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ABSTRACT 

Recombinant therapeutic proteins have become one of the preferred treatments 

for many human diseases. CHO cell lines are the most frequently used mammalian 

cell system for the production of therapeutic proteins. With the increasing number of 

studies in CHO cells, understanding the basic information of CHO cells is essential to 

make further improvements in therapeutic protein production. As the genome 

sequence provides a basis for genetic engineering and transcriptomic data profiles 

gene expression information, a platform that allows scientists to quickly go through 

CHO cell genome and transcriptome information will be extremely helpful. Reference 

genome sequences and transcriptome annotation information of CHO cells can be 

visualized by JBrowse on CHOgenome.org, a publicly available website. However, 

currently no tool allows users to easily visualize gene expression levels under certain 

conditions from previous experiments. To build a tool for gene expression data 

visualization, custom Python scripts were created to load transcriptomic data from 

previous studies and generate new files in a JBrowse acceptable format, which enables 

the visualization of mRNA expression data in JBrowse. The tool made up by these 

Python scripts is named ‘ExpressGENiE’, and can process data either from RNA-Seq 

or DNA microarray experiments by choosing certain functions. Through the use of 

‘ExpressGENiE’, new files that contain gene expression data are generated and can be 

visualized on the JBrowse instance available on CHOgenome.org. This now enables 

users to easily find the expression level of certain genes from publicly-available 

experiments. 
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 Chapter 1

INTRODUCTION 

1.1 Motivation 

Recombinant therapeutic proteins, a class of biopharmaceuticals, are drugs 

derived from the genetic manipulation of living organisms (microorganisms, plant cell 

cultures, insect and mammalian cell lines) [Kantardjieff and Zhou, 2014; Walsh, 

2006]. These proteins have become an important therapeutic option in a variety of 

human diseases, such as insulin to treat diabetes and interferon (IFN) to treat viral 

hepatitis [Dingermann, 2008]. Originally, therapeutic proteins were extracted from 

human or other animals’ blood or tissues, such as the extraction of insulin from pigs 

and cattle [Lens and Evertzen, 1952]. In 1978, the first recombinant therapeutic 

protein, human insulin, was synthesized via genetic engineering of Escherichia coli 

[Goeddel et al., 1979]. With the advances in cell engineering technology, recombinant 

proteins manufactured by living cells can now be engineered to have better therapeutic 

characteristics, such as higher efficacy and lower immunogenicity [Grillberger et al., 

2009].  

For the production of recombinant proteins, mammalian cells are the 

predominant host cell platform [Berlec and Štrukelj, 2013]. Of the 211 

biopharmaceuticals that gained regulatory approval by July 2014, 30 (14.2%) were 

produced in yeast, 63 (29.8%) in E.coli, and 115 (54.5%) in mammalian cells [Walsh, 

2014]. Of the therapeutic proteins produced in mammalian cells, 69 (60%) were 

produced by Chinese Hamster Ovary (CHO) cell lines, making CHO cell lines the 
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most important mammalian cell system for recombinant therapeutic protein production 

[Walsh, 2014].  

The prevalence of CHO cells as a preferred production platform for 

biopharmaceuticals is due to a number of attractive properties, with the most important 

ones being product safety and manufacturing adaptability. Compared with E. coli and 

yeast, CHO cells have the ability to perform human-compatible post-translational 

modifications (e.g. glycosylation), which are less likely to cause immune responses, 

thus reducing product safety concerns [Hammond et al., 2012, Xu et al., 2011, Jayapal 

et al., 2007]. In addition, CHO cells do not transmit most human pathogenic viruses, 

and therefore, are considered a safe host [Wurm et al., 2011]. Finally, CHO cells also 

have a manufacturing adaptability advantage in that serum-free (SF) suspension 

culture conditions can be used for large-scale commercial therapeutic protein 

production, increasing process safety and decreasing production costs [Kim et al., 

2012,Baik et al., 2011].  

1.2 Genome 

Methods for enhancing the productivity and quality of recombinant therapeutic 

proteins produced by CHO cells are of immense interest to biopharmaceutical 

companies. Genetic modifications (i.e., knock down, knock out, knock in) are 

important approaches used to design cell lines with increased productivity or with 

other desirable features for recombinant therapeutic protein production. The CHO and 

Chinese Hamster (CH) genome sequences provide a basis to facilitate the genetic 

engineering of CHO cell lines. With the genome sequence and annotation available, it 

is possible to perform targeted genetic editing in CHO cell lines. The genome 

sequence can also be used as a foundation to interpret various types of –omics data. 
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For instance, the genome sequence is often required for mapping RNA sequencing 

reads in transcriptome studies. The mapping provides a framework to merge 

sequencing reads into a complete mRNA transcript. Overall, the genome sequence 

provides an opportunity to better understand CHO cell physiology. 

Currently, the CHO-K1 and CH genome information is available at 

CHOgenome.org [http://www.chogenome.org], which is an online database for CHO-

specific sequence information and provides a common resource for the CHO 

community [Hammond et al., 2012, Kremkow et al., 2015]. The CHO-K1 cell line is 

the predominantly used ancestral CHO cell line [Xu et al., 2011]. The CHO-K1 cell 

line 2014 genome annotation contains 27,843 predicted genes and 31,545 transcripts 

[Kremkow et al., 2015] and its assembly contains 265,786 contigs and 109,152 

annotated scaffolds [Xu et al., 2011]. While the CHO-K1 genome information 

facilitates the study of CHO cells, the inherent genomic instability of CHO cells, 

which could lead to a wide-range of rearrangements of its genome within two adjacent 

generations [Xu et al., 2011], makes it impossible to use CHO-K1 genome as the CHO 

reference genome. The unstable ancestral CHO-K1 genome increases the difficulty of 

using the CHO-K1 genome to fully represent all CHO cell lines or all CHO-K1 cells 

in one population. Thus, the CH genome is being used by the community as a key 

CHO reference genome. The CH genome consists of 24,044 predicted genes, of which 

82% are annotated [Kremkow et al., 2015, Lewis et al., 2013]. 

1.3 Transcriptome 

Transcriptomics is a useful approach to understand the biology of CHO cells, 

especially when a fully assembled genome is available. The transcriptome, which 

encompasses the full range of messenger RNA molecules in one cell or a group of 
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cells, is the initial product of genome expression and can subsequently be further 

translated into the proteome [Brown, 2002]. As transcriptomic data can 

comprehensively profile gene expression information, expressed genes can be 

identified [Becker et al., 2011; Birzele et al., 2010] and gene expression levels can be 

measured through transcriptomic studies. In addition, transcriptomic studies have been 

used to investigate gene expression changes in combination with proteomic studies. 

For example, these two approaches have been used together to better understand the 

mechanism of a metabolic shift which is associated with reduced glucose consumption 

and lactate production in continuous culture of mammalian cells (mouse-mouse 

hybridoma cell line) [Korke et al., 2004]. In addition, they have also been used to 

study the characteristics of high-producing mammalian cell lines, particularly their 

protein synthesis and growth/death pathways [Seth et al., 2007]. 

1.4 Visualization of Data 

Genomic and transcriptomic data contains a large amount of biological 

information for CHO cells. Visualization of genome and transcriptome data has many 

practical applications that can help scientists understand and gain insights from the 

genome and transcriptome information. For users who have a gene of interest, the 

visualization of publicly available gene expression data can directly demonstrate how 

the gene is expressed under different experimental conditions, which can be used for 

further studies. For example, the visualized gene expression data from previous 

experiments can be used as a database for users to identify high producing CHO cells 

and then study their characteristics [Sanny et al., 2006]. Additionally, users can obtain 

reference expression levels of genes of interest under various conditions from previous 
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experiments [Yee et al., 2008], which could help users to decide which culture 

condition to use in their experiments.  

There are available genome browsers that enable users to obtain visualization 

data or visualize their own data. The UCSC genome browser 

[https://genome.ucsc.edu] displays genome and transcriptome information from many 

species. Integrative genomics viewer (IGV) 

[http://software.broadinstitute.org/software/igv/] is another power visualization tool 

that can be downloaded to the user’s computer for private data visualization. In 

addition, plenty of organism specific databases use web-based genome browsers to 

visualize relevant data [Wang et al., 2013], such as Rat Genome Database (RGD) 

[http://rgd.mcw.edu] and Wormbase [http://www.wormbase.org/#012-34-5]. Both the 

RGD database and Wormbase genome viewers are based on JBrowse. When users are 

using UCSC genome browser, IGV, or JBrowse to visualize transcriptome data, these 

tools can only display limited information, such as the track that display genes which 

were detected by a DNA microarray experiment (Figure 1.1), or visualize a BAM file 

that displays reads mapping information from an RNA-Seq experiment (Figure 1.2). 

These data visualization tools are unable to visualize gene expression levels. 
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Figure 1.1 Tracks from UCSC genome browser show expressed mRNA transcripts 
identified by past DNA microarray experiments (Alignments of Affymetrix) 
[https://genome.ucsc.edu]. 

 

Figure 1.2 BAM files from RGD show read mapping data from RNA-Seq experiments 
[http://rgd.mcw.edu]. 
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CHOgenome.org has a built-in genome viewer (based on the web-based 

program JBrowse [Skinner et al., 2009]), which displays the annotated CHO-K1 

genome and the chromosome-sorted CH genome [Kremkow et al., 2015]. The CHO-

K1 genome is organized by scaffold in JBrowse because scaffolds are the largest 

segments of continuous sequences and gaps built during genome assembly. Currently, 

the length of total CHO-K1 sequence is 2,399,786,748 base pairs, which consists of 

109,152 scaffolds and a scaffold N50 of 1,147,233 base pairs [Xu et al., 2011]. The 

selected scaffold displays all genes located within this scaffold, which makes it easy 

for users to locate the genes of interest and also be aware of the nearby gene 

information. However, there is currently no tool on CHOgenome.org to visualize 

transcriptomic data directly using gene expression data. A challenge to 

implementation is that gene expression data files prevent the direct or clear display of 

the gene expression levels on a browser. 

To visualize the gene expression level from either DNA microarray or RNA-

Seq experiments, a platform for converting processed gene expression data from 

transcriptomics studies to a format that enables visualization of the data in a web-

based genome browser is developed in this project. To demonstrate the utility of this 

tool, publicly available gene expression data is converted to new files compatible with 

visualization in JBrowse, enabling mRNA expression data to be added to 

CHOgenome.org. 

1.5 Background: DNA Microarray and RNA Sequencing  

Currently, there are two main technologies to measure gene expression levels: 

DNA microarrays and RNA sequencing (RNA-Seq). 
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Although less commonly used today, DNA microarrays were used in the past 

to obtain transcriptomic data to study how environmental factors (e.g.: culture 

temperature, hyperosmotic stress) influenced gene expression in CHO cells [Baik et 

al., 2006; Shen and Sharfstein, 2006; Vishwanathan et al., 2015]. More recently, with 

the improvement of sequencing accuracy and cost, RNA sequencing is another option 

for studying the transcriptome. For instance, RNA-Seq can be used to construct a 

transcripts database for CHO cells [Rupp et al., 2014], or to study how genes influence 

gene amplification [Kondratova et al.,2015; Vishwanathan et al., 2015]. 

1.5.1 DNA microarray 

DNA microarray technologies were designed to measure the expression level 

of thousands of genes within a genome in a single experiment [Trevino et al., 2007]. 

The basic workflow of DNA microarray technology is shown in Figure 1.3. Each array 

consisting of thousands of different oligonucleotides (primarily PCR products or 

oligonucleotides) attached to a solid surface, often glass. These oligonucleotides are 

used as probes. The complementary DNA prepared from mRNA of the organism of 

interest is incorporated with fluorescent dyes. Then, the cDNA will hybridize with the 

probes on the array and the results are detected by laser scanning [Harrington et al., 

2000]. 
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Figure 1.3 Workflow of DNA microarrays [Trevino et al., 2007]. 

1.5.2 RNA sequencing 

RNA-Seq is based on deep-sequencing technologies. The RNA-Seq data can 

be used to estimate gene expression levels by mapping next generation sequencing 

(NGS) reads to transcripts [Benjamin et al., 2014] and counting the read density within 

a region of sequence. The unit is usually FPKM/RPKM (Fragments Per Kilobase Per 

Million Fragments Mapped/Reads Per Kilobase Per Million Reads Mapped).  

The basic workflow of RNA-Seq has several steps (Figure 1.4). The first step 

is to convert the population of RNA extracted from an organism under a test condition 

to a library of cDNA fragments with adaptors attached to one or both ends. The 

adaptors are short sequences that are specific to a platform. The second step is to 
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sequence the molecules (cDNA with adaptors), which can be done with or without 

amplification (e.g. PCR), in a high-through manner to obtain short sequences from one 

end (single-end sequencing) or both ends (pair-end sequencing). Single-end 

sequencing involves sequencing fragments from one side, while pair-end sequencing 

is sequencing fragments from both sides (Figure 1.5). Any high-throughput 

sequencing technology can be used for RNA-Seq. For example, the Illumina IG, also 

referred to as ‘Solexa IG Sequencer’, is a next-generation sequencing system provided 

by Illumina. The last step is either mapping the short sequences to a reference genome 

or reference transcripts, or assembling the sequences de novo without a reference 

genomic sequence, to produce a genome-scale transcription map that consists of the 

transcript structure and/or level of expression of each gene. The short sequences, 

referred to as reads, are typically 30-400 bp, depending on the DNA-sequencing 

technology used [Benjamin et al., 2014, Wang et al., 2009]. 
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Figure 1.4 Workflow of RNA-Seq [Wang et al., 2009]. 
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Figure 1.5 Single-end sequencing and paired-end sequencing. 
[http://www.yourgenome.org/facts/how-do-you-put-a-genome-back-
together-after-sequencing] 

1.5.3 Comparison of DNA microarray and RNA-Seq 

DNA microarray and RNA-Seq technologies each have distinguishing 

advantages and disadvantages (Table 1.1).  

DNA microarrays can be used to directly measure the expression level of a 

group of target genes at the same time and generate an output file of relatively small 

size. The DNA microarray output file contains data from the entire dataset and is 

usually only several megabytes (MB) large. These are remarkable advantages of DNA 
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microarray technology, which provide users a clear and easy way to analyze the output 

file [Bumgarner, 2013]. One big limitation of DNA microarray is that it is based on 

complimentary known genome sequences to detect the expression level of sequences 

[Bumgarner, 2013], which makes the method unsuitable for samples with unknown 

genome. Another limitation is that DNA microarray data has higher background noise 

compared with RNA-Seq, because DNA microarrays lack a direct measure of relative 

concentration as the detected signal level is not linearly proportional to the 

concentration of the DNA hybridizing to the microarray [Bumgarner, 2013]. In 

addition, it is difficult to prevent other homologous sequences from binding to the 

same probe, which is a common issue for complex mammalian genomes that have 

multiple related DNA/RNA sequences [Bumgarner, 2013]. 

