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Abstract

Variational methods for boundary integral equations deal with the weak for-
mulations of boundary integral equations. Their numerical discretizations are
known as the boundary element methods. The later has become one of the most
popular numerical schemes in recent years. In this expository paper, we discuss
some of the essential features of the methods, their intimate relations with the
variational formulations of the corresponding partial differential equations and
recent developments with respect to applications in domain composition from
both mathematical and numerical points of view.

1 Variational Formulations

for Boundary Integral Equations

It is well known that the reduction of boundary value problems to integral equations
is by no means a unique process. In spite of many formulations, there are two kinds
of boundary integral equations, the first and the second kind boundary integral equa-
tions either from the direct or indirect approach. The variational formulations of
boundary integral equations in general may depend upon the types of boundary in-
tegral equations under consideration. In the following we shall systematically discuss
these formulations through simple model problems and present some of the basic the-
orems and indicate typical ways for obtaining these results which may be employed
in general for the variational methods concerning boundary integral equations.
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1.1 Boundary integral equations of the first kind

We begin with the integral equations of the first kind. Our formulation was moti-
vated from the so-called Fichera method ([13]). It is a general method of single–layer
potential introduced by Fichera and his co-workers for treating Dirichlet problems for
a large class of elliptic equations of higher order with variable coefficients in the plane
(see [4], [5], [23], [6], [1]). To illustrate the idea, and recall some of the basics for the
method, let us consider the simplest model problem for the Laplacian in IR2

∆u = 0 in Ω, u|Γ = f on Γ. (1)

Here Ω is a bounded domain with smooth boundary Γ, and f is the given boundary
data satisfying certain regularity condition to be specified. We seek a solution of (1)
in the form of single-layer potential

u(x) =

∫
Γ

γ(x, y)σ(y) dsy , x ∈ Ω (2)

where

γ(x, y) := − 1

2π
log |x− y| (3)

is the fundamental solution for the Laplace equation −∆u = 0 and σ is the unknown
density function. Then the boundary condition in (1) leads to the integral equation
of the first kind for σ

V σ = f on Γ, (4)

where V is the boundary integral operator defined by

V σ(x) :=

∫
Γ

γ(x, y)σ(y) dsy , x ∈ Γ. (5)

For smooth f , say f ∈ C1,α(Γ), one may differentiate (4) with respect to arc length
along Γ and obtain the integral equation∫

Γ

∂γ

∂sx

(x, y)σ(y) dsy =
d

dsx

f(x) on Γ. (6)

This is a singular integral equation with Cauchy-type kernel. Since this is of the first
kind, it has index zero in the terminology of [22]. Hence the Fredholm alternative
holds. This singular equation then forms the theoretical basis for Fichera’s method.
However, not only are Cauchy kernels hard to handle numerically, but they produce
certain non-uniqueness which must be accounted for. This leads to the following
modified Fichera’s method. Instead of (2), we now use the representation

u(x) =

∫
Γ

γ(x, y)σ(y)dsy + ω , x ∈ Ω, (7)
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by adding a unknown constant ω ∈ IR, and consider the modified system of boundary
integral equations

V σ + ω = f on Γ,

∫
Γ

σ ds = A, (8)

for any given constant A ∈ IR. We note that (6) and the first equation of (8) are
equivalent and ω is like an integrating constant . The second equation in (8) is a
normalization condition. For the interior problem as the present one, the constant
A can be chosen arbitrarily, while for the exterior problem , it is usually determined
by the condition at infinity. The following classical theorem in the Hölder space has
been established in [13].

Theorem 1.1.1 Given (f, A) ∈ C1,α(Γ) × IR, the modified system (8) has a unique
pair of solutions (σ, ω) ∈ C0,α(Γ)× IR.

Now we consider the weak formulation for (8). To this end, for any s ∈ IR, let
Hs(Γ) denote the trace space. By computing the Fourier symbol of the boundary
integral operator V one can show that V = ψdo−1 is a pseudo-differential operator of
order −1. Hence for smooth Γ, we have the continuity property of V , i.e., the mapping

V = ψdo−1 : Hs−1/2(Γ) → Hs+1/2(Γ) (9)

is continuous for any s ∈ IR. For the weak formulation, we introduce the boundary
sesquilinear form:

〈λ, V σ̄〉 :=

∫
Γ

λ(x)V σ̄(x) dsx, ∀λ ∈ H−1/2(Γ), (10)

where 〈·, ·〉 denotes the L2-duality pairing between H−1/2(Γ) and H1/2(Γ). The
variational formulation of (8) now reads: For given (f, A) ∈ H1/2(Γ) × IR, find
(σ, ω) ∈ H−1/2(Γ)× IR such that

〈λ, V σ̄〉+ ω〈λ, 1〉 = 〈λ, f̄〉, ∀λ ∈ H−1/2(Γ),
〈σ, 1〉 = A.

