# Rhenium Platforms Supporting Ancillary BODIPY Moieties for the Conversion of $\mathrm{CO}_{2}$ to CO 

by<br>Justin James Teesdale

A thesis submitted to the Faculty of the University of Delaware in partial fulfillment of the requirements for the degree of Bachelor of Science in Chemistry with Distinction

Spring 2013
© 2013 Justin James Teesdale All Rights Reserved

## Rhenium Platforms Supporting Ancillary BODIPY Moieties for the Conversion of $\mathrm{CO}_{2}$ to CO

by
Justin James Teesdale

Approved:
Joel Rosenthal, Ph.D.
Professor in charge of thesis on behalf of the Advisory Committee

Approved:
Donald A. Watson, Ph.D.
Committee member from the Department of Chemistry and Biochemistry

Approved:
Salil Lachke, Ph.D.
Committee member from the Board of Senior Thesis Readers

Approved:
Michelle Provost-Craig, Ph.D.
Chair of the University Committee on Student and Faculty Honors

## ACKNOWLEDGMENTS

I would like to thank Joel Rosenthal for his support and teaching me things that could never be taught within a classroom. I would also like to thank Dr. Glenn P. A. Yap for his work with the X-ray crystallogrphay, Allen Pistner for his help with the initial synthesis, John DiMeglio for his aid with gas chromatography, and Gabe Andrade for his help with crystallography.

Funding was provided by the Rosenthal Research La, Howard Hughes Medical Institute, Plastino Alumni Undergraduate Research Fellowship and the University of Delaware Undergraduate Research Program.

## TABLE OF CONTENTS

LIST OF FIGURES ..... vi
ABSTRACT ..... ix
1 INTRODUCTION ..... 1
1.1 The Detrimental Nature of Fossil Fuels ..... 1
1.2 The State of Our Energy Future ..... 2
1.3 Solar Energy as a Promising Alternative. ..... 4
1.4 Energy Storing via Organometallic Catalysis ..... 5
2 SYNTHESIS OF THREE NEW RHENIUM BIPYRIDINE COMPLEXES ..... 9
2.1 Introduction ..... 9
2.2 Experimental ..... 9
2.2.1 General Materials and Methods. ..... 9
2.2.2 Synthetic Protocols. ..... 10
2.2.2.1 [2,2'-bipyridine]-4,4'-dicarbonyl chloride. ..... 10
2.2.2.2 4,4'-bis(BODIPY)-2,2'-bipyridine (BB2). ..... 10
2.2.2.3 $\operatorname{Re}\left[4,4 ’\right.$-bis(BODIPY)-2,2'-bipyridine](CO) ${ }_{3} \mathrm{Cl}$ $\left(\operatorname{Re}(\mathrm{BB} 2)(\mathrm{CO}){ }_{3} \mathrm{Cl}\right)$ ..... 11
2.2.2.4 [2,2'-bipyridine]-5,5'-dicarboxylic acid. ..... 12
2.2.2.5 [2,2'-bipyridine]-5,5'-dicarbonyl chloride. ..... 12
2.2.2.6 5,5'-bis(BODIPY)-2,2'-bipyridine (BB3). ..... 13
2.2.2.7 $\operatorname{Re}\left[5,5^{\prime}-b i s(B O D I P Y)-2,2^{\prime}\right.$-bipyridine](CO) ${ }_{3} \mathrm{Cl}$ $\left(\operatorname{Re}(\mathrm{BB} 3)(\mathrm{CO}){ }_{3} \mathrm{Cl}\right)$ ..... 13
2.2.2.8 6,6'-dimethyl-2,2'-bipyridine. ..... 14
2.2.2.9 [2,2'-bipyridine]-6,6'-dicarboxylic acid. ..... 15
2.2.2.10 [2,2'-bipyridine]-6,6'-dicarbonyl chloride. ..... 15
2.2.2.11 6,6'-bis(BODIPY)-2,2'-bipyridine (BB4) ..... 15
2.2.2.12 $\operatorname{Re}\left[6,6\right.$ '-bis(BODIPY)-2,2'-bipyridine](CO) ${ }_{3} \mathrm{Cl}$ $\left(\operatorname{Re}(\mathrm{BB} 4)(\mathrm{CO})_{3} \mathrm{Cl}\right)$ ..... 16
2.2.3 Single Crystal X-ray Diffraction ..... 16
2.3 Results and Discussion ..... 18
3 CHARACTERIZATION OF NOVEL RHENIUM COMPLEXES FOR CO 2 REDUCTION ..... 26
3.1 Introduction ..... 26
3.2 Experimental ..... 26
3.2.1 Theoretical Calculations ..... 26
3.2.2 Electrochemistry ..... 27
3.3 Results and Discussion ..... 28
3.3.1 Electrochemistry ..... 28
3.3.1.1 Electrochemistry in Acetonitrile ..... 28
3.3.1.2 Electrochemistry in DMF ..... 37
3.4 Conclusions ..... 47
REFERENCES ..... 49

## LIST OF FIGURES

Figure 1.1: Historical Record of Atmospheric $\mathrm{CO}_{2}$ Concentration and Global Temperature. Red bars indicate an increase from the average and blue bars indicate a decrease from the average.

Figure 1.2: World Energy Consumption by year. Black bars are historical data and red bars are projected data. Data taken from the Annual Energy Review 2011 by the US Energy Information Administration.3

Figure 1.3: Structure of the (2,2'-bipyridine)tricarbonylchlororhenium(I) catalyst. Substitution occurs at the 4 and $4^{\prime}$ positions.

Figure 1.4: Mechanism by which $\mathrm{CO}_{2}$ catalysis occurs with Lehn's catalyst. Reduction of the ligand backbone followed by reduction of the rhenium center allows for the binding of carbon dioxide.

Figure 1.5: Solid-state structure of the rhenium(0) dimer. ${ }^{67}$ Due to the small size of the bipyridine ligand, dimer formation occurs, however with the incorporation of sterically bulky groups, dimer formation can be inhibited.8

Figure 2.1 Synthesis of BB2 as explained above. ..... 18

Figure $2.2{ }^{1} \mathrm{H}$ NMR overlay of $\mathbf{B B} 2$ and $\operatorname{Re}(\mathbf{B B} 2)(\mathbf{C O})_{3} \mathbf{C l}$ showing the splitting of several signals in the aliphatic region. Residual solvent and water peaks were omitted for clarity.

