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ABSTRACT

In general, the performance of many wireless systems is approaching the fun-

damental limits on transmission capacity. For example, current commercial wireless

standards such as 3GPP LTE-A and IEEE 802.11ac have a near-optimal physical layer.

In order to meet the ever growing demand for capacity, other directions for improving

network performance must be found.

In most existing research on wireless networks, overhead, the “non-data” portion

including coordination, control signaling and other costs of serving different purposes,

is assumed to be negligible. However, the final application throughput could be much

lower than the theoretical bounds as a result of overhead, especially in large and dy-

namic networks. Therefore, it is critical to quantitatively analyze the overhead in

wireless networks, which could provide clear insights on the performance in practical

systems and could help to identify opportunities for improvements in their designs.

Surprisingly, the fundamental limits on overhead are largely unknown, and the frame-

work needed to design overhead-aware systems has not been adequately investigated.

In addition, interference is one of the main performance-limiting factors in most

future wireless applications. Conventional “interference avoidance” techniques might

not be feasible because the degrees of freedom (for example, bandwidth, number of

orthogonal codes, and time) might be limited. Although the interference can be mit-

igated quite efficiently with centralized control, existing approaches are usually very

sensitive to channel uncertainties; if the knowledge of the channel state information

is imperfect, the system performance could be severely degraded. Also, collecting ac-

curate information incurs a significant amount of overhead due to the time-varying

nature of the wireless medium. Thus, it is imperative to jointly consider overhead,

uncertainty, and interference.

xix



In this dissertation, we investigate practical and overhead-aware designs that can

achieve better performance in a realistic networking context. We start with a simple,

single-user, two-hop cooperative relaying network model. For this model, we first prove

that M -group cooperation is the optimal distributed space-time block coding strategy

when neither central control nor inter-relay communications is permitted. Then, we

consider the relay selection problem where a small and acceptable amount of overhead

is allowed. The tradeoff between the feedback overhead and the performance is in-

vestigated via rate distortion theory. Compared to existing research, which is usually

highly dependent on the specific implementation approaches, the analysis presented

here addresses the fundamental tradeoff of a general network. Using our theoretical

results, we also compare practical centralized and decentralized relay selection schemes

in terms of spectral efficiency.

Then, interference-limited networks with multiple concurrent transmissions are

studied. We analyze and compare the performance of cooperative and non-cooperative

schemes. Although cooperation among relay nodes increases the reliability of point-

to-point transmission, it also produces a higher level of interference and degrades the

overall performance of a multi-user network. The tradeoff between cooperative gain and

the additional interference is investigated, and a criterion which determines whether

we should cooperative or not is derived.

We next focus on multi-hop linear networks, which have one or more interme-

diate nodes along the path that receive and forward information via wireless links.

Instead of assuming equal hop distances, we propose a novel model that permits ran-

domness in the node locations, and then we determine the optimum number of hops

for maximizing the end-to-end spectral efficiency. Then, for a multi-hop linear network

with cooperative relays, a relay deployment strategy is proposed and studied.

After that, for downlink multi-user networks, we present a novel quantization

technique, sparse coding quantization (SCQ), which is an extension of classic vector

quantization (VQ) and provides a balance between performance and complexity. In

xx



particular, the computational complexity of conventional VQ can be significantly re-

duced by applying SCQ, with a negligible reduction in performance. Comparisons

among different quantization techniques are also provided. Beside considering specific

quantization schemes, we also study the overhead-performance tradeoff for general

MU-MIMO systems by applying a rate distortion framework.

Finally, we investigate robust a user pairing problem for a heterogeneous net-

work in the presence of channel uncertainty. Different definitions of robustness and

uncertainty are considered to formulate the corresponding optimization problems. We

develop an algorithm that is robust to uncertainty in channel measurement and thereby

performs well in practical systems. Simulation results validate the robustness of the

proposed method.

xxi



Chapter 1

OVERVIEW

1.1 Background and Motivation

Wireless communications and networking has brought revolutionary changes to

the way people communicate, work, and entertain. Today, there are about 7 billion

mobile subscribes worldwide [1], which is equivalent to 95.5 percent of the world pop-

ulation; and, the number of smartphone users is expected to exceed 1.75 billion by the

end of 2014 [2]. This proliferation of mobile devices is driving the tremendous growth

in mobile traffic demands.

To a large extent, the performance of many wireless systems is approaching the

fundamental limits on transmission capacity. Current commercial wireless standards

such as 3GPP Long Term Evolution-Advanced (LTE-A)[3] and IEEE 802.11ac [4] have

a near-optimal physical layer; this performance is achieved by using a combination

of modern techniques including Orthogonal Frequency Division Multiplexing (OFDM)

[5, 6], Multiple-input Multiple-output (MIMO) [7–9], and turbo codes [10, 11], among

others. In order to meet the ever growing demand for capacity, other directions for

improving network performance must be found.

1.1.1 Overhead

In most existing research, overhead, the “non-data” portion including coordi-

nation, control signaling and other costs of serving different purposes, is assumed to

be negligible. However, the final application throughput could be much lower than the

theoretical bounds as a result of overhead, especially in large and dynamic networks

[12–14].

1



Even for wired networks, such as Ethernet over twisted pair copper wire, a

significant portion of the overall Internet traffic is due to the overhead in different

protocols [15]. The additional complexities of the wireless medium, such as its broad-

casting nature and varying channel characteristics, require additional overhead for

coordinating transmissions and resolving conflicts between users. Applications that

require wireless communications are also more dynamic, with mobile users frequently

joining and leaving the network. The mobility and dynamic network topology incur

extra overhead requirements for synchronization and routing. Moreover, for wireless

transmissions, reliable estimates of the channel state information (CSI) are required

at both the transmitter and the receiver to approach the theoretical performance lim-

its. To acquire this information, a significant amount of overhead, such as training

sequences and CSI feedback signals, could be incurred.

Fig. 1.1 is meant to illustrate the importance of overhead-aware designs for wire-

less networks. Both the theoretical bounds and the actual performance are sketched.

According to Fig. 1.1, when no or low overhead is allowed, the performance is usu-

ally poor since the advanced technologies for handling channel uncertainties cannot be

applied. On the other hand, the theoretical optimum performance can be achieved,

but usually at the expense of a significant amount of overhead. In this case, the ac-

tual performance might also be very poor since a large part of the resources might be

occupied by the overhead. Therefore, it is critical to analyze fundamental limits on

the overhead in wireless networks, which could provide clear insights on the perfor-

mance in practical systems and could help to identify opportunities for improvements

in their design. Surprisingly, the fundamental limits on overhead are largely unknown,

and the framework needed to design overhead-aware systems has not been adequately

investigated.
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Figure 1.1: Illustration of overhead-aware design for wireless networks.

1.1.2 Uncertainty

The performance of wireless networks relies on the model of the underlying

physical layer. The model should be as accurate as necessary and as simple as pos-

sible. However, due to practical constraints, only imperfect characterizations of the

real system are available. For example, some properties of real systems are usually not

modeled explicitly to ensure an analytically tractable framework. Also, time-variant

parameters, which should be accurately acquired, are generally not known perfectly

because of the non-deterministic nature of wireless communications and networking

(for example, channel uncertainty, node mobility, random network topology).

Conventional approaches are designed assuming that the model is correct and its

parameters are perfectly estimated. The uncertainties of the model are usually ignored

and the estimated parameters are applied as if they were error-free. If the uncertainties

are negligible, the conventional approaches yield satisfactory results. However, the

performance of wireless networks could be significantly degraded due to the unavoidable

errors, as illustrated in Fig. 1.2.

Alternatively, a robust design [16, 17] aims at minimizing the performance loss
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Figure 1.2: Illustration of uncertainty-aware design for wireless networks.

due to model errors and uncertainties. As we can see from Fig. 1.2, robust designs

guarantee reasonable system performance even under large uncertainty, while sacrific-

ing some performance with respect to the ideal design. Achieving a balance between

robustness and performance is a fundamental challenge. Improved techniques for esti-

mation and prediction of the channel parameters together with robust optimization at

the physical layer can contribute to designing efficient and practical wireless networks.

1.1.3 Interference

Interference is one of the main performance-limiting factors in most future wire-

less applications. Since the degrees of freedom, for example, bandwidth, number of

orthogonal codes, and time, are usually limited, “interference avoidance” techniques,

which attempt to avoid collisions by transmitting data in different orthogonal channels,

might be impossible. In other words, some transmissions will inevitably occur at the

same time in the same frequency band, separated only in space, and the signals from

many undesired or interfering transmitters add to the desired transmitter’s signal at a
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receiver. This interference can be mitigated quite efficiently in systems with central-

ized control. For example, a base station (BS) or access point (AP) can coordinate the

channelization and the power/interference levels of the individual terminals. Alterna-

tively, sophisticated multi-user detection or interference cancellation schemes could be

employed. However, many emerging classes of wireless systems, such as ad hoc and sen-

sor networks, do not permit centralized control, requiring a more distributed resource

allocation. In this case, the interference is not tightly controllable and a degradation

in the system performance is inevitable.

Note that these performance-limiting factors are not independent. Typically,

centralized approaches for managing interference are very sensitive to the uncertainties;

if the knowledge of the channel information is imperfect, the system performance will

be severely affected. Due to the time-varying nature of the wireless medium, collecting

accurate information incurs a significant amount of overhead. Hence, it is imperative

for us to jointly consider overhead, uncertainty, and interference.

1.2 Dissertation Outline

In this dissertation, instead of focusing on optimal designs for idealized scenar-

ios, we investigate practical and overhead-aware designs that can achieve better perfor-

mance in a realistic networking context. We start with a simple, single-user, two-hop

cooperative relaying network model. For this model, we present a low-overhead design

and preliminary results on the overhead-performance tradeoff. Then, we expand the

analysis to more complicated models such as multi-user, two-hop, Poisson networks

and single-user, multi-hop, linear networks. Our contributions include proposing prac-

tical overhead-aware designs with low overhead, quantifying the amount of overhead

for given systems, analyzing the theoretical limits on overhead for a given transmission

strategy, and optimizing the system performance taking into consideration the different

types of overhead.

In Chapter 2, we first formulate the design of protocols for a single-user, two-

hop, cooperative network as an optimization problem with an overhead constraint.

5



By solving the proposed problem, we prove that M -group cooperation is the optimal

distributed space-time block coding (STBC) strategy when neither central control nor

inter-relay communications is permitted, i.e., CSI at the transmitter is not available.

The optimality of M -group holds in not only an ideal Rayleigh fading environment

but also in more realistic scenarios where path loss is included. Then, we consider the

case where a small and acceptable amount of overhead is allowed. In particular, we

assume that the destination collects the CSI for all potential relays and then selects

the node with highest channel gain. The tradeoff between the feedback overhead and

the performance of this relay selection scheme is investigated via rate distortion the-

ory. Compared to existing research, which is usually highly dependent on the specific

implementation approaches, the analysis presented here addresses the fundamental

questions: (1) How much extra information is required? and (2) What is the optimal

tradeoff for general selective relaying networks? The theoretical analysis for the rate

distortion function and its asymptotic properties are presented. Finally, we compare

the spectral efficiency of centralized and decentralized cooperative communication sys-

tems. The impact of overhead is included in our analysis. We show that the centralized

scheme usually achieves a higher spectral efficiency than the decentralized scheme if

the number of nodes is small and/or the channel is static. Although the decentralized

scheme significantly reduces the amount of overhead, it suffers from unavoidable per-

formance loss. For given system environments, criteria for determining which scheme

should be applied is also provided.

In Chapter 3, we consider a large-scale and dynamic network with multiple

concurrent transmissions. As shown in Chapter 2, the reliability of point-to-point

transmission can be significantly improved by sharing each cooperative node’s antenna

to form a virtual antenna array. However, cooperation among different nodes may

produce a higher level of interference and degrade the overall performance of a multi-

user network. Therefore, for practical environments, it is essential to investigate the

tradeoff between cooperative gain and the additional interference. By analyzing and

comparing the outage performance of non-cooperative and cooperative strategies, we
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derive a criterion for deciding whether we should cooperate or not. We show that a

cooperative strategy is preferred for sparse networks. As the wireless networks become

more dense, the benefit of cooperation is eventually eliminated by the excessive amount

of interference, which implies that non-cooperative strategies should be used.

In Chapter 4, instead of focusing on two-hop transmissions, we investigate multi-

hop networks. A linear network model, which is a commonly used model to approx-

imate practical networks, is adopted. We first propose a novel linear network model

to characterize the randomness in the node location. Unlike most previous network

models, which usually assume that the nodes are equidistant, we consider a linear

network with randomly located nodes. The randomness in the distance is analyzed

and validated to be a reasonable approximation to reality. The optimum number of

hops and the spectral efficiency of the proposed model are studied. In addition, we

provide performance analyses for the linear multi-hop network with cooperative relays.

Using an outage analysis, we derive the optimum relay cluster locations which mini-

mize the end-to-end outage probability. Further, we consider the required cooperation

overhead by using the overhead-performance tradeoff analysis in Chapter 2. A large

number of relays could lead to a performance loss because of the extra overhead costs

in implementing cooperation.

In Chapter 5, a novel quantization method, sparse coding quantization (SCQ),

is proposed for downlink, multiuser, multiple-input multiple-output (MU-MIMO) sys-

tems. Compared to conventional vector quantization (VQ), in which the original chan-

nel information is represented by a vector codeword, SCQ utilizes a linear combination

of several codewords rather than a single one to represent the channel matrix. We show

that the proposed technique can achieve the same sum rate performance as VQ at a

reasonable cost in feedback overhead. Thus, SCQ is more practical because it signif-

icantly reduces the time and storage complexity for generating, searching and storing

the codebook. Also, comparisons among the different quantization techniques are pro-

vided. The required feedback bits for a specified rate loss are quantified, as well as

the complexity for each technique. Furthermore, the net capacity, which incorporates
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the effect of the overhead, is studied. Both analytical and simulation results reveal the

advantages and drawbacks of each quantization method and demonstrate under what

conditions to use one of them rather than the other. On the other hand, instead of

focusing on specific quantization techniques, we also apply the rate distortion frame-

work discussed in Chapter 2 to MU-MIMO systems. The tradeoff between the rate

loss due to CSI quantization and the amount of feedback overhead has been quantified

and investigated.

In Chapter 6, we focus on heterogeneous networks, which can be exploited

to improve cellular system performance. Specifically, the use of multiple cells can

significantly increase the system throughput and reduce power consumption. However,

complete and perfect information is required to coordinate transmissions and to allocate

the available resources to different users. In practical systems, the performance of

traditional algorithms degrades if some assumptions are incorrect or imprecise. In this

chapter, we propose a robust user pairing algorithm which jointly exploits cooperative

communications and peer-to-peer streaming. By evaluating the performance under

different definitions of uncertainty, we show that the proposed algorithm outperforms

the traditional optimal solution in the presence of imperfect CSI.

Finally, in Chapter 7, we summarize our contributions and describe interesting

open problems for future research.
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Chapter 2

TWO-HOP DECODE-AND-FORWARD COOPERATIVE RELAYING
NETWORKS

2.1 Introduction

Cooperative relaying in wireless networks has been a very active area of research

in recent years. In contrast to direct transmission, cooperative relaying can exploit the

must-needed diversity inherent in multiple spatially distributed wireless links [18–20],

and thereby improve the reliability of desired transmissions.

In this chapter, a decode-and-forward two-hop cooperative relaying network is

investigated. All the nodes in the network are assumed to have a single antenna and

be capable of only half-duplex transmission. The entire network is synchronized in

both time and frequency.1 The direct link between the source and the destination

is assumed to be very weak due to the presence of deep fading or shadowing, as is

typically the case. As illustrated in Fig. 2.1, there are multiple potential relay nodes

in the network which can help the transmission. We assume that the potential relay

nodes are randomly distributed in the network, and the spatial interference caused by

other concurrent data transmissions is ignored. The channels are assumed to follow a

quasi-static flat Rayleigh fading model.

The transmission process can be described as follows. In the first hop, the source

node broadcasts its signal s and each node receives an impaired version

yi = hsri
√
Pts+ ni, (2.1)

1 Synchronization is critical to the performance of cooperative networks. In [21, 22],
it has been shown that the network performance will significantly degrade without
perfect synchronization. The implementation of synchronization can be achieved by
using a global clock [23], training symbols [24], or PN sequences [25].

9



Figure 2.1: A two-hop decode-and-forward cooperative relaying network.

where Pt represents the transmit power of the source, hsri is the channel from the source

to the ith relay, and ni denotes the white Gaussian noise at the relays. The noise power

PN is assumed to be the same for all receivers. As long as the instantaneous SNR at

a node is higher than a pre-determined threshold γth, i.e.,

Pt|hsri |2
PN

≥ γth, (2.2)

we assume that the node can successfully decode s; such a node is called a decoded

node. The set of decoded nodes is called the decoded set and denoted by D. It is

clear that the number of decoded nodes is upper bounded by the total number of

nodes. Notice that D is a random set and the number of decoded nodes K is thus a

random variable, both varying with the fading channels in the first hop. For the sake

of simplicity, we will temporarily ignore the randomness of K and consider it only in

the simulations.

In the second hop, the decoded set, consisting of all decoded nodes, can form a
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virtual antenna array where each node emulates one antenna of a multiple-antenna ar-

ray. Significant spatial diversity gain can be achieved by applying well-known multiple-

antenna techniques, such as cooperative beamforming [26], STBC [27–34], relay selec-

tion [35–39], and so on. The end-to-end performance, which depends on the transmis-

sion strategy used in the second hop, will be discussed in the following sections.

The main difference between cooperative relaying and multiple-antenna trans-

mission is that the relay nodes in a cooperative network are distributed in space. So,

obtaining and exploiting CSI is an additional challenge. Implementing a practical

cooperative network is non-trivial because it usually requires central control or full

inter-relay communications. In other words, a significant overhead will be incurred,

and the net performance gain might be significantly reduced. Therefore, designing a

decentralized cooperative strategy with low overhead is crucial for real-world applica-

tions. Investigating the theoretical limits on overhead for a given transmission strategy

is another important task that will also be covered in this chapter.

2.2 Decentralized Cooperative Strategy with Low Overhead

STBC has been shown to be a promising technique for achieving the avail-

able diversity benefits of cooperation. Although conventional STBC schemes [27, 28]

usually require a central controller for coordinating the transmission, decentralized

STBC [30–34] has been investigated for eliminating the coordination overhead. In

[30], the authors propose a decentralized STBC scheme called M -group for cooper-

ative networks. With M -group, the nodes which have already successfully decoded

the information from the source node will independently and randomly divide them-

selves into M groups; each group then emulates one antenna of an M -antenna system.

By applying a pre-determined STBC scheme, cooperation among the relays, and the

resulting performance gain, can be obtained. It has been shown that M -group can

achieve almost the same outage performance as a true multiple-antenna STBC system,

but with very low complexity. Moreover, M -group requires the least amount of over-

head compared with other decentralized STBC schemes, requiring neither inter-relay
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Figure 2.2: A two-hop decode-and-forward cooperative relaying network. Potential
relay nodes are randomly distributed and M -group STBC is adopted.

communications nor central control.

As shown in Fig. 2.2, the decoded set D is divided intoM groups G1,G2 . . . ,GM ,

and a pre-determined orthogonal STBC scheme designed for an M -antenna system is

adopted for the transmission in the second hop. We assume that the STBC matrix,

denoted by X(s) = [x1,x2, · · · ,xM ], is known to all nodes in the network. Each group

Gi then emulates an antenna of the underlying M -antenna system, i.e., all relays in Gi

transmit the same column xi to the destination. After that, the destination can extract

the desired signal s using a decoding rule for orthogonal STBC [28]. The end-to-end

outage performance depends on how the M groups are constructed.

In this section, we prove the optimality of M -group decentralized STBC. By

solving an optimization problem minimizing the outage probability of the system, we

can show that M -group is the optimal transmission strategy under the condition that

neither inter-relay communications nor central control is permitted. The robustness of

M -group will also be discussed; this justifies the use ofM -group in practical cooperative

wireless networks.
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2.2.1 Optimization Formulation

There are two basic challenges in a decentralized STBC system: (i) How to

design a proper space-time code? and (ii) How to perform the STBC using the available

decoded set? Given the dynamic and distributed nature of a wireless network, these

two challenges are difficult without central control or full inter-relay negotiations, which

would incur a significant amount of overhead. To reduce the overhead, we need to relax

the design problem. The first relaxation is to fix the underlying STBC scheme a priori,

which means that not only the coding scheme but also the size of the underlying STBC

matrix are pre-specified and known to all nodes in the network. This addresses the

first challenge.

To solve the second challenge, as discussed above, we can divide the decoded

set into M groups and let each group emulate an antenna. Then, the design problem

is simplified to the problem of grouping these decoded nodes into M groups such that

the inter-relay communications and feedback (negotiation overhead) is less than some

given tolerance.

Recall that the number of nodes in the decoded set is K. Define a K×K binary

“overhead” matrix Ω with

Ωi,j =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, If the ith decoded node is permitted to

communicate with the jth node (i 	= j)

0, otherwise.

(2.3)

Note that the diagonal elements of Ω are always set to 0. The number of 1’s in Ω

can be used as a measure of the overhead incurred by the inter-relay communications.

Assuming all nodes in the decoded set relay the source information, when inter-relay

communications is prohibited, the number of 1’s in Ω reaches its minimum value 0.

Furthermore, since Ω is a binary matrix, the number of 1’s is equal to the square of

its Frobenius norm. In the following, we will use the Frobenius norm ‖Ω‖F of Ω to

represent the overhead. It can be seen that ‖Ω‖F ≥ 0 where equality holds when no

inter-relay communications is permitted.
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Without loss of generality, we suppose that the M groups transmit s to the

destination using an orthogonal STBC scheme [40]. Since we have assumed that the

noise power is the same for all links, we can set it to 1 to simplify the notation. The

SNR at the destination becomes

SNR =
M∑
i=1

∣∣∣∣∣∑
j∈Gi

√
Pjhrjd

∣∣∣∣∣
2

, (2.4)

where Pj represents the transmit power of the jth node in the ith group Gi and hrjd is

the channel from the corresponding relay to the destination. The outage probability is

defined as

pout = Pr{SNR ≤ γth}. (2.5)

Then, the problem can be formulated as

min
G1,G2,··· ,GM

pout

s.t. ‖Ω‖F ≤ Ωth

M∪
i=1

Gi = D
Gi 	= ∅, ∀i
Gi ∩ Gj = ∅, ∀i 	= j

(2.6)

where Ωth is the overhead tolerance.

Note that (2.6) is a combinatorial optimization problem and difficult to solve

[30]. Instead, we examine an extreme case where no inter-relay communications is

permitted. We can represent this extreme case by setting the overhead tolerance Ωth =

0. In other words, we assume that only the destination knows the CSI on the channels

from the relays to the destination, and the estimated CSI will not be fed back to the

relays.

Using (2.4), the received signal power contributed by the ith group is

P (i)
s =

∣∣∣∣∣∑
j∈Gi

√
Pjhrjd

∣∣∣∣∣
2

. (2.7)

14



Since the hrjd’s are i.i.d. complex Gaussian random variables, each P
(i)
s is a random

variable with an exponential distribution and can be parametrized by

λi =
1

E[P
(i)
s ]

=
1

E

[∣∣∣∑j∈Gi

√
Pjhrjd

∣∣∣2] , (2.8)

where E is the expectation operator, and λi represents the reciprocal of the average

received power from the ith group Gi. Since no inter-relay communications is allowed,

we cannot apply power allocation or any relay selection technique. So we assume that

all the nodes in the decoded set D transmit with the same power Pt. We use the

notation υ to denote the ratio of γth, the SNR threshold, to the transmit power Pt, i.e.,

υ
Δ
= γth/Pt. Note that the noise power is assumed to be one without loss of generality.

Then, λi is the reciprocal of the number of nodes in the ith group Gi multiplied by Pt,

λi =
1

Pt|Gi| , (2.9)

where |Gi| denotes the cardinality of the ith group. LetKi
Δ
= |Gi|. By using characteristic-

function and partial-fraction techniques, we can derive a closed-form expression for the

outage probability for the case λi 	= λj, ∀i 	= j,

pout = Pr

{
M∑
i=1

P (i)
s ≤ γth

}

=
M∑
i=1

(
1− e−γthλi

)∏
j �=i

1

1− λi

λj

=
M∑
i=1

(
1− e

− υ
Ki

)∏
j �=i

1

1− Kj

Ki

.

(2.10)

Although this expression is not valid when λi = λj, we can show that pout is a con-

tinuous and second-order differentiable function of the λi’s (or Ki’s). In particular, if
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λi = λj = λ, ∀i, j, the closed-form expression for the outage probability is

pout = Pr

{
M∑
i=1

P (i)
s ≤ γth

}

= 1−
M−1∑
i=0

e−γthλ(γthλ)
i

i!

= 1− e−
υM
K

M−1∑
i=0

1

i!

(
υM

K

)i

.

(2.11)

The specialized optimization problem, i.e., (2.6) with Ωth = 0, can be reformulated as

min
K1,K2,··· ,KM

pout(K1, K2, · · · , KM)

s.t. K1 +K2 + · · ·+KM = K

Ki ∈ {0, 1, · · · , K}
(2.12)

In order to make this NP-hard problem tractable, we also relax the integer constraint,

giving

min
K1,K2,··· ,KM

pout(K1, K2, · · · , KM)

s.t. K1 +K2 + · · ·+KM = K

Ki ∈ R, Ki ≥ 0

(2.13)

2.2.2 Optimality of M-group

If a uniform grouping is the optimal solution to (2.13), it is then clear that we

cannot do better than letting the decoded nodes independently and uniformly decide

which group they belong to. In the following, we prove this conjecture and show that

a uniform grouping is indeed the optimal strategy.

Theorem 2.1. A uniform grouping, i.e., Ki = K/M, ∀i ∈ {1, 2, · · · ,M}, is the

optimal solution to (2.13).

Proof. We use mathematical induction to prove the theorem.

Basis: In the simplest case M = 2,

pout(K1, K2) =

⎧⎪⎨⎪⎩
1− K1

K1−K2
e
− υ

K1 − K2

K2−K1
e
− υ

K2 if K1 	= K2

1− e−
2υ
K − 2υ

K
e−

2υ
K if K1 = K2

. (2.14)
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Since pout(K1, K2) is a continuous and second-order differentiable function, we only

need to consider the general expression for K1 	= K2. Consider the Lagrange multiplier

L(K1, K2, λ) = 1− K1

K1 −K2

e
− υ

K1 − K2

K2 −K1

e
− υ

K2 + λ(K1 +K2 −K). (2.15)

Then, the corresponding Lagrange conditions are⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
K2

(K1−K2)2

(
e
− υ

K1 − e
− υ

K2

)
− υ

K1(K1−K2)
e
− υ

K1 + λ = 0

K1

(K1−K2)2

(
e
− υ

K2 − e
− υ

K1

)
− υ

K2(K2−K1)
e
− υ

K2 + λ = 0

K1 +K2 = K

(2.16)

which can be rewritten as

K1 +K2

K1 −K2

=
υ(K1 −K2)

(
1
K1
e
− υ

K1 + 1
K2
e
− υ

K2

)
e
− υ

K1 − e
− υ

K2

. (2.17)

Let ΔK = K1 − K2. Notice that K1 + K2 = K, then (2.17) is equivalent to the

following equation

K
(
e−

2υ
K+ΔK − e−

2υ
K−ΔK

)
− υ

(
2ΔK

K +ΔK
e−

2υ
K+ΔK +

2ΔK

K −ΔK
e−

2υ
K−ΔK

)
= 0. (2.18)

Obviously, (2.18) holds when ΔK = 0. By calculating the derivatives, it is easy to

show that the left-hand-side of (2.18) is a strictly increasing function of ΔK. Hence

ΔK = 0 (or K1 = K2 = K/2) is the unique solution of (2.17). Since we know that the

boundary is the worst case (when K1 = 0 or K2 = 0, no diversity gain is obtained),

the global minimum is achieved by K1 = K2 = K/2.