(11)

We remark that the normalization condition in (11) may also be rewritten in the form

κ 〈σ, 1〉 = κ A, ∀κ ∈ IR

with the test function (constant) κ ∈ IR. Alternatively, one may replace (11) by the
variational equation

B((σ, ω), (λ, κ)) = `((λ, κ)), ∀(λ, κ)) ∈ H−1/2(Γ)× IR, (12)

where the sesquilinear form B(·, ·) is defined by

B((σ, ω), λ, κ)) := 〈λ, V σ̄〉+ ω〈λ, 1〉+ κ〈σ, 1〉,
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while `(·) is the continuous linear functional defined by

`((λ, κ)) := 〈λ, f̄〉+ κ A.

Here the product space, H−1/2(Γ)×IR, is the energy space. Before we can discuss the
existence of weak solutions, we need a kind of G̊arding’s inequality for the sesquilinear
form B(·, ·) on the energy space in the same manner as for weak solution to the partial
differential equations. In general, it can be shown that B is notH−1/2(Γ)×IR - elliptic,
and we can not apply the Lax-Milgram lemma straightforward.

In particular, we observe that for any σ ∈ H−1/2(Γ), let

v(x) :=

∫
Γ

γ(x, y)σ(y)dsy, x ∈ IR2 \ Γ.

Then from the jump relations across Γ of the single-layer potential, we see that

V σ = v
∣∣
Γ
∈ H1/2(Γ), σ = [

∂u

∂n
]
∣∣
Γ
∈ H−1/2(Γ), 0 = [v]

∣∣
Γ
∈ H1/2(Γ).

Consequently we have the identity from the generalized first Green formulae,

〈σ, V σ̄〉 =

∫
Ω

|∇ v|2dx+

∫
Ωc

|∇ v|2dx =: aΩ(v, v) + aΩc(v, v). (13)

The right hand side of (13) contains two bilinear forms for the corresponding partial
differential operator P = −∆, one in Ω and the other one in the exterior Ωc. It is
this relation in some sense that connects intimately the G̊arding inequality of V with
that of P . We see that

aΩ(v, v) = ||v||2H1(Ω) − (Cv, v)H1(Ω),

where C is a compact operator from H1(Ω) into itself. Then again from the gen-
eralized first Green formula in Ω, the mapping τ : H1(Ω, P ) → H−1/2(Γ) with
v|Ω 7→ τ v = σ is continuous (Here H1(Ω, P ) := {v ∈ H1(Ω)|Pv ∈ L2(Ω)} = H1(Ω),
since Pv = 0). This takes care of the contribution to the G̊arding inequality for V
from the interior domain Ω. We would expect, of course, to have the similar results for
the exterior domain Ωc. However, there is a technical difficulty, since v in general is
not in L2(Ωc). In order to apply similar arguments to aΩc , following [3], we introduce
a fixed C∞

0 (IR2) cut-off function χ with χ|Ω̄ = 1 and dist({x|χ(x) 6= 1}, Ω̄) =: d0 > 0,
since the generalized first Green formula for Ωc is valid for vc = χv having compact
support. Then with this modification, (13) becomes

〈σ, V σ̄〉 = aΩ(v, v) + aΩc(vc, vc) +

∫
Ωc

(Pvc)v̄c dx. (14)

It is easy to see that the last term in (14) defines a compact form on H1(Ωc∩ suppχ).
The following theorem has been proved in [17], [7].
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Theorem 1.1.2 (a) There holds the G̊arging inequality

ReB((σ, ω), (σ, ω)) +

{
Re < (σ, CV σ) > +c1|ω|2

}
≥ c0

(
||σ||2H−1/2(Γ) + |ω|2

)
,

for (σ, ω) ∈ H−1/2(Γ) × IR, where CV : H−1/2(Γ) → H1/2(Γ) is a compact operator,
c0 > 0 and c1 ≥ 0 are constants. (b) The corresponding homogeneous variational
equation of (12) has only the trivial solution. (c) As a consequence of (a) and (b),
(12) has a unique pair of solutions (σ, ω) ∈ H−1/2(Γ)× IR.