Figure 2.3 Molecular diagram of $\mathbf{R e}(\mathbf{B B 2})(\mathbf{C O})_{\mathbf{3}} \mathbf{C l}$ showing one of two symmetry unique molecules with $30 \%$ probability ellipsoids. H -atoms and solvent molecules omitted for clarity. (Color legend: purple $=\mathrm{Re}$, lime $=\mathrm{Cl}$, brown $=\mathrm{B}$, olive $=\mathrm{F}$, blue $=\mathrm{N}$, red $=\mathrm{O}$, gray $=\mathrm{C}$. .

Figure 2.4 Synthesis of BB3 from 5,5'-dimethylbipyridine......................................... 21
Figure 2.5 Synthesis of BB4 from 6-methyl-2-bromopyridine.22

Figure $2.6{ }^{1} \mathrm{H}$ NMR overlay of $\mathbf{B B} 3$ and $\operatorname{Re}(\mathbf{B B 3})(\mathbf{C O})_{3} \mathbf{C l}$ showing the splitting of peaks in the aliphatic region. Residual solvent and water peaks are omitted for clarity.

Figure $2.7{ }^{1} \mathrm{H}$ NMR overlay of $\mathbf{B B 4}$ and $\mathbf{R e}(\mathbf{B B 4})(\mathbf{C O})_{3} \mathbf{C l}$ showing the splitting of peaks in the aliphatic region. Residual solvent and water peaks are omitted for clarity. The signals at 1.05 ppm and 1.64 ppm for the rhenium complex are a result of the splitting of the singlet at 1.24 ppm for the free ligand.

Figure 2.8 Crystal structure of $\operatorname{Re}(\mathbf{B B} 3)(\mathbf{C O})_{\mathbf{3}} \mathbf{C l}$ with $30 \%$ probability ellipsoids. H -atoms and solvent molecules omitted for clarity. (Color legend: purple $=\mathrm{Re}$, lime $=\mathrm{Cl}$, brown $=\mathrm{B}$, olive $=\mathrm{F}$, blue $=\mathrm{N}$, red $=\mathrm{O}$, gray = C.)

Figure 2.9 Crystal structure of $\mathbf{R e}(\mathbf{B B 4})(\mathbf{C O})_{\mathbf{3}} \mathbf{C l}$ with $\mathbf{3 0 \%}$ probability ellipsoids. H -atoms and solvent molecules omitted for clarity. (Color legend: purple $=$ Re, lime $=C l$, brown $=B$, olive $=F$, blue $=N$, red $=O$, gray = C.)

Figure 3.1 Cyclic voltammogram of $\mathbf{R e}(\mathbf{B B} 2)(\mathbf{C O})_{3} \mathbf{C l}(1 \mathrm{mM}$ in MeCN$)$. The black CV was taken while under an atmosphere of nitrogen and the red CV was taken while under an atmosphere of carbon dioxide. Experiment was performed in acetonitrile at a scan rate of $100 \mathrm{mV} / \mathrm{s}$ with a $0.1 \mathrm{M} \mathrm{TBAPF}_{6}$ supporting electrolyte.

Figure 3.2 Cyclic voltammogram of $\operatorname{Re}(\mathrm{bpy})(\mathrm{CO})_{3} \mathrm{Cl}(1 \mathrm{mM}$ in MeCN$)$. The black CV was taken while under an atmosphere of nitrogen and the red CV was taken while under an atmosphere of carbon dioxide. Experiment was performed in acetonitrile at a scan rate of $100 \mathrm{mV} / \mathrm{s}$ with a 0.1 M $\mathrm{TBAPF}_{6}$ supporting electrolyte.30

Figure 3.3 Cyclic voltammogram of $\operatorname{Re}\left(4,4^{\prime}\right.$ 't-Butyl-bpy)(CO) ${ }_{3} \mathrm{Cl}(1 \mathrm{mM}$ in MeCN ). The black CV was taken while under an atmosphere of nitrogen and the red CV was taken while under an atmosphere of carbon dioxide. Experiment was performed in acetonitrile at a scan rate of $100 \mathrm{mV} / \mathrm{s}$ with a $0.1 \mathrm{M} \mathrm{TBAPF}_{6}$ supporting electrolyte.

Figure 3.4 Overlay of $\mathbf{C V s}$ of $\mathbf{\operatorname { R e }}(\mathbf{B B 2})(\mathbf{C O})_{\mathbf{3}} \mathbf{C l}$ (black), the 4,4'-t-butyl derivative (red), and unsubstituted derivative (blue), and a solution with no catalyst present (blank). Experiments were performed in acetonitrile ( 1 mM in catalyst) under an atmosphere of carbon dioxide at a scan rate of $100 \mathrm{mV} / \mathrm{s}$ with a $0.1 \mathrm{M} \mathrm{TBAPF}_{6}$ supporting electrolyte.

Figure 3.5 Theoretical calculations for the frontier molecular orbitals of
$\operatorname{Re}(\mathbf{B B 2})(\mathbf{C O})_{3} \mathbf{C l}$. The LUMO+1 orbital is the next unoccupied orbital after the LUMO. However, these two are considered to be relatively close in energy. Calculations were performed by Daniel A. Lutterman at Oak Ridge National Laboratory.

Figure 3.6: Cyclic voltammogram of $\mathbf{R e}(\mathbf{B B} 2)(\mathbf{C O})_{3} \mathbf{C l}(1 \mathrm{mM}$ in MeCN$)$ showing $\mathrm{CO}_{2}$ activation before electrolysis (black), followed by suppression of the current enhancement (red) due to catalyst decomposition onto the electrode surface. The GCE electrode was then polished (blue) which revives the catalytic ability of the system. Experiments were performed in acetonitrile under an atmosphere of carbon dioxide at a scan rate of $100 \mathrm{mV} / \mathrm{s}$ with a $0.1 \mathrm{M} \mathrm{TBAPF}_{6}$ supporting electrolyte.37

Figure 3.7 Cyclic voltammogram of $\mathbf{R e}(\mathbf{B B 2})(\mathbf{C O})_{3} \mathbf{C l}(1 \mathrm{mM}$ in DMF) under an atmosphere of nitrogen (black) and under an atmosphere of carbon dioxide (red). Experiment was performed in DMF at a scan rate of 100 $\mathrm{mV} / \mathrm{s}$ with a $0.1 \mathrm{M} \mathrm{TBAPF}_{6}$ supporting electrolyte.