In contrast, RNA-Seq sequences the whole transcriptome and generates a large 

amount of information. Thus, efficient tools are needed to store, retrieve, and process 

the large amount of output data [Wang et al., 2009]. The RNA-Seq output file is much 

bigger than DNA microarray output file. Unlike the DNA microarray output file, each 

RNA-Seq sample has an output file that is usually more than 1 gigabyte (GB). The 

sequence coverage is another challenge for RNA-Seq, because the number and level of 

different transcript isoforms are often unknown. Due to the fact that one gene can 

produce different transcripts, calculating the coverage of the transcriptome is also 

more complicated than calculating genome-sequence coverage [Wang et al., 2009]. 

Despite these limitations, RNA-Seq has clear advantages over microarrays for 

transcriptomics. RNA-Seq can be used to 1) detect transcripts for genomic sequences 

that have not yet been determined; 2) reveal the sequence variations in the transcribed 

regions; 3) show the connectivity between multiple exons, and 4) define the precise 
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location of transcription boundaries with a single-base resolution [Wang et al., 2009]. 

Another advantage of RNA-Seq is that it has a lower background noise. RNA-Seq 

does not have an upper limit of what levels can be quantified, which enables 

measurement of a large range of expression levels [Wang et al., 2009].  

Table 1.1 Comparison between DNA microarray and RNA-Seq 

Features DNA microarray RNA-Seq 
Target Genes of interest  Whole genome 
Output data size  Small Big 
Sequence coverage No Yes 
Known sequences (basis) Yes No 
Background noise High Low 

1.6 Background: JBrowse  

JBrowse is a genome browser built using standard HTML and Java Script, 

making it compatible with almost all modern web browsers [Skinner et al., 2009, 

Westesson et al., 2013, Skinner and Holmes, 2010]. It contains important genome 

browser features including the ability to select tracks (track refers to file displayed on 

JBrowse), display the exon-intron structure of genes, and traverse through the genome 

using a navigation bar (the user interface of JBrowse is shown in Figure 1.6). JBrowse 

does not need to communicate with a back-end server for moving across the genome, 

zooming in and out, and reordering tracks. Instead, this functionality is on the client 

side, which makes these operations much faster, enabling users to easily view and 

compare data from multiple sources at different points in the genome [Skinner et al., 

2009].  
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Figure 1.6 The user interface of JBrowse. 

JBrowse can be used for visualizing genome annotations and displaying next-

generation sequencing data [Westesson et al., 2013, Skinner and Holmes, 2010]. 

JBrowse can visualize sequence data (nucleotide sequence), feature glyphs (different 

features, such as exon and intron, can be related), and quantitative data as tracks. In 

addition, these elements can be combined or viewed together to highlight parts of the 

data. Currently, JBrowse can display different tracks that contain sequence (FASTA), 

feature (GFF, BED, GenBank), quantitative (Wiggle, BigWig), alignment (BAM), 

variant (VCF), and image data [Buels et al., 2016]. 

1.7 Gap and solution 

After the mRNA expression data is collected, bioinformatics tools help to 

process and visualize the data. Based on the current methods available, DNA 

microarrays produce numerical data, which are usually used to represent the gene 

expression level, while RNA-Seq raw data requires other tools for further processing 

to obtain the actual gene expression levels. There are tools for the visualization of 

differential gene expression from RNA-Seq data including edgeR [Robinson et al., 

2010], DESeq [Anders and Huber, 2010], and Cuffdiff [Trapnell et al., 2012]. These 



 16 

tools are powerful and can illustrate the differential genes expression among multiple 

conditions. However, no conversion methods exist to go from the raw DNA 

microarray or RNA-Seq data to gene expression levels, which are viewable per sample 

and per dataset in a genome browser for visualizing the gene expression level. 

Therefore, displaying the gene expression levels of samples from several datasets on a 

single genome browser instance is the novel goal of this study.  

In this study, the current DNA microarray dataset is based on Affymetrix’ 

GeneChip technology. The current RNA-Seq datasets are based on Illumina RNA-Seq 

technology. The platform is based on custom Python scripts that can generate 

compatible format files from raw data files (DNA-microarray data) or from the output 

files of the Tuxedo protocol [Trapnell et al., 2012] (RNA-Seq data).  
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 Chapter 2

MATERIALS AND METHODS 

2.1 Materials 

The reference genome used in the study is the Chinese Hamster Ovary (CHO) 

K1 genome. The study involves two different types of data: DNA microarray data and 

RNA-Seq data. In particular, there is one DNA microarray dataset: GSE30321 [Clarke 

et al., 2011] and two RNA-Seq datasets: GSE59487 [Kondratova et al., 2015] and 

GSE75094 [Lee et al., 2016]. The dataset ID is the ID of the dataset used in the Gene 

Expression Omnibus (GEO) database [http://www.ncbi.nlm.nih.gov/geo/].  

Scripts written in Python version 2.7 were used to process these data. 

2.2 Method 

To visualize mRNA expression data, new files were generated by using custom 

Python scripts. When processing RNA-Seq data, the Tuxedo protocol [Trapnell et al., 

2012] was used with Python scripts. 

This study involves multiple different types of files. Two reference files 

contain basic CHO-K1 gene annotation and scaffold information respectively. Two 

assistant files were generated in order to help process the data. For each DNA 

microarray dataset, there are two raw data files and two different types of files were 

generated for data visualization. For each RNA-Seq dataset, there is one raw data file 

per sample and five different types of files were generated for data visualization. For 

the entire DNA microarray data type or the entire RNA-Seq data type, there is one file 
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per data type generated for data visualization. Additionally, one file was generated for 

data visualization, which combined general information from both data types. These 

files are summarized in Table 2.1. The term ‘track’ is used to refer to the 

corresponding data of each file shown on JBrowse.  
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Table 2.1 Summary of files 

File Source File Name/Format Description 

Reference files 

CHO-K1-
v1.refseq_2014.annot
ation.gff3 

The annotation GFF3 file contains the 
annotation of the genome assembly from the 
Chinese hamster ovary cell line CHO-K1 

CHO-K1eweswssss-
v1.scaffolds.fasta 

The FASTA file contains the genome sequence 
from the Chinese hamster ovary cell line 
CHO-K1 

Scaffold size text file Contains scaffold ID and scaffold size 

Gene symbol GTF file Contains gene ID, symbol and position for 
each gene 

DNA 
microarray 
dataset 

Raw table text file Contains the raw data results 
Target gene 
ID/Symbol/Name text 
file 

Contains target genes’ commonly used 
Symbol and the probe ID that is unique to the 
dataset 

Sample text file 
Contains the gene symbols, gene positions, 
and gene expression levels within each 
sample 

BigWig file Used to visualize the expression level for 
target genes 

Dataset GTF file Used to visualize the identification/symbol 
(commonly used) for target genes 

RNA-Seq 
dataset 

Raw reads file Contains the raw reads information 
Sample BAM file Contains reads mapping information 

Sample GFF3 file Contains information about annotated 
assembly transcripts 

Sample bigWig file Contains gene expression level information. 

Dataset GTF file Contains differentially expressed genes 
information 

Dataset GFF3 file Contains the source for each part of a 
sequence 

DNA 
microarray or 
RNA-Seq 

Data type GFF3 file 
Contains the source (dataset ID) for each part 
of a sequence 

DNA 
microarray & 
RNA-Seq 

Overall GFF3 file 
Contains the source (data type) for each part 
of a sequence 
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2.2.1 Reference tracks  

The reference track files ‘CHO-K1-v1.refseq_2014.annotation.gff3’ and 

‘CHO-K1-v1.scaffolds.fasta’ were obtained from CHOgenome.org. The JBrowse 

application was used to generate the reference tracks and to visualize these files. The 

reference gene and the reference mRNA tracks were generated from the ‘CHO-K1-

v1.refseq_2014.annotaion.gff3’ file, while the reference DNA track was generated 

from the ‘CHO-K1-v1.scaffolds.fasta’ file.  

2.2.2 Assistant files 

Two assistant files, consisting of a text format file and a GTF format file, were 

created to help generate or modify files in this study. The reference ‘CHO-K1-

v1.scaffolds.fasta’ file is the foundation for generating the assistant text format file 

that contains scaffold sizes. The reference ‘CHO-K1-v1.refseq_2014.annotation.gff3’ 

file is the basis for generating the assistant GTF format file that contains gene 

symbols. Each file was generated using custom Python scripts (for details see Chapter 

3 Results, section 3.1.2.1). 

The scaffold size text format file has two columns per line, one for scaffold ID 

and another for scaffold size. In the ‘CHO-K1-v1.scaffolds.fasta’ file, each scaffold 

has one row to record scaffold ID information and the following rows to list the 

nucleotide sequence of the scaffold in single-letter code (see Appendix A for the 

specific format). To generate the scaffold size file, a Python script was used to count 

the nucleotide sequences and to record the length and ID of scaffolds.  

The gene symbol GTF file (nine columns per line) stores gene positions and 

symbols. In the ‘CHO-K1-v1.refseq_2014.annotation.gff3’ file, there are nine columns 

per line that contains metadata for each gene/exon/CDs (coding sequence). Therefore, 
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a Python script was used to generate the gene symbol GTF file by selecting and 

recording only ‘gene’ features with their gene symbol.  

2.2.3 DNA microarray dataset 

For DNA microarray datasets, a GTF file and bigWig files were generated 

using Python scripts (for details see Chapter 3 Results, section 3.1.2.2). 

Each DNA microarray dataset has two files that are essential to process its 

data, the ‘raw table text file’ and the ‘target gene ID/Symbol/Name text file’. 

Generally, DNA microarray raw data are stored in a text format file that is referred to 

as the ‘raw table text file’. This file contains probe IDs used in the dataset and all 

genes’ expression levels from all samples. A supplementary file, referred to as the 

‘target gene ID/Symbol/Name text file’, includes a table, which contains the probe IDs 

used in the dataset and the gene symbols. These two files can be downloaded from the 

GEO database.  

To process the data more efficiently, the ‘raw table text file’ was separated into 

a series of sample text files (using the sample ID recorded in the ‘raw table text file’ as 

the new file name). All sample text files were saved in a single dataset folder (users 

can name the folder by setting the ‘-d’ parameter). As the ‘CHO-K1-

v1.refseq_2014.annotation.gff3’ file’ contains gene positions and gene symbols, 

Python scripts were used to generate the folder and the text file for each sample (for 

details see Chapter 3 Results, section 3.1.2.2.1). This was accomplished by combining 

the gene symbols from the ‘target gene ID/Symbol/Name text file’, gene positions 

from the ‘CHO-K1-v1.refseq_2014.annotation.gff3’ file’ and gene expression values 

from the ‘raw table text file’. The output sample text file consists of five columns per 

line: gene symbol, scaffold ID, start position, end position, and gene expression value. 
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BigWig files were chosen to visualize the gene expression information for each 

dataset. If the dataset has small number of samples (e.g. ≤20), then a bigWig file is 

generated for each sample individually. In contrast, if the dataset has a large number 

of samples (e.g. >20), two options are provided for generating the bigWig files based 

on the sample culture conditions and genetic engineering modifications. If it is 

possible to group samples by similar conditions or modifications, one bigWig file for 

each group is generated which stores the average gene expression level among the 

samples belonging to the respective group. On the contrary, if it is not possible to 

group the samples, the dataset will be treated as one group. Thus, one bigWig file is 

generated for the entire dataset.  

The bigWig file format was chosen because it can directly display two key 

values: the gene location and the gene expression level. Visualizing the data of bigWig 

files on JBrowse are shown as blocks, where each block represents an expressed gene 

(in Figure 2.1, the track in red box is the reference gene track). The position of the 

block indicates the location of the gene, and the height of the block represents the gene 

expression level. The average expression value was chosen because there are various 

conditions of samples and it provides a good summary of how a gene was expressed 

for a given condition/dataset.  
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Figure 2.1 The bigWig file of DNA microarray data shown on JBrowse. 

Generating a bedGraph file is a prerequisite to obtaining a bigWig file. The 

bedGraph format, which stores the same information as the bigWig file, is a human 

readable file format for the binary bigWig file. The bedGraph/bigWig file consists of 

four columns per line, which records the gene’s location and expression value. The 

four columns are scaffold ID, start site, end site, and gene expression value. To 

convert the bedGraph format to the bigWig format, ‘bedGraphToBigWig’, was 

download from ENCODE 

[https://www.encodeproject.org/software/bedgraphtobigwig/], and used. 

While a bigWig file provides the position and expression value of genes, it can 

not directly display the gene symbol/ID. Accordingly, a GTF file for each DNA 

microarray dataset was generated to indicate the gene symbol. In the dataset GTF file, 

each line records the metadata for an expressed gene that contains the gene symbol/ID 
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(consistent with the gene symbol/ID in reference file) and the PMID (PubMed ID) of 

the related paper. The data of the GTF file shown on JBrowse consists of colored 

blocks that represent expressed genes (Figure 2.2). The block position is the gene 

position, and the displayed gene symbol/ID indicate the gene symbol. Python scripts 

(for details see Chapter 3 Results, section 3.1.2.2.2) and two input files were used to 

generate this GTF file: the assistant gene symbol GTF file and one of the bedGraph 

files of the dataset. 

 

Figure 2.2 The GTF file of DNA microarray data shown on JBrowse. 

2.2.4 RNA-Seq dataset 

For RNA-Seq data, there are five file types: a BAM file, an annotation GFF3 

file, and a FPKM (Fragments Per Kilobase per Million mapped reads) bigWig file for 

each sample, a GTF file and an annotation GFF3 file for each dataset. To generate all 

of these files, the Tuxedo protocol [Trapnell et al., 2012] and Python scripts were used 

to process the data.  

In each RNA-Seq dataset, there are files for visualizing samples individually. 

RNA-Seq raw data (reads information) is usually stored in a FASTQ (for details see 

Appendix A) file. Many tools included in the Tuxedo protocol, Tophat, Cufflinks, 
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Cuffmerge, and Cuffdiff (this is also the order for running these tools) were chosen 

and run. Tophat maps reads to the genome. Cufflinks assembles reads to exons and 

transcripts. Cuffmerge and Cuffdiff compare gene expression conditions between any 

paired groups. Some of the output files were selected and used in further steps, 

including: BAM files from Tophat, assembly GTF files and text format files (with 

suffix ‘fpkm_tracking’) from Cufflinks, the merged GTF files from Cuffmerge, and 

the text format files (with suffix ‘diff’) from Cuffdiff.  

The Tophat output BAM file stores mapping information, including the read 

mapping location and mapping quality. The BAM file is compatible with JBrowse. 

Two versions of the BAM file are shown on JBrowse: the alignment BAM track and 

the coverage BAM track (Figure 2.3). The alignment BAM track indicates the 

position, direction, and match/mismatch information of the mapped reads. It uses 

colored dots to represent reads. The position of each dot represents the read mapping 

location, where red usually represents a positive strand, blue represents a negative 

strand, and black represents a mismatched sequence inside a read. The coverage BAM 

track displays the density of reads aligned to each position. The appearance and usage 

of the coverage BAM track are similar to the bigWig track. The whole track consists 

of several blocks. The height of each block represents the density of reads in that 

position with a density value. 
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Figure 2.3 The BAM file of RNA-Seq data shown on JBrowse. 