To extend the single-layer potential approach to the Neumann problem, we con-
sider again the model problem in IR2

−∆u = 0 in Ω,
∂u

∂n
= g on Γ with

∫
Γ

g ds = 0. (15)

Following [21], we seek a solution in the form

u(x) = −
∫

Γ

∂

∂ny

γ(x, y)µ(y)dsy, x ∈ Ω. (16)

Then the Neumann condition leads to the boundary integral equation of the first kind
for the unknown density function µ

Wµ = g on Γ. (17)

Here W is the so-called hypersingular boundary integral operator defined by

Wµ(x) := − ∂

∂nx

∫
Γ

∂

∂ny

γ(x, y)µ(y)dsy. (18)

There is a simple relation between the two boundary integral operators V and W in
the present case, namely,

− d

ds
V
d

ds
= W. (19)

In view of (19), we deduce immediately from Theorem 1.2 the following.

Theorem 1.1.3 Given (g, A1) ∈ C0,α(Γ)× IR with
∫

Γ
g ds = 0, the system of bound-

ary integral equations

Wµ+ ω1 = g on Γ,

∫
Γ

µ ds = A1 (20)

has a unique pair of solutions (µ, ω1) ∈ C1,α(Γ)× IR.
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We remark that the boundary integral equation in (20) is equivalent to (17), because
of the assumption

∫
Γ
g ds = 0.

Now we turn to the weak formulation of (20). In contrast to V , W is now a
pseudo-differential operator of order +1. Hence for smooth Γ, the mapping

W = ψdo+1 : Hs+1/2(Γ) → Hs−1/2(Γ) (21)

is continuous. For µ ∈ H1/2(Γ), and ν ∈ H1/2(Γ), let

〈Wµ, ν̄〉 :=

∫
Γ

Wµ(x)ν̄(x) dsx (22)

be the sesquilinear form of W . We then formulate (20) as follows: For given (g, A1) ∈
H−1/2(Γ)× IR, find (µ, ω1) ∈ H1/2(Γ)× IR such that

B1((µ, ω1), (ν, κ)) = `((ν, κ)). (23)

Here the sesquilinear form B1(·, ·) is defined by

B1((µ, ω1), (ν, κ)) := 〈Wµ, ν̄〉+ ω1〈1, ν̄〉+ κ〈1, µ〉

and
`((ν, κ)) := 〈g, ν̄〉+ κA1.

Clearly the existence of weak solutions to (23) can now be easily established from
Theorem 1.2 with the help of (19). However, in order to illustrate our general unified
approach in the absence of (19), we again indicate, in the same manner as for V ,
some of the typical properties of W which may be shared by the variational method
for boundary integral equations of the same type .

Observe that for any µ ∈ H1/2(Γ), if

w(x) := −
∫

Γ

∂

∂ny

γ(x, y)µ(y)ds, x ∈ IR2 \ Γ.

then we have similar jump relations across Γ of the double-layer potential :

Wµ =
∂w

∂n

∣∣
Γ
∈ H−1/2(Γ), 0 = [

∂w

∂n
]
∣∣
Γ
∈ H−1/2(Γ), µ = [w]

∣∣
Γ
∈ H1/2(Γ).

Again from the generalized first Green formulae we also have the identity

〈Wµ, µ̄〉 = aΩ(w,w) + aΩc(w,w). (24)

Hence with the help of trace theorem, the following theorem can be established by
using similar arguments as for (12).
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Theorem 1.1.4 (a) There holds the G̊arging inequality

ReB1((µ, ω1), (µ, ω1)) +

{
Re < CWµ, µ > +c1|ω1|2

}
≥ c0

(
||µ||2H1/2(Γ) + |ω1|2

)
,

for (µ, ω1) ∈ H1/2(Γ) × IR, where CW : H1/2(Γ) → H−1/2(Γ) is a compact operator,
c0 > 0 and c1 ≥ 0 are constants. (b) The corresponding homogeneous variational
equation of (23) has only the trivial solution. (c) As a consequence of (a) and (b),
(23) has a unique pair of solutions (µ, ω1) ∈ H1/2(Γ)× IR.