Figure 3.8 Cyclic voltammogram of $\operatorname{Re}(\mathbf{B B 3})(\mathbf{C O})_{3} \mathbf{C l}(1 \mathrm{mM}$ in DMF) under an atmosphere of nitrogen (black) and under an atmosphere of carbon dioxide (red). Experiment was performed in DMF at a scan rate of 100 $\mathrm{mV} / \mathrm{s}$ with a $0.1 \mathrm{M} \mathrm{TBAPF}_{6}$ supporting electrolyte.39

Figure 3.9 Cyclic voltammogram of $\mathbf{R e}(\mathbf{B B} 3)(\mathbf{C O})_{\mathbf{3}} \mathbf{C l}(1 \mathrm{mM}$ in DMF) under an atmosphere of nitrogen (black) and under an atmosphere of carbon dioxide (red). Experiment was performed in DMF at a scan rate of 100 $\mathrm{mV} / \mathrm{s}$ with a $0.1 \mathrm{M} \mathrm{TBAPF}_{6}$ supporting electrolyte.

Figure 3.10: Proposed catalytic cycle for the rhenium(I) BODIPY complexes based upon the cyclic voltammetry in DMF. BODIPY substituents are excluded for clarity. Pathway highlighted in blue indicated catalysis based upon the mechanism described in Figure 1.4. The red pathways indicates further reduction of the ligand after formation of the rhenium(I) carboxylate complex.43

Figure 3.11: Mechanism by which further reduction of the ligand occurs upon formation of the rhenium(I) tetracarbonyl complex. The pathway in blue indicates the mechanism put forth in Figure 1.4, whereas as the pathway in red depicts further reduction of the ligand to drive the catalysis. BODIPY substituents are omitted for clarity.


#### Abstract

The reduction of carbon dioxide to chemical fuels is an important challenge in the field of renewable energy conversion chemistry. Given the thermodynamic stability of carbon dioxide, it is difficult to efficiently activate this molecule in a selective fashion. Several ruthenium and rhenium polypyridyl complexes have proven to be photocatalysts for this process but suffer from poor light absorption cross sections. To address this issue, BODIPY light harvesting moieties have been incorporated onto a $2,2^{\prime}$-(Bipyridine)tricarbonylrhenium(I) complex. The resulting compound has been studied using a combination of optical, electrochemical, and Xray crystallographic experiments. The appended BODIPY chromophores influence the electronic structure of the rhenium complex and the ability of this system to electrochemically promote the reduction of $\mathrm{CO}_{2}$.


## Chapter 1

## INTRODUCTION

### 1.1 The Detrimental Nature of Fossil Fuels

It is well known that the acquisition and use of fossil fuels have been the center of political and scientific debate. Burning fossil fuels is cost efficient compared to other methods; however the present issues associated with fossil fuels are the security of acquiring these fuels and environmental impact of burning these fuels. With the majority of the world's supply of oil residing primarily outside of the United States in areas of conflict, we have begun to rely more heavily on coal and natural gas. However, the impact that burning these fuels has on the environment has caused a major push to develop alternative methods of obtaining energy.

Over the past century, atmospheric concentrations of carbon dioxide have increased exponentially showing a strong correlation with the burning of hydrocarbons. ${ }^{1}$ Due to the strong absorbing properties of carbon dioxide in the infrared region, it is a greenhouse gases that significantly contributes most to global warming and climate change. 1 Data obtained from various regions of the globe have shown that there is an obvious connection between the atmospheric concentration of carbon dioxide and the global temperature (Figure 1.1). ${ }^{2}$


Figure 1.1: Historical Record of Atmospheric $\mathrm{CO}_{2}$ Concentration and Global Temperature. Red bars indicate an increase from the average and blue bars indicate a decrease from the average.

Over the last 40 years, the concentration of carbon dioxide has increased by roughly 50 ppm , a 15\% increase from the average over several hundred thousand years. Recent projections indicate that the concentration $\mathrm{CO}_{2}$ in the atmosphere will surpass 400 ppm by 2013 and 500 ppm by $2050 .^{3}$

### 1.2 The State of Our Energy Future

Currently global energy demand estimates exceed $14 \mathrm{TW}^{4,5}$ annually and is expected to increase by more than one third by 2035 as depicted in Figure 1.2. ${ }^{6}$ With
these drastic increases in energy consumption, the world needs to decide from which source we acquire the needed energy to satisfy the projected demand.


Figure 1.2: World Energy Consumption by year. Black bars are historical data and red bars are projected data. Data taken from the Annual Energy Review 2011 by the US Energy Information Administration.

Harnessing this energy from fossil fuels would be the easiest pathway as the system by which we acquire fossil fuels is already in place and the world's supply of fossil fuels is enough to last thousands of years. ${ }^{7}$ However, the issue with fossil fuels is the impact that burning them has on the environment, as described in Section 1.1. Alternative sources such as wind, geothermal, biomass, hydroelectric, solar, etc. are promising
alternatives, yet each has their respective drawbacks. Despite the drawbacks of solar energy, the potential of this pathway as an alternative energy source far exceeds the potential of other pathways when considering the sheer amount of energy available for use.

### 1.3 Solar Energy as a Promising Alternative

As mentioned in Section 1.2, energy from the sun has been a focal point of scientific research for several decades. The sun produces approximately 120,000 TW of energy each year, ${ }^{4} 800$ TW of which fall onto Earth's landmass. Harnessing just a fraction of this energy reservoir at low to moderate efficiency would allow the world to be completely sustainable. As a result of this, much research is being done to design cost efficient systems that can harness and convert this energy for use as society's dominant power source.

Solar cells have been a topic of interest in research towards viable systems for mainstream use. Initial templates began with silicon-based cells that gave relatively low efficiencies. ${ }^{8-14}$ Further research lead to the discovery of titanium dioxide nanoparticle scaffolds which are relatively cheap and yield respectable efficiencies. ${ }^{15^{-}}$ ${ }^{25}$ Fine-tuning the photoexcitation cross-section via the addition of dye sensitizers continues to be a topic of interest in research today.

