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ABSTRACT

Recently, analog joint source-channel coding (JSCC) systems based on map-

pings have become one of the most promising schemes for transmitting discrete-time,

continuous-amplitude sources (e.g., audio and video samples) over time-varying chan-

nels (e.g., wireless channels) under complexity and delay constraints. In contrast to

traditional digital communication systems based on Shannon’s separation principle,

analog JSCC schemes are robust to changes in the channel quality, and do not re-

quire near infinite block lengths to approach the theoretical limits. As a result, the

encoding/decoding complexity and delay can be greatly reduced compared with digital

schemes.

Direct source-channel mappings take K discrete-time, continuous-amplitude

symbols (a K dimensional vector in the source space) and map them directly into

L discrete-time, continuous-amplitude channel symbols (an L dimensional vector in

the channel space), achieving either bandwidth reduction (K > L) or bandwidth ex-

pansion (K < L). Most of the work on these schemes has dealt with the transmission

of memoryless sources over noisy channels for point-to-point communications. In this

dissertation, we focus on distributed scenarios and non-i.i.d. sources. Specifically,

we first study the problem of transmitting multivariate correlated Gaussian samples

over AWGN channels. A direct source-channel mapping designed utilizing power con-

strained channel optimized vector quantization (PCCOVQ) is proposed, taking into

account the channel noise and power constraints. Simulation results show that, for

bandwidth reduction, direct source-channel mappings achieve the theoretical limits

for low channel signal to noise ratios (CSNR) when the samples are correlated. The

performance is also quite close to the theoretical bound for higher CSNR.

xv



Second, we work on the design of direct source-channel mappings using space-

filling curves for the transmission of memoryless Gaussian samples over AWGN chan-

nels when side information is available at the receiver (Wyner-Ziv scenario). We first

propose a 1:1 mapping for K = 1 and L = 1 using a periodic piece-wise linear curve.

Then, we propose a 1:M bandwidth expansion mapping based on the use of existing

space-filling curves in a periodic fashion. A simplified decoding algorithm is also pro-

posed to reduce the cost of decoding without losing much performance compared to

MMSE decoding. Then, we propose a flexible rate K : L bandwidth expansion map-

ping for the Wyner-Ziv scenario by combining the proposed 1 : 1 and 1 : M schemes

with the optimum energy allocation. These schemes are shown to outperform existing

systems for a wide range of CSNRs, especially for high CSNRs and highly correlated

side information.

We also study analog JSCC for the transmission of correlated Gaussian senders

transmitted over separated AWGN channels. An asymmetric distributed coding scheme

is proposed. One of the senders is encoded using standard mappings and the recon-

structed symbol at the common receiver is used as distorted “side information” for

the other sender, which is encoded by a periodic mapping designed for the point-to-

point Wyner-Ziv scenario. A power allocation strategy is proposed to minimize the

distortion while still satisfying the power constraint. Simulation results shows that

the proposed schemes perform very close to the theoretical limits, outperform exist-

ing analog zero-delay mapping schemes, and are robust against CSNR mismatch and

correlation mismatch.

Finally, we extend our research on analog JSCC to multiple access channel

(MAC) scenarios. The proposed scheme contains a CDMA-like access scheme which

converts the MAC into orthogonal channels. We showed that the proposed CDMA-like

access scheme achieves capacity if optimum power allocation is used. Simulations show

that by pairing with periodic mappings, the proposed scheme performs very close to

the theoretical limits irrespective of the rate of each user when independent Gaussian

sources are transmitted over a Gaussian MAC with side information at the receiver.
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When transmitting correlated Gaussian sources over a Gaussian MAC, the performance

of the proposed scheme is comparable to that of the best existing zero-delay schemes,

but with the benefits of easiness of adaption to different rates.
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Chapter 1

INTRODUCTION

1.1 Motivation

Analog signals (audio, image, video, etc.) are usually processed and transmit-

ted using digital communications systems. A typical digital communications system

for point-to-point transmission of analog sources is shown in Fig. 1.1. The analog

source of interest produces a realization of a stochastic process, which is sampled and

quantized into bits. Redundancy among these bits is eliminated by the source encoder,

while the channel encoder introduces controlled redundancy to protect the information

against the channel noise. Finally, the modulator specifies the constellation symbol

that will be sent through the channel. At the receiver, the demodulator sends the

distorted constellation symbol to the channel decoder, where the most likely codeword

is generated. Then, the source decoder reconstructs the quantization index assuming

that all the channel errors have been corrected by the channel decoder.

One important characteristic of standard digital communications systems based

on separation is that source coding and channel coding are completely separated. This

approach is indeed optimum for point-to-point communications, as long as source cod-

ing and channel coding themselves are optimum as proven in [77] (lossless source coding

case) and in [7] (lossy source coding case). Therefore, the source code is designed as-

suming that the channel is error-free and the channel code is designed assuming that

input bits do not have any redundancy. However, the analog source has to be source

encoded up to the desired rate/distortion pair (e.g. using very powerful vector quanti-

zation) [51, 75, 88], and then capacity approaching channel codes such as turbo codes

[8] or LDPC [32] codes should be applied. This means that the price to pay to achieve
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Figure 1.1: Digital communications system based on separation between source and
channel coding for the transmission of analog sources.

near-optimum performance is very high encoding/decoding complexity and significant

delays, since any capacity approaching channel code (and any quasi-optimal vector

quantizer) requires long block lengths.

The aforementioned requirements have some drawbacks. For applications that

require real time communications, the communication quality has to be sacrificed due

to the delay constraint. Moreover, these systems lack robustness and adaptivity when

transmitting analog sources. Capacity approaching codes such as LDPC codes have

steep BER curves, meaning that above a certain channel signal to noise ratio (CSNR),

the BER drops abruptly towards zero. This means that such codes behave well provided

that the actual CSNR is at least as high as the design CSNR for the code, but the

system will quickly break down below the design CSNR because source coding is very

sensitive to the errors from the channel, and thus it requires channel codes to correct

all the channel errors. Moreover, if the actual CSNR increases above the design CSNR,

the source is over-protected meaning that bits that could have been used in the source

coder are wasted on unnecessary error-correction and the reconstructed quality will

not improve, but will be limited by the irreversible quantization error. Thus, digital

communications system have to be redesigned if channel conditions change. For time-

varying channel conditions and imperfect channel state information (CSI), which is

quite common in wireless channels and in underwater communication channels, this is

2



an important issue.

These limitation in digital communications systems based on separation be-

tween source and channel coding can be alleviated by employing joint source-channel

coding (JSCC). This can be done in many different ways, with the degree of optimiza-

tion varying from a simple rate-allocator added to the separated source and channel

encoder to a fully combined encoder where there is no distinction between the reduc-

tion of redundancy in the source encoder and the addition of error protection in the

channel encoder. The idea is that in some situations (e.g., when the encoder/decoder

complexity is limited) digital systems based on JSCC can present some advantage over

systems based on separation. Fig. 1.2 shows a digital JSCC system where, instead

of traditional separated source and channel coding, the source is just encoded using a

single code, which, depending on the desired information rate, introduces redundancy

or performs compression [10, 55, 57]. In this approach, the statistics of the source

are utilized in the encoding process and/or exploited (and sometimes also estimated)

in the decoding process, resulting in a performance close to the theoretical Shannon

limits [10, 53, 54, 55, 57, 87]. Even in the case of practical systems based on separation,

JSCC is relevant. Notice that in practical situations, the source encoder is not able

to eliminate all redundancy existing in the source, and thus exploiting this residual

redundancy in the decoding process will lead to performance improvements [2].

Although digital JSCC systems can improve spectral efficiency upon digital

systems based on separation, in practical situations where finite block lengths are

used, the overall complexity is still quite high and the system still suffers from lack of

robustness to fast changing channel conditions and when accurate CSI is not available.

In [37], the author shows that for the case of i.i.d Gaussian sources and AWGN channels,

both of the same bandwidth, it is optimum to just send the source directly through

the channel (using optimal scaling factors at the transmitter and receiver). In that

sense, it is said that Gaussian sources are perfectly matched to Gaussian channels

[33, 34, 35, 36, 62]. Fig. 1.3 shows the linearity of the direct transmission. This

scheme is elegant, not only because it is optimal in terms of spectral efficiency, but

3
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Figure 1.2: Digital communications system based joint source-channel coding for the
transmission of analog sources.
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Figure 1.3: Direct transmission scheme: source x is linearly scaled (y) according to
the power constraint before transmission through the channel.

also because it requires low complexity (simple encoding/decoding), zero delay (very

short block lengths) and has high robustness. Fig. 1.4 compares the robustness of the

direct transmission scheme using binary pulse amplitude modulation (PAM) with that

of an optimal digital system, and also provides the curve of the optimal performance

theoretically attainable, OPTA [6]. Although both systems achieve the theoretical limit

at 20 dB, which is the CSNR used for the design, for CSNRs belows 20 dB the digital

system breaks down completely, while direct transmission shows graceful degradation.

When the CSNR is above 20 dB, the digital system does not improve while direct

transmission shows graceful improvement.
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Figure 1.4: An i.i.d Gaussian source is transmitted directly over an AWGN channel.
The performance of the direct transmission scheme (BPAM), and that of
a digital system based on the separation principle are shown and com-
pared with the theoretical limit. Both direct transmission and the digital
system are optimized for 20 dB. SDR stands for signal to distortion ratio.

1.2 Non-Linear Mappings

As we mentioned earlier, if i.i.d. Gaussian samples are transmitted directly over

an AWGN channel, then a simple uncoded system can achieve Shannon’s theoretical

limit for any given value of CSNR. The idea of direct source-channel mappings is to

consider both the discrete time analog source and the channel signal as points in vector

spaces of dimensions K and L, respectively, so that the source space is mapped directly

onto the channel space. This is illustrated in Fig. 1.5, where a source point X is pro-

jected directly onto the channel space using a given function. The channel symbol Y

is sent and the received observation Z = Y +N is decoded to obtain an estimate X̂ of

the original source signal. If we look at Fig. 1.1 again, we notice that standard digital

communication systems based on the separation principle can be actually considered

as a special case of the direct source-channel mapping if we consider quantizer, source
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X = {xi}Ki=1

X̂ = {x̂i}Ki=1
= β(Z)

Source space

Y = {yi}Li=1
= α(X)

Z = Y +N = {zi}Li=1

Channel space

α : RK −→ RL

β : RL −→ RK

Figure 1.5: Direct source channel mapping between the source and channel spaces.
The function α performs a projection from the source space of dimen-
sion K to the channel space of dimension L. The function β brings the
channel signal back into the source space and provides an estimate of the
transmitted source signal.

coding, channel coding and modulation as a single transformation, although this map-

ping is very complex. If K < L, the source dimension is expanded onto the channel,

meaning that redundant dimensions are available, and can be used for noise reduction

(error control). If K > L, the dimension of the source is reduced, meaning that the

information content of the source must be reduced before transmission, and so lossy

compression is necessary. In the following, an operation where a source of dimension

K is mapped onto a channel of dimension L is called a K : L mapping with rate K
L
.

The theoretical limit for the transmission of discrete-time continuous-amplitude

sources over noisy channels can be derived by evaluating the distortion-rate function

[79] of the source at the rate equal to the channel capacity [77]. This limit is called op-

timal performance theoretically attainable (OPTA), and it is defined as the maximum

achievable signal to distortion ratio (SDR) for a given CSNR and a given rate. The

OPTA is the theoretical upper bound of any communication system, digital or analog,

which transmits K source samples using the channel L times.

An example of a nonlinear direct source-channel mapping that approaches op-

timally is the mapping designed using Power Constrained Channel Optimized Vector

Quantization (PCCOVQ) [26, 30, 31]. The idea of direct source-channel mapping using
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PCCOVQ is that the discrete-time continuous-amplitude source is quantized and the

index is directly mapped to a channel symbol in the channel space. PCCOVQ uses

a modified generalized Lloyd algorithm that takes channel and power constraint into

account to train the codebook, and has been shown to be able to find good mappings

for bandwidth reduction. Moreover, the trained codebooks of PCCOVQ have regular

structures that can be approximated by parametric curves and surfaces. This is of

interest, since the mathematical equation of the curves makes it very simple to adapt

them to varying channel conditions by merely changing their coefficients. In [30], a

direct source-channel mapping using PCCOVQ for transmitting i.i.d Gaussian sources

over AWGN channels when K = 2 and L = 1 was proposed. The resulting perfor-

mance is only about 1 dB away from the theoretical limit. PCCOVQ works best for

the bandwidth reduction case. This is probably because in the case when K < L, the

same points in the signal space will have multiple points in the channel space. This

implies that decoding of a noise contaminated channel symbol will not always give the

lowest possible reconstruction error.

When the number of centroids provided by PCCOVQ is large, the points in the

source and channel space can be considered as an approximation of a curve. Thus, if

the source points are projected onto the space-filling curve that resembles the centroids

of PCCOVQ, we should get similar results. Therefore, instead of using PCCOVQ, a

mathematical function describing the space-filling curve can be directly utilized for

the mapping. The idea of using space-filling curves dates back to [64, 78]. This type

of mapping is also called Shannon-Kotel’nikov mapping, and it has been shown to

perform quite well for memoryless sources in point-to-point communications systems

with zero delay and low complexity, and to be quite robust against varying channel

conditions [9, 11, 16, 17, 27, 45, 46, 47, 48, 50, 52, 65, 66, 74, 81]. Analog JSCC

based on Shannon-Kotel’nikov mappings are preferred to PCCOVQ because the whole

Shannon-Kotel’nikov mapping is represented by a mathematical equation with few pa-

rameters, and, therefore, it is easier to adapt to varying channel conditions by merely
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changing a few coefficients in the corresponding equation, and it is also easier to opti-

mize and analyze than the mapping based on PCCOVQ. They are also more practical

to be used for high CSNR and high dimensional cases, as the training complexity

of PCCOVQ increases very fast when CSNR and the dimension increase. Recently,

Shannon-Kotel’nikov mappings have been successfully applied to applications such as

compressive sensing (CS) [5, 12, 13, 14, 19] in [49, 38, 39] and underwater communi-

cations in [41].

Spiral-like curves are a particular case of Shannon-Kotel’nikov mappings, used

for the transmission of Gaussian sources over AWGN channels. Specifically, when

K = 2 and L = 1 or K = 1 and L = 2, the curve is shown in Fig. 1.6 and can be

defined in the following parametric form [45, 47]



















x1 =
∆

π
θ sin θ

x2 =
∆

π
θ cos θ

for θ ≥ 0,



















x1 = −∆

π
θ sin θ

x2 =
∆

π
θ cos θ

for θ < 0,

(1.1)

where ∆ is the distance between two neighboring spiral arms and θ is the angle from

the origin to the point (x1, x2) on the curve.

Notice that in the curve described above there is a one-to-one correspondence

between parameter θ and the points (x1, x2) on the curve, so that the curve gradually

fills in the whole two-dimensional space as the absolute value of θ grows.

1.2.1 2 : 1 mapping

1.2.1.1 Encoder

When K = 2 and L = 1, the 2 : 1 bandwidth reduction mapping using spiral-

like curves is based on projecting a pair of source samples X = (x1, x2) onto the curve
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Figure 1.6: Spiral-like curve performing a 2 : 1 mapping.

by finding the closest point on the curve, and representing the projection using the

parameter θ. Specifically, the mapping function M∆() is defined as

θ̂ = M∆(X)

= argmin
θ

(x1 ±
∆

π
θ sin θ)2 + (x2 −

∆

π
θ cos θ)2.

(1.2)

Then, an invertible function of θ̂ is normalized in order to satisfy the power constraint

and transmitted through the AWGN channel. The invertible function is

Tα(x) = xα, (1.3)
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where α ∈ (0, 2] is a variable controls the distribution of channel symbol. In general

α needs to optimized for different CSNRs in order to make the distribution of channel

symbol as close to Gaussian as possible, but we will use α = 2 in this dissertation. In

this case, the transmitted symbol y = θ̂2 is proportional to the length of the curve.