Inductive step: When M > 2, assume the inductive hypothesis holds for M =

M ′. For M =M ′ + 1, we have

pout(K1, K2, . . . , KM ′+1) = Pr

{
M ′+1∑
i=1

P (i)
s ≤ γth

}

=

∫
∑M′+1

i=1 P
(i)
s ≤γth

p(P (1)
s , P (2)

s , . . . , PM ′+1
s )dP (1)

s dP (2)
s . . . dP (M ′+1)

s

=

∫ γth

0

Pr

{
M ′∑
i=1

P (i)
s ≤ γth − P (M ′+1)

s | P (M ′+1)
s

}
p(P (M ′+1)

s )dP (M ′+1)
s
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(a)

≥
∫ γth

0

⎡⎢⎢⎢⎢⎣1−
M ′−1∑
i=0

e
−M′(γth−P

(M′+1)
s )

Pt(K−KM′+1)

(
M ′(γth−P

(M′+1)
s )

Pt(K−KM′+1)

)i

i!

⎤⎥⎥⎥⎥⎦ 1

PtKM ′+1

e
− P

(M′+1)
s

PtKM′+1 dP (M ′+1)
s

(∗)
=

∫ υ

0

[
1−

M ′−1∑
i=0

1

i!
e
− M′(υ−Ps)

K−KM′+1

(
M ′(υ − Ps)

K −KM ′+1

)i
]

1

KM ′+1

e
− Ps

KM′+1 dPs

= 1− e
− υ

KM′+1−
1

KM ′+1

M ′−1∑
i=0

1

i!

(
M ′

K −KM ′+1

)i

e
− M′υ

K−KM′+1

∫ υ

0

(υ − y)ie

(
M′

K−KM′+1
− 1

KM′+1

)
y
dy

(b)

≥ 1− e−
υ(M′+1)

K

M ′∑
i=0

1

i!

(
υ(M ′ + 1)

K

)i

, (2.19)

where YM ′+1/P is replaced by y in step (*).

The expression in the last line of (2.19) is the outage probability with all Ki’s

being equal, given by (2.11). In order to prove that the hypothesis still holds for

M =M ′+1, we only need to show that the minimum value is actually achievable. The

equality of step (a) holds if and only if the parameters of Y1, . . . , YM ′ are the same, and

the equality of step (b) holds if and only if M ′
K−KM′+1

= 1
KM′+1

, i.e., the minimum value

can be achieved when K1 = K2 = . . . = KM ′+1. Hence, the hypothesis also holds when

M =M ′ + 1.

By mathematical induction, the statement holds for all M ≥ 2 and the theorem

is proved. �

Theorem 2.1 indicates that the optimal grouping strategy is to allocate the

decoded nodes across the decoded set D as uniformly as possible. In [30], a similar

problem is considered, but it only shows that uniform allocation can minimize an upper

bound of the outage probability. Since no inter-relay communications is allowed, the

only way to implement a uniform grouping is to let the decoded nodes independently

and uniformly choose the group they belong to. In other words,M -group is the optimal

strategy under the constraint that no inter-relay communications is permitted when

the channels hrjd’s are i.i.d. complex Gaussian random variables.
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Remark 2.1. In general, K/M might not be an integer, which means that we need

to round the fractional solution to obtain an integer-valued feasible solution. This also

implies that M should not exceed K. Since the gap between the optimal solutions to

the original integer program and the relaxed optimization problem is well understood

in the literature, the rounding process will not be discussed here. The simulation

results in Section 2.2.3 also show that the gap is negligible. Alternatively, if we use a

greedy algorithm to solve the integer program (2.12), we should first allocate Ki =
⌊
K
M

⌋
decoded nodes to each group. The remainingK−MKi decoded nodes can be randomly

put into these groups.

In a more general case where the distances from the relays to the destination

are not the same and the effect of path loss is also considered, the distribution of P
(i)
s

in (2.7) is affected not only by the number of nodes Ki in Gi but also by the distances

to the destination.

Let dj denote the distance from the jth decoded node in the ith group Gi to the

destination and �(dj) represent the path loss on this link, where �(dj) is a continuous,

positive, non-increasing function of dj. Then, P
(i)
s has an exponential distribution

parametrized by

λ̃i =
1

P
∑

j∈Gi
�(dj)

(2.20)

which is the reciprocal of the average total received power from the ith group Gi when

path loss is considered. Following the proof of Theorem 2.1, we can easily show that

the approach utilized above is still applicable.

Corollary 2.1. A grouping strategy with λ̃i = λ̃j, ∀i, j ∈ {1, 2, · · · ,M} is the optimal

solution for Problem (2.6) with Ωth = 0 when the distances from the decoded nodes to

the destination are not the same and path loss is considered.

Corollary 2.1 shows that the optimal grouping strategy is to allocate the decoded

nodes such that the average received power from each group is equal. However, this is

impossible without central control or full inter-relay communications because we would
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need to know the exact power gain for each link to obtain the optimal performance. M -

group can, nevertheless, achieve a near-optimal performance without incurring extra

overhead.

2.2.3 Simulation Results

In this section, we present results to verify the analysis. A two-hop cooperative

network with 16 potential relays is considered. All relays are uniformly distributed in

a square area, and the source and destination nodes are placed at opposite corners.

We consider the path loss model in [40]

�(d) = PL0

(
d

d0

)−α

, (2.21)

where PL0 is a constant that depends on the antenna characteristics and the average

channel attenuation, d0 is the reference distance for the antenna far field, and α is

the path loss exponent. Because of scattering phenomena in the antenna near field,

the model (2.21) is generally valid only at transmission distances d > d0. We assume

PL0 = 1, d > d0 = 1 and α = 4, since different values for these parameters will not

affect our analysis and simulation results. The largest possible path loss, i.e., the one

from one corner to its opposite corner, is set to 86 dB. The source and the relays use

the same transmit power. The Alamouti STBC scheme [27] is adopted to implement

a two-column M -group decentralized STBC.

Depending on whether the effect of path loss is considered, we evaluate two

different scenarios. In Figs. 2.3 and 2.4, only the effect of Rayleigh fading is considered.

In Fig. 2.3, we choose the transmit power so that the average received SNR is 15 dB or

20 dB above the SNR threshold γth, i.e., the received SNR margin is 15 dB and 20 dB,

respectively. In Fig. 2.4, the received SNR margin changes over a large range from

0 dB to 30 dB. By contrast, in Figs. 2.5 and 2.6, we present the outage performance

in the presence of path loss. In Fig. 2.5, the transmit power is set so that the average

received SNR at the destination contributed by a node close to the source is about

4 dB above the SNR threshold γth. In Fig. 2.6, the transmit power is chosen to let the
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Figure 2.3: Outage probability as a function of the number of nodes in the first group.
Only the effect of Rayleigh fading is considered. Two different SNR margins are used.
The randomness in the first hop is ignored.

average received SNR margin caused by the node near the source change over a range

from −36 to −6 dB.

In Fig. 2.3, the outage probability is plotted as a function of the number of

decoded nodes in the first group. The randomness in the first hop is ignored, i.e., the

transmissions between the source and the relays are assumed to be perfect and all 16

potential relays are selected as decoded nodes. The trends shown are very similar for

the two values of transmit power. It can be seen that the outage probability always

achieves the minimum value when the two groups have the same number of nodes, as

expected. In addition, we can see that the outage performance changes only slightly if

both groups are not empty; this is a good indication that M -group is robust against

the uncertainty introduced by the random assignment.

Next, we examine how the outage performance varies as the transmit power

increases. The outage probability curve is plotted as a function of the transmit power

for several different scenarios. The curves labeled “Perfect 1st hop” are obtained by

assuming all 16 potential relays are selected as decoded nodes. By contrast, the curves
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Figure 2.4: Outage probability as a function of the transmit power. Only the effect of
Rayleigh fading is considered.

without such labels represent the cases in which the randomness in the first hop is also

considered. As the transmit power increases, the outage performance increases with a

slope of one decade every 5 dB. The comparison between the optimal grouping strategy

(uniform group) and the random one (M -group) is shown. As expected, the optimal

one has better outage performance, but the gap is negligible. It can also be observed

that the randomness in the first hop is more significant when the transmit power is low.

In the low-transmit-power regime, the decoded set D is usually not full, and increasing

the transmit power can effectively increase the decoded set, thus improving the outage

performance. When the transmit power is high, however, the decoded set would be full

almost all the time and the randomness in the first hop is negligible. Thus, the curves

for the cases with and without a perfect first hop coincide.

We now evaluate the outage performance in the presence of path loss. The

randomness of the relay locations is also considered. Recall that the path loss on the

links from the decoded nodes to the destination is denoted by �(dj). The optimal

grouping strategy, as in (2.20), is to divide the decoded set into two parts with equal

sums of �(dj)’s rather than equal numbers of nodes. Mathematically, finding a partition
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Figure 2.5: CDF of the gap between the average received power for the first and second
groups. The effect of path loss is considered. The randomness in the first hop is ignored.

over the set of �(dj)’s with the equal (or, as close as possible) sum is an NP-complete

problem [41]. Fortunately, there are several available algorithms to achieve this [41].

First, we examine the effectiveness of M -group by evaluating the statistical

properties of the gap between the average received power from the two randomly di-

vided groups. The power gap is defined as the ratio of the average received power

from the second group to that from the first group. Since all the relays use the same

transmit power, the exact value of transmit power does not affect the statistics of the

power gap. The randomness of the relay locations is taken into account. Assuming a

perfect first hop, the cumulative distribution function (CDF) of the power gap is plot-

ted in Fig. 2.5. It can be seen that the power gap varies around 0 dB, with a transition

phase of about 40 dB. In other words, the two groups generated by M -group usually

have a non-negligible difference in the average received power, which in turn leads to

a performance degradation.

Second, the relationship between the outage probability and the transmit power

is illustrated in Fig. 2.6. It can be seen that the gap between the optimal strategy

and M -group is not negligible. This is consistent with the observation from Fig. 2.5.
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Figure 2.6: Outage probability as a function of the transmit power. The effect of path
loss is included.

In other words, such a coin-flip-driven strategy may not always be satisfying, and a

penalty in outage performance is inevitable to remove the overhead incurred by inter-

relay negotiations. Intuitively, we are inclined to believe that a small and acceptable

amount of overhead might improve the performance significantly. It can also be seen

that the outage with a non-perfect first hop is 1 when the transmit power is less than

70 dB 2. This is because no decoded nodes can be found at all in the first hop when

the transmit power is not high enough.

2.3 Overhead-Performance Tradeoff for Best Relay Selection

Relay selection is another attractive technique for realizing the benefits of coop-

eration and enhancing the network performance [35]. After the source broadcasts its

data, instead of using all the decoded nodes, the data is transmitted to the destination

using the “best” relay in the decoded set.

2 This value is relatively high since we assume that the noise power is 1. A practical
example is to assume that the noise spectral density is −174 dBm/Hz and the band-
width is 20 MHz. In this case, the noise power is −141 dB, and the outage for the first
hop is 1 when the transmit power is less than −71 dB.
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Figure 2.7: A two-hop decode-and-forward cooperative relaying network consisting of
a source, a destination, and K potential relay nodes, from which the best relay is
selected.

The first hop of the cooperative protocol remains the same as that introduced

in Section 2.1. In the second hop, the relay which has the highest channel power gain

to the destination will be selected, as illustrated in Fig. 2.7. Since only one node

transmits in the second stage, it is reasonable to assume that the selected relay node

always uses transmit power Pt. Let hrid represent the channel coefficient from the ith

relay to the destination and gi = |hrid|2 represent the corresponding channel power

gain. Then, the “best” relay is the jth relay where

j = argmax
i=1,2,··· ,K

gi. (2.22)

The selected relay then transmits the source information to the destination.

In most existing papers, relay selection is assumed to be perfect and the over-

head required is ignored. In practice, the implementation of cooperation among relay

nodes incurs overhead including control signals and inter-node communication. It is

intuitively obvious that better performance can be achieved if more CSI is available

at the transmitter. However, the overhead required for obtaining and transmitting

the CSI could be significant enough that the performance gain of using cooperation
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remains uncertain. Thus, the overhead-performance tradeoff is an important issue for

investigation.

Distributed relay selection algorithms which only require local information have

been investigated in recent papers. In [36, 37], a distributed mechanism is described

that is based on back-off timers to reduce the overhead for relay selection. Another

approach, time-slotted splitting, is proposed in [38] to quantify the amount of overhead

needed for the selection process. The overhead-performance tradeoff for the proposed

time-slotted splitting algorithm is discussed in [39]. However, the results in [36–39] are

highly dependent on the specific implementations. The fundamental questions remain

unanswered: How much overhead is required for effective relay selection? What is the

optimal tradeoff for general selective relaying networks?

In this section, we reformulate the overhead-performance tradeoff for selective

relaying networks as an optimization problem by applying a rate distortion approach.

It is straightforward to use the destination as a central controller that collects CSI and

selects the relays with the highest channel gain. The destination needs to utilize the

feedback channel to notify the selected relay. Our main contribution is to theoretically

determine how many feedback bits are required for effective relay selection. By solving

the proposed rate distortion problem, we obtain the minimum required amount of

overhead. Note that, unlike [36–39], we are not specifying the implementations such

as timer-based best select or the splitting algorithm.

2.3.1 Rate Distortion Formulation

The pioneering work in [42] provides a novel information-theoretic approach to

study the overhead-performance tradeoff through rate distortion theory. The primary

purpose of rate distortion theory is to find the optimal compression rate under a given

distortion measure for lossy source coding problems. In [42], rate distortion theory is

extended to analyze the minimum amount of overhead to be transmitted under a given

time delay constraint. Several recent papers have also focused on this approach. In [43],

the overhead required for transmitting traffic information for centralized scheduling
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in a multiple access system is investigated. Rate distortion theory is used in [44]

to derive a lower bound on the overhead for a specified location estimation error in

geographical routing. The tradeoff between the routing overhead for link state updating

and the maximum achievable transport capacity is studied in [45]. In [46], the overhead-

performance tradeoff for a beamforming system with partial CSI has been quantified.

Here, we use the extended rate distortion theory to study the impact of overhead

on the performance of cooperative relaying networks. In [43], the concept of distortion

in conventional rate distortion theory is interpreted to be the difference between the

optimal and actual network performance. Then, the minimum amount of overhead

required for relay selection can be found by minimizing the mutual information between

the correct and incorrect decision policies.

Define u = [u1, u2, · · · , uK ] as the best-select decision policy, i.e.,

ui =

⎧⎨⎩ 1, gi = max gk

0, otherwise
. (2.23)

Obviously, Pr{ui = 1} = 1
K

since all gi have the same distribution. Suppose û is the

actual decision policy. If û = u, i.e., the correct decision has been made based on

perfect knowledge of the CSI, then the optimal performance can be achieved.

In reality, û 	= u since the actual decision policy is usually based on imprecise

CSI. Suppose Φ = [φij]K×K is the transition probability matrix between u and û, i.e.,

φij = Pr{ûi = 1|uj = 1}, (2.24)

and Pr{ûi = 1} =
∑K

j=1 Pr{ûi = 1|uj = 1}Pr{uj = 1} = 1
K

∑K
j=1 φij. Then, the

mutual information between u and û, which characterizes the amount of overhead

required, is defined by

I(u, û) = H(û)− H(û|u), (2.25)
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where [47]

H(û) = H

(
1

K

K∑
j=1

φ1j,
1

K

K∑
j=1

φ2j, · · · , 1
K

K∑
j=1

φKj

)

= − 1

K

K∑
i=1

[(
K∑
j=1

φij

)
log

(
1

K

K∑
j=1

φij

)]
,

(2.26)

and

H(û|u) = 1

K

K∑
i=1

H

(
φ1i∑K
j=1 φji

, · · · , φKi∑K
j=1 φji

)
. (2.27)

To describe the performance degradation when u 	= û, we choose the ergodic

capacity [40] as the performance measure when the decision policy is û. Let g =

[g1, · · · , gK ] be the channel gain vector. The ergodic capacity can be written as

C(û) =

∫ ∞

0

log
(
1 + γgHû

)
f(g) dg, (2.28)

where γ = Pt/PN is the average received SNR. Then, the performance degradation is

Δ(u, û) = C(u) − C(û). We can rewrite the distortion metric Δ(u, û) as Δij, where

ui = 1 and ûj = 1. Obviously, Δij ≥ 0, and the equality holds if and only if i = j.

Therefore,

E[Δ(u, û)] =
K∑
i=1

K∑
j=1

φijΔij ≤ ΔC

(
1− 1

K

K∑
i=1

φii

)
, (2.29)

where ΔC is the supremum of the average capacity loss. For simplicity, we use this

supermum to relax the inequality constraint in the rate distortion formulation. The

following analysis and simulation results verify that the relaxation has minimal impact.

With this simplification, the rate distortion function can be written as

R(D) = min
Φ

I(u, û)

s.t. ΔC

(
1− 1

K

K∑
i=1

φii

)
≤ D, (2.30)

K∑
j=1

φij = 1, ∀i = 1, 2, · · · , K.
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The problem in (2.30) is similar to the optimization problem proposed in [46].

However, we formulate a discrete and multivariate optimization problem; in [46], a

continuous but univariate problem is considered. In addition, different scenarios are

considered here.

2.3.2 Overhead-Performance Tradeoff

Since the average rate loss ΔC in (2.30) is neither concave nor convex, the

analytical solution is intractable. Here, we first consider two representative cases for

analysis: the “best” and the “worst.” The “best” means D = 0, i.e., the optimal

performance is achieved. In this case, we want to investigate the amount of overhead

required to guarantee the optimal performance. The “worst” means R(D) = 0, i.e., no

overhead is allowed. In this case, we want to derive a lower bound on the performance

loss due to incorrect selection. Then, we propose a closed-form approximation for the

rate distortion function by using an independence assumption.

Best Case: Lower Bound on Overhead

It is easy to show that R(0) = logK. Because D = 0 and φijΔij ≥ 0, the

average distortion must satisfy

E[Δ(u, û)] =
K∑
i=1

K∑
j=1

φijΔij ≤ 0 ⇒ φijΔij = 0 ∀i and j, (2.31)

which implies that φij = 0 for i 	= j. Note that since
∑K

j=1 φij = 1, the only feasible

solution for (2.30) is the transition matrix Φ = I. In this case, û = u since, to

achieve the optimal performance, no error in the selection policy is allowed. Hence,

H(û|u) = 0, and R(D) = H(û) = logK.

Intuitively, logK is the number of information bits to transmit the index i,

1 ≤ i ≤ K. Since it is equally likely for each relay to be the best relay, the entropy

(uncertainty) of the index for the best relay is logK. In other words, an overhead of

at least logK bits is required to guarantee the optimal performance is achieved.
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Worst Case: Lower Bound on Performance Loss

To analyze the minimum performance loss Dmin subject to R(D) = 0, we use

the fact that R(D) = min I(u; û) = 0 which indicates that u and û are independent.

In other words, the elements φij in the transition matrix Φ are

φij = Pr{ûi = 1|uj = 1} = Pr{ûi = 1}. (2.32)

An intuitive explanation for (2.32) is that the selection policy must be random

when we do not have any prior knowledge about the CSI or about the optimal selection

policy at the transmitter. Since all the channels are i.i.d., the random selection criterion

should be equally likely for any potential relay node. Then, (2.28) can be rewritten as

E[C(û)] =

∫ ∞

0

log(1 + γg)f(g) dg

= log(e) · e1/γΓ(0, 1/γ),
(2.33)

where

Γ(m,x) =

∫ ∞

x

tm−1e−t dt (2.34)

is the incomplete gamma function.

Therefore, the inequality constraint in (2.30) becomes

E[Δ(u, û)] ≤ ΔC

(
1− 1

K

)
≤ D. (2.35)

The equalities hold if and only if pij = 1
K

for any i, j = 1, 2, · · · , K. Thus, Dmin

is proportional to the average capacity loss ΔC. The following theorem provides a

closed-form expression for Dmin.

Theorem 2.2. When R(D) = 0,

Dmin

log(e)
=
K − 1

K
ΔC bps/Hz, (2.36)

where

ΔC =
[ K∑

k=1

(−1)k−1

⎛⎝K
k

⎞⎠ ek/γΓ(0, k/γ)− e1/γΓ(0, 1/γ)
]
, (2.37)

and (K
k ) is the binomial coefficient indexed by K and k.
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Proof. We derive the ergodic capacity E[C(u)] for best-select relaying with K decoded

nodes as

E[C(u)]

log(e)
=

∫ ∞

0

ln(1 + γx)K(1− e−x)K−1e−x dx

=

∫ ∞

0

ln(1 + γx) d[(1− e−x)K − 1]

= lim
R→∞

[(1− e−R)K − 1] ln(1 + γR)−
∫ ∞

0

[(1− e−x)K − 1] · γ

1 + γx
dx.

(2.38)

Note that (1 − e−x)K − 1 =
∑K

k=1(−1)k (K
k ) e

−kx, which leads to lim
R→∞

[(1 − e−R)K −
1] ln(1 + γR) = 0. Thus,

E[C(u)]

log(e)
= −

K∑
k=1

∫ ∞

0

(−1)k

⎛⎝K
k

⎞⎠ e−kx γ

1 + γx
dx

=
K∑
k=1

(−1)k−1

⎛⎝K
k

⎞⎠ γ

∫ ∞

0

e−kx

1 + γx
dx

=
K∑
k=1

(−1)k−1

⎛⎝K
k

⎞⎠ ek/γΓ(0, k/γ).

(2.39)

Theorem 2.2 is proved by combining (2.33), (2.35) and (2.39). �

The closed-form expression in (2.36), however, does not give much insight. To

better understand this problem, we consider another important metric, the ratio be-

tween the capacity loss and the capacity. The capacity loss ratio is defined as

ρ(γ,K) =
Dmin

E[C(u)]
=

(
1− 1

K

)(
1− E[C(û)]

E[C(u)]

)
. (2.40)

Next, we provide some asymptotic properties of ρ(γ,K).

Theorem 2.3. (i) As the average SNR γ approaches infinity, the capacity loss ratio

ρ(γ,K) → 0. (ii) As γ approaches 0,

ρ(γ,K) →
(
1− 1

K

)(
1− 1

HK

)
, (2.41)

where HK is the K-th harmonic number defined by HK =
∑K

k=1
1
k
=
∫ 1

0
1−xK

1−x
dx.
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Proof. (i) According to (2.33) and (2.39),

E[C(u)]

E[C(û)]
=

K∑
k=1

(−1)k−1

⎛⎝K
k

⎞⎠ψk(γ), (2.42)

where

ψk(γ) =

∫∞
0

e−kx

1+γx
dx∫∞

0
e−x

1+γx
dx

=

∫∞
0

e−ky/γ

1+y
dy∫∞

0
e−y/γ

1+y
dy

. (2.43)

Notice that
∫∞
0

e−kx

1+γx
dx ≤ ∫∞

0
e−x

1+γx
dx, which indicates that if lim

γ→∞
ψk(γ) exists, then

0 ≤ lim
γ→∞

ψk(γ) ≤ 1. For any k = 1, 2, · · · , K, we have

lim
γ→∞

ψk(γ)
(a)
= lim

γ→∞

∫∞
0

ky/γ2

1+y
e−ky/γ dy∫∞

0
y/γ2

1+y
e−y/γ dy

= lim
γ→∞

k
∫∞
0
e−ky/γ dy − k

∫∞
0

e−ky/γ

1+y
dy∫∞

0
e−y/γ dy − ∫∞

0
e−y/γ

1+y
dy

(∗)
=

1− k lim
γ→∞

∫∞
0

e−kx

1+γx
dx

1− lim
γ→∞

∫∞
0

e−x

1+γx
dx

(b)
= 1,

where y/γ is replaced by x in step (*). Equality (a) follows from L’Hospital’s Rule.

Although lim
γ→∞

∫∞
0

e−kx

1+γx
dx and lim

γ→∞
∫∞
0

e−x

1+γx
dx are not Riemann integrable, by using

the Fatou-Lebesgue theorem [48], we can exchange the order of the limitation operation

and the integral operation giving (b). Using (2.42) and (2.44),

lim
γ→∞

E[C(u)]

E[C(û)]
= −

K∑
k=0

(K
k ) 1

K−k(−1)k + 1 = 1. (2.44)

Hence, lim
γ→∞

ρ(γ,K) = 0.

(ii) Since lim
γ→0

∫∞
0

e−kx

1+γx
dx and lim

γ→0

∫∞
0

e−x

1+γx
dx are Riemann integrable, we have

lim
γ→0

ψk(γ) = lim
γ→0

∫∞
0

e−kx

1+γx
dx∫∞

0
e−x

1+γx
dx

=

∫∞
0
e−kx dx∫∞

0
e−x dx

=
1

k
. (2.45)

The combinatorial expression
∑K

k=1(−1)k−1 1
k
(K

k ) is equivalent to the K-th harmonic

number HK , which proves (2.41). �
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Notice that HK → ∞ as K → ∞, which means that, in the low-SNR regime,

the capacity loss approaches the capacity when K is large. However, most of the time,

ρ(0, K) is not large since HK = O(logK), which indicates that the capacity loss ratio

for the low-SNR regime is tolerable in practice.

At first glance, it might seem that (2.41) is counterintuitive. To better explain

(2.41), we can view the ratio ρ(γ,K) as the difference between the slopes of two capacity

curves. From an information-theoretic point of view, the capacity can be described

through two key parameters: the minimum required energy per information bit and

the asymptotic slope, especially in the low-SNR regime. In [49], it is shown that the

value of the asymptotic slope varies when the knowledge of the CSI at the transmitter

changes.

A Closed-Form Approximation

Here, we relax the original problem to a convex optimization problem by using

an independence assumption. Suppose that the jth node has the highest channel power

gain. We assume that |hrid|2−|hrjd|2, i = 1, 2, · · · , K, i 	= j are i.i.d. random variables.

Under this assumption, the following theorem provides a closed-form expression for the

rate distortion function.

Theorem 2.4. The rate distortion function can be found as

R(D) = logK − D

ΔC
log(K − 1)−H

(
D

ΔC

)
, (2.46)

where H(x) is defined by

H(x) =

⎧⎪⎨⎪⎩
−x log x− (1− x) log(1− x), 0 < x < 1,

0, x = 0, 1

(2.47)

and ΔC is given in (2.37).
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Proof. Given the independence assumption, we can transform the rate distortion prob-

lem (2.30) to the following optimization problem

R(D) = min
Φ

I(u; û)
s.t.

∑K
i=1 φii ≥ KD

(
1− D

ΔC

)
,∑K

j=1 φij = 1, ∀i = 1, 2, · · · , K.
(2.48)

According to the Karush-Kuhn-Tucker (KKT) conditions, we can solve (2.48) and

obtain the closed-form solution

Φ =

⎡⎢⎢⎢⎢⎢⎢⎣
1− D

ΔC

D
(K−1)ΔC

· · · D
(K−1)ΔC

D
(K−1)ΔC

1− D
ΔC

· · · D
(K−1)ΔC

...
...