Being able to use this harnessed energy as a continuous power source also presents issues. Due to the intermittence of sunlight, an efficient and practical method of storage of the solar energy must be designed. Much research has been done in the area of designing efficient batteries for the storage of charge with some success;26-34 however the most practical method, in terms of energy density, is the storage of energy in chemical bonds via transition metal catalysis.

### 1.4 Energy Storing via Organometallic Catalysis

The principles behind energy storing catalysis lie in the construction of the organometallic catalyst. A complex with redox properties capable of multiple electron storage is ideal for catalysis as well as selectivity for the substrate of interest. Typically, small, inert molecules such as carbon dioxide, dinitrogen, dioxygen, water, etc. are chosen as the substrate because they are cheap and abundant. Being able to generate products (liquids or gases) that are higher in energy allows for a simplistic scheme for the storage and transportation of electrons. In this work, we have chosen to focus on carbon dioxide as the substrate of interest due to its notoriety as a greenhouse gas and its ability to form a variety of products known to be precursors for the synthesis of fuels in the well studied Fisher-Tropsch methods. ${ }^{35-37}$

Much work has been done in the area of carbon dioxide reduction. ${ }^{38,39}$ Researchers have reported various saturated and unsaturated macrocycle complexes containing nickel, iron, cobalt, and copper, ${ }^{40^{-45}}$ phosphine complexes containing nickel and palladium ${ }^{46-50}$, and polypyrridyl complexes containing various metals. ${ }^{51-64}$ The polypyrridyl system has yielded the most promising results, with the rhenium bipyridine system producing the highest turnover numbers, turnover frequencies, and selectivity for $\mathrm{CO}_{2}$. This system, initially developed by Lehn ${ }^{65}$, has been built upon by Kubiak ${ }^{66-70}$ by changing the functionality of the bipyridine ligand (Figure 1.3) and studying how different functional groups change the electronic properties of the rhenium center.


$$
\mathrm{R}=\mathrm{H}, \mathrm{Me}, \mathrm{OMe}, \mathrm{tBu}, \mathrm{COOH}
$$

Figure 1.3: Structure of the (2, ${ }^{\prime}$ '-bipyridine) tricarbonylchlororhenium(I) catalyst. Substitution occurs at the 4 and $4^{\prime}$ positions.

This catalytic system has has shown that $\mathrm{CO}_{2}$ catalysis occurs upon reduction of the rhenium center to rhenium $(0)$ after reduction of the bipyridine backbone occurs.(Figure 1.4) Through his studies, Kubiak has shown that by changing the electron donating ability of the substituents, the activity of the complex changes drastically. By incorporating more electron donating groups, $\mathrm{CO}_{2}$ catalysis is significantly enhanced, with the $4,4^{\prime}$-bis(tert-Butyl) derivative producing the best results.







Figure 1.4: Mechanism by which $\mathrm{CO}_{2}$ catalysis occurs with Lehn's catalyst. Reduction of the ligand backbone followed by reduction of the rhenium center allows for the binding of carbon dioxide.

The ${ }^{t}$ Butyl derivative is also believed to stabilize the rhenium(0) radical that is active for $\mathrm{CO}_{2}$ catalysis by preventing dimer formation. (Figure 1.5) It is proposed that the steric barrier for dimer formation is increased significantly when the bipyridine ligand is substituted with these bulky groups.


Figure 1.5: Solid-state structure of the rhenium(0) dimer. ${ }^{67}$ Due to the small size of the bipyridine ligand, dimer formation occurs, however with the incorporation of sterically bulky groups, dimer formation can be inhibited.

## Chapter 2

## SYNTHESIS OF THREE NEW RHENIUM BIPYRIDINE COMPLEXES

### 2.1 Introduction

Inspired by the work done by Kubiak with these rhenium bipyridine complexes, our systems aim to address the two main issues that revolve around these catalysts: substituents that are sufficiently electron donating and that are bulky enough to prevent dimer formation. By incorporating borondipyromethene (BODIPY) function groups at the $4,4^{\prime}, 5,5^{\prime}$, and $6,6^{\prime}$ positions (Figure 2.1), we aim to increase the electron storage capacity of the ligand as well as to increase the photoexcitation profile of the ligand to allow for the potential of photochemical reduction of carbon dioxide.

### 2.2 Experimental

### 2.2.1 General Materials and Methods.

Reactions were performed in oven-dried round-bottomed flasks unless otherwise noted. Reactions that required an inert atmosphere were conducted under a positive pressure of $\mathrm{N}_{2}$ using flasks fitted with Suba-Seal rubber septa or in nitrogen filled glove box. Air and moisture sensitive reagents were transferred using standard syringe or cannula techniques. Reagents and solvents were purchased from Sigma Aldrich, Acros, Fisher, Strem, or Cambridge Isotopes Laboratories. Solvents for synthesis were of reagent grade or better.
${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded at $25^{\circ} \mathrm{C}$ on a Bruker 400 MHz spectrometer. Proton spectra are referenced to the residual proton resonance of the deuterated solvent $\left(\mathrm{CDCl}_{3}=\delta 7.26\right)$ and carbon spectra are referenced to the carbon resonances of the solvent $\left(\mathrm{CDCl}_{3}=\delta 77.23\right)$. All chemical shifts are reported using the standard $\delta$ notation in parts-per-million; positive chemical shifts are to higher frequency from the given reference. All NMR Spectra are shown in Appendix B. High-resolution mass spectrometry was performed at the University of Delaware Mass Spectromemtry Lab.

### 2.2.2 Synthetic Protocols.

### 2.2.2.1 [2,2'-bipyridine]-4,4'-dicarbonyl chloride.

This compound was prepared with slight modifications to a literature method. ${ }^{71}$ [2,2'-bipyridine]-4,4'-dicarboxylic acid ( $0.5 \mathrm{~g}, 2.23 \mathrm{mmol}$ ) was suspended in 20 mL of thionyl chloride. The suspension was heated to reflux with stirring for 24 hours under nitrogen. After completion, the product was completely dissolved yielding a dark yellow solution. The solvent was removed under reduced pressure, dried for 30 minutes, and the resulting residue was used immediately in the following reaction. A quantitative yield was assumed.

