. These can therefore be interpreted to

represent an effective volume fraction ratio and an effective

size ratio, respectively. For consistency with the limiting

behavior of the weighting function given in Eq. (9), the func-

tional forms of gðd=DÞ and hð/d=/DÞ must, at a minimum,

obey the following limiting behaviors:

lim
d=D!0

g d=Dð Þ ¼ 0;

lim
d=D!1

g d=Dð Þ ¼ 1;

lim
/d=/D!0

h
/d

/D

� �
¼ 1;

lim
/d=/D!1

h
/d

/D

� �
¼ 0:

(11)

FIG. 1. Schematic to help visualize the modeling approach followed to

describe the effects of polydispersity on the viscosity of a suspension illus-

trated here in the particular application to a binary suspension. The real bi-

nary suspension (far left) is mapped to a renormalized monodisperse

suspension (far right) involving a medium with an effective relative viscos-

ity exp ðfuð/dÞð1� bÞÞ (shaded background) and solid particles of an effec-

tive volume fraction of b/d þ /D (shaded large circles).
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It should be noted that the third limit in Eq. (11) can be any

constant, but by selecting it to be a specific fixed value (1 is

chosen for simplicity), we can uniquely define the g and h
functions.

The particular functional form of the weighting function in

Eq. (10) is chosen for convenience, in order to facilitate the

extension of the model to multimodal and polydisperse sus-

pensions (see Secs. II C and II D). In addition, the form of Eq.

(10) allows us to separate the effects of relative size (d=D)

and composition (/d=/D) on the viscosity of a binary suspen-

sion. This assertion will be justified later on in this section.

For the effective volume fraction ratio, we shall assume

h
/d

/D

� �
¼ 1� j/d

j/d þ /D

� �
; (12)

where the parameter j plays a similar role to the crowding

factor in Mooney’s [8] viscosity expression. More sophisti-

cated mixing rules are possible by allowing additional com-

plexity (more parameters) in the functional form of

hð/d=/DÞ. On the other hand, the yet to be determined effec-

tive particle size ratio, g, accounts for all the dependence of

the viscosity on the relative size ratio, d=D. Various

approaches to determine the relationship between g and d/D
will be discussed in Sec. III.

A key implied property in the form of the weighting func-

tion in Eq. (10) is the decoupling of the effects of relative size

and composition on the overall viscosity of a binary suspen-

sion. Therefore, it is important to show that the parameter j
appearing in Eq. (12) primarily controls the occurrence of the

viscosity minimum. This is demonstrated by using the

Krieger–Dougherty viscosity relationship [21] given by

gr ¼ 1� /
/max

� ��2:5/max

; (13)

where the maximum packing fraction, /max, is assumed to be

random close the packing limit (0.64). This expression is

used to define the monodisperse hydrodynamic function in

Eq. (2). The occurrence of the viscosity minimum in a binary

suspension can be calculated from the first derivative of the

binary hydrodynamic function in Eq. (6) with respect to the

fraction (by volume) of small particles in the suspension,

v ¼ /d=ð/d þ /DÞ. This is expressed as

@fbi

@v

����
vmin

¼ 0; (14)

where vmin represents the solid volume fraction of small par-

ticles in the total solids loading at which the viscosity mini-

mum is observed. Using Eqs. (2), (10), (12), and (13) to

define fbi in Eq. (6), the extremum condition represented by

Eq. (14) can be written explicitly as

/
h� 1ð Þ þ avmin

/ vmin h� 1ð Þ þ 1
� �þ 1� h

/vmin � /max

 !

� a ln 1� vmin/
/max

� �
¼ 0; (15)

where

a ¼ db
dv

����
vmin

¼
�jln gð Þh

j� 1ð Þvmin þ 1
� �2

(16)

and

h ¼ gð1�ðjvminÞ=½jvminþð1�vminÞ�Þ: (17)

The behavior of Eq. (15) is now studied parametrically

for two scenarios. In the first scenario, we consider the rela-

tionship between vmin and g for various values of j while

holding the total volume fraction (/) fixed. The results in

Fig. 2 suggest that the position of the viscosity minimum is a

strong function of j and depends only weakly on the relative

size ratio d/D. In the second scenario, the relationship

between vmin and g at fixed values of j for various values of

/ is examined. The calculations, summarized in Fig. 2, also

suggest that the occurrence of the viscosity minimum is only

a weak function of /. Furthermore, for j ¼ 6, we observe

that the value of vmin at which the viscosity minimum is seen

lies between 0.25 and 0.35. This choice of j is consistent

with empirical observations where, for a fixed size ratio

(d/D) and total solids loading (/), the viscosity minimum is

seen to occur when 25–35% of the total solid particles by

volume are small [31]. This viscosity minimum is also

observed in maximum packing fraction models for binary

suspensions [32] as well as numerical experiments on sphere

packing [33] where the largest attainable packing fraction,

indicative of the viscosity minimum, is seen when approxi-

mately 30% of the spheres by volume are small.

The ability of the model to decouple the effects of size and

composition in a binary suspension is demonstrated. This

means that two pieces of information are needed to parame-

trize the model. The parameter j may be chosen such that the

viscosity minimum predicted by a specific viscosity model,

e.g., Eq. (13) occurs over the desired composition range. On

the other hand, the functional form of the effective size ratio,

g, can be determined from measurements of binary

FIG. 2. A parametric study of the relationship between the minimum viscos-

ity solid particle volume fraction, vmin, and the effective size ratio, g, defined

by Eq. (15), at two different values of the parameter j and at various total

solids volume fractions, /.