. . .
...

D
(K−1)ΔC

D
(K−1)ΔC

· · · 1− D
ΔC

⎤⎥⎥⎥⎥⎥⎥⎦ , (2.49)

The rate distortion function R(D) can then be obtained by combining (2.48) and

(2.49). �

In (2.46), we have R(0) = logK, which implies that the minimum required

number of feedback bits for perfect relay selection is logK bits. In particular, we can

encode the index of K nodes by using logK bits if K is known a priori. On the other

hand, when R(D) = 0, D = K−1
K

ΔC is the performance loss if there is no feedback.

These results match our analysis for the two extreme cases.

2.3.3 Simulation Results

In this section, we present results to verify the analytical derivations. Since the

objective function and the constraints in (2.30) are twice continuously differentiable,

we can use sequential quadratic programming (SQP) [50] to numerically solve it. As

a simple example, we choose K = 2; the transmit power is chosen so that the average

received SNR is between 0 and 15 dB. In Fig. 2.8, the resulting rate distortion function

R(D), which represents the minimum amount of overhead, is plotted as a function of

the performance gap D (in bps/Hz).
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Figure 2.8: Simulation and Gaussian-fitting approximations for R(D).

We can also use the following expression, called the Gaussian-fitting approxi-

mation [51], to evaluate R(D),

R(D) ≈ c1 exp

(
−(D + c2)

2

c3

)
. (2.50)

The parameters c1, c2 and c3, which depend on the average SNR γ and the number of

relay nodes K, can be estimated by using numerical methods. Using this approxima-

tion, we can easily obtain near-optimal lower bounds for R(D) and D for any given

system environment.

The approximation is suitable since the differences between the estimated values

and the true values are negligible, which is also observed in Fig. 2.8. Table I shows the

root-mean-square error (RMSE) of the estimated R(D) for different γ.

γ c1 c2 c3 RMSE
0 dB 2.182 0.1152 0.0159 0.0021
5 dB 2.151 0.1874 0.0429 0.0035
10 dB 2.147 0.2509 0.0774 0.0031
15 dB 2.135 0.2953 0.1063 0.0036

Table 2.1: Estimated R(D) and corresponding RMSE
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Figure 2.9: The lower bound on capacity loss Dmin when no overhead is allowed.

According to Fig. 2.8, we see that only one extra information bit is required to

achieve the optimal performance for this simple example, which verifies our analysis

for R(0). In a real system, the receiver only needs to broadcast one bit of information

to announce the index of the node which has the best channel power gain. Depending

on the quality of the feedback channel, we can specify the achievable code rate and

the practical cost for this feedback signal. The overhead for the receiver to obtain the

estimates of these channel gains must also be computed in practice.

Figs. 2.9 and 2.10 provide the lower bound on the capacity loss Dmin and the

capacity loss ratio ρ, respectively, for the case where no overhead is allowed (R(D) = 0).

In the simulation, we assume R(D) ≈ 0 if R(D) ≤ 10−10 to obtain the corresponding

Dmin. According to the results, as expected, Dmin increases when we have more relay

nodes since the selection gain is high for larger K. On the other hand, ρ will decrease

as we increase the transmit power Pt, which indicates that the impact of selection gain

becomes negligible in the high-SNR regime, also as expected.
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Overhead-Performance Tradeoff for a Practical System

Now, we examine the overhead-performance tradeoff in a selective OFDM re-

laying system [52] consisting of K relays and one source-destination pair. We do not

consider the time delay and bandwidth consumption that is needed for practical relay

selection.

The tradeoff between data rate (performance) and required number of informa-

tion bits (overhead) is plotted in Figs. 2.11 and 2.12. Assume that the node mobility

and carrier frequency are such that the channel coherence time Tc is between 0.1 and

10 msec [53]. The bandwidth B is chosen to be 10 MHz, which is divided into 64 sub-

carriers. We set the length of each time slot to be 0.1Tc, and in each time slot and each

subcarrier, R(D) bits is consumed to achieve capacity C(u)−D bps/Hz. In Fig. 2.11,

we have two relays in the system, and the transmit power is chosen such that the aver-

age received SNR is 0 dB. In Fig. 2.12, there are four relays and the transmit power is

chosen so that the average received SNR is 10 dB. Clearly, the extra overhead occupies

a large part of the resource in the low-SNR regime with a small coherence time, and
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more overhead does not lead to better performance, as we can see in Fig. 2.11. On the

other hand, when the node mobility is low (large coherence time) and the SNR is high,

the impact of R(0) information bits becomes negligible. Note from Fig. 2.12 that we

can always get a gain in performance with more overhead. Notice, also, that the data

rate is not as sensitive to the coherence time when K = 4 and SNR = 10 dB.

2.4 Spectral Efficiency of Centralized and Decentralized Cooperative Net-

works with Relay Selection

As we mentioned, an essential issue for designing a relay selection scheme is

how to select the “best” relay out of all available cooperating nodes. A straightforward

approach is to use the destination as a central controller that selects the best relay. In

Section 2.3, we introduced this centralized feedback-based relay selection scheme and

quantified the feedback overhead required for a given performance loss. The amount

of overhead incurred by channel estimation, however, was not studied.

The centralized implementation of relay selection usually involves extra control

signals and inter-node communications, which can degrade the overall system perfor-

mance, especially for systems with a large number of relays. Decentralized selection

mechanisms, which only require local information, have been investigated for overcom-

ing these implementation issues. A distributed mechanism, which is based on back-off

timers to reduce the required overhead for relay selection, is described in [36,37,54,55].

Another approach, called the time-slotted splitting algorithm, is proposed in [38,39,56]

to characterize the amount of overhead needed for a specified selection process.

Intuitively, decentralized relay-selection schemes incur much less overhead than

centralized schemes, but at the cost of performance loss. In a decentralized implementa-

tion, such as timer-based relay selection, transmissions may fail due to an unsuccessful

relay-selection process. By contrast, centralized schemes usually achieve optimal per-

formance, but with a significant amount of overhead. Thus, it is valuable to study

which scheme to choose for a given transmission environments.
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In this section, we follow the same system model discussed in Section 2.3. Over-

head analyses for different approaches of relay selection are first provided. By com-

paring the optimum spectral efficiency for centralized and decentralized schemes, the

criteria for deciding which scheme should be applied for a given environment is then

investigated. We show that, if the number of relays is small or the channel is relatively

static, the effect of overhead for centralized schemes becomes negligible, implying that

centralized schemes should be employed. On the other hand, if there are many avail-

able relays or the channel changes rapidly, the decentralized schemes outperform the

centralized approaches due to the reduced amount of overhead.

We choose the spectral efficiency [14] as our performance metric to compare the

centralized and decentralized schemes. It is defined as the successfully delivered bits

from the source to the destination per channel use,

η =
R

2

T − To
T

, (2.51)

where R is the transmission rate, To is the expected time consumption for overhead,

T is the total transmission time, and the factor of 1/2 comes from the two-stage

transmission. Note that R can be the ergodic capacity (for variable-rate transmission)

or the outage capacity (for fixed-rate transmission) [40].

Here, we investigate the spectral efficiency of two different schemes: centralized

(feedback-based) and decentralized (timer-based) relay selection. Different types of

overhead including channel estimation and relay selection are discussed.

2.4.1 Centralized Feedback-Based Relay Selection (FBRS)

It is straightforward to use the destination as a central controller that selects the

relay with the highest channel gain. In order to collect global channel information, each

relay node has to first send pilot symbols to the destination. By using pilot symbols

which are known at all nodes in the network, the destination can obtain accurate

channel estimates. In [57], it has been shown that the optimum length of the pilot

symbols which maximizes the capacity is equal to the number of antennas. Therefore,
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Figure 2.13: A timing diagram for FBRS. Each relay node sends a pilot symbol such
that the destination can estimate the channels. Then, the destination broadcasts the
relay selection results via a feedback packet. Afterwards, the selected relay starts data
transmission.

we assume that the destination can obtain perfect knowledge of the channel power

gain |hrid|2 after the ith node sends a pilot symbol. In other words, the minimum time

consumption for the channel estimation overhead is Kts, where K is the number of

potential relay nodes, and ts is the symbol duration.

The destination can then utilize the feedback channel to notify the selected

relay. The time consumption for feedback, tf, is determined by the size of the feedback

packets and the feedback rate Rfb. We can easily obtain closed-form expressions for tf

based on our analysis in Section 2.3. As illustrated in Fig. 2.13, the time consumption

for overhead is

To = Kts + tf. (2.52)

According to (2.46), we can choose an appropriate value of Δ for variable-rate

transmission to maximize the spectral efficiency defined in (2.51). Here, we focus on

fixed-rate transmission and assume that Δ = 0 for simplicity. In this case, the spectral
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efficiency is

ηFBRS =
Rd(1− pout)

2

T −Kts − tf
T

, (2.53)

where Rd is the fixed transmission rate and pout is the outage probability for relay

selection, given as [20]

pout = Pr

{
log2

(
1 +

Pt

Pn

max
i

|hrid|2
)
< Rd

}
=
(
1− e

−Pn
Pt
(2Rd−1)

)N

.

(2.54)

2.4.2 Decentralized Timer-Based Relay Selection (TBRS)

TBRS is first proposed in [36] and has been shown to perform well. A timing

diagram for TBRS is shown in Fig. 2.14. At first, the destination sends a pilot symbol

to all nodes. Exploiting the reciprocity of wireless links, all relay nodes are able to

estimate their own channel power gains. Based on this local channel information, every

relay node sets up an individual timer so that the best node will have the shortest timer.

Once the first timer expires (at the best node), the node starts its data transmission,

and the other nodes back off. Consequently, TBRS always ensures that the timer of a

node with a larger metric (for example, channel power gain) expires earlier than that

of a node with a smaller metric.

Ideally, the best relay can always be selected successfully; however, in practice,

the selection process may fail due to collisions. As discussed in [14, 36], due to the

different propagation delays and the processing delay to prepare the information packet,

it is possible that, before overhearing the transmission from the best relay, the timers at

the other relays have already expired. In this case, more than one relay will rebroadcast

the signal; a collision occurs and the destination cannot decode the message correctly

(note that no capture effect is taken into account). Therefore, to avoid collisions and

achieve a successful selection, the second minimum timer must be larger than the sum

of the minimum timer and a guard interval, tg, the value of which depends on the

capabilities of the system [36].
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The value of tg, which depends on system capabilities, can be viewed as a pre-

defined parameter. As discussed in [36], the guard interval tg includes the propagation

delay, the processing delay, synchronization offset, and the transmission symbol length.

Typically, the delays and offset are negligible compared to the symbol length. There-

fore, without loss of generality, we assume that tg also represents the symbol length.

Relay

Relay 

Relay Data Transmission

Relay 

Destination

Pilot symbol for 
channel estimation

Timer for distributed 
relay selection

Overhead time 

Total transmission time 

Figure 2.14: A timing diagram for TBRS. The destination broadcasts a pilot symbol
such that all nodes can estimate the channels. Each node sets a timer. Once the
first timer expires, the corresponding node sends a pilot symbol to ensure that the
destination can estimate the channel. Then, it starts data transmission, and all other
nodes back off.

Inverse Timer

In [36], an inverse timer is adopted, i.e., an individual timer is set as inversely

proportional to the channel power gain, that is, ti = λ
|hrid

|2 (λ is a constant system

parameter). We denote the ordered sequence of timers as t(1) ≤ t(2) ≤ · · · ≤ t(K).
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Then, a collision occurs if t(2) < t(1) + tg and the collision probability, pcoll, is [14]

pcoll = Pr(t(2) < t(1) + tg)

= 1−K(K − 1)

∫ ∞

tg

f(x)F (x− tg)

(1− F (x))2−K
dx

(2.55)

where

F (x) = Pr{ti ≤ x} = Pr{ λ

|hrid|2
≤ x} =

⎧⎪⎨⎪⎩
e−

λ
x x > 0

0 x ≤ 0

(2.56)

is the CDF of ti, and

f(x) =
dF (x)

dx
=

⎧⎪⎨⎪⎩
λx−2e−

λ
x x > 0

0 x ≤ 0

(2.57)

is the corresponding probability density function (PDF).

As for the selection overhead in TBRS, in addition to the possible collisions,

a duration tsel is consumed by the selection process, during which there is no data

transmission. According to [14], the expected selection time tsel is the expectation of

the minimum timer, t(1). Given K, the CDF of t(1) is

Pr(t(1) ≤ x) = 1− Pr(t(1) > x) = 1−
∏
i

Pr(ti > x)

= 1− (1− F (x))K = 1− (1− e−
λ
x )K (2.58)

Then, the PDF is

f(x)t(1) = K(1− e−
λ
x )K−1e−

λ
xλx−2 (2.59)

Therefore, the expected selection time tsel is

tsel = E(t(1)) = Kλ

∫ ∞

0

e−
λ
x

x
(1− e−

λ
x )K−1dx, (2.60)

where E(·) represents expectation. The following theorem provides a closed-form ex-

pression for tsel.
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Theorem 2.5. The expected selection time

tsel = λ
K−1∑
i=0

⎛⎝K
i

⎞⎠ (−1)K−i(K − i) ln(K − i), (2.61)

where (K
i ) is the binomial coefficient indexed by K and i.

Proof. We can prove the theorem by rewriting (2.60) as

tsel = Kλ

∫ ∞

0

1

x
e−

λ
x

(
1− e−

λ
x

)K−1

dx

(a)
= Kλ

∫ ∞

0

1

x
e−

λ
x

K−1∑
i=0

(K−1
i ) (−1)K−1−ie−

λ(K−1−i)
x dx

(b)
= λ

K−1∑
i=0

(K
i ) (−1)K−1−i

∫ ∞

0

1

x
e−

λ(K−i)
x dx

(c)
= λ

K−1∑
i=0

(K
i ) (−1)K−i(K − i) ln(K − i), (2.62)

where step (a) results from the binomial theorem. According to the Fubini theorem

[48], we can exchange the order of the integral operation and summation giving (b).

Step (c) can be derived based on the results in [58]. �

We can see that tsel is only related to the parameter λ and the number of

potential relay nodes K. Fig. 2.15, which plots tsel/λ as a function of K, verifies the

accuracy of Theorem 2.5.

Clearly, the collision probability pcoll and the selection time tsel are functions of

the timer setting parameter λ. If λ is large, the collision probability can be reduced

at the cost of a long selection time. By contrast, a small λ leads to a high collision

probability and short selection time. If we can adaptively choose the value of λ, the

spectral efficiency of fixed-rate TBRS is

ηTBRS =
Rd(1− pout)

2
max

λ

[
(1− pcoll)

(T − ts − tsel)

T

]
. (2.63)
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Figure 2.15: tsel/λ versus the number of potential relay nodes K.

Optimal Timer

Instead of considering the inverse timer, which is a straightforward approach and

only achieves suboptimal performance, the optimal metric-to-timer mapping should be

investigated. Mathematically, the objective is to find an optimal mapping in the space

of all monotone non-increasing functions that maximizes ηTBRS. Note that both the

collision probability pcoll and the expected time overhead To depend on the mapping

function. In general, finding the optimal mapping function is an intractable functional

optimization problem.

In [54], it has been shown that an optimal mapping that minimizes pcoll within

a maximum allowable selection time Tmax maps the CDF of the channel power gain

into several discrete timer values. That motivates us to decompose our goal into two

subproblems: 1) minimizing pcoll for a fixed Tmax and 2) choosing the appropriate

value of Tmax to maximize ηTBRS. Although the decomposition results in suboptimal

solutions, we show that the performance of the proposed design is much better than

existing designs.

For a fixed Tmax, as the number of relays K goes to infinity, an asymptotic result
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for pcoll is provided in [54]

pcoll = exp(−[1− exp(· · · − [1− exp(−1)]) · · · ])︸ ︷︷ ︸
KT levels

(2.64)

where KT = �Tmax/tg� is the number of distinct timer values, and �·� is the rounding

operator which chooses the largest integer which is not greater than the operand. Here,

we choose an empirical approximation of (2.64) for analytical simplicity

pcoll ≈ exp

(
− c1
KT

)
, (2.65)

where c1 ≈ 1.78 can be obtained through numerical evaluations. Through simulation

results in Section 2.4.3, we will show that these asymptotic and empirical results are

tight approximations even when the number of relays K is small.

Another empirical observation is that the average selection time Tsel does not

change as the number of relays K changes. In fact, we can approximate the average

selection time as a linear function of Tmax, i.e.,

Tsel ≈ c2Tmax, (2.66)

where c2 ≈ 1/3. Note that the overhead time To also needs to include the time for

transmitting additional pilot symbols so that the destination can accurately estimate

the channel from the selected relay. In [57], it has been shown that the optimum

length of the pilot symbols which maximizes the capacity is equal to the number of

antennas. Therefore, we assume that the destination can obtain perfect knowledge of

the ith node’s channel power gain after it sends a single pilot symbol. In other words,

the minimum time consumption for the channel estimation overhead is the symbol

duration tg.

Combining (2.65) and (2.66), we obtain the normalized net throughput

ηTBRS ≈
[
1− exp

(
− c1
ατ

)](
1− 1

τ
− c2α

)
, (2.67)

where α = Tmax/Tc ∈ [0, 1] is the fraction of the maximum allowable selection time

over the block length, and τ = Tc/tg is the ratio between the block length and the

symbol duration.
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Now ρ can be optimized over α, and the optimal values of Tmax for any given

Tc can be determined. According to the Karush-Kuhn-Tucker conditions, the value of

α maximizing (2.67), α�, satisfies

exp
( c1
τα�

)
− c1
τα�

−
( c1
τα�

)2 1− τ

c1c2
= 1. (2.68)

Although (2.68) does not have a closed-form analytical solution, we can easily obtain

α� via numerical methods.

The solution of (2.68) does not depend on the number of relays as we are using

an asymptotic approximation (K → ∞). Note that c1 and c2 are constants which

can be evaluated based on the distribution of the channel power gain, and τ is also

a constant which characterizes the time varying property of the wireless channel. So,

once we have an accurate channel model, the optimal α can be uniquely determined.

2.4.3 Simulation Results

In this section, simulation results are presented to justify the empirical and

analytical results. A comparison between centralized and decentralized schemes is also

provided.

The plots in Fig. 2.16 validate our proposed empirical approximations (2.65)

and (2.66). In the first two plots, the probability of successful selection psuc = 1− pcoll

is plotted as a function of K (the number of relays3) and τ (the ratio between total

transmission time Tc and symbol length tg). In the last plot, the expected selection

time Tsel is plotted as a function of Tmax/tg for different values of K. We observe that

our approximations are very tight for almost all ranges of K and τ .

3 Here, we assume K is a fixed parameter. In practice, the number of active relays
should be a random variable. Since our main focus is the comparison between the
centralized and decentralized schemes, we assume that, for each realization, the number
of active relays is the same for both schemes. Under this assumption, the randomness
of the decoded set does not alter the comparison results.
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Figure 2.16: Validation of empirical approximations (2.65) and (2.66).
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In Figs. 2.17 and 2.18, we present the normalized spectral efficiencies4 for differ-

ent selection schemes: the proposed timer which maximizes the spectral efficiency (SE)

defined by (2.67), the timer discussed in [54] which minimizes the collision probability,

the inverse timer which maximizes (2.63), and the centralized feedback-based selection

scheme. For the timer minimizing the collision probability, the maximum allowable

selection time is set to be Tc. Fig. 2.17 illustrates the relationship between the nor-

malized spectral efficiency and the number of relays K, where τ = 40. In Fig. 2.18,

the normalized spectral efficiency is plotted as a function of τ , which varies between 0

and 300. The number of relays K is 16, and the feedback transmission rate Rfb is set

to be 6.5 Mbps over a 20 MHz band.

We observe that our proposed timer design achieves much better performance

than the timer in [54] and the inverse timer, as expected. Note that the timer in [54]

does not jointly consider the collision probability and the selection overhead, which

explains why it does not perform well with respect to ρ. Another observation is that,

when τ and Tc are small (i.e., the channel changes rapidly), the performance of the cen-

tralized scheme is very bad since the pilot symbols and feedback symbols occupy almost

the entire transmission time. In this case, timer-based schemes are more appealing due

to their low overhead requirements. By contrast, the centralized scheme outperforms

all other schemes when τ and Tc are sufficiently large because of the unavoidable colli-

sions in timer-based schemes. The impact of overhead on the net throughput becomes

negligible as τ increases, and the performance for timer-based schemes is limited by

the collision probability.

Although increasing K achieves a higher diversity order, it also incurs more

overhead for channel estimation and relay selection (see Fig. 2.17). For any selection

scheme, the spectral efficiency eventually degrades as K increases due to the increas-

ing amount of overhead. We observe that the performance of the centralized scheme

4 Here, we normalized the spectral efficiency η by the desired transmission rate Rd.
Since fixed-rate transmissions are assumed, the normalization does not change our
results.
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Figure 2.17: Normalized spectral efficiency as a function of the number of relays K.
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Figure 2.18: Normalized spectral efficiency as a function of τ = Tc/tg.
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Figure 2.19: Operating regimes for centralized and decentralized relay selection schemes
for different values of K and τ .

decreases linearly since the amount of channel estimation overhead is a linear function

of K. On the other hand, timer-based schemes, which require less overhead than the

centralized scheme, can support more relays, without losing much in performance.

The results in Figs. 2.17 and 2.18 depend on system parameters such as K

and τ . In order to demonstrate the joint impact of these parameters, we plot the

operating regimes in Fig. 2.19 to illustrate when we should use centralized or decen-

tralized schemes. By using a power-fitting approximation [51], we provide criterion

for determining which scheme should be applied: choose the centralized scheme when

τ > c1K
c2 + c3. The parameters ci, i = 1, 2, 3 can be estimated by numerical methods.

Using this approximation, we can easily obtain a practical rule of thumb to efficiently

perform relay selection.

The approximation is suitable since the differences between the estimated values

and the true values are small, which is also observed from the 99% confidence bound

in Fig. 2.19. In particular, if we choose c1 ≈ 1.221, c2 ≈ 1.694, and c3 ≈ 8.31, the

root-mean-square estimation error in Fig. 2.19 is around 0.6869, which is negligible

compared with the value of τ which is on the order of 10 or 100.
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2.5 Summary

In this chapter, we studied an optimal cooperative STBC transmission strategy

assuming no inter-relay communications or central control. A general optimization

problem and a specialized case were formulated to minimize the outage probability

subject to this constraint. We proved that when only Rayleigh fading is present, M -

group decentralized STBC is the optimal transmission strategy. The optimal strategy

for more realistic environments was also proposed; however, it is impractical due to

the violation of the overhead constraint. Simulation results showed that M -group can

achieve a near-optimal performance without incurring additional overhead.

We also used an information-theoretic approach to quantify the tradeoff between

overhead and performance loss for a simplified cooperative system. A generalized

optimization problem based on rate distortion theory was formulated to characterize

the overhead-performance tradeoff. We discussed the asymptotic properties and an

approximation of the rate distortion function, which were verified by simulation results.

Performance analyses for centralized and decentralized relay-selection schemes

are also presented in this chapter. For different relay selection approaches, we quanti-

fied the required overhead and the optimum spectral efficiency. Closed-form analyses

have been provided based on empirical approximations. A comparison between cen-

tralized and decentralized selection schemes is also provided. We show the superiority

of centralized scheme when the impact of overhead is insignificant. Conversely, decen-

tralized schemes are preferred if the amount of overhead has a significant effect on the

performance.

There are several potential extensions of this work. For example, it might be

possible to improve the performance of the STBC and M -group schemes by incurring

a small and acceptable amount of overhead. Although we have proved thatM -group is

optimal under the zero-overhead constraint, the optimal schemes for more general cases

have not been studied. Also, one could extend our comparisons between the general

centralized and decentralized schemes to more realistic scenarios. For example, we

can analyze other cooperative techniques such as beamforming and space-time coding.
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Another example is to include the randomness of the first stage into our analysis. In

addition, the comparisons in terms of ergodic capacity for variable-rate transmission

might be further studied. Providing more accurate models for quantifying the required

overhead is another challenging issue.
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Chapter 3

MULTI-USER POISSON NETWORK WITH COOPERATION

As discussed in Chapter 2, it has been shown that the quality of a single wire-

less link can be significantly enhanced by means of cooperative communication. In

a wireless network of moderate or large size, however, the situation becomes more

complicated because there may exist many users which share the same time and fre-

quency resources. Since cooperative communications usually involves multiple-node

transmissions, it may generate additional spatial interference to other concurrent data

transmissions in the network. The aggregate interference power can easily be strong

and cause negative impact on the performance of the network. In other words, although

each cooperative transmission has the potential to improve the reception quality of its

destination, the overall performance taking into account the increased interference level

remains unclear. Therefore, it can be expected that the impact of cooperation on the

performance of a network is complicated. However, most of the existing literature fo-

cuses only on the local beneficial effect of cooperative communications and neglects its

possible drawbacks.

Some efforts have been devoted to evaluating the performance of large-scale

wireless networks using cooperative communications [59]. Due to the distributed and

dynamic nature of the network, complex higher layer protocols are usually taken into

account, which makes the analytical study extremely difficult. In general, sophisticated

computer simulations are required in this line of work. One possible approach is to ap-

proximate dense networks with a continuum of nodes where the density of the network

goes to infinity [60–62]. The continuum approximation, which has been verified to be

accurate, can provide insights for investigating the performance of dense wireless net-

works; however, the observations and results obtained from this approach are usually
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not applicable for sparse networks. On the other hand, emerging stochastic geometry

tools provide an alternative way of thinking. Various aspects of non-cooperative wire-

less networks have been investigated following this line of inquiry [63–65]. In [66–68],

cooperative communication systems with one source-destination pair are investigated

using stochastic geometry. Most of these works, however, assume that the network is

interference-free, which is clearly an idealized version of the problem.

For interference-limited cooperative networks, optimal centralized algorithms

and suboptimal distributed algorithms have been proposed to achieve excellent per-

formance for different scenarios in [69–72]. In particular, [69] studies spectrum man-

agement and relay selection in cooperative networks. In [70, 71], the results in [69]

are extended, and the problem of jointly encoding rate control, power allocation, relay

selection, and subcarrier assignment in a cooperative multimedia network is solved.

In [72], distributed algorithms for cross-layer design in a multihop interference-limited

cooperative system are proposed. Compared to [69–72], which focus on performance

optimization for given cooperative networks, our objective is to derive a criterion for

whether to use cooperation or not in a large-scale random network. The tools of

stochastic geometry are applied to investigate a network with spatial interference.

Specifically, in this chapter, the outage performance of a random wireless net-

work for both non-cooperative and cooperative strategies is analyzed; and, based on

the outage, the tradeoff between cooperative diversity and the additional interference

is studied. The criterion for whether cooperation among potential relay nodes should

be used or not is derived; and we show that a lower outage probability is achieved

by the non-cooperative strategy if and only if the extra interference caused by the

cooperation (which depends on the intensity of the interfering sources, the source-

destination distance, and the outage threshold) is larger than a threshold determined

by the path loss exponent. If the network is crowded and there are a lot of interferers

for any existing transmission, the extra interference due to cooperation degrades the

performance. Asymptotic properties are also provided to validate this insight. As the

network becomes more dense, the success probability of a non-cooperative strategy
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decreases more slowly than the cooperative one. In contrast, the cooperative strategy

outperforms the non-cooperative one if the number of interferers is relatively small.