### 2.2.2.2 4,4'-bis(BODIPY)-2,2'-bipyridine (BB2).

This compound was prepared with slight modifications to a literature method. ${ }^{71}$ 100 mL of chloroform was sparged with nitrogen for 45 min . The [2,2'-bipyridine]-4,4'-dicarbonyl chloride synthesized in the previous step was dissolved in 100 mL of the degassed chloroform. 2,4-dimethyl-3-ethylpyrrole ( $2.11 \mathrm{~mL}, 15.6 \mathrm{mmol}$ ) was added to the solution. The reaction mixture was then heated to $50^{\circ} \mathrm{C}$ and stirred for 90
min. under nitrogen. After approximately 25 minutes the solution became dark brown in color. After 90 min . the solvent was removed, and the residue was dissolved in $5 \%$ dichloromethane in toluene. Triethylammine ( $2.48 \mathrm{~mL}, 17.8 \mathrm{mmol}$ ) was added and the reaction was stirred for 30 minutes at room temperature under air. The solution was then heated to $50^{\circ} \mathrm{C}$ and $3.85 \mathrm{~mL}(31.2 \mathrm{mmol})$ of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ was added. The reaction was stirred for 90 minutes at $50^{\circ} \mathrm{C}$. The solvent was removed under reduced pressure. The crude product was purified on silica, eluting $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ first, and then increasing to $1 \%$ methanol in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ until the product fraction was collected. Further purification was required on silica by eluting $1 \%$ methanol in DCM to yield 0.780 g of a brick red powder ( $46 \%$ ). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.79(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.53(\mathrm{~s}, 1 \mathrm{H})$, $7.35(\mathrm{dd}, J=4.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.55(\mathrm{~s}, 6 \mathrm{H}), 2.30(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 4 \mathrm{H}), 1.38(\mathrm{~s}, 6 \mathrm{H}), 0.99$ ( $\mathrm{t}, J=7.5 \mathrm{~Hz}, 6 \mathrm{H}$ ). HR-MS: $[\mathrm{M}]^{+}+\mathrm{H} \mathrm{m} / \mathrm{z}$ : calculated for $\mathrm{C}_{44} \mathrm{H}_{51} \mathrm{~B}_{2} \mathrm{~F}_{4} \mathrm{~N}_{6}, 761.4297$; found 761.4302

### 2.2.2.3 $\operatorname{Re}\left[4, \mathbf{4}^{\prime}\right.$-bis(BODIPY)-2,2'-bipyridine] $(\mathbf{C O})_{3} \mathrm{Cl}\left(\operatorname{Re}(\mathbf{B B 2})(\mathrm{CO})_{3} \mathrm{Cl}\right)$.

This compound was prepared with slight modifications to a literature method. ${ }^{70}$ chloropentacarbonylrhenium (I) $(0.040 \mathrm{~g}, 0.11 \mathrm{mmol})$ and BB2 $(0.084 \mathrm{~g}, 0.11 \mathrm{mmol})$ were added to 50 mL of toluene and heated to reflux in open air overnight with stirring. Reaction was removed from heat yielding a dark red solution and the majority of the solvent was removed under reduced pressure (leaving approximately 2-3 mL of solvent). The resulting solution was then slowly added to 200 mL of hexane and stirred. The resulting solid was removed via filtration and dried to yield 0.106 g of a scarlet powder (90\%). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 9.24(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.19$ (s, $1 \mathrm{H}), 7.60(\mathrm{dd}, J=5.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 6 \mathrm{H}), 2.29(\mathrm{dq}, J=19.0,7.5$
$\mathrm{Hz}, 4 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H}), 0.96(\mathrm{dt}, J=19.4,7.5 \mathrm{~Hz}, 6 \mathrm{H}) . \mathrm{HR}-\mathrm{MS}:[\mathrm{M}]^{+}+\mathrm{H}$ $\mathrm{m} / \mathrm{z}$ : calculated for $\mathrm{C}_{47} \mathrm{H}_{51} \mathrm{~B}_{2} \mathrm{ClF}_{4} \mathrm{~N}_{6} \mathrm{O}_{3} \mathrm{Re}, 1067.3391$; found 1067.3443.

### 2.2.2.4 [2,2'-bipyridine]-5,5'-dicarboxylic acid.

This compound was prepared according to a literature method. ${ }^{72} 5,5^{\prime}-$ dimethyl-2,2'-bipyridine ( $4.69 \mathrm{~g}, 0.025 \mathrm{~mol}$ ) was added to 300 mL of water along with potassium permanganate $(26.2 \mathrm{~g}, 0.17 \mathrm{~mol})$. The reaction mixture was heated overnight at $90^{\circ} \mathrm{C}$ with stirring under air. Upon completion, the brown precipitate was filtered off, and excess starting material was removed via extraction into diethyl ether $(3 \times 100 \mathrm{~mL})$. The resulting aqueous solution was acidified to a pH of 2 with 1 M HCl . Upon acidification, a white precipitate was formed and filtered off. The residue was dried under reduced pressure yielding $4.27 \mathrm{~g}(70 \%)$ of the desired product. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, ~ D M S O) ~ \delta / \mathrm{ppm}: 9.22$ (s, 2H), $8.60(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 8.49$ (s, 2H). HRESIMS $[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{m} / \mathrm{z}$ : Calculated for $\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{~N}_{2} \mathrm{O}_{4}, 245.0562$. Found 245.0558.

### 2.2.2.5 [2,2'-bipyridine]-5,5'-dicarbonyl chloride.

This compound was prepared with slight modifications to a literature method. ${ }^{71}$ [2,2'-bipyridine]-4,4'-dicarboxylic acid ( $0.5 \mathrm{~g}, 2.23 \mathrm{mmol}$ ) was suspended in 20 mL of thionyl chloride. The suspension was heated to reflux with stirring for 24 hours under nitrogen. After this time, the product was completely dissolved yielding a dark yellow solution. The solvent was removed under reduced pressure and the resulting residue was used immediately in the following reaction. A quantitative yield was assumed.

