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Abstract

Background: Heat stress in poultry results in considerable economic losses and is a concern for both animal health and
welfare. Physiological changes occur during periods of heat stress, including changes in blood chemistry components. A
highly advanced intercross line, created from a broiler (heat susceptible) by Fayoumi (heat resistant) cross, was
exposed to daily heat cycles for seven days starting at 22 days of age. Blood components measured pre-heat
treatment and on the seventh day of heat treatment included pH, pCO2, pO2, base excess, HCO3, TCO2, K, Na,
ionized Ca, hematocrit, hemoglobin, sO2, and glucose. A genome-wide association study (GWAS) for these traits
and their calculated changes was conducted to identify quantitative trait loci (QTL) using a 600 K SNP panel.

Results: There were significant increases in pH, base excess, HCO3, TCO2, ionized Ca, hematocrit, hemoglobin,
and sO2, and significant decreases in pCO2 and glucose after 7 days of heat treatment. Heritabilities ranged from
0.01-0.21 for pre-heat measurements, 0.01-0.23 for measurements taken during heat, and 0.00-0.10 for the
calculated change due to heat treatment. All blood components were highly correlated within measurement
days, but not correlated between measurement days. The GWAS revealed 61 QTL for all traits, located on GGA
(Gallus gallus chromosome) 1, 3, 6, 9, 10, 12–14, 17, 18, 21–28, and Z. A functional analysis of the genes in these
QTL regions identified the Angiopoietin pathway as significant. The QTL that co-localized for three or more traits
were on GGA10, 22, 26, 28, and Z and revealed candidate genes for birds’ response to heat stress.

Conclusions: The results of this study contribute to our knowledge of levels and heritabilities of several blood
components of chickens under thermoneutral and heat stress conditions. Most components responded to heat
treatment. Mapped QTL may serve as markers for genomic selection to enhance heat tolerance in poultry. The
Angiopoietin pathway is likely involved in the response to heat stress in chickens. Several candidate genes were
identified, giving additional insight into potential mechanisms of physiologic response to high ambient
temperatures.

Background
Climate change has increased the frequency of severe
heat waves and the global temperature is projected to
become increasingly warmer [1]. Heat stress in
poultry negatively impacts animal production and
welfare resulting in economic losses estimated to be
between $125-165 million for the U.S. broiler poultry
industry [2]. During a severe heat wave in Iowa, over
1.5 million layer hens died [3].

To reduce core body temperature during periods of
heat stress, blood flow to internal organs decreases and
blood flow to the combs and other surface tissues in-
creases in chickens [4]. During periods of heat stress,
blood volume and oxygen carrying capacity are altered
[5] and dehydration, caused by increased respiration, can
increase hematocrit [6]. Energy availability, as deter-
mined by plasma glucose level, is increased in chickens
exposed to heat stress [7].
During high ambient temperatures, chickens reduce

feed intake by as much as 17 %, which reduces growth
[8]. However, metabolic and endocrine changes during
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heat stress also contribute to reduction in growth in
broilers, as demonstrated by a pair-feeding study [9].
A major change in blood components is caused by

heat-induced increased respiration, which results in re-
spiratory alkalosis, a disturbance in the acid base balance
characterized by an increase in blood pH accompanied
by a decrease in pCO2. Respiratory alkalosis occurs in
broilers during heat stress and is associated with reduced
growth rate [10]. Metabolic alkalosis is an additional
measure of disturbances in acid base balance and is de-
fined by a decrease in the fixed acid concentrations and
an increase in fixed base concentrations within the
extracellular fluid [11].
Electrolyte balance is essential for acid base balance,

maintenance of cellular homeostasis, synthesis of tissue
protein, electrical potential of cell membranes, enzymatic
reactions, and maintaining osmotic pressure [12]. Altering
electrolyte amounts in feed partially ameliorates the nega-
tive impacts of heat stress in broiler chickens [13].
The goal of the current study was to identify the

physiological changes and genomic regions associated
with response to heat stress in chickens as characterized
by the blood chemistry components, including pH,
pCO2, pO2, base excess (BE), HCO3, TCO2, K, Na, ion-
ized Ca (iCa), hematocrit (Hct), hemoglobin (Hb), sO2,
and glucose (Glu). In a commercial egg laying popula-
tion, developmental measures have been established with
hopes of using measures of blood chemistry components
for selection [14]. To date, few studies have identified
quantitative trait loci (QTL) for blood components in
chicken [15–18]. We used a 600 K SNP panel to identify
QTL regions associated with levels of blood components
of chickens under thermoneutral and heat stress condi-
tions, and changes induced by heat.

Results
Blood component measurements and heritabilities
Phenotypic means and heritabilities are given in Table 1
for blood components measured pre-heat (day 20 of
age), after 7 days of heat treatment (day 28 of age), and
the calculated change due to heat treatment (day 28–
20). After 7 days of heat treatment, pH, BE, HCO3,
TCO2, iCa, Hct, Hb, and sO2 significantly increased
while pCO2 and glucose significantly decreased. There
were no significant changes in pO2, K, and Na due to
heat treatment.
Heritabilities ranged from 0.01-0.21 for pre-heat mea-

surements, 0.01-0.23 for measurements taken during
heat, and 0.00-0.10 for the calculated change due to heat
treatment.

Trait correlations
Correlations between blood components at each meas-
urement phase are given in Fig. 1 as a heat map. Almost

all blood components were positively correlated with all
other variables measured on the same day. Very few
significant correlations, however, occurred between vari-
ables measured on different days.

Genotyping
Of the 480 genotyped birds, 458 Advanced Intercross Line
(AIL) and all 12 parental line birds passed the whole ani-
mal DishQC criterion. Of the 580,961 SNPs on the array,
filtering based on SNP call rate ≥ 95 % removed a small
proportion (59,789 SNPs), whereas filtering based on
MAF removed a much larger proportion (311,055 SNPs),
yielding 210,117 SNPs for subsequent analyses.