Cufflinks generates the assembled GTF file and the FPKM tracking file. The 

GTF file contains assembled transcripts information, including location of exons and 

transcripts, and the gene expression value. Cufflinks generates the assembly based on 

the reference ‘CHO-K1-v1.refseq_2014.annotation.gff3’ file. Accordingly, the 

assembled GTF file records all possible transcripts, which includes both expressed and 

unexpressed transcripts. Because the expressed and unexpressed gene cannot be 

distinguished from the assembled GTF file when it shown on JBrowse. Custom 

Python scripts were used to generate a new annotation GFF3 file to replace the 

assembly GTF file (for details see Chapter 3 Results, section 3.1.2.3.2). Two input 

files are required to initiate the scripts: the assembled GTF file and the assistant gene 
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symbol GTF file. The new annotation GFF3 file contains annotation information for 

the only expressed exons and transcripts (Figure 2.4).  

 

Figure 2.4 The annotation GFF3 file of RNA-Seq data shown on JBrowse. 

The FPKM tracking file is a text format file that contains sequence expression 

values. Cufflinks generates two FPKM tracking files: a transcript-level (isoform) 

FPKM tracking file (contains all transcripts and its expression level) and a gene-level 

FPKM tracking file (contains all genes and its expression level). The gene expression 

level in the gene-level FPKM tracking file is the summation of expression level for all 

transcripts of this gene. As all transcripts and genes are derived from reads, the data in 

gene-level FPKM tracking file contains all reads information for that gene, so the 

gene-level FPKM tracking file was selected for further use. To visualize the gene 

expression information in the FPKM tracking file (which is incompatible with 

JBrowse), Python scripts were used to build a new FPKM bigWig file (for details see 
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Chapter 3 Results, section 3.1.2.3.3). To generate the bigWig file, or the human 

readable bedGraph file, two input files are required: a gene-level FPKM tracking file 

and the assistant scaffold size text file. The new FPKM bigWig file displays the 

measurement value of the gene expression level when users hover their cursor over the 

gene (In Figure 2.5, the track in red box is the reference gene track). 

 

Figure 2.5 The FPKM bigWig file of RNA-Seq data shown on JBrowse. 

Each sample has a BAM file, the annotation GFF3 file, and the FPKM bigWig 

file. To compare gene expression among different conditions, Cuffmerge and Cuffdiff 

were used. Cuffmerge is a preparation step for running Cuffdiff and its function is to 

merge the assembled GTF files that come from each sample into a single merged GTF 

file. This merged GTF file contains all transcripts and exons information and works as 

a reference file in Cuffdiff. The function of Cuffdiff is to compare the gene expression 

level between paired conditions. It also can make comparisons among several 
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conditions by comparing gene expression between each paired conditions separately. 

In addition to the merged GTF from Cuffmerge, BAM files that come from Tophat for 

each sample are required. Cuffdiff maps all reads into the merged GTF file and then 

calculates a FPKM value for each gene. Afterwards, Cuffdiff calculates the expression 

differences of each gene between paired conditions. Finally, Cuffdiff generates an 

output text format file that contains all comparison information between paired 

conditions, which includes each condition’s gene expression value, and fold change as 

well as the p-value between two conditions. Because the comparison output text file is 

incompatible with JBrowse, a differential GTF file that records all the genes that show 

a significant difference between paired conditions was generated by custom scripts. 

There are two options to generate the differential GTF file: select by p-value and 

select by fold change (for details see Chapter 3 Results, section 3.1.2.3.4). If the 

selection by p-value option is chosen, the Cuffdiff provides a p-value for each 

comparison that is compared against an alpha value of 0.05. If the selection by fold 

change option is chosen, a parameter ‘threshold’ is used to do the selection. The 

differential GTF file shown on JBrowse has normal GTF file appearance, but each 

visible block represents that the gene in that position is expressed differently between 

two conditions (Figure 2.6). When the user clicks the blocks, detailed information, 

such as gene expression level under each condition and groups name/ID, are displayed 

in a pop-up window. 
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Figure 2.6 The differential GTF file of RNA-Seq data shown on JBrowse. 

The GFF3 file for the entire RNA-Seq dataset was generated by merging all 

the annotation GFF3 files that from each sample. Since the GFF3 file is similar to the 

GTF file in content, the appearance and usage of the GFF3 file on JBrowse are similar 

to that of the GTF file. On JBrowse, the GFF3 file also consists of colored blocks, 

though here the blocks in the GFF3 file have two colors (Figure 2.7). The different 

colored blocks are used to distinguish the sources of the data. Green block represents 

the sequence found to be expressed in all samples, whereas yellow block represents 

the sequence found to be unexpressed in at least one sample. When users click the 

block, the pop-up window provides metadata of the gene, containing gene symbol/ID 

(a ID generated by scripts), the data source, and other information. Python scripts (for 

details see Chapter 3 Results, section 3.1.2.3.5) and two assistant files (the scaffold 

size text file and the gene symbol GTF file) were used to generate this GFF3 file. 
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Figure 2.7 The dataset GFF3 file of RNA-Seq data shown on JBrowse. 

2.2.5 Data type track and overall track 

The GFF3 file for each data type (DNA microarray or RNA-Seq) is similar to 

the GFF3 file for the RNA-Seq dataset (Figure 2.8). The difference is that the source 

of data in data type track is the dataset ID instead of the sample ID in the dataset track. 

The data type track provides a convenient method for users to go through their data 

type of interest. For users who do not have data type of interest, another annotation 

GFF3 file referred as ‘Overall track’ was generated and displayed on JBrowse (Figure 

2.9). This track contains information from all datasets from both DNA microarray and 

RNA-Seq data types. Two assistant files (the scaffold size text file and the gene 

symbol GTF file) and Python scripts are required to generate the data type GFF3 file 

and ‘Overall track’ (for details see Chapter 3 Results, section 3.1.2.4). 
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Figure 2.8 The data type GFF3 files shown on JBrowse. 

 

Figure 2.9 The overall GFF3 file shown on JBrowse. 

2.2.6 Optional multiple bigWig XY track 

The multiple bigWig XY track can display bigWig tracks from all samples 

within the same dataset in one track by selecting a unique color for the bigWig track 

of each sample (Figure 2.10). For either a DNA microarray or a RNA-Seq dataset, a 

multiple bigWig XY track can be generated if the bigWig file that contains gene 

expression values for each sample is provided.  
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Figure 2.10 The multiple bigWig XY track shown on JBrowse. 
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Chapter 3 

RESULTS 

3.1 Files 

To generate files, run ExpressGENiE from the command line as follows: 

Python	ExpressGENiE.py	[options]	<file>	

The following is a detailed description of each option used to control 

ExpressGENiE. 

3.1.1 ExpressGENiE general options 

-h/-help	

Prints the help message and exits. 

-i	input	file	

This option is used to provide name of the input file. E.g. -i	

CHO_reference.gff3. 

-r	raw_data_file.txt	

This option is used when processing DNA microarray data. This file contains 

all the raw data: the probe IDs and gene expression levels. 

-t	target_gene_file.txt	

This option is used when processing DNA microarray data. This file contains 

the target gene symbols and the probe IDs. 

-o	output	file	

This option is used to provide the name of the output file. E.g. -o	

merged.gtf. 

-d	input/output	directory		
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This option tells ExpressGENiE to process the files that are inside a certain 

folder, or it can name an output folder. 

--list	list.txt		

This option tells ExpressGENiE to process the files that have been recorded in 

the text format file. The text format file contains a list of files. All files will have the 

path: path/FileName.suffix 

-gn	gene_symbol.gtf		

Is a parameter that lets ExpressGENiE use the assistant GTF file that contains 

the gene symbol information. This gene symbol GTF file provides the gene symbol for 

many functions. 

-sf	scaffold_size.txt		

Is a parameter that lets ExpressGENiE use the assistant text file that contains 

the scaffold size information. This scaffold size text format file provides the scaffold 

size or scaffold ID for many functions. 

-pcn	<int>	probe	ID	column	number	

This option is used to record the column number that contains probe ID in the 

target gene ID/Symbol/Name.txt file. 

-gcn	<int>	gene	symbol	column	number	

This option is used to record the column number that contains gene symbol in 

the target gene ID/Symbol/Name.txt file. 

-cR	<int>	Choose	RNA-Seq	

When processing RNA-Seq data, this option tells ExpressGENiE the data type 

is RNA-Seq and selects the correct function to run. This option has only one possible 

value: 1.  
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-cD	<int>	Choose	DNA	microarray	

When processing DNA microarray data, this option tells ExpressGENiE the 

data type is DNA microarray data and selects the correct function to run. This option 

has only one possible value: 1. 

-c	<int>	Choose	step	

This option is used to guide users through the selection of certain steps when 

processing RNA-Seq or/and DNA microarray data. It provides three integers: 1, 2, and 

3. Each integer will lead ExpressGENiE to run a specific function. Default: 0. 

-s	Source	ID	

This option is used to assign a source ID to the dataset. The source ID is 

usually the PubMed ID and the PMC ID (if available). The star sign is used to connect 

these two IDs. E.g. -s	PMID:#####*PMCID:#####. In the function of merged data 

from two data types, the source ID should be ExpressGENiE name. 

-si	Sample	ID	

This option is used to record the sample ID for each sample. The sample ID 

can be found from the GSE database and is used to distinguish files that are from the 

same/different datasets. E.g. -si	SRR#####. 

-di	Dataset	ID	

This option is used to record the dataset ID for each dataset. The dataset ID can 

be found from the GSE database and is used to distinguish datasets. E.g. -di	

GSE#####. 

-cg	Category	of	data	
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This option is used to name the expected sequence (usually the longest 

sequence) that will be selected. The selected category will be merged into a longer 

sequence if there are any overlapping regions. E.g. -cg	transcript. 

-Ncg	New	category	of	data	

This option is used to distinguish the source of the sequence when preparing to 

make an annotation GFF3 file. If the sequence/region can be found in all 

samples/sources, then the sequence/region is a new category. E.g.	-Ncg	

all_transcripts. 

-pa	Parent	category	of	data	

This option is used when preparing to make an annotation GFF3 file. It is used 

to name the parent region, which keeps child regions that are from different sources. 

E.g. -pa	sequence. 

-a	<int>	Amount	of	merged	items	

The merged item can be samples, datasets or data types. This option is the 

number of merged items, which can used to distinguish the features (or the categories) 

set in parameter ‘–cg’ and ‘-Ncg’. E.g. -a	4. 

-th	Threshold	

This option gives a threshold for selection of the differential gene expression 

level. If the threshold is based on log2(fold_change), the gene will be selected as 

having differential expression among different conditions only when the value of 

calculated log2(fold_change) is larger than the threshold. E.g. -th	2. 

-tp	Data	type	

This option is used to distinguish DNA microarray data and RNA-Seq data. 

E.g. -tp	DNA	microarray. 
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3.1.2 Arguments 

In the ExpressGENiE scripts, there are several different functions. By using 

positional arguments, the user can select which function to use. 

3.1.2.1 Assistant files 

The two assistant files are generated from reference ‘CHO-K1-

v1.refseq_2014.annotation.gff3’ file and ‘CHO-K1-v1.scaffolds.fasta’ file, 

respectively. These files are used to help generate other files that can be shown on 

JBrowse. 

3.1.2.1.1 Scaffold size text file 

The scaffold size text file is a text format file that contains the scaffold ID and 

its scaffold size. From the command line, run the script as follows to generate the 

scaffold size text file: 

python	ExpressGENiE.py	Scaffoldsize	-i	<input.fasta>	-o	

<output.txt>	

Input files:  

-i	<input.fasta>. The reference genome FASTA format file is the input 

file. 

Output file:  

-o	<outputfile>. Writes the scaffold sizes into the text format file. 

The ‘Scaffoldsize’ function produces a text file, named whatever you use in the 

‘-o’ option. The scaffold size text format file contains two columns per line, one for 

scaffold ID and another for scaffold size. The columns are defined as follows in Table 

3.1. 
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Table 3.1 Columns in the Scaffold size text file 

Column 
number 

Column name Description Example 

1 Scaffold ID The Scaffold ID recorded in 
the reference FASTA file 

NW_003613580.1 

2 Scaffold size The length of the scaffold 8779783 

An example is shown below: 
 
NW_003613580.1	 8779783	 	
NW_003613581.1	 8081566	 	
NW_003613582.1	 6666273	 	
…	  

3.1.2.1.2 Gene symbol GTF file 

The gene symbol GTF file is a GTF format file that contains gene symbol 

information. In the GTF file, all gene symbols are recorded in the last column. The 

prior columns contain the location information for each gene. From the command line, 

run the script as follows to generate gene symbol GTF file: 

python	ExpressGENiE.py	Genesymbol	-i	<input.gff3/gff>	-o	

<output.gtf>	

Input files: 

-i	<input.fasta>. Provide the reference genome annotation GFF3 file as 

the input file. 

Output files:  

-o	<outputfile>. Writes the gene symbol into the GTF format file. 

The ‘Genesymbol’ produces a GTF file, named whatever you give in the ‘-o’ 

option. The gene symbol GTF format file contains nine columns per line. The columns 

are defined as follows in Table 3.2. 
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Table 3.2 Columns in the gene symbol GTF file 

Column 
number 

Column name Description Example 

1 Scaffold ID The Scaffold ID recorded in the 
reference GFF3 file 

NW_003613580.1 

2 Source The name recorded in the input 
file 

Gnomon 

3 Feature All features are ‘gene’ gene 
4 Start The leftmost coordinate of this 

gene 
387941 

5 End The rightmost coordinate of this 
gene 

388591 

6 Score All scores are ‘.’ . 
7 Strand The strand of the gene. Always 

one of ‘+’, ‘-’, ‘.’ 
+ 

8 Phase All phases are ‘.’ . 
9 Attributes The gene symbol GTF file only 

contains the gene ID and gene 
symbol information in the 
attributes column 

ID=gene0;Name=LO
C100754456; 

The gene symbol GTF file keeps only ‘gene’ features and indicates the gene 

IDs and symbols (the item ‘Name’ is the gene symbol). An example is shown below: 
 
NW_003613580.1	 Gnomon	 gene	 387941	 388591	 .	 +
	 .	 ID=gene0;Name=LOC100754456;	
NW_003613580.1	 Gnomon	 gene	 690691	 691138	 .	 +
	 .	 ID=gene1;Name=LOC100757647;	
NW_003613580.1	 Gnomon	 gene	 1834571	 1855181	 .	 -
	 .	 ID=gene2;Name=Gata3;	
…	

3.1.2.2 DNA microarray dataset 

There are two different types of files for each DNA microarray dataset. All 

examples used in the following files and figures are derived from DNA microarray 

dataset GSE30321. 
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3.1.2.2.1 DNA microarray bedGraph/bigWig file and bigWig track 

DNA microarray data can represent relative gene expression levels for the 

genes that are hybridized with probes. BigWig files were used to display continuous 

quantitative data and to visualize the gene expression level in JBrowse. It keeps 

concise information for each gene: the location and the expression level. 