### 2.2.2.6 5,5'-bis(BODIPY)-2,2'-bipyridine (BB3).

This compound was prepared according to the same method used for the preparation of $4,4^{\prime}$-bis(BODIPY)-2,2'-bipyridine, however [2,2'-bipyridine]-5,5'dicarbonyl chloride was used in the place of [2,2'-bipyridine]-4,4'-dicarbonyl chloride. The crude product was purified on silica, eluting first with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and then increasing to $1 \%$ methanol in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ until the product fraction was collected. Further purification was required on silica by eluting $1 \%$ methanol in DCM to yield 0.746 g of a brick red powder (44\%). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ), $\delta / \mathrm{ppm}: 8.66(\mathrm{~s}, 2 \mathrm{H}), 8.64(\mathrm{~d}$, $J=4.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.83(\mathrm{~d}, 2 \mathrm{H}), 2.56(\mathrm{~s}, 12 \mathrm{H}), 2.32(\mathrm{q}, 8 \mathrm{H}), 1.40(\mathrm{~s}, 12 \mathrm{H}), 1.00(\mathrm{t}, 12 \mathrm{H})$. HR-ESIMS $[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{m} / \mathrm{z}$ : Calculated for $\mathrm{C}_{44} \mathrm{H}_{52} \mathrm{~B}_{2} \mathrm{~F}_{4} \mathrm{~N}_{6}$, 761.4297. Found 761.4297.

### 2.2.2.7 $\operatorname{Re}\left[5,5{ }^{\prime}\right.$-bis(BODIPY)-2,2'-bipyridine](CO) ${ }_{3} \mathrm{Cl}\left(\operatorname{Re}(\mathrm{BB} 3)(\mathrm{CO})_{3} \mathrm{Cl}\right)$.

5,5'-bis(BODIPY)-2,2'-bipyridine (BB3) ( $0.084 \mathrm{~g}, 0.11 \mathrm{mmol}$ ) and chloropentacarbonylrhenium $(0.040 \mathrm{~g}, 0.11 \mathrm{mmol})$ were mixed together in 50 mL of 1,2-dichloroethane. The solution was heated to reflux, and stirred for 20 h under nitrogen. The solution color changed from orange to a dark red color. The solvent was removed under reduced pressure.The crude product was purified on silica, eluting DCM first, and then by eluting 1\% methanol in DCM. The product band eluted just after the unreacted ligand. Further purification was required on silica to further remove unreacted ligand by eluting $1 \%$ methanol in DCM to yield 0.041 g of a dark red powder (35\%). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl} 3$ ) $\delta 9.05(\mathrm{~d}, \mathrm{~J}=1.7 \mathrm{~Hz}, 2 \mathrm{H}), 8.41(\mathrm{~d}, \mathrm{~J}=$ $8.2 \mathrm{~Hz}, 2 \mathrm{H}), 8.11(\mathrm{dd}, \mathrm{J}=8.2,1.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.57(\mathrm{~s}, 12 \mathrm{H}), 2.34(\mathrm{dq}, \mathrm{J}=15.2,7.6 \mathrm{~Hz}$, $8 \mathrm{H}), 1.46(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 13 \mathrm{H}), 1.02(\mathrm{dt}, \mathrm{J}=10.7,7.6 \mathrm{~Hz}, 13 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( 101 MHz , CDCl3) $\delta 196.02,156.88,155.35,154.99,152.40,139.30,138.18,136.22,134.44$, $133.80,130.64,130.50,129.89,123.13,29.50,16.92,16.89,14.41,14.29,13.45$,
13.01, 12.63, 12.51. HR-MS: $[M]^{+}+\mathrm{H} \mathrm{m} / \mathrm{z}$ : calculated for $\mathrm{C}_{47} \mathrm{H}_{51} \mathrm{~B}_{2} \mathrm{ClF}_{4} \mathrm{~N}_{6} \mathrm{O}_{3} \mathrm{Re}$, 1067.3391; found 1067.3428.

### 2.2.2.8 6,6'-dimethyl-2,2'-bipyridine.

This compound was prepared with modifications to a literature method. ${ }^{73}$
Nickel (II) chloride ( $0.753 \mathrm{~g}, 5.81 \mathrm{mmol}$ ) and triphenylphosphine ( $6.09 \mathrm{~g}, 23.2 \mathrm{mmol}$ ) were dissolved in 50 mL of dry dimethylformamide. The solution was stirred until both reactants were dissolved. The mixture was heated to $50^{\circ} \mathrm{C}$ under nitrogen, and the zinc powder ( $0.38 \mathrm{~g}, 5.81 \mathrm{mmol}$ ) was added in one portion. After the reaction was stirred for 1 h at $50^{\circ} \mathrm{C}$, the mixture became red orange in color. 2-bromo-6methylpyridine ( $0.66 \mathrm{~mL}, 5.81 \mathrm{mmol}$ ) was added to the solution, and monitored by TLC. After 3 h , the starting material was completely consumed. The solution was poured into a dilute bicarbonate solution $(200 \mathrm{~mL})$ and the crude product was extracted into chloroform ( $3 \times 100 \mathrm{~mL}$ ). The organic layer was washed with water ( 3 x 100 mL ), dried over sodium sulfate, and the solvent was removed under reduced pressure. The residue was washed with hexane and dried to remove excess dimethylformamide. The crude product was purified on silica by eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to remove byproducts containing triphenylphosphine and triphenylphosphine oxide. Then, the polarity of the mobile phase was slowly increased to $6 \%$ methanol in DCM until the product was collected. Further purification was required on basic alumina by eluting DCM until 0.310 g of the product was collected in the form of a white powder (31\%). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ), $\delta / \mathrm{ppm}: 8.16$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$ ), $7.68(\mathrm{t}, J=7.7$ $\mathrm{Hz}, 2 \mathrm{H}), 7.15(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.63(\mathrm{~s}, 6 \mathrm{H}) . \operatorname{HR}-E S I M S[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{m} / \mathrm{z}$ : Calculated for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{2}, 185.1079$. Found 185.1076.

### 2.2.2.9 [2,2'-bipyridine]-6,6'-dicarboxylic acid.

This compound was prepared according to the same method and scale used for the preparation of [2,2-bipyridine]-5,5'-dicarboxylic acid, however 6,6'-dimethyl-2,2'bipyridine was used in place of the 5,5'-dimethyl-2, ''-bipyridine. Product was isolated with a $70 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{DMSO}$ ), $\delta / \mathrm{ppm}: 8.78(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 8.22$ ( $\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$ ), 8.17 (d, $J=8.0 \mathrm{~Hz}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( 101 MHz , DMSO, 25C), ס/ppm: 165.92, 154.46, 148.10, 138.94, 125.24, 124.10. HR-ESIMS $[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{m} / \mathrm{z}$ : Calculated for $\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{~N}_{2} \mathrm{O}_{4}, 245.0562$. Found 245.0565.