GWAS
The results from the GWAS for each trait are depicted
in Fig. 2. A wide range of genetic variation (0.5-9.8 %)
was explained by each significant window and detailed
information is found in Table 2. Adjacent windows that
were significant for a single trait are discussed below as
a single QTL region.
Six QTL for pH phenotypes were identified: three for

pH20 with two on GGA18 and one on GGA28, one for
pH28 on GGA12, and two for pH28-20 with one each
on GGA6 and GGA10.
Nine QTL for pCO2 measurements were identified: one

for pCO220 on GGA28, four for pCO228 located on
GGA1, 9, 10, and 27, and four for pCO228-20 on GGA3,
10, 23, and 28. No QTL were identified for pO220 or for
pO228-20. One QTL was identified for pO228 on GGA13.
A total of five QTL were identified for BE traits: two

for BE20 on GGA18, three for BE28 with one each on
GGA1, 21, and 27, and none for BE28-20. Nine QTL
were identified for TCO2 traits: none for TCO220; eight
for TCO228 one each on GGA6 and GGA26, and six on
GGAZ, and one for TCO228-20 on GGA10. No QTL
were identified for HCO320 or HCO328-20, while seven
were revealed for HCO328 with one on GGA6 and six
on GGAZ.
Five QTL for K traits were identified: four for K20

with two on GGA10, one on GGA12, and one on
GGA26, none for K28 and one for K28-20 located on
GGA12. No QTL were identified for the Na phenotypes.
A single QTL was identified for ionized Ca phenotypes:
for iCa28 on GGA26.
We identified five QTL for Hct measurements: none

for Hct20 or Hct28-20, and five for Hct28 located one
each on GGA1, 10, 14, 22, and two on GGA28. Seven
QTL were identified for Hb: none for Hb20, six for
Hb28 located one each on GGA1, 10, 14, 22, and two
on 28, and one for Hb28-20 on GGA22. There were
three QTL for sO2 phenotypes: none for sO220, two for
sO228 located on GGA24 and GGA25, and one for
sO228-20 on GGA17.
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Fig. 1 Heat map of phenotypic correlations between blood chemistry components. Heat map showing phenotypic correlations between blood
chemistry components measured on day 20 (pre-heat), day 28 (during heat), and day 28–20 which is the difference due to heat treatment. Traits
are clustered together based on function. The colors represent the correlation coefficient (r2) with red indicating a positive correlation and blue
indicating a negative correlation

Table 1 Phenotypic means and heritabilities (h2)

Trait Day 20 Day 28 Day 28-20

Mean ± SEM h2 (SE) Mean ± SEM h2 (SE) Mean ± SEM h2 (SE)

pH 7.50 ± 0.0a .17 (0.08) 7.53 ± 0.003b .10 (0.08) 0.03 ± 0.004 .05 (0.03)

pCO2, mmHg 31.9 ± 0.1a .21 (0.06) 31.1 ± 0.2b .05 (0.04) −0.8 ± 0.2 .07 (0.05)

pO2, mmHg 43.3 ± 0.3a .06 (0.04) 43.9 ± 0.2a .05 (0.05) 0.5 ± 0.3 .00 (0.03)

BE, mM 1.8 ± 0.1a .10 (0.05) 3.3 ± 0.2b .02 (0.02) 1.5 ± 0.2 .00 (0.02)

HCO3, mM 25.0 ± 0.1a .05 (0.04) 26.0 ± 0.1b .23 (0.12) 1.0 ± 0.2 .03 (0.02)

TCO2, mM 25.9 ± 0.1a .02 (0.03) 26.9 ± 0.1b .13 (0.09) 1.0 ± 0.2 .01 (0.01)

K, mM 4.8 ± 0.0a .20 (0.01) 4.9 ± 0.0a .02 (0.01) 0.1 ± 0.0 .10 (0.06)

Na, mM 137.0 ± 0.2a .08 (0.6) 137.2 ± 0.3a .01 (0.01) 0.3 ± 0.3 .01 (0.01)

iCa, mM 1.25 ± 0.0a .04 (0.01) 1.28 ± 0.01b .02 (0.01) 0.02 ± 0.01 .01 (0.01)

Hct, % PCV 22.5 ± 0.2a .01 (0.03) 23.2 ± 0.1b .21 (0.08) 0.7 ± 0.2 .02 (0.01)

Hb, g/dL 7.7 ± 0.1a .07 (0.05) 7.9 ± 0.0b .11 (0.04) 0.2 ± 0.1 .02 (0.01)

sO2, % 83.2 ± 0.2a .03 (0.05) 84.7 ± 0.2b .02 (0.02) 1.5 ± 0.3 .01 (0.01)

Glu, mg/dl 252 ± 0.8a .15 (0.08) 243 ± 1b .19 (0.09) −8 ± 1 .02 (0.02)

Blood chemistry components were measured pre-heat (day 20), on the seventh day of heat treatment (day 28), and the calculated change due to heat (day 28–
20). Different superscript letters within row represent significant differences (P ≤ 0.05)
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Four QTL were identified for Glu: one for Glu20 on
GGA10, and three for Glu28 with one on GGA22 and
two on GGAZ.

Pathway analysis
The pathway analysis of all annotated genes within sig-
nificant QTL regions across all measured traits, and sep-
arately for genes in the regions of QTL co-localization,
and the top 20 significant (P ≤ 0.05) canonical pathways
for each group are listed in Table 3. Of the 999 genes
identified within all significant QTL regions, 682 genes
were annotated within IPA and used for the pathway
analysis. Two canonical pathways of interest for all iden-
tified QTL include the AMPK signalling and Angiopoie-
tin signalling pathways. Of the 226 genes in regions of
QTL co-localization, 185 were annotated within IPA and
used for pathway analysis. A pathway of particular inter-
est that was revealed was the Cardiac Hypertrophy sig-
nalling pathway.

Candidate genes
We explored regions of QTL co-localization in detail to
identify candidate genes that may give insight into the
complex biological mechanisms that control blood com-
ponent response to heat stress. Candidate genes were
identified using Ensemble Biomart within the 1 Mb
windows that were significant for 3 or more traits
(Additional file 1: Table S1).

Discussion
The aim of this study was to identify and estimate the ef-
fect of QTL, and to perform a functional analysis using
positional candidate genes, for blood components (pH,
pCO2, pO2, base excess, HCO3, TCO2, K, Na, ionized Ca,
Hct, Hb, sO2, and Glu) using a novel AIL of chickens
under heat stress and a 600 K SNP panel for genotyping.
The blood components measured were within the ac-
cepted range reported for chicken [19]. Blood chemistry
components are grouped into functional categories (i.e.,

Fig. 2 Genome-wide plot of percentage of genetic variance for traits measured during heat stress. Traits were measured before heat treatment
(day 20) and during heat treatment (day 28), and the differentials were also calculated (day 28-20). The traits that reached significance in the
GWAS (≥0.05 % of the genetic variation) are displayed. Results show the percentage of genetic variance that is explained by each non-
overlapping 1-Mb window, labeled by the index number of the windows, and are colored and ordered by chromosome (1 to 28, and Z). Plots
display: pH on days 20 and 28, and the differential 28–20 (a, b, and c); partial CO2 (pCO2) on days 20, 28, and the differential 28–20 (d, e, and f);
partial O2 (pO2) on day 28, (g); base excess on day 20 and day 28, (h and i); bicarbonate (HCO3) on day 28 (j); total CO2 (TCO2) on day 28 and
the differential 28–20 (k and l); potassium (K) on days 20 and the differential 28–20 (m and n); ionized calcium (iCa) on day 28 (o); hematocrit
(Hct) on day 28 (p); hemoglobin (Hb) on day 28 and the differential 28–20 (q and r); saturated oxygen (SO2) on day 28 and the differential
(s and t); glucose on days 20 and 28 (u and v)
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Table 2 Windows explaining a significant percentage (≥0.5) of genetic variance