The number of bedGraph/bigWig files created for each DNA microarray 

experiment is varied. It is based on the classification of the samples’ groups. However, 

each DNA microarray dataset has at least one bedGraph/bigWig file for the dataset. 

The bigWig/bedGraph format file contains the gene expression value for each 

gene. For each DNA microarray dataset, if the dataset has a small number of samples 

(E.g. ≤20), then a bigWig file is generated for each sample individually. In contrast, if 

the dataset has a large number of samples (E.g. >20), two options are provided for 

generating the bigWig files based on the sample culture conditions and genetic 

engineering modifications. If it is possible to group samples by similar conditions or 

genetic modifications, one bigWig file for each group is generated which stores the 

average gene expression level among the samples belonging to the respective group. 

On the contrary, if it is not possible to group the samples, the dataset will be treated as 

one group. Thus, one bigWig file is generated for the entire dataset. 

To generate the binary bigWig format file, users need to generate a readable 

bedGraph file first, and then convert the format by using the ‘bedGraphToBigwig’ 

software (https://www.encodeproject.org/software/bedgraphtobigwig/). There are 

three steps to generate the bedGraph format file as shown in Figure 3.1: 
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Figure 3.1 The workflow for generating bedGraph file (DNA microarray). 

Step 1. Generating a text file for each sample 

The raw DNA microarray data file contains the probe IDs and gene expression 

values. To process the data, a text format file for each sample was generated 

containing the genes’ positions and expression values. The argument to do this is 
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 43 

‘RawData’. Follow the command line to generate a directory that contains an output 

file for each sample: 

python	ExpressGENiE.py	RawData	-i	<input.gff3>	-r	<raw	

table.txt>	-t	<target	gene	ID/Symbol/Name.txt>	-pcn	<column	

number	of	probe	ID>	-gcn	<column	number	of	gene	symbol>	-d	

<output	directory>		

Input files:  

-i/<input.gff3>. The input file is the GFF3 reference gene file that 

contains gene position, direction, and name/ID/symbol information. 

-r/<raw	table.txt>. This file is the text format file that contains the DNA 

microarray raw data (the microarray specific probes’ ID and genes’ expression 

values). 

-t/<target	gene	ID/Symbol/Name.txt>. This file is a supplementary 

file for the raw dataset. It contains all probe IDs and target gene symbols. 

Output file: 

-d/<output	directory>. This option is used to name the directory that 

holds all output files.  

Each output file (one output file per sample) is a text format file that consists 

of five columns per line. These columns are defined as follows in Table 3.3.  



 44 

Table 3.3 Columns in the gene expression level text file for each sample 

Column 
number 

Column name Description Example 

1 Gene symbol The gene symbol of the target 
gene 

Gpaa1 

2 Scaffold ID The Scaffold ID indicates where 
the target gene is located 

NW_003614411.1 

3 Start The leftmost coordinate of this 
gene 

426982 

4 Stop The rightmost coordinate of this 
gene 

431123 

5 Value The gene expression value 6.453162979 

Step 2: Generating a draft bedGraph file for each group 

Put all text files (gene position and expression value text file) that belong to the 

same group into a directory, and use the argument: GetAverage. From the command 

line, run the script as follows to generate the primary bedGraph format file: 

python	ExpressGENiE.py	GetAverage	–d	<input	directory>	-o	

<output.bedgraph>	

Input files: 

-d/<input	directory>. The input directory containing text files that are 

composed of gene positions and expression values. The text files are the files 

generated in step 1. 

Output file: 

-o/<output.bedgraph>. The output file is the draft bedGraph file.  

Step 3: Removing replicate values for the same gene 

In the bigWig/bedGraph file, only one value is kept for each gene. In this step, 

use the argument ‘RmReplicate’ to keep only one average expression value for the 

gene. From the command line, run the script as follows to generate the final bedGraph 

format file: 
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python	ExpressGENiE.py	RmReplicate	-i	<input.bedgraph>	-o	

<output.bedgraph>	

Input file: 

-i/<input.bedgraph>. The input file is the draft bedGraph file produced in 

the prior step (step 2). For each group, there is only one bedGraph file. 

Output file (DNA microarray bigWig/bedGraph): 

-o/<output.bedgraph>. Writes the genes’ position and expression value 

into the bedGraph format file. 

The output file contains four columns, these columns are defined as follows in 

Table 3.4. 

Table 3.4 Columns in the bedGraph file for each group of DNA microarray 

Column 
number 

Column 
name 

Description Example 

1 Scaffold ID The Scaffold ID indicates where the 
target gene is located 

NW_003613582.1 

2 Start The leftmost coordinate of this gene 1513795 
3 End The rightmost coordinate of this gene 1521630 
4 Expression 

value 
The gene expression value 6.40219641124 

In GSE30321, an example of the bedGraph/bigWig file for GSE30321 is 

shown below: 
 
NW_003613582.1	 1513795	 1521630	 6.40219641124	 	
NW_003613582.1	 5516369	 5601341	 4.85232332011	 	
NW_003613583.1	 2978150	 3327154	 4.58852018019	 	
…	

When the data is displayed with JBrowse, each visible block represents an 

expressed gene, and the height of the column indicates the gene expression level. A 
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bigWig track is shown in Figure 3.1.2. These are the reference gene track (boxed in 

red) and the bigWig track (boxed in green). All visible blue blocks in bigWig track are 

genes with measurable expression values. To use the bigWig track, the first step is to 

use the reference gene track to find the location of the gene of interest. If there is a 

visible blue block in the bigWig track, it means the gene of interest was detected as 

expressed in the condition. By hovering the cursor over the blocks in the bigWig track, 

the average expression level value of the gene is shown. Figure 3.2 gives an example 

with the gene of interest Adam10. The average expression level for this gene is 

4.85232. 

 

Figure 3.2 BigWig track for DNA microarray dataset GSE30321. 

3.1.2.2.2 DNA microarray GTF file and GTF track 

The bigWig files are used to visualize gene location and gene expression level, 

while the GTF file for each DNA microarray dataset is used to visualize the gene 

symbols for expressed genes.  

The workflow for generating GTF file is shown in Figure 3.3: 
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Figure 3.3 The workflow for generating GTF file for each DNA microarray dataset. 

By using the argument ‘Combine’ followed by an optional argument ‘-cD’ 

(specifically for DNA microarray data), for which the default value is ‘0’, users can 

use the command line to generate the GTF format file: 

python	ExpressGENiE.py	Combine	-cD	1	-i	<input.bedgraph>	

-gn	<genesymbol.gtf>	-o	<output.gtf>	-di	<dataset	id>	-s	

<source	id>	-cg	<category>	

Input files: 

-i/<input.bedgraph>. The input file is the bedGraph file for DNA 

microarray dataset. 

-gn/<genesymbol.gtf>. This option defines the assistant gene symbol GTF 

file (to generate the gene symbol GTF file, please check chapter 3.1.2.1 ‘Assistant 

files’). 

Output file (DNA microarray GTF): 

-o/<output.gtf>. Writes the gene position information into the GTF format 

file for each DNA microarray dataset.  

The GTF file has nine columns per line. These columns are defined as follows 

in Table 3.5. 

DNA	microarray	
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-cD	1		

Gene	symbol	gtf	file	 bedGraph	file	for	dataset	1	

GTF	file	for	dataset	
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Table 3.5 Columns in the GTF file for each DNA microarray dataset 

Column 
number 

Column 
name 

Description Example 

1 Scaffold ID The scaffold ID indicates where 
the target gene is located 

NW_003613582.1 

2 Source The source of this GTF file will 
be the PubMed ID and PMC ID 
(if available) of the related 
publication 

PMID:21801763 

3 Feature The DNA microarray GTF file 
only keeps the feature that is 
named by parameter ‘category’. 
E.g. gene 

gene 

4 Start The leftmost coordinate of this 
gene 

1513795 

5 End The rightmost coordinate of this 
gene 

1521630 

6 Score In this GTF file, all scores are 
‘.’ 

. 

7 Strand The strand of the gene. Always 
one of ‘+’, ‘-’, ‘.’ 

- 

8 Phase In this GTF file, all phases are 
‘.’ 

. 

9 Attributes The attributes contain the gene 
symbol and the dataset ID. The 
dataset ID indicates where the 
data comes from, usually the 
GEO database 

Name=Arpp19;Derive
d_from=GSE30321 

An example of the GTF file for GSE30321 is shown below: 
 
NW_003613582.1	 PMID:21801763	 gene	 1513795	 1521630	 .
	 -	 .	 Name=Arpp19;Derived_from=GSE30321	 	
NW_003613582.1	 PMID:21801763	 gene	 5516369	 5601341	 .
	 -	 .	 Name=Adam10;Derived_from=GSE30321	 	
NW_003613583.1	 PMID:21801763	 gene	 2978150	 3327154	 .
	 -	 .	 Name=Gse1;Derived_from=GSE30321	 	
…	

Each shown green block in the GTF track represents a gene and its location (as 

shown in Figure 3.4). Figure 3.4 displays the reference gene track (boxed in red) and 
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the GTF track for dataset GSE30321 (boxed in green). It indicates that gene Adam10 

was identified in dataset GSE30321.  

 

Figure  3.4 The GTF track for dataset GSE30321. 

In Figure 3.5, when the user clicks the block, a pop-up window will give 

detailed information about the gene, such as dataset ID and PubMed ID. These IDs 

can be used to obtain raw data and the related paper for background knowledge. 
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Figure 3.5 The pop-up window of the GTF track. 

3.1.2.3 RNA-Seq dataset 

There are five different types of file for each RNA-Seq dataset. All examples 

used in the following files and figures are derived from RNA-Seq dataset GSE75094. 

3.1.2.3.1 The BAM file and BAM tracks for each sample 

The BAM/SAM files contain read mapping information.  

An example of a BAM/SAM file for one sample, SRR2922597, in GSE75094 

is shown below: 
 
SRR2922597.6699695						272					NW_003613580.1		1036				3							
151M				*							0							0							
AAGGGAATCAGATATATGTTGTATTTTTCTGTATCTATACAATAGTATTACTACTTAGGTCAT
TAGATATCTGATTTGTTTCATTGCTGAGTAATAGCCATGAAGCAGAGTGCTCCTTTGTTTCTT
TCCTATAGTTGCATGTAATGTGTCT	
;?DFBDD??4DFFCCC;FFFDFAHHFFC.FHGDC@F@.FHGF=DBGDGCA.A8?HEAFFF=FH
HIGFDC-
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HFGDHFFFGCFA=HGHFFEBFGDGFBHGEGGGDHHHHHFE;;FEFBFF=DFBHFFE>CAFFFF
?FBBBBBBBBBBB?<??,	AS:i:0		XN:i:0		XM:i:0		XO:i:0		XG:i:0		
NM:i:0		MD:Z:151								YT:Z:UU	NH:i:2		CC:Z:NW_003613992.1					
CP:i:46434						HI:i:0	
SRR2922597.675445							16						NW_003613580.1		33272			50						
149M				*							0							0							
AGGTATTGTAATTACTAGTATGTTTATATTAAATCTGTTGTGTTTCTCAGCATGGAAAAAATC
CAGTAAATTGCAGATTTCCACATATCCCAAAATTCCCAGGCCCCTAGTTCCCCCTATTAACAC
CCACCGTGAGTGTGGTACATATG			
GGGGEGGHGGGGGEGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGHHHHHHHHHHHHFH
HHHHHHHHIHIIIIHHHHGHHIIHHHHIIIIIIIIIIIHHHIIIIIIHHHHIIIIIIHFFECH
HFAGGGGDEDEDDDDBBBAAA?A			AS:i:0		XN:i:0		XM:i:0		XO:i:0		
XG:i:0		NM:i:0		MD:Z:149								YT:Z:UU	NH:i:1	
SRR2922597.2511706						272					NW_003613580.1		322974		0							
151M				*							0							0							
GCGATGAGTCCACGGAAAGGGAAGGAAGAGTGTCCTGAACCAAGCCAGATTCAGGAAGCTCCA
CCCTGCCTGGGCGTGTCTGTTTCAAGCAGGGACGAGCCTGGAGGGATCTGGGTGGATGGCGCT
TAGGACAAGAATTGGGTAAAAGCAG	GGGGEECGGD?C9GGEECA-
GGGGGEEGGGEGGGGGGGEGBEDGGGGGGGGGGGGHHHHFHFCHHHHHFHHHHCDFFFBCHGI
IIIIIHIHHHHDHHHHFGIHIHIIIIIHIHIIIIIHHHGHHHIHIIGGGGGGEDDDDDDDBBB
AA???	AS:i:0		XN:i:0		XM:i:0		XO:i:0		XG:i:0		NM:i:0		MD:Z:151								
YT:Z:UU	NH:i:20	CC:Z:NW_003613752.1					CP:i:2129241				HI:i:0	
…	

The BAM file is shown as the alignment feature and coverage feature tracks on 

JBrowse (these two bam file tracks are shown in Figure 3.6). The alignment BAM 

track indicates reads alignment information and the coverage BAM track provides a 

quick coverage plot. In Figure 3.6, it displays the reference gene track (boxed in red), 

the coverage BAM track (boxed in green) and the alignment BAM track (boxed in 

blue). The alignment BAM track shows the position, direction and match/mismatch 

information of the reads. A red dot represents a read oriented in a positive direction, a 

blue dot represents a read in the negative direction, and a black bar within a read 

represents a mismatch region. The coverage BAM track shows the read density in 

each position. By hovering the cursor over a position, the user can obtain the value of 

the density. 
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Figure 3.6 The BAM tracks for RNA-Seq sample SRR2922597. 

3.1.2.3.2 The annotation GFF3 file and GFF3 track for each sample 

The annotation GFF3 file for each sample contains annotated expressed exons 

and transcripts. The workflow for generating the annotation GFF3 file is shown in 

Figure 3.7: 

 

Figure 3.7 The workflow for generating the annotation GFF3 file for each RNA-Seq 
sample.  
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To generate this GFF3 file, use the argument ‘Annotation’. Follow the 

command: 

python	ExpressGENiE.py	Annotation	-i	<assembled.gtf>	-gn	

<genesymbol.gtf>	-o	<output.gff3>	-si	<sample	id>	-s	<source	

id>	

Input files: 

-i/<input.gtf>. The input file is an assembled GTF file for each sample. 

Users can obtain the assembled GTF file from Cufflinks (part of the Tuxedo pipeline). 

-gn/<genesymbol.gtf>. This option defines the assistant gene symbol GTF 

file (to generate the gene symbol GTF file, please check chapter 3.1.2.1 ‘Assistant 

files’). 

Output file (RNA-Seq annotation GFF3): 

-o/<output.gff3>. Writes the annotated transcripts information into GFF3 

format file for each sample.  