1.2.1.2 Decoder

The received observation at the decoder can be expressed as

r = M∆(X)2 +
√
γn, (1.4)

where γ is the normalization factor.

ML decoding

Given the received symbol r, the estimate X̂ML is obtained as the source pair X =

(x1, x2) belonging to the curve and satisfying

X̂ML = argmax
X∈curve

p(r|X)

= X|X ∈ curve and M∆(X)2 = r.

(1.5)

ML decoding is equivalent to first get θ̂′ = sign(r)
√

|r|, and then performing

inverse mapping on θ̂′ according to (1.1).

MMSE decoding

Although ML decoding is very simple and performs very well for high CSNRs, it is in

general not optimal for the mean square error distortion criterion (MSE). The estimate

that minimizes the MMSE criterion can be expressed as

X̂MMSE = E[X|r] =
∫

Xp(X|r)dX

=
1

p(r)

∫

Xp(r|X)p(X)dX

=

∫

Xp(r|X)p(X)dX
∫

p(r|X)p(X)dX
.

(1.6)
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Since the conditional probability, p(r|X), involves the mapping function M∆(X)

which is discontinuous and highly non-linear, (1.6) can only be calculated numerically.

The algorithm that calculates (1.6) numerically is as follows: First, we discretize X

using a uniform step, and calculate the mapping value for each discretized point ac-

cording to the encoding process described in Section 1.2.1. By doing so, we obtain a

discretized version of p(r|X). We also need to apply the same discretization procedure

to X and p(X) so that the calculation of the above integral consists of multiplica-

tion and addition operations. The only downside of the MMSE decoding is increased

complexity.

1.2.2 1 : 2 mapping

1.2.2.1 Encoder

When K = 1 and L = 2, we first use the stretching function [47], which maps

the source x to θ

θ(cx) =















√

cx
0.16∆

x ≥ 0

−
√

− cx
0.16∆

x < 0.

(1.7)

where c is the normalization factor. Then Y = (y1, y2) is mapped from θ by (1.1) with

x1, x2 replaced by y1, y2, respectively.

1.2.2.2 Decoder

The received observation at the decoder can be expressed as

R(r1, r2) = Y +N, (1.8)

ML decoding

Given the received symbols R, the estimate x̂ML is obtained by projecting R on to the

curve to get θ̂

θ̂ = M∆(R)

= argmin
θ

(r1 ±
∆

π
θ sin θ)2 + (r2 −

∆

π
θ cos θ)2.

(1.9)
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Then the ML estimate is

x̂ML = sign(θ̂)0.16θ̂2∆/c (1.10)

MMSE decoding

The MMSE decoding is expressed as

x̂MMSE = E[x|R] =
∫

xp(x|R)dx

=
1

p(R)

∫

xp(R|x)p(x)dx

=

∫

xp(R|x)p(x)dx
∫

p(R|x)p(x)dx .

(1.11)

The same numerical algorithm as in 2 : 1 mappings is applied here. However, since the

integral is now in 1-D as opposed to 2-D in the 2 : 1 case, the complexity is reduced

exponentially.

Notice that the encoding in the 2 : 1 system is equivalent to ML decoding in

the 1 : 2 system, while the encoding in the 1 : 2 system is equivalent to ML decoding

in the 2 : 1 system.

1.2.3 Shannon-Kotel’nikov mapping design guidelines

Although there is no systematic way to construct good Shannon-Kotel’nikov

mappings, some design rules have been been discussed in the literature [70]:

1. Cover the source space: In order to minimize the projection error incurred

when mapping a source space of high dimension to a channel space of lower dimension,

the mapping must cover the entire source space, so that every source vector has a

projection point on the curve as close as possible.

2. Minimize the channel signal power: In order to minimize the average channel

power, source vectors with high probability should be mapped to channel vectors with

low amplitude.

3. Increase robustness: In order to avoid large error for some channel noise,

vectors that are close in the channel space should correspond to vectors close in the

source space. The opposite, however, is not necessary.
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1.3 Scope of the Dissertation

Shannon-Kotel’nikov mappings have so far been mostly applied in point-to-

point communications. However, they have the potential to be specially relevant in

scenarios where the application of standard digital coding techniques may complicate

the decoding process. For instance, in a sensor network the correlation among sensors

may be defined in a very simple way in the analog domain (at the sample level), so

that its exploitation using direct source-channel mapping would be straightforward.

On the other hand, in order to optimize performance using a digital system, it would

be necessary to apply Slepian-Wolf coding techniques [80] over the digitalized versions

of the signals of interest, which requires the use of the proper correlation models at

the bit/symbol level [56, 58, 59, 84, 85, 86, 87]. This is an important constraint in

practical systems: even if the correlations are very simple at the sample level, they

may be very complicated (and thus difficult to exploit) at the bit/symbol level of the

digitalized versions of the waveforms.

Most of the previous work on the design of source-channel mappings has focused

on point-to-point communications of memoryless discrete-time continuous-amplitude

sources. In this dissertation, we move one step further, focusing mainly on the design of

mappings for the transmission of multivariate correlated Gaussian sources over AWGN

channels and for the transmission of memoryless Gaussian sources with side information

available at the receiver, as well as on more general distributed JSCC schemes.

1.4 Organization of the Dissertation

The remainder of the proposal is organized as follows. In Chapter 2, we propose

an analog JSCC bandwidth reduction scheme using PCCOVQ for the transmission

of multivariate Gaussian sources over AWGN channels. Next, we study the problem

of designing bandwidth expansion JSCC schemes for the transmission of memoryless

Gaussian samples over Additive White Gaussian Noise (AWGN) channels when side

information is present at the receiver (Wyner-Ziv scenario) in Chapter 3. We first

propose 1 : 1 and 1 : M Shannon-Kotel’nikov mappings for the Wyner-Ziv scenario,

13



then we combine both mappings to construct the analog JSCC schemes for flexible rate

transmission of Gaussian sources with side information.

In Chapter 4, we investigate the problem of transmitting correlated Gaussian

sources over separated Gaussian channels using analog JSSC schemes. An asymmetric

analog mapping scheme is proposed for the transmission of quadratic Gaussian sources,

where one of the sources is transmitted using a standard mapping designed for point-

to-point communications and the other source is transmitted using a periodic mapping.

We also proposed a simplified decoding algorithm to reduce the computational com-

plexity, especially for bandwidth reduction and high correlation.

Finally, in Chapter 5 we focus on the design of analog JSSC schemes for the

Gaussian multiple access channel under different scenarios. In the proposed scheme,

each user is first encoded using a space-filling curve and then a CDMA-like access

scheme converts the multiple access channel into several orthogonal channels. We

also proposed a simplified decoding algorithm for the proposed scheme based on the

simplified algorithm proposed in Chapter 4.
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Chapter 2

NON-LINEAR MAPPINGS FOR TRANSMISSION OF
MULTIVARIATE GAUSSIAN SOURCES OVER NOISY CHANNELS

In this chapter, we investigate the design of zero-delay non-linear bandwidth

reduction JSCC schemes for transmission of multivariate correlated Gaussian sources

over average power constrained AWGN channels. The non-linear direct source-channel

mappings are designed by utilizing PCCOVQ. Practical examples for 2 : 1, 3 : 1 and

4 : 2 systems are provided, and simulation results are compared with the respective

OPTA.

2.1 Introduction

Previous work in the literature of analog JSCC design focuses on sources that

generate independent and identically distributed (i.i.d.) samples. However, in some

applications, such as wireless sensor networks (WSN) and 3D cameras, it is likely

that the samples are correlated. In this chapter, we focus on the analog transmission

of discrete-time continuous-amplitude multivariate correlated Gaussian sources over

average power constrained AWGN channels.

Since, there is no systematic way of constructing good space-filling curves for

different source/channel statistics, and specifically when the source samples are corre-

lated, we will utilize PCCOVQ, mentioned in the previous chapter and described in

detail later, to derive well performing analog mappings for the transmission of multi-

variate correlated Gaussian sources. The resulting mappings are very different from

the ones optimized for i.i.d. sources. We present the results for 2 : 1, 3 : 1 and 4 : 2

bandwidth reduction systems and compare them with the corresponding OPTA.
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The remainder of this chapter is organized as follows. In next section we describe

the system model, including the source model and the channel model. Section 2.3

provides the derivation of the OPTA for multivariate Gaussian sources over AWGN

channels. In Section 2.4, we review the PCCOVQ algorithm. Finally, simulation results

and the conclusion are given in Section 2.5 and 2.6, respectively.

2.2 System Model

2.2.1 Source model

In this chapter, we consider the transmission of K correlated Gaussian samples,

proceeding from a multivariate Gaussian source X = {xi}Ki=1 in RK . Without loss of

generality each sample xi has zero mean and a variance σ2
x. Specifically, the samples

are generated following a Markov process defined as

xk =











ρ× xk−1 +
√
1− ρ2 × ik if 2 ≤ k ≤ K

ik if k = 1,
(2.1)

where ik ∼ N (0, σ2
x), independent of xk−1, and ρ is the correlation coefficient.

2.2.2 Encoder/Decoder

In analog JSCC communications systems based on direct source-channel map-

pings, K discrete-time continuous-amplitude source symbols X are mapped directly

into L discrete-time continuous-amplitude channel symbols Y = {yi}Li=1 in RL by

an encoder function α : RK −→ RL (see Fig. 2.1). The coding rate is defined as

Rc = K/L (K : L mapping). In this chapter, we only consider the bandwidth reduc-

tion case (Rc > 1).

When transmitted over the channel, Y is corrupted by additive white Gaussian

noise, N = {ni}Li=1 with each symbol ni ∼ N (0, σ2
n). The received vector

Ŷ = Y +N (2.2)
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Figure 2.1: Analog JSCC communications system.

is processed by the decoder function β : RL −→ RK (see Fig. 2.1). The decoding

distortion is defined as

D = E[‖X − X̂‖2]/K (2.3)

and the power constraint is defined as

P = E[‖Y ‖2]/L ≤ Pmax. (2.4)

Because there is no bit representation in this analog communication system, bit

error rate (BER) is not applicable. Rather, we measure the system performance in

terms of signal to distortion ratio (SDR) defined as

SDR = 10log10(σ
2
x/D). (2.5)

The channel signal to noise ratio (CSNR) is defined as

CSNR = 10log10(P/σ
2
n). (2.6)

2.3 OPTA for Multivariate Gaussian Sources in AWGN Channel

It is well known that the theoretical limit is specified by

RcR(D) < C, (2.7)

where Rc is the code rate, R(D) is the rate distortion function and C is the channel

capacity. When an AWGN channel is considered, the channel capacity C is given by

[18]

C =
1

2
log(1 +

P

σ2
n

), (2.8)
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where σ2
n is the power of the channel noise and P is the power of the channel symbols.

For a multivariate Gaussian source N(µlx ,
∑

lxlx) of length lx, its rate distortion

function can be represented parametrically as [63]



























R(θ) =
1

lx

lx−1
∑

i=0

max(0,
1

2
log

λlx,i

θ
)

D(θ) =
1

lx

lx−1
∑

i=0

min(θ, λlx,i),

(2.9)

where R is the rate of the source, D is the mean squared error defined before and λlx,i

are the eigenvalues of covariance matrix
∑

lxlx .

Next, we will provide the derivation of the OPTA for 2 : 1, 3 : 1 and 4 :

2 bandwidth reduction systems. Notice that in the derivations below the OPTA is

obtained as an expression for CSNR dependent on the distortion, D, while the range

defining each case is provided in terms of SDR. From the expressions below, it is

straightforward to obtain the SDR vs CSNR curves defining OPTA.

2.3.1 2 : 1 bandwidth reduction

In this case, lx = 2, and the covariance matrix is

∑

=







σ2
x ρσ2

x

ρσ2
x σ2

x






, (2.10)

whose eigenvalues are λ2,0 = σ2
x(1 + ρ) and λ2,1 = σ2

x(1 − ρ). According to (2.9), the

rate distortion function can be calculated by reverse water-filling on the eigenvalues.

We have two cases since there are two different ordered eigenvalues:

Case 1

When 0 < θ < λ2,1, which corresponds to

SDR > 10log10(
1

1− ρ
), (2.11)
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(2.9) becomes



























R(θ) =
1

2

1
∑

i=0

1

2
log

λ2,i

θ

D(θ) =
1

2

1
∑

i=0

θ.

(2.12)

From (2.7), we get

CSNR > 10log10((
σ2
x

D
)2(1− ρ2)− 1). (2.13)

Case 2

When λ2,1 < θ < λ2,0, which corresponds to

0 < SDR < 10log10(
1

1− ρ
), (2.14)

(2.9) becomes















R(θ) =
1

2
× 1

2
log

λ2,0

θ

D(θ) =
1

2
× (θ + λ2,1).

(2.15)

From (2.7), we get

CSNR > 10log10(
2− 2σ2

x

D

(1− ρ)σ
2
x

D
− 2

). (2.16)

2.3.2 3 : 1 bandwidth reduction

In this case, lx = 3, and the covariance matrix is

∑

=















σ2
x ρσ2

x ρ2σ2
x

ρσ2
x σ2

x ρσ2
x

ρ2σ2
x ρσ2

x σ2
x















, (2.17)

whose eigenvalues are λ3,0 = σ2
x(1 − ρ2), λ3,1 = 1

2
σ2
x(ρ

2 + 2 + ρ
√
ρ2 + 8) and λ3,2 =

1
2
σ2
x(ρ

2 + 2 − ρ
√
ρ2 + 8). We have three cases since there are three different ordered

eigenvalues:

Case 1
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When 0 < θ < λ3,2, which corresponds to

SDR > 10log10(
2

ρ2 + 2− ρ
√
ρ2 + 8

), (2.18)

(2.9) becomes



























R(θ) =
1

3

2
∑

i=0

1

2
log

λ3,i

θ

D(θ) =
1

3

2
∑

i=0

θ.

(2.19)

From (2.7), we get

CSNR > 10log10((
σ2
x

D
)3(1− ρ2)2 − 1). (2.20)

Case 2

When λ3,2 < θ < λ3,0, which corresponds to



















SDR > 10log10(
6

−3ρ2 + 6− ρ
√
ρ2 + 8

)

SDR < 10log10(
2

ρ2 + 2− ρ
√
ρ2 + 8

),
(2.21)

(2.9) becomes















R(θ) =
1

3
(
1

2
log

λ3,0

θ
+

1

2
log

λ3,1

θ
)

D(θ) =
1

3
(θ + θ + λ3,2).

(2.22)

From (2.7), we get

CSNR > 10log10(
2(σ

2
x

D
)2(1− ρ2)(ρ2 + 2 + ρ

√
ρ2 + 8)

3− 1
2
σ2
x

D
(ρ2 + 2− ρ

√
ρ2 + 8)2

− 1). (2.23)

Case 3

When λ3,0 < θ < λ3,1, which corresponds to

0 < SDR < 10log10(
6

−3ρ2 + 6− ρ
√
ρ2 + 8

), (2.24)
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(2.9) becomes















R(θ) =
1

3
(
1

2
log

λ3,1

θ
)

D(θ) =
1

3
(θ + λ3,0 + λ3,2).

(2.25)

From (2.7), we get

CSNR > 10log10(
a

b
− 1), (2.26)

where a = 1
2
σ2
x

D
(ρ2 + 2 + ρ

√
ρ2 + 8) and b = 3− σ2

x

D
(1− ρ2)− 1

2
σ2
x

D
(ρ2 + 2− ρ

√
ρ2 + 8).