Windows explaining≥ 0.5 % of genetic variance SNP with highest model frequency within window

Traita Chr Pos (Mb) % of genetic
variance explained

Nb of SNPs Freq of iterations
with (P > 0)b

SNP namec SNP pos (bp)d Model freqe Allele freqf

pH20 18 3 1.29 401 0.94 AX-75894740 3342614 0.0111 0.652

pH20 28 4 1.01 328 0.85 AX-76384843 4097788 0.0090 0.294

pH20 28 3 0.64 437 0.92 AX-76383580 3856132 0.0092 0.294

pH20 18 6 0.58 342 0.86 AX-75894671 6670745 0.0075 0.340

pH28 12 7 0.55 302 0.81 AX-75723368 7630857 0.0070 0.288

pH28-20 6 4 0.66 350 0.86 AX-76958371 4259110 0.0074 0.724

pH28-20 10 16 0.50 372 0.89 AX-75591175 16460945 0.0066 0.298

pCO220 28 3 9.75 437 0.93 AX-76383461 3835952 0.0448 0.711

pCO220 28 4 4.49 328 0.89 AX-76385219 4167579 0.0239 0.706

pCO228 9 20 0.59 462 0.94 AX-75706074 19358758 0.0070 0.416

pCO228 1 110 0.54 194 0.38 AX-80866127 110487208 0.0098 0.510

pCO228 27 2 0.53 650 0.96 AX-76356017 2038872 0.0065 0.653

pCO228 10 3 0.50 447 0.91 AX-75607032 3037730 0.0069 0.626

pCO228-20 28 4 0.61 328 0.83 AX-76384843 4097788 0.0076 0.296

pCO228-20 23 2 0.57 388 0.86 AX-76282215 2594470 0.0071 0.435

pCO228-20 3 14 0.56 287 0.81 AX-76421954 14679413 0.0075 0.323

pCO228-20 10 1 0.50 393 0.86 AX-75601081 1816619 0.0080 0.339

pO228 13 5 0.57 277 0.79 AX-75758019 5130673 0.0070 0.531

BE20 18 3 0.68 401 0.93 AX-75894740 3342614 0.0103 0.652

BE20 18 6 0.52 342 0.84 AX-75906711 6859485 0.0078 0.554

BE28 27 2 0.70 650 0.97 AX-76359325 2733806 0.0076 0.473

BE28 1 172 0.54 202 0.67 AX-75342016 172010216 0.0094 0.683

BE28 21 4 0.50 521 0.91 AX-76247040 4491122 0.0078 0.321

HCO328 Z 30 4.11 74 0.47 AX-77209983 30284984 0.1864 0.671

HCO328 Z 8 3.10 24 0.27 AX-80958477 8485438 0.0719 0.357

HCO328 Z 5 2.22 62 0.33 AX-80834191 5042699 0.0931 0.634

HCO328 Z 33 2.09 45 0.28 AX-80973925 33940034 0.0543 0.608

HCO328 Z 35 1.67 128 0.50 AX-80901519 35319963 0.0589 0.379

HCO328 Z 7 1.47 2 0.9 AX-77264084 7705768 0.0806 0.311

HCO328 Z 70 1.45 55 0.28 AX-77257752 70210948 0.0625 0.376

HCO328 Z 69 1.31 113 0.40 AX-80879264 69810199 0.0525 0.370

HCO328 6 25 0.75 325 0.86 AX-76932184 25826439 0.0083 0.466

HCO328 Z 71 0.74 183 0.62 AX-80943753 71554374 0.0520 0.360

HCO328 6 26 0.53 291 0.83 AX-76933234 26203623 0.0092 0.493

TCO228 Z 69 3.63 113 0.46 AX-80879264 69810199 0.1357 0.370

TCO228 Z 30 3.04 74 0.44 AX-77209983 30284984 0.1424 0.671

TCO228 Z 8 2.30 24 0.25 AX-80958477 8485438 0.0859 0.357

TCO228 Z 33 1.73 45 0.28 AX-80973925 33940034 0.0667 0.608

TCO228 Z 5 1.60 62 0.29 AX-80834191 5042699 0.0700 0.634

TCO228 Z 7 1.23 2 0.7 AX-77264084 7705768 0.0707 0.311

TCO228 Z 70 0.91 55 0.26 AX-77257752 70210948 0.0434 0.376

TCO228 Z 35 0.80 128 0.48 AX-80901519 35319963 0.0419 0.379
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respiratory alkalosis, metabolic alkalosis, blood volume
and oxygen carrying capacity, electrolytes, and glucose)
for discussion.

Population studied
Previous generations of this AIL were used for several
QTL mapping studies and allowed the identification

of many QTL including 257 for growth and body
composition [20–24], 93 for skeletal integrity [25], 51
for metabolic traits [18], 12 for response to Salmon-
ella enteritidis challenge [26–28], and 35 for response
to heat stress [29]. Therefore, collectively, a wide
range of traits have been associated with a large num-
ber of QTL in this AIL. The continued erosion of

Table 2 Windows explaining a significant percentage (≥0.5) of genetic variance (Continued)