If the impact of the additional interference is negligible, the performance gain of co-

operation can be fully achieved and the cooperative strategy is more attractive. The

asymptotic analysis shows that the gap between the outage probabilities of the non-

cooperative and cooperative strategies becomes continuously larger as the sparsity of

the network increases.

3.1 System Model

Figure 3.1: A large-scale wireless network with cooperative relays.

We consider a wireless network where a large number of nodes are spread over an

infinite area. The entire network is synchronized in time and frequency. We also assume

that each node makes transmission decisions independently, i.e., a slotted ALOHA

protocol [73] is employed at the MAC layer. The active nodes are specified as sources,

and their locations are typically dynamic due to their indiscriminate placement and

the uncoordinated nature of the MAC protocol.
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3.1.1 Non-Cooperative Strategy

We first present a non-cooperative strategy where no cooperation among nodes

exists. We will use this strategy as a baseline for comparison. Such a strategy has been

investigated in the literature [73–77]. To model the dynamic nature of the network,

the locations of the sources are assumed to be spatially random. Without any a priori

knowledge of the distribution pattern of the sources, we assume that the sources form

a homogeneous Poisson process Π with intensity λ on the plane [78]. The parameter

λ characterizes how densely the sources are distributed and depends not only on the

density of the nodes but also the statistics of the incoming data traffic.

To measure the strength of a received signal, both large-scale path loss and

small-scale fading effects will be taken into account. Specifically, we use a power-law

path loss and a Rayleigh fading model. The channels are assumed to be quasi-static,

i.e., the channel state information does not change over one time slot. Suppose that

the distance from a given source to its corresponding destination is d. Then, the

instantaneous signal power contributed by a source at distance d can be expressed as

Ptgd
−α where Pt is the transmission power, g is an exponentially distributed random

variable capturing the effects of Rayleigh fading and α is the path loss exponent1.

It is highly likely that multiple sources may transmit concurrently, due to the

uncoordinated nature of the ALOHA protocol. Therefore, the quality of reception at

a destination will be severely affected by the spatial interference generated by other

concurrent transmitting sources, or, other interferers. Without loss of generality, we

suppose all sources use the same transmit power Pt. Let hi denote the channel from

the ith interferer to a destination at location x, the received interference power at the

destination can be formulated as

PI(x) =
∑
xi∈Π

Pt|hi|2 =
∑
xi∈Π

Ptgi‖xi − x‖−α, (3.1)

1 Here, we adopt the same path loss model (2.21) as we discussed in Chapter 2. If no
specification is given, we will assume that PL0 = 1 and d > d0 = 1 in the following
part of this dissertation.
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where gi characterizes the fading effects for the channel between the ith interferer

and the destination, the xi’s are the locations of the interferers and ‖ · ‖ represents

Euclidean distance. Since Π is a stationary process and covers an infinitely large area,

the statistics of PI(x) are invariant to the actual location x. In what follows, we use a

simplified notation PI to denote the interference.

In this chapter, the outage performance of the network will be investigated. For

the sake of simplicity, we treat interference as noise and assume that a transmission

is in outage if the received signal-to-interference-plus-noise ratio (SINR) is less than

a pre-specified threshold γth. In a non-cooperative network, the received SINR at the

destination is given by

γnon =
Ptgd

−α

PI + PN

, (3.2)

where PN is the noise power which is assumed to be the same for all links in the

network.

3.1.2 Cooperative Strategy

In order to investigate the overall impact of cooperation, the non-cooperative

strategy needs to be extended. Specifically, we suppose that every source has a set

of relays in its vicinity which can help the communication to its intended destination.

See Fig. 3.1 for a pictorial description. As introduced in Chapter 2, a time-domain,

two-hop, decode-and-forward protocol is utilized for cooperation.

The direct link between a source and its intended destination is assumed to

be extremely weak due to deep fading or shadowing, as is typically the case. Such a

restriction can be easily relaxed and the analytical approach presented in this chapter

is applicable to those cases. M -group STBC, which can provide a minimum overhead

implementation as shown in Chapter 2, is adopted as the cooperative strategy in this

chapter. With M -group, the relays in the vicinity of the source will independently and

randomly divide themselves into M groups; each group then emulates one antenna of

an M -antenna system. By applying a pre-specified STBC, an M -order cooperative

diversity gain can be obtained. The received signal power at the destination Ps is then
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determined by the particular STBC scheme, the number of groups M , and the number

of relays.

The interference model is more complicated than the non-cooperative case be-

cause not only the sources but also the relays could interfere with each other. In the

first hop, the interference comes from other concurrent sources and affects the signal

reception at the relays. In the second hop, by contrast, the interference is generated

by the relays of the other concurrent sources. To mitigate the interference, the exact

statistics of the quantities and locations of both the sources and the relays would be

indispensable. Such an approach would undoubtedly complicate or even hinder the

derivation. Therefore, instead of using more complicated mathematical tools to model

the system [79], we make the following assumptions and assume a simple, yet effective,

model to facilitate our analysis.

1. In order to simplify the analysis, we assume that each vicinity is close to the

corresponding source, and the geographical difference between the various relays in the

same vicinity is negligible when viewed by a remote observer. Consequently, we can

assert that the signals from the relays of a common source are indistinguishable to any

destinations except the one associated with this source. Note that this assumption

does not imply that the first hop transmission is perfect. Although this is an idealized

simplification, our simulation results will show that this assumption still provides a

tight approximation for some realistic scenarios. In practice, relay-assisted uplink

transmission in a cellular network is a representative scenario which is similar to this

model. The distance between the relay and destination is usually much larger than the

distance between the source and relays [80].

2. The number of relays K for a given source is assumed to follow a probability

distribution Pr(K = k), k ∈ K ⊆ {0} ∪ Z
+, which may be a uniform distribution (K

is a finite set) or even a Poisson distribution, to name a few. Similarly, the number of

relays Kv in every interfering vicinity is assumed to independently follow a common

probability distribution Pr(Kv = kv), kv ∈ Kv ⊆ {0} ∪ Z
+. Note that by introducing

the randomness of K and Kv, the effect of imperfect first hop transmission is taken
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into consideration.

These assumptions may be relaxed but at the cost of prohibitively complicat-

ing the derivation, and without providing additional insights. Similar to the non-

cooperative case, we let all the sources and the relays use the same transmit power

Pt, and assume that the distance between any source and its destination is d. The

reader might be concerned that this assumption leads to an unfair comparison since

cooperative transmission has a higher power budget than non-cooperative transmis-

sion. However, if we assume that the total power consumption is the same for both

cooperative and non-cooperative scenarios, the total number of decoded nodes needs

to be known at each node. To collect this information, a central controller, which

incurs additional complexity and overhead, is required. In this chapter, we are inter-

ested in investigating an efficient distributed scheme with low overhead. Therefore, we

assume that all nodes have the same power. Similarly, power control among relays is

not considered here due to the excessive amount of overhead required.

Consider a given source-destination pair. The received interference power at

location x in the first hop is

P
(1)
I (x) =

∑
xi∈Π

Ptgi‖xi − x‖−α (3.3)

which has the same statistics as PI(x) given in (3.1). In the second hop, the received

interference power is given by

P
(2)
I (x) =

∑
xi∈Π

kv,iPtgi‖xi − x‖−α, (3.4)

where kv,i denotes the number of relays in the ith interfering vicinity, which can be a

constant or a random number. Note that (3.3) and (3.4) use the same coordination

set Π since we assume that the relay nodes are close to the corresponding source. In

other words, a vicinity can be thought of as a single node with transmit power kv,iPt

from the perspective of the signal measurement.

Note that P
(1)
I (x) and P

(2)
I (x) can be denoted by P

(1)
I and P

(2)
I , respectively, since

their statistics are invariant to x. Without loss of generality, we also can arbitrarily
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set up a coordinate system and place the destination at the origin. According to

Slivnyak’s Theorem of Poisson processes, a node can be added into Π without changing

its statistics [81]. Consequently, we can always put a source at a particular position so

that its intended destination is at the origin no matter where and how the coordinate

system is set up. The results obtained remain general because the considered system

models are homogeneous and stationary. Thus, we let x = (0, 0) and rewrite (3.3) and

(3.4) as

P
(1)
I =

∑
xi∈Π

Ptgi‖xi‖−α, (3.5)

P
(2)
I =

∑
xi∈Π

kv,iPtgi‖xi‖−α. (3.6)

3.2 Performance Analysis

In this section, we first discuss the outage probability for both non-cooperative

and cooperative strategies, and then compare their outage performances for two differ-

ent scenarios: a fixed number of relays and a random number of relays.

3.2.1 Non-Cooperative Strategy

The baseline strategy is considered, i.e., no cooperation is utilized. The outage

probability for this strategy is defined by

pnonout = Pr(γnon < γth), (3.7)

where γnon is given in (3.2).

A closed-form expression for pnonout has been derived in [74, 75], and is given by

pnonout = 1− exp

(
−γthPN

Ptd−α
− Aαλd

2γ
2
α
th

)
, (3.8)

where

Aα =
2π2

α sin(2π
α
)
. (3.9)

The exponent has two parts: one representing the effects of noise, and the other inter-

ference. The first part γth
Ptd−α/PN

measures the margin between the threshold and the
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average received SNR. The second part Aαλd
2γ

2
α
th depends on the interference level. If

we reformat the expression as

Aαλd
2γ

2
α
th = Aα

(
γth

Ptd−α

λ
α
2 Pt

) 2
α

, (3.10)

it can be seen that this component describes the margin between the threshold and

the SIR.

3.2.2 Cooperative Strategy

The received SINR at the destination is given by

γco =
Ps

P
(2)
I + PN

, (3.11)

and the outage probability is

pcoout = Pr(γco < γth). (3.12)

Note that the received signal power Ps is determined by the number of relays K in the

current vicinity. On the other hand, the interference power P
(2)
I is determined by the

number of interferers and the number of relays Kv in each interfering vicinity. Both K

and Kv are assumed to follow some predefined discrete probability distribution. Thus,

(3.12) can be rewritten as

pcoout =
∑
k∈K

Pr(K = k)p(k), (3.13)

where p(k) = E [Pr(γco < γth|K = k)] is the conditional outage probability given the

number of relays k in the current vicinity. The expectation E[·] is taken with respect

to Kv and xi ∈ Π, i.e., the randomness of the interference has been averaged in p(k).

In the following theorems, we first derive the conditional outage probability p(k) for

different values of k.

When k = 0, meaning that the vicinity is empty, there is no signal transmission

at all and the received SINR is 0, which implies that the conditional outage probability
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is 1. Apart from this corner circumstance, the relays can help the transmission, and a

performance gain can be obtained.

When k = 1, we cannot achieve any diversity gain, and the received signal power

at the destination Ps is exactly the same as the signal power in the non-cooperative

case. The received SINR is then given by

γco =
Ptgd

−α

P
(2)
I + PN

. (3.14)

The following theorem provides a closed-form expression for p(k) when k = 1.

Theorem 3.1. If k = 1, the conditional outage probability p(k) is

p(1) = 1− exp

(
−γthPN

Ptd−α
− Aαλd

2
E

[
(γthKv)

2
α

])
, (3.15)

with the expectation being taken with respect to Kv.

Proof. According to (3.14), we have

Pr(γ < γth)

=

∫ ∞

PN

Pr(Pt|hi|2 < zγth) dPr(P
(2)
I + PN ≤ z)

= 1− e
− γth

Ptd
−α PN

∫ ∞

0

e
− γth

Ptd
−α z′

dPr(P
(2)
I ≤ z′)

= 1− e
− γth

Ptd
−α PN

E

[
e
− γth

Ptd
−α P

(2)
I

]
.

(3.16)

Let S be the infinitely large plane on which the Poisson process Π = {Xj} is defined.

Denoting Kv,jgj by Mj, i.e., we can rewrite (3.6) as

P
(2)
I =

∑
xj∈Π

MjPt‖xj‖−α. (3.17)

By the Marking Theorem of Poisson processes [78], the set of (Mj, Xj) is a Poisson

process Π∗ defined on (R, S) with intensity

λ∗(m,x) = λfM |X(m|x) = λfM(m), (3.18)

because Mj = Kv,jgj is independent with Xj. The function f(·) denotes the PDF of

a random variable. Then, P
(2)
I can be regarded as the sum of functions F(m,x) =
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Ptm‖x‖−α over Π∗. By Campbell’s Theorem [78], and letting υ = − γth
Ptd−α , with F (kv)

denoting the probability mass function Pr(Kv = kv), we have

E

[
e
− γth

Ptd
−α P

(2)
I

]
= exp

(
−
∫
S

∫ ∞

0

(1− eυF(m,x))λ∗(m,x)dmdx
)

= exp

(
−λ

∫
S

(
1− E(eυF(M,x))

)
dx

)
= exp

(
−λ

∫
S

(
1−

∞∑
kv=0

1

1− υkvPt‖x‖−α

)
F (kv)dx

)

= exp

(
−λ

∫
S

∞∑
kv=0

υkvPt‖x‖−α

υkvPt‖x‖−α − 1
F (kv)dx

)

= exp

(
−λ2π

∞∑
kv=0

(∫ ∞

0

υkvPtr
−α

υkvPtr−α − 1
rdr

)
F (kv)

)
(a)
= exp

(
−λ2π

∞∑
kv=0

(
(−υkvPt)

2
α

α

∫ ∞

0

t
2
α
−1

(1 + t)
2
α
+(1− 2

α
)
dt

)
F (kv)

)
(b)
= exp

(
−λ2πΓ( 2

α
)Γ(1− 2

α
)
(−υPt)

2
α

α

∞∑
kv=0

k
2
α
v F (kv)

)
(c)
= exp

(
−Aαλd

2
E

[
(γthKv)

2
α

])
. (3.19)

Note that t = − rα

υkvPt
in step (a). The Beta function

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
=

∫ ∞

0

tx−1

(1 + t)x+y dt
(3.20)

and the fact that Γ(1) = 1 are utilized in step (b), and Γ( 2
α
)Γ(1− 2

α
) = π/ sin(2π

α
) is

used in step (c). Theorem 1 can be proved by substituting (3.19) into (3.16). �

When k ≥ 2, additional diversity gain can be obtained through cooperative

techniques. In the following analysis, we will focus on the M -group STBC scheme

and assume that M = 2. Although our results can certainly be extended to other

STBC schemes, the derivation will be more complicated, without providing additional

insights.
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In this case, the received signal power Ps is the sum of the power contributed

by each group, and the received SINR is

γco =
|∑i∈G1

√
Pthi|2 + |∑i∈G2

√
Pthi|2

P
(2)
I + PN

, (3.21)

where G1 and G2 denote two groups of relays. In Chapter 2, it has been shown that

the optimal outage performance is achieved when the groups of relays are uniformly

divided. In this chapter, we will assume that the optimal uniform grouping is achieved,

i.e., G1 and G2 have the same size k/2. The following theorem provides a closed-form

expression for the conditional outage probability when k ≥ 2.

Theorem 3.2. If k ≥ 2, the conditional outage probability p(k) is

p(k) = 1−
(
1 +

2γthPN

kPtd−α
+

2

α
Aαλd

2
E

[(
2γthKv

k

) 2
α

])

× exp

(
−2γthPN

kPtd−α
− Aαλd

2
E

[(
2γthKv

k

) 2
α

])
. (3.22)

The expectations are again taken with respect to Kv.

Proof. We use P
(1)
s = |∑i∈G1

√
Pthi|2 and P (2)

s = |∑i∈G2

√
Pthi|2 to denote the received

signal power contributed by G1 and G2, respectively. Let θ = − 2γth
kPtd−α . According to

(3.21), we have

Pr(γ < γth) = Pr

(
P

(1)
s + P

(2)
s

P
(2)
I + PN < γth

)

=

∫ ∞

PN

Pr
(
P (1)
s + P (2)

s < zγth
)
dPr(P

(2)
I + PN ≤ z)

= 1−
∫ ∞

PN

(
eθz − eθzθz

)
dPr(P

(2)
I + PN ≤ z)

= 1− eθPN (1− θPN)

∫ ∞

0

eθz
′
dPr(P

(2)
I ≤ z′) + θeθPN

∫ ∞

0

z′eθz
′
dPr(P

(2)
I ≤ z′)

= 1− eθPN (1− θPN)E
[
eθP

(2)
I

]
+ θeθPNE

[
P

(2)
I eθP

(2)
I

]
, (3.23)

where the expectations in the last step are taken with respect to P
(2)
I . We now need

to calculate the two expectations E[eθP
(2)
I ] and E[P

(2)
I eθP

(2)
I ].
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The first expectation can be derived in the same way as (3.19). That is,

E

[
eθP

(2)
I

]
= exp

(
−Aαλd

2
E

[(
2γthKv

k

) 2
α

])
. (3.24)

For the second expectation, we notice that Campbell’s Theorem provides a closed-

form expression for E[eθP
(2)
I ]; however, we are interested in E[P

(2)
I eθP

(2)
I ]. Similar to the

derivation of Campbell’s Theorem in [78], we consider a Poisson process Π defined on S

with mean measure μ. Let F be a real-valued function defined on S, which can only take

a finite number of non-zero values F1,F2, · · · ,Fk. The set Υj = {x : F(x) = Fj, x ∈ S}
is measurable with mj = μ(Υj). Different Υj’s are disjoint and the number of nodes of

Π falling in each Υj, denoted by Nj, independently follows a Poisson distribution with

mean mj. Define the sum of F over Π as Σ =
∑

X∈Π F(X) =
∑k

j=1 FjNj. Then,

E[ΣeθΣ] = E

[
k∑

i=1

FiNie
θ
∑k

j=1 FjNj

]

=
k∑

i=1

E
[FiNie

θFiNieθ
∑

j �=i FjNj
]

=
k∑

i=1

E
[FiNie

θFiNi
]
E
[
eθ

∑
j �=i FjNj

]
(d)
=

k∑
i=1

Fimie
θFie−mi(1−eθFi )

∏
j �=i

e−mj(1−eθFj )

=
k∑

i=1

Fimie
θFi ·

k∏
j=1

e−mj(1−eθFj )

=
k∑

i=1

∫
Υi

F(x)eθF(x)μ(dx) · e−
∑k

j=1

∫
Υj

(1−eθF(x))μ(dx)

=

∫
S

F(x)eθF(x)λ(x) dx · e−
∫
S(1−eθF(x))λ(x) dx. (3.25)

In step (d), the following facts are used: suppose Y is a Poisson random variable with

mean μ; then, for any constant z, we have

E[zY ] = e−μ(1−z)

E[Y zY ] = μze−μ(1−z)
(3.26)
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We could also show that (3.25) holds for more general forms of F .

Using the same definitions of F(m,x) and λ∗(m,x) as in Theorem 3.1, we can

obtain a closed-form expression for the second expectation as

E

[
P

(2)
I eθP

(2)
I

]
=

∫
S

∫ ∞

0

F(m,x)eθF(m,x)λ∗(m,x) dmdx

× exp

(
−
∫
S

∫ ∞

0

(1− eθF(m,x))λ∗(m,x) dmdx

)
= λ

∫
S

∞∑
kv=0

kvPt‖x‖−α

(θkvPt‖x‖−α − 1)2
F (kv) dx

× exp

(
−
∫
S

∫ ∞

0

(1− eθF(m,x))λ∗(m,x) dmdx

)
= λ2π

∞∑
kv=0

(∫ ∞

0

kvPtr
−α

(θkvPtr−α − 1)2
r dr

)
F (kv)

× exp

(
−
∫
S

∫ ∞

0

(1− eθF(m,x))λ∗(m,x) dmdx

)
= λ2π

∞∑
kv=0

(
−(−θkvPt)

2
α

θα

∫ ∞

0

t
2
α

(1 + t)1+
2
α
+1− 2

α

dt

)

× F (kv) exp

(
−
∫
S

∫ ∞

0

(1− eθF(m,x))λ∗(m,x) dmdx

)
= λ2πΓ(1 + 2

α
)Γ(1− 2

α
)
−(−θPt)

2
α

θα
E

[
K

2
α
v

]
exp

(
−λAα(−θPt)

2
αE

[
K

2
α
v

])
=

2

α
Aαλd

2−α

(
2γth
kPt

)−1

E

[(
2γthKv

k

) 2
α

]
exp

(
−Aαλd

2
E

[(
2γthKv

k

) 2
α

])
. (3.27)

Note that in deriving (3.27) the facts that Γ(2) = 1 and Γ(1 + 2
α
)Γ(1− 2

α
) = 2π

α
/ sin(2π

α
)

are utilized. Theorem 3.2 can be proved by substituting (3.19) and (3.27) into (3.23).

�

The closed-form expression for the outage probability pcoout can be obtained by

combining (3.13), (3.15) and (3.22). If K = Kv = {k} and Pr(K = k) = Pr(Kv = k) =
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1, for instance, we can easily derive that

pcoout =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1 k = 0

1− exp
(
−γthPN

Ptd−α − Aαλd
2γ

2
α
th

)
k = 1

1−
(
1 + 2γthPN

kPtd−α + 2
α
Aαλd

2 (2γth)
2
α

)
exp

(
− 2γthPN

kPtd−α − Aαλd
2 (2γth)

2
α

)
k ≥ 2

(3.28)

Remark 3.1. If we assume that PN

Ptd−α � Aαλd
2, i.e., the noise power is negligible

in comparison with the interference power, the terms γthPN

Ptd−α in (3.8), (3.15) and (3.22)

can be neglected. In such an interference-limited regime, since γthPN

Ptd−α � Aαλd
2γ

2
α
th, the

outage probability for the non-cooperative strategy (3.8) can be simplified to

pnonout ≈ 1− exp
(
−Aαλd

2γ
2
α
th

)
. (3.29)

For the cooperative strategy, we first define an auxiliary function

Λ(k) = Aαλd
2
E

[(
2γthKv

k

) 2
α

]
, k ≥ 2 (3.30)

with the expectation being taken with respect toKv. In the interference-limited regime,

the conditional probability can be approximately written as

p(k) ≈

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1 k = 0

1− exp(−Λ(2)) k = 1

1− exp(−Λ(k))(1 + 2
α
Λ(k)) k ≥ 2

(3.31)

according to (3.15) and (3.22). As we can see from (3.31), when k ≥ 2, there is an extra

term (1+ 2
α
Λ(k)) in the expression for p(k) compared to the case when k = 1. Intuitively

speaking, this additional factor comes from the benefits offered by cooperation.

If K and Kv are both discrete Poisson random variables with mean κ, for in-

stance, by combining (3.13) and (3.31), the outage probability in the interference-

limited regime can be obtained as

pcoout ≈
∞∑
i=2

κi

i!
exp(−κ)

(
1− exp(−Λ(i))(1 +

2

α
Λ(i))

)
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+ κ exp(−κ)(1− exp(−Λ(2))) + exp(−κ). (3.32)

If K = Kv = {k} and Pr(K = k) = Pr(Kv = k) = 1, i.e., the randomness of the

number of relays is neglected, the outage probability in the interference-limited regime

can be obtained from (3.28) as

pcoout ≈

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1 k = 0

1− exp (−Aαβ) k = 1

1−
(
1 + 2

α
2

2
αAαβ

)
exp

(
−2

2
αAαβ

)
k ≥ 2

(3.33)

where β = λd2γ
2
α
th.

3.2.3 To Cooperate or Not to Cooperate

In Sections 3.2.1 and 3.2.2, closed-form expressions for the outage probability in

both the non-cooperative and cooperative cases have been derived as functions of key

system parameters, such as the intensity of interfering sources λ, the source-destination

distance d, the outage threshold γth, and the transmit power Pt. In this subsection, we

will compare these two cases and see how the comparison results vary with the system

parameters. Then, for any given system environment, we can determine a criterion for

using cooperation.

Fixed K and Kv

We will first investigate a simplified scenario where the number of relays is

fixed, i.e., K = Kv = k. This models the scenarios where every source employs the

same number of relays in a deterministic way. Without loss of generality, we only

consider k ≥ 2. Intuitively, in the noise-limited scenario, cooperation definitely helps

the performance by providing diversity gain and enhancing the received signal power.

Therefore, we should always use cooperative strategies in this case. The following

theorem presents the criterion for determining whether cooperation is beneficial in the

interference-limited regime.
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Theorem 3.3. In the interference-limited regime, we have⎧⎪⎨⎪⎩
pcoout < pnonout if λd2γ

2
α
th < β�

pcoout > pnonout if λd2γ
2
α
th > β�

(3.34)

where

β� =
1

AαBα

(−Cα −W (−Cα exp(−Cα))) , (3.35)

Aα is defined in (3.9), Bα = 2
2
α − 1, Cα = αBα

2(Bα+1)
, and W(·) is the principle branch of

the Lambert W function [82].

Proof. According to the interference-limited approximations (3.29) and (3.33), we can

easily observe that the outage probabilities are increasing functions of β = λd2γ
2
α
th.

Hence, we need to solve the following equation in the interference-limited regime

pnonout (β)− pcoout(β) = 0, (3.36)

which can be rewritten as

1 +
1

Cα

y − exp(y) = 0, (3.37)

where y = AαBαβ, Bα = 2
2
α − 1 and Cα = αBα

2(Bα+1)
. According to (3.37), we have

(−Cα − y) exp(−Cα − y)

= −Cα exp(−Cα)

(
1 +

1

Cα

y

)
exp(−y) (3.38)

= −Cα exp(−Cα),

which indicates that

y = −Cα −W(−Cα exp(−Cα)), (3.39)

whereW(·) is the principle branch of the LambertW function [82]. We can then obtain

the closed-form expression for β� which satisfies (3.36). �

We can see that β� solely depends on the path loss exponent α. In practice,

once α is determined by the channel model, β� can then be viewed as a predefined

threshold for system designers to choose whether cooperation should be used.
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As we mentioned in Section 3.2.1, the term λd2γ
2
α
th describes the margin between

the received SIR and the outage threshold γth. Eq. (3.34) shows that if the spatial

interference is not that strong, cooperation among the relays does help the transmis-

sion. One possible scenario satisfying this requirement is that potential sources in the

network are relatively sparse compared with the distance between the sources and their

destinations. It is easy to show from (3.8) and (3.28) that

lim
dα→∞

ln (1− pnonout )

dα
= −γthPN

Pt

,

lim
dα→∞

ln (1− pcoout)

dα
= −2γthPN

kPt

.

(3.40)

Eq. (3.40) implies that as the source-destination distance d increases, the success prob-

ability of the cooperative strategy decreases more slowly. In other words, cooperation

among relays provides a larger transmission range for a given outage probability.

On the other hand, if the interference level is significant compared with the

received signal, the cooperative strategy would provide a poorer outage performance.

This happens if the concurrent sources are densely distributed and the interference

dominates the performance. In this case, the extra interference caused by cooperation

degrades the performance, and non-cooperative strategies are more appealing. It can

be further obtained from (3.8) and (3.28) that, as the intensity of the interfering sources

λ goes to infinity,

lim
λ→∞

ln (1− pnonout )

λ
= −Aαd

2γ
2
α
th,

lim
λ→∞

ln (1− pcoout)

λ
= −Aαd

2 (2γth)
2
α .

(3.41)

This shows that the success probabilities of both the non-cooperative and cooperative

strategies decrease exponentially as the intensity of the interfering sources λ increases.