Up to now we have considered variational formulations of boundary integral equa-
tions of the first kind with boundary integral operators of both negative and positive
orders. For boundary integral equations of second kind, we generally deal with bound-
ary integral operators of oder zero (that is, they map function spaces into themselves).
Hence in the conventional approach, the weak formulations are based on the assump-
tion that both solution and test function spaces are L2. However, if one is interested
in the L2- duality pairing formulation when the solution space is different from L2,
then the test function space and the solution space can not be the same. In the
following, we will show that in case of solution spaces different from L2, with the help
of the boundary integral operators V and W (or similar operators), one may still
use the L2-duality pairing formulations but with the same test and solution function
spaces in the same manner as for the first kind integral equations.

1.2 Boundary integral equations of the second kind

We use the same model problem (1) for the Dirichlet problem. If we seek a solution
in the form of a double-layer potential,

u(x) = −
∫

Γ

∂

∂ny

γ(x, y)µ(y) dsy, x ∈ Ω, (25)

then we arrive at the integral equation of the second kind for µ

(
1

2
I −K)µ = f on Γ. (26)

Here K is the double-layer boundary integral operator defined by

Kµ(x) :=

∫
Γ

∂

∂ny

γ(x, y)µ(y) dsy, x ∈ Γ. (27)

For smooth Γ, K is a pseudo-differential operator of order −1 and the mapping

1

2
I −K = ψdo0 : Hs+1/2(Γ) → Hs+1/2(Γ) (28)
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is continuous for any s ∈ IR with a compact operator K on Hs+1/2(Γ). Hence for
given f ∈ H1/2(Γ), our solution space of µ should be H1/2(Γ). One weak formulation
of (26) based on the L2-duality pairing between H−1/2(Γ) and H1/2(Γ) may be as
follows. Given f ∈ H1/2(Γ), find µ ∈ H1/2(Γ) such that

〈Wν, (
1

2
I −K)µ〉 = 〈Wν, f̄〉, ∀ν ∈ H1/2(Γ). (29)

From the mapping property (21) of W , we see that indeed the formulation (29) makes
sense. In fact, from the generalized first Green formula for the interior domain Ω, it
is easy to verify that the sesquilinear form satisfies the identity

〈Wµ, (
1

2
I −K)µ〉 = aΩ(u, u)

with u represented by (25) for any µ ∈ H1/2(Γ). Hence it is easy to show that the
sesquilinear form satisfies a G̊arding inequality by using previous arguments, since
K is assumed to be compact. Hence for the existence of solutions, we need only to
examine the uniqueness problem.

It is not difficulty to see that the homogeneous equation of (29) has non-trivial
solutions, µ = constants, although the corresponding homogeneous equation of the
original equation (26) has only the trivial solution. As usual, we may augment (29)
by adding a normalization condition and consider a modified system such as

〈Wν, (
1

2
I −K)µ〉+ ω2〈ν, 1〉 = 〈Wν, f̄〉, ∀ν ∈ H1/2(Γ)∫

Γ

µ ds = 0,
(30)

where ω2 ∈ IR is an unknown constant. We note that the variational equation (29)
and that of (30) are equivalent. We now summarize the main results in the following
theorem.

Theorem 1.2.1 (a) For given f ∈ H1/2(Γ), the system (30) has a unique pair of
solutions (µ, ω2) ∈ H1/2(Γ)× IR. (b) The unique solution of (26) is of the form

µ = µ0 − c,

where µ0 is the unique solution of (30) and c is the constant defined by

c = − 1

m(Γ)

∫
Γ

(f +Kµ0)ds, m(Γ) =

∫
Γ

ds.