TCO228 6 25 0.66 325 0.85 AX-76932184 25826439 0.0080 0.466

TCO228 26 3 0.51 616 0.98 AX-80958155 3785485 0.0079 0.513

TCO228-20 10 5 0.51 515 0.93 AX-75615576 5758221 0.0067 0.355

K20 10 16 0.76 372 0.92 AX-75589587 16018566 0.0041 0.249

K20 10 18 0.53 496 0.96 AX-75597981 18294286 0.0038 0.278

K20 12 17 0.53 242 0.72 AX-75701199 17759131 0.0043 0.646

K20 26 3 0.50 616 0.96 AX-76340450 3273628 0.0036 0.180

K28-20 12 16 1.29 246 0.75 AX-75696568 16220734 0.0036 0.650

K28-20 12 17 0.69 242 0.70 AX-75701149 17743731 0.0043 0.633

iCa28 26 3 0.52 616 0.96 AX-76343628 3922118 0.0076 0.550

Hct28 14 11 1.78 391 0.94 AX-75776707 11791127 0.0096 0.502

Hct28 1 169 1.17 196 0.83 AX-75336362 169571235 0.0110 0.714

Hct28 28 3 1.01 437 0.92 AX-76384000 3944019 0.0116 0.397

Hct28 28 4 0.93 328 0.91 AX-76385356 4197143 0.0113 0.408

Hct28 22 3 0.88 573 0.95 AX-76269662 3474970 0.0072 0.513

Hct28 10 16 0.59 372 0.90 AX-75589730 16057907 0.0070 0.254

Hb28 14 11 1.64 391 0.95 AX-75776707 11791127 0.0091 0.502

Hb28 1 169 1.33 196 0.83 AX-75337336 169979876 0.0121 0.322

Hb28 28 3 0.96 437 0.91 AX-76384000 3944019 0.0112 0.397

Hb28 28 4 0.94 328 0.92 AX-76385356 4197143 0.0103 0.408

Hb28 22 3 0.79 573 0.95 AX-76269662 3474970 0.0073 0.513

Hb28 10 16 0.60 372 0.90 AX-75590148 16177101 0.0077 0.295

Hb28 1 170 0.50 176 0.65 AX-75337520 170074107 0.0083 0.676

Hb28-20 22 3 1.71 573 0.96 AX-76272400 3857927 0.0072 0.533

sO228 25 0 1.23 364 0.91 AX-75758019 5130673 0.0070 0.531

sO228 24 3 0.55 581 0.94 AX-76328225 36480 0.0111 0.618

sO228-20 17 6 0.53 324 0.83 AX-75872796 6506736 0.0066 0.412

sO228-20 17 7 0.53 467 0.88 AX-75875111 7125729 0.0066 0.172

Glu20 10 4 0.67 548 0.95 AX-80975590 4452892 0.0067 0.740

Glu28 22 3 1.09 573 0.94 AX-76273189 3966852 0.0070 0.585

Glu28 Z 5 0.79 62 0.28 AX-80834191 5042699 0.0246 0.634

Glu28 Z 70 0.74 55 0.24 AX-77257752 70210948 0.0266 0.376

Glu28 Z 69 0.64 113 0.42 AX-80879264 69810199 0.0187 0.371
aBlood chemistry components were measured pre-heat (day 20), on the seventh day of heat treatment (day 28), and the calculated differential due to heat
(day 28–20)
bFrequency in which the window was included in the MCMC iterations (post-burn-in)
cSNP within the specified window which was most frequently included in the MCMC iterations (post-burn-in), and is therefore predicted to have the greatest
effect on the phenotype
dPosition of SNPs in base pairs on Gallus-gallus (version 4.0) chromosome
eFrequency in which the SNP was included in the MCMC iterations (post-burn-in) model
fAllele frequency of the SNP in the genotyped population (N = 458)
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Table 3 Top 20 canonical pathways for QTL identified for all traits, and for co-localized QTL

Pathways for all identified QTL

Pathway P-value Ratio: Genes in pathway that were identified in current study

1D-myo-inositol Hexakisphosphate Biosynthesis II
(Mammalian)

1.93E-03 4/19 INPP5E,IPMK,SEC16A,PMPCA

AMPK Signaling 2.15E-03 13/178 CHRNA5,MTOR,STRADA,AK8,INSR,CHRNA3,PPM1J,CHRNB4,PIK3R2,
ADRA2A,TSC1,FOXO1,ADRA1A

Angiopoietin Signaling 1.22E-03 6/66 NRAS,PIK3R2,BIRC5,CASP9,IKBKAP,FOXO1

Calcium Signaling 1.51E-02 11/178 CALR,CHRNA5,MYL4,CHRNB4,CAMK4,CHRNA3,CAMK1G,MEF2D,
TPM1,RAP1A,MEF2A

Cardiac Hypertrophy Signaling 5.80E-03 14/223 MTOR,MYL4,CAMK4,RHOC,IGF1R,NRAS,PIK3R2,RHOT1,ADRA2A,
MEF2D,MAP3K3,CACNA1D,MEF2A,ADRA1A

D-myo-inositol (1,3,4)-trisphosphate Biosynthesis 1.93E-03 4/19 INPP5E,IPMK,SEC16A,PMPCA

D-myo-inositol (1,4,5)-trisphosphate Degradation 1.44E-02 3/18 INPP5E,SEC16A,PMPCA

Dopamine Degradation 8.29E-03 4/28 ALDH1A1,ALDH1A3,MAOB,ALDH4A1

ERK5 Signaling 2.28E-03 7/63 MAP2K5,NRAS,NTRK1,MEF2D,NGF,MAP3K3,MEF2A

Ethanol Degradation IV 4.02E-03 4/23 ALDH1A1,TYRP1,ALDH1A3,ALDH4A1

Glioblastoma Multiforme Signaling 1.03E-02 10/146 WNT2B,IGF1R,NRAS,MTOR,PIK3R2,WNT5A,RHOC,RHOT1,TSC1, FOXO1

Glioma Signaling 7.71E-03 8/98 ABL1,TGFA,IGF1R,NRAS,MTOR,PIK3R2,CAMK4,CAMK1G

Histamine Degradation 1.22E-02 3/17 ALDH1A1,ALDH1A3,ALDH4A1

Human Embryonic Stem Cell Pluripotency 1.85E-03 11/134 WNT2B,PIK3R2,WNT5A,SMAD3,SMAD6,NTRK1,TCF7L2,BMP2,NGF,
FOXO1,NOG

Non-Small Cell Lung Cancer Signaling 1.13E-02 6/65 ABL1,TGFA,NRAS,PIK3R2,CASP9,RXRA

Nur77 Signaling in T Lymphocytes 1.26E-03 7/57 MAP2K5,SIN3B,CASP9,RXRA,CAMK4,MEF2D,MAP3K3

Putrescine Degradation III 2.84E-03 4/21 ALDH1A1,ALDH1A3,MAOB,ALDH4A1

Superpathway of D-myo-inositol (1,4,5)-trisphosphate
Metabolism

4.71E-03 4/24 INPP5E,IPMK,SEC16A,PMPCA

Thyroid Cancer Signaling 9.69E-04 6/40 NRAS,RET,RXRA,NTRK1,TCF7L2,NGF

Tryptophan Degradation X (Mammalian, via Tryptamine) 4.02E-03 4/23 ALDH1A1,ALDH1A3,MAOB,ALDH4A1

Pathways identified for co-localized QTL

Pathway P-value Ratio: Genes in pathway that were identified in current study

2-oxobutanoate Degradation I 4.22E-02 1/5 MCEE

AMPK Signaling 4.42E-03 6/178 CHRNA5,PPM1J,CHRNB4,INSR,CHRNA3,ADRA1A

Calcium Signaling 1.55E-04 8/178 CALR,CHRNA5,CHRNB4,CHRNA3,CAMK1G,TPM1,RAP1A,MEF2A