2.3.3 4 : 2 bandwidth reduction

In this case, lx = 4, and the covariance matrix is

∑

=





















σ2
x ρσ2

x ρ2σ2
x ρ3σ2

x

ρσ2
x σ2

x ρσ2
x ρ2σ2

x

ρ2σ2
x ρσ2

x σ2
x ρσ2

x

ρ3σ2
x ρ2σ2

x ρσ2
x σ2

x





















, (2.27)

whose eigenvalues are λ4,0 =
1
2
σ2
x(ρ

3 − (ρ2 + ρ)
√
ρ2 − 2ρ+ 5 + ρ + 2), λ4,1 =

1
2
σ2
x(ρ

3 +

(ρ2 + ρ)
√
ρ2 − 2ρ+ 5 + ρ + 2), λ4,2 = 1

2
σ2
x(−ρ3 − (ρ2 − ρ)

√
ρ2 + 2ρ+ 5 − ρ + 2) and

λ4,3 = 1
2
σ2
x(−ρ3 + (ρ2 − ρ)

√
ρ2 + 2ρ+ 5 − ρ + 2). We have four cases since there are

four different ordered eigenvalues:

Case 1

When 0 < θ < λ4,3, which corresponds to

SDR > 10log10(
σ2
x

λ4,3

), (2.28)

(2.9) becomes



























R(θ) =
1

4

3
∑

i=0

1

2
log

λ4,i

θ

D(θ) =
1

4

3
∑

i=0

θ.

(2.29)
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From (2.7), we get

CSNR > 10log10(

√

(
σ2
x

D
)4(1− ρ2)3 − 1). (2.30)

Case 2

When λ4,3 < θ < λ4,0, which corresponds to


















SDR > 10log10(
8

t
)

SDR < 10log10(
σ2
x

λ4,3

),
(2.31)

where t = 2ρ3 − 3(ρ2 + ρ)
√
ρ2 − 2ρ+ 5+ (ρ2 − ρ)

√
ρ2 + 2ρ+ 5+ 2ρ+8, (2.9) becomes























R(θ) =
1

4

2
∑

i=0

1

2
log10(

λ4,i

θ
)

D(θ) =
1

4
(3θ + λ4,3).

(2.32)

From (2.7), we get

CSNR > 10log10(

√

b

c
− 1), (2.33)

where b = (3σ2
x

D
)3λ4,0λ4,1λ4,2 and c = (4σ2

x − σ2
x

D
λ4,3)

3.

Case 3

When λ4,0 < θ < λ4,2, which corresponds to














SDR > 10log10(
4

m
)

SDR < 10log10(
8

t
),

(2.34)

where t = 2ρ3 − 3(ρ2 + ρ)
√
ρ2 − 2ρ+ 5 + (ρ2 − ρ)

√
ρ2 + 2ρ+ 5 + 2ρ + 8 and m =

−1
2
(ρ2 + ρ)

√
ρ2 − 2ρ+ 5 + 4− ρ3 − 1

2
(ρ2 − ρ)

√
ρ2 + 2ρ+ 5− ρ, (2.9) becomes















R(θ) =
1

4
(
1

2
log10(

λ4,1

θ
) +

1

2
log10(

λ4,2

θ
))

D(θ) =
1

4
(2θ + λ4,3 + λ4,0).

(2.35)

From (2.7), we get

CSNR > 10log10(

√

b

c
− 1), (2.36)

where b = (σ
2
x

D
)2λ4,1λ4,2 and c = (2σ2

x − 1
2
σ2
x

D
λ4,0 − 1

2
σ2
x

D
λ4,3)

2.
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Case 4

When λ4,2 < θ < λ4,1, which corresponds to















SDR > 0

SDR < 10log10(
4

m
),

(2.37)

where m = −1
2
(ρ2+ρ)

√
ρ2 − 2ρ+ 5+4−ρ3− 1

2
(ρ2−ρ)

√
ρ2 + 2ρ+ 5−ρ, (2.9) becomes















R(θ) =
1

4
(
1

2
log10(

λ4,1

θ
))

D(θ) =
1

4
(θ + λ4,3 + λ4,0 + λ4,2).

(2.38)

From (2.7), we get

CSNR > 10log10(

√

b

c
− 1), (2.39)

where b = (σ
2
x

D
)2λ4,1 and c = 4σ2

x − σ2
x

D
λ4,0 − σ2

x

D
λ4,3 − σ2

x

D
λ4,2.

2.4 Review of the PCCOVQ Algorithm

Power constrained channel optimized vector quantization has been successfully

applied to the design of bandwidth reduction source-channel mappings [30] and band-

width expansion source-channel mappings [26] for i.i.d sources. In the case of i.i.d.

sources, the algorithm produces a mapping whose performance is close to the OPTA.

Our aim in this chapter is to extend the algorithm to the general case of multivariate

sources, where the samples are correlated.

2.4.1 Encoding process

Each channel symbol is restricted to belong to the Cartesian product of uniform

m-ary PAM, giving rise to Q = mL points in the channel space and in the source

space. The actual encoding process consists of 2 stages: vector quantization followed

by a signal selection module.

The vector quantizer first maps X into an index i ∈ I = {0, 1, ..., Q − 1}
whenever X ∈ Ωi, where Ωi is one of the partitions P = {Ωi}Q−1

i=0 of the source space
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(RK). Next, the signal selection module maps the index i into the corresponding

channel symbol Y = ∆· si, where si is a unit distance PAM signal in the channel space,

and ∆ is a scale factor.

2.4.2 Recovery process

At the receiver, the decoder chooses index j to minimize ‖Ŷ − ∆· sj‖2. Then,

X̂ = cj, where cj ∈ C = {ci}Q−1
i=0 , and C is called the codebook of the source space.

2.4.3 Optimization process

The distortion per source sample is

D(P ,∆, C) =
1

K
E[‖X − X̂‖2] =

Q−1
∑

i=0

∫

Ωi

di(X)fx(X)dX, (2.40)

where fx(X) is the source pdf, and

di(X) =
1

K

Q−1
∑

j=0

p(j|i)‖X − cj‖2 (2.41)

is the distortion associated with partition i, where p(j|i) is the probability of receiving

index j given that index i was transmitted. The power per channel symbol is given by

P =
∆2

L

Q−1
∑

i=0

‖si‖2
∫

Ωi

fx(X)dX. (2.42)

The optimization problem can then be expressed as

min
{P,∆,C}

[D(P , C,∆) + λP ], (2.43)

where λ is a Lagrange multiplier.

The minimization of (2.43) is performed by a variation of the generalized Lloyd

algorithm. For a given ∆, codebook C, and λ, whose value is related to the CSNR

after optimization, the partition P is updated according to

Ωi = {X|gi(X) ≤ gj(X), ∀j ∈ I}, i ∈ I, (2.44)

where

gi(X) = di(X) +
λ∆2

L

Q−1
∑

i=0

‖si‖2. (2.45)
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The codebook is updated by using the new partition and ∆, and can be expressed as

cj =

∑Q−1
i=0 p(j|i) ∫Ωi

Xfx(X)dX
∑Q−1

i=0 p(j|i) ∫Ωi
fx(X)dX

, j ∈ I. (2.46)

∆ is updated by using an iterative search method to minimize (2.43). The process will

not stop until the cost function in (2.43) converges.

As any other iterative optimization method, different initial values may lead

to different optimization results, some of which may not be global optima. When

implementing PCCOVQ, in order to avoid local optima, we make λ large enough so

that the CSNR is low at the very beginning (σ2
n can be fixed as 1), and we use a linear

codebook given as

ci(m) =











ksi(m) if 0 ≤ m ≤ L− 1

ksi(L− 1) if L ≤ m ≤ K − 1,
(2.47)

where ci(m) and si(m) are the m’th components of the vectors ci and si, respectively,

and k is a scale factor. The reason for using a linear codebook initially is that for

very noisy channels (low CSNR), linear mappings work well [22]. Once we have the

optimized codebook for the current CSNR, we will use it as the initial codebook for a

slightly higher CSNR. The optimization process continues until the optimized codebook

of the target CSNR is obtained.

2.5 Simulation Results

In this section, we show simulation results for 2 : 1, 3 : 1 and 4 : 2 mappings of

multivariate Gaussian sources generated using the PCCOVQ algorithm. For the 2 : 1

bandwidth reduction case, we use training vectors of length 400000, which are long

enough for Q = 256 and low CSNR. This configuration is a good trade-off between

simulation duration and performance, and also good enough to see the shape of the

mapping. Our simulation covers a wide range of values for the correlation coefficient

ρ, from 0.2 to 0.99. Fig. 2.2 shows the output SDR versus CSNR for the resulting

mappings. From this figure, we see that the simulation results obtained using optimized

PCCOVQ matches OPTA when the CSNR falls in the region corresponding to the
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case 2 defined by (2.14). The explanation is that in this case it is possible to design

a scheme that theoretically matches the OPTA by using a linear transformation that

drops the second dimension of the source symbol and only transmits the first dimension

through the channel (the receiver applies MMSE estimation to the received channel

symbols to recover both symbols). On the other hand, when the CSNR falls in the

region corresponding to case 1 defined by (2.11), similar to the result in [30] for i.i.d.

Gaussian sources, there exists a gap from the OPTA, but the performance is still quite

close to the upper bound. It is interesting to remark that the higher the value of ρ, the

higher CSNR case 2 can reach, which means we can achieve OPTA for wider range of

CSNRs. The fact that the gap to OPTA becomes larger when CSNR > 30 dB is due

to the length of the training vector and the fact that Q is not big enough for this high

CSNR.

We also compare our simulations with the results obtained when using a space

filling curve optimized for an i.i.d. Gaussian source (which basically agrees with the

mapping obtained by PCCOVQ for an i.i.d. Gaussian source). Fig. 2.2 also shows

that mappings designed for i.i.d. sources [50] are no longer appropriate for correlated

samples, especially when ρ is high. This is corroborated in Fig. 2.3, 2.4, 2.5, which

show the codebooks in the source signal space (i.e., mapping shape) for ρ = 0.2, 0.5

and 0.9 for four different CSNRs. The shape for case 2 (low CSNR) is basically a

straight line irrespective of the correlation level, which agrees with our explanation

above. For case 1 (high CSNR), the shape when ρ = 0.2 (Fig. 2.3) is similar to the

Archimede’s spiral, which is the mapping determined by PCCOVQ for i.i.d Gaussian

sources (ρ = 0). However, for higher ρ (Fig. 2.5), we obtain wave-shaped curves. If we

compare the codebook shapes with the contours of the respective 2-D Gaussian pdfs,

both are quite similar, which is a good sign for a good mapping [74], since this means

that it covers the target source space in an efficient way.

For the 3 : 1 case, we use training vectors of length 600000, and choose Q equal

to 256. Fig. 2.6 shows the output SDR versus CSNR. Similar to the results obtained

for the 2 : 1 mapping, when the CSNR falls in the regions corresponding to case 3, the
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OPTA is reached, while in all other cases a gap begins to appear but the results are

still quite reasonable.

We also derive the mappings for the 4 : 2 case, because we want to investigate

how the performance changes as K increases when Rc stays fixed (in this case Rc = 2).

In the simulation of the 4 : 2 case, we use training vectors of length 120000, and choose

Q to be 322. Fig. 2.7 compares the performance of optimized 4 : 2 and 2 : 1 mappings

in terms of SDR versus CSNR when ρ = 0.8 and ρ = 0.99. The OPTA for 4 : 2 and

2 : 1 are shown in the same figure as well. The results clearly show that for a fixed Rc

the performance is better when K increases. This is expected, since the decoding of

4 : 2 mappings exploits the correlations among all four source samples while 2 : 1 only

exploits the correlation between two. The performance loss when CSNR is above 20

dB is due to Q and it is also explained because the length of the training vector is not

sufficiently large for that CSNR. This is indeed the main drawback of the PCCOVQ

method: the training complexity increases very fast as the number of dimensions and

the CSNR increase. We can expect better performance for high CSNRs by using larger

Q and longer training vectors.

2.6 Conclusion

We have investigated the performance of bandwidth reduction analog mappings

for the transmission of multivariate Gaussian sources over AWGN channels by using

the PCCOVQ algorithm for the mapping design, comparing the results with theoretical

bounds. We have shown that when the correlation is high, linear mappings can reach

OPTA up to a pretty high CSNR. Beyond that CSNR, the performance is still close

to the theoretical limits if we use optimized non-linear mappings. Furthermore, the

optimal signal space structure is not a spiral-like space filling curve (as for i.i.d. sources)

any more. Although we did not provide a parameterized space-filling curve, we did show

the possibility to construct good analog mappings for multivariate Gaussian sources.
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Figure 2.2: Performance of a 2 : 1 system obtained as explained in the text for the
transmission of multivariate Gaussian sources over AWGN channels (a)
ρ = 0.5, (b) ρ = 0.8, (c) ρ = 0.9, (d) ρ = 0.99. The vertical line in each
of the sub-figures separates the regions corresponding to case 2 (left) and
case 1 (right)
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Figure 2.3: Signal space after optimization by the PCCOVQ algorithm when ρ = 0.2.
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Figure 2.4: Signal space after optimization by the PCCOVQ algorithm when ρ = 0.5.
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Figure 2.5: Signal space after optimization by the PCCOVQ algorithm when ρ = 0.9.
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Figure 2.6: Performance of a 3 : 1 system for multivariate Gaussian sources over
AWGN channels when (a) ρ = 0.5, (b) ρ = 0.8, (c) ρ = 0.9, (d) ρ =
0.99. The vertical lines in each of the sub-figures separate the regions
corresponding to case 3 (left), case 2 (center), and case 1 (right)
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Chapter 3

BANDWIDTH EXPANSION MAPPINGS FOR TRANSMISSION OF
GAUSSIAN SOURCES WITH SIDE INFORMATION

In this chapter, we consider the problem of designing non-linear zero-delay band-

width expansion analog joint source-channel coding (JSCC) schemes for the transmis-

sion of memoryless Gaussian samples over an additive white Gaussian noise (AWGN)

channels when side information is present at the receiver (Wyner-Ziv scenario). We first

propose a 1 : 1 scheme and a 1 : M scheme based on the use of Shannon-Kotel’nikov

mappings in a periodic fashion. To reduce the complexity of the numerical MMSE

decoding, we propose a simplified decoding algorithm for the proposed schemes. Then,

we combine the two proposed mappings to construct a flexible rate bandwidth scheme

whose rate can be anywhere from 1 : 1 to 1 : M . Simulation results show that the

performance of the proposed 1 : 2 scheme is better than that of existing zero-delay

systems for a wide range of signal to noise ratios, but especially for high signal to noise

ratios and highly correlated side information. Simulation also shows that the simplified

decoding performs very similar to the numerical MMSE for a wide range of CSNRs,

but with a greatly reduced complexity. The proposed flexible rate K : L bandwidth

expansion system also offers satisfactory performance, especially when considering its

flexibleness in terms of rate.

3.1 Introduction

The problem of transmitting analog source samples (audio, video, etc.) over a

noisy channel with side information at the decoder (Wyner-Ziv scenario) can be solved

by serially concatenating efficient source coding schemes and capacity approaching
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channel codes such as Turbo and LDPC codes. The reason is that digital communi-

cation systems based on separation between source and channel coding are optimal

for the transmission of samples over noisy channels when side information is available

at the decoder [34]. However, just as in point-to-point communication without side

information (see Chapter 1), digital communication systems based on separation for

the Wyner-Ziv scenario have some drawbacks, such as high delay and high complexity

encoder/decoder and pool robustness. In this chapter, we study Shannon-Kotel’nikov

mappings for the Wyner-Ziv scenario. Specifically, we design bandwidth expansion

analog mappings based on the use of space-filling curves for transmitting memoryless

Gaussian sources over AWGN channels when side information available at the receiver.

There is not much work in the literature about analog mappings for the Wyner-Ziv

scenario. A hybrid scheme is proposed in [15]. Bandwidth-expansion analog mapping

using sinusoids, as proposed in [61], performs quite well for the low-CSNR regime. In

[3], a mapping utilizing spiral like curves for bandwidth-reduction was proposed, but

for high CSNRs the results are far from the theoretical limits.