The success probability of the cooperative strategy, however, decreases more rapidly.

Random K and Kv

We now move on to the scenarios where a random number of relays are em-

ployed by every source. Specifically, we assume that both K and Kv follow a common
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probability distribution. Note that our derivations can also be extended to the cases

where K and Kv have different distributions. Similar to the case with a fixed number

of relays, the threshold for cooperation β� can be numerically calculated by solving

P co
out(β) − P non

out (β) = 0, where β = λd2γ
2
α
th. Since it is difficult to obtain a closed-form

expression for β�, in the following analysis, we focus on the asymptotic comparison

when the intensity of the interfering sources λ or the source-destination distance d

goes to infinity. Numerical and simulation results for β� when K and Kv follow a

Poisson distribution will be presented in Section 3.3.2.

Specifically, as the source-destination distance d increases, from (3.13), (3.15)

and (3.22), we obtain

lim
dα→∞

ln (1− pcoout)

dα

= −γthPN

Pt

Pr(K = 1)− γthPN

Pt

∞∑
k=2

2

k
Pr(K = k)

> −γthPN

Pt

(1− Pr(K = 0)).

(3.42)

Eq. (3.42) shows that, with common distributions forK andKv, 1−pcoout decreases more

slowly than 1− pnonout as the source-destination distance d increases, which is consistent

with (3.40).

On the other hand, the outage probability given by (3.13) is the sum of a

sequence of functions, which can be proved to be uniformly convergent. Therefore, by

interchanging the order of the limit and sum, we have

lim
λ→∞

ln (1− pcoout)

λ

= −Aαd
2γ

2
α
thE

[
K

2
α
v

]
Pr(K = 1)− Aαd

2 (2γth)
2
α E

[
K

2
α
v

] ∞∑
k=2

k−
2
α Pr(K = k)

< −Aαd
2γ

2
α
thE

[
K

2
α
v

] ∞∑
k=1

k−
2
α Pr(K = k). (3.43)

Since

E

[
K

2
α
v

] ∞∑
k=1

k−
2
α Pr(K = k)
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=

( ∞∑
kv=1

k
2
α
v Pr(Kv = kv)

)
·
( ∞∑

k=1

k−
2
α Pr(K = k)

)

>

( ∞∑
k=1

√
k

2
α Pr(K = k)

√
k−

2
α Pr(K = k)

)2

= 1− Pr(K = 0), (3.44)

using the Cauchy-Schwarz inequality, we can conclude from (3.43) and (3.44) that the

success probability for the cooperative strategy 1− pcoout decreases faster than that for

the non-cooperative strategy 1−pnonout as the intensity of interfering sources λ increases,

which is consistent with (3.41) where K and Kv are fixed.

3.3 Simulation Results

In this section, simulation results are presented to verify the theoretical re-

sults. Insights into the performance and strategies of networks are also drawn. In

order to approximate an infinitely large network of sources, a two-dimensional homo-

geneous Poisson process is used. All the interferers are randomly located in a large

two-dimensional circle S with radius 105. The reference destination is located at the

origin, and the corresponding source is located at (d, 0). Since the distance d in our

simulation setting is much less than 105 meters, the approximation error due to finite

S is negligible. The path loss exponent α is assumed to be 4, and the noise power is 1.

The SINR threshold γth is set to be 0 dB. The 2-group Alamouti STBC is adopted as

the cooperative strategy. All simulation results are averaged over 103 network location

configurations and 104 channel realizations for each network configuration.

3.3.1 Validation of Analysis

In our analysis, we assume that the size of each vicinity is small, and all relay

nodes are placed to overlap their associated sources. In the simulation, we relax this

assumption and assume that each source has a circular vicinity with radius r. All the

relays for a given source are uniformly distributed in its vicinity. By comparing the

74



simulation and analytical results, we show that the performance difference is negligible

for practical systems.

Specifically, Fig. 3.2 shows the outage probability as a function of the average

received signal power Ptd
−α for both non-cooperative and cooperative strategies. In

Fig. 3.2, the distance between the source and destination, d, is assumed to be 50 meters,

and the intensity of the interfering sources λ is 10−6. We also assume that Kv is a fixed

number which equals K. The solid line represents the analytical results obtained from

(3.8) and (3.28), and the dotted and dashed lines represent the simulation results for

different values of the size of vicinity r. Comparisons for different numbers of K and

Kv are also shown in Fig. 3.2.

Similarly, in Fig. 3.3, we assume that K and Kv are Poisson distributed random

variables with the same mean value κ. The outage probabilities are plotted for different

values of κ and r. We compare the analytical results from (3.32) and the simulation

results.

We observe that the analytical results outperform the simulation results which

include the impact of randomness in the locations of relays. As the size of the vicinity

r decreases, the relays move closer to the sources, and the simulation results eventually

converge to our analysis, as expected. Another observation is that the outage proba-

bilities converge to a constant as the transmit power Pt goes to infinity, as shown in

(3.29), (3.32) and (3.33).

3.3.2 To Cooperate or Not to Cooperate

In this subsection, we evaluate the outage performance for both non-cooperative

and cooperative strategies. Two different scenarios are considered: a fixed number of

relays and a random number of relays. Both analytical and simulation results are

provided. In the following figures, we will use the lines to represent analytical results

and the markers to denote the simulation results. In the simulation, we assume that

the size of the vicinity r = d/10, and all nodes use the same transmit power Pt so that
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Figure 3.2: Outage probability versus the average received signal power (d = 50 m,
α = 4, λ = 10−6, K = Kv = k).
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Figure 3.3: Outage probability versus the average received signal power. K and Kv

follow a Poisson distribution with mean κ (d = 50 m, α = 4, λ = 10−6).
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the average received signal power Ptd
−α (or, equivalently, the SNR) is 20 dB if d = 50

meters.

Fixed K and Kv

We first consider the scenario whereK andKv are assumed to be fixed and equal

to 8. In Fig. 3.4, the outage probabilities of both non-cooperative and cooperative

strategies are plotted as a function of λ, the intensity of the interfering sources. It

can be clearly seen that the outage probability is always an increasing function of λ.

According to Theorem 3, we can calculate that the threshold for cooperation β� is

around 0.4837 when α = 4. Therefore, we know that cooperation is beneficial if and

only if λ < 0.4837/d2 ≈ 1.9348 × 10−4. The simulation results in Fig. 3.4 verify

that if λ less than about 1.94 × 10−4, the cooperative strategies have smaller outage

probability and achieve better performance2; otherwise, the non-cooperative strategy

is superior but with only a small penalty.

In Figs. 3.5 and 3.6, the asymptotic behavior of the success probability is exam-

ined. In Fig. 3.5, the intensity of the interfering sources λ is set to 10−5. We observe

that the curves of success probabilities have an exponentially decreasing trend as the

source-destination distance d becomes sufficiently large. The non-cooperative strategy

has a faster decline, as shown in (3.40).

In Fig. 3.6, the source-destination distance is set to 50 meters. We can see

that the success probabilities of both the non-cooperative and cooperative strategies

exponentially decrease as the intensity of the interfering sources λ increases, which

has been shown in (3.41). The slope of the non-cooperative strategy is smaller, which

indicates that the cooperative strategy is more sensitive to the interference caused by

the concurrent transmissions.

2 Note that λ ≈ 1.9348× 10−4 implies that on average, there is an interferer which is
around 78.4771 meters away from the source.
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Figure 3.4: Outage probability versus the intensity of interfering sources λ (d = 50 m,
α = 4, K = Kv = 8).
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Figure 3.5: Asymptotic behavior of the success probability as the source-destination
distance d increases (α = 4, λ = 10−5, K = Kv = 8).
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Figure 3.6: Asymptotic behavior of the success probability as the intensity of interfering
sources λ increases (d = 50 m, α = 4, K = Kv = 8).

Random K and Kv

Now we assume that K and Kv are Poisson distributed random variables with

mean 16. In Fig. 3.7, the outage probabilities of both the non-cooperative and coopera-

tive strategies are plotted as a function of λ. In this case, the threshold for cooperation

β� can be numerically obtained as β� ≈ 0.5445. Therefore, cooperation is beneficial if

and only if λ < 0.5445/d2 ≈ 2.178× 10−4, which is verified by the simulation results.

By comparing Figs. 3.4 and 3.7, it can be observed that the thresholds for

cooperation are close to each other. Fig. 3.8 presents the numerical and simulation

results for β� when K and Kv follow a Poisson distribution with mean κ = 16. For

the sake of comparison, the analytical and simulation results for the case with a fixed

number of relays are also plotted in Fig. 3.8. The results show that β�, in the case

with fixed K and Kv, serves as a tight lower bound for the case with random K and

Kv.

Figs. 3.9 and 3.10 illustrate the asymptotic behavior of the success probabilities.

Similar to the case with a fixed number of relays, we observe from Fig. 3.9 that, with the

same success probability, the cooperative strategy provides a longer transmission range
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Figure 3.7: Outage probability versus the intensity of the interfering sources λ. K and
Kv follow a Poisson distribution with mean 16 (d = 50 m, α = 4).
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Figure 3.9: Asymptotic behavior of the success probability as the source-destination
distance d increases. α = 4, λ = 10−5, K and Kv follow a Poisson distribution with
mean 16.

d than the non-cooperative strategy, as expected. As the intensity of the interfering

sources λ increases, the benefit of cooperation is eventually eliminated by the additional

interference, as illustrated by the results in Fig. 3.10.

3.4 Summary

In this chapter, wireless networks with multiple concurrent transmissions and

spatial interference were investigated. The closed-form outage performance for co-

operative networks with an M -group STBC scheme was derived. By comparing the

performance of non-cooperative and cooperative strategies, we derived a criterion which

determines which strategy should be applied for a given network configuration. Our

criterion shows that cooperation is beneficial if the margin between the SIR and the

outage threshold γth is larger than a value that is a function of the path loss expo-

nent α. This demonstrates the superiority of cooperative communication when the

transmitting sources are sparsely distributed in the network. If the number of simulta-

neously transmitting sources in a network is small, using nearby relays could achieve a

significant cooperative diversity benefit without creating too much interference to other
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Figure 3.10: Asymptotic behavior of the success probability as the intensity of the
interfering sources λ increases. d = 50 m, α = 4,K andKv follow a Poisson distribution
with mean 16.

concurrent transmissions. Conversely, the non-cooperative strategy is preferred if the

networks are dense and the interference dominates. The asymptotic properties of the

outage probability as the intensity of the interfering sources λ or the source-destination

distance d increases are studied. Simulation results, which verified our analyses, were

also provided.

There are several possible extensions of this work. Other types of cooperative

strategies, such as relay selection and beamforming, could be investigated. Although

all these cooperative strategies achieve full diversity gain, their impacts on interfer-

ence are very different. On the other hand, rate-adaptive transmission might also be

considered. Since outage probability is only suitable for fixed-rate transmission, other

corresponding performance measures such as outage capacity or ergodic sum rate, can

be investigated. In addition, more practical networks should be studied. For exam-

ple, the current analytical results are based on the assumption that the source-to-relay

distance is relatively small compared to the source-to-destination distance. The im-

pact of relay placement could be studied. Also, the performance analysis of multihop
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wireless networks, which can be merged with routing protocols, would be a challenging

task. Another direction could be a comparison of cooperative and non-cooperative

schemes in a heterogeneous Poisson network. Finally, investigating the extra overhead

incurred by cooperation and the overhead-performance tradeoff in a Possion network

is an interesting and valuable area for future study.
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Chapter 4

MULTI-HOP LINEAR WIRELESS NETWORKS

Wireless ad hoc networks, such as Wireless Sensor Networks and MANET, have

been extensively studied [83]. Relaying techniques are commonly applied for accom-

plishing the transmission in ad hoc networks since, in practical scenarios, the direct

link between the source and destination could be very weak due to the possibly severe

signal attenuation from path loss and shadow fading.

Multi-hop wireless networks use two or more wireless hops to convey information

from a source to a destination. In other words, there are one or more intermediate nodes

along the path that receive and forward information via wireless links. In previous

chapters, we focused on special cases of multi-hop wireless networks where the number

of hops is two. In this chapter, we will focus on general multi-hop networks.

4.1 Multi-hop Linear Network with Randomly Located Nodes

The number of hops is a very important metric for multi-hop communication

networks. In general, any efficient routing protocol for a wired network [84] should

have a small number of hops since more hops will lead to higher latency and lower

reliability. The impact of hop counts on the end-to-end performance for wireless multi-

hop networks, however, is not clear [85, 86]. In particular, it is not obvious whether

it is advantageous to communicate over a large number of short hops, or over a small

number of longer hops, or something in between.

A linear network is a commonly used, simplified, system model to investigate

the impact of the number of hops. In a wireless network, the transmission process can

be viewed as a linear network once the route is established by a given routing protocol.

The problem of finding the optimum hop count for a linear network has been recently
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Figure 4.1: Linear network model with equidistant relay nodes.

studied in [86, 87]. In [86], a closed-form expression for the optimum hop count is

derived for the simplest linear network without fading and interference. In [88], end-

to-end capacity bounds over a linear network with fading are obtained, and a general

equation for the number of hops which minimizes the outage probability is derived.

In an AWGN channel, it is shown in [89] that equally spaced relays are optimum in

a linear network. A simplified approach to determine the optimum number of hops

is also provided in [89]. A new metric called the random access transport capacity

is introduced in [90] to describe the performance of multi-hop wireless networks; the

number of hops that maximizes this new performance measure is also provided.

To the best of our knowledge, most existing work considers a linear network

model with equidistant nodes, as illustrated in Fig. 4.1. However, there are two notable

practical issues with this model:

1. The hop link distance should be a random variable.

2. The source-destination distance varies with the actual route traversed.

In order to obtain a more reasonable linear network model, the randomness of

the hop distance should be taken into account. In this section, we assume that the

relay nodes are uniformly distributed over a short interval instead of assuming that all

the nodes are equidistant from each other. In other words, only the nodes in a small

area will be selected as relays to construct the linear multi-hop network. We also show

that this novel model is a better approximation to reality than the traditional linear

network model. By using some approximations, we obtain a closed-form expression for
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the number of hops which can optimize the performance bound.

4.1.1 System Model

We propose a novel linear network model, called the random shift model, to

characterize the randomness of the hop distance. The system under consideration

consists of a source node and a destination node, and N − 1 intermediate relay nodes

ri, i = 1, 2, . . . , N − 1, randomly located on a straight line between the source and

the destination. In other words, we consider a one-dimensional N -hop network. All

the nodes in the network are assumed to have a single-antenna and be capable of only

half-duplex decode-and-forward relaying. In particular, we consider a classic N -hop

time-division decode-and-forward protocol, where each relay node ri hears and fully

decodes the data signal transmitted from ri−1 and forwards its re-encoded version to

ri+1.

Figure 4.2: Random shift model: linear network with randomly located relay nodes.

In the random shift model, the source-to-destination distance is ds. Notice that

ds is the actual distance traveled through the route, instead of the Euclidean distance

between the source and destination. We assume that the locations of the intermediate

relay nodes are independent random variables. Let xi denote the position of the i-th

relay on the line and assume the PDF of xi is

f(xi) =

⎧⎨⎩ 1
dδ
, d

(
i− δ

2

) ≤ xi ≤ d
(
i+ δ

2

)
0, elsewhere

(4.1)
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where d = ds
N
, and δ is the shift range, which characterizes the randomness or uncer-

tainty of the node position. Define the distance di = xi − xi−1, i = 2, · · · , N − 1, with

d1 = x1 and dN = ds − xN−1. Then the CDF of di can be obtained as follows:

For i = 1 or N ,

F (di) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, di ≤ d

(
1− δ

2

)
1
dδ

(
di − d

(
1− δ

2

))
, d

(
1− δ

2

) ≤ di ≤ d
(
1 + δ

2

)
1, di ≥ d

(
1 + δ

2

) (4.2)

For i = 2, · · · , N − 1,

F (di) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0, di ≤ d(1− δ)

1
2

(
1
dδ

)2
[di − d(1− δ)]2, d(1− δ) ≤ di ≤ d

1
2

(
1
dδ

)2
[d(1 + δ)− di]

2, d ≤ di ≤ d(1 + δ)

1, di ≥ d(1 + δ)

(4.3)

We assume that the source node and all the relay nodes are supplied with finite

transmit power Pt over the same frequency bandwidth B. Perfect time and frequency

synchronization among all nodes in the system is also assumed. The signal received by

node ri+1 can be expressed as

yi+1 =
√
Ptd

−α
i si + ni, (4.4)

where si is the signal transmitted by node ri, ni is white Gaussian noise with zero mean

and variance N0

2
per dimension, and N0 is the noise power spectral density. In (4.4), α

is the path loss exponent (typically between 2 and 4). The SNR at the receiver of the

i-th relay is then

γi =
Pt

PN

d−α
i , (4.5)

where PN = N0B is the noise power.

Our objective is to choose the number of hops to maximize the spectral efficiency,

or the bandwidth-normalized achievable data rate η (in bits per second per hertz,

bps/Hz). For a single hop, the spectral efficiency for a bandlimited AWGN channel is

ηsh = log

(
1 +

Pt

PN

d−α
s

)
bps/Hz. (4.6)

87



Divide the end-to-end transmission into N hops. Assume only one node is

transmitting at any point in time, which implies that there is no interference at any

receiver. Notice that, on each of the hops, nodes must transmit the same amount of

information in 1/N -th of the channel uses available in the single hop case, i.e., the

required per-hop spectral efficiency should be N times that of the single-hop case. For

example, the spectral efficiency for a linear network with equidistant nodes can be

expressed as

ηeq =
1

N
log

(
1 +

Pt

PN

(
ds
N

)−α
)

bps/Hz. (4.7)

When the nodes are randomly placed, the system performance will be deter-

mined by the worst hop among all N hops. Since fading is not taken into account in

our proposed model, the hop which has the worst performance is equivalent to the hop

which has the largest distance di. The performance measure used in this case will be

the spectral efficiency averaged over the randomly chosen distances

η = E
d1,··· ,dN

[
1

N
min

i=1,··· ,N
log

(
1 +

Pt

PN

d−α
i

)]
= E

dmax

[
1

N
log

(
1 +

Pt

PN

d−α
max

)]
bps/Hz,

(4.8)

where dmax = max
i=1,··· ,N

di, and E[·] is the expectation operator.

4.1.2 Analysis

Here, we investigate the hop counts for a linear network with randomly located

relay nodes. The objective is to find the number of hops N that maximizes the end-

to-end spectral efficiency η. Using techniques similar to those in [91], the optimum N∗

for a linear network with equidistant nodes is

N∗ = argmax ηeq ≈
[(

ωα

γ

)1/α
]
+

(4.9)

where

ωα =
−α

W(−αe−α)
− 1 (4.10)
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is a constant which only depends on the path loss exponent α, γ = P
N0B

d−α
s is the

receive SNR for the single-hop case, [·]+ is the operator which rounds the operand

to the nearest positive integer, and W(·) is the principal branch of the Lambert W
function [82].

In order to analyze the optimum number of hops for the random shift model,

we need to obtain a closed-form expression for η, which requires knowledge of the CDF

of dmax. For example, when N = 3, we could derive the CDF of the maximum distance

dmax as

F (dmax) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, dmax < d

9
2

(
1
dδ

)2
(dmax − d)2, d ≤ dmax ≤ d

(
1 + δ

4

)
1− (

1
dδ

)2 [
d
(
1 + δ

2

)− dmax

] [
dmax − d

(
1− 3δ

2

)]
−1

2

(
1
dδ

)2
[d(1 + δ)− dmax]

2, d
(
1 + δ

4

) ≤ dmax ≤ d
(
1 + δ

2

)
1− 1

2

(
1
dδ

)2
[d(1 + δ)− dmax]

2, d
(
1 + δ

2

) ≤ dmax ≤ d(1 + δ)

1, dmax > d(1 + δ)

(4.11)

The CDF of dmax will get more complicated as N increases. In order to provide

analytical and tractable solutions, several approximation techniques will be applied in

the analysis which follows. As the function log (1 + x−α) is a convex function of x, we

can apply Jensen’s inequality

E

[
log

(
1 +

Pt

PN

d−α
max

)]
≥ log

(
1 +

Pt

PN

(E[dmax]
−α)

)
(4.12)

Moreover, it is easy to show that

ds
N

(
1− δ

2

)
≤ d1, dN ≤ ds

N

(
1 +

δ

2

)
ds
N
(1− δ) ≤ di ≤ ds

N
(1 + δ), i = 2, · · · , N − 1

ds
N

≤ dmax ≤ ds
N
(1 + δ)

(4.13)

Hence, lower and upper bounds for η can be obtained as

η ≥ 1

N
log

(
1 +

Pt

PN

d−α
s Nα(1 + δ)−α

)
(4.14)
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η ≤ 1

N
log

(
1 +

Pt

PN

d−α
s Nα

)
= ηeq (4.15)

Eq. (4.24) illustrates that the randomness of the locations degrades the system perfor-

mance, i.e., equidistant placement of relays is optimal for a multi-hop linear network

with AWGN channels, which has been shown in [89]. The number of hops that maxi-

mizes the upper bound is provided in (4.9). We can also obtain a closed-form expression

for the number of hops that maximizes the lower bound in (4.14) as

N ′ ≈
[(

ωα

γ′

)1/α
]
+

, (4.16)

where ωα is given by (4.10), and

γ′ =
Pt

PN

d−α
s (1 + δ)−α. (4.17)

Although the N which maximizes the lower bound is not the exact solution, it

follows the same trends and provides several insights. According to (4.16), N ′ only

depends on the path loss exponent α, the transmit power Pt, the distance ds, and the

shift range δ. In general, when the received SNR for the single-hop case γ = Pt

PN
d−α
s

increases, the optimum number of hops will decrease for both the equidistant model

and the random shift model. Intuitively, when the direct link between the source and

destination is good enough, adding relay nodes will degrade the system performance

since a higher per-hop spectral efficiency needs to be achieved in a time-division multi-

hop linear network.

In order to accurately approximate the solution for N∗, we adopt another em-

pirical approximation for E[dmax],

E[dmax] ≈ ds
N

(
1 +

δ

2

N − 1

N

)
, (4.18)

We will validate this approximation via simulation. According to (4.18), we can easily

show that the optimum number of hops N∗ = argmax ηeq satisfies

(N∗ − 1)

[
N∗ −

(
1 +

δ

2

)(
ω∗
α

γ

)1/α
]
= 0, (4.19)
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where

ω∗
α =

−ν
W(−νe−ν)

− 1, ν = α

(
1 +

δ

(δ + 2)N − δ

)
. (4.20)

Note that ω∗
α and ν are nonlinear and irregular functions of N , which indicates

that we cannot get a closed-form expression for N∗ from (4.19). Fortunately, this

equation can be easily solved numerically. Moreover, when δ = 0, (4.16) and (4.19) are

equivalent to (4.9).

4.1.3 Simulation Results

To justify our random shift model, we consider a practical wireless communi-

cation system which consists of a source-destination pair, and several potential relay

nodes which form a homogeneous two-dimensional Poisson point process Π of intensity

λ [92]. All nodes are located in a circle of radius Rc (centered at the source node).

The destination node is located on the boundary of the circle.

DestinationSource

Rc

Rd

Figure 4.3: Illustration of a practical multi-hop wireless network

The route will be established based on the given Rd as shown in Fig. 4.3. For

example, we can use geographic routing algorithms such as greedy forwarding [93]. In

the greedy forwarding protocol, each relay node forwards the message to its neighbors,
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then the node that minimizes the distance to the destination will be chosen as the relay

in each step.

The CDF of the maximized distance dmax for greedy forwarding routing and

the random shift model is plotted in Fig. 4.4. In order to fairly compare these two

models, we constrain the number of hops to N = 4. In other words, we discard all

the possibilities that there are more or less than 4 hops in a realistic network. It can

be seen that by appropriately choosing ds and δ in our model, the difference between

the random shift model and a real system is negligible. Obviously, obtaining proper

parameters for our model is a difficult task; this should be a topic of future work.
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Figure 4.4: CDF of the maximized distance dmax for a realistic system and the random
shift model. (Rc = ds = 100 m, Rd = 30 m, N = 4, δ = 0.2)

We also evaluate the optimum number of hops for the random shift model.

A linear network with randomly located relay nodes is considered. The end-to-end

straight line distance ds = 100 meters, and the i-th relay is uniformly distributed in[
ds
N
(1− δ), ds

N
(1 + δ)

]
. We consider the path loss model �(d) = d−α with the path loss

exponent α set to 4. The source and the relays use the same transmit power Pt, and

the noise power PN is assumed to be 1 for convenience.

92



5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

3.5

4

Number of Hops

S
p
ec

tr
a
l
E
ffi

ci
en

cy
(b

p
s/

H
z)

Simulation

Lower bound

Approximation

Average SNR = 0 dB

Average SNR = 10 dB

Average SNR = −10 dB

Figure 4.5: Lower bound and an approximation for the spectral efficiency using the
random shift model (106 trials, ds = 100 m, α = 4, δ = 1).

Fig. 4.5 illustrates the spectral efficiency for the random shift model; the lower

bound is provided by (4.14) and the approximation by (4.18). The average SNR γ

means the average receive SNR in the single-hop case, i.e., γ = Ptd
−α
s . We consider

three cases of average SNR γ, corresponding to three different power levels. According

to Fig. 4.5, the approximation works well. We note that our approximation is not

sensitive to the parameters, such as δ and ds, although Fig. 4.5 only shows the special

case when δ = 1 and ds = 100 m. It can also be observed that the lower bound, which

follows the same trend of performance, cannot provide a suitable approximation for

the optimum number of hops. In particular, the number of hops that maximizes the

lower bound is much larger than the actual optimum number of hops.

Fig. 4.6 provides results for different values of average received SNR γ and shift

range δ . When δ = 0, the nodes are equidistant. In this case, the performance using

the random shift model is exactly the same as for a conventional linear network model.

As expected, we can also see that the overall performance decreases as the uncertainty

increases (δ increases). Another observation is that the optimum number of hops

changes as δ changes from 0 to 1; this indicates that results for the equidistant linear
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Figure 4.8: Multi-hop wireless ad hoc network. The route contains a source-destination
pair and several relay clusters. The nodes in each cluster are selected from the potential
relay nodes (small circles) according to a given routing protocol.

network model might not apply to practical topologies. By using numerical methods,

we can also solve (4.19). The comparison between the analytical and simulation results

for N∗ are given in Fig. 4.7. By rounding the analytical result to the nearest positive

integer, we can easily obtain the optimum number of hops.

4.2 Relay Deployment in Multi-Hop Linear Network with Cooperation

The relay deployment problem, which aims to optimally position the relays, is a

key design issue that helps provide better network performance (network connectivity,

lifetime, etc.) [94–97]. Relay deployment in cooperative networks has been extensively

studied. For example, in [97], an approach for applying cooperative techniques and

relay deployment to maximize the network lifetime, has been proposed. In [98], relay

selection strategies have been designed to achieve full diversity gain for a multi-hop

network.

Fig. 4.8 illustrates a multi-hop ad hoc network, which can be simplified to a

linear network model as illustrated in Fig. 4.9. In this section, we focus on a multi-hop

linear network with cooperative relays, and we strive to answer the following questions:
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Where should the relay clusters be located? How many relays should be in each cluster?