Cardiac Hypertrophy Signaling 4.35E-02 5/223 IGF1R,NRAS,RHOC,MEF2A,ADRA1A

CDK5 Signaling 4.94E-02 3/105 NRAS,PPM1J,NGF

Cholecystokinin/Gastrin-mediated Signaling 4.95E-02 3/245 NRAS,RHOC,MEF2A

CTLA4 Signaling in Cytotoxic T Lymphocytes 4.01E-02 3/88 PPM1J,PTPN22,AP1M1

ERK5 Signaling 1.69E-02 3/63 NRAS,NGF,MEF2A

Germ Cell-Sertoli Cell Junction Signaling 4.93E-02 4/160 NRAS,TJP1,RHOC,RAB8B

Glioblastoma Multiforme Signaling 3.73E-02 4/146 WNT2B,IGF1R,NRAS,RHOC

Glioma Signaling 1.01E-02 4/98 TGFA,IGF1R,NRAS,CAMK1G

Integrin Signaling 3.33E-02 5/207 NRAS,TSPAN2,RHOC,TLN2,RAP1A

Methylmalonyl Pathway 3.39E-02 1/4 MCEE

mTOR Signaling 2.28E-02 5/187 NRAS,PPM1J,INSR,RHOC,RPS15

NF-κB Signaling 1.65E-02 5/172 TGFA,IGF1R,NRAS,INSR,NGF

PTEN Signaling 1.89E-02 4/118 IGF1R,NRAS,INSR,MAGI3

Renal Cell Carcinoma Signaling 2.32E-02 3/71 TGFA,NRAS,RAP1A
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Linkage Disequilibrium (LD) in this population over
subsequent generations, combined with the availability of
larger SNP panels, creates a unique opportunity to more
finely map the location of QTL that are in LD with a
causal mutation.

Respiratory alkalosis
Phenotypic measurements
During periods of intense heat, chickens increase the
depth and frequency of respiration to decrease core body
temperature [30]. Broilers that are heat stressed increase
panting and display signs of respiratory alkalosis [10],
which is caused by an increase in the amount of CO2 ex-
pelled from the lungs, and a consequent increase in pH
within the blood, and an increase in pO2 within the
blood. We investigated blood pH, pCO2, and pO2 to
characterize respiratory alkalosis induced by heat stress.
Occurrence of respiratory alkalosis was clearly demon-

strated in the current study by a significant increase in
blood pH and significant decrease in pCO2 due to heat
treatment, in agreement with previous studies. Heat
stress for two hours at 32 °C in broilers at 35 days of age
significantly increases blood pH and decreases pCO2 [31]
and, in another study using broilers, heat stressed at 32 °C
for 2 weeks at 28 days of age in birds that were panting
[10]. We found pO2 increased in response to heat treat-
ment, although not significantly. In a study using 35 day
old broilers, blood pO2 significantly increased after cyc-
lical heat stress for 10 days at 35 °C [32].

Heritabilities
Only one other published study has estimated heritabil-
ities of blood components in chickens under thermal
stress [33]. The current study, therefore, adds substan-
tially to the body of information on response of birds to
thermal stress by estimating heritabilities of blood com-
ponent levels and changes under heat stress and thermo-
neutral conditions. In broiler chickens at 22 days of age
reared under cold stress conditions, heritabilities for
blood pH, pCO2, and pO2 were estimated at 0.15, 0.15,
and 0.03, respectively [33], in agreement with the
current study’s estimates for thermoneutral and heat
conditions. Our estimates for the changes in these blood

components due to heat treatment was much lower, sug-
gesting that the ability to select for the response to heat
stress may be difficult.

GWAS
To our knowledge, QTL for blood pH, pCO2, and pO2

in chickens have not been previously reported. Identifi-
cation of QTL for blood pH on different chromosomes
across measurement phases, indicates that genetic con-
trol of these traits exists and is partly dependent on the
environment. Co-localized QTL for pCO220 and
pCO228-20 on GGA28, and for pCO228 and pCO228-20
on GGA10, suggest that the same genetic regions con-
tribute to control of pCO2 level independent of environ-
mental temperature. The presence of co-localized QTL
between measurement phases was not expected, based
on the lack of phenotypic correlations (r = 0.00).

Metabolic alkalosis
Phenotypic measurements
Metabolic alkalosis occurs when there is a disturbance
in the fixed acids and bases in the extracellular fluid
[11]. Imbalance of dietary Na, K, or Ca can result in
metabolic alkalosis [34], which is characterized by an
increase in blood pH, HCO3, and base excess, and
can be induced in growing layers by high levels of
calcium in feed [35].
Base excess is considered a comprehensive measure of

the metabolic components of bases, which reflects the
nonrespiratory contribution to changes in acid–base dis-
turbances [36]. Base excess can be altered by changing
the cation:anion ratio in the diet of broiler chickens and
is associated with body weight and bone density [37]. In
the current study, base excess significantly increased
after heat treatment, which is consistent with the hy-
pothesis that chickens experience metabolic alkalosis
under heat stress.
HCO3 is the most abundant buffer in the blood, is pri-

marily regulated by the kidneys, and is a metabolic com-
ponent of acid–base balance [36]. We observed a
significant increase in HCO3 due to heat treatment.
These results contrasted with a previous study using
broilers at 28 days of age in which blood HCO3

Table 3 Top 20 canonical pathways for QTL identified for all traits, and for co-localized QTL (Continued)

STAT3 Pathway 2.49E-02 3/73 IGF1R,NRAS,INSR

TCA Cycle II (Eukaryotic) 1.65E-02 2/23 IDH3A,ACO1

Thyroid Cancer Signaling 4.62E-02 2/40 NRAS,NGF

All characterized genes within significant QTL regions were used as input in Ingenuity Pathway Analysis (IPA) software. The Top 20 significant (P ≤ 0.05) pathways
are listed. The results are displayed for pathways identified when using all QTL regions (61 total QTL) which resulted in 682 (999 total) annotated genes used for
pathway analysis. The bottom section of the table displays the pathways identified when using only the co-localized QTL regions (7 total co-localized QTL regions)
which resulted in 185 (226 total) annotated genes used for pathway analysis. The pathways are the top canonical pathways identified by IPA and are listed in al-
phabetical order. The ratio refers to the number of genes that were identified in the current study compared to the total number of genes that are in the pathway
according to IPA
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significantly decreased in panting birds under acute heat
stress [10], and another study using male broilers that
reported a decrease in HCO3 after a heat stress at 32 °C
for 10 h [13]. TCO2 also increased in response to heat
treatment. It was unexpected to observe a decrease in
base excess, consistent with metabolic alkalosis, while
HCO3 and TCO2 increased, because the traits are highly
positively correlated within all treatment phases (r ≥
0.95).