In this chapter, we first propose 1 : 1 and 1 : M schemes that use periodic space-

filling curves: a piece-wise periodic linear mapping for the 1 : 1 case and the concate-

nation of a piece-wise linear mapping with a standard space-filling curve (Archimedes’

spiral) for the 1 : 2 case. The proposed schemes benefit from reusing the output sym-

bols and the correlation model of the source, as well as from the side information,

to recover the source samples while maintaining high spectral efficiency. A simplified

decoding is also proposed to reduce the complexity of the numerical MMSE decoding

without losing much performance. Next, we propose a flexible rate K : L bandwidth

expansion scheme that consists of the parallel combination of the proposed 1 : 1 and

1 : M schemes with optimized power allocation. This scheme greatly increases the

practicality of the proposed mappings.

The remainder of this chapter is organized as follows. In Section 3.2, we for-

mulate the problem and we also provide the derivation of the theoretical limits for the

transmission of Gaussian samples over AWGN channels in the Wyner-Ziv scenario. In
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Section 3.2.3, we analyze the distortion for standard bandwidth expansion mappings

using space-filling curves. Section 3.3 discusses the proposed 1 : 1 and 1 : M schemes

for the Wyner-Ziv problem, and Section 3.4 introduces the proposed K : L system.

Simulation results are presented in Section VI, and Section VII concludes the chapter.

3.2 Problem Formulation and OPTA

3.2.1 Problem Formulation

The point-to-point communication system for the Wyner-Ziv scenario using

analog JSCC is depicted in Fig. 3.1. In general, we consider the transmission of K

independent and identically distributed (i.i.d.) Gaussian samples X = {xi}Ki=1 in RK .

Without loss of generality, we assume that each sample xi has zero mean and variance

σ2
x. The K side information samples at the receiver Y = {yi}Ki=1 in RK are modeled as

Y = X + U, (3.1)

where U = {ui}Ki=1 in RK are i.i.d. Gaussian random variables, ui ∼ N (0, σ2
u), inde-

pendent of X.

In analog JSCC based on direct source-channel mapping, each K source samples

X are mapped to L channel samples Z = {zi}Li=1 in RL by an encoder function α() :

RK −→ RL. In this chapter, we consider the bandwidth expansion case (Rc = K/L <

1) in which channel bandwidth (the number of channel samples) is greater than source

bandwidth (the number of source samples) and the bandwidth matching case (Rc =

K/L = 1) in which channel bandwidth equals source bandwidth.

When transmitted over the channel, Z is corrupted by additive Gaussian noise

samples, N , with zero mean and noise variance σ2
n. At the receiver, the vector Z ′ =

Z+N and the side information vector Y are processed jointly by the decoder function

β() : (RL,RK) −→ RK . The distortion per sample is defined as

D =
E[‖X − X̂‖2]

K
, (3.2)

and the power constraint is defined as

P =
E[‖Z‖2]

L
≤ Pmax. (3.3)
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Figure 3.1: Analog communication system based on JSCC with side information
available at the decoder.

Therefore, the goal is to find the α() and the β() that minimize (3.2) under the power

constraint defined in (3.3). As in the previous chapter, the system performance is

measured in terms of SDR versus CSNR.

3.2.2 Optimal Performance Theoretically Attainable (OPTA)

When AWGN channels are considered the capacity is given by [18]

C =
1

2
log

(

1 +
P

σ2
n

)

, (3.4)

where σ2
n is the power of the channel noise and P is the average power of the channel

samples.

The rate distortion function of memoryless Gaussian sources for the case where

perfect side information is available at the receiver is [82]

R(D) =















1
2
log σ2

xσ
2
u

(σ2
x+σ2

u)D
, 0 < D < σ2

xσ
2
u

σ2
x+σ2

u

0, D ≥ σ2
xσ

2
u

σ2
x+σ2

u
,

(3.5)

where D is the mean squared error as defined before and σ2
x and σ2

u are the variance of

the source, X, and of U , respectively.
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Figure 3.2: Encoding process of 1 : 2 analog JSCC using a spiral-like mapping. The
stretching function is followed by the Archimedes’ spiral function.

Defining ρ as the correlation coefficient between X and Y , it is easy to obtain

ρ =
E[xy]

√

E[x2]E[y2]
=

σx
√

σ2
x + σ2

u

, (3.6)

so that for the case of Rc =
K
L
, from the condition R(D)Rc < C, the theoretical limit

can be obtained as
σ2
x

D
=

1

1− ρ2
(1 +

P

σ2
n

)
L
K , (3.7)

where ρ is the correlation coefficient between X and Y . We can rewrite (3.7) in terms

of CSNR and SDR as

SDR = 10log10(
σ2
x

D
) =

L

K
× 10log10(1 + 10

CSNR
10 )− 10log10(1− ρ2). (3.8)

3.2.3 Distortion analysis for standard bandwidth expansion mappings

As explained in Chapter 1, the encoder of the 1 : 2 mapping system, depicted

in Fig. 3.2, consists of two steps: stretching function and a mapping using a spiral-like

curve. Fig. 3.3 and Fig. 3.4 show the spiral-like curve in 3D and 2D, respectively.

The study of bandwidth expansion direct source-channel mapping using space-

filling curves was initiated by V. A. Kotel’nikov [64]. He mentioned in his dissertation

that for a fixed source space (e.g. [−1, 1]), the space-filling curve should be made longer

in order to reduce the noise influence. This should be done without leaving a certain

hyper-sphere in order to satisfy the power constraint, so that the curve has to be twisted

inside the hyper-sphere defined by the power constraint if we want to make it as long as

possible. However, the length of the curve cannot be increased beyond a certain length

without introducing what Kotel’nikov called anomalous errors or threshold distortion.

The occurrence of these anomalous errors depends on the standard deviation of the
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Figure 3.3: 1 : 2 spiral like mapping in 3D: The dotted curve represents the negative
branch (X < 0) while the positive (X ≥ 0) branch is shown by the solid
curve.

channel noise and the density of the curve. Therefore, the overall distortion for any

bandwidth expansion mapping using space-filling curves can be categorized into two:

threshold distortion and weak noise distortion. Threshold distortion refers to the case

when distortion is not continuous with respect to the received symbol Z ′, for example

when the decoder decodes source samples to the opposite branch (sign(X) = -sign(X̂))

of the spiral even when Z ′ is very different from zero, which introduces large distortion

and quickly degrades the system’s performance. Weak noise distortion refers to the

distortion incurred in all the other cases and it is much smaller than the threshold

distortion. Both types of distortion for the 1 : 2 mapping are discussed in [47], where
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Figure 3.4: 1 : 2 spiral like mapping in 2D: The dash curve represents the negative
branch (X < 0) while the positive (X ≥ 0) branch is shown by the solid
curve.

it is shown that there is a trade-off between threshold and weak noise distortion. The

weak noise distortion decreases as ∆ decreases, but the threshold distortion increases

as ∆ decreases. Therefore, the optimized value of ∆ is somewhere in the middle to

minimize the overall distortion for each CSNR. Fig. 3.5 shows two 1 : 2 mappings with

two different values of ∆ under the same power constraint. The mapping in Fig. 3.5(a)

uses shorter curves to cover the source space and thus for the same noise level it will

have larger weak noise distortion than the mapping in Fig. 3.5(b). The curve in Fig.

3.5(b) is more dense and thus the mapping has a smaller threshold for the anomalous
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Figure 3.5: Two 1 : 2 mappings using a spiral-like curve with different values of
∆. Both mappings have the same power constraint: Pmax = 1 and
X ⊆ [−1, 1]: (a) ∆ = 0.5, (b) ∆ = 0.2.

errors to occur than the mapping in Fig. 3.5(a). As a result, the mapping in Fig.

3.5(b) is more likely to have threshold distortion than the mapping in Fig. 3.5(a).

3.3 Proposed 1 : 1 and 1 : M Schemes for the Wyner-Ziv Problem

In this section, we introduce our 1 : 1 scheme and 1 : M bandwidth expan-

sion non-linear mappings using space-filling curves designed for the transmission of

memoryless Gaussian sources over AWGN channels under the Wyner-Ziv scenario.

As we mentioned in section 3.2.3, the curve used for bandwidth expansion map-

pings needs to be long in order to reduce the weak noise distortion, but this will increase

the threshold distortion because the curve becomes dense. The question is: by taking

advantage of the side information available at the decoder, can we further reduce the

weak noise distortion without introducing more threshold distortion?

The key idea to achieve this goal is to make the space-filling curve periodic so

that the mapping produces the same output values for input values that are separated

by a period. In this way, we can make the curve longer, which reduces the weak noise

distortion but controls the value of the period so that the threshold distortion is not
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increased. Notice that this approach does not work if side information is not available

at the decoder. The reason is that multiple source samples (the ones separated by a

period) are mapped into the same output samples, which makes it impossible to decode

the source sample by only looking at the received sample. The side information will

help the decoder decide which period of the curve the source sample comes from, and

has to be combined with the received sample to decode the source sample. Although

we focus on the case when M = 2, the idea can be extended to the design of general

1 : M bandwidth expansion mapping for the Wyner-Ziv scenario.

3.3.1 1 : 1 mapping

As we mentioned earlier, when K = L, linear mapping (direct transmission) is

optimal for point-to-point transmission of memoryless Gaussian sources over AWGN

channel with no side information. However, for the Wyner-Ziv scenario the linear

mapping performs far from OPTA, especially for high correlation and high CSNRs.

In this work, we improve upon the linear mapping by employing a piece-wise linear

mapping with period T .

Specifically, the mapping is defined as

Z = ((X − T

2
) (mod T )− T

2
)/c, (3.9)

where T is the fundamental period of the piece-wise linear function, c is a constant

used to satisfy the power constraint and a (mod T ) is the modulo operation with a as

the dividend and T as the divisor. An example of the mapping when T = 2 is shown

in Fig. 3.6. Although in [4], the author uses an iterative algorithm and derives a 1 : 1

mapping for the Wyner-Ziv scenario that is similar to our proposed mapping, ours is

more applicable due to the fact that it is represented by parametric equations, which

makes it easier to adapt to different CSNRs.

3.3.2 1 : M mapping

When M = 2, we serially concatenate the 1 : 1 piece-wise linear mapping to the

standard 1 : 2 mapping that we introduced in Section 3.2.3. As a result, the proposed
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Figure 3.6: 1 : 1 periodic piece-wise linear mapping with T = 2.
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Figure 3.7: 1 : 2 proposed scheme.

1 : 2 mapping is a periodic mapping where each period is the 1 : 2 mapping using the

Archimedes’ spiral. Fig. 3.7 presents the complete system block and Fig. 3.8 shows

the proposed mapping in 3D.
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Figure 3.8: Proposed 1 : 2 mapping for T = 2 in 3D.

3.3.3 Decoding

MMSE decoding is optimum when mean square error is considered. However,

due to the non-linearity of the proposed mappings, computationally intensive numerical

methods needs to be used. In this work, we propose a simplified decoding algorithm

which massively reduces the cost the decoding without losing much performance.
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3.3.3.1 MMSE decoding

The MMSE decoding is described as

X̂ = E[X|Z ′, Y ] =
∫

Xp(X|Z ′, Y )dX

=
∫

X
p(Z ′, Y |X)p(X)

p(Z ′, Y )
dX =

∫

X
p(Y |X)p(Z ′|X)p(X)

p(Z ′, Y )
dX

=
∫

X
p(Y,X)p(Z ′|X)

p(Z ′, Y )
dX =

∫

X
p(Y,X)p(Z ′|X)

∫

p(Y,X)p(Z ′|X)dX
dX.

(3.10)

We need to calculate the integral numerically since it is not possible to get a closed

form expression for the conditional probability p(Z ′|X) due to the non-linearity of the

mappings. The numerical method is similar to the one we mentioned in Chapter 1 for

2 : 1 standard mapping.

3.3.3.2 Simplified decoding

To illustrate the simplified decoding algorithm, we denote the index of the period

as k, which is defined as

k = ⌊X/T ⌉, (3.11)

where ⌊a⌉ rounds a to the closest integer. The simplified decoding algorithm divides

the decoding process into two stages. The first stage of the simplified decoding is to

estimate X ′ from Z ′, where X ′ corresponds to the estimate of X assuming X belongs

to the period containing 0 (i.e., assuming k = 0). The second stage is to estimate

the value of k, the index of the period where X comes from, using Y . Finally, X̂ is

described as

X̂ = X ′ + kT. (3.12)

To estimateX ′, we first estimate Ẑ, the estimate of Z, from Z ′ using MMSE estimation,

which can be described as

Ẑ = E[Z|Z ′] = Z ′ P

P + σ2
n

. (3.13)

X ′ is then estimated using ML decoding from Ẑ. When M = 2, we have already

mentioned the ML decoding in Chapter 1. When M = 1, X ′ = Ẑ.
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Figure 3.9: Simplified decoding algorithm.

To estimate k, we first get X̃ from Y using MMSE estimation, which is given

by

X̃ = E[X|Y ] = ρ2Y. (3.14)

Then, the initial guess of k, k0, is derived from X̃ as

k0 = ⌊X̃/T ⌉, (3.15)

To reduce the distortion, we consider a bigger pool of candidate indexes from k0’s

neighbor period: k0 − 1 and k0 + 1. Once we get k0, k0 − 1, k0 + 1 and X ′, we can

apply (3.12) to get X̂k0 , X̂k0−1 and X̂k0+1, and choose X̂k which maximizes P (X̂, Y ).

The whole decoding process is depicted in Fig. 3.9.

3.3.4 Parameter optimization and distortion analysis

In this section, we discuss the parameter optimization and distortion analysis

for our proposed mappings.

3.3.4.1 1 : 1 mapping

The only parameter in the proposed 1 : 1 mapping is the fundamental period

T . When T is smaller, the length of the curve is longer, so the weak noise distortion

is smaller. If we consider the aperiodic linear mapping used in the case when no side

information is available as the limiting case of the proposed mapping when T goes to

infinite, we can see that the proposed mapping with a finite T has smaller weak noise

distortion. Fig. 3.10 illustrates the effect of weak noise distortion. Notice, however,
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Figure 3.10: Weak noise distortion comparison: (a) linear mapping, (b) proposed
mapping with T = 2/3, (c) proposed mapping with T = 0.4. For all
three mappings, we assume Z = 0 and Z ′ = −0.5 (∆Z = Z−Z ′ = 0.5).
The corresponding weak noise distortion (∆X) decreases from (a) to (c).

that the value of T cannot be too small: when T is smaller than a threshold, the

side information will not be powerful enough to distinguish source samples coming

from different periods, and, as a result, threshold distortion occurs. The optimization

process needs to consider the trade-off between the weak noise distortion and the

threshold distortion. The optimal value of T is a function of the correlation ρ and

CSNR.
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3.3.4.2 1 : M mapping

In the proposed 1 : M scheme, both ∆ and T need to be optimized. Due to

the non-linearity of the mapping, we do this using numerical methods. Notice that in

addition to the standard weak noise distortion and ∆-threshold distortion, we have a

new T -threshold distortion due to the piece-wise linear mapping. In order to reduce the

weak noise distortion, we should decrease both ∆ and T , since for a given T reducing

∆ increases the length of the curve, and for a given ∆ reducing the value of T also

increases the length of the curve. However, when ∆ is reduced beyond a threshold for a

given CSNR, the standard ∆-threshold distortion will occur. On the other hand, for a

given value of ρ, the value of T cannot be reduced beyond a certain threshold because

the side information will not be powerful enough to distinguish source samples coming

from different periods, as in the 1 : 1 scheme. As a result, the decoder may confuse

the recovered sample as coming from the wrong period. We name this distortion

as T -threshold distortion in order to differentiate it from the ∆-threshold distortion.

Therefore, the trade-off now is between weak noise distortion and the two threshold

distortions. From our simulations, the rule of thumb for the optimized value is: the

larger the CSNR the smaller the ∆ and the larger the ρ the smaller the T .