229VISCOSITY MODEL FOR POLYDISPERSE SUSPENSIONS

 Redistribution subject to SOR license or copyright; see http://scitation.aip.org/content/sor/journal/jor2/info/about. Downloaded to IP:  128.175.82.78 On: Mon, 28 Mar 2016

13:46:55



suspensions viscosity as a function of size ratio (see Sec. III).

While the analysis presented in Eqs. (14)–(17) can be applied

to any choice of the monodisperse viscosity correlation, the

final closed forms solution may be more complex depending

on the particular choices of gr and hð/d=/DÞ. Therefore, in

Sec. III, j will be treated as an additional fitting parameter

except when a Krieger–Dougherty viscosity relationship is

used for gr and/or data on the viscosity minimum are

available.

C. Model extension to ternary suspensions

The ability to calculate the viscosity of a ternary suspen-

sion requires the development of an appropriate hydrody-

namic function, ftri, such that the viscosity of the ternary

suspension is given by

gr;tri ¼ expðftriÞ: (18)

We achieve this by considering the effect of adding

another larger size particle (DD�D) at volume fraction /DD

to an existing binary suspension of particle sizes d and D� d
with corresponding volume fractions /d and /D. To be con-

sistent, ftri must reduce to the proper binary and monodis-

perse limits. The trimodal hydrodynamic function must

therefore obey the following limits:

lim
d=D!1

ftri ¼ fbi lim
d=DD!1

ftri ¼ fbi lim
d=D;d=DD!1

ftri ¼ fu;

lim
/d!0

ftri ¼ fbi lim
/D!0

ftri ¼ fbi lim
/DD!0

ftri ¼ fbi;

lim
/d ;/D!0

ftri ¼ fu lim
/D;/DD!0

ftri ¼ fu lim
/d ;/DD!0

ftri ¼ fu:

(19)

Considering these limits, the binary hydrodynamic func-

tion from Eq. (6) is extended to develop an analogous

expression for a ternary suspension of successive particle

diameters d<D<DD and respective volume fractions /d ,

/D, and /DD given by

ftri ¼ fuðb2ðb1/d þ /DÞ þ /DDÞ þ fuðb1/d þ /DÞ
� ð1� b2Þ þ fuð/dÞð1� b1Þ: (20)

The corresponding extended weighting functions, bi, are

given by

b1 � b
d

a	
;

/d

/D þ /DD

� �
¼ g

d

a	

� �� 	h1 /d= /Dþ/DDð Þð Þ
(21)

and

b2 � b
a	

DD
;

/	

/DD

� �
¼ g

a	

DD

� �� 	h2 /	=/DDð Þ

(22)

where

a	 ¼
b

d

DD
;

/d

/DD

� �
/DDþ 1� b

d

DD
;

/d

/DD

� �� �
/dð Þd

b
d

DD
;

/d

/DD

� �
/D þ 1� b

d

DD
;

/d

/DD

� �� �
/dð Þ

;

(23)

/	 ¼ b1/d þ /D; (24)

h1

/d

/D þ /DD

� �
¼ 1� j/d

j/d þ /D þ /DD

� �
; (25)

and

h2

/	

/DD

� �
¼ 1� j/	

j/	 þ /DD

� �
: (26)

The functional forms of b1 and b2 in Eqs. (21) and (22) are

similar to that defined for binary suspensions in Eq. (10).

Although the set of expressions in Eqs. (21)–(26) appear to

be more complex, they are strictly consistent with all known

limits of monodisperse and binary suspensions. For example,

by setting /DD equal to 0 in these equations, we recover

from Eq. (20) the binary hydrodynamic function in Eq. (6).

Note that the formulae above only require information that

can be obtained from bimodal data.

The model can be further extended to quaternary suspen-

sions in a straightforward fashion as shown in the Appendix.

Similarly, one can proceed in a recursive fashion, to extend

the model to arbitrary multi-n-ary suspensions. However, the

formulae are complex and, as will be argued shortly,

unnecessary. Finally, it is noteworthy that the extended

weighting functions described by Eqs. (21)–(26) (as well as

Eqs. (A2) and (A3) for quaternary suspensions in the

Appendix) incorporate the same parameters appearing in the

weighting function defined for binary suspensions in Eqs.

(10) and (12). This means that the ternary suspension model

only requires binary suspension data to specify the form of

the weighting function. This feature gives the model predic-

tive power with respect to estimating the viscosity of ternary

and polydisperse suspensions (see Sec. V).

D. Implementation of the model to polydisperse
suspensions

Suspensions of practical relevance such as coal slurries

[34] are comprised of continuous size distributions1 such

that it is desirable to be able to predict the viscosity of such

suspensions. One approach is to discretize the continuous

size distribution and proceed with modeling it as a multi-n-

ary distribution following the method outlined above.

However, as we shall show, this is not necessary. Instead, it

suffices to simply discretize the continuous PSD with a small

but sufficient number of finite size classes in such a way as

to fit the first few moments of the actual distribution.