The annotation GFF3 file has nine columns per line. These columns are 

defined as follows in Table 3.6.  
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Table 3.6 Columns in the annotation GFF3 file for each RNA-Seq sample 

Column 
number 

Column 
name 

Description Example 

1 Scaffold ID The Scaffold ID indicates where 
the sequence is located 

NW_003613580.1 

2 Source The source in this GTF file will 
be the PubMed ID and PMC ID 
(if available) of the related 
publication 

PMID:26854539 

3 Feature The feature is inherited from the 
GTF file 

transcript 

4 Start The leftmost coordinate of this 
gene 

745285 

5 End The rightmost coordinate of this 
gene 

746407 

6 Score The score is inherited from the 
GTF file 

1000 

7 Strand The strand is inherited from the 
GTF file 

. 

8 Phase The phase is inherited from the 
GTF file 

. 

9 Attributes The attributes contain the ID for 
gene ID/symbol and transcript 
ID (if available). The transcript 
ID is inherited from the 
assembled GTF file. If the gene 
can be found in the gene symbol 
GTF file, the gene symbol will 
be inherited from the gene 
symbol GTF file. 
‘Derived_from’ indicates the 
sample ID/symbol 

ID=gene_id:CUFF.3*
transcript_id:CUFF.3
.1;Derived_from=SRR
2922597 

An example of the annotation GFF3 file for one of sample, SRR2922597, in 

GSE75094 is shown below: 
 
NW_003613580.1		PMID:26854539			transcript						745285		746407		
1000				.							.							
ID=gene_id:CUFF.3*transcript_id:CUFF.3.1;Derived_from=SRR292259
7									
NW_003613580.1		PMID:26854539			exon				745285		746407		1000				
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.							.							
ID=gene_id:CUFF.3*transcript_id:CUFF.3.1*1;Parent=gene_id:CUFF.
3*transcript_id:CUFF.3.1;Derived_from=SRR2922597		
NW_003613580.1		PMID:26854539			transcript						739188		739857		
1000				.							.							
ID=gene_id:CUFF.1*transcript_id:CUFF.1.1;Derived_from=SRR292259
7									
NW_003613580.1		PMID:26854539			exon				739188		739857		1000				
.							.							
ID=gene_id:CUFF.1*transcript_id:CUFF.1.1*1;Parent=gene_id:CUFF.
1*transcript_id:CUFF.1.1;Derived_from=SRR2922597		
…	

In the annotation GFF3 track, the region with blue and grey represents the 

transcript, while the red region represents the exon. In Figure 3.8, the reference gene 

track (boxed in red), the annotation GFF3 track (boxed in green), and the assembled 

GTF track (boxed in blue) are displayed. The GTF file contains expressed exons and 

transcripts as well as unexpressed exons and transcripts. While in the annotation GFF3 

track, unexpressed exons and transcripts have been removed and only annotated 

expressed exons and transcripts are kept.  



 56 

 

Figure 3.8 The GFF3 annotation track for RNA-Seq sample SRR2922597. 

3.1.2.3.3 The bigWig file and bigWig track for each sample 

In a RNA-Seq dataset, each sample has a bigWig track that is used to display 

the gene position and its expression level. The workflow for generating the FPKM 

bigWig file is shown in Figure 3.9: 

 

Figure 3.9 The workflow for generating the FPKM bigWig file for each RNA-Seq 
sample. 
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Use the argument ‘FPKM’ to generate the bigWig/bedGraph file and follow the 

command: 

python	ExpressGENiE.py	FPKM	-i	<input.fpkm_tracking>	-sf	

<scaffold	size.txt>	-o	<output.bedgraph>		

Input files: 

-i/<input.fpkm_tracking>. The input file is a text format file with suffix 

‘fpkm_tracking’, which is the gene-level FPKM output file from Cufflinks. It contains 

all gene expression values and other detailed information. 

-sf/<scaffold	size.txt>. The option indicates the assistant scaffold size 

text file (to generate the scaffold size text file, please check chapter 3.1.2.1 ‘Assistant 

files’). 

Output file (RNA-Seq FPKM bigWig/bedGraph): 

-o/<output.bedgraph>. Writes the genes’ positions and expression values 

into the bedGraph format file.  

The file contains four columns, which record the expression value and position 

for each gene. These columns are defined as follows in Table 3.7. 

Table 3.7 Columns in the FPKM bigWig file for each RNA-Seq sample 

Column 
number 

Column name Description Example 

1 Scaffold ID The Scaffold ID indicates where 
the target gene is located 

NW_003613580.1 

2 Start The start of the gene 736556 
3 End The end of the gene 737350 
4 Expression value The gene expression value 1.7958 

Because all genes or transcripts are predicted by Cufflinks, some of the 

predicted genes overlap each other in the FPKM tracking file. Additionally, there are 
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some genes totally covered by another gene that has a longer sequence. To prevent the 

same region have two different values or one value covered by another, the gene 

expression level of the gene that has the shorter sequence has been inserted into the 

expression level of longer sequence gene. The example of FPKM bigWig/bedGraph 

file for one of sample, SRR2922597, in GSE75094 is shown below: 
 
NW_003613580.1		736556		737350		1.7958			
NW_003613580.1		739187		739857		1.51459		
NW_003613580.1		745284		746407		0.897637									
…	

As the bigWig track does not display the gene symbols, it is recommended to 

use the annotation GFF3 track with the bigWig track. Figure 3.10 displays the 

reference gene track (boxed in red), the annotation GFF3 track (boxed in green), and 

the FPKM bigWig track (boxed in blue). The FPKM bigWig file indicates the gene 

expression level, which is same as the usage of the bigWig file in DNA microarray 

dataset. When users zoom in, the expression level for each region becomes more clear 

and distinguishable. By using the annotation GFF3 track and reference gene track, 

users can match the expressed gene with its expression level. For example, the gene 

Adam10 expression level is 39.2699. 
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Figure 3.10 The FPKM bigWig track for one sample of RNA-Seq. 

3.1.2.3.4 The differential GTF file and GTF track for each dataset 

The differential GTF file contains differentially expressed genes and the 

expression values between any paired groups within a dataset. The workflow for 

generating the differential GTF file is shown in Figure 3.11: 

 

Figure 3.11 The workflow for generation of the differential GTF file for each RNA-
Seq dataset. 
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The argument is ‘Gene_exp’, which provides two options to generate the 

differential GTF file. 

Option 1. To select by p-value, follow the command to generate the differential 

GTF file: 

python	ExpressGENiE.py	Gene_exp	-i	<input.diff>	-o	

<output.gtf>	

Option 2. To select by log2(fold_change) threshold, follow the command to 

generate the differential GTF file:  

python	ExpressGENiE.py	Gene_exp	-i	<input.diff>	-o	

<output.gtf>	-th	<threshold>	

Input file: 

-i/<input.diff>. The input file is a text format file with suffix ‘diff’, 

which users can obtain by using Cuffmerge and Cuffdiff. 

Output file (RNA-Seq differential GTF): 

-o/<output.gtf>. Writes the position and expression value of the 

differently expressed genes into the GTF format file. 

The differential GTF file contains nine columns per line. These columns are 

defined as follows in Table 3.8.  
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Table 3.8 Columns in the differential GTF file for one RNA-Seq dataset 

Column 
number 

Column 
name 

Description Example 

1 Scaffold ID The Scaffold ID indicates where 
the sequence is located 

NW_003613580.1 

2 Source The source in this GTF file will 
be ‘cuffdiff’, which is the tool 
that produces the gene 
differential information 

cuffdiff 

3 Feature The feature used in this GTF file 
indicates the differential gene 
expression 

gene_expression_diff 

4 Start The leftmost coordinate of this 
gene 

1890885 

5 End The rightmost coordinate of this 
gene 

2042119 

6 Score The score is ‘.’ . 
7 Strand The strand is ‘.’ . 
8 Phase The phase	is ‘.’ . 
9 Attributes The attributes contain the gene 

ID/symbol. The ‘Derived_from’ 
value indicates which groups 
are expressed differently for this 
gene and the gene expression 
value for each group 

Name=Taf3;Derived_
from=Passage0:3.962
8*Passage4:1.50716 

The example of the differential GTF file for GSE75094: 
 
NW_003613580.1	 cuffdiff	 gene_expression_diff	 1890885
	 2042119	 .	 .	 .
	 Name=Taf3;Derived_from=Passage0:3.9628*Passage4:1.50716
	 	
NW_003613580.1	 cuffdiff	 gene_expression_diff	 1890885
	 2042119	 .	 .	 .
	 Name=Taf3;Derived_from=Passage2:2.01824*Passage6:5.19716
	 	
NW_003613580.1	 cuffdiff	 gene_expression_diff	 1890885
	 2042119	 .	 .	 .
	 Name=Taf3;Derived_from=Passage4:1.50716*Passage6:5.19716
	 	
…	
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In the differential GTF track, each visible block represents the gene that was 

differentially expressed in paired groups. Figure 3.12 displays the reference gene track 

(boxed in red) and the differential GTF track (boxed in green).  The differential GTF 

file track is highlighted in green. If a green block exists in the track, it means in this 

position the gene is expressed differently between two conditions. The raw differential 

file with ‘diff’ as the suffix lists several parameters, like log2(fold_change) and the 

significance of the difference which is based on a calculated p-value and an alpha-

value of 0.05. The selection condition is flexible and can be used to generate different 

differential GTF files.  

 

Figure 3.12 The differential GTF track for one sample of RNA-Seq. 

In Figure 3.13, a pop-up window shows information of the gene Sltm, such as 

all paired groups of the gene expressed differently and the corresponding gene 

expression value. 
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Figure 3.13 The pop-up window of the differential GTF track. 

3.1.2.3.5 The RNA-Seq dataset GFF3 file and GFF3 track  

The function of this GFF3 format file is to indicate the expressed 

genes/sequences and their sources (which sample expressed the genes/sequences) in 

each dataset. The argument is ‘Combine’. There are three steps to generate this file as 

shown in Figure 3.14: 
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Figure 3.14 The workflow for generating the RNA-Seq dataset GFF3 file.  

Step 1. Generating a GTF file for each sample 

The parameter ‘category’ in this step should be the item in the ‘feature’ column 

that the user wants to select. Because the input file in this step is the GFF3 file for 

each sample (generated in section 3.1.2.3.2) and the ‘feature’ column in this file is 

‘transcript’, the selected item should be ‘transcript’. By using optional argument ‘-cR’ 

RNA-seq	
	

Gene	symbol	gtf	file	 Sample	2	assembled	GTF	file	
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-cR	1		
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Scaffold	size	text	file	

Scaffold	size	text	file	List	text	file	
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GTF	file	for	dataset	
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-c	3		

GFF3	file	for	dataset	

Gene	symbol	gtf	file	
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(specifically for RNA-Seq data), which has default value ‘0’, follow the command to 

generate the GTF format file: 

python	ExpressGENiE.py	Combine	-cR	1	-i	<input.gff3>	-sf	

<scaffold	size.txt>	-o	<output.gtf>	-si	<sample	id>	-s	<source	

id>	-cg	<category>	

Input files: 

-i/<input.gff>. The input file is the annotation GFF3 for each sample. 

-sf/<scaffold	size.txt>. The option indicates the assistant scaffold size 

text file (to generate the scaffold size text file, please check chapter 3.1.2.1 ‘Assistant 

files’). 

Output file: 

-o/<output.gtf>. The output GTF file only keeps records for the selected 

category. 

Step 2. Generating a GTF file for the entire dataset 

This GTF file contains gene information from all the samples. The parameter 

‘category’ is same as the item that was selected in step 1. The parameter ‘parent 

category’ is a newly named category that contains the item ‘category’. Follow the 

command:  

python	ExpressGENiE.py	Combine	-c	2	--list	<file	

list.txt>	-sf	<scaffold	size.txt>	-o	<output.gtf>	-cg	

<category>	-pa	<parent>	

Input files: 

--list/<file	list.txt>. The input text format file records the path of 

GTF files that were generated in step 1. 
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-sf/<scaffold	size.txt>. This option indicates the assistant scaffold 

size text file (to generate the scaffold size text file, please check chapter 3.1.2.1 

‘Assistant files’). 

Output file: 

-o/<output.gtf>. This GTF file keeps information records from all 

samples. 

Step 3. Annotating the GTF file 

This function annotates the GTF file to a GFF3 file. The parameter ‘category’ 

and ‘parent category’ are same as the items that were selected in step 2. The parameter 

‘new category’ is a newly named category for distinguishing the source of data. 

Follow the command:  

python	ExpressGENiE.py	Combine	-c	3	-i	<input.gtf>	-gn	

<genesymbol.gtf>	-o	<output.gff3>	-a	<amount	of	samples>	-di	

<dataset	id>	-cg	<category>	-Ncg	<new	category>	-pa	<parent>	

Input files: 

-i/<input.gtf>. This input file is the GTF file produced in the step 2. 

-gn/<genesymbol.gtf>. This option indicates the assistant gene symbol 

GTF file (to generate the gene symbol GTF file, please check chapter 3.1.2.1 

‘Assistant files’). 

Output file (RNA-Seq dataset GFF3): 

-o/<output.gff3>. Writes the information records from all samples into the 

GFF3 format file. 