Heritabilities
We estimated heritability of base excess between 0.00-
0.10, of HCO3 between 0.03-0.23, and of TCO2 between
0.01-0.13. In broiler chickens at 22 days of age reared
under cold stress conditions, blood HCO3 and TCO2

heritability were both estimated at 0.19 [33].

GWAS
We are the first to report QTL in chickens for blood
base excess, HCO3, and TCO2, which are related to
metabolic alkalosis. QTL for base excess are located on
separate chromosomes for all measurement phases,
indicating a strong genetics by environmental (G x E)
temperature interaction. The phenotypic correlations for
base excess between measurement phases were both
very low (r = 0.03). The QTL for base excess on GGA18
overlap with pH measured at thermoneutrality and were
highly correlated (r = 0.78). Surprisingly, QTL for HCO3

were only identified during heat treatment and were on
GGA6 and GGAZ. Ten of the eleven QTL for TCO2

measured during heat co-localized with QTL for HCO3

and these co-localized regions were located on GGA6,
26, and Z.

Electrolytes
Phenotypic measurements
Blood K and Na levels numerically increased and iCa
statistically increased in response to heat treatment.
This is in disagreement with previous reports of de-
creasing levels of both K and Na in response to heat
stress, likely due to increased water intake which
results in decreased concentrations of electrolytes
within the blood [6, 13, 38].

Heritabilities
Heritability of K and Na blood levels in humans has
been estimated to be very low, 0.03 and 0.04, respect-
ively [39], in agreement with our low heritability esti-
mates during heat and for the calculated differential. In
contrast, our estimates for heritability under thermoneu-
tral conditions for K and Na were higher, 0.20 and 0.08,
respectively. Estimated heritability was 0.02 for ionized
Ca measured during heat stress, lower than the 0.19 of
mice in thermoneutral conditions [40]. The estimated

heritability was low, for both thermoneutral (0.04) and
the differential due to heat (0.01), indicating the gen-
etic component for ionized Ca is dependent upon en-
vironmental conditions at the time of measurement.
The low heritabilities of these traits during heat and
for the calculated differential due to heat treatment
suggest it may be difficult to select for these traits.

GWAS
This research is the first to describe QTL for the
electrolyte-balance traits of blood K, Na, and ionized Ca
in the chicken. In swine, QTL have been identified for
these traits [41]. QTL for blood K were located on
GGA10, 12, and 26. QTL were identified for K across
the thermoneutral and differential due to heat measure-
ment phases, indicating genetic control of this compo-
nent in this region on GGA12 despite environmental
temperature. The correlation between thermoneutral
and the differential was moderate (r = 0.10). No signifi-
cant QTL for Na were identified in the current study
and a single QTL for ionized Ca was located on GGA26
for the measurement taken during heat.

Blood volume and oxygen saturation
Phenotypic measurements
Changes in blood volume and oxygen carrying capacity
occur in chickens during periods of heat stress [5]. Both
hematocrit and hemoglobin significantly increased due
to heat treatment, which may be the result of dehydra-
tion. This result contrasts with a previous study using
male broilers in which both decreased after an acute
heat stress at 32 °C for 10 h [6]. Blood sO2 is a measure
of oxyhemoglobin in relation to total hemoglobin that is
able to bind oxygen [36], and this significantly increased
during heat treatment.

Heritability
The heritability of Hct was estimated as very low at 0.01
and 0.02 for pre-heat and the differential, respectively,
while during heat was moderately heritable at 0.21. Her-
itability has been estimated for hematocrit at 0.39 in do-
mestic fowl [42]. The increase in heritability when
measured during heat stress indicates that this trait may
be useful for selection. Heritability estimates of sO2 were
very low (0.01-0.03), which is in general agreement with
a previously reported value of 0.07 in cold-stressed
broiler chickens at 22 days of age [33].

GWAS
Seven QTL for haematocrit have been identified in
chickens (www.animalgenome.org). In a broiler by layer
F2 intercross, QTL for hematocrit were located on
GGA1, 2, 6, and 14 [43]; in a Fayoumi by Leghorn F2
intercross on GGA1 and GGA15 [44], and in a broiler
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by layer cross on GGA1 [45]. Our current work con-
firmed previously identified QTL for Hct28 on GGA1
and GGA14. Novel QTL for Hct were on GGA10, 22,
and 28. Most of the QTL identified in the current study
for Hb co-localized with those identified for Hct, with
the addition of a relatively large QTL for Hb28-20 on
GGA22, explaining 1.7 % of the genetic variation. The
co-localization of QTL among Hct and Hb is expected
because they have very high positive phenotypic correla-
tions across all measurement phases (r ≥ 0.99). We iden-
tified novel QTL for sO2 on GGA17, 24, and 25, none of
which overlapped between measurement phases, indicat-
ing separate genetic control of this trait dependent upon
environmental temperature. A previous study using a
commercial broiler line identified one on GGA16 [46].
Thus, QTL for sO2 appear to be population specific.

Glucose
Phenotypic measurement
Glucose is the body’s primary source of energy, and blood
Glu significantly decreased due to heat treatment in the
current study. In contrast, male broilers had a significant
increase in Glu after heat stress at 32 °C for 10 h [6], and
in broiler chicks of 5 weeks of age at 35-40 °C [47]. In
chicken lines divergently selected for blood glucose con-
centration, the low glucose line was less efficient at food
utilization compared to the high glucose line [48], which
may indicate that the decrease in glucose we see during
heat stress may contribute to inefficiency in food
utilization.

Heritability
The current study estimated heritabilities for glucose
ranging between 0.02-0.19. In a study using chickens
divergently selected for blood glucose concentration,
heritability was estimated at 0.25 [48].

GWAS
We identified QTL for Glu20 and Glu28 on GGA10, 22,
and Z, while QTL were mapped to GGA2, 7, and Z in
the F2 generation of the same chicken population under
thermoneutral conditions [18]. The two studies may
have detected the same QTL on chromosome Z and,
due to the breakdown of LD over the generations, the
current study may have mapped the QTL more accur-
ately. In an F2 intercross between fat and lean broilers,
QTL were identified for blood glucose on GGA3 and
GGA18 [49], and for fasting plasma glucose on GGA5,
6, 13, and 26 [15]. A study using an F2 of broilers diver-
gently selected for growth, identified QTL for plasma
glucose on GGA20 and GGA27 [16]. Thus, QTL loca-
tion for blood glucose level appears to be heat and/or
population specific.