Wagner and Woutersen [18] proposed that just three particle

size classes (or fitting the first six moments) are adequate to

represent the rheological properties of a suspension with a

continuous PSD. This means that a continuous size distribu-

tion can be described by an equivalent ternary suspension.

Therefore, the ternary hydrodynamic function developed in

1.Continuous size distributions as discussed here refers to single peaked dis-

tributions with relatively short tails.
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Eq. (20) can be used to predict the viscosity in polydisperse

suspensions.

The information to determine the equivalent ternary sus-

pension first needs to be extracted from the volume-weighted

continuous size distribution. The moments of the continuous

distribution are defined by

mk ¼
ð1

0

RkfvðRÞdR; (27)

where fvðRÞdR represents the normalized volume-weighted

number density of noncolloidal particles with radii between

sizes R and Rþ dR and mk is the kth moment of the distribu-

tion. The first six moments of the continuous volume-

weighted size distribution (mi ; 0 � i � 5) are then used to

generate an equivalent ternary approximation based on the

following equation:

mk ¼
X3

i¼1

xiL
k
i ; (28)

where xi and Li are the ith weight and sizes of the equivalent

ternary system, respectively. The relevant modeling informa-

tion is then obtained from these weights and sizes using the

following relationships:

/d ¼
x1P3

i¼1

xi

/ /D ¼
x2P3

i¼1

xi

/ /DD ¼
x3P3

i¼1

xi

/; (29)

d ¼ L1 D ¼ L2 DD ¼ L3: (30)

In Eq. (29), / is the total solids volume fraction and d, D, and

DD represent the small, medium, and large particles, respec-

tively, in the system with /d, /D, and /DD being the respective

volume fractions. Using the equivalent, but approximate, ter-

nary representation of a continuous size distribution, all the var-

iables appearing in Eqs. (20)–(26) can be defined based on Eqs.

(27)–(30). The sensitivity of the model to the number of discrete

size classes is examined in Sec. V to justify the six-moment

approximation proposed for continuous size distributions in the

context of the model developed in this work.

III. BINARY SUSPENSIONS: COMPARISONS
AGAINST EXISTING THEORY AND EXPERIMENTS
TO DETERMINE MODEL PARAMETERS

To develop the weighting function outlined in Eq. (10),

the constituent functions representing the effective size ratio

and effective volume ratio, g and h, respectively, must be

specified. For the effective volume ratio (h) specified in Eq.

(12), only the parameter j needs to be specified. On the other

hand, the effective size ratio (g) is an unknown function

whose dependence on the size ratio (d/D) must be deter-

mined. In this section, we present a theoretical development

of the effective size ratio (g) as well as an alternative empiri-

cal development based on experimental data on the viscosity

of binary suspensions. To enable quantitative comparison

with available experimental data, we further consider the

maximum packing fraction as well as the monodisperse vis-

cosity correlation as adjustable parameters to be fit to mono-

disperse viscosity data.

A. Independent determination of model
parameters

The ability to determine the model parameters from inde-

pendent data allows for the development of a fully predictive

viscosity model. This may be realized by fitting the weighting

function to either theoretical results on dilute binary suspen-

sions [18] or alternatively from simulation data like the 2D

monolayer simulations [17]. Despite the inherent limitations

in using either of these independent results on binary suspen-

sions, for completion, we demonstrate how the model parame-

ters can be developed based on the theory of dilute binary

suspension viscosity outlined by Wagner and Woutersen [18].

This approach toward parameterizing the model also demon-

strates the limiting behavior of the model in the dilute limit.

In dilute hard sphere colloidal suspensions, the Huggins

coefficient accounts for pair interactions [35]. In practice, the

Huggins coefficient is related to the /2 coefficient in the Taylor

expansion of the viscosity with respect to the volume fraction

gr ¼ 1þ 2:5/þ c/2/2 þ :::: (31)

For the Krieger–Dougherty relationship in Eq. (13), c/2 turns

out to be equal to 5.0 for monodisperse particles if we

assume /max ¼ 0:67. This is exactly the value computed by

Wagner and Woutersen [18] for a random configuration of

hydrodynamically interacting spheres. The corresponding

measure for binary and polydisperse suspensions has also

been determined for a random binary suspension of hydrody-

namically interacting unequal spheres [18] as

c/2 ¼ 2:5þ
X2

j¼1

X2

i¼1

vivjIHðkijÞ; (32)

where v1 and v2 represent the composition of small and large

particles in the suspension with v1 þ v2 ¼ 1 and kij � di=dj.

IHðkijÞ accounts for the hydrodynamic pair interactions

between spheres computed from previous theoretical results

of Jeffrey’s resistivities [18,36] and is defined to be equivalent

upon kij ! 1=kij substitution. This symmetry means the vis-

cosity minimum for a binary suspension occurs at equal vol-

ume fractions. Using our modeling approach, we calculate the

binary suspension viscosity (gr;bi), as described in Sec. II, by

assuming the Krieger–Dougherty relationship as the model for

the monodisperse suspension viscosity. The Taylor expansion

of gr;bi as defined in Eq. (7) is then given by

gr;bi ¼ 1þ 2:5/þ 5

4

�
v1 b g;v1ð Þ� 1
� �

þ 1
� �2þ v2

1 1�b g;v1ð Þ
� �

/max

þ 5

2

 !
/2

þO /3
� �

; (33)
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where

bðg; v1Þ ¼ gð1�jv1=ðjv1þv2ÞÞ: (34)

By equating the expression for c/2 provided by Eq. (32) and

the /2 coefficient in Eq. (33), the relationship between the

effective size ratio (g) and the actual size ratio (d/D) can be

established once the parameter j is determined. Following

the procedure described in Sec. II B, j is computed inde-

pendently using Eqs. (15)–(17) together with the observation

that the minimum in c/2 always occurs at v1;min equal to 0.5

(see Fig. 4). The value of j is determined to be 0.54.