### 2.2.2.10 [2,2'-bipyridine]-6,6'-dicarbonyl chloride.

This compound was prepared according to the same method and scale used for the preparation of [2,2-bipyridine]-4,4'-dicarbonyl chloride, however, [2,2'-bipyridine]-6,6'-dicarboxylic acid was used in place of the [2,2'-bipyridine]-4,4'dicarboxylic acid. Product was not isolated, and used immediately in the following reaction. The yield was assumed to be quantitative.

### 2.2.2.11 6,6'-bis(BODIPY)-2,2'-bipyridine (BB4).

This compound was prepared according to the same method and scale used for the preparation of $4,4^{\prime}$ '-bis(BODIPY)-2,2'-bipyridine, however [2,2'-bipyridine]-6,6'dicarbonyl chloride was used in the place of [2,2'-bipyridine]-4,4'-dicarbonyl chloride. The crude product was purified on silica by eluting DCM. Further purification was required on silica by eluting DCM. Product fraction was collected to yield $0.610 \mathrm{~g}(36 \%) .{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta / \mathrm{ppm}: 8.49(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $7.92(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.56(\mathrm{~s}, 12 \mathrm{H}), 2.31(\mathrm{q}, J=7.5 \mathrm{~Hz}$, $8 \mathrm{H}), 1.27(\mathrm{~s}, 13 \mathrm{H}), 0.99(\mathrm{t}, J=7.5 \mathrm{~Hz}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 156.05$, $154.67,154.16,138.04,137.77,137.26,132.96,130.74,124.82,121.43,17.09,14.68$,
12.68, 11.49. HR-ESIMS $[M+H]^{+}, \mathrm{m} / \mathrm{z}$ : Calculated for $\mathrm{C}_{44} \mathrm{H}_{52} \mathrm{~B}_{2} \mathrm{~F}_{4} \mathrm{~N}_{6}$, 761.4297. Found 761.4301.

### 2.2.2.12 $\operatorname{Re}\left[6,6{ }^{\prime}-\right.$ bis(BODIPY)-2,2'-bipyridine] $(\mathbf{C O})_{3} \mathrm{Cl}\left(\operatorname{Re}(\mathrm{BB} 4)(\mathrm{CO})_{3} \mathrm{Cl}\right)$.

6,6'-bis(BODIPY)-2,2'-bipyridine (BB4) ( $0.084 \mathrm{~g}, 0.11 \mathrm{mmol}$ ) and chloropentacarbonylrhenium $(0.040 \mathrm{~g}, 0.11 \mathrm{mmol})$ were mixed together in 50 mL of 1,2-dichloroethane. The solution was heated to reflux, and stirred for 20 h under nitrogen. The solution color changed from orange to a dark red color. The solvent was removed under reduced pressure. The crude product was purified on silica, eluting DCM first, and then by eluting $1 \%$ methanol in DCM. The product band eluted just after the unreacted ligand. Further purification was required on silica to further remove unreacted ligand by eluting $1 \%$ methanol in DCM to yield 0.075 g of a dark red powder (64\%). ${ }^{1}$ H NMR ( $400 \mathrm{MHz}, \mathrm{CDCl} 3$ ) $\delta 8.47(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}$ ), $8.21(\mathrm{t}, \mathrm{J}=7.9$ $\mathrm{Hz}, 2 \mathrm{H}), 7.73(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.52(\mathrm{~s}, 12 \mathrm{H}), 2.38-2.13(\mathrm{~m}, 8 \mathrm{H}), 1.65(\mathrm{~s}, 6 \mathrm{H})$, $1.07(\mathrm{~s}, 6 \mathrm{H}), 0.96(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 6 \mathrm{H}), 0.87(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 7 \mathrm{H}) . \mathrm{HR}-\mathrm{MS}:[\mathrm{M}]^{+}+\mathrm{H} \mathrm{m} / \mathrm{z}$ : calculated for $\mathrm{C}_{47} \mathrm{H}_{51} \mathrm{~B}_{2} \mathrm{ClF}_{4} \mathrm{~N}_{6} \mathrm{O}_{3} \mathrm{Re}, 1067.3391$; found 1067.3435.

### 2.2.3 Single Crystal X-ray Diffraction

$\mathbf{R e}(\mathbf{B B 2})(\mathbf{C O})_{3} \mathbf{C l}$ consistently deposited as red, multiple, crystal masses and the results herein represent the best of several trials. Crystals were selected, sectioned if required, and mounted on plastic mesh with viscous oil flash-cooled to 200 K . Data were collected on a Bruker-AXS Apex 2 Duo CCD diffractometer with Gobel mirror focused $\mathrm{Cu}-\mathrm{K} \alpha$ radiation $(\lambda=1.54178 \AA)\left(\right.$ for $\left.\mathbf{R e}(\mathbf{B B 2})(\mathbf{C O})_{3} \mathbf{C l}\right)$ or with graphite monochromated Mo-K $\alpha$ radiation $\left(\lambda=0.71073 \AA\right.$ ) (for $\mathbf{R e}(\mathbf{B B 3})(\mathbf{C O})_{3} \mathbf{C l}$ and $\left.\mathbf{R e}(\mathbf{B B 4} \mathbf{( C O})_{3} \mathbf{C l}\right)$ from a sealed-beam X-ray tube. Unit cell parameters were obtained
from 60 data frames, $0.3^{\circ} \omega$, from three different sections of the Ewald sphere. No symmetry higher than triclinic was observed for $\operatorname{Re}(\mathbf{B B} 3)(\mathbf{C O})_{3} \mathbf{C l}$ and
$\mathbf{R e}(\mathbf{B B 2})(\mathbf{C O})_{3} \mathbf{C l}$, and solution in the centrosymmetric space group option yielded chemically reasonable and computationally stable results of refinement. The systematic absences in the diffraction data were consistent with $P m n 2_{1}$ and Pmnm [Pmmn]. Only the noncentrosymmetric space group option yielded chemically reasonable and computationally stable results of refinement.

The data-sets were treated with numerical absorption corrections. The structures were solved using direct methods and refined with full-matrix, least-squares procedures on $F^{2}$. All non-hydrogen atoms were refined with anisotropic displacement parameters. All hydrogen atoms were treated as idealized contributions. Atomic scattering factors and anomalous dispersion coefficients are contained in the SHELXTL 6.12 program library (Sheldrick, G.M. 2008. Acta Cryst. A64, 112-122).