The dataset GFF3 file has nine columns per line. These columns are defined as 

follows in Table 3.9. 
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Table 3.9 Columns in the dataset GFF3 file of RNA-Seq 

Column 
number 

Column 
name 

Description Example 

1 Scaffold ID The Scaffold ID indicates where 
the sequence is located 

NW_003613580.1 

2 Source The source in this GFF3 file will 
be the PubMed ID and PMC ID 
(if available) of the related 
publication 

PMID:26854539 

3 Feature The feature in this GFF3 file is 
based on the names that users 
assign to the parameters 
‘category’, ‘new category’, and 
‘parent category’.  
The feature will be one of the 
three user-named options. E.g. 
transcript, all_transcripts, 
sequence 

transcript 

4 Start The leftmost coordinate of this 
gene 

736568 

5 End The rightmost coordinate of this 
gene 

736649 

6 Score The score is ‘1’ 1 
7 Strand The strand of the gene. Always 

one of ‘+’, ‘-’, ‘.’. It is inherited 
from the GTF file 

+ 

8 Phase The phase is ‘.’ . 
9 Attributes The attributes will give the ‘ID’, 

‘Parent’, and ‘derived_from’ 
items. The ‘ID’ consists of the 
strand, scaffold ID, and dataset 
ID. ‘Parent’ is the ID of the 
parent region. ‘Derived_from’ 
indicates which sample contains 
this region 

ID=positive*NW_003
613580.1*0*GSE7509
4*1;Parent=positive*
NW_003613580.1*0;
Derived_from=SRR29
22598 

The dataset GFF3 file stores source information for each sequence. The 

example of dataset GFF3 file for GSE75094 is shown below: 
 
NW_003613580.1	 PMID:26854539	 sequence	 736568	 738820
	 1	 +	 .	 ID=positive*NW_003613580.1*0	 	
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NW_003613580.1	 PMID:26854539	 transcript	736568	 736649
	 1	 +	 .
	 ID=positive*NW_003613580.1*0*GSE75094*1;Parent=positive*N
W_003613580.1*0;Derived_from=SRR2922598	 	
NW_003613580.1	 PMID:26854539	 transcript	736650	 736917
	 1	 +	 .
	 ID=positive*NW_003613580.1*0*GSE75094*2;Parent=positive*N
W_003613580.1*0;Derived_from=SRR2922598&SRR2922601	 	
NW_003613580.1	 PMID:26854539	 transcript	736918	 736929
	 1	 +	 .
	 ID=positive*NW_003613580.1*0*GSE75094*3;Parent=positive*N
W_003613580.1*0;Derived_from=SRR2922598&SRR2922601&SRR2922604
	 	
NW_003613580.1	 PMID:26854539	 transcript	736930	 738580
	 1	 +	 .
	 ID=positive*NW_003613580.1*0*GSE75094*4;Parent=positive*N
W_003613580.1*0;Derived_from=SRR2922598&SRR2922601&SRR2922603&S
RR2922604	 	
NW_003613580.1	 PMID:26854539	 transcript	738581	 738667
	 1	 +	 .
	 ID=positive*NW_003613580.1*0*GSE75094*5;Parent=positive*N
W_003613580.1*0;Derived_from=SRR2922598&SRR2922601&SRR2922604
	 	
NW_003613580.1	 PMID:26854539	 transcript	738668	 738797
	 1	 +	 .
	 ID=positive*NW_003613580.1*0*GSE75094*6;Parent=positive*N
W_003613580.1*0;Derived_from=SRR2922598&SRR2922601	 	
NW_003613580.1	 PMID:26854539	 transcript	738798	 738820
	 1	 +	 .
	 ID=positive*NW_003613580.1*0*GSE75094*7;Parent=positive*N
W_003613580.1*0;Derived_from=SRR2922598	 	
…	

The dataset GFF3 track uses two different colors (Figure 3.15). Figure 3.15 

displays the reference gene track (boxed in red) and the dataset GFF3 track (boxed in 

green). The green region represents all samples that are expressed this region. The 

yellow region represents the gene that was not expressed in at least one sample. In 

Figure 3.16, the pop-up window shows the source of each region and other metadata. 
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Figure 3.15 The RNA-Seq dataset GFF3 track for GSE75094. 

 

Figure 3.16 The pop-up window of dataset RNA-Seq. 
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3.1.2.4 The data type GFF3 file and overall GFF3 file 

The profile and usage of data type and overall GFF3 files are similar to the 

RNA-Seq dataset GFF3 file. The only difference is the source of data. The data source 

in RNA-Seq dataset GFF3 file is the sample ID, in the data type GFF3 file, it is the 

dataset ID, and in overall GFF3 file, it is the data type. 

3.1.2.4.1 The data type GFF3 file and GFF3 track 

The GFF3 file for each data type provides a general view for all expressed 

genes/sequences that are derived from the same data type. To obtain the data type 

GFF3 file, there are three steps that are similar to generating a GFF3 file for each 

RNA-Seq dataset (each DNA microarray dataset already has a GTF file, so skip step 

1) as shown in Figure 3.17: 
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Figure 3.17 The workflow for generating the data type GFF3 file. 

Step 1. Generating a GTF file for each dataset  

The parameter ‘category’ in this step should be the item in the ‘feature’ column 

that the user wants to select. Based on the input file with the dataset GFF3 file in this 

step, the selected item should be the ‘parent category’ used in dataset GFF3 file. 

Follow the command:  
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Annotation	GFF3	file	for	dataset	1	 Annotation	GFF3	file	for	dataset	2	

Combine	
-c	1		

Combine	
-c	1		

GTF	file	for	dataset	1	 GTF	file	for	dataset	2	

Scaffold	size	text	file	

Scaffold	size	text	file	List	text	file	

Combine	
-c	2		

GTF	file	for	data	type	

Combine	
-c	3		

GFF3	file	for	data	type	

Gene	symbol	gtf	file	



 72 

python	ExpressGENiE.py	Combine	-c	1	-i	<input.gff3>	-sf	

<scaffold	size.txt>	-o	<output.gtf>	-di	<dataset	id>	-s	<source	

id>	-cg	<category>	

Input files: 

-i/<input.gff>. The dataset GFF3 file is the input file. 

-sf/<scaffold	size.txt>. This option indicates the assistant scaffold 

size text file (to generate the scaffold size text file, please check chapter 3.1.2.1 

‘Assistant files’). 

Output file: 

-o/<output.gtf>. The GTF file only consists of the selected category 

records. 

Step 2. Generating a GTF file for the entire data type 

The parameter ‘category’ is same as the item that was selected in step 1. And 

the parameter ‘parent category’ is a newly named category that contains the item 

‘category’. Follow the command:  

python	ExpressGENiE.py	Combine	-c	2	--list	<file	

list.txt>	-sf	<scaffold	size.txt>	-o	<output.gtf>	-cg	

<category>	-pa	<parent>	

Input files: 

--list/<file	list.txt>. The input text format file records the path of 

GTF files that were generated in step 1. 

-sf/<scaffold	size.txt>. The option indicates the assistant scaffold size 

text file (to generate the scaffold size text file please, check chapter 3.1.2.1 ‘Assistant 

files’). 
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Output file: 

-o/<output.gtf>. The output file keeps informational records from all 

datasets within the same data type. 

Step 3. Annotating the GTF file 

This function annotates the GTF file to a GFF3 file. The parameter ‘category’ 

and ‘parent category’ are same as the items that were selected in step 2. The parameter 

‘new category’ is a newly named category for distinguishing the source of data. 

Follow the command:  

python	ExpressGENiE.py	Combine	-c	3	-i	<input.gtf>	-gn	

<genesymbol.gtf>	-o	<output.gff3>	-a	<amount	of	datasets	or	

datatype>	-tp	<data	type>	-cg	<category>	-Ncg	<new	category>	-

pa	<parent>	

Input files: 

-i/<input.gtf>. The GTF file produced in step 2 is the input file. 

-gn/<genesymbol.gtf>. This option indicates the assistant gene symbol 

GTF file (to generate the gene symbol GTF file, please check chapter 3.1.2.1 

‘Assistant files’). 

Output file (Data type GFF3): 

-o/<output.gff3>. Writes the information records from all datasets within 

the same data type into the GFF3 format file. 

The data type GFF3 file has nine columns per line. These columns are defined 

as follows in Table 3.10. 
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Table 3.10 Columns in the data type GFF3 file 

Column 
number 

Column 
name 

Description Example 

1 Scaffold ID The Scaffold ID indicates where 
the sequence is located 

NW_003613580.1 

2 Source The source is ‘ExpressGENiE’ ExpressGENiE 
3 Feature The feature in this GFF3 file is 

based on the names that users 
assign to the parameters 
‘category’, ‘new category’, and 
‘parent category’.  
The feature will be one of the 
three user-named options. E.g: 
sequence, all_sequence, region 

sequence 

4 Start The leftmost coordinate of this 
gene 

690691 

5 End The rightmost coordinate of this 
gene 

691138 

6 Score The score is ‘1’ 1 
7 Strand The strand of the gene. Always 

one of ‘+’, ‘-’, ‘.’. It is inherited 
from the GTF3 file 

+ 

8 Phase The phase is ‘.’ . 
9 Attributes The attributes will give the ‘ID’, 

‘Parent’, and ‘derived_from’ 
items. The ‘ID’ consists of 
strand, scaffold ID, and dataset 
ID. ‘Parent’ is the ID of parent 
region. ‘Derived_from’ indicates 
which dataset contains this 
region 

ID=positive*NW_003
613580.1*0*All_Data
sets*1;Parent=positiv
e*NW_003613580.1*
0;Derived_from=GSE
59487 

An example of the data type GFF3 file for the RNA-Seq data type is shown 

below: 
 
NW_003613580.1	 ExpressGENiE	 region	 690691	 691138
	 1	 +	 .
	 ID=gene1;Name=LOC100757647;Derived_from=RNA-Seq	 	
NW_003613580.1	 ExpressGENiE	 sequence	 690691	 691138
	 1	 +	 .	 ID=gene1*RNA-
Seq*1;Name=LOC100757647;Parent=gene1;Derived_from=GSE59487	 	
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NW_003613580.1	 ExpressGENiE	 region	 736568	 738820
	 1	 +	 .	 ID=positive*NW_003613580.1*1	 	
NW_003613580.1	 ExpressGENiE	 sequence	 736568	 738820
	 1	 +	 .	 ID=positive*NW_003613580.1*1*RNA-
Seq*1;Parent=positive*NW_003613580.1*1;Derived_from=GSE75094		
…	

The dataset GFF3 track uses two different colors (Figure 3.18). The green 

region represents all samples that are expressed this region. The yellow region 

represents at least one sample didn’t express this region. In Figure 3.18, it displays the 

reference gene track (boxed in red), the RNA-Seq data type GFF3 track (boxed in 

green), the GSE75094 dataset GFF3 track (boxed in blue), and the GSE59487 dataset 

track (boxed in yellow). Using the gene Adam10 as an example, the gene Adam10 has 

been detected expressed in both datasets. Thus, in the RNA-Seq data type GFF3 track, 

the color of region of Adam10 is green. In Figure 3.19, when the user clicks the region 

in the RNA-Seq data type GFF3 track, a pop-up window shows the data source. 

 

Figure 3.18 The data type GFF3 track. 
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Figure 3.19 The pop-up window of data type GFF3 track. 

3.1.2.4.2 The overall GFF3 file and GFF3 track 

The overall GFF3 file for both data types provides an overall view for all 

datasets. To generate this GFF3 file, three steps are similar to generating a GTF file 

for each data type as shown in Figure 3.20: 
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Figure 3.20 The workflow for generating the overall GFF3 file. 

Step 1. Generating a GTF file for each data type  

The parameter ‘category’ in this step should be the item in ‘feature’ column 

that the user wants to select. Based on the input file with data type GFF3 file in this 

step, the selected item should be the ‘parent category’ used in data type GFF3 file. 

Follow the command:  
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python	ExpressGENiE.py	Combine	-c	1	-i	<input.gff3>	-sf	

<scaffold	size.txt>	-o	<output.gtf>	-tp	<data	type>	-s	<tool	

name>	-cg	<category>	

Input files: 

-i/<input.gff>. The data type GFF3 file is the input file. 

-sf/<scaffold	size.txt>. This option indicates the assistant scaffold 

size text file (to generate the scaffold size text file, please check chapter 3.1.2.1 

‘Assistant files’). 

Output file: 

-o/<output.gtf>. The output GTF file only keeps records for the selected 

category. 

Step 2. Generating a GTF file for the both data types 

The parameter ‘category’ is same as the item that was selected in step 1. The 

parameter ‘parent category’ is a new named category that contains the item ‘category’. 

Follow the command:  

python	ExpressGENiE.py	Combine	-c	2	--list	<file	

list.txt>	-sf	<scaffold	size.txt>	-o	<output.gtf>	-cg	

<category>	-pa	<parent>	

Input files: 

--list/<file	list.txt>. The input text format file records the paths of 

the GTF files that were generated in step 1. 

-sf/<scaffold	size.txt>. This option indicates the assistant scaffold 

size text file (to generate the scaffold size text file, please check chapter 3.1.2.1 

‘Assistant files’). 
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Output file: 

-o/<output.gtf>. The output GTF file contains records from both data 

types. 

Step 3. Annotating the GTF file 

This function annotates the GTF file to a GFF3 file. The parameter ‘category’ 

and ‘parent category’ are same as the items that were selected in step 2. The parameter 

‘new category’ is a newly named category for distinguishing the source of the data. 

Follow the command:  

python	ExpressGENiE.py	Combine	-c	3	-i	<input.gtf>	-gn	

<genesymbol.gtf>	-o	<output.gff3>	-a	<amount	of	datasets	or	

datatype>	-tp	<tool	name>	-cg	<category>	-Ncg	<new	category>	-

pa	<parent>	

Input files: 

-i/<input.gtf>. The GTF file produced in step 2 is the input file. 

-gn/<genesymbol.gtf>. This option defines the assistant gene symbol GTF 

file (to generate the gene symbol GTF file, please check chapter 3.1.2.1 ‘Assistant 

files’). 

Output file (Overall GFF3 file): 

-o/<output.gff3>. Writes the information records from both data types 

into the GFF3 format file. 

The overall GFF3 file has nine columns per line. These columns are defined as 

follows in Table 3.11. 
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Table 3.11 Columns in the overall GFF3 file 

Column 
number 

Column 
name 

Description Example 

1 Scaffold ID The Scaffold ID indicates where 
the sequence is located 

NW_003613580.1 

2 Source The source is ‘ExpressGENiE’ ExpressGENiE 
3 Feature The feature in this GFF3 file is 

based on the names that users 
assign to the parameters 
‘category’, ‘new category’, and 
‘parent category’.  
The feature will be one of the 
three user-named options. E.g. 
region, all_regions, 
expressed_region 

region 

4 Start The leftmost coordinate of this 
gene 

690691 

5 End The rightmost coordinate of this 
gene 

691138 

6 Score The score is ‘1’ 1 
7 Strand The strand of the gene. Always 

one of ‘+’, ‘-’, ‘.’. It is inherited 
from the GTF3 file 

+ 

8 Phase The phase is ‘.’ . 
9 Attributes In this GFF3 file, the attributes 

will give the ‘ID’, ‘Parent’, and 
‘Derived_from’ items. The ‘ID’ 
is consists of strand, scaffold ID, 
and dataset ID. ‘Parent’ is the 
ID of parent region. 
‘Derived_from’ indicates which 
data type contains this region 

ID=positive*NW_003
613580.1*0*Express
GENiE*1;Parent=pos
itive*NW_003613580.
1*0;Derived_from=R
NA-Seq 

An example of the overall GFF3 file is shown below: 
 
NW_003613580.1	 ExpressGENiE	 Expressed_region	690691
	 691138	 1	 +	 .
	 ID=gene1;Name=LOC100757647;Derived_from=ExpressGENiE	 	
NW_003613580.1	 ExpressGENiE	 region	 690691	 691138
	 1	 +	 .
	 ID=gene1*ExpressGENiE*1;Name=LOC100757647;Parent=gene1;De
rived_from=RNA-Seq	 	
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NW_003613580.1	 ExpressGENiE	 Expressed_region	736568
	 738820	 1	 +	 .	 ID=positive*NW_003613580.1*1
	 	
NW_003613580.1	 ExpressGENiE	 region	 736568	 738820
	 1	 +	 .
	 ID=positive*NW_003613580.1*1*ExpressGENiE*1;Parent=positi
ve*NW_003613580.1*1;Derived_from=RNA-Seq	 	
…	

An example of the overall GFF3 track and two data type GFF3 tracks are 

shown in Figure 3.21. Figure 3.21 displays the reference gene track (boxed in red), the 

overall GFF3 track (boxed in green), the RNA-Seq data type GFF3 track (boxed in 

blue), and the DNA microarray data type track (boxed in yellow). Using the gene 

Adam10 in the DNA microarray data type track as an example, the gene Adam10 has 

been detected expressed in both data types. Thus, in the overall GFF3 track, the color 

of the region of Adam10 is green. 