Subsequently, the effective size ratio values (g) that best par-

ametrize the results of Wagner and Woutersen [18] (see Fig.

4) are extracted and are presented in Fig. 3. These can be fit

to a power law given by

g ¼ ðd=DÞ0:18: (35)

The full weighting function defined in Eqs. (10) and (12)

corresponding to the effective size ratio provided by Eq. (35)

is then given as

b ¼ g d=Dð Þ½ �h /d=/Dð Þ ¼ d=Dð Þ0:18
h i 1� 0:54/d=0:54/dþ/Dð Þð Þ

:

(36)

The comparison of c/2 from the model based on this weight-

ing function to the theoretical calculations of Wagner and

Woutersen [18] is presented in Fig. 4.

The approach outlined in this section represents one way

to determine the components of the weighting function, g
and j, that appear in the definition of the binary hydrody-

namic function. The ability of the model to capture the semi-

dilute behavior (the /2 coefficient) as provided by an

alternative, first-principles, approach, provides some justifi-

cation for the form of the weighting function used, as well as

the definition of the bimodal hydrodynamic function.

However, it should be noted that the theoretical results from

Wagner and Woutersen [18] assume that the particle config-

urations are determined by Brownian motion with weak

shear flow. This is not necessarily true for suspensions under

flow, even if one starts from a random configuration [17,31,

37]. For example, Chang and Powell [17] reported formation

of clusters of large and small particles in simulations of non-

Brownian binary sphere suspensions despite starting from a

random configuration of particles. Furthermore, these results

are rigorously valid only for pair interactions. Therefore, al-

ternative, necessarily empirical, weighting functions must be

developed to reflect typical microstructures that develop in

real concentrated noncolloidal suspensions. In Sec. III B, we

discuss how to develop such empirical weighting functions

based on experimental data on the viscosity of binary

suspensions.

B. Empirical determination of model parameters

The evaluation of the weighting function defined by Eq.

(10) can proceed in two ways depending on the available

data. Like Sec. III A, if the relative viscosity as a function of

the composition of small particles (v1) is known and displays

a viscosity minimum at v1;min, then an approach analogous to

that described in Eqs. (13)–(17) (Sec. II B) may be used to

independently determine j. Subsequently, the relationship

between g and d/D can be estimated by fitting the viscosity

model to binary suspension viscosity at different d/D ratios.

Otherwise, if such data are not available, j should be consid-

ered as a fitting parameter, together with g, to be determined

from the binary suspension viscosity data. Therefore, the

minimum required information to independently parameter-

ize the model are binary suspension viscosity data taken over

multiple d/D ratios. In this section, the latter approach is

used to determine the weighting function.

The following methodology was used to fit the parame-

ters. First, an appropriate monodisperse viscosity relation-

ship, such as Eq. (1), specific to the particular system, needs

to be selected such that it best describes the monodisperse

FIG. 4. Comparison of calculations of the /2 coefficient following the theo-

retical results from Wagner and Woutersen [18] (symbols: d/D¼ 1 (�),

d/D¼ 1/1.6 (�), d/D¼ 1/2 (�), d/D¼ 1/5 (�), and d/D¼ 1/10 ($) and the

calculations from the model (lines) using Eqs. (33) and (36).

FIG. 3. The empirically determined g function values and their dependence

on (d/D) obtained by enforcing equality of Eq. (32) and the /2 coefficient in

Eq. (33). Solid points represent g function values applied to generate the fits

at the different size ratios (d/D) shown in Fig. 4. The solid line is a parame-

terization of the g function values obtained by fitting to a power law.
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suspension viscosity. The next step is to determine the em-

pirical weighting function. For this section, we limit our-

selves to the simple expression for h that involves a single

parameter j [see Eq. (12)]. As such, for a selected j value,

we fit the corresponding g for any given d/D ratio so that the

error is minimized. This procedure is repeated iteratively

until the overall relative error between the calculated viscos-

ities from Eq. (7) and the experimental binary viscosities is

minimized. At the end of the fitting process, there are as

many g values as there are d/D ratios and a single j value.

Finally, a parametrization for g vs d/D is developed, enabling

interpolation for arbitrary effective size ratios.