3.4 Proposed K : L Scheme for the Wyner-Ziv Problem

In this section, we propose a system that can produce bandwidth expansion

mappings of any rate between 1 : 1 and 1 : M by combining the 1 : 1 and 1 : M

schemes proposed in section 3.3. The proposed scheme is more flexible, and applicable

in practice. Notice that designing a space-filling curve for a specific rate is far more

difficult than just choosing the number of samples transmitted in both 1 : 1 and 1 : M

subsystems, which is what our proposed system does.

The proposed system is shown in Fig. 3.11. s1 out of s1 + s2 source samples

are transmitted through the 1 : 1 system and the rest are transmitted using the 1 : M

system, so that the total number of samples transmitted through the channel is s1+Ms2

and the rate is (s1 + s2) : (s2 +Ms2). By properly choosing the values of s1 and s2,
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Figure 3.11: Proposed system of rate K : L. The rate is changed by choosing the
number of samples s1 and s2.

any rate between 1 : 1 and 1 : M can be obtained. Notice that the average power

assigned to the 1 : 1 sub-system and to the 1 : M sub-system can change as long as

the power constraint for the whole system is satisfied. Therefore, we will optimize the

fraction of the total power allocated to sub-system 1 : 1 which we will denote as r11

(1− r11 is thus the fraction of the total power allocated to sub-system 1 : 2). For both

subsystems, MMSE decoding is used and evaluated numerically. ∆, T and r11 should

be optimized according to the values of each CSNR and ρ.

3.4.1 1 : 1 subsystem

We use the 1 : 1 scheme introduced in section 3.3 to obtain

Z = (mod(X − T

2
, T )− T

2
)/
√
c11, (3.16)

where T is the fundamental period. c11 is the coefficient used to control the total power

assigned to the 1 : 1 subsystem and can be expressed as:

c11 =
P11s1

P (s1 +Ms2)r11
, (3.17)

where P11 is the average power of the 1 : 1 system before power allocation.
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Table 3.1: Optimized Parameter (T ) for the 1 : 1 scheme

T CSNR = 0 dB CSNR = 5 dB CSNR = 15 dB CSNR = 25 dB
ρ = 0.9 3.7 3.4 3.3 3.5
ρ = 0.99 1.1 1.0 1.0 1.1

Table 3.2: Optimized Parameter (T ) for the 1 : 2 scheme

T CSNR = 0 dB CSNR = 5 dB CSNR = 15 dB CSNR = 25 dB
ρ = 0.9 4.1 4.2 3.6 3.9
ρ = 0.99 1.4 1.1 1.1 1.2

3.4.2 1 : M subsystem

We utilize the 1 : M non-linear system described in section 3.3, except that the

coefficient used in power allocation, denoted as c1M , is expressed as:

c1M =
P1MMs2

P (s1 +Ms2)(1− r11)
, (3.18)

where P1M is the average power of the 1 : M system before power allocation.

3.5 Simulation Results

In this section, we present simulation results for the proposed periodic JSCC

schemes and compare them with the theoretical limit (OPTA as defined in (3.7)) and

with other existing schemes. We first evaluate the performance of the 1 : 1 and 1 : 2

systems proposed in section 3.3 when numerical MMSE decoding is used. In Fig. 3.12,

we plot the performance of the proposed 1 : 1 system for ρ = 0.99 and ρ = 0.9. For

comparison, we also plot the performance of direct transmission when optimal MMSE

decoding is applied. Fig. 3.13, Fig. 3.14 and Fig. 3.15 show the SDRs achieved with the

proposed 1 : 2 scheme, the sinusoidal scheme proposed in [61], and the standard 1 : 2

mapping introduced in Section 3.2.3 for ρ = 0.99, ρ = 0.95 and ρ = 0.9, respectively.

The optimal values for parameter T for the 1 : 1 and 1 : 2 schemes are presented in

Tables 3.1 and 3.2, respectively.
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From the figures, we clearly see that the proposed system performs better than

the other zero-delay systems, especially for large CSNR and for highly correlated side

information. Interestingly, the proposed scheme shows an almost-constant gap to the

OPTA, while other schemes present an increasing gap as the CSNR increases. Notice

that OPTA is actually the theoretical limit for the case when K and L go to infinite, so

the real gap between our scheme and the theoretical limit when L = 2 is even smaller.

From Fig. 3.15, we notice that for ρ = 0.9 the performance of the proposed scheme is

close to that of the standard spiral-like mapping designed for the case when there is no

side information available at the receiver. The reason is that the optimized value of T

when ρ = 0.9 is relatively large, and, as a result, there is not much practical difference

between the proposed mapping and the standard spiral-like expansion mapping. From

Table 3.1 and Table 3.2, we notice that the optimum T only depends on the value of

ρ and decreases as ρ increases.

Next, we simulate the proposed K : L system introduced in Section 3.4. Specif-

ically, we consider a 6:10 system and a 9 : 10 system based on the combination of 1 : 2

and 1 : 1 systems to assess how the proposed system performs when the overall rate

is close to 1 : 1 and 1 : 2. Fig. 3.16 shows the performance of the 6:10 system for

both ρ = 0.99, and ρ = 0.9 when r11 is optimized, and Fig. 3.17 shows the results of

the 9 : 10 system for both ρ = 0.99 and ρ = 0.9, also when r11 is optimized. In these

figures, we also plot the OPTA and the simulated performance of the system which

combines the uncoded 1 : 1 mapping and the 1 : 2 system proposed in section 3.2.3,

which can be considered as a lower bound since these mappings are not designed for

the Wyner-Ziv scenario.

Notice that in both cases (6 : 10 and 9 : 10), for ρ = 0.99 and high CSNR

the proposed system performs much better than the system designed for the case

without side information. When comparing with the OPTA, the performance is not as

remarkable as in Fig. 3.13, Fig. 3.14 and Fig. 3.15, but it is still quite reasonable when

considering the great flexibleness of the scheme in terms of rate. Similar to the 1 : 2

case (see Fig. 3.15) when ρ = 0.9, the proposed system does not present substantial
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Figure 3.12: Performance evaluation for 1 : 1 systems when ρ = 0.9 and ρ = 0.99.

gains with respect to the system designed without considering the side information. It

is interesting to note that the optimal value of r11 increases as the CSNR goes up. This

is intuitive: since the SDR of the 1 : 1 system is always smaller than that of the 1 : 2

for the same CSNR, more power should be allocated to the 1 : 1 system in order to

balance the distortion level in the 1 : 1 and 1 : 2 systems, thus minimizing the overall

distortion.

We also evaluate the proposed simplified decoding method and compare it with

the MMSE method. The results are shown in Fig. 3.18 and Fig. 3.19. During the

simulation, we noticed the optimum T for the simplified decoding is different from the
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Figure 3.13: Performance evaluation for 1 : 2 systems when ρ = 0.99.

MMSE decoding for low CSNRs. Therefore, we also simulate the simplified decoding

with the T optimized for MMSE decoding.

From the figures, we can see that irrespectively of the values of Rc and ρ, the

results are similar: the simplified decoding is close to MMSE when CSNR is 0 dB,

it is a little bit worse when CSNR is around 5 dB, and matches MMSE when CSNR

is above 15 dB. Interestingly, when CSNR is above 15 dB, the optimum parameters

for the simplified decoding are the same as for MMSE decoding. This means that we

can replace the somewhat complex numerical MMSE decoding with a much simpler

decoder without suffering any performance loss. Moreover, when CSNR and ρ increase,
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Figure 3.14: Performance evaluation for 1 : 2 systems when ρ = 0.95.

the advantage of using the simplified decoding method is greater, because the step needs

to be smaller for the results to converge, with the consequent increase on complexity in

time and space. When CSNR is below 0 dB, the simplified decoding performs poorly

when using the optimum parameters for MMSE decoding but performs quite well if the

proper parameters are used. In fact, T needs to very small for the simplified decoding

to work in low CSNR regime. When ρ is fixed and CSNR is small ( P
σ2
n
close to 0), (3.8)

becomes

SDR ≈ −10log10(1− ρ2). (3.19)

When T is very small, X̂ ≈ X̃, which achieves (3.19). When CSNR is around 5 dB,
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Figure 3.15: Performance evaluation for 1 : 2 systems when ρ = 0.9.

where Y and Z are equally important, simplified decoding suffers some degradation

loss compared with MMSE decoding.

3.6 Conclusion

We have proposed a novel zero delay bandwidth expansion JSCC scheme for

the transmission of memoryless Gaussian samples over AWGN channels when side

information is available at the decoder. To take advantage of the side information

at the receiver, we use a piece-wise linear function followed by the standard spiral

bandwidth expansion mapping to construct a periodic space-filling curve. The proposed
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Figure 3.16: Performance evaluation for 6 : 10 systems when ρ = 0.9 and ρ = 0.99.

scheme manages to reduce the weak noise distortion without increasing the threshold

distortion, which is a trade-off for bandwidth expansion schemes in both standard and

Wyner-Ziv scenarios. In addition to MMSE decoding, we have proposed a simplified

decoding algorithm which performs quite close to MMSE decoding with much less

complexity. We also propose a coding scheme which combines the proposed 1 : M

bandwidth expansion mapping with the 1 : 1 piece-wise linear mapping to construct

a general rate bandwidth expansion mapping for the Wyner-Ziv scenario. Simulation

results show that our scheme performs quite well for a wide range of CSNRs, while

other existing schemes tend to perform worse for high values of CSNR and for highly
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Figure 3.17: Performance evaluation for 9 : 10 systems when ρ = 0.9 and ρ = 0.99.

correlated side information.

57



0 5 10 15 20 25
0

5

10

15

20

25

30

35

40

CSNR (dB)

S
D

R
 (

d
B

)

 

 

MMSE optimized for MMSE (ρ = 0.99)

Simplified optimized for simplfied (ρ = 0.99)

Simplified optimized for MMSE (ρ = 0.99)

MMSE optimized for MMSE (ρ = 0.9)

Simplified optimized for simplified (ρ = 0.9)

Simplified optimized for MMSE (ρ = 0.9)

Figure 3.18: Performance comparison between simplified decoding and MMSE de-
coding for the 1 : 1 scheme when ρ = 0.9 and ρ = 0.99.
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Chapter 4

NON-LINEAR MAPPINGS FOR TRANSMISSION OF CORRELATED
SENDERS OVER SEPARATED NOISY CHANNELS

In this chapter, we consider the problem of transmitting correlated Gaussian

senders over separated Gaussian channels using analog joint source-channel coding

schemes. We propose a novel distributed joint source-channel coding scheme based

on zero-delay analog mappings, which exploits the correlation between sources in an

efficient way. Different from digital systems, the proposed system offers low delay, low

complexity and high robustness. Simulation results show that the proposed scheme

performs very close to the theoretical limits, it is very robust against signal to noise

ratio mismatch and correlation mismatch, and outperforms existing zero-delay ana-

log mappings, especially for high channel signal to noise ratios and highly correlated

sources.

4.1 Introduction

In wireless sensor networks (WSNs), the problem of transmitting correlated mea-

surements from sensors to the fusion center can be solved by distributed source-channel

coding schemes in which the correlated measurements are encoded separately at each

sensor and estimated jointly at the fusion center of the networks. Digital communica-

tion systems based on separation between source and channel coding are optimal for

the transmission of correlated sources over separated noisy channels [83]. However,

as explained in Chapter 1, analog communication systems have advantages over their

digital counterparts. Different from the previous chapters in which we propose and

apply analog joint source-channel coding techniques for point-to-point communication,

in this chapter we extend the scope of our work to a multi-user scenario.
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For multi-terminal communications, not much work on JSCC schemes has ap-

peared in the literature, and most has been for multiple access channels. Schemes

using Linear projection were proposed in [20, 21, 25, 60]. An iterative algorithm was

proposed in [4] to design mappings for the transmission of correlated sources over sepa-

rated channels. As in any other iterative optimization algorithms, local optima instead

of global optima may be found. Moreover, the algorithm in [4] requires a huge lookup

table, which means large delays and high complexity.

In this chapter, we focus on the design of zero-delay analog mappings using

space-filling curves for transmitting quadratic Gaussian sources over separated Gaus-

sian channels. The proposed scheme extends our previous work for Wyner-Ziv scenarios

where a Gaussian source is transmitted through a point-to-point AWGN channel with

correlated side information available at the receiver, which is described in detail in

Chapter 3.

The remainder of this chapter is organized as follows. In Section 4.2, we describe

the problem formulation and we also provide the derivation of the corresponding theo-

retical limits. Section 4.3 discusses the proposed schemes for the problem. Simulation

results are presented in Section 4.4, and Section 4.5 concludes the chapter.

4.2 Problem Formulation and OPTA

4.2.1 Problem Formulation

The communication system based on analog JSCC over separated channels (or

equivalently, with orthogonal multiple access) is depicted in Fig. 4.1. In a general multi-

terminal communication system, there are M correlated sources, one at each terminal

at the transmitter side. At terminal i, encoder αi : RKi −→ RLi maps a vector of source

Xi ([xi1 , xi2 , ..., xiKi
]) in RKi to Yi ([yi1 , yi2 , ..., yiLi

]) in RLi . The bandwidth ratio for

terminal i is defined as Rci = Ki : Li and represents the number of source symbols

per channel symbol. Channels are orthogonal with transition probability p(Ŷi|Yi).

At the receiver side, the reconstructed X̂is in RKi are jointly decoded from the M
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β

Ŷ1 ∈ RL1

Ŷ2 ∈ RL2

ŶM ∈ RLM
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X̂2 ∈ RK2

X̂M ∈ RKM

Figure 4.1: Communication system based on analog JSCC with orthogonal multiple
access.

X1 ∈ RK1

X2 ∈ RK2

Encoder 1
α1

Encoder 2
α2

Y1 ∈ RL1

Y2 ∈ RL2

N1 ∈ RL1

N2 ∈ RL2

Ŷ1 ∈ RL1

Ŷ2 ∈ RL2

Decoder

β

X̂1 ∈ RK1

X̂2 ∈ RK2

RK1 −→ RL1

RK2 −→ RL2

(RL1 ,RL2) −→ (RK1 ,RK2)

Figure 4.2: Quadratic Gaussian two-terminal analog JSCC communication system
with orthogonal AWGN channels.

received vectors ([Ŷ1, Ŷ2, ..., ŶM ]) by the decoder function β : (RL1 ,RL2 , ...,RLM ) −→
(RK1 ,RK2 , ...,RKM ).

In this work, we focus on the quadratic Gaussian case (M = 2) where the

sources at terminal 1 and terminal 2 are jointly Gaussian and the orthogonal multiple

access channels are AWGN channels. The corresponding system is depicted in Fig. 4.2.

The two sources x1 and x2 are assumed to be memoryless zero mean Gaussian random
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variables modeled as xi = v + ωi ∼ N (0, σ2
xi
), i = 1, 2, where v ∼ N (0, σ2

v) is the

common information for both sources and ωi ∼ N (0, σ2
ωi
) is unique to each source. v

and ωi are independent. Without loss of generality, we further assume that σ2
ω1

= σ2
ω2

which implies σ2
x1

= σ2
x2

= σ2
x. The correlation coefficient ρ = E[x1x2]/σ

2
x = σ2

v/σ
2
x

denotes the correlation between x1 and x2. The noise vector Ni in RLi is independent

of xi, with each noise sample nki ∼ N (0, σ2
ni
), i = 1, 2. Without loss of generality, we

assume σ2
n1

= σ2
n2

= σ2
n. As it is common in the literature, we use mean square error,

MSE, as the distortion measure and the distortion per symbol for each source is defined

as Di =
E[‖Xi−X̂i‖2]

Ki
, i = 1, 2. The total distortion is defined as D = D1 +D2 and the

power constraint for each terminal is defined as Pi =
E[‖Yi‖2]

Li
≤ Pmaxi

. The problem is

to find α1, α2 and β that minimize D subject to the average power constraint Pmax1

and Pmax2
.