 

Figure 3.21 The overall GFF3 track. 
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In Figure 3.22, when the user clicks the region in the overall GFF3 track, the 

pop-up window indicates the data source. 

 

Figure 3.22 The pop-up window of overall GFF3 track. 

3.1.2.5 The optional multiple bigWig XY track 

The multiple bigWig XY track for each dataset is a track that is based on the 

bigWig files of samples. In a single track, it contains a merged set of bigWig tracks 

where each colored line represents the gene expression level of a sample. 

The example of multiple bigWig XY track is shown in Figure 3.23, including 

the reference gene track (boxed in red), the multiple bigWig XY track of RNA-Seq 

dataset GSE75094 (boxed in green), and the four following tracks are sample bigWig 

tracks of GSE59487. Using the gene Ipo5 in the multiple bigWig XY track as an 
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example, the four colors show distinctly different heights. Thus, the gene Ipo5 has 

been detected as differentially expressed in four samples and under certain conditions, 

the gene expression level is much higher than others.  

 

Figure 3.23 The multiple bigWig XY track of GSE58476. 

Figure 3.24 displays the reference gene track (boxed in red), the multiple 

bigWig XY track of RNA-Seq dataset GSE75094 (boxed in green), and the multiple 

bigWig XY track of RNA-Seq dataset GSE59487 (boxed in blue). The dataset 

GSE75094 has ten samples and the dataset GSE59487 has four samples. 
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Figure 3.24 The multiple bigWig XY track. 

For users who want to generate this multiple bigWig XY track for a dataset, 

they have to choose a unique color for each sample. In the multiple bigWig XY track 

of GSE75094, ten different colors are a challenge for users to distinguish. Thus, the 

multiple bigWig XY track is an optional track for users. 

3.2 Usage of Tracks 

3.2.1 Track selector 

To choose which tracks to view, click the ‘Select tracks’ box (Figure 3.25, the 

‘Select tracks’ is boxed in red). A menu listing all tracks will appear. In Figure 3.26, 

the track menu is boxed in red and the display window is boxed in green. 
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Figure 3.25 The ‘Select tracks’ box. 

 

Figure 3.26 The track menu. 
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The track menu lists four headings: 

1. ‘My Tracks’ contains the ‘Currently active’ and ‘Recently used’ 
options. ‘Currently active’ lists all the selected tracks in the display 
window. ‘Recently used’ lists all the recently selected tracks in the 
display window.  

2. ‘Description’ contains the four categories: ‘DNA microarray’, ‘RNA-
Seq’, ‘Reference Track’, and ‘Overall track’, which are classified by 
data types. The ‘Reference track’ contains three tracks, a DNA 
sequence reference track, a gene reference track, and a mRNA 
reference track. The ‘DNA microarray’ and ‘RNA-Seq’ are the two 
different data types that were derived from DNA microarray and RNA-
Seq studies respectively. The ‘Overall track’ displays the DNA 
microarray and RNA-Seq data in one merged track.  

3. ‘Data provider’ lists the raw dataset ID archived in the GEO database 
(http://www.ncbi.nlm.nih.gov/geo/). Users can search through the GEO 
database by using the dataset ID to obtain the raw data and a link to the 
NCBI or PubMed IDs, which can be used to get related documents. 

4. ‘Category’ displays various categories of tracks. It classifies tracks into 
different groups and sub groups based on the data type and dataset of 
the uploaded track. For ‘DNA microarray’ or ‘RNA-Seq’ data types, its 
category has the format: data type/dataset/track group/track sub group 
(if needed).  

In addition to the three categories shown on the track menu, the display 

window contains ‘Name’, ‘Species’, and ‘Organism’ columns that display more 

detailed descriptions for each track.  

By selecting any option in the track menu, the display window displays all 

tracks that belong to the selected category. In the track menu, select options from top 

to bottom to go from a general group of tracks to a more specific set. 

For new users, the ‘My Tracks’ section will be empty. For returning users, ‘My 

Tracks’ provides a shortcut to review the currently selected or recently used tracks.  
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The ‘Description’ section lists ‘DNA microarray’, ‘RNA-Seq’, ‘Reference 

Track’, and ‘Overall track’ options. Users need to set a reference track before selecting 

either ‘DNA microarray’ or ‘RNA-Seq’ data type, because the reference track can 

provide a good indicator of what exists (genes or exons or transcripts or nucleotides) 

at a certain location in the genome. Three reference tracks are available: ‘DNA’, 

‘gene’, and ‘mRNA’ tracks.  

In Figure 3.27, the reference DNA sequence track (boxed in red), reference 

gene track (boxed in green), and reference mRNA track (boxed in blue) are displayed. 

The reference DNA sequence track displays nucleotide sequences, shown as color 

blocks. The reference gene track displays gene symbol/ID and location. The reference 

mRNA track indicates possible exons, introns, and coding sequences (CDs) for each 

gene (can click the track for details). 

 

Figure 3.27 Reference tracks. 
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After selecting a reference track, a user can find the specific locations of the 

genes of interest. If users already have a data type of interest and want to focus on it, 

they can select one data type to start searching. For other users who want to get more 

data type information for their genes of interest, they can go to ‘Overall track’.  

The ‘Overall track’ in description option only contains one track, named 

‘Overall track’ that is a GFF3 track containing the mRNA expression information 

from both data types. Thus, the regions shown in this track as blocks are regions that 

have been expressed in a certain experiment (either DNA microarray or RNA-Seq) or 

several experiments (DNA microarray and RNA-Seq). 

In Figure 3.28, when users select ‘Overall track’, there is only one selection in 

the next two options (‘Data provider’ and ‘Category’). 

 

Figure 3.28 The ‘Overall track’ in track menu. 
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In Figure 3.29, the reference gene track (boxed in red) and overall track (boxed 

in green) are displayed. When zoomed in, users can see that the overall track has two 

colors. The two different colors are used to distinguish the sources of data. If the 

sequence can be found expressed in every source, the sequence is shown as a green 

block. If at least one source did not express that sequence, the sequence is shown as a 

yellow block. 

 

Figure 3.29 The display of ‘Overall track’. 

In Figure 3.30, clicking on any part of the blocks (a block may consists of 

several continuous sequences/parts), a pop-up window will provides more details 

about the continuous sequence. The ‘Overall track’ is a GFF3 format file. For 

example, in a pop-up window, it will contain basic sequence information such as its 
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name and position. In the ‘Subfeatures’ section, it provides information for each part, 

including which data type contains this region. 

 

Figure 3.30 Pop-up window of ‘Overall track’. 

In this tutorial, there is one DNA microarray dataset, GSE30321 [Clarke et al., 

2011], and two RNA-Seq datasets, GSE59487 [Kondratova et al., 2015] and 

GSE75094 [Lee et al., 2016].  

To gain more details about the gene expression information, select 

‘Description’ and ‘Data Provider’. The RNA-Seq data type was presented as an 

example in Figure 3.31. If ‘RNA-Seq’ is selected in the ‘Description’ option, the ‘Data 

provider’ lists only the RNA-Seq dataset IDs and the display window lists the RNA-

Seq data type tracks. 
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Figure 3.31 The ‘RNA-Seq’ data type track in track menu. 

For either DNA microarray data or RNA-Seq data, there is a track for the 

entire data type. The ‘Data provider’ lists two different types of data provider, one is 

the dataset ID, another is the ‘All-RNAseq(data type)-datasets’. The data type track is 

within the ‘All-data type-datasets’ provider and use ‘data type’ (e.g. RNA-Seq) as 

track name. 

The data type track is a GFF3 track containing gene expression information 

from all datasets that belong to the same data type. The data type track can be viewed 

in a similar way to the ‘Overall track’. The blocks in this track represent mRNAs 

expressed in a certain dataset. 

In Figure 3.32, the ‘RNA-Seq’ is under the sub category ‘RNA-Seq/Merged 

Track’. There is only one track in this sub category.  



 92 

 

Figure 3.32 The RNA-Seq data type track in track menu. 

In Figure 3.33, the display of the merged track for a data type is similar to the 

overall track. In the attributes section, the ‘Derived_from’ value indicates the dataset 

ID of the selected block (Figure 3.34).  
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Figure 3.33 The display of RNA-Seq data type track. 

 

Figure 3.34 Pop-up window of RNA-Seq data type track. 
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The data type can be used to obtain the general gene expression information 

from previous experiment. For instance, from the RNA-Seq data type track, users can 

get which dataset contains the expressed genes of interest. By selecting a list of 

datasets that contain a gene or region of interest, users can find specific information by 

going through the datasets one by one.  

In addition to the GFF3 file for all datasets (Overall track) for each data type 

(data type track), there is another GFF3 file for each dataset. Here, we use the RNA-

Seq dataset GSE75094 as an example.  

In Figure 3.35, The GFF3 track for each RNA-Seq dataset is under the sub 

category ‘RNA-Seq/dataset ID’.  

 

Figure 3.35 The dataset track in track menu. 
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In Figure 3.36, the sub category contains two tracks, the ‘dataset track’ (the 

track name is the dataset ID), and the ‘differential track’. 

 

Figure 3.36 The GSE75094 dataset track in track menu. 

In Figure 3.37, the usage of GFF3 track for dataset is similar as the GFF3 track 

for data type. In the dataset track, the source/dataset ID is replaced with the sample ID 

(Figure 3.38). 
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Figure 3.37 The display of GSE75094 dataset track. 

 

Figure 3.38 The pop-up window of GSE75094 dataset track. 
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From the dataset track, a user can compare gene or mRNA expression situation 

among all samples or examine if a certain gene is expressed in different samples or 

conditions. 

3.2.2 DNA microarray data 

DNA microarray datasets, except the GTF track for the dataset, have only one 

type of track, a bigWig track. In a bigWig track, the position of each block represents 

the position of an expressed gene. The height of the block represents the gene 

expression level. There is a scale bar in the track for a reference. A red line will be 

used to highlight the top layer of the block when a gene expression value is higher 

than the maximum value on the scale. In addition, hovering the cursor over the blocks 

in a bigWig track will display the gene expression value measured for the condition.  

After going through the ‘Description’ and the ‘Data provider’ sections, users 

usually have to keep the reference gene track selected. Users can go to the scaffold 

and by using the reference gene track to find the gene of interest. In addition, selecting 

the dataset GTF track displays the expressed gene symbol/ID, as shown in the Figure 

3.39.  

In Figure 3.39, the reference gene track (boxed in red), dataset GTF track 

(boxed in green) and the bigWig track (boxed in blue) are displayed. For example, the 

gene of interest is Adam10. In the dataset GTF track, users can identify the name of 

the expressed gene Adam10. Hovering the cursor over the block in the bigWig track 

shows the value ‘4.85232’, which is the average gene expression value of Adam10 in 

the dataset GSE30321. When users are interested in further information, they can click 

the block in the dataset GFF3 track (Figure 3.40). From a pop-up window, users can 

gain the dataset ID and source ID for raw data and related paper. 
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Figure 3.39 The display of GSE30321 dataset track and bigWig track. 

 

Figure 3.40 The pop-up window of GSE30321 dataset track. 
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In the example GSE30321, only one bigWig track was generated because the 

dataset is complex and has various sample conditions. For other DNA microarray 

datasets, group can be classified based on samples’ condition. Then users can compare 

the expression value of a gene of interest among different groups by using the bigWig 

tracks for each group.  

3.2.3 RNA-Seq data 

For each RNA-Seq dataset, several types of tracks are provided for visualizing 

the gene expression information.  

For each sample, the basic reads mapping information has been kept in two 

‘BAM’ file categories: the BAM coverage feature track and the BAM alignment 

feature track. The ‘BAM coverage feature track’ is similar to a bigWig track. It is 

composed of histograms to represent the coverage of RNA-Seq reads in the given 

position. It also has a scale bar, and uses a red top to indicate values that are beyond 

the scale. 

The ‘BAM alignment feature track’ shows read alignment for the 

condition/sample. Each dot represents a read and its position indicates where the read 

was mapped to the scaffold. There are two colors of the dots to distinguish the 

direction of the read. Red indicates a read mapping to the positive strand, and the blue 

indicates the read mapped to the negative strand. Additionally, a black bar within a 

read indicates that the read has been separated into several pieces in order to map to 

the scaffold (Figure 3.41). 

In Figure 3.41, the reference gene track (boxed in red), the coverage BAM 

track (boxed in green) and alignment BAM track (boxed in blue) are displayed. 

Adam10, an example of gene of interest, the alignment BAM track displays many 
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reads and how these reads were mapped to the genome. By hovering the cursor over 

the coverage BAM track, users can identify the density of reads in the given position. 

 

Figure 3.41 The display of sample BAM tracks. 

In addition to basic reads information, the assembly of these reads into a 

transcript provides prediction for exons and transcripts. The ‘Annotation track’, which 

includes annotation of expressed transcripts for each gene, can be used to review the 

assembly. When using the ‘Annotation track’, it is recommended to also use the 

reference gene track and reference mRNA track. By comparing the reference gene and 

mRNA tracks with the ‘Annotation track’, users can obtain a general idea of the 

sample expression condition.  
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In Figure 3.42, the reference gene track (boxed in red), reference mRNA track 

(boxed in green), and annotation GFF3 track (boxed in blue) are displayed. Here we 

use gene Adam10 and gene Ccnb2 as examples. For gene Adam10, both the reference 

mRNA track and the annotation GFF3 track have one mRNA, but the gene ID of 

mRNA in the annotation GFF3 track (gene id: CUFF.254) is different with the gene 

ID in the reference gene track. For gene Ccnb2, the gene ID of mRNA in the 

annotation GFF3 track (Ccnb2) is same as the gene ID in the reference gene track. 

Same gene ID means that the sequence of this gene in the annotation GFF3 track is 

entirely the same as the sequence of this gene in the reference gene track. Therefore, 

the gene Ccnb2 was more consistent with the reference tracks during the experiment. 

Compared to the gene Adam10 (gene IDs are different in reference gene track and 

annotation GFF3 track), we have higher confidence in saying Ccnb2 was expressed in 

the sample.  

 

Figure 3.42 The display of sample annotation GFF3 track. 



 102 

In Figure 3.43, users can click each part of the block in the annotation GFF3 

track to obtain annotation information about the selected mRNA (pop-up window). 

 

Figure 3.43 The pop-up window of sample annotation GFF3 track. 

The ‘FPKM bigWig track’ displays gene level FPKM values and has bigWig 

track features. The height of each column and its value in this bigWig track represent 

the gene expression FPKM value. By combining the annotation track with the FPKM 

bigWig track, users can identify the expression level for a given gene (Figure 3.44). 