First, we derive the optimum relay cluster locations which minimize the end-to-end

outage probability. Then, we consider the required cooperation overhead by using

the overhead-performance tradeoff analysis in Chapter 2. A larger number of relays

could lead to worse performance because of the extra overhead costs in implementing

cooperation. The optimum number of relays, which maximizes the throughput, is then

discussed.

4.2.1 System Model

We consider a generalized N -hop linear network model with cooperative relays.

The system under consideration consists of a source node and a destination node, and

N−1 intermediate relay clusters which are located between the source and destination.

The number of nodes in the jth relay cluster is denoted as Kj, j = 1, 2, · · · , N − 1,

which implies that there are
∏N−1

j=1 Kj distinct end-to-end paths in the network. Each

path can be represented by a set containing the indices of the relays in all the clusters.

The source-to-destination distance is assumed to be ds.

We assume that the inter-cluster distance is much larger than the intra-cluster

distance. Since it has been shown in [89] that equally spaced relays are optimum in a

linear network, we also assume that the relay clusters are equidistant (i.e., the inter-

cluster distance is ds/N). We follow most of the assumptions in Section 4.1, including

the channel model, time division system design, and perfect CSI at the receiver.

We consider a selective decode-and-forward, fixed-rate, relaying strategy (i.e., at

each hop, only one relay node is selected to forward the signal at a constant transmission

rate). Two selection schemes are investigated in this paper: optimal selection (select

the “best” path from all end-to-end paths) and ad hoc selection (select the “best”

path at each hop) [98]. Suppose that the transmission path (selected by some specific

criteria) is represented by {r1, r2, · · · , rN−1, rN}, where rj is the selected relay in the
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Figure 4.9: Linear network model with cooperative relays.

jth cluster, and rN denotes the destination node. Then, the SNR at rj is

γj =
Pt

PN

(
ds
N

)−α

|hrj−1rj |2, (4.21)

where hrj−1rj is the channel coefficient between rj−1 and rj.

The end-to-end spectral efficiency can be expressed as

η =
1

N

[
log

(
1 + min

j=1,2,··· ,N
γj

)]
, (4.22)

and the outage probability is

pout = Pr

{
1

N

[
log

(
1 + min

j=1,2,··· ,N
γj

)]
< η

}
= Pr

{
min

j=1,2,··· ,N
γj < 2Nη − 1

}
= Pr

{
min

j=1,2,··· ,N
|hrj−1rj |2 <

2Nη − 1

Nαγd

}
= Pr

{
gmin <

2Nη − 1

Nαγd

}
,

(4.23)

where γd = Pt

PN
d−α
s is the received SNR for the direct link, and gmin = min |hrj−1rj |2 is

the channel gain for the worst hop in the selected transmission path. Obviously, the

end-to-end outage is determined by the bottleneck hop.

We notice that the channel gains |hrj−1rj |2, j = 1, 2, · · · , N are identically dis-

tributed exponential random variables, but they are not independent; the channel at

the jth hop depends on which nodes are selected in the previous relay clusters.
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4.2.2 Optimum Relay Deployment Strategy

In this section, we discuss the optimum number of hops for a multi-hop linear

network with cooperative relays, and then determine the best relay placement. To

simplify the analysis, we first assume that K1 = K2 = · · · = KN−1 = K. However,

we also extend our analysis to more practical scenarios (for example, Kj is a random

variable and not necessarily equal for all j). Then, we investigate the optimum number

of relays per cluster, which can balance the system performance and the required

overhead.

For the optimal relay selection strategy, the path which maximizes the channel

gain for the bottleneck link, gmin, will be chosen. Although there are
∏N−1

j=1 Kj = dN−1
s

distinct end-to-end paths, some of these paths might share the same bottleneck link.

Let S denote the set that contains the bottleneck links of all possible paths, and ϑ

is the number of distinct elements in S. In other words, ϑ represents the degrees of

freedom that can be utilized for diversity gain.

It has been shown in [98] that the end-to-end outage probability for optimal

selection can be upper bounded by

pout <

(
1− exp

(
−(2Nη − 1)

Nαγd

))ϑ

, (4.24)

According to Lemma 1 in [98], ϑ ≥ K. So

pout <

(
1− exp

(
−(2Nη − 1)

Nαγd

))K

= p∗out. (4.25)

It is easy to show that the optimum N� that minimizes the upper bound p∗out satisfies

α +N�η2N
�η ln 2− α2N

�η = 0. (4.26)

Using techniques similar to those in [91], we have

N� = argmin p∗out =
[

1

η ln 2

(
α +W(−αe−α)

)]
+

. (4.27)
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In [98], an approximation for pout is provided as

pout ≈2

(
1− exp

(
−(2Nη − 1)

Nαγd

))K

−
(
1− exp

(
−(2Nη − 1)

Nαγd

))2K

+ o

((
−(2Nη − 1)

Nαγd

)K
)
,

(4.28)

where the last term is negligible in the high-SNR regime. We can prove that the number

of hops N� in (4.27) minimizes the approximation as well. On the other hand, for a

fixed-rate scheme, the end-to-end throughput can be defined as η(1− pout). Therefore,

N� in (4.27) also maximizes the throughput.

Remark 4.1. Eq. (4.27) is exactly the same as the closed-form expression for the opti-

mum number of hops for a linear network in an AWGN channel [87]. In [87], the power

consumption that guarantees a given transmission rate is minimized. Note that there

is an inherent power constraint in our model; our problem, which maximizes the rate

by using a specific power, can be stated as a dual problem of the optimization problem

in [87]. The duality gap is zero since both problems are convex and linearity constraint

qualification conditions [99] are satisfied. This also explains why the optimum number

of hops only depends on the rate and the path loss exponent.

Remark 4.2. According to (4.27), the optimum number of hops does not depend on

the number of relays in each cluster, i.e., diversity does not affect the optimum num-

ber of hops when the relay clusters are equidistant. Obviously, the end-to-end outage

performance can be significantly improved when we have diversity gain; however, the

number of hops minimizing the outage probability remains the same. The intuitive

explanation is that, after we select the path through all relay clusters, we form an-

other linear network which only has one relay per hop. The diversity benefit helps

increase the received SNR per hop, however, the structure of the linear network and

the derivation of the optimum number of hops do not change.

Remark 4.3. Eq. (4.27) can be rewritten as

Nη =
1

ln 2

(
α +W(−αe−α)

)
. (4.29)
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The right-hand-side (RHS) of (4.29) is a constant which only depends on the path loss

exponent α. For example, when α = 4, we have Nη ≈ 5.66. In [100], the rate which

maximizes the transport capacity is also given by the RHS of (4.29). The result in

[100] can be considered as a special case of the work considered here: for single-hop

transmission (N = 1) with a power constraint, maximizing the transport capacity is

equivalent to minimizing the outage.

Note that these results only hold for a fixed-rate relaying scheme. If rate-

adaptive techniques are also taken into account or the ergodic capacity is chosen as

the performance measure, the optimum number of hops will be different.

If we assume the Kj’s are not necessarily all equal, the upper bound in (4.24)

can still be used. The following theorem helps to determine the optimum number of

hops in this scenario.

Theorem 4.1. S includes at least min{K1, K2, · · · , KN−1} distinct links, i.e., ϑ =

|S| ≥ Kmin = min{K1, K2, · · · , KN−1}.

Proof. Without loss of generality, we assume that K1 = Kmin. In this case, a link in

the first hop can be shared by at most
∏N−1

j=2 Kj paths, which implies that at least K1

links are required to cover all possible paths, that is, ϑ ≥ Kmin. �

According to Theorem 4.1, we can rewrite (4.24) as

pout <

(
1− exp

(
−(2Nη − 1)

Nαγd

))Kmin

= p∗out. (4.30)

Obviously, N� in (4.27) can also minimize p∗out. In a practical wireless ad hoc network,

the number of relays in each cluster should be a random variable. We can assume

that all the nodes in an ad hoc network form a homogenous Poisson point process of

intensity λ [79]. Then, the probability of finding k nodes in a bounded space A is given

by a discrete Poisson distribution

A(k) = Pr{k nodes in A} = e−λM(A) (λM(A))k

k!
, (4.31)
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where M(A) is a standard Lebesgue measure (area, volume, etc.) of A. We can state

that κ = λM(A) is the average number of decoded nodes in the given relay cluster A.

Therefore, we assume that K1, K2, · · · , KN−1 are i.i.d. Poisson random variables with

parameter κ, and

Pr{Kmin = k} =

(
1− Γ(k, κ)

Γ(k)

)N−1

−
(
1− Γ(k + 1, κ)

Γ(k + 1)

)N−1

, (4.32)

where Γ(k, κ) is the incomplete Gamma function defined in (2.34).

Combining (4.30) and (4.32), we can obtain an upper bound on the average

outage probability with a random number of potential relays

pout <

∞∑
k=0

Pr{Kmin = k}
(
1− exp

(
−(2Nη − 1)

Nαγd

))k

, (4.33)

and show that N� in (4.27) also minimizes the upper bound in (4.33). The proof is

similar to the proof of (4.9) and is omitted here.

Since the diversity does not affect the optimum number of hops even if we

consider the randomness of the decoded sets, we can easily extend the results for linear

networks with a single relay per hop [87,89,91,100] to our scenarios. In the following,

we assume K1 = K2 = · · · = KN−1 = K.

In an ad hoc selection scheme, the relay selection is performed in a per-hop

manner and performance is suboptimal. A high-SNR approximation is provided in [98]

pout ≈ (N − 2 + 2K)

(
2Nη − 1

Nαγd

)K

, (4.34)

We can show that the optimum N must satisfy

N(lnN)2 + (c1 + c2)N lnN + c2 lnN − αc1N + αc1 = 0, (4.35)

where c1 = (2K − 2)η ln 2, c2 = α − 1
K
. Although a closed-form expression for the

optimum N cannot be obtained since (4.35) is a nonlinear transcendental equation,

we can solve it by numerical methods. Through simulation results in Section 4.2.3, we

will show that the optimum number of hops from (4.35) is very close to the value that

satisfies (4.27).
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Suppose we have a source-destination pair with desired spectral efficiency η.

Then, we can easily obtain the optimum N� based on (4.27) and then equally place

N� − 1 relay clusters between the source and the destination. Note that N� does not

depend on the number of relays K, which indicates that we can separate the relay

deployment problem into two parts: (1) deciding the locations of the relay clusters and

(2) determining the number of relays in each cluster. We have already addressed the

first part by determining the optimum number of hops. Now we will investigate the

optimum number of relays which achieves the optimal overhead-performance tradeoff.

Obviously, the outage probability decreases as the number of relays K increases

because we have more diversity gain. The outage capacity, ηout = max η(1 − pout(η))

(bps/Hz), is thus a monotonically increasing function of K. However, in a realistic

system, the receivers require knowledge of the CSI so that the signal can be successfully

decoded. This can be facilitated by sending training symbols. Also, the receivers

need to feedback some information, such as the CSI or the index of the best path,

to implement the relay selection strategies. Intuitively, when we have more relays,

we will incur more overhead for the training and selection tasks. The training and

feedback overhead, which is also a monotonically increasing function of K, should also

be considered. In that case, more relays does not necessarily lead to better performance.

According to [57], the smallest number of training symbols for a multiple-

antenna system is equal to the number of transmit antennas. This result can be directly

applied to our scenarios. For the optimal selection scheme, we have K2(N − 2) + 2K

links in the network, which requires at least K2(N − 2) + 2K training symbols to

guarantee meaningful channel estimation. For the ad hoc selection scheme, we need at

least K training symbols per hop, and the overall number of training symbols is NK.

The feedback overhead for relay selection has been studied in Chapter 2. In

general, logK feedback bits are required to implement perfect selection among K

possible links. Intuitively, logK is the entropy (uncertainty) of the index for the best

link from all K links. For the ad hoc selection scheme, we require (N − 1) logK

feedback bits to choose the path. The analysis for the optimal selection scheme is more
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complicated. Here, we use a simplified analysis to characterize the feedback overhead

bits for the optimal selection scheme: since we have to select the best path from all

KN−1 paths, it is reasonable to use at least logKN−1 = (N − 1) logK bits to denote

the index of the selected path.

We note that the optimal and ad hoc selection schemes require the same amount

of feedback overhead. However, optimal selection costs much more in training overhead

than the ad hoc selection scheme. Note also that the analysis here only provides lower

bounds for the required overhead.

Suppose that the feedback signals for updating the selected path are sent peri-

odically with period T (which is usually chosen as 10% of the channel coherence time),

and the training symbol duration is Ts, i.e., there are T/Ts symbols per block. Then,

the spectral efficiency for optimal selection is

ηse,opt =

(
1− K2(N − 2) + 2K

T/Ts

)
ηout − (N − 1) logK

BT
bps/Hz, (4.36)

and the spectral efficiency for ad hoc selection is

ηse,ad hoc =

(
1− NK

T/Ts

)
ηout − (N − 1) logK

BT
bps/Hz. (4.37)

The optimal K which maximizes (4.36) or (4.37) can be obtained numerically.

4.2.3 Simulation Results

Assume we have a source-destination pair at a distance ds = 1 km. The objective

is to place several relays between the source and destination, such that the end-to-end

outage performance is optimized. All nodes in the network, including the source and

the destination, are supplied with transmit power Pt = 20 dBm over the frequency

bandwidth B = 10 MHz. The path loss exponent α is assumed to be 4, and the noise

spectral density N0 = −174 dBm/Hz. When no relay is employed, the average received

SNR at the destination is γd = 4 dB. Note that the general conclusions, which can be

observed from the following simulation results, do not depend upon the specific values

of these parameters.
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Figure 4.10: Optimum number of hops for different values of K (optimal selection),
η = 2 bps/Hz, γd = 4 dB.

Where Should The Relay Clusters Be Located?

Since equidistant relay clusters have been shown to be optimal, once we know

the number of hops which can minimize the outage probability, the optimal relay

deployment strategy can be determined. In Figs. 4.10 and 4.11, the outage probability

is plotted as a function of the number of hops for the optimal and ad hoc selection

schemes. The desired spectral efficiency η is assumed to be 2 bps/Hz. As expected,

we can observe from Fig. 4.10 that the optimum number of hops N� does not depend

on the number of relays K for the optimal selection scheme. The simulation results

also verify our analytical results (4.27). According to Fig. 4.11, the optimum number

of hops for ad hoc selection is almost the same as that given by (4.27). This indicates

that we can use the analysis for the optimal selection scheme to obtain approximate

results for the ad hoc selection scheme.

Fig. 4.12 provides results for different values of the desired spectral efficiency

η. The number of relays K is chosen to be 4 in Fig. 4.12. By rounding the analytical

result to the nearest positive integer, we can easily obtain the optimum number of hops
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Figure 4.11: Optimum number of hops for different values of K (ad hoc selection),
η = 2 bps/Hz, γd = 4 dB.

and determine where to place the relay clusters. For example, if η is 1.5 bps/Hz, the

optimum number of hops is 4 and the optimum per-hop distance is 250 meters.

How Many Relays Should Be In Each Cluster?

Now we determine the optimum number of relays by investigating the required

training and feedback overhead. Consider a wireless system with moderate mobility

such that the coherence time is 10 msec [53]. The feedback signals for updating the

selected path are sent every 1 msec. The training symbol duration is assumed to be

Ts = 1 μsec, i.e., there are 1000 symbols to be transmitted in each block. Intuitively, the

impact of overhead becomes negligible with large coherence time and small training

duration. The simulation results also verify this intuition; however, here we only

present the results for specific parameters to show the importance of overhead.

Figs. 4.13 and 4.14 illustrate the tradeoff between the throughput (bps/Hz) and

the number of relays per cluster for the optimal and ad hoc selection schemes. One

observation is that when the amount of overhead is small, we can always obtain a

gain by adding more relays. However, the diversity gain is eventually canceled by the
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Figure 4.12: Optimum number of hops for different η (optimal and ad hoc selection
schemes). K = 4, α = 4, γd = 4 dB.

excessive amount of overhead when the number of relays increases. In Fig. 4.13, the

required overhead occupies all the transmission resources when N and K are large,

and no meaningful data can be transmitted through the multi-hop network. Another

observation is that, although ad hoc selection is sub-optimal in outage, sometimes it

provides higher throughput than optimal selection which requires a significant amount

of overhead.

4.3 Summary

In this section, we investigated the optimum number of hops for a linear network

with randomly located nodes. By proposing a novel model that permits randomness in

the node locations, we analyzed the number of hops that maximizes the lower bound

and an approximation for the spectral efficiency. Although a closed-form expression for

the optimum number of hops is difficult to obtain, bounds and approximations were

provided. Simulation results showed that the random shift model can characterize a

realistic system.
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Figure 4.13: Optimum number of relays for different values of N (optimal selection),
γd = 4 dB.
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Figure 4.14: Optimum number of relays for different values of N (ad hoc selection),
γd = 4 dB.
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For a multi-hop linear network with cooperative relays, we investigated the

optimal relay deployment strategy. Two different techniques were considered: optimal

selection and ad hoc selection. First, we derived a closed-form expression for the

number of hops that minimizes the end-to-end outage probability. We proved that the

diversity gain does not affect the optimum number of hops, which means that most

existing results for a linear network can also be applied to our scenarios. We also

provided lower bounds on the required training and selection overhead for cooperation,

and then determined the number of relays that maximizes the throughput.

Possible future directions include quantifying the required overhead more pre-

cisely so that the optimum relay deployment can be better understood. Instead of

assuming perfect channel estimation and relay selection, we could extend the work

to determining the optimal strategy with imperfect information. Retrieving a robust

design which guarantees worst-case performance is also a fruitful area for research.
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Chapter 5

MULTI-USER DOWNLINK NETWORKS

5.1 Introduction and System Model

MU-MIMO, which has been included in the newest versions of wireless stan-

dards such as 3GPP Long Term Evolution Advanced (LTE-A) [3] and IEEE 802.11ac

[4], is a promising technology providing impressive performance. Compared with a con-

ventional single-user (SU) system, MU-MIMO enables the AP or BS to communicate

with multiple users simultaneously over the same spectrum, and, thereby, improves the

sum rate [101]. Since the user terminal usually has a very limited number of antennas

in commodity systems, MU-MIMO can better utilize the available resources compared

with SU systems.

The performance of MU-MIMO, however, relies heavily on the accuracy of the

CSI; perfect CSI at the AP/BS is required so that the interference among users can

be canceled. In real communication systems, perfect CSI at the transmitter is difficult

to obtain. It is more likely that only imperfect CSI, such as quantized observations of

the channel, is available at the AP/BS. It has been shown that quantized CSI severely

degrades the performance of MU-MIMO systems [101–103].

In this chapter, we focus on a downlink MU-MIMO system with L users, as

illustrated in Fig. 5.1. Note that this model is applicable to either cellular systems

or wireless local area networks, and we will use AP to represent the transmitter from

this point forward without loss of generality. We assume that the number of transmit

antennas Nt is equal to the aggregated number of receive antennas, i.e., Nt = LNr,

and Nr data streams are sent from the AP to each user. We also assume a block fading

channel model, i.e., the channel remains constant over a given time period.
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Figure 5.1: The multi-user MIMO broadcast channel with L users. The AP/BS is
equipped with Nt antennas and each user has Nr antennas. We assume Nt = LNr.

Let xl be an Nr × 1 vector of data symbols for the lth user, with the power

constraints E[xlx
H
l ] = Pl and

∑L
l=1 tr(Pl) ≤ Pt, where Pt is the total transmit power.

Here we assume that the total power is uniformly distributed among all data streams,

i.e., Pl =
Pt

Nt
INr , ∀l = 1, 2, · · · , L. Our results can be easily extended to scenarios with

non-uniform power allocation.

At the AP, xl is beamformed by a Nt × Nr matrix Vl and sent through Nt

antennas. Then, the received signal at the lth user is

yl = HH
l Vlxl +

L∑
j=1,j �=l

HH
l Vjxj + nl, (5.1)

where Hl is the Nt × Nr channel matrix and nl is the Nr × 1 noise vector at the lth

user. We assume that the channel experiences Rayleigh fading across time and space,

i.e., the entries of Hl and nl are modelled by i.i.d. complex Gaussian random variables

with zero mean and unit variance.

The transmit beamforming matrix Vl could be designed for canceling interfer-

ence among different users. Block diagonalization (BD) is a widely used technique

because of its analytical simplicity and asymptotic optimality at high SNR [102]. With

perfect CSI at the AP, BD decomposes a downlink MU-MIMO channel into multiple
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parallel, independent, point-to-point MIMO links; thus each user can receive its own

signals with no interference. In particular, Vj is chosen to satisfy HH
l Vj = 0, ∀j 	= l so

that the interference from other users is eliminated completely. Note that we usually

assume thatVH
j Vj = INr because of the power constraint. A closed-form expression for

Vj can be derived based on the singular value decomposition (SVD) of the aggregated

channel matrix of the other users [104].

To cancel interference through beamforming, the AP is required to collect global

CSI which can only be obtained using a CSI feedback frame from each user. In practical

systems, the channel matrix is quantized before it is sent to the AP due to the limited

rate of the feedback channel. In particular, the channel from the AP to the lth user

Hl is represented by its quantized version Ĥl. Since Hl is not available, the AP uses

Ĥl to obtain the transmit beamforming matrix Vj such that ĤH
l Vj = 0, ∀j 	= l. In

this case, the interference has not been canceled yet, and
∑L

j=1,j �=l H
H
l Vjxj represents

the residual interference caused by quantized CSI.

Sum rate, Rsum, is a widely-used metric to measure the performance of a com-

munication system. The maximum rate at the lth user is represented by the Shannon

capacity. Thus, the instantaneous sum rate is given by [40]

Rsum =
L∑
l=1

log det
(
INr +Ψ−1

l HH
l VlPlV

H
l Hl

)
, (5.2)

where

Ψl = INr +
L∑

j=1,j �=l

HH
l VjPjV

H
j Hl (5.3)

is the interference-plus-noise covariance matrix at the lth user.

However, the sum rate performance ignores the effect of feedback overhead. In

practical systems, the CSI feedback frames occupy the time or spectrum resources for

data transmission and thereby degrade the actual data rate. Intuitively, in order to get

a higher sum rate, the receiver needs to feedback more bits of CSI, which contribute

to the overhead. On the other hand, a larger amount of overhead which happens

frequently causes the data transmission to be less efficient.
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The impact of the overhead on the performance highly depends on the system

configuration. For example, if the channel never changes, the receiver only needs to

feedback the CSI once. The time or/and frequency resources occupied by feedback

packets are negligible compared with the those allocated for data transmission. In

this case, the impact of overhead is insignificant and the minimization of feedback

bits is unnecessary. However, for a fast-fading channel, the receiver is required to

feedback CSI very often and the large extra cost due to feedback severely degrades

the beamforming gain achieved by accurate CSI feedback. In order to characterize the

implicit overhead-performance tradeoff, we introduce a metric, net capacity,

Rnet = Rsum (1− θ) , (5.4)

where θ = Tf/τ is the overhead ratio in time, Tf = LB/Rfb represents the transmission

time spent on feedback packets, B is the number of feedback bits for each user, and Rfb

is the transmission rate for the feedback channel. We assume that CSI measurements

are made at time intervals of length τ , where τ is large compared to the symbol length.

We also choose τ based on the autocorrelation function ρ = J0(2πfdτ), where fd is

the Doppler frequency determined by the radio frequency wavelength, λ, the speed of

the mobile user v (i.e., fd = v/λ), and J0(·) is the zeroth-order Bessel function of the

first kind. The ergodic sum rate can be approximated as a function of the number of

feedback bits; accordingly, the approximate average net capacity can be derived.

Note that we ignore the preamble and header in the CSI feedback frame, and

only the quantization bits are considered as overhead in our analysis. In a practi-

cal multicarrier system, each user needs to feed back the quantized channels for all

subcarriers; this implies that quantization bits dominate the overall feedback bits.

In this chapter, we first compare the performance, overhead, and complexity

of different quantization techniques. Based on our analysis and simulation results,

for a specific criterion and system configuration, we can provide the guidelines for

determining the preferred technique. Then, we investigate the overhead-performance

tradeoff by applying the rate distortion approach. The amount of overhead required
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for interference cancellation can be quantified by minimizing the mutual information

between the correct and incorrect channel information, where the distortion constraint

guarantees that the performance loss is less than a given threshold.

5.2 Quantization Techniques for Downlink MU-MIMO

Different quantization techniques have been proposed and applied to practical

downlink MU-MIMO systems. For example, scalar quantization (SQ) is an inefficient

but easy-to-implement approach and has been adopted in IEEE 802.11 standards.

In SQ, the scaled real and imaginary entries in the channel matrices are quantized,

respectively. Thus, a large number of feedback bits is required for SQ, especially when

the number of antennas is large. In WLAN environments, the channel state usually

remains constant for several transmission blocks; So, SQ is favored due to its low

complexity.

Vector quantization (VQ), in which the original information is represented by

a vector codeword, is another approach which has been supported by 3GPP LTE for

single-user MIMO with two or four transmit antennas [3]. Although VQ significantly

reduces the number of feedback bits, it incurs high computational complexity and large

storage requirements, especially for MU-MIMO systems [103,105–107]. In [102], it has

been shown that, for the medium SNR regime of a MU-MIMO downlink system con-

sisting of a four-antenna AP and two two-antenna users, a 20-bit codebook is required

to maintain a performance gap of no more than 3 dB with respect to the case with per-

fect CSI. This indicates that the AP has to generate and store a codebook containing

220 codewords, and then select the appropriate codeword from such a huge pool. Since

the AP repeats the quantization process whenever the channel condition changes, the

excessive amount of extra computations makes VQ impractical.

Several approaches have been introduced to reduce the complexity of VQ. In

[105], instead of using a large number of bits to quantize the entire channel matrix,

partitioned VQ (P-VQ) first divides the channel into several small blocks and then

implements VQ for each small block. The drawback of P-VQ is that it only improves

113



performance when the number of feedback bits is not large. In [106] and [107], compres-

sive sensing is applied to reduce the dimension of the CSI matrix and thereby simplify

the quantization process. The main focus of [106] and [107] is to compress the CSI

matrix, but the quantization complexity and the quantization error after compression

are ignored. Utilizing multiple feedback signals is considered in [108–110] to get an ac-

curate CSI reconstruction at the AP. The feedback signals are jointly reconstructed by

the AP according to the principle of compressive sensing so that the complexity in each

single time slot can be reduced. In [111] and [112], the time and spatial correlations in

the MIMO channel are utilized to reduce the quantization complexity.

In this chapter, we propose a new quantization method, sparse coding quan-

tization (SCQ). Inspired by the paradigm of sparse coding [113], SCQ uses a sparse

representation of the codebook to better approximate the original message. Compared

with conventional VQ, SCQ uses a codebook with a much smaller size by exploiting

a linear combination of several codewords to characterize the channel. Though extra

feedback bits are needed to specify the sparse representation, the complexity of SCQ is

significantly reduced without much performance loss. The theoretical approximation

of the sum rate achieved by SCQ is derived, and verified to be tight through simula-

tion results. We show that, in order to guarantee the same performance, SCQ requires

much lower search complexity and memory requirements than VQ.

Since the accuracy and performance of different quantization approaches vary

significantly, the relevance of each quantization approach changes across applications.