4.2.2 Optimal Performance Theoretically Attainable (OPTA)

The OPTA is defined as the minimum achievable total distortion (D) for the

given pair of channel signal to noise ratios CSNRi = 10log10(
Pi

σ2
n
), i = 1, 2, and serves as

the theoretical bound of the analog JSCC communication system. Since source channel

separation holds for transmitting correlated Gaussian sources over separated AWGN

channels [83] , OPTA is derived by evaluating

R1(D1) <
C1

Rc1

(4.1)

R2(D2) <
C2

Rc2

(4.2)

R1(D1) +R2(D2) <
C1

Rc1

+
C2

Rc2

(4.3)

where Rci is the bandwidth ratio defined in Section 4.2.1, Ri(Di) is the rate distortion

function and Ci is the channel capacity.
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When AWGN is considered, the channel capacity is given by [18]

Ci =
1

2
log

(

1 +
Pi

σ2
ni

)

, (4.4)

where σ2
ni

is the power of the channel noise and Pi is the average power per channel

use.

The rate distortion function of quadratic Gaussian sources is [1]

R1(D1) ≥
1

2
log+

[

1− ρ2 + ρ22−2R2(D2)

D1

]

(4.5)

R2(D2) ≥
1

2
log+

[

1− ρ2 + ρ22−2R1(D1)

D2

]

(4.6)

R2(D2) +R1(D1) ≥
1

2
log+

[

(1− ρ2)β(D1, D2)

2D1D2

]

(4.7)

where

log+x = max(logx, 0). (4.8)

β(D1, D2) = 1 +

√

√

√

√1 +
4ρ2D1D2

(1− ρ2)2
. (4.9)

4.3 Proposed Communications Scheme

In this section, we propose the distributed analog mappings for transmitting

quadratic Gaussian sources over orthogonal AWGNs. The proposed system is depicted

in Fig. 4.3.

4.3.1 Encoding

Standard analog mappings such as direct transmission and spiral-like 2 : 1 or

1 : 2 mappings described in Chapter 1 are optimal or near optimal for memoryless

Gaussian sources over AWGN channel in point-to-point communications. However, as

we will show in Section 4.4, these standard mappings do not perform well for distributed

coding when sources at different terminals are correlated. Thus the question is: how
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MMSE estimator

K2 : L2 mapping for Wyner-Ziv scenario

K1 : L1 standard mapping

or

Simplified decoding

X̂1 ∈ RK1

X̂2 ∈ RK2

Figure 4.3: Proposed scheme: X1 is encoded by standard mappings described in
Chapter 1 and X2 is transformed by the mapping designed for Wyner-
Ziv scenario, X1 and X2 are jointly decoded by MMSE estimator.

can we exploit the correlation between x1j and x2j efficiently to design appropriate

mappings? The way we approach this problem is by first considering the extreme case

of σ2
n1

= 0, i.e., when x1 is perfectly available at the receiver. In this case, we can think

of x1 as the “side information” of x2 at the receiver and the problem is equivalent to

the noisy Wyner-Ziv scenario considered in Chapter 3. In Chapter 3, we proposed

periodic mappings to make use of the side information. For instance, the proposed

1 : 1 mapping for Wyner-Ziv scenario was defined as

y = α(x) = ((x− T

2
) (mod T )− T

2
)/c, (4.10)

where T is the fundamental period of the piece-wise linear function, c is a constant

used to satisfy the power constraint and a (mod T ) is the modulo operation with a

as the dividend and T as the divisor. An example of the mapping when T = 2 is

shown in Fig. 4.4. Notice that this mapping basically partitions the source space into

segments of size T , and then transmits the difference between x and the centroid of the

segment (in this case the mid point of the segment) where x belongs to. This mapping

outperforms the linear transformation in the Wyner-Ziv scenario because it effectively

avoids sending the redundant information (the centroid) already contained statistically

in the “side information”. The optimum values of T decreases almost linearly with the

correlation ρ.
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Figure 4.4: 1 : 1 periodic piece-wise linear mapping with T = 2

In the distributed problem considered here, σ2
n1

> 0, and x̂1 can be approxi-

mately represented as x̂1 = x1 + d = v + ω1 + d, where d ∼ N (0, D1). The idea of

applying the piece-wise linear mapping to x2 still makes sense by thinking of the recon-

structed x̂1 as imperfect “side information” of x1 (different from the noisy Wyner-Ziv

scenario where D1 = 0, in the distributed case D1 > 0). Notice that in the distributed

case D2 depends on D1 since the “correlation” between x2 and x̂1 is

ρ′ =
E[x̂1x2]

σx

√

σ2
x +D1

=
1

√

1 +D1/σx

ρ. (4.11)

D2 will be smaller if ρ′ is greater (i.e., when D1 is also smaller). As Y2 should not

contain any information of x1 when α2 with the optimum parameter is used, x1 should

be mapped as in point-to-point communications using the standard mapping described

in Chapter 1. Symmetrically, we could also apply the piece-wise linear mapping to

x1 and think of x̂2 as “side information”, but we cannot apply the piece-wise linear

mapping to both x1 and x2, because the equivalent “side information” in that case

would be weakly correlated with the corresponding source, which would result in a

degraded performance. Without loss of generality, in the remainder of the paper we

choose x̂1 as “side information” of x2.

When K2 = 1 and L2 ≥ 1, we will use the mapping proposed in Chapter 3 as

α2. When K2 > 1 and L2 = 1, the bandwidth reduction mapping proposed in [3] will

be used as α2. The idea of the bandwidth reduction mapping is very similar to the
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one that we proposed in Chapter 3. Instead of partitioning the source space in one

dimensional space as in our work, the 2 : 1 bandwidth reduction mapping partitions

the two dimensional source space into sets of regular hexagons with side length δ, and

uses the standard 2 : 1 spiral-like curve to transmit the difference between the center of

region and X2. The parameter δ behaves similar to the T in periodic mappings and the

optimum δ also decreases almost linearly with the correlation ρ in the point-to-point

Wyner-Ziv scenario.

4.3.2 Decoding

At the receiver side, the minimum mean square error (MMSE) estimator is used

to obtain the estimates of both sources as

(X̂1, X̂2) = E[X1, X2|Ŷ1, Ŷ2]

=
∫∫

(X1, X2)P (X1, X2|Ŷ1, Ŷ2)dX1dX2

=
∫∫

(X1, X2)
P (Ŷ1|X1)P (Ŷ2|X2)P (X1, X2)

P (Ŷ1, Ŷ2)
dX1dX2,

(4.12)

where P (X1, X2) is the joint pdf of X1 and X2. Unfortunately, we need to calculate

the integral numerically due to the non-linearity of the mappings. The problem of the

numerical method is that its complexity increases exponentially as Ki increases, and it

also increases very fast as ρ and CSNR increase. When Rc2 > 1, it becomes infeasible

to use the numerical method for high correlation and CSNRs. Next, we propose a

simplified decoding method by modifying the simplified decoding algorithm proposed

in Chapter 3.

As X1 is mapped using a standard mapping and is nearly independent of Y2, we

first estimate X1 (X̂1) from Ŷ1 by using MMSE (when Rc1 = 1) or ML. To estimate

X2, we can use a procedure similar to that of in Section 3.3.3.2, but with the following

modification:

1. Equation (3.14) should be changed to

X̃2 = E[X2|X̂1] = ρ′X̂1, (4.13)
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where ρ′ is the estimated correlation between x2 and x̂1.

2. When the bandwidth reduction mapping in [3] is used, two indexes (ki and

kj) for each hexagon are used, and (3.15) becomes

ki0 = ⌊x̃21/(3δ)⌉

kj0 = ⌊x̃22/(
√
3δ)⌉

(4.14)

or

ki0 = 2× ⌊x̃21/(3δ − 0.5) + 0.5⌉

kj0 = 2× ⌊x̃22/(
√
3δ − 0.5) + 0.5⌉

(4.15)

depending on which set of indexes represent the hexagon whose center is closer to X̃2.

3. When the bandwidth reduction mapping in [3] is used, there are 6 neighbor-

ing hexagons around ki0 and kj0 , and we need to choose the value of ki and kj that

maximizes P (X1, X̃2).

4.3.3 Power allocation

If the total transmission power of all terminals, P = P1 + P2, is fixed, equal

power allocation (P1 = P2 =
P
2
) does not necessarily yield the minimum total distortion

(Dmin) for given α1 and α2 even if Rc1 = Rc2 . The reason is that the proposed scheme

is asymmetric since x1 is transmitted using a standard mapping and x2 is transmitted

using periodic mapping).

Let us assume that P̂1 is the optimum power for terminal 1 and P̂2 is the

optimum power for terminal 2 and P̂1 ≤ P̂2. When there is no constraint on P1 and

P2, we will use P̂1 to transmit x1 and P̂2 to transmit x2 to achieve Dmin. However,

what can do we if P1 needs to be greater than P̂1 and P2 needs to be smaller than P̂2?

We will show in the sequel that as long as P1 ≥ P̂1, P2 ≤ P̂2 and P1 + P2 = P , the

proposed scheme can still achieve the minimum distortion Dmin using P1 and P2.

Assume terminal 1 transmits n samples of x1 and terminal 2 transmits n samples

of x2. Since x1 and x2 are identical distributed Gaussian random variables, Dmin is

achieved if we use α2 to transmit x1 using P̂2 and we also use α1 to transmit x2 using

P̂1, which means that if we send k out of n samples of x1 using α1 and P̂1, k out of n
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samples of x2 using α2 and P̂2, n− k out of n samples of x1 using α2 and P̂2 and n− k

out of n samples of x2 using α1 and P̂1, Dmin is still achieved. In this case, the average

transmission power for terminal 1 is

P1 =
kP̂1 + (n− k)P̂2

n
. (4.16)

and the average transmission power of terminal 2 is

P2 =
kP̂2 + (n− k)P̂1

n
. (4.17)

If n is large enough, one can choose k to satisfy the power constraint while still achieving

the same total distortion as with optimal P̂1 and P̂2. When P1 = P2 =
P
2
, we just need

to make k = n
2
. The idea is depicted in Fig. 4.5.

4.4 Simulation Results

In this section, we present simulation results for the proposed scheme and com-

pare them with the corresponding theoretical limit (OPTA) and results from existing

schemes. Specifically, we evaluate the performance of the proposed scheme for the cases

in which Rc1 = Rc2 = 1 : 1 (Case A: bandwidth matching), Rc1 = 1 : 2, Rc2 = 1 : 1

(Case B: bandwidth expansion) and Rc1 = 1 : 1, Rc2 = 2 : 1 (Case C: bandwidth

reduction). In case A, α1 is the direct transmission mentioned in Chapter 1, and α2

is the periodic piece-wise linear mapping proposed in Chapter 3. In case B, α1 is the

standard spiral-like curve mentioned in Chapter 1 and α2 is the same as in case A. In

case C, α1 is the same as in case A and α2 is the mapping proposed in [3]. For cases A

and B, we use the numerical MMSE decoding, while for case C we use the simplified

decoding described in Section 4.3.2

We first assume equal power constraint for the two terminals (P1 = P2) and

we measure the performance in terms of signal to total distortion ratio defined as

SDR = 10log10(
2σ2

x

D1+D2

) versus CSNR = 10log10(
P1

σ2
n
) = 10log10(

P2

σ2
n
). Similar to Chapter

3, we choose ρ = 0.9 and ρ = 0.99 for the simulations. We also apply the optimum

power allocation described in Section 4.3.3 to further reduce the distortion. We use
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Figure 4.5: k out of n samples of x1 are transmitted using α1 and P̂1, k out of n
samples of x2 are transmitted using α2 and P̂2, n− k out of n samples of
x1 are transmitted using α2 and P̂2 and n− k out of n samples of x2 are
transmitted using α1 and P̂1.

k = n
2
so that P1 = P2. The scheme achieves Dmin while maintaining the same CSNR.

In Fig. 4.6 and Fig. 4.7, we plot the results for case A, while the results for case B are

plotted in Fig. 4.8 and Fig. 4.9, and the results for case C, they are plotted in Fig.

4.10 and Fig. 4.11.

For comparison, we include the performance obtained when optimized standard

mappings ([47] and [68]) are applied to both x1 and x2. Specifically, for case A, the

optimum 1 : 1 linear mapping is used for both x1 and x2, for case B, the optimal

1 : 2 spiral-like bandwidth expansion mapping is applied to x1 and the optimal linear

mapping is applied to x2. When comparing with the corresponding OPTA, we assume

that both transmitter and receiver have perfect knowledge of ρ and CSNR, and thus all
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Figure 4.6: Performance evaluation for case A when ρ = 0.99.

the schemes are optimized for each analyzed ρ and each CSNR. The optimum values

of T in the proposed scheme for case A are summarized in Table 4.1. Compared with

Table 3.1, the optimum value of T depends not only on ρ but also on CSNR: the higher

the ρ and the CSNR are, the smaller the optimum T is. This is expected since the

optimum value of T is related to the actual correlation coefficients (between source and

distorted side information) which depends on both ρ and CSNR. The optimum value of

T in case B is similar to the one in case A and shown in Table 4.2. The optimum values

of δ in the proposed scheme for case C are provided in Table 4.3. For low CSNRs, the

optimum δ is very small and for high CSNRs δ follows the same rules as the optimum
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Figure 4.7: Performance evaluation for case A when ρ = 0.9.

Table 4.1: Optimized Parameter (T ) of the proposed scheme for Case A

T CSNR = 0 dB CSNR = 5 dB CSNR = 15 dB CSNR = 25 dB
ρ = 0.9 6.1 4.8 4.2 3.8
ρ = 0.99 6.2 3.6 1.7 1.2

T . This is because simplified decoding is used in case C, and in Chapter 3 we showed

that the optimum parameter of the simplified decoding matches the ones for MMSE

only for high CSNRs, and for low CSNRs the optimum parameter is very small.

From the figures, we clearly see that the proposed scheme outperforms the
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Figure 4.8: Performance evaluation for case B when ρ = 0.99.

Table 4.2: Optimized Parameter (T ) of the proposed schemes for Case B

T CSNR = 0 dB CSNR = 5 dB CSNR = 15 dB CSNR = 25 dB
ρ = 0.9 7.8 6.5 3.5 3.8
ρ = 0.99 8.2 7.8 1.3 1.1

other zero-delay systems, especially for large CSNRs and for highly correlated sources

(ρ = 0.99). Moreover, the gap between the proposed scheme and OPTA is almost

asymptotically constant, while other schemes present a much wider and fast increasing

gap. Notice that the OPTA is actually the theoretical limit for the case when Ki and
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Figure 4.9: Performance evaluation for case B when ρ = 0.9.

Table 4.3: Optimized Parameter (δ) of the proposed schemes for Case C

δ CSNR = 0 dB CSNR = 5 dB CSNR = 15 dB CSNR = 25 dB
ρ = 0.9 0.2 0.2 1.8 1.7
ρ = 0.99 0.2 0.1 0.7 0.6

Li go to infinity. For zero-delay systems (Ki and Li are small) in this paper, we can

expect an even smaller gap from the actual theoretical limits. From Fig. 4.7 and Fig.

4.9, we notice that the performance of the proposed schemes when ρ = 0.9 are close to

the schemes used for comparison. The reason is that the optimized T of the piece-wise
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Figure 4.10: Performance evaluation for case C when ρ = 0.99.

linear mapping in this case is relatively large (T > 3.8), and as a result, source x2 will

most likely belong to the segment ([−T/2, T/2]) and in this case, α2 is practically a

linear mapping.

With respect to the case of optimal power allocation. For case A, the improve-

ment from the power allocation is almost limited to high CSNRs and high correlation.

For case B, the improvement from the power allocation is more significant for lower

correlation. Optimum power allocation tries to balance the distortion from α1 and α2.