Pathway analysis
Considering all measured traits, we identified a total of
32 unique QTL. All annotated genes within the QTL re-
gions were used for pathway analysis using IPA and
many significantly associated canonical pathways were
identified including AMPK signalling and Angiopoietin
signalling were identified. The top 20 pathways are
found in Table 3. AMPK is a master metabolic regulator
involved in metabolism [50] and, thus, may be a pathway
which warrants further investigation for involvement in
production traits during heat stress. During high ambi-
ent temperatures chickens redirect blood flow to the
body surface to decrease body temperature [5], and the
angiopoietin signalling pathway functions in blood vessel
development which may help alleviate temperature
stress.
The co-localized regions resulted in many significant

canonical pathways and the top 20 pathways are found
Table 3. Of particular interest is the Cardiac Hyper-
trophy signalling pathway (P = 4.35E-02). QTL for
hemoglobin and hematocrit represent 3 (7 total) re-
gions of co-localization and there is a positive linear re-
lationship between hematocrit and heart weight in
chickens under heat stress [5]; therefore, this pathway
likely contributes to the response to heat stress in
chickens.

Candidate genes for co-localized QTL
The QTL regions that co-localized for three or more
traits were further investigated for positional, functional
candidate genes to give further insight into the biological
mechanisms involved in the response of blood compo-
nents to heat stress. The identified genes are located in
Additional file 1: Table S1.
There are 51 genes in the region on GGA10 between

3–6 Mb that contained QTL for Glu20, pCO228, and
TCO228-20. With 2 of these 3 traits associated with
CO2 concentration, CA12 (carbonic anhydrase) is a
likely candidate gene involved in the CO2 response to
heat stress. Carbonic anhydrases catalyse the reaction
of CO2 and H2O to form HCO3 and H+, and thus may
stabilize blood acid base balance during heat stress. An-
other strong functional candidate in this region is
HSP40, a member of the heat shock protein family that
functions as a molecular chaperone to prevent cellular
damage during heat stress [51]. A candidate gene in
this region for glucose level is GCNT3, a glucosamine
acetyl transferase which is associated with glucose me-
tabolism in humans [52].
Fourteen genes were identified on GGA10 between

16–17 Mb, where QTLs co-localized for pH28-20,
Hct28, Hb28, and K20. Many QTL in chicken have
been identified in this region including those related
to growth [22, 53–55], abdominal fat [23, 49, 56], and
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the stress-associated trait of fear response [57]. A strong
candidate gene is ALDH6 (aldehyde dehydrogenase) which
functions to convert aldehydes to carboxylic acids. This
gene may function to maintain blood acid base balance
during heat stress. Another gene in this region is IGF1 (in-
sulin like growth factor 1), which has many roles and is a
biomarker for growth [58].
Four genes were identified on GGA22 between 3–4

Mbs, where QTL were co-localized for Hct28, Hb28,
Hb28-20, and Glu28. To our knowledge, no QTL have
been reported in this region. Because all traits were mea-
sured during heat treatment or as the differential, we
propose these to be heat specific QTL. Candidate genes
TGFA (pretransforming growth factor) and ADRA1A
(adrenergic receptor) both regulate cell growth. It is
known that metabolic changes occur during periods of
heat in chickens that contribute to reduction in growth,
independent upon feed intake [9].
There are 48 genes in the 1 Mb region on GGA26 be-

tween 3–4 Mbs, where QTL co-localized for TCO228,
K20, and iCa28. Notably, a QTL for tibia bone mineral
density identified in a commercial broiler and layer cross
is located within this region [59]. This co-localization
suggests that this locus might be involved in both blood
calcium and bone density, and therefore, may be an ideal
candidate for further investigation to understand the
physiological response to heat stress on bone mineral
density.
There are 86 genes in the 2 Mb region on GGA28

between 3–5 Mb where QTLs co-localize for pH20,
Hb28, Hct28, pCO220, and pCO228-20. A QTL for
heart weight, relating to susceptibility of pulmonary
hypertension [60] co-localizes with those identified
here. Many of these genes are related to membrane
transport of solutes and DNA transcription. The sol-
ute carriers SLC39A3, SLC25A42 and SLC35E1 were
identified, as well as CHERP and CIB3, involved in
calcium homeostasis. Transcription-related genes in-
clude SUGP1, which is involved in RNA splicing;
RFXANK, a DNA-binding protein; NR2C2AP, a nu-
clear receptor protein; DDX49, an RNA helicase; ELL,
an RNA polymerase II elongation factor; and SIN3B a
transcriptional regulator.
On GGAZ, 2 genes were identified between 5–7 Mbs,

where QTL co-localize for Glu28, HCO328, and
TCO228. The only reported QTL near this region is for
antibody response to KLH antigen [61]. Heat stress is
known to reduce antibody titre in chickens [62], and this
locus may be involved in the complex interaction of heat
and antibody titre. Although, antibody levels were not
measured in the current study. During periods of heat
stress, DNA transcription, RNA translation, and cellular
proliferation are altered [63] and we observed several
genes in this region related to these particular responses

including: KIAA1328, involved in chromosomal integrity
during mitosis; and TPGS2, involved in tubulin
formation.
On GGAZ, 21 genes were identified between 69–71

Mbs, where QTL co-localize for Glu28, HCO328, and
TCO228. The one QTL that is near this region was
identified in a previous generation of the same AIL as
the current study, and is for bone mineral density
[25]. A recent study found that heat stress in broilers
results in decreased bone mineral density [64]. In
humans, low serum bicarbonate levels are associated
with decreased bone mineral density [65]. Although
this relationship has yet to be elucidated in the
chicken, further studies should investigate the associ-
ation between blood chemistry variables and bone
mineral density. The genes identified in the current
study that are primarily involved in DNA transcrip-
tion include XPA, which is a DNA repair protein,
FOXE3 which is part of the forkhead box, and
SNORA66 which is small nuclear RNA. Additionally,
microRNAs gga-mir-2954, gga-mir-2131, and gga-mir-
1583 were identified in this region. An additional
gene of interest identified was DNAJA1, which is part
of the heat shock family of proteins.