The experiments by Chong et al. [10] on binary suspen-

sions of glass spheres are taken as a model system to develop

an alternative set of model parameters based on the proce-

dure described above. Chong et al. [10] reported that the rel-

ative viscosities of the monodisperse systems that were

ultimately blended to form the binary suspensions displayed

relative viscosities independent of size and temperature,

depending only on the total solids fraction. This suggests

that the system is a reasonable representation of an ideal,

noncolloidal suspension. The viscosity correlation from

Morris and Boulay [27] used to define the monodisperse vis-

cosity of the experiments by Chong et al. [10] is given by

gr ¼ 1þ2:5/ð1�/=/maxÞ�1þmð/=/maxÞ2ð1�/=/maxÞ�2:

(37)

The parameters m ¼ 0:41 and /max ¼ 0:607 are determined

by fitting the monodisperse viscosity data from Chong et al.
[10]. Subsequently, the binary hydrodynamic function is

defined and the parameter j and relative size ratio g are

obtained by fitting the model to the experimental data using

Eqs. (2), (6), (7), (10), and (12). The resulting fitting parame-

ter j is estimated to be 2.46 and the effective size ratio, g,

that best describes the experimental data, shown in Fig. 5, is

given by

g ¼ 1� 1� d=Dð Þ3:24

 �1:91

: (38)

The overall weighting function is then given by

b ¼ g d=Dð Þ½ �h /d=/Dð Þ

¼ 1� 1� d=Dð Þ3:24

 �1:91
� 	 1� 2:46/d=2:46/dþ/Dð Þð Þ

: (39)

The associated model fit and comparison to the binary sus-

pension viscosity data of Chong et al. [10] are presented in

Fig. 6.

The effective size ratio (g) and the parameter (j) deter-

mined from the experimental data are different from those

determined from the theoretical results in Sec. III A. The

observed differences in parameters arising from the two

approaches can be attributed to the different microstructures

that govern the rheological behavior of the two systems as

well as differences in hydrodynamic interactions in the dilute

and concentrated regimes. Therefore, for practical applica-

tion of this model, flexibility should be allowed by choosing

the weighting function to reflect such effects as well as the

additional complexity that is encountered in real systems

caused by particle interactions and inhomogeneous particle

configurations.

IV. COMPARISON TO EXISTING MODELS
IN LITERATURE

In this section, the binary suspension viscosity model

developed based on the weighting function in Eq. (39) is

compared to a model developed by Qi and Tanner [11]. The

latter model is parameterized based on experiments by

FIG. 5. The effective size ratio (g) as a function of relative size ratio (d/D)

from fitting the viscosity model to experimental data by Chong et al. [10].

The solid points represent the g values that were used to fit the experimental

results in Fig. 6. The solid line represents the parameterization of the g val-

ues. For comparison, the dotted line [Eq. (35)] is the effective size ratio

from the dilute limit parametrization.

FIG. 6. Relative viscosity as a function of total volume fraction. Viscosity

model fit (solid lines) are compared to simulation data from Chong et al.
[10] for different particle size ratio (d/D). The fraction of small spheres (v1)

is fixed at 0.25 for binary all cases. Monodisperse, d/D¼ 1 (�); Binary sus-

pensions: d/D¼ 0.477 (�), d/D¼ 0.313 (�), and d/D¼ 0.138 ($).
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Chang and Powell [16] on binary suspensions. Also included

is a comparison against the results obtained from a model for

binary suspension recently developed by Farr [13]. For con-

sistency with the work of Qi and Tanner [11], we also use

the same viscosity expression by Mendoza and Santamaria-

Holek [38] in Eq. (40) to define the monodisperse hydrody-

namic function.

gr /ð Þ ¼ 1� /
1� c/

� ��5=2

; (40)

where c is given by

c ¼ 1� 0:639

0:639
: (41)

These expressions together with the weighting function

developed in Eq. (39) are used to calculate the binary sus-

pension viscosity. The model developed by Farr [13] has its

own viscosity relationship and is used as-is.

A comparison of these three models is presented in Fig. 7.

In the same figure, the three models are also compared

against experimental data by Chang and Powell [16] and

Chong et al. [10]. The best fit to the experimental data is pro-

vided by the model of Qi and Tanner [11] the model by Farr

[13] has the poorest fit. Therefore, our model compares

favorably to existing works in the literature, in relation to the

desired complexity. Although our model appears to capture

the trends in the data by Chang and Powell [16] and Chong

et al. [11] qualitatively, it does not capture all the details

such as the asymmetry seen at higher volume fractions. By

admitting extra complexity in the interpolating functions

used in our model, a much better representation of the exper-

imental data is possible. Indeed, a significant improvement

can be obtained by defining the weighting function, b ¼ gh,

using

g ¼ 1� 1� d=Dð Þ0:9

 �1:41

(42)

and

h ¼ 1:68
/d

/d þ /D

� �2

� 2:01
/d

/d þ /D

� �
þ 1

 !

� 1� 2:5/d

2:5/d þ /D

� �
: (43)

The viscosities calculated using Eqs. (42) and (43) for

weighting function together with Eq. (40) are presented in

Fig. 8 along with a comparison against the Chang and

Powell [16] data as well as the model predictions of Qi and

Tanner [11]. The agreement of our model with both is good.

Therefore, it is clear that by modifying the weighting func-

tion, while still keeping the basic structure of the original

equations, a rich variety of suspension viscosity behavior

can be obtained. Furthermore, the newly defined weighting

function still enjoys all the original properties of the model,

i.e., all the limits are fully obeyed.