For case C, as the simplified decoding is used, the optimum power allocation in this

case is very interesting: P̂2 = 0 for low CSNRs, which means all the power is allocated
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Figure 4.11: Performance evaluation for case C when ρ = 0.9.

to α1. In this case, X̂2 = X̃2. We mentioned in Section 4.3 that D2 depends on D1,

and when using simplified decoding, the effect of D1 on D2 is more significant as ρ′

and X̂1 all depend on D1. Therefore, when CSNR is low, a high ρ′ and good X̂1 is the

key.

We also evaluate the robustness of the proposed scheme to CSNR mismatch

by using α1, α2, β and ρ optimized for CSNR = 5 dB and 15 dB. From all figures,

we can see that the overall robustness characteristic of analog mappings under CSNR

mismatching still holds quite well in the proposed scheme. Both the SDR degradation

when the actual CSNR is below the actual CSNR and the SDR improvement when the
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actual CSNR is above the optimized CSNR are graceful. Compared with case A, the

robustness in case B under CSNR mismatch is worse. This is due to the fact that in

case B α1 also has a parameter ∆.

Finally, we evaluate the robustness of the proposed scheme to correlation mis-

match. Specifically, α1, α2 and β are optimized for ρ = 0.9 and 0.99 and the corre-

sponding CSNR. When CSNR is low (5 dB), the proposed scheme shows good robust-

ness to correlation mismatch as shown in Fig. 4.13, 4.15 and 4.17. However, when

CSNR is high (15 dB), the robustness is relatively poor as shown in Fig. 4.12, 4.14

and 4.16. The reason is that when CSNR is low, the optimum values for T and δ are

quite the same for all ρ, while when CSNR is high the optimum values for T and δ

change dramatically, as shown in Table 4.1, Table 4.2 and Table 4.3, which increases

the sensitivity to correlation mismatch.

4.5 Conclusion

We have proposed a distributed zero-delay JSCC scheme based on analog map-

pings for the transmission of quadratic Gaussian sources over separated noisy Gaussian

channels. The proposed scheme exploits the correlation efficiently by applying specif-

ically designed mappings to one of the two sources. We also propose a simplified

decoding which greatly reduce the complexity of the proposed scheme as opposed to

the numerical MMSE decoding. A power allocation strategy is proposed to minimize

the distortion while still satisfying the power constraint. Simulation results show that

the proposed schemes perform very close to the theoretical limits, outperform exist-

ing analog zero-delay mapping schemes, and is robust against CSNR mismatch and

correlation mismatch.
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Figure 4.12: Robustness evaluation of the proposed scheme for case A under corre-
lation mismatch when CSNR = 15 dB.
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Figure 4.13: Robustness evaluation of the proposed scheme for case A under corre-
lation mismatch when CSNR = 5 dB.
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Figure 4.14: Robustness evaluation of the proposed scheme for case B under corre-
lation mismatch when CSNR = 15 dB.
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Figure 4.15: Robustness evaluation of the proposed scheme for case B under corre-
lation mismatch when CSNR = 5 dB.
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Figure 4.16: Robustness evaluation of the proposed scheme for case C under corre-
lation mismatch when CSNR = 15 dB.
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Figure 4.17: Robustness evaluation of the proposed scheme for case C under corre-
lation mismatch when CSNR = 5 dB.

83



Chapter 5

NON-LINEAR MAPPINGS FOR THE MULTIPLE ACCESS CHANNEL

In this chapter, we extend our study of analog joint source-channel coding

(JSCC) to multiple access channel (MAC) scenarios. In the first scenario, indepen-

dent Gaussian sources are transmitted over a Gaussian MAC and side information is

available at the receiver. In the second scenario, inter-correlated Gaussian sources are

transmitted over a Gaussian MAC without side information. A distributed analog

JSCC system based on the serial concatenation of Shannon-Kotel’nikov mappings and

a CDMA-like access scheme is proposed. Compared with other orthogonal schemes

where the rate of each user is determined only by the rate of the Shannon-Kotel’nikov

mapping, in the proposed scheme the rate of each user is incorporated in the access

scheme itself, which facilitates the design. Simulation results show that in both scenar-

ios the proposed scheme outperforms systems based on the use of standard mappings.

In the second scenario, the proposed scheme performs on par with the best existing ana-

log schemes, which are specifically designed for a fixed transmission rate, but with the

advantage of being more flexible in terms of transmission rate assignment for different

users and easiness of adaption to different rates.

5.1 Introduction

In Chapter 3, we designed analog mappings for the transmission of a memoryless

Gaussian source over an AWGN channel when side information is available at the

receiver, while Chapter 4 dealt with the transmission of memoryless quadratic Gaussian

sources over separated AWGN channels. However, the MAC setting is closer to reality

in applications such as wireless sensor networks, since the channels to the central unit

are shared by all the devices. Although most of the work on zero-delay analog mappings
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deals with point-to-point communications, recent extensions to MAC environments

have appeared in the literature. Previous work on analog JSCC for the MAC includes

[23, 24, 27, 67] in which the quadratic Gaussian and Gaussian MAC case is treated. In

[40, 43], an analog JSCC scheme based on CDMA for the transmission of independent

Gaussian sources over a Gaussian MAC without side information is proposed. These

works show promising results for the use of analog JSSC schemes in MAC environments.

However, most of them focus on equal transmission rate, and the extension to other

rates is not straightforward.

In this chapter, we propose a distributed zero-delay analog JSCC scheme for

the transmission of Gaussian sources over a Gaussian MAC when side information is

available at the receiver or when sources are inter-correlated. The proposed scheme

first encodes each user’s data by applying Shannon-Kotel’nikov mappings designed for

point-to-point communications, and then utilizes a CDMA-like access scheme which

converts the MAC into orthogonal channels and provides users with the flexibility to

transmit at different rates. Different from standard CDMA, the input to the access

scheme is discrete in time and continuous in amplitude, but the basic idea of channel

orthogonalization still holds.

The remainder of this chapter is organized as follows. The formulation for

the two MAC scenarios under consideration is presented in Section 5.2. Section 5.3

describes the proposed system and illustrates the CDMA-like access scheme using a

Hadamard matrix. The theoretical limits are also discussed in Section 5.3. Simulation

results are presented in Section 5.4, and Section 5.5 concludes the chapter.

5.2 Problem Formulation

In this section, we define the two MAC scenarios under consideration.
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5.2.1 Scenario 1: Independent Gaussian sources with side information at

the receiver

Fig. 5.1 depicts scenario 1. We consider a Gaussian MAC with M users trans-

mitting memoryless independent Gaussian sources with si ∼ N (0, σ2
s), i = 1...M . The

corresponding side information symbol at the common receiver is modeled as s′i =

si+ui, i = 1, ...M , where ui ∼ N (0, σ2
u) is independent of si so that s′i ∼ N (0, σ2

s +σ2
u).

The correlation coefficient ρ = E[sis
′
i]/
√

E[s2i ]E[s′2i ] = σs/
√

(σ2
s + σ2

u) denotes the cor-

relation between si and ŝi. Each encoder consists of an encoding function αi, which

maps one or more source symbols to one or more channel symbols, yi denotes chan-

nel symbol of user i and is transmitted over the Gaussian MAC with additive noise

n ∼ N (0, 1) (we assume the variance of n is 1 without loss of generality). The received

signal is r =
∑M

i=1 yi + n. At the common receiver, the decoder βi reconstructs ŝi from

s′i and r. As it is common in the literature, we use mean square error as the distortion

measure and the distortion of user i is defined as Di = E[‖si − ŝi‖|2]. The power

constraint is defined as the total average power P =
∑M

i=1 Pi ≤ Pmax where Pi is the

average power of yi. The problem is to find the encoders (αi) and decoders (βi) that

minimize the distortion Di subject to the power constraint.

5.2.2 Scenario 2: Quadratic (Correlated) Gaussian Sources without side

information

Fig. 5.2 depicts scenario 2. Different from the previous case, we only consider

a Gaussian MAC with two-users (M = 2). The quadratic Gaussian sources s1 and s2

are assumed to be memoryless zero mean Gaussian random variables modeled as si =

v + ωi ∼ N (0, σ2
si
), i = 1, 2, where v ∼ N (0, σ2

v) is the common information for both

sources and ωi ∼ N (0, σ2
ωi
) is unique to each source. v and ωi are independent. Without

loss of generality, we further assume that σ2
ω1

= σ2
ω2

which implies σ2
s1
= σ2

s2
= σ2

s . The

correlation coefficient ρ = E[s1s2]/σ
2
s = σ2

v/σ
2
s denotes the correlation between s1 and

s2. Similar to scenario 1, encoder αi separately maps si to yi, which is transmitted over

the Gaussian MAC. At the receiver, ŝi is decoded only from the received signal r by
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Figure 5.1: Independent Gaussian sources transmitted using an analog JSCC system
over a Gaussian MAC when side information is available at the receiver.

s1 ∈ R

s2 ∈ R
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Encoder
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Decoderr ∈ R

n ∈ R
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Figure 5.2: Analog JSCC communication system for the transmission of quadratic
Gaussian sources over a Gaussian MAC. No side information is available
at the receiver.

the decoding function β. The power constraints and distortion measures are defined as

in scenario 1. The problem is to find α1, α2 and β that minimize the total distortion

D =
∑2

i=1 Di subject to the power constraint.
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Si ∈ RN

N : L mapping
Xi ∈ Rmi

CK×mi

T
Yi ∈ RK

Figure 5.3: Encoder αi. Sequence of source symbols Si are first encoded by
a Shannon-Kotel’nikov mapping and then transformed by sub matrix
CK×mi

T of a CDMA-like access scheme codebook.

R ∈ RK

CK×K

MMSE / simplified decoding

MMSE / simplified decoding

R̂1 ∈ Rm1

R̂M ∈ RmM

Ŝ1 ∈ RN

ŜM ∈ RN

Figure 5.4: Decoder β. The received sequence is multiplied by codebook CK×K .
For each user the decoding is performed as explained in Chapter 3 and
Chapter 4 for point-to-point communication scenarios.

5.3 Proposed Communications Scheme

In Chapter 3, we have proposed analog JSCC schemes based on Shannon-

Kotel’nikov mappings for transmitting a memoryless Gaussian source over an AWGN

channel when side information is available at the receiver, while Chapter 4 consid-

ers the transmission of quadratic Gaussian sources over separated AWGN channels.

Therefore, if we could manage to convert the MAC into orthogonal AWGN channels

without reducing channel capacity, we would be able to encode the source using the

mappings proposed in Chapter 3 or Chapter 4, depending on the scenario. Based on

this idea, the proposed scheme combines the analog mappings proposed in Chapter 3

and Chapter 4 with a CDMA-like access scheme which converts the MAC into several

orthogonal AWGN channels. The proposed encoder αi is shown in Fig. 5.3. The

decoder β is shown in Fig. 5.4. The CDMA-like access scheme is explained in detail

next.
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5.3.1 CDMA-Like Access Scheme

Let xj
i denote the jth symbol user i wants to transmit prior to the access scheme.

For M users to transmit signals over the MAC in K time intervals, we utilize a K×K

orthogonal matrix (e.g., a Hadamard matrix), CK×K (K ≥ M). CK×K is also known

as the codebook. Assume user i wants to transmit mi (mi < K) symbols (Xi =

[x1
ix

2
i ...x

mi

i ]) over K time intervals, then the codebook needs to be divided so that user

i is assigned mi columns and
∑M

i=1 mi = K. Moreover, each user’s columns are scaled

by ηi =
1√
mi

for normalization purposes. The columns assigned to user i constitute the

submatrix CK×mi
so that CK×K is given by

CK×K = [CK×m1
|CK×m2

..|CK×mM
], (5.1)

where CK×mi
is

CK×mi
=





















c1i

c2i
...

cKi





















=





















c1i (1) c1i (2) · · · c1i (mi)

c2i (1) c2i (2) · · · c2i (mi)
...

...
. . .

...

cKi (1) cKi (2) · · · cKi (mi)





















(5.2)

At the kth interval, the transmitted symbol of user i is

yki = Xic
k
i

T
, (5.3)

where cki is the kth row of CK×mi
and xT is the transpose of vector x. The received

signal at the kth interval is

rk =
M
∑

i=1

yki + nk =
M
∑

i=1

Xic
k
i

T
+ nk, (5.4)

where nk is the kth noise symbol.

Note that CK×K
TCK×K = D is a K×K diagonal matrix with M distinct values

(mi entries of value K/mi). Therefore, the Gaussian MAC can be transformed into

K orthogonal Single-Input Single-Output (SISO) AWGN channels by multiplying the
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K received symbols R = [r1r2...rK ] with CK×K at the receiver. The equivalent jth

received symbol of user i is:

r̂ji =
K

mi

xj
i +NMACd

j
i , (5.5)

where NMAC = [n1n2...nK ] is the noise vector in K time intervals and dj
i is the jth

column of CK×mi
.

As the codebook CK×K is normalized, the average power of xj
i is Pi, and the

capacity of the jth orthogonal AWGN channel of user i is

Cj
i =

1

2
log2(1 +

KPi

mi

), (5.6)

The scheme capacity is

Cscheme =
1

K
(
M
∑

i=1

mi
∑

j=1

Cj
i ) =

1

K
[
M
∑

i=1

mi
∑

j=1

(
1

2
log2(1 +

KPi

mi

))], (5.7)

where we have divided by K because the proposed system uses the MAC K times.

The capacity of the Gaussian MAC is [18]

CMAC =
1

2
log2(1 + P ) =

1

2
log2(1 +

M
∑

i=1

Pi)

=
1

2
log2[1 +

M
∑

i=1

mi
∑

j=1

(
Pi

mi

)]

(5.8)

It can be easily shown that Cscheme and CMAC are equal if and only if

Pi

mi

=
Pj

mj

∀j 6= i with 1 ≤ i, j ≤ M. (5.9)

(5.9) indicates the optimal allocation for the CDMA-like access scheme. For the two

user case with a fixed m1 and m2 where P = P1 + P2, the optimal power for user i is

P ∗
i =

mi

m1 +m2

P. (5.10)

Likewise, we can also derive the optimal m∗
1 and m∗

2 for a given P1 and P2 such that

m∗
1 +m∗

2 = K.

m∗
i =

Pi

P1 + P2

K. (5.11)
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Since mi is the number of columns assigned to user i, it should be an integer. Thus we

approximate m∗
i as

m∗
i = ⌈ Pi

P1 + P2

⌉K. (5.12)

For the case of two users (M = 2), we can break up (5.7) to obtain the infor-

mation rate achieved by each user



























R1 =
1

K
(
m1
∑

i=1

1

2
log2(1 +

KP1

m1

))

R2 =
1

K
(

K
∑

i=m1+1

1

2
log2(1 +

KP2

m2

)).

(5.13)

Fig. 5.5 shows the maximal rates achieved by each user for the two user case

when P1 = 8 and P2 = 1. The MAC capacity region is obtained from R1+R2 ≤ CMAC .

As indicated in (5.9), there exists a point in the curve where the CDMA-like access

scheme achieves the MAC capacity.

In sum, if user i encodes si using Shannon-Kotel’nikov mappings with code rate

Rci = N/L and use the CDMA-like access scheme with parameters mi and K, the

transmission rate of user i, R′
i, which is the number of the number of source symbols

per channel symbol is given by

R′
i = Rci ×

mi

K
. (5.14)

(5.14) makes explicit an important advantage of the proposed system over existing

analog schemes for the MAC: the overall transmission rate does not only depend on

Rci but also onmi/K, which means that the rate can be controlled in the access scheme

itself. This provides the proposed scheme with a lot of flexibility to adapt to different

rates by adjusting either Rci or mi/K or both. In the first MAC scenario, as the source

symbols are independent for different users, R′
i can be set by adjusting mi/K and Rci

independently, so that the rates of different users are not necessarily equal. In the

second MAC scenario, the total number of source symbols is the same for both users,

and thus R′
1 = R′

2 is required. However, the proposed scheme still benefits from the
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Figure 5.5: MAC capacity and the proposed scheme capacity for P1 = 8, P2 = 1 and
the codebook size K = 64. Each point of the dotted curve is obtained
from (5.13) by sweeping m1 from 0 to 64.

fact that it can be easily adapted to different R′
is, as opposed to existing schemes that

work for a fixed R′
i.