In Figure 3.44, the reference gene track (boxed in red), annotation GFF3 track 

(boxed in green), and FPKM bigWig track (boxed in blue) are displayed. The gene 

expression level of Adam10 is 39.2699. 
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Figure 3.44 The display of sample annotation GFF3 track and FPKM bigWig track. 

The four tracks explained above are used to display reads mapping, assembly 

and gene expression level for each sample. To make a comparison of gene expression 

level among different samples or conditions, users can select a ‘Differential gene 

expression track’.  

In the differential gene expression track, a green block means that the gene in 

the selected position is differently expressed between paired conditions.  

In Figure 3.45, the reference gene track (boxed in red), dataset GFF3 track 

(boxed in green), and the differential GTF track (boxed in blue) are displayed. For 

instance, gene Adam10 was expressed (shown block in dataset GFF3 track), but it was 

not differentially expressed between any paired conditions (shown as no block in the 
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differential GTF track). On the contrary, the gene Sltm has one green block, which 

means the gene Sltm was expressed differentially in paired conditions. 

 

Figure 3.45 The displaying of GSE75094 dataset track and differential GTF track. 

When users click on a block, a pop-up window provides more information 

about which two groups expressed the gene differently. In Figure 3.46, click the block 

of gene Sltm. The ‘Derived_from’ attribute displays the experimental condition and 

the gene expression level under the condition. Condition one is ‘Passage0’, and the 

expression level is ‘17.9174’. Condition two is ‘Passage 6’, and the expression level is 

’49.9713’. 
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Figure 3.46 The pop-up window of differential GTF track. 



 106 

 Chapter 4

DISCUSSION 

 When studying CHO cells, mRNA expression data from DNA microarrays or 

RNA-Seq is essential for scientists to understand how genes are expressed under 

various conditions. Accordingly, various tools have been generated for processing 

processed DNA microarray and RNA-Seq data. There are tools used to measure or 

calculate a numerical value to represent the gene expression level, and tools used for 

comparing differential gene expression within a dataset for both DNA microarray and 

RNA-Seq data. However, files that contain gene expression data are not easy to 

visualize because the file formats restrict the visualization of expression level for each 

gene.  

Currently, visualizations of the comparison result for gene expression include 

viewing differentially expressed genes, such as the output from edgeR. This 

visualization enables users to easily make a comparison for the expression level of a 

group of genes among different conditions, but it is not easy for users to view the 

expression level of a certain gene. Some genome browsers have also been used to 

attempt to visualize gene expression data, such as JBrowse, UCSC genome browser, 

and Integrative genome viewer (IGV). These genome browsers more or less can 

visualize part of the gene expression information. For example, reads mapping 

information can be visualized by using BAM file. However, users are not able to 

obtain transcript or gene expression level from this limited visualization information. 

In addition, there is no source available for the CHO community to check the 
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expression level of certain genes from past DNA microarray or RNA-Seq 

experiments.  

This study is aim to provide a better way to visualize mRNA/gene expression 

data by creating new format files that contain data of interest and are compatible with 

genome viewers. For each DNA microarray experiment, a normalized gene expression 

level is provided. For each RNA-Seq experiment, further analysis tools, such as 

Tuxedo protocol, are required to calculate gene expression levels. Based on these 

available data and tools, ExpressGENiE has been developed to process data from 

either normalized DNA microarray data or RNA-Seq data after processed by Tuxedo 

protocol. 

The format of data from DNA microarray and RNA-Seq experiments cannot 

be visualized directly to represent mRNA/gene expression levels. The formats of the 

newly generated files, such as bigWig/bedGraph, GTF, and GFF3, are commonly used 

and can be visualized on JBrowse as well as other genome browsers. These newly 

generated files help to reveal different aspects of the mRNA/gene expression data. For 

both DNA microarray and RNA-Seq data, there are files to indicate the symbols of 

expressed genes and display their numerical gene expression levels. For users who 

have genes of interest, the visualization of gene expression level files can be used to 

search for numerical expression levels from past experiments. In addition, for users 

who want to make a gene expression comparison for a certain gene, there is a file 

generated for each RNA-Seq dataset to better display differentially expressed genes.  

There are also multiple files generated that contain gene expression 

information for CHO cells from both DNA microarray and RNA-Seq data. Due to the 

fact that when a new experiment is added, the increasing number of files will make it 
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more difficult to search for information on genes of interest, there are files generated 

that indicate the source of each expressed sequence. These files enable users to find 

whether or not their gene of interest is expressed in a certain data type/dataset/sample. 

The usage of the source indicator files simplifies the process to obtain information for 

genes of interest. 

However, currently, the tool is unable to compare the gene expression level 

between two datasets. Make a comparison between two datasets is challenging to 

implement because there is no process to normalize the gene expression level for a 

certain gene between two different RNA-Seq or DNA microarray datasets. In addition, 

there is no existing file format that allows visualization of differential gene expression 

for DNA microarray data in JBrowse. Even though there are tools available to 

compare gene differential expression for DNA microarray data, the outputs are 

unfriendly to visualize on JBrowse. 

The main purpose of this study is to directly visualize the gene expression level 

for CHO cells. The chosen browser, JBrowse, has been used to display CHO cell DNA 

microarray and RNA-Seq data. Thus, for the CHO community, all visualized files 

from past experiments are put together and setup as a database so that people do not 

need to collect these information individually. The visualization of gene expression 

data enables users to directly observe the gene expression level for their genes of 

interest. The gene expression level from past experiments can provide a reference and 

basic information of how gene is expressed under certain culture condition, and thus 

users can better plan their experiments. Additionally, the visualization of data enables 

users to compare the gene expression level from various conditions. For RNA-Seq 
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data, there are files containing differentially expressed genes, which enable users to 

directly identify differentially expressed genes. 

Using this tool to generate new files provides a convenient way to visualize 

gene expression levels. To enrich the function of the tool, there are still several aspects 

that need to be improved. The future work includes the following points: 

1. ExpressGENiE is based on running multiple custom Python scripts to 

generate new files. For existing functions, improving the efficiency of these scripts 

can decrease running time of each procedure.  

2. There are currently only a few datasets available to view in JBrowse. As the 

number of studies of CHO cells using DNA microarray or RNA-Seq methods 

increase, adding more datasets into JBrowse would expand the CHO data in 

CHOgenome.org. 

3. Generating files to visualize the differential gene expression for DNA 

microarray data would enable users to compare gene expressions among different 

conditions within a DNA microarray experiment. Fold-change and p-value can be 

used as the standard to select whether or not the gene was expressed differentially. 

4. Generating files to visualize the differential gene expression for either 

multiple DNA microarray datasets or multiple RNA-Seq datasets would enable users 

to easily make comparisons for gene expressions among different datasets. Gene 

expression levels should be normalized before making the comparison among 

different datasets. DNA microarray data may have been normalized differently among 

experiments due to multiple normalization methods. In addition, control groups of 

various RNA-Seq experiments may have different gene expression levels for the same 

gene. 
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5. In addition, ExpressGENiE currently works only for CHO-K1 data. 

ExpressGENiE is based on reference gene sequence and reference annotation files to 

process data. Therefore, with the completion of reference files for other CHO cell 

lines, ExpressGENiE can be used to process data for different CHO cell lines. 
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Appendix A 

FILE FORMAT 

A.1 File format introduction 

Here are the introductions of each format of files. 

A.1.1 FASTA format file 

The FASTA format is a text-based format file. In bioinformatics, these files are 

usually used to record either nucleotide codes or amino acid codes. Each sequence 

consists of two parts, a title line, and data lines. The title line is a description of the 

sequence which starts with ‘>’ character. It often contains the label of the sequence 

and an optional comment. The data lines are the sequence of the DNA or protein 

[http://www.ncbi.nlm.nih.gov/BLAST/blastcgihelp.shtml, 

https://en.wikipedia.org/wiki/FASTA_format]. An example sequence in FASTA 

format is shown below: 
 
>gi|12345| 
ACTGCTGCAAGTCTACTACGCTGCGTAGACGTTAGCGTATAGCGGGCCTCT
ATCTGCGTAGCCAGATACTGCTGTCGATGTACGTAGAGCTGTCGTAGTAGT
CGTGCTCGTAGCTGACGT 

A.1.2 FASTQ format file 

The FASTQ format is a text-based format file. It normally uses four lines to 

save information for each sequence. The first line is the sequence identifier and 

optional comment (same as the FASTA title line) which starts with a ‘@’ character. 

The second line is the sequence code. The third line starts with a ‘+’ character and 
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contains an optional sequence identifier. The fourth line is the quality values of the 

sequence in the second line [http://maq.sourceforge.net/fastq.shtml, 

https://en.wikipedia.org/wiki/FASTQ_format]. An example sequence in FASTQ 

format is shown below: 
 
@Sequence_id 
CGTATCGACTGCATGCTGAC 
+Sequence_id 
>IB=I>#B)&6IB?!>>8*% 

A.1.3 GTF/GFF format file 

GFF (General Feature Format) format is a text-based format file. Each line 

consists of nine tab-separated columns, and each line contains information for one 

feature, plus optional track definition lines. The GTF (General Transfer Format) is 

identical to GFF version 2 [GFF. http://gmod.org/wiki/GFF].  

The nine columns are sequence name, source, feature, start, end, score, strand, 

phase, and attribute. They are described as below 

[http://useast.ensembl.org/info/website/upload/gff.html]: 

1.    ‘Sequence name’ is the name/ID of the chromosome/scaffold where the 

sequence is located. E.g. NW_0012345.1. 

2.    ‘Source’ is the name of the program/algorithm that generates this file. E.g. 

ExpressGENiE. 

3.    ‘Feature’ is the feature type of the sequence. E.g. gene. 

4.    ‘Start’ is the start position of the sequence. E.g. 1234. 

5.    ‘End’ is the end position of the sequence. E.g. 2345. 

6.    ‘Score’ is a floating point value. E.g. 1. 

7.    ‘Strand’ is the direction of the sequence. It is one of ‘+’,  ‘-’, or ‘.’. 
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8.    ‘Phase’ is one of ‘0’, ‘1’, ‘2’, and ‘.’. The phase is a description for the 

‘CDS’, which is used to indicate the position of the first base of the next codon in this 

region. The ‘0’ represents that the codon begins at the first base of the region, the ‘1’ 

represents the second base of the region, the ‘2’ represents the third base of the region, 

and the ‘.’ represent no phase. 

9.     ‘Attribute’ is a semicolon separated list of additional information for each 

sequence. 

An example sequence in GTF/GFF format is shown below: 
 
NW_0012345.1 ExpressGENiE gene 1234 2345 1 + .
 gene_id’abcd’;    

A.1.4 GFF3 format file 

GFF3 (Generic Feature Format Version 3) is an extension of GFF format. It 

keeps basically the same structure as GFF file, with nine columns per line, but 

contains more information [Generic Feature Format version 3. 

http://www.sequenceontology.org/gff3.shtml]: 

1. Can contain features and subfeatures that are in different hierarchical levels.  

2. Feature name/ID and the group membership have been separated. 

3. Feature type field should be taken from a controlled vocabulary. 

4. Each single feature can belong to several groups at one time. 

5. Features that occupy disjunct regions have an explicit convention. 

A.1.5 BedGraph and Bigwig format file 

The bedGraph format makes it practical to view the results of next-generation 

sequencing experiments as tracks and allows display of continuous-valued data. 

Bigwig is a binary file that is derived from text-formatted wiggle plot (wig) or 
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bedGraph files. It has the same information as a bedWig file [BedGraph format. 

https://genome.ucsc.edu/goldenpath/help/bedgraph.html, Kent et al., 2010]. Here is an 

example for a bedGrpah file: 

 
Sequence_id start stop value 
NW_12345.1 1234 2345 6666 

A.1.6 BAM and SAM format file 

A BAM (Binary Alignment/Map) file is the compressed binary version of a 

SAM (Sequence Alignment/Map) file that is used to represent aligned sequences. The 

SAM format consists of one header section and one alignment section. The header 

section starts with a ‘@’ character. Each alignment line has eleven mandatory fields 

and variable numbers of optional fields [Li et al., 2009].  

Table A.1.6 Eleven mandatory fields in the alignment line of BAM/SAM file 

Number Name Description 
1 QNAME Query NAME of the read or the read pair  
2 FLAG Bitwise FLAG (pairing, strand, mate strand, etc.) 
3 RNAME Reference sequence NAME  
4 POS 1-Based leftmost POSition of clipped alignment 
5 MAPQ MAPping Quality (Phred-scaled)  
6 CIGAR Extended CIGAR string (operations: MIDNSHP) 
7 MRNM Mate Reference NaMe (‘=’ if same as RNAME) 
8 MPOS 1-Based leftmost Mate POSition  
9 ISIZE Inferred Insert SIZE  
10 SEQ Query SEQuence on the same strand as the reference 
11 QUAL Query QUALity (ASCII-33=Phred base quality) 

Here is an example: 
 
@header 
00r 123 scaffold/chr start 0 151M * 0 0
 ACGTGTACGTGTTACTGACGT; AS:i:0 



 121 

A.1.7 Appendix A’s references 

BedGraph format. https://genome.ucsc.edu/goldenpath/help/bedgraph.html 

FASTA. https://en.wikipedia.org/wiki/FASTA_format 

FASTA. http://www.ncbi.nlm.nih.gov/BLAST/blastcgihelp.shtml 

FASTQ. https://en.wikipedia.org/wiki/FASTQ_format 

FASTQ. http://maq.sourceforge.net/fastq.shtml 

GFF. http://gmod.org/wiki/GFF 

GFF. http://useast.ensembl.org/info/website/upload/gff.html 

Generic Feature Format version 3. 

http://www.sequenceontology.org/gff3.shtml 

Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., … 1000 

Genome Project Data Processing Subgroup. (2009). The Sequence Alignment/Map 

format and SAMtools. Bioinformatics, 25(16), 2078–2079. 

Kent, W. J., Zweig, A. S., Barber, G., Hinrichs, A. S., & Karolchik, D. (2010). 

BigWig and BigBed: enabling browsing of large distributed datasets. Bioinformatics, 

26(17), 2204–2207. 

 

 

 

 

 

 

 

 

 



 122 

Appendix B  

INTERNSHIP 

B.1  Internship 

The summer internship at Millipore Sigma was mainly working on gene 

editing, which is related with CRISPR-Cas 9. Compared with zinc-finger nuclease 

(ZFNs), and transcription activator-like effector nucleases (TALENs), currently, the 

CRISPR-Cas 9 is the most preferred powerful gene editing tool [Gaj et al., 

2013]. Companies that supply technical support for gene editing work on providing 

competitive CRISPR-Cas 9 skill for users. Bioinformatics plays an important role in 

gene editing, especially for guide RNA prediction and selection. My summer intern 

project was using bioinformatics to select better guide RNA candidates from all 

predicted possible guide RNAs based on the hit position and hit isoform of the guide 

RNA. All of the functions were realized by custom Python (Python 2.7) scripts. The 

guide RNA selection enables users to obtain the guide RNAs that only satisfy their 

experimental requirements, which can significantly improve the experiment efficiency 

and make it less money-consuming. 
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