QTL for blood components reveal orthologous genes
between chicken and swine
QTL for blood pCO2 in the current study were lo-
cated on GGA1, 3, 9, 10, 23, 27, and 28. In swine,
QTL for blood pCO2 are on chromosomes 6, 7, 8, 9,
and X [41]. We identified a region of synteny
between chicken GGA1, 110–111 Mb, and pig
chromosome X, 43–44 Mb (Fig. 3a), which contains a
pCO2 QTL and several orthologous genes including
FUNDC1, EFHC2, NDP, and MAOA. Another region
of synteny exists between chicken chromosome 10,
1–4 Mb, and pig chromosome 7, 53–65 Mb (Fig. 3b/c),
which contains several orthologous genes including,
but not limited to, UBE2Q2, DNAJ, GRAMD2, ADPGK,
NEO1, CLK3, SCAMP5, CSK, and MPI. This region
contains the carboxylic anhydrase gene (CA12) in
chicken, which is involved in calcium metabolism, but
this gene maps on pig chromosome 1, a chromosome
on which no QTL have been reported for blood chem-
istry measurements. The region on GGA10, 1–4 Mb,
contains QTL for Glu20, pCO228, pCO228-20, and
TCO228-20. The syntenic region in swine contains
co-localized QTL for pCO2, HCO3, TCO2, and base
excess [41].
A QTL for blood K level mapped to syntenic regions

in chicken GGA10, 16–17 Mb, in our line and swine
chromosome 1, 63–226 Mb (Fig. 3d) in a previous study
[66]. An orthologous gene of interest in this region is
IGF-1.
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Conclusions
The results of this study contribute to the currently
sparse knowledge of levels and heritabilities of several
blood components under thermoneutral and heat stress
conditions in chickens. Most blood components chan-
ged in response to heat treatment. Mapped QTL may
serve as markers for genomic selection to enhance heat
tolerance in poultry and several candidate genes were
identified which may give additional insight into

mechanisms of physiologic response to high ambient
temperatures.

Methods
Ethics statement
Animal experiments were approved by the Institutional
Animal Care and Use Committee of Iowa State University:
Log #4-11-7128-G.

Fig. 3 Syntenic regions between chicken and swine. Syntenic regions between chicken and pig containing QTL for blood component
traits. a QTL for pCO2 in both chicken and pig. Chicken QTL on GGA1 at 110–111 Mb in chicken syntenic with pig on chromosome X,
43–44 Mb. b/c GGA10 1–2 Mb in chicken and pig chromosome 7 53–60 Mb d. GGA10 16–17 Mb and swine chromosome 1, 63–226 Mb
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Chicken lines
We used the F18 and F19 generations of an AIL be-
tween chicken lines divergent for thermotolerence cre-
ated by crossing a single broiler sire to six highly
inbred Fayoumi dams [67]. Birds were reared in floor
pens with wood shavings bedding and had ad libitum
access to water and feed that met all NRC requirements
[68].

Heat stress experimental design
A total of 631 birds from four hatches (two hatches in
each of the two generations) were used for independent
heat stress experiments (four replicates). At 17 days of
age, birds were transferred to environmentally controlled
chambers and acclimated for five days. Multiple cham-
bers, each containing 6 pens, were used per replicate.
Ten to 12 birds were placed in each pen. From day 22 to
28 of age, the chambers heated to 35 °C for 7 h per day
and remained at 25 °C at all other times.

Blood variable measurements
Blood was collected from the wing vein on day 20 (pre-
heat) and day 28 (during heat) using a heparinized syr-
inge and needle, and analysed immediately using an
iSTAT Portable Clinical Analyser [36]. The iSTAT CG8+
cartridge was utilized to measure thirteen blood vari-
ables including; pH, pCO2, pO2, base excess, HCO3,
TCO2, K, Na, ionized Ca, hematocrit, hemoglobin, sO2,
and glucose.

DNA isolation and genotyping
Blood was collected from the wing vein by using an
EDTA-coated syringe and needle, and stored at −20 °C.
DNA was extracted using a salting out method. Briefly,
whole blood was incubated with lysis buffer containing
proteinase K. Proteins were precipitated out using 5 M
NaCl while the supernatant remained. The supernatant
was combined with 70 % ethanol to precipitate out
DNA. The DNA isolated from 468 AIL, 6 broiler, and 6
Fayoumi chickens was genotyped on the Affymetrix
600 K chicken SNP axiom array [69] by GeneSeek Inc.,
Lincoln, NE. SNP chromosomal locations were based on
the Gallus_gallus_4.0 assembly through Ensembl.

Statistical analyses
Calculations of means and standard errors, fixed effects
and covariates for the GWAS were calculated based on
ANOVA (analysis of variance), and significant terms
were fit as fixed effects with a P value ≤ 0.05 using JMP
statistical software [70]. Heritabilities were estimated
with an animal model using ASReml software [71].
Parameters for inclusion of SNP genotypes included

SNP call rate ≥ 95 % and minor allele frequency ≥ 5 %.
Genotyping console (Affymetrix) software was used to

create genotyping calls and quality control based on
whole animal DishQC score ≥ 0.7. The SNPolisher
(Affymetrix) R package was used for quality control
of individual SNP in all animals with passing DishQC
scores.
The GWAS of phenotypic traits with SNP genotypes

was done using GenSel software [72]. Bayes B, which fits
all SNPs simultaneously as random effects, was used for
the analysis. The mixed model used for the GWAS:

y ¼ Xbþ
Xk

j
zjαjδj þ ε:

Where y = vector form of phenotypes, X = incidence
matrix to account for fixed effects on phenotypes, b =
vector of fixed effects, zj = vector of genotypes for SNP j
based on the number of B alleles (−10, 0, +10, or the
average of the genotypes at SNP j), αj = allele substitu-
tion effect for SNP j, δj = whether SNP j was included in
the Markov chain Monte Carlo (MCMC) chain, and ε is
the error associated with the analysis.
The genomic markers were split into 1001 non-

overlapping 1 Mb windows across the genome. A
total of 41,000 MCMC iterations were run for each
analysis and the first 1000 iterations were discarded
(burn in). The δj was set so that π = 0.9978 to avoid
fitting more SNPs than number of animals in a given
iteration. In a true infinitesimal model, each window
is expected to explain 0.1 % (100 %/1001) of the gen-
etic variation; therefore, a 1 Mb window was consid-
ered significant if it explained ≥ 0.5 % of the total
genetic variation, corresponding to 5 times more ob-
served than expected.

Pathway analysis
To further investigate QTL regions, we conducted a
pathway analysis using Ingenuity Pathway Analysis
(IPA) software. All annotated genes within significant
(explaining ≥ 0.05 % of the genetic variation) 1 Mb
windows for any measured trait were identified using
Ensemble biomart. This gene list was used as input
into IPA and a core analysis was completed using de-
fault parameters to identify significant (P ≤ 0.05) ca-
nonical pathways and the top 20 significant pathways
were reported. Additionally, a gene list was created
using the regions of QTL co-localization (3 or more
traits) and analysed as described for all QTL regions.

Candidate genes
Candidate genes were identified for regions of QTL co-
localization (3 or more traits). All genes within the
region were identified using ENSEMBL biomart [73].
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Syntenic regions between chicken and swine
To identify syntenic regions for reported QTL for the
same blood chemistry component measurements be-
tween chicken and pig, the Comparative Genomics op-
tion was used in Ensembl [73].
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