We remark that the constant c in the theorem plays the same role as an integrating
constant in the Fichera method, since one may rewrite the variational equation of
(30) in the form

〈ν,W (
1

2
I −K)µ〉+ ω2〈ν, 1〉 = 〈ν,W f̄〉, ∀ν ∈ H1/2(Γ),
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and both f and f + c lead to the same right hand side of (29) and (30).
We now turn our attention to the Neumann problem (15). We seek a solution u

in the form of a single-layer potential

u(x) =

∫
Γ

γ(x, y)σ(y) dsy , x ∈ Ω. (31)

This leads to the second kind boundary integral equation for the density function σ

(
1

2
I +K ′)σ = g on Γ, (32)

where the boundary integral operator K ′ is the transpose of K defined by

K ′σ(x) :=

∫
Γ

∂

∂nx

γ(x, y)σ(y) dsy, x ∈ Γ. (33)

Again for smooth Γ, K ′ is a pseudo-differential operator of order −1 and we have the
mapping property that

1

2
I +K ′ = ψdo0 : Hs−1/2(Γ) → Hs−1/2(Γ) (34)

is continuous for any s ∈ IR. In an analog to (29), given g ∈ H−1/2(Γ) with
∫

Γ
g ds = 0,

we say that σ ∈ H−1/2(Γ) is a weak solution of (32) if it satisfies the variational
equation

〈(1
2
I +K ′)σ, V λ〉 = 〈g, V λ〉, ∀λ ∈ H−1/2(Γ). (35)

Again, the boundary sesquilinear form in (35) is related to the u in (31) through

〈(1
2
I +K ′)σ, V σ〉 = aΩ(u, u). (36)

We notice that the solution of (32) is not unique and we must modify the varia-
tional equation (35) in order to take into account of the non-uniqueness. To avoid of
repeating the arguments, we collect the results in the following.

Theorem 1.2.2 For given g ∈ H−1/2(Γ) satisfying
∫

Γ
g ds = 0, the variational equa-

tion (35) has a unique solution σ ∈ H−1/2(Γ) subject to the constrain∫
Γ

σds = 0. (37)

The system of equations (35) and (37) is equivalent to the modified system consisting
of the variational equation

〈(1
2
I +K ′)σ, V λ〉+ ω3〈1, λ̄〉 = 〈g, V λ〉, ∀λ ∈ H−1/2(Γ) (38)

together with (37), which has a unique solution pair (σ, ω3) ∈ H−1/2(Γ)× IR.

We remark that the unique solution of (35) and (37) (or (38) and (37)) is a solution
of (32) and the corresponding u given by (31) will be a solution of the Neumann
problem (2), although the latter is unique up to a constant.
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2 Domain Decomposition and

The Steklov-Poincaré Operators

In recent years, because of the advances of multiprocessor computer architecture, the
method of domain decomposition has become a particularly attractive technique of
solving large scale boundary value problems. One of the most important features
in domain decomposition approach is to compute interface values between subdo-
mains efficiently through appropriate interface operators from both theoretical and
numerical approximation points of view.

There is a natural connection between these interface operators, which are gen-
erally known as the Steklov-Poincaré operators, and suitable boundary integral op-
erators employed in boundary element methods. In fact, one can show that these
Steklov-Poincaré operators can be expressed explicitly by boundary integral opera-
tors and the corresponding integral equations are readily treated by boundary element
methods in parallel processing. Hence it is in scientific computing that, we believe,
the boundary integral methods will play a most significant role in the future.

2.1 Basic concepts in domain decomposition

We now use the same simple model problem (1) to illustrate the basic idea of the
method of domain decomposition. For ease of reading, we recast the problem as
follows:

∆u = 0 in Ω, u|Γ = f on Γ. (39)

The method begins with partitioning Ω into subdomains and the goal here is to
solve the problem (39) only on the subdomains. For simplicity, suppose that Ω is
partitioned into two subdomains Ω1 and Ω2 by an interface Γ12. We assume that Γ12

is at least continuously differentiable and divides Ω in such a way that the boundaries
Γk = ∂Ωk, k = 1, 2 of the resulting subdomains are Lipschitz. For example, Γ12 might
be an open line segment partitioning Ω. If we denote by uk = u|Ωk

, k = 1, 2, the
restrictions of u on Ωk, then the subproblems are defined by

∆uk = 0 in Ωk,
uk = µ on Γ12 and uk = f on Γk ∩ Γ, k = 1, 2.