In this chapter, we also evaluate different quantization techniques, SQ, VQ and SCQ,

in terms of complexity and net capacity (5.4). By investigating the total number of

feedback bits required to maintain a constant rate loss, we study the computational

complexity and memory requirements for each quantization method. The analysis and

simulation provide guidelines for determining the preferred technique, for a specific

criterion and system configuration.
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5.2.1 Quantization Methods

In this section, we study three quantization methods, namely scalar quantization

(SQ), vector quantization (VQ), and sparse coding quantization (SCQ). We approx-

imate and compare the performance, the required number of feedback bits, and the

complexity for these quantization schemes. In the following, the subscripts (user index)

in the channel and beamforming matrices are omitted because the quantization is a

general process which can be applied for all users.

Scalar Quantization (SQ)

Since the AP only needs the spatial direction of the channel to eliminate the

interference, the channel matrix H is normalized and then quantized using SQ at each

user. The real and imaginary parts of each complex element hij located in the ith row

and jth column of in H are quantized to BSQ bits, respectively. Note that one bit is

reserved for the sign of each of the real and imaginary parts. The quantized version of

hij is

ĥij =
1

2BSQ−1

⌊
hij
m

(2BSQ−1 − 1)

⌉
, (5.5)

where m is a scaling ratio which guarantees the real/imaginary element in the normal-

ized channel matrix is always less than or equal to one. In particular, m can be chosen

as the maximum value among all real and imaginary elements of the channel matrix

H,

m = max

{
max
i,j

{�(hij)},max
i,j

{�(hij)}
}
, (5.6)

where �(·) and �(·) represent the real and imaginary parts of a complex element,

respectively. Therefore, the number of feedback bits needed at each user is B =

2NtNrBSQ, and the total amount of feedback overhead is LB = 2N2
t BSQ.

A closed-form expression for the relationship between the rate loss and the

number of feedback bits is usually intractable. A feasible approach is to approximate

the quantization error as a random variable with a given distribution, for example,

uniformly distributed in
[−2−BSQ+1, 2−BSQ+1

]
. For the sake of analytical simplicity,

we assume the quantization error is a Gaussian random variable with zero mean and
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variance σ2
SQ = 1

12
2−2BSQ+2 [114]. It has been show that the Gaussian assumption

provides an upper bound to characterize the quantization error. Since the sum rate is

a function of the variance, by applying a similar approach as in Theorem 2 in [102],

an approximation for the number of feedback bits required to maintain a performance

gap of no more than 3 dB with respect to the case with perfect CSI is derived to be

B ≈ 2NtNr

(
PdB

3
− 1

2
log

Nr

12

(
2

Nt
Nr − 1

))
, (5.7)

where PdB = 10 log10 P is the normalized transmit power in units of dB.

The overall computation time for SQ is O(N2
t ), which is independent of BSQ.

Furthermore, SQ does not require additional storage. Thus, increasing the resolution of

the SQ quantizer does not affect the complexity. However, a large number of feedback

bits might be required, especially when the number of antennas is large.

Vector Quantization (VQ)

In a limited feedback system using VQ, Ĥl is chosen from a codebook according

to

Ĥl = argmax d2(Hl,C), C ∈ C (5.8)

where C is a quantization codebook of size 2B, i.e., (C1,C2, · · · ,C2B), which is known

at both the AP and the users. B is the number of feedback bits per user. How to design

an optimal or near-optimal codebook C has been investigated in [115, 116]. Without

loss of generality, we focus on the performance obtained by a random codebook, since it

provides asymptotically optimal performance with closed-form analytical results [102].

That is, each codeword C ∈ C is a Nt ×Nr unitary matrix, and is independently and

uniformly chosen from a unit sphere defined in an Nt ×Nr-dimensional complex space

[115,117]. The chordal distance [118]

d2(Hl,C) = Nr − tr(H̃H
l CCHH̃l) (5.9)

is chosen as the metric, where H̃l is an orthonormal basis for the subspace spanned by

the columns of Hl.
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Each user chooses an appropriate codeword and sends back the index of the

codeword. Thus, the number of feedback bits per user is B = BVQ. The relation

between the quantization error of VQ and BVQ has been extensively investigated. In

general, the quantization error can be modeled as an additive Gaussian noise with zero

mean and variance [118]

Q = E

[
min
C∈C

d2(Hl,C)

]
≤ 1

T
Γ

(
1

T

)
(CNtNr)

− 1
T 2−

B
T = Q,

(5.10)

where T = Nr(Nt − Nr), CNtNr = 1
T !

∏Nr

i=1
(Nt−i)!
(Nr−i)!

, and Γ(·) represents the Gamma

function.

An approximation for the required number of bits for VQ to maintain the 3-dB

performance gap is provided in [102]:

B ≈ T

(
PdB

3
− logNr

)
− logCNtNr . (5.11)

It has been shown that VQ requires significantly fewer feedback bits than SQ. However,

the main drawback of VQ is the computational complexity and storage requirement,

especially when the codebook is large. The overall time complexity of searching code-

words and calculating the chordal distance is O(L2BVQ). The storage requirement, on

the other hand, is O(N2
t 2

BVQ). Using the simulation model in [103] as an example,

20-bit VQ is required to achieve acceptable performance. This indicates that each user

must generate and store a codebook containing 220 codewords and select the appropri-

ate codeword from this large codebook.

Sparse Coding Quantization (SCQ)

For a given codebook C and a given vector y, the sparse coding problem [113]

considers how to find a vector z such that

y = Cz. (5.12)

Here, the number of non-zero elements in z is K, which is small compared with the

dimension of z. Accordingly, z is called a K-sparse representation of y using codebook
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C. In general, there is no solution for (5.12). Thus, we solve the following optimization

problem [113] instead,

min
z

d2(y,Cz)

s.t. ‖z‖
0 ≤ K

(5.13)

where d2(·, ·) could be any distance metric, for example, chordal distance in (5.9). The

�0-norm ‖z‖
0 denotes the number of non-zero elements in z, and ‖z‖
0 ≤ K is the

sparsity constraint. Several efficient algorithms have been proposed to solve (5.13),

such as orthogonal matching pursuit (OMP) [119].

The main factor causing the impracticality of VQ is that the search complex-

ity and storage requirements increase exponentially as the number of feedback bits

increases. Here, we propose a way to use multiple codewords instead of a single code-

word to describe H, resulting in a reduction in the size of the codebook.

The algorithm includes two steps: (i) vectorize the channel matrix and (ii)

choose the sparse representation of the vectorized channel by applying OMP. With

SCQ, we first vectorize an Nt × Nr channel matrix Hl into an NtNr × 1 vector hl.

Similarly, the codebook C is transformed into an NtNr × 2β matrix C which contains

2β codewords. Here the codebook size is β which is less than or equal to the total

number of feedback bits B. Then, the quantized channel ĥl = Cz is chosen such that

min
z

d2(hl, ĥl) = d2(hl,Cz)

s.t. ‖z‖
0 ≤ K

(5.14)

The lth user feeds back K codeword indices and K non-zero coefficients in z to the

AP. A critical issue is how to feed back these K coefficients. Here, we apply VQ to

quantize a K×1 vector that contains these K coefficients through a random codebook

with 2μ codewords. Based on the received K indices and K non-zero coefficients, the

AP calculates the quantized vectorized channel and converts it into an Nt×Nr matrix

Ĥl. Since all operations are linear, the transformations between vectors and matrices

do not affect the quantization error.
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VQ SCQ
Number of feedback bits B Kβ + μ

Search complexity O(2B) O(K2β + 2μ)
Storage requirement O(NtNr2

B) O(NtNr2
β +K2μ)

Table 5.1: Comparisons between VQ and SCQ in terms of the number of feedback bits,
search complexity, and storage requirements.

The total number of feedback bits for SCQ is Kβ + μ, using β bits for each

of K indices and μ bits for the K × 1 coefficient vector. Since the OMP algorithm

takes K iterations [119] and the entire codebook is searched in each iteration, the time

complexity of SCQ is O(K2β+2μ). Furthermore, SCQ only needs to store 2β codewords

(Nt × Nr matrices) for quantizing the channel and 2μ codewords (K × 1 vectors) for

representing the coefficients. The comparisons between VQ and SCQ are presented in

Table 5.1.

There are three key parameters for SCQ: K (the number of linear coefficients),

β (the number of bits for each codeword index), and μ (the number of bits for repre-

senting the K coefficients). Thus, (K, β, μ)-SCQ is defined to precisely declare a given

quantization scheme. VQ is equivalent to a special case of SCQ that finds the one-

sparse representation of the actual channel H, i.e., (1, B, 0)-SCQ. In this case, μ = 0

because only one codeword is fed back, and the user does not need to send any coef-

ficients. The theorem below provides a tight approximation to the sum rate achieved

by SCQ.

Theorem 5.1. For a (K, β, μ)-SCQ scheme, the average sum rate can be approximated

as

Rsum ≈ Nt

[
(L− 1) log

(
PNrσ

2c1 +Nt

PNrσ2c2 +Nt

)
+ log

(
1 +

PNr

Nt

c1

)
+ log

c2
c1

+ (c1 − c2) log(e)

]
,

(5.15)

where

σ2 =
Γ
(
1
T

)
KT

(CNtNr)
− 1

T 2−
β
T +

Γ
(

1
K−1

)
K − 1

2−
μ
T , (5.16)
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T = Nr(Nt −Nr), CNtNr =
1
T !

∏Nr

i=1
(Nt−i)!
(Nr−i)!

; c1 and c2 are the positive solutions to

c1 +NrPc1NrPc1 +Nt + (L− 1)
NrPσ

2c1
NrPσ2c1 +Nt

= 1,

c2 + (L− 1)
NrPσ

2c2
NrPσ2c2 +Nt

= 1.

(5.17)

Proof. With a (K, β, μ)-SCQ scheme, the channel matrix Hl can be approximated by

a sparse representation

H
(K)
l =

K∑
i=1

ziCi, (5.18)

where zi is the non-zero element in vector z, and Ci is the corresponding codeword.

Since the OMP algorithm is a greedy algorithm [119], according to the performance

bound in [120], the estimation error is bounded by

d2(Hl,H
(K)
l ) ≤ 1

K
d2(Hl,H

(1)
l )

(a)

≤ Γ
(
1
T

)
KT

(CNtNr)
− 1

T 2−
β
T = σ2

β,

(5.19)

where T = Nr(Nt − Nr), CNtNr = 1
T !

∏Nr

i=1
(Nt−i)!
(Nr−i)!

. Step (a) comes from the facts that

VQ is equivalent to SCQ with K = 1 and the corresponding quantization error is

bounded in (5.10). According to [103], we provide a new expression for the channel Hl

H
(K)
l = Hl + Eβ, (5.20)

where the entries in Eβ are i.i.d. complex Gaussian random variables with zero mean

and variance σ2
β.

Similarly, the coefficients zi, i = 1, 2, · · · , K are quantized by using a codebook

with 2μ codewords. Let z = [z1, z2, · · · , zK ], the quantized version ẑ = [ẑ1, ẑ2, · · · , ẑK ]
can be approximated by ẑ ≈ z + ez [103], where the entries ei in e are i.i.d. complex

Gaussian random variables with zero mean and variance

σ2
μ =

Γ
(

1
K−1

)
K − 1

2−
μ

K−1 , (5.21)
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where (5.21) is obtained by choosing Nt = K and Nr = 1 in (5.10). Then, the quantized

channel can be written as

Ĥl =
K∑
i=1

ẑiCi = H
(K)
l +

K∑
i=1

eiCi︸ ︷︷ ︸
Eμ

= H
(K)
l + Eβ + Eμ︸ ︷︷ ︸

E

. (5.22)

SinceCi is orthonormal, the multiplications byCi do not change the distribution

of Eμ. Therefore, the entries in E = Eβ + Eμ are i.i.d. complex Gaussian random

variables with zero mean and variance σ2
β + σ2

μ. By using derivations similar to the

proof in [103], we show that the average rate achieved by (K, β, μ)-SCQ is approximated

by (5.15). �

Theorem 5.1 provides the performance of SCQ by applying the results for the

sparse coding algorithm in [119, 120] and the approach in [103]. The result in [103] is

a specific example of (5.15) with K = 1.

Remark 5.1. Consider the simple case where Nr = 1. Comparing Theorem 1 with

the analytical results for VQ in [102,103], we can obtain a sufficient condition for SCQ

to achieve the same performance as conventional VQ with a B-bit codebook. That is,

β = B − (Nt − 1) logK, μ =
K − 1

Nt − 1
B. (5.23)

Note that (5.23) is a sufficient condition, i.e., the required values of β and μ could be

smaller in practice, as will be shown in the simulation results.

From (5.23), we observe that it is usually not worth increasing K. As K in-

creases, β decreases logarithmically and μ increases linearly, indicating that the com-

plexity increases eventually. For example, if K ≥ Nt, we have μ ≥ B, which implies

that SCQ requires higher complexity than VQ in this case. In most scenarios, setting

K = 2 achieves the benefit of sparse representation without incurring much complex-

ity. Another observation is that when Nt is large, SCQ is preferable because it requires

much less complexity than VQ.
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Remark 5.2. Based on (5.11), the required codebook sizes for SCQ to maintain the

3-dB performance gap can be approximated as

β ≈ T

(
PdB

3
− logKNr

)
− logCNtNr ,

μ ≈ K − 1

T

[(
PdB

3
− logNr

)
− logCNtNr

]
.

(5.24)

In most scenarios, by setting K = 2, the benefit of SCQ can be achieved without

incurring much overhead. Accordingly, the required number of feedback bits is

B ≈ 2T 2 + 1

T

(
PdB

3
− logNr

)
− 2T − 1 + T

T
logCNtNr . (5.25)

Remark 5.3. Based on Theorem 5.1, we can obtain the approximated net capacity of

SCQ

Cnet = Rsum

(
1− Kβ + μ

Rfbτ

)
. (5.26)

In general, the net capacity of SCQ is lower than that of VQ as SCQ requires more

feedback bits to achieve the same performance. For example, suppose Nr = 1 and the

amount of feedback overhead for a VQ scheme is B bits. To achieve the same sum rate

performance, the amount of overhead for SCQ should be
[
K + K−1

Nt−1
− K logK

B
(Nt − 1)

]
B

bits according to (5.23).

5.2.2 Simulation Results

In this section, simulation results are presented to verify the theoretical results,

compare the performance of different quantization techniques, and show the impact

of the number of feedback bits. In the simulation, we generate 104 independent re-

alizations of the quantization codebooks for each user. For each possible codebook,

simulation results are averaged over 104 channel realizations. For all scenarios, uni-

form power allocation is assumed, and the feedback rate Rfb is assumed to be 6.5 Mbps,

which is the lowest data rate in the 802.11ac standard [4].

In Fig. 5.2, the simulation results (solid curves) and analytical results (dash-

dotted curves) are compared in terms of sum rate. The first case presents a two-user
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Figure 5.2: Analytical approximation and simulation results of the sum rate achieved
by SCQ.

downlink MIMO network where the AP is equipped with two antennas and each user

has a single antenna. In this case, SCQ applies a linear combination of two 7-bit

codewords and a codebook of size 4 bits to represent the channel matrix and these

two coefficients, respectively. The approximation given in Theorem 5.1 is close to the

simulation result of the (2, 7, 4)-SCQ scheme. Similar insights can be observed for

the second case which considers an AP with four antennas simultaneously serving four

single-antenna users. For the (2, 14, 4)-SCQ scheme, the relative ratio of approximation

error with respect to the simulation result is less than 4% for the entire SNR regime of

interest. Based on these two different system configurations, we can see that the ap-

proximation is tight. This scheme and analysis can also be applied in a straightforward

way to systems with a large number of antennas.

In Fig. 5.3, we illustrate the sum rate versus SNR for VQ and SCQ in the case

where four users are simultaneously served by the AP. An appropriate codebook size

is chosen for each quantization method such that the percent rate loss compared to

the sum rate achieved with perfect CSI is 1% for 20-dB SNR. Thus, VQ uses a 26-bit
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Figure 5.3: Sum rate comparison between VQ and SCQ to achieve 1% rate loss with
respect to the performance with perfect CSI at 20 dB SNR. Nt = 4, Nr = 1 and L = 4.

codeword, while SCQ employs a linear combination of two 18-bit codewords for the

sparse representation of the channel matrix and a 6-bit codebook for the quantization of

two coefficients. Compared with VQ, SCQ reduces the overall computation complexity

from O(226) to O(219), as the complexity of obtaining 6-bit quantization is negligible.

In addition, for both quantization methods, as SNR increases, the gap between the

performance with perfect CSI and that with quantized CSI becomes larger and larger;

thus, more bits would be needed to limit rate loss to 1% for SNR values above 20 dB.

The impact of the number of feedback bits depends on the channel block length

τ and how often each user sends the feedback frames. It motivates us to investigate the

net capacity which reveals the overhead-performance tradeoff. We assume that the car-

rier frequency fc is 5 GHz, τ is determined by the ρ-coherence time, i.e., ρ = J0(2πfdτ),

and the transmission rate Rfb on the feedback channel is 6.5 Mbps. Note that ρ and

fd are parameters which describe the system environments, including channel quality

and user mobility.

In Fig. 5.4, the required feedback overhead (in bits) per user for each quanti-

zation technique is illustrated; the sum rate performance is 3 dB less than that with
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Figure 5.4: Feedback overhead for the 3-dB performance gap versus SNR. Nt = 4,
Nr = 2 and L = 2.

perfect CSI at the AP. Here, the quantization error is assumed to be Gaussian, so the

results are upper bounds on the required number of feedback bits. We can see that,

as SNR increases, more feedback bits are needed so that stronger interference can be

reduced to a specific level. Furthermore, SCQ incurs more overhead than VQ but re-

quires a smaller number of feedback bits than SQ. Another observation from Fig. 5.4 is

that VQ requires a 29-bit codebook for each user when SNR is 24 dB, implying that the

computational complexity of VQ is O(229). Meanwhile, the complexity of SQ, which

is independent of the number of feedback bits, remains constant (O(1)). According to

(5.24), the complexity of SCQ is O(226), which indicates that SCQ provides an option

for balancing complexity and overhead. Though the given example is for the scenario

of high-rate feedback, our analysis is applicable to the low-rate feedback regime as well.

From Fig. 5.4, we can see that only a small number of feedback bits is required for any

quantization method at low SNR; in that range the analytical and simulation results

reveal that SCQ also provides a complexity benefit compared to VQ.

In Fig. 5.5, the net capacity achieved by these three quantization methods is

plotted as a function of the overhead ratio θ = B/Rfbτ , where ρ is the autocorrelation
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Figure 5.5: Net capacity versus the overhead time ratio for different values of ρ. The
carrier frequency fc = 5 GHz, velocity v = 25 m/s, and doppler frequency fd = 500 Hz.
Nt = 4, Nr = 2, L = 2 and SNR = 20 dB.

of the random path gain for time separation τ . For given Rfb and τ (determined by ρ),

the overhead ratio θ is determined by the total number of feedback bits, which varies

from 16 to 128. We consider a high mobility environment: the velocity v is assumed to

be 25 m/s, i.e., around 90 km/h. The average received SNR is assumed to be 20 dB.

The results indicate that, as θ increases, the net capacity first increases because the

CSI becomes more accurate. However, the capacity eventually decreases because of the

excessive amount of overhead. Although VQ outperforms SCQ in terms of net capacity,

the performance gap is acceptable. In addition, SQ gives the worst performance as

expected. When θ is sufficiently large, where the net capacity is overwhelmed by the

overhead required, the performance of each technique reduces to the same level.

By choosing an appropriate number of feedback bits, the net capacity can be

maximized for given system configurations. Fig. 5.6 illustrates the relation between

the optimal net capacity and the velocity of the mobile users v. We can see that, as

the mobility increases, the optimal net capacity decreases for any of these quantization

techniques because the channel changes more rapidly. Another observation from Figs.

126



0 10 20 30 40
10

12

14

16

18

20

Speed for Mobile Users (m/s)

O
p
ti
m

a
l
N

et
C

a
p
a
ci

ty
(b

p
s/

H
z)

ρ = 0.99

ρ = 0.9

SQ

SCQ

VQ

Figure 5.6: Net capacity versus the velocity of the user v. Nt = 4, Nr = 2, L = 2 and
SNR = 20 dB.

5.5 and 5.6 is that the impact of overhead becomes less important as ρ decreases,

indicating a preference for SQ due to its simplicity.

5.3 Overhead-Performance Tradeoff for Downlink MU-MIMO Systems

The design and analysis of limited feedback techniques for downlink MU-MIMO

have been studied extensively over the past few years. Much of the work analyzes the

system performance by utilizing and extending the well known performance bound

for vector quantization. In particular, for MIMO systems with finite-rate feedback,

the quantization of eigenchannel vectors is related to quantization on the Grassmann

manifold [115,118,121,122].

In this section, by using rate distortion theory, we quantify and analyze the

optimal tradeoff between the sum rate performance and feedback overhead. Compared

with the conventional rate-distortion tradeoff where the distortion is defined as the min-

imum mean square error (MSE) between the actual channel and the quantized channel

achievable for a given quantization codebook size, we adopt a different approach to

characterize the amount of feedback overhead as a function of allowable rate loss due
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Classic Rate Distortion Results Our Approach
Information Source Actual channel Rate with perfect CSI

Destination Quantized channel Rate with quantized CSI
Distortion MSE Rate loss

Mutual Information Codebook size Amount of overhead

Table 5.2: Classic rate distortion results versus our approach

to the CSI quantization. A similar framework has been applied in Chapter 2 for quan-

tifying the overhead-performance tradeoff in cooperative networks. Table 5.2 compares

the original terms used in the classic results and the terms used in our approach. Al-

though the classic rate distortion tradeoff for quantization on the Grassmann manifold

has been well-studied, to the best of our knowledge, there is no existing work focusing

on the applications of rate distortion theory for the overhead-performance tradeoff in

downlink MU-MIMO systems.

We follow the same system model and consider the simplest scenario (Nt = L =

2, Nr = 1) as a first step. In other words, we consider a system with a two-antenna BS

and two single-antenna users. The BD scheme has been applied to cancel the inter-user

interference. The beamforming vectors at the BS are determined based on noiseless

and zero-delay feedback of B bits per user. Instead of discussing how to design a VQ

codebook of 2B codewords, we try to answer the fundamental question: how many

feedback bits are required for a given rate loss tolerance?

The rate distortion formulation can be written as

R(D) = min
f(ĥi),f(ĥi|hi)

I(h1,h2; ĥ1, ĥ2)

s.t. E
[
log2

(
1 + Pt

2
|hH

1 v̂2|2
)
+ log2

(
1 + Pt

2
|hH

2 v̂1|2
)] ≤ D

(5.27)

where I(h1,h2; ĥ1, ĥ2) denotes the mutual information between the actual CSI and the

available CSI at the BS, and f(ĥi) and f(ĥi|hi) denote the probability distributions to

be optimized. In particular, we search among all potential distributions which satisfy

the capacity loss constraint. It is difficult to obtain the optimal distributions directly,

so we will make several assumptions to simplify the problem.
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First, we assume that the channel magnitudes, which can be viewed as side

information for rate distortion, are available at the BS. In practical systems, this could

be done by measuring and feeding back the channel quality index (CQI) at the receivers.

Mathematically, we normalize all the channel vectors hi:

hi = ‖hi‖hi =
√
aihi

where ai is the channel power gain which is perfectly known1 at the BS, hi is the

normalized channel vector (or, the channel direction). It has been shown in [46] that ai

has a chi-squared distribution, and the channel direction hi is isotropically distributed

over the 4-dimensional unit sphere. Since the essential part for interference cancellation

is the channel direction, we also assume that the receivers only quantize the direction

hi to ĥi. The rate distortion formulation in (5.27) can then be rewritten as

R(D) = min I(h1,h2; ĥ1, ĥ2|a1, a2)
s.t. E

[
log2

(
1 + Pt

2
a1|hH

1 v̂2|2
)
+ log2

(
1 + Pt

2
a2|hH

2 v̂1|2
)]

≤ D
(5.28)

Note that the quantized channels ĥi are also located on the 2-dimensional complex

unit sphere. The distributions of ĥi depend on the specified designs for the quantizer.

We also observe that the rate loss only depends on the magnitude of the two

inner products, |hH

1 v̂2| and |hH

2 v̂1|, which represent the residual interference caused by

imperfect CSI. We define two scalar random variables s1 = |hH

1 v̂2| and s2 = |hH

2 v̂1|.
Then, the rate loss constraint in (5.27) can be rewritten as

E

[
log2

(
1 +

Pt

2
a1s

2
1

)
+ log2

(
1 +

Pt

2
a2s

2
2

)]
≤ D (5.29)

Note that BD is assumed; then we have

v̂1 =

⎡⎣ 0 1

−1 0

⎤⎦ ĥ2, v̂2 =

⎡⎣ 0 1

−1 0

⎤⎦ ĥ1, (5.30)

1 In practice, ai is also quantized. For example, in LTE-A Release 11 [3], ai is repre-
sented as CQI and is then quantized by a 4-bit SQ. Since we focus on the interference-
limited scenarios where the channel directions dominate the overall performance, the
impact of quantized CQI is ignored.
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which implies that si only depends on hi

si =

∣∣∣∣∣∣hH

i

⎡⎣ 0 1

−1 0

⎤⎦ ĥi

∣∣∣∣∣∣ (5.31)

When ĥi = hi, si = 0, i.e., perfect CSI at the BS can be exploited to completely

eliminate the interference, and therefore achieve zero distortion.

Since h1 and h2 are independent, by using an orthogonal coordinate transfor-

mation (one-to-one mapping similar to the transformation from Cartesian to polar

coordinates) from hi to a pair (si, ti), where ti denotes the remaining coordinates, we

can easily show that

I(h1,h2; ĥ1, ĥ2|a1, a2) = I(h1; ĥ1|a1) + I(h2; ĥ2|a2) (5.32)

Since hi has four dimensions (two complex numbers), and si is a scalar, ti has three

dimensions. Similar to Theorem 1 in [46], we can rewrite the mutual information as

I(hi; ĥi|ai) ≥ DKL(f(si|ai)‖f(si)|f(ai)) (5.33)

=

∫ ∞

0

∫ 1

0

f(ai)f(si|ai) log2
(
f(si|ai)
f(si)

)
dsidai

where DKL denotes the relative entropy between the two probability distributions, and

f(·) represents the PDF. Note that si has to be located in [0, 1], since ‖ĥi‖ and ‖hi‖
are normalized vectors. In [46], it is also shown that equality can be achieved if 1) ĥi

is isotropic over the unit sphere (which is true for well-designed codebooks including

a random codebook), and 2) the distribution of si conditioned on ĥi does not depend

on ĥi. In other words, si contains all the important information and can fully describe

the channel information. Here, we use DKL(f(si|ai)‖f(si)|f(ai)) as a lower bound to

the mutual information.

Choosing the relative entropy as the objective function can significantly simplify

the problem. First, we only need to find the optimum conditional probability f(si|ai),
since f(si) and f(ai) can be easily determined once the channel distribution is given.

In the Rayleigh fading case, we have [121]

f(ai) = aie
−ai , ai > 0
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and

f(si) = 2si, 0 ≤ si ≤ 1

Instead of solving a complicated high-dimension optimization problem, we only need

to solve a variational inequality problem with two scalar random variables. Now, the

rate distortion function becomes

min
f(s1|a1),f(s2|a2)

2∑
i=1

∫ ∞

0

∫ 1

0

aie
−aif(si|ai)(log2 f(si|ai)− log2 2si)dsidai

s.t.
2∑

i=1

∫ ∞

0

∫ 1

0

aie
−aif(si|ai) log2

(
1 +

P

2
ais

2
i

)
dsidai ≤ D∫ 1

0

f(si|ai)dsi = 1, ∀i, ai > 0

Then, we decompose the problem into two parts. First, for fixed channel power

gain ai, we solve the following optimization problem to obtain R(D1(a1), D2(a2))

R(D1(a1), D2(a2)) = min
f(s1|a1),f(s2|a2)

2∑
i=1

∫ 1

0

f(si|ai)(log2 f(si|ai)− log2 2si)dsi

s.t.