V. PREDICTING THE VISCOSITY OF
POLYDISPERSE SUSPENSIONS: RESULTS AND
DISCUSSION

In this section, the ternary viscosity model developed in

Sec. II C is applied to predict the viscosity of several suspen-

sions characterized by continuous polydispersity using the

framework outlined in Sec. II D. As an empirical approach,

to obtain quantitative predictions using our model, we allow

for flexibility in the choice of the monodisperse viscosity

relationship gr to reflect system specific nonidealities. In the

first set of viscosity predictions for coal slurries [39], owing

to lack of experimental data on the monodisperse viscosity,

gr is selected based on experimental results on monodisperse

FIG. 7. Relative viscosity as a function of the fraction of small particles in

the suspension. Comparison of calculated viscosity from model of Qi and

Tanner [11] (dotted line) to predictions from our model (solid lines) and

Farr’s model (dashed lines). Blue (�) and black (�) symbols correspond to

data from Chang and Powell [16]. The red (�) symbols correspond to data

from Chong et al. [10]. (1), (2), and (3) represent the viscosities calculated

corresponding to the experimental conditions given by the circle, triangle,

and square symbols, respectively, for the three models.

FIG. 8. Comparison of calculated viscosity from model of Qi and Tanner

[11] (dotted line) and our model using weighting functions defined by Eqs.

(42) and (43) (solid line). Blue (�) and black (�) symbols correspond to

data from Chang and Powell [16]. The red (�) symbols correspond to data

from Chong et al. [10].
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noncolloidal suspensions by Singh and Nott [29], which we

assume accounts for any shape irregularities. In the second

application, we use an alternative expression that is consist-

ent with the experimental results of Probstein et al. [40]. In

both cases, the weighting function previously developed in

Eq. (39) is used. The assumption that a continuous size dis-

tribution may be represented by an equivalent ternary sus-

pension, as explained in Sec. II D, is also validated.

A. Coal slurry application

The first application involves a coal slurry studied by

Papachristodoulou and Trass [39]. The volume-weighted cu-

mulative PSD for this system has been characterized and

may be approximated by a Rosin–Rammler distribution

[34,41] defined by

F xð Þ ¼ 1� exp �0:693
x

D50

� �k
" #

; (44)

with a median size (D50) of 37 lm and k equal to 1.6, as

shown in Fig. 9. The volume fractions are calculated using

the density of bituminous coal, which is 1346 kg m�3, and

that of the light # 6 oil, which was reported to be 978 kg m�3

by Papachristodoulou and Trass [39]. Because coal slurries

typically behave like Bingham fluids at high solid loadings,

special care should be taken because of the presence of a

yield stress. The yield stress should be subtracted off from

the rheological measurements such that we model only the

Bingham viscosity. Papachristodoulou and Trass [39]

reported the Bingham viscosities, derived by fitting the rheo-

logical data to a Bingham equation and therefore, in princi-

ple, accounted for the yield stress effect discussed above.

Therefore, the experimental viscosities reported in Fig. 10

that are compared with the model predictions are the relative

Bingham plastic viscosities. The monodisperse viscosity cor-

relation in Eq. (1) with /max ¼ 0:58 [29] is taken to represent

an ideal, noncolloidal coal slurry. Using this information

together with Eq. (39) for the weighting function allows for

the prediction of the viscosity of the coal slurry with the

PSD given in Fig. 9. The model predictions agree well with

the experimental measurements providing validation of the

approach taken in deriving the model as well as the size

moment truncation of the continuous size distribution.

A convergence study is now presented in order to justify

the choice of the six moment truncation (trimodal approxi-

mation) applied to model the viscosity of polydisperse sus-

pensions as presented in this work. For this, a comparison of

various approximations up to the eight moment approxima-

tion (quaternary approximation—see the Appendix) of the

coal size distribution in Fig. 9 is presented in Fig. 11. The

results show that by the six-moment (ternary) approximation

the results have essentially converged and indicate that three

moment approximation is a sufficient representation for a

continuous PSD. Ultimately, the level of approximation is a

matter of choice and any level of approximation can be eas-

ily included into the model by systematically extending the

hydrodynamic functions to incorporate more size classes.

B. Distributed particle sizes application

The second application tests the sensitivity of this model to

different PSDs. Probstein et al. [40] performed rheological

measurements of the shear viscosity for polydisperse suspen-

sions of noncolloidal particles with different size distributions.

In particular, they examined a log-normal PSD as well as a

uniform PSD, as shown in Fig. 12. The theoretical cumulative

distributions fit to these two experimental PSDs are provided

by a lognormal distributions with l ¼ 4:58 and r ¼ 0:36 as

F xð Þ ¼ 1

2
þ 1

2
erf

ln xð Þ � lffiffiffi
2
p

r

� �
; (45)

and a uniform distribution with a¼ 36.95 lm and

b¼ 215.46 lm as

F xð Þ ¼ ln xð Þ � ln að Þ
ln bð Þ � ln að Þ

: (46)

FIG. 9. Cumulative size distribution of a coal slurry. The experimentally

measured PSD for a coal slurry from Papachristodoulou and Trass [40] is fit

to a Rosin–Rammler cumulative size distribution with a median size of

37 lm. The bar charts in the background represent the three mode approxi-

mation of the continuous size distribution obtained using Eqs. (27)–(30).

FIG. 10. Relative viscosity as a function of the volume fraction of coal par-

ticles in a coal slurry. Comparison of predictions from our model (solid line)

to experimental data for coal slurry with a Rosin–Rammler distribution from

Papachristodoulou and Trass [40].
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These two distributions are illustrated in Fig. 12. Figure 13

illustrates the equivalent ternary representations of the two

distributions.