(40)

Here µ = u|Γ12 is unknown. However, for any given µ, the subproblems can be solved
in parallel, and the normal derivatives of the solutions, ∂uk

∂nk
, k = 1, 2 generally will

not satisfy the compatibility condition,

∂u1

∂n1

= −∂u2

∂n2

on Γ12 (41)

unless µ = u|Γ12 exactly (recall that all the normals nk are exterior with respect to the
domain Ωk). In other words, to solve (31) by the method of domain decomposition
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reduces to seek the Dirichlet data µ on the interface Γ12 such that, when (40) is
solved, the normal derivatives ∂uk

∂nk
of the resulting solutions have the same values on

Γ12, that is, ∂uk

∂nk
satisfy (41). Equivalently, this amounts to solving µ from (41), since

the solutions of (40) and their normal derivatives depend on µ as well as on f . Now
if we separate the dependence of uk according to

uk = uk(µ) + uk(f), (42)

then we may rewrite (41) in the form

(S1 + S2)µ = g on Γ12. (43)

In equation (43), g := −
(

∂u1(f)
∂n1

+ ∂u2(f)
∂n2

) ∣∣∣∣
Γ12

is a known function in terms of the

normal derivatives of uk(f) on Γ12, and we have introduced the operator Sk,

Sk : µ −→ ∂uk

∂nk

(µ), (44)

which is referred to as the Steklov–Poincaré operator, a Dirichlet–Neumann map. As
will be seen, Sk can be explicitly represented in terms of boundary integral operators.

We remark that the technique of reducing the original problem in Ω to the so-
lutions of decoupled problems in subdomains Ωk and to the equation on Γ12 for the
interface unknown is usually called the domain decomposition or substructuring. Of
central importance in domain decomposition is how to solve (43) efficiently. In prac-
tice, equation (43) is solved by some kind of iterative scheme and in each iteration,
this amounts to solving the subproblems (40) with the updating data on the interface.
In what follows, we shall refer to (43) and the alike as the Steklov–Poincaré operator
equation. In the next section, we will discuss the weak formulation of the Steklov–
Poincaré operator equation, and in particular, we will represent the Steklov–Poincaré
operators by using the boundary integral operators introduced in the previous sec-
tions.

2.2 A variational formulation of the Steklov-Poincaré oper-
ator equation

To avoid being too special to lose the generality, we first modify our previous setting
from 2 subdomains to N subdomains. To be more precise, let

Ω =
N⋃

i=1

Ωi (45)

be a given domain decomposition of Ω into N non–overlapping subdomains Ωi with
Lipschitz boundaries Γi = ∂Ωi. We denote Γij = Γi ∩ Γj, i, j = 1, . . . N , the interface
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boundaries. The skeleton ΓS of the domain decomposition is defined by

ΓS :=
N⋃

i=1

Γi =
( N⋃

i,j=1

Γij

) ⋃
Γ. (46)

As before, the restriction of u to Γi is denoted by ui = u|Ωi
, i = 1 · · ·N . Then

the original boundary value problem (39) for u is equivalent to the collection of
transmission problems for the restriction ui defined by

∆ui = 0 in Ωi, ui = f on Γi ∩ Γ (47)

together with the transmission conditions

ui = uj,
∂ui

∂ni

= −∂uj

∂nj

on Γij. (48)

We note that the second transmission condition in (48) corresponding to the com-
patibility condition (41). Before we formulate precisely the subproblems (cf.(40)),
and derive the corresponding Steklov–Poincaré operator equations (cf.(43)), we need
some functions. In what follows, let H1/2(ΓS) be the trace space of H1(Ω) defined by

H1/2(ΓS) :=

{
µ = u|ΓS

∣∣∣∣u ∈ H1(Ω)

}
equipped with the norm

||µ||H1/2(ΓS) :=

{
N∑

i=1

||u|Γi
||2H1/2(Γi)

}1/2

. (49)

Now let µ ∈ H1/2(ΓS) with µ = f on Γ. We consider the local boundary value
problems for vi ∈ H1(Ωi), i = 1, · · ·N defined by

∆vi = 0 in Ωi, vi|Γi
= µ on Γi (50)

and define the Steklov-Poincaré operators Si by

Siµ :=
∂vi

∂ni

on Γi. (51)

Clearly, problems (50) will be the corresponding subproblems, if we require that µ
satisfies the compatibility conditions

(Si + Sj)µ = 0 on Γij. (52)

In this case, it is easy to see from the definition of µ that vi ≡ ui, i = 1, · · ·N . From
now on, problems (50) with vi replaced by ui are referred to the subproblems for the
restrictions ui, and (51), the corresponding Steklov–Poincaré operator equations.
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We are now in a position to formulate the variational equations for (52). For given

f ∈ H1/2(Γ), let f̃ ∈ H1/2(ΓS) be an arbitrary but fixed extension of f satisfying

f̃ |Γ = f on Γ and let

H
1/2
Γ (ΓS) :=

{
ν ∈ H1/2(ΓS)