5.3.2 Optimal Performance Theoretically Attainable (OPTA)

The OPTA serves as the theoretical bound of the analog JSCC communication

system. In the case of the M -user MAC, the OPTA for the first scenario is derived by
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evaluating [18]



















R(Di)R
′
i < C(Pi)

M
∑

i=1

R(Di)R
′
i < C(P ),

(5.15)

where R(Di) is the rate distortion function of user i and C(Pi) and C(P ) define the

MAC capacity.

In the case of memoryless Gaussian sources with side information at the receiver

(scenario 1), the rate distortion function of user i is [82]

R(Di) =















1
2
log σ2

sσ
2
u

(σ2
s+σ2

u)Di
, 0 < Di <

σ2
sσ

2
u

σ2
s+σ2

u

0, Di ≥ σ2
sσ

2
u

σ2
s+σ2

u
.

(5.16)

When a Gaussian MAC is considered, the capacity is [18]















C(P ) =
1

2
(1 + P )

C(Pi) =
1

2
(1 + Pi),

(5.17)

Since source-channel separation does not hold for the second MAC scenario, we

cannot apply (5.15) to derive OPTA, instead, we can derive a lower bound of OPTA

by equaling R(Di)R
′
i to the capacity of each orthogonal channel in (5.13)

The rate distortion function of quadratic Gaussian sources is [1]

R1(D1) ≥
1

2
log+

[

1− ρ2 + ρ22−2R2(D2)

D1

]

(5.18)

R2(D2) ≥
1

2
log+

[

1− ρ2 + ρ22−2R1(D1)

D2

]

(5.19)

R2(D2) +R1(D1) ≥
1

2
log+

[

(1− ρ2)β(D1, D2)

2D1D2

]

(5.20)

where

log+x = max(logx, 0) (5.21)
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β(D1, D2) = 1 +

√

√

√

√1 +
4ρ2D1D2

(1− ρ2)2
. (5.22)

In sum, the OPTA for scenario 1 is obtained by plugging (5.16) and (5.17) into

(5.15), while a the lower bound for the OPTA for scenario 2 is obtained by plugging

(5.18), (5.19), (5.20) and (5.17) into R(Di)R
′
i < C(Pi).

5.4 Simulation Results

In this section, we present simulation results for the two scenarios considered in

the chapter.

5.4.1 Scenario 1

Although the proposed scheme works for any M in scenario 1, we choose M = 2

in our simulations. In the first set of simulations, we use the 1 : 1 periodic piece-

wise linear mapping proposed in Chapter 3 followed by a CDMA-like access scheme

of size K = 8 and three different values of m1 and m2, specifically, (m1,m2) = (1, 7),

(m1,m2) = (3, 5), and (m1,m2) = (4, 4). In the second set of simulations, we use the

1 : 2 periodic spiral-like mapping proposed in Chapter 3, followed by the CDMA-like

access scheme with the same specification as in the previous simulations. In order

to minimize the distortion, we apply MMSE decoding. The optimal power allocation

given in (5.10) is used for each CSNR = 10log10(P1 + P2) and the parameters in the

1 : 1 periodic piece-wise linear mapping and the 1 : 2 periodic spiral-like mapping are

optimized for each CSNR and ρ of interest. Tables 5.1 and 5.2 show the optimum

values of the parameter T used for the 1 : 1 and 1 : 2 mappings. The performance of

the proposed scheme is measured in terms of signal to distortion ratio: SDR = 10 ×
(m1

K
log10(σ

2
s/D1)+

m2

K
log10(σ

2
s/D2)) versus CSNR and compared with the corresponding

OPTA given by

SDR <
10

Rc

log10(1 + P1 + P2)− 10log10(1− ρ2). (5.23)

Notice that this limit does not depend on the specific values of m1 and m2.
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Table 5.1: Optimal parameter (T ) for the 1 : 1 mapping

T CSNR = 0 dB CSNR = 5 dB CSNR = 15 dB CSNR = 25 dB
ρ = 0.9 3.1 3.0 3.2 3.1
ρ = 0.99 0.9 1.0 1.0 1.0

Table 5.2: Optimal parameter (T ) for the 1 : 2 mapping

T CSNR = 0 dB CSNR = 5 dB CSNR = 15 dB CSNR = 25 dB
ρ = 0.9 4.1 4.2 3.6 3.9
ρ = 0.99 1.4 1.1 1.1 1.2

Simulation results using the 1 : 1 periodic mapping for ρ = 0.9 and ρ = 0.99

are shown in Fig. 5.6 and Fig. 5.7, respectively. Fig. 5.8 and Fig. 5.9 plot the results

using the 1 : 2 periodic mapping. As for the OPTA, we can see from the figures that

the performance of the proposed scheme is the same irrespectively of the values of m1

and m2. This is not surprising because when optimum power allocation is used, the

CSNR of the orthogonal channels for user 1 and 2 are

CSNR = 10log10(
KPi

mi

) = 10× log10(P ) (5.24)

which is the same as the total CSNR. For high correlations and high CSNRs, the

proposed system also outperforms a scheme based on the concatenation of standard

mappings and the CDMA-like access scheme (denoted in the figure as linear+linear

for rate 1 : 1 and spiral+spiral for rate 1 : 2). This shows that with optimal power

allocation, CDMA-like access schemes achieve the capacity of the Gaussian MAC.

It is important to remark that the gap between the proposed scheme and OPTA is

(almost) asymptotically constant. The robustness of the proposed scheme under CSNR

mismatch is also shown in Figs. 5.6-5.9. We can see that the overall robustness

characteristic of analog mappings under CSNR mismatch still holds quite well for the

proposed scheme: when the real CSNR is lower/higher than the one used for the

mapping design, the SDR degradation/improvement is graceful.
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Figure 5.6: Performance evaluation for scenario 1 when ρ = 0.9: M = 2, K = 8 and
different values of m1 and m2. Rc1 = Rc2 = 1 : 1.

5.4.2 Scenario 2

For the transmission of quadratic (correlated) Gaussian sources without side

information, we simulate the proposed system with three different combinations of

Shannon-Kotel’nikov mappings and CDMA-like access scheme. As in the simulation

for scenario 1, we use the optimal power allocation according to (5.10) and optimize

the parameters for each analyzed CSNR and ρ.

In the first combination, Rc1 = Rc2 = 2 : 1 and m1 = m2 = K
2

= 1, thus

R′
1 = R′

2 = mi

K
× 2 = 1. We use the standard 2 : 1 bandwidth reduction mapping

described in Chapter 1 to encode s1 and the 2 : 1 bandwidth reduction mapping
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Figure 5.7: Performance evaluation for scenario 1 when ρ = 0.99: M = 2, K = 8
and different values of m1 and m2. Rc1 = Rc2 = 1 : 1.

proposed in [3] to encode s2, and utilize the simplified decoding procedure described in

Chapter 4. The optimum values of the parameter δ are shown in Table 5.3. Notice that

the optimum parameter δ is nearly constant from CSNR = 30 dB to 50 dB, different

to the result in Chapter 4 where the optimum parameter changes with CSNR. The

reason is that in Chapter 4 the analyzed CSNR is relatively low < 30 dB, while in this

chapter we simulate a higher CSNR to facilitate the simplified decoding. Thus, when

CSNR is high enough, s1 is almost error-free, the correlation between ŝ1 and s2 is very

similar to ρ, and thus the variation of the optimum parameter is very small.

Fig. 5.10 shows the performance of the proposed scheme for ρ = 0.95. For

97



0 5 10 15 20 25
0

10

20

30

40

50

60

CSNR (dB)

S
D

R
 (

d
B

)

 

 

OPTA

(m
1
, m

2
) = (4, 4) Optimized for all CSNRs

(m
1
, m

2
) = (1, 7) Optimized for all CSNRs

(m
1
, m

2
) = (3, 5) Optimized for all CSNRs

(m
1
, m

2
) = (4, 4) Optimized for CSNR = 15 dB

(m
1
, m

2
) = (4, 4) Optimized for CSNR = 5 dB

Spiral + Spiral (m
1
, m

2
) = (4, 4) Optimized for all CSNRs

Figure 5.8: Performance evaluation for scenario 1 when ρ = 0.9: M = 2, K = 8 and
different values of m1 and m2. Rc1 = Rc2 = 1 : 2.

Table 5.3: Optimized parameter (δ) for the 2 : 1 mapping

δ CSNR = 30 dB CSNR = 35 dB CSNR = 40 dB CSNR = 45 dB CSNR = 50 dB
ρ = 0.95 1.4 1.3 1.4 1.2 1.4

comparison, we also plot the result from [27], which, to our knowledge, provides the

best results so far for transmitting quadratic Gaussian sources over a Gaussian MAC
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Figure 5.9: Performance evaluation for scenario 1 when ρ = 0.99: M = 2, K = 8
and different values of m1 and m2. Rc1 = Rc2 = 1 : 2.

at rate 1, and the corresponding upper bound, which is given by [27]

SDR =
2σ2

s

D
=



















(

P
2
(1−ρ2)+1

P (1+ρ)+1

)−1

, 0 < P < 2ρ
1−ρ2

(

1−ρ2

P (1+ρ)+1

)− 1

2 , P ≥ 2ρ
1−ρ2

.

(5.25)

From Fig. 5.10, we can see that the proposed scheme achieves a performance similar

to the one in [27], which was designed for specific rates, and exhibits a nearly constant

gap to the theoretical limit. However, the proposed scheme is much easier to adapt

to other transmission rates as we will see with more examples later. We also evaluate

the robustness of our system to CSNR mismatch. The optimum parameters for CSNR
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Figure 5.10: Performance evaluation for scenario 2 when ρ = 0.95. The CDMA-like
access scheme is defined by m1 = m2 = K

2
= 1. R′

1 = R′
2 = 1. The

comparison scheme is the SQLC system in [27].

= 40 dB are used in the simulation, and the results are also included in Fig. 5.10. As

in scenario 1, the proposed scheme shows very good robustness when the real CSNR

is different from the one used in the design.

In the second combination, Rc1 = Rc1 = 1 : 1, m1 = m2 = K
2

= 1, thus

R′
1 = R′

2 =
mi

K
× 1 = 1

2
. We apply the standard linear mapping described in Chapter 1

to encode s1 and use the 1 : 1 periodic mapping proposed in Chapter 3 to encode s2.

MMSE decoding is used. Fig. 5.11 shows the performance of the proposed scheme for

ρ = 0.95. For comparison, we also include the lower bound for the OPTA described in

100



0 5 10 15 20 25
−5

0

5

10

15

20

25

30

35

CSNR (dB)

S
D

R
 (

d
B

)

 

 

OPTA lower bound

Proposed scheme (Optimized for all CSNRs)

Linear + Linear + CDMA (Optimized for all CSNRs)

Proposed scheme (Optimized for CSNR = 5 dB)

Proposed scheme (Optimized for CSNR = 15 dB)

Figure 5.11: Performance evaluation for scenario 2 when ρ = 0.95. The CDMA-like
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Section 5.3.2 and a system that utilizes standard mappings for each of the users prior

to the access scheme.

In the third combination, Rc1 = 1 : 1, Rc2 = 1 : 2, m1 = 1, m2 = 2, K = 3, thus

R′
1 = R′

2 =
1
3
. We use the standard 1 : 2 mapping described in Chapter 1 to encode s1

and the 1 : 1 periodic mapping proposed in Chapter 3 to encode s2. MMSE decoding

is used. Fig. 5.12 shows the performance of the proposed scheme for ρ = 0.95.

We can see that for all the three combinations, when the CSNR is high the

proposed system performs parallel to the theoretical limits, and outperforms the scheme

that uses standard mappings to encode each of the users.
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5.5 Conclusion

We have proposed a zero-delay JSCC scheme based on analog mappings and a

CDMA-like access scheme for two scenarios in MAC: the transmission of independent

Gaussian sources over a Gaussian MAC with side information at the receiver and

the transmission of quadratic (correlated) Gaussian sources over a Gaussian MAC

without side information. Different from existing zero-delay schemes which are designed

for a fixed transmission rate, the proposed scheme can be easily adapted to different

rates. Simulation results show that the proposed system performs very close to the

theoretical limits when the optimal power allocation is applied, and is robust against
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CSNR mismatch.
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Chapter 6

CONCLUSION AND FUTURE RESEARCH

In this dissertation, we have explored analog joint source-channel coding based

on direct source-channel mappings in non-standard scenarios. The basic idea is to

transmit discrete-time continuous-amplitude sources by directly mapping points in the

source space to points in the channel space. Depending on the bandwidth ratio, which

is defined as the number of source symbols per channel symbol, analog direct source-

channel mappings are categorized into three types: bandwidth expansion mappings

(bandwidth ratio < 1), bandwidth reduction mappings (bandwidth ratio > 1) and

bandwidth match mappings (bandwidth ratio = 1). Compared with digital com-

munications systems, analog direct source-channel mappings provide low delay, low

complexity and robustness against varying channel conditions, and thus they are very

appropriate for real-time communication systems subject to delay and complexity con-

straints. Analog direct source-channel mappings have so far been mostly applied to

independent sources and point-to-point channels. However, as shown in this disserta-

tion, they have great potential in more general scenarios.

In Chapter 2, bandwidth reduction mappings for the transmission of multivari-

ate correlated Gaussian sources over point-to-point AWGN channels are investigated.

PCCOVQ is utilized to obtain the optimal mapping for 2 : 1, 3 : 1 and 4 : 2 bandwidth

ratios. Simulation results show that linear mappings achieve OPTA for low CSNRs.

For high CSNRs, the trained codebook is non-linear and it performs very close to

OPTA. The 4 : 2 mapping outperforms the 2 : 1 mapping even though the bandwidth

ratio is the same, as more correlation can be explored. Furthermore, the optimal signal

space structure is not a spiral-like space filling curve (as for i.i.d. sources).
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Chapter 3 considered the design of non-linear mappings for the transmission

of independent Gaussian sources over a point-to-point AWGN channel when side in-

formation is available at the receiver (Wyner-Ziv scenarios). A 1 : 1 scheme and a

1 : M scheme based on the use of Shannon-Kotel’nikov mappings in a periodic fashion

is proposed. To reduce the complexity of the numerical MMSE decoder, a simplified

decoding technique is proposed. A flexible rate scheme which combines the 1 : 1 and

1 : M schemes is proposed to construct mappings with any bandwidth ratio between

1 : 1 and 1 : M .

In Chapter 4 and Chapter 5, analog direct source-channel mappings are ex-

tended to distributed scenarios where sources of multiple users are encoded separately

and jointly decoded at the common receiver. Chapter 4 introduced the mappings for

the transmission of correlated Gaussian senders over separated AWGN channels. An

asymmetric encoding scheme is proposed where one of encoders is the standard map-

ping and the other is the mapping for the Wyner-Ziv scenario that was proposed in

Chapter 3. The proposed mappings were shown to be robust against CSNR and cor-

relation mismatch. Chapter 5 discussed analog mappings for the Gaussian MAC. A

CDMA-like access scheme is used to convert the MAC into single-input single-output

channels for each user. Compared with other orthogonal schemes where the rate of

each user is determined only by the rate of the Shannon-Kotel’nikov mapping, in the

proposed scheme the rate of each user is incorporated in the access scheme itself, which

facilitates the design.

6.1 Future Work

There are multiple research directions that can be considered in future work,
including:

• Generalizing the PCCOVQ method to any bandwidth ratio and to distributed
scenarios.

• Exploring intra-correlation and inter-correlation at the same time.

• Designing analog mappings for the transmission of correlated sources over broad-
cast channels.
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• Studying how sensitive the analog mappings are to non ideal carrier recovery and
phase shift.

• Finding analog mappings for non-memoryless noisy channels.

• Exploring path diversity in multihop communication scenarios.
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