The experimentally measured viscosities by Probstein

et al. [40] from a log-normal PSD are seen to be consistently

larger than those derived from a uniform PSD for a given

total solids loading. The ability of the model to qualitatively

and quantitatively reproduce this observation is now exam-

ined. Owing to the empirical nature of our viscosity model,

an appropriate monodisperse viscosity relationship must be

specified. To do this, we use the monodisperse viscosity rela-

tionship of Sengun and Probstein [42] with parameters

selected such that the viscosity model is able to quantita-

tively fit the uniform distribution viscosity data (see Fig. 14)

while keeping the same weighting function in Eq. (39). The

resultant viscosity relationship, applicable for / > 0:25 [42],

is given by

gr ¼ 1þ 1:4
3p
8

� �
b

bþ 1

� �

� 3þ 4:5bþ b2

bþ 1
� 3

bþ 1

b

� �
ln bþ 1ð Þ

" #
; (47)

where

b ¼ /=0:55ð Þ1=3

1� /=0:55ð Þ1=3
: (48)

Subsequently, we predict the lognormal distribution viscos-

ity data using Eqs. (39) and (47). The results are summarized

in Fig. 14. This example shows that the model quantitatively

predicts the lognormal viscosity data and, therefore, can distin-

guish between closely related distributions. This outcome pro-

vides further validation of the modeling scheme adopted in

this work and demonstrates its possible use for real engineering

applications for which complete information on the system of

interest is seldom available. In this specific example, we spec-

ify the monodisperse viscosity correlation by requiring that it

FIG. 11. Study of the effect of the various moment approximations on the

model predictions of the relative viscosity as a function of total solids load-

ing. The viscosity predictions arising from the two-moment (monodisperse),

four-moment (binary), six moment (ternary), and eight-moment (quaternary)

approximations of the coal slurry PSD in Eq. (44).

FIG. 12. Comparison of the lognormal and uniform size distributions of the

particles in the suspension fit to theoretical distribution in Eqs. (45) and

(46), respectively. Experimental measurements from Probstein et al. [41].

FIG. 13. Comparison of the experimentally measured continuous PSDs, lognormal (left) and uniform (right), against their respective equivalent discrete ter-

nary approximations.
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yields accurate fits to the uniform distribution data. However,

in general, one may use any of the viscosity correlations for

noncolloidal suspensions available in the literature. In such

case, the qualitative trends will be certainly preserved, but the

quantitative agreement is not guaranteed (see Supplementary

Material [43]).

VI. CONCLUSIONS

In this work, we have presented the development of a new

self-consistent model to describe the effects of polydispersity

on the viscosity of noncolloidal, hard sphere suspensions. The

elements of the model are the viscosity function for the mono-

disperse noncolloidal suspension (gr) and the weighting func-

tion (b), describing the effects of the size ratio (d/D) and the

volume fraction ratio (/d=/D) in a binary suspension. The suc-

cess of the model is in separating these two effects through

two different functions gðd=DÞ and hð/d=/DÞ such that

b � ½gðd=DÞ�hð/d=/DÞ. At a minimum, each of the constituent

functions, g and h, contains a single parameter that can be esti-

mated from binary suspension viscosity data. We have demon-

strated that by carefully selecting these constituent functions,

the proposed model can fit a variety of binary suspension data

as well as current existing (and more recent) models developed

following other alternative approaches, such as the Qi and

Tanner [11] model, which incorporates a maximum packing

fraction, and the Farr model [13], which is based on the

Mooney approach [11]. Finally, we note that the model is lim-

ited to polydisperse suspension in which the constituent par-

ticles do not exhibit size dependent rheological properties in

the monodisperse limit, i.e., grð/dÞ ¼ grð/DÞ ¼ grð/DDÞ.
The model developed in this work is also shown to quantita-

tively predict the viscosity of polydisperse suspensions of non-

colloidal particles, based on parameters obtained solely from

monodisperse and binary suspensions viscosity data. This is

analogous to the approach of Renon and Prausnitz [44] to pre-

dict the excess Gibbs free energy of multicomponent mixtures

from binary data alone. This useful result is made possible by

first implementing a discretization of the smooth continuous

distribution to its ternary equivalent, so that the first six

moments are preserved, following the suggestion by Wagner

and Woutersen [18]. Through a sensitivity analysis study, this

approach has been demonstrated to be sufficient to describe the

effects of polydispersity on suspension viscosity. Nevertheless,

the approach presented in this work is not limited to ternary

suspensions and formulae for higher order discrete suspensions

can also be developed in a straightforward fashion, albeit there

is a significant increase to their complexity. This may be neces-

sary for studying the viscosity of more complex size distribu-

tions such as double-peaked size distributions.

The semiempirical model to describe the effect of polydisper-

sity on the viscosity of noncolloidal suspensions presented in this

work has been developed on the basis of accounting for purely

hydrodynamic effects. However, to describe real suspensions

one may also need to include other effects, such as friction [45].

Ultimately, some of these effects may be absorbed in the fitting

parameters; however, others may need to be introduced explic-

itly by suitably modifying the model. For example, in the case of

polymer-stabilized suspensions, one may consider improvements

to account for the effective volume of the particles in the various

size classes due to the presence of adsorbed polymer on the parti-

cle surface. In an alternative scenario, one may easily account

for shear thinning behavior if the correlation between monodis-

perse suspension viscosity and shear rate is known. Other poten-

tial applications of the proposed model may include the

determination of the ideal continuous PSD that results in the

minimum viscosity, a problem that is of relevance to industrial

processing. Furthermore, the proposed model may also be

applied toward understanding the evolution of viscous stresses in

aggregating suspensions that do not display a yield stress.