∣∣∣∣ ν|Γ = 0

}
. (53)

Then we have the variational formulation of (52): Find µ ∈ H1/2(ΓS) such that

µ− f̃ ∈ H1/2
Γ (ΓS) and

N∑
i=1

∫
Γi

Siµ · ν ds = 0, ∀ ν ∈ H1/2
Γ (ΓS). (54)

An alternative formulation is to find µ̃ ∈ H1/2
Γ (ΓS) satisfying the variational equation

N∑
i=1

∫
Γi

Siµ̃ · ν ds, = −
N∑

i=1

∫
Γi

Sif̃ · ν ds, ∀ ν ∈ H1/2
Γ (ΓS). (55)

In order to express the Steklov-Poincaré operator in terms of boundary integral
operators, we now take a dètouŕ and consider the reduction of a typical subproblem
for ui to boundary integral equations. We will use the direct approach based on the
Green representation formula for the solution

ui(x) =

∫
Γi

γ(x, y)σi(y)dsy −
∫

Γi

∂γ

∂ny

(x, y)µ(y)dsy, x ∈ Ωi (56)

with µ := ui|Γi
and σi := ∂ui

∂n

∣∣∣∣
Γi

. Here and in the sequel we adopt the same conven-

tions and notations in Section 1 except with a subscript i when necessary in order
to emphasize on the dependence of the subdomains. By the standard arguments, we
arrive at the following two boundary integral equations for the Cauchy data µ and σi

µ = Viσi +

(
1

2
I −Ki

)
µ on Γi, (57)

σi =

(
1

2
I +K ′

i

)
σi +Wiµ on Γi. (58)

We remark that for the Lipschitz boundary Γi, the mapping properties of the bound-
ary integral operators Vi,Wi, (

1
2
I −Ki) and (1

2
I + K ′

i) from (9), (21), (28) and (34)
remain valid for |s| ≤ 1/2 (see, e.g. [2]). Without loss of generality, we may assume
that Vi is H−1/2(Γi)–elliptic, that is, there exists a constant c > 0 such that

〈σi, Viσi〉 ≥ c||σi||2H−1/2(Γi)
,∀σi ∈ H−1/2(Γi) (59)
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(see, e.g. [17],[7], if diaΩi < 1). Hence from (57), we obtain

σi = V −1
i

(
1

2
I +Ki

)
µ,

and substituting it into (58) yields the expression

σi = Siµ,

where Si = ψdo+1 is the local Steklov-Poincaré operator explicitly defined by

Siµ :=

(
1

2
I +K ′

i

)
V −1

i

(
1

2
I +Ki

)
µ+Wiµ. (60)

With this explicit expression of Si in terms of the boundary integral operators given
in (60), we obtain in the following one of the main results in domain decomposition.

Theorem 2.2.1 The boundary bilinear form

〈
Sµ, ν

〉
:=

N∑
i=1

∫
Γi

Siµ · ν ds

is bounded in H1/2(ΓS) and H
1/2
Γ (ΓS)–elliptic. Consequently, there is a unique solu-

tion µ ∈ H1/2(ΓS) to the variational equation (54).

We remark that the H
1/2
Γ (ΓS) – ellipticity of the bilinear form follows easily from the

representation of Si in (60). In particular, note that the contribution from first term
is non-negative, and hence can be neglected. The result then follows immediately
from the second term.

3 Concluding Remarks

We comment that although our presentation here deals with only simple model prob-
lems, yet we believe that it does cover all the essential features for the variational
methods for boundary integral equations as well as their application to the fruitful
research area, the domain decomposition. In closing the paper, we include here some
additional relevant references concerning general results with respect the variational
methods for boundary integral equations, their applications to mathematical physics,
mechanics as well as some recent developments in domain decomposition via bound-
ary integral equations. We refer interested readers to the references [20], [3], [24] (for
variational methods concerning boundary integral equations in general), [8],[9], [10]
(for applications to linear and nonlinear problems in fluid mechanics and elasticity),
[12], [11] (for acoustic and electromagnetic scattering), and [18], [19], [15], [14], [16]
(for domain decomposition via boundary integral equations), to name a few.
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