∫ 1

0

f(s1|a1) log2
(
1 +

P

2
a1s

2
1

)
dx1 ≤ D1(a1)∫ 1

0

f(s2|a2) log2
(
1 +

P

2
a2s

2
2

)
ds2 ≤ D2(a2)∫ 1

0

f(si|ai)dsi = 1, ∀i, ai > 0

(5.34)

Given the rate distortion function for any given ai, the second part is to optimize the

rate loss functions Di(ai)

min
D1(a1),D2(a2)

2∑
i=1

∫ ∞

0

aie
−aiR(D1(a1), D2(a2))dai

s.t.
2∑

i=1

∫ ∞

0

aie
−aiDi(ai)dai = D

(5.35)

It is easy to see that the rate distortion problem is equivalent to (5.34) and (5.35).
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Figure 5.7: Rate distortion bounds versus vector quantization for different values of
transmit power. Nt = 2, Nr = 1, L = 2. The channel magnitudes are assumed to be
fixed as 1 for both users.

Then, by using optimal control theory such as Poutryagin’s minimum principle

and Mangasarian’s sufficient condition2, we can obtain the optimal distribution f(si|ai)
for (5.34)

f(si|ai) = 2sie
−1−pi

(
1 +

P

2
ais

2
i

)−qi

,

where pi and qi satisfy

pi = ln

(∫ 1

0

2e−1si

(
1 +

P

2
ais

2
i

)−qi

dsi

)
∫ 1

0

si

(
1 +

P

2
ais

2
i

)qi [
log2

(
1 +

P

2
ais

2
i

)
−Di(ai)

]
dsi = 0

An intuitive solution of (5.35) is to assume that D1(a1) = D2(a2) = D
2

for

any given ai, i.e., different users have the same amount of performance loss. In Fig.

5.7, we plot the derived rate distortion bounds and the simulation results for vector

quantization techniques. The channel magnitudes are assumed to be fixed and equal

2 These are extensions of the KKT conditions from general optimization to functional
optimization.
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to 1 for both users. We can observe that as SNR increases, the required feedback

overhead for achieving the same level of performance significantly increases. Another

observation is the zero overhead scenario. Intuitively, when no overhead is allowed, the

precoding vectors are pure noise. We can easily derive the closed-form expression for

the performance loss.

5.4 Summary

In this chapter, we first proposed a new method, SCQ, to reduce the computa-

tional complexity of conventional VQ with negligible performance loss, by utilizing a

linear combination of multiple codewords. A closed-form expression for the sum rate

achieved by SCQ has been established and verified by simulations. It has also been

shown that SCQ is preferable compared with VQ due to the simplicity of implementa-

tion, especially for large-scale MIMO systems. We also evaluated and compared three

quantization methods in terms of the required number of feedback bits, the net ca-

pacity, and the complexity. The results illustrate the tradeoff among these schemes

and show that SCQ is an option for balancing performance and complexity. SQ is

more preferable when the overhead effect is negligible, for example, when the channel

condition changes very slowly.

Besides considering specific quantization techniques, we also discussed the fun-

damental tradeoff between the feedback overhead and the performance of MU-MIMO

systems. By solving the functional optimization problems, we presented a closed-form

rate distortion function which can characterize the minimum amount of feedback bits

required for effective interference cancellation. Numerical results show that the gap

between the commonly-used VQ and the rate distortion bound is non-negligible. How

to achieve the optimal rate distortion bound is left for future work.
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Chapter 6

HETEROGENEOUS NETWORKS

Heterogeneous Networks (HetNets) are a promising avenue for providing the

performance and capacity leap needed to meet the ever growing demands from mobile

wireless users. By using a mix of conventional macro cells and small cells (including

micro cells, femto cells, relay stations, and WiFi access points), HetNets effectively

reduce the distance between the transmitter and the receiver, and, thereby, increase

the area spectral efficiency [123].

Without a breakthrough in battery technology, reducing the power consumption

at the mobile users is imperative and has great practical interest [124–126]. As shown in

[126], in addition to reducing the traffic over macrocells, HetNets can save a significant

amount of energy for the mobile terminals. Specifically, mobile users can choose to

communicate with the base station of a closer small cell with better channel quality,

rather than with the base station of a marcocell. On the other hand, delivering traffic

over WiFi networks can be more power-efficient for mobile devices [127]. This motivates

our investigation of power efficient resource allocation algorithms that take advantage

of HetNets to minimize the power consumption of mobile users.

Reliable broadcast/multicast services in cellular networks have become a grow-

ing interest, largely due to the rapid increase of the demand for multimedia data [128].

Evolved Multimedia Broadcast/Multicast Service (eMBMS)[129] has been proposed in

LTE-A, focusing on optimizing the support for broadcast/multicast services. In this

chapter, we consider the scenario of multicast services (for example, software updates

and popular news feeds) in HetNets.
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6.1 Energy-Efficient User Pairing

The issue of cell association (assigning users to different cells) is one of the key

challenges in resource allocation for HetNets [130]. For example, in [130], user-cell pair-

ing and power control are jointly optimized with the objective of maximizing the system

throughput. The authors in [131] take this a step further and jointly consider backhaul

capacity, a transmit power limitation, and user demands when determining the user-

cell pair, transmit power allocation and channel frequency assignment. These studies

mainly focus on physical-layer resource management and rely on physical-layer infor-

mation such as link quality or interference level. Other works use application-specific

information to assist the physical resource allocation. In [132], “context information”

(such as whether the data is multimedia data) is observed from the user’s domain and

the information is used to schedule the transmission in the network. Another example

[133] uses information about the hand-off mechanisms for different radio access tech-

nologies and QoS requirements to determine whether a user should be handed off to a

different network.

In addition to efficient cell association, peer-to-peer (P2P) streaming among the

mobile terminals has been demonstrated to be feasible and is shown to be important in

recent research. With the increasing density of mobile users, exploiting the resources

of neighboring users becomes imperative. For example, in [134], the authors show

that P2P cooperation can be used to provide near-live TV streaming in a resource

constrained mobile environment. In [135], a cross-layer P2P-based solution is proposed

to distribute live video streaming over a mobile ad hoc network. While most existing

work uses P2P networks to reduce the Internet access requirement [136] and to improve

the streaming quality [137], less attention has been paid to the power consumption of

the mobile users.

In [138], energy-efficient user pairing is considered. The main focus in this paper

is to reduce the power consumption and hence prolong the battery life for the mobile

users. In addition, MIMO techniques and cooperative communications are employed to

improve the energy efficiency. Note that cooperative communications has already been
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Figure 6.1: An example of user pairing scenario with cooperative communications and
P2P cooperation.

incorporated into cellular standards (for example, relay technology and CoMP [139]).

The impact of employing P2P cooperation among mobile users has also been included

in [138], showing that the applications of cooperation and P2P streaming significantly

reduce the power consumption at mobile terminals.

Let N be the set of mobile users (MUs) and S the set of base stations (BSs).

We denote user pairing by an indicator matrix, U , where Uij = 1, i ∈ S, j ∈ N , if and

only if MU j is associated with BS i. Fig. 6.1 depicts one user pairing scenario with

cooperative communications and P2P cooperations. Note that the users are located in

different clusters; in each cluster, only a subset of users need to retrieve data from the

BSs. Other users can utilize P2P links, and thereby reduce power consumption. Also,

the additional antennas equipped at the BSs can also be utilized for enhancing link

quality and improving energy efficiency. Here, we determine the optimal user pairing

scheme which can minimize the maximum power consumption among all mobiles users.
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In order to focus on the design of user pairing schemes, perfect backhaul with

high capacity and low latency is assumed to support the cooperation among distributed

BSs. We also assume orthogonal channel assignment to mitigate interference. In par-

ticular, the set of orthogonal subcarriers is equally divided among the active transmis-

sions. We assume that the clustering of MUs is based on proximity since P2P streaming

only helps if the peers are close to each other. As in [138], our study on user pairing

focuses on associating the P2P networks with the BSs in a power efficient manner,

while satisfying the QoS constraints.

If the number of BS antennas is sufficient, cooperative beamforming [40], which

realizes maximal ratio combining at the receiver, will be applied to increase the data

rate and thus improve the energy effiencicy. In this case, the data rate achieved along

the cellular link(s) is

rCi =
BC

NC
log2

⎧⎨⎩1 +

∑
v∈S

PvUviHC
vi

NC
0

BC

NC

⎫⎬⎭ (6.1)

where BC is the entire bandwidth available in the cellular network, NC is the number of

MUs that are associated with BSs in the cellular network, i.e., the number of columns

in U that are not all 0’s, Pv is the transmit power at BS v, HC
vi is the channel power

gain from BS v to MU i, and NC
0 is the power spectral density of the noise.

The P2P network can be represented by an adjacency matrix, M, where Mij =

1, i, j ∈ N , if and only if there is a reliable P2P connection from MU i to MU j. Clearly,

M also provides the clustering of the MUs. For the sake of simplicity, we assume that

perfect scheduling is performed to eliminate intra-cluster interference, and uniform

resource allocation is applied. Therefore, the data rate achieved at MU j along the

P2P link from MU i is

rPij =
BP

N j
log2

{
1 +

PiMijHP
ij

NP
0

BP

Nj

}
(6.2)

where BP is the bandwidth available for each cluster in the P2P network, N j is the

number of active P2P links in the cluster that MU j belongs to (calculated from M),
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Pi is the transmit power at MU i, HP
ij is the channel power gain for the link from MU

i to MU j, and NP
0 is the power spectral density of the noise. Note that the entire

spectrum for the P2P network can be reused in every cluster, which means that the

inter-cluster interference is assumed negligible.

To receive the desired data with an acceptable quality, for any MU i, a minimum

throughput S is required for a period T . Ideally, we need to consider both the data

flow scheduling and the cell association so that the optimum power consumption1 can

be achieved. However, jointly optimizing the amount of data received via the cellular

links and the P2P links is complicated and intractable. In fact, determining the optimal

data flow for the P2P networks is NP-Hard [140].

Without loss of generality, as in [138], we simplify the P2P network to a multi-

hop, chain-like network with a single cluster head. In this case, for each cluster, one

node is selected as the cluster head to receive the “entire” data via the cellular link;

then, a multi-hop chain-like network is formed, with the cluster head as the source, to

relay the information from the BS(s) to the P2P network. Hence, for MU i acting as

a cluster head, the throughput via the cellular link is S, and the cluster head needs to

forward the data to the next hop, so the outgoing P2P traffic has throughput S. The

power consumed by a cluster head is

pi =
PC
r

rCi
S +

P P
t

rPi(i+1)

S, ∀i ∈ N C (6.3)

where NC is the set of cluster heads, and i + 1 denotes the next hop. For any other

MU j in the cluster, there is no data coming directly from the BSs, and the incoming

and outgoing P2P traffic has exactly the same throughput S because of the multi-hop

structure. Obviously, for the leaf nodes in the cluster, that is, the destination nodes in

the multi-hop chain-like network, there are no outgoing P2P transmissions. So,

pj =
P P
r

rP(j−1)j

S +
P P
t

rPj(j+1)

S, ∀j ∈ N −N C (6.4)

1 We focus on the power consumed by the cellular and the WiFi (assuming it is used
for P2P communications) radio interfaces.
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where j − 1 denotes the previous hop of MU j.

To minimize the maximum power consumption among the MUs Pmax, we for-

mulate the following problem:

min
{U}

Pmax (6.5)

s.t. (a) MU power:

pi ≤ Pmax, ∀i ∈ N
(b) Single cluster head:∑

i∈C
sgn

(∑
v∈S

Uvi

)
= 1, ∀ C

Constraint (b) means that there is exactly one cluster head for any cluster C, and sgn(·)
is the sign function.

6.2 Robust User Pairing

In order to solve the proposed optimization problem (6.5), we assume we have

complete and perfect information for the link rates, which are determined by the in-

stantaneous CSI. However, the non-deterministic nature of wireless communications

makes this assumption unrealistic. Typically, CSI is estimated at the receivers by

sending pilot symbols. The transmitter usually obtains CSI via a feedback channel or

from past received signals, exploiting the channel reciprocity in time-division systems.

In practice, estimation error, feedback delay, and other types of uncertainty are in-

evitable. In the conventional approach, the presence of uncertainty in CSI, on which

the objective function crucially depends, is neglected. Consequently, the solutions for

(6.5) may be the best decision according to the imperfect (known) CSI but not the

best choice according to the real CSI. The solutions for the ideal problems can easily

become infeasible or provide suboptimal performance.

To circumvent these problems, we introduce here a robust approach that incor-

porates the presence of uncertainty into the optimization problem (6.5). To abstract

the physical layer details and simplify the analysis, we summarize the impact of all the
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uncertainties into the channel power gain. In this section, we consider two different

scenarios: (1) some statistics are known about the channel uncertainty and (2) the

channel uncertainty lies in some bounded region and no other statistical information

is available.

First, we assume the channel power gain is known within some mean-square

error. This is a well-known method to model the imperfect CSI. In particular, the

channel power gain can be modeled as a known part with a probabilistic additive

component as H = Ĥ + E , where E[H] = Ĥ and E[E ] = 0. Here E[·] denotes the

expectation operation. Intuitively, we view Ĥ as a corrupted measurement and E as a

zero-mean uncertainty with variance σ2. Note that if the random component is assumed

to be Gaussian, the uncertainty is unbounded. This means that errors caused by this

uncertainty might be much larger than the noise variance, although the probability

is small. We might also assume that the noise follows other bounded distributions,

such as a uniform distribution (for example, more typical when modeling quantization

errors). The data rate achieved along each wireless link r̂ is determined by Ĥ, and the

robust user pairing problem can then be formulated as

min
{U}

Pmax (6.6)

s.t. (a) Pr{p̂i ≤ Pmax} ≥ pth, ∀i ∈ N
(b) Single cluster head constraint in (6.5),

where pth is a predefined probability threshold, and

p̂i =

⎧⎪⎨⎪⎩
PC
r

r̂Ci
S +

PP
t

r̂P
i(i+1)

S i ∈ N C

PP
r

r̂P
(j−1)j

S +
PP
t

r̂P
j(j+1)

S i ∈ N −N C
(6.7)

In contrast to the original non-robust version (6.5), the robust version, which

includes the effect of uncertainty, only achieves suboptimal performance but is a more

realistic approach to managing the presence of uncertainty in the channel. A more

realistic assumption is that the statistical properties of the uncertainty are not known

to the system designer. In this case, we assume the channel uncertainty belongs to
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some bounded uncertainty set or region [141], and this is the only knowledge available

for solving the optimization problems. In other words, we know that the errors due to

the uncertainty cannot exceed specified thresholds.

Taking this error model into account, we formulate the optimization problem as

min
{U}

Pmax (6.8)

s.t. (a) p̂i ≤ Pmax, ∀i ∈ N , ∀H ∈ RU

(b) Single cluster head constraint in (6.5),

where p̂i is given in (6.7), and RU is the uncertainty set. The shape and the size

of the uncertainty set RU depends on the physical phenomena that produce it. For

simplicity, we assume that the uncertainty set is convex; however, we can also deal

with a non-convex uncertainty set by taking its convex hull. In this chapter, we focus

on the following two types of uncertainty set:

Polyhedron uncertainty set: For quantization in the channel estimation, RU is

a polyhedron around the estimated channel. In particular, the channel power gain H
satisfies some linear inequalities:

|hij − ĥij| ≤ ep, ∀i, j (6.9)

where hij is the ith row and jth column of H, and ep is the size of the polyhedron.

Ellipsoid uncertainty set: Assume that the uncertainty is bounded by an ellip-

soid. For example, RU might be represented as∑
i,j

|hij − ĥij|2 ≤ ec, (6.10)

where ec is a predetermined error bound based on the system configuration.

For a solution to be feasible, the constraints have to be satisfied for all possible H in

the uncertainty set. The original optimal solution which is based on a fixed H might

not be feasible for the robust problem (6.8).

Both (6.6) and (6.8) are non-convex minimax optimization problems with integer

constraints. In general, they are combinatorially hard to solve in their current forms.
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One way to solve such problems is by transforming the non-convex problems into their

convex equivalents. Powerful numerical algorithms, such as sub-gradient methods and

interior-point methods, can then be applied to search the solution efficiently.

In [138], a scheme called Ordered Best-K w/ Coop is proposed for solving (6.5),

where K is the number of clusters. In this approach, we first select the cluster head

for the smallest cluster. The node that has the highest data rate gets selected as

the cluster head and also gets paired with the BS that provides this highest data

rate. Then, we apply cooperative communications to increase the data rate and hence

reduce the power consumption at the bottleneck node, i.e., the node with the largest

pi. It has been shown that combining user pairing and cooperation can achieve almost

the optimal performance that is obtained via an exhaustive search. Therefore, due

to its significant performance gain and low complexity, Ordered Best-K w/ Coop is a

promising technique to minimize the maximum power consumption at the MUs. Here,

we show that Ordered Best-K w/ Coop, which is not designed for solving (6.6) and

(6.8), is also robust to uncertainty in the channel measurements.

We consider a small system, where there are (a) two base stations (one marco

BS with three antennas and one micro BS with a single antenna), and (b) four mo-

bile users comprising two clusters, one with three nodes and another with a single

node. Frequency-flat Rayleigh channels are assumed in all simulations to capture the

effect of fading and path loss. The results are averaged over 104 independent channel

realizations.

A rich body of literature has been dedicated to measuring the power consump-

tion of cellular and WiFi interfaces for mobile users. Although a variety of power

consumption models have been proposed and studied, one general conclusion is that,

in spite of comparable power consumption, WiFi is much more power efficient in send-

ing/receiving the same amount of data because of its higher data rates. The experi-

mental measurements from [142–144] are used in the following simulations (shown in

Table 6.1).

First, we assume that the estimated channel power gain is corrupted by additive
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Power consumption of cellular reception PC
r 700 mW

Power consumption of WiFi reception P P
r 800 mW

Power consumption of WiFi transmission P P
t 1100 mW

Streaming rate S 1 Mbps
Average cellular data rate rC 1-5 Mbps
Average WiFi data rate rP 20 Mbps

Table 6.1: Simulation Parameters

Gaussian noise with zero mean and variance σ2. In Fig. 6.2, through simulations,

we show the impact of this uncertainty on the performance of the algorithms that

are designed assuming perfect information. With increasing noise variance (i.e., the

amount of uncertainty), the performance of both schemes degrade. Note that the

approach that is optimal with perfect information becomes worse than Ordered Best-

K w/ Coop when the noise power exceeds a certain level. This means that Ordered

Best-K w/ Coop is more robust to uncertainty in the channel measurements, at a cost

of suboptimal performance when the noise is negligible. According to Fig. 6.2, we

can also see that the maximum power consumption decreases as the cellular data rate

rC increases, as expected. In general, most of the energy consumed is due to the low

cellular data rate, and the user which acts as the cluster head will consume more power

than the other users. When rC increases from 1 Mbps to 5 Mbps, the maximum power

consumption is reduced by 25%.

Figs. 6.3 and 6.4 show the maximum power consumption versus the size of the

uncertainty set. Fig. 6.3 assumes a polyhedron uncertainty set defined by (6.9), while

Fig. 6.4 assumes an ellipsoid uncertainty set defined by (6.10). The estimated channel

is assumed to be uniformly distributed over the uncertainty set. We observe that the

impact of the uncertainty is less significant compared with Fig. 6.2, as expected. If the

uncertainty is assumed to be Gaussian, the uncertainty is unbounded and it is possible

that the errors might be much larger than the noise variance, although the probability

is small. It has been shown that a Gaussian random variable has the largest entropy

(uncertainty) amongst all random variables of equal variance.
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Figure 6.2: Performance of user pairing with Gaussian uncertainty.
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Figure 6.3: Performance of user pairing with a polyhedron uncertainty set.
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Figure 6.4: Performance of user pairing with an ellipsoid uncertainty set.

6.3 Summary

In this chapter, we proposed a user pairing algorithm with cooperation and

P2P streaming that is robust under imperfect channel knowledge. We discussed both

stochastic and worst-case robust optimization frameworks for the user pairing prob-

lems, and evaluated the robustness of the proposed algorithm for different types of

uncertainty models. The results illustrate that the proposed robust algorithm can pro-

vide a guaranteed level of performance even if the measurements of the channel power

gain are corrupted.

Investigating the analytical solutions of the robust optimization problems (6.6)

and (6.8) is critical for future work. Instead of assuming a simple P2P network model,

analyzing realistic P2P network models in practical HetNets is another challenging

topic. In addition to the uncertainty of channel characteristics, uncertainties caused

by other factors also need to be taken into account. For example, the number of MUs

in the network and the network topology are also varying.
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Chapter 7

CONTRIBUTIONS AND FUTURE WORK

This chapter summarizes the main contributions of the dissertation and dis-

cusses potential future research. Section 7.1 summarizes our work and gives some

concluding remarks. Section 7.2 discusses a variety of directions for future research

relating to our viewpoint on wireless networks.

7.1 Contributions

The insatiable demand from users of mobile wireless networks is driving wireless

technologies towards their limits. As we introduced in Chapter 1, different directions

for improving network performance have to be investigated. In this dissertation, we

provided theoretical frameworks and practical insights on overhead, uncertainty and

interference.

Practical Performance Analyses with Considerations of Overhead

The impact of overhead on practical network performance is usually neglected.

However, it is unfair to compare different schemes if we ignore the overhead part. In

this dissertation, we analyzed overhead-aware designs for different systems, including

cooperative networks and downlink MU-MIMO. In particular, in Section 2.2, we showed

the optimality of a low-overhead design for a single-user, two-hop, cooperative network.

If central control and inter-node communications are not allowed, theM -group scheme

discussed in 2.2 is the optimal distributed STBC strategy. In Section 2.4 and Chapter

4, we presented detailed performance analyses for both centralized and decentralized

relay selection schemes in cooperative networks. The entire time frame, including

the channel estimation, relay selection, and data transmission, has been included in
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our analysis. Novel comparisons between centralized and decentralized schemes are

provided, showing that the centralized scheme might outperform the decentralized

scheme if the amount of overhead is insignificant. In Section 5.2, the sum rate and

net capacity performance of different quantization techniques have been studied. By

taking the feedback overhead into account, we obtained criterion for determining which

quantization techniques should be implemented in practice.

Rate Distortion Approach for Overhead-Performance Tradeoff

Rate distortion theory provides a useful analysis tool for investigating the re-

lationship between the amount of overhead and network performance. Though the

original purpose of rate distortion theory is to find a lower bound on lossy source

coding problems, the concepts of distortion and mutual information can be extended

to network performance measures and the quantity of overhead, respectively. In this

dissertation, by exploiting this information-theoretic framework, we demonstrated the

overhead-performance tradeoff for both cooperative networks and MU-MIMO systems.

In Section 2.3, we quantified the required feedback bits for effective relay selection.

Asymptotic properties and approximations are also discussed and verified by the sim-

ulation results. In Section 5.3, the required feedback bits for characterizing CSI and

canceling inter-user interference is represented as a function of tolerable rate loss. The

proposed theoretical bounds can help in designing practical systems where the impact

of overhead cannot be neglected.

Robust Designs under Channel Uncertainty

Control, coordination, and optimization across the entire network are typically

required for achieving the performance limits. While such system-wide operations can

be performed with complete and perfect information for all the required parameters, the

non-deterministic nature of wireless communications and networks makes such assump-

tions unrealistic. In practice, centralized control is more likely to obtain incomplete

or erroneous information (due to the inherent delay between any centralized controller
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and individual radio units, for instance) and will have to make imperfect decisions.

Optimizing the network performance without consideration of uncertainty typically

yields significant performance degradation. In Chapter 6, we considered robust user

pairing with cooperative communication and peer-to-peer streaming. Specifically, we

showed that a solution that is optimal with perfect information will become worse

than a heuristic solution when the noise exceeds a threshold; this demonstrates that

our proposed solution is more robust to uncertainty in the channel measurements.

Performance Analyses for Interference-Limited Networks

Due to the broadcast nature of wireless medium, it is inevitable that multi-

ple users will communicate over a shared wireless channel. If the power of each si-

multaneous transmission is increased, the signal and interference power will increase

proportionally while the noise power will usually remain constant. Thus, at some

point thermal noise becomes approximately negligible and any further increases in

transmission power provides essentially no benefit. The design and analysis of such

interference-limited configurations, even in their simplest forms, are different and chal-

lenging problems. In Chapter 3, we investigated a large-scale Poisson network with

multiple ad hoc users. The outage performance for both non-cooperative and coopera-

tive schemes was studied. We not only provided closed-form performance bounds and

approximations, but also derived the criterion for determining which scheme should be

applied in practice. In Section 5.2, an infrastructure network with multiple concurrent

transmissions was investigated. The impact of residual interference, due to the finite

rate feedback channel, was included in our analysis.

7.2 Future Works

The work we presented here constitutes only a small portion of the open prob-

lems. Future research will look beyond the simplified problems considered in this

dissertation to more practical and complicate systems. In particular, the following

topics are of interest:
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Overhead-Performance Tradeoff for Multi-Hop Networks

In Chapters 2 and 5, we investigated the overhead-performance tradeoff for

two-hop cooperative networks and single-hop downlink channels. Many applications,

including sensor networks, mobile ad hoc networks, and military tactical networks,

require reliable and efficient multi-hop transmissions due to energy and distance lim-

itations. Extending our existing work to multi-hop networks is an interesting and

challenging task. In Chapter 4, we investigated the overhead-aware multi-hop network

by applying the results in Chapter 2. However, the fundamental tradeoff for multi-hop

networks is still unsolved.

Overhead Models

In this dissertation, the overhead was typically quantified in terms of time. The

models adopted in this dissertation usually assumed that the system is static in a

limited period of time. The time occupied by the “non-data” parts, including channel

estimation, feedback, selection, and so on, was considered as overhead. However, there

are other resources such as frequency and energy consumption which should also be

included in the overhead model. The analytical results in this dissertation might differ

with the results for other, more complicated, overhead models.

Systematic Robust Designs

In Chapter 6, we provided a heuristic approach and showed that this approach

is actually robust to channel uncertainty. However, the proposed robust optimization

problems have not been analytically solved. The analytical solutions will help in de-

signing practical and systematic algorithms which guarantee reasonable performance

even if the uncertainties are involved. Unlike the heuristic approaches which cannot

be generalized, the systematic robust designs will be applicable to different scenarios

and are of great practical interest.

149



Joint Optimization of Overhead, Uncertainty, and Interference

Most of the work presented in this dissertation focuses on a particular aspect

of real systems. For example, we ignored channel uncertainty when we investigated

the overhead-performance tradeoff and interference-limited networks. Similarly, the

impact of overhead on the performance was not included when we discussed robust

designs. However, all of these performance-limiting factors are related. In general, a

non-robust interference-limited system requires very accurate information to guarantee

the performance, and thereby incurs a significant amount of overhead. If we can jointly

optimize the entire system with respect to overhead, uncertainty, and interference, the

actual performance might be boosted.
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