Extensions to account for such aggregation effects can be easily

incorporated by coupling the model developed in this work to a

population balance equation using the method of moments

[46,47]. In this way, the model has potential applications to an

even wider class of problems of engineering relevance.

Note Added in Proof: The rule described by Eq. (6) for

the binary hydrodynamic function is ad-hoc and phenomeno-

logical. Its main advantage is its relative simplicity.

However, note that, as a result of its simplicity, it does not

reduce to the Farris result even in the limit of large D/d parti-

cle size ratio when the weight w¼ 1 is known. Nevertheless,

it can be shown that in practice, and therefore for finite D/d

particle size ratios, it gives results that are very close pro-

vided that the parameter beta that enters Eq. (6) is suitably

adjusted, following the rules stipulated by Eq. (9). This is

exactly the practice followed here, thus justifying the use of

Eq. (6) and explaining its success in all the examples used.
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FIG. 14. Comparison of model predictions of the lognormal distribution vis-

cosity and corresponding experimental data. Predictions are calculated using

Eq. (47), which is obtained by fitting the viscosity model to the uniform dis-

tribution data with Eq. (39) for the weighting function. Experimental results

from Probstein et al. [41].
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APPENDIX: HYDRODYNAMIC FUNCTION FOR QUATERNARY DISTRIBUTIONS

The tetra-modal hydrodynamic function must fulfill the following limits:

lim
d=D!1

fquat ¼ ftri lim
d=DD!1

fquat ¼ ftri lim
DD=DDD!1

fquat ¼ ftri;

lim
d=DD;DD=DDD!1

fquat ¼ fbi lim
d=D;D=DD!1

fquat ¼ fbi

lim
d=D;D=DD;DD=DDD!1

fquat ¼ fu

lim
/d!0

fquat ¼ ftri lim
/D!0

fquat ¼ ftri lim
/DD!0

fquat ¼ ftri;

lim
/DDD!0

fquat ¼ ftri

lim
/d ;/D!0

fquat ¼ fbi lim
/d ;/DD!0

fquat ¼ fbi lim
/d ;/DDD!0

fquat ¼ fbi;

lim
/D;/DD!0

fquat ¼ fbi lim
/D;/DDD!0

fquat ¼ fbi lim
/DD;/DDD!0

fquat ¼ fbi;

lim
/d ;/D;/DD!0

fquat ¼ fu lim
/d ;/DD;/DDD!0

fquat ¼ fu lim
/d ;/D;/DDD!0

fquat ¼ fu:

lim
/D;/DD;/DDD!0

fquat ¼ fu

(A1)

The following expression, derived by extending the trimodal expression in Eq. (15) is given by

fquat ¼ fuðb3ðb2ðb1/d þ /DÞ þ /DDÞ þ /DDDÞ þ fuðb2ðb1/d þ /DÞ þ /DDÞð1� b3Þ
þfuðb1/d þ /DÞð1� b2Þ þ fuð/dÞð1� b1Þ; (A2)

b1 ¼ b
d

a	
;

/d

/D þ /DD þ /DD

� �
¼ g

d

a	

� �� 	h1 /d= /Dþ/DDþ/DDð Þ½ �
;

b2 ¼ b
a	

a		
;

/	

/DD þ /DD

� �
¼ g

a	

a		

� �� 	h2 /	=/DDþ/DDDð Þ

;

b3 ¼ b
a		

DDD
;

/		

/DDD

� �
¼ g

a		

DDD

� �� 	h3 /		=/DDDð Þ

;

where

h1

/d

/D þ /DD þ /DD

� �
¼ c

/d

/D þ /DD þ /DD

� �
1� m/d

m/d þ /D þ /DD þ /DD

� �
;

h2

/	

/DD þ /DDD

� �
¼ c

/	

/DD þ /DDD

� �
1� m/	

m/	 þ /DD þ /DDD

� �
;

h3

/		

/DDD

� �
¼ c

/		

/DDD

� �
1� m/		

m/		 þ /DDD

� �
;

a	 ¼
b

d

DD
;

/D

/DD

� �
/DDþ 1� b

d

DD
;

/D

/DD

� �� �
/dð Þd

b
d

DD
;

/D

/DD

� �
/D þ 1� b

d

DD
;

/D

/DD

� �� �
/dð Þ

;

b
d

DD
;

/D

/DD

� �
¼ g

d

DD

� �� 	 1�m/D=m/Dþ/DDð Þ

;

a		 ¼
bDD=DDD/DDDDþ 1� bDD=DDD

� �
/Dð ÞD

bDD=DDD/DD þ 1� bDD=DDD

� �
/Dð Þ ;

b
DD

DDD
;

/DD

/DDD

� �
¼ g

DD

DDD

� �� 	 1�m/DD=m/DDþ/DDDð Þ
;

/	 ¼ b1/d þ /D;

and

/		 ¼ b2 b1/d þ /Dð Þ þ /DDð Þ: (A3)
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Finally, the relative viscosity of the suspension is calculated

as

gr ¼ expðfquatÞ: (A4)
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