A 1,2-dichloroethane solvent molecule was located in the asymmetric unit, one per compound molecule, for $\operatorname{Re}(\mathbf{B B 3})(\mathbf{C O})_{3} \mathbf{C l}$ and $\operatorname{Re}\left(\mathbf{B B 4}(\mathbf{C O})_{3} \mathbf{C l}\right.$.

For $\mathbf{R e}(\mathbf{B B 3})(\mathbf{C O})_{3} \mathbf{C l}$, the carbonyl ligand $\mathrm{C}-\mathrm{O}$ distances were constrained to be similar within a standard deviation of $0.02 \AA$.

For $\operatorname{Re}\left(\mathbf{B B 4}(\mathbf{C O})_{3} \mathbf{C l}\right.$, the compound molecule and the cocrystallized solvent molecule were each located on a mirror plane. The severely thermally active solvent molecule was modeled as a half-occupied albeit complete molecule with rigid bond constraints applied to the equivalent isotropic parameters and the anisotropic parameters.

For $\operatorname{Re}(\mathbf{B B} 2)(\mathbf{C O})_{3} \mathbf{C l}$, two molecules of the compound and one disordered molecule of methylene chloride solvent were located in the asymmetric unit and rigid
bond displacement restraints were applied. One ethyl group was found disordered with a refined site occupancy of $72 / 28$. The disordered solvent molecule was treated as a rigid body with idealized geometry and with a refined site occupancy ratio of 52/48.

### 2.3 Results and Discussion

The synthetic protocols used to construct 4,4'-bis(BODIPY)-2,2'-bipyridine (BB2), are shown in Figure 2.1. Preparation of BB2 begins with the conversion of [2,2'-bipyridine]-4,4'-dicarboxylic acid to the acid chloride derivative via the reaction with excess thionyl chloride. After the excess thionyl chloride was removed under reduced pressure, subsequent reaction with 2,4-dimethyl-3-ethylpyrrole results in the condensation reaction, producing the 4,4'-dipyrromethane derivative. Upon addition of $\mathrm{NEt}_{3}$ and $\mathrm{BF} 3 \cdot \mathrm{OEt}_{2}, \mathbf{B B 2}$ is generated with a yield of $46 \%$.


Figure 2.1 Synthesis of BB2 as explained above.

Subsequent metallation of the BB2 ligand required refluxing a solution of this compound in toluene with chloropentacarbonylrhenium (I) for 24 hours. After most of the solvent had been removed in vacuum, the remaining solution is added drop-wise to hexane. The product was then filtered off and isolated in a $90 \%$ yield. Product
formation was further confirmed by ${ }^{1} \mathrm{H}$ NMR spectroscopy as evidenced by the splitting of peaks in the aliphatic region.



Figure $2.2{ }^{1} \mathrm{H}$ NMR overlay of $\mathbf{B B 2}$ and $\operatorname{Re}(\mathbf{B B 2})(\mathbf{C O})_{3} \mathbf{C l}$ showing the splitting of several signals in the aliphatic region. Residual solvent and water peaks were omitted for clarity.

More specifically, splitting of the alkyl groups attached to the pyrrole rings of the BODIPY is observed (Shown in Figure 2.2). The solid-state structure of the complex is shown in Figure 2.3 and is consistent with the NMR data reported above. For crystallographic data and key parameters, see Appendix C.


Figure 2.3 Molecular diagram of $\mathbf{R e}(\mathbf{B B} 2)(\mathbf{C O})_{\mathbf{3}} \mathbf{C l}$ showing one of two symmetry unique molecules with $30 \%$ probability ellipsoids. H-atoms and solvent molecules omitted for clarity. (Color legend: purple $=\mathrm{Re}$, lime $=\mathrm{Cl}$, brown $=\mathrm{B}$, olive $=\mathrm{F}$, blue $=\mathrm{N}$, red $=\mathrm{O}$, gray $=\mathrm{C}$.)

The synthetic protocols used to construct the BODIPY-bipyridine derivatives, 5,5'-bis(BODIPY)-2,2'-bipyridine (BB3) and 6,6'-bis(BODIPY)-2,2'-bipyridine (BB4), are shown in Figure 2.4 and Figure 2.5, respectively. Preparation of BB3 began with the conversion of 5, $5^{\prime}$-dimethyl-2, $2^{\prime}$-bipyridine to the corresponding dicarboxylic acid (1) via reaction with $\mathrm{KMnO}_{4}$ in water. After purification, the resulting dicarboxylic acid derivative was reacted with excess thionyl chloride to generate the acid chloride derivative (2). Subsequently, in a condensation reaction with 2,4-dimethyl-3-ethylpyrrole, the dicarbonyl chloride was converted to the 5,5'-
dipyrromethane derivative. Upon addition of $\mathrm{NEt}_{3}$ and $\mathrm{BF} 3 \cdot \mathrm{OEt}_{2}, \mathbf{B B} 3$ was generated with a yield of $44 \%$.


Figure 2.4 Synthesis of BB3 from 5,5'-dimethylbipyridine.

Synthesis (shown in Figure 2.5) of BB4 began with the coupling of 2-bromo-6methylpyridine to form 6,6'-dimethyl-bipyridine (3), upon reaction with nickel(II) chloride, triphenylphosphine, and zinc dust. The next stages of the synthesis follow the same protocols as in the synthesis of BB3, starting from the dimethyl derivative. BB4 was prepared in a $36 \%$ yield.




Figure 2.5 Synthesis of BB4 from 6-methyl-2-bromopyridine.

Metallation of BB3 and BB4 was achieved via an overnight reflux in 1,2dichloroethane with chloropentacarbonylrhenium(I). Following column chromatography on silica, $\operatorname{Re}(\mathbf{B B 3})(\mathbf{C O})_{3} \mathbf{C l}$ and $\operatorname{Re}(\mathbf{B B 4})(\mathbf{C O})_{3} \mathbf{C l}$ were isolated in $35 \%$ and $64 \%$ yields, respectively. Splitting of the aliphatic peaks in ${ }^{1} \mathrm{H}$ NMR occurs similarly to that of the $4,4^{\prime}$ derivative. Overlays of the NMR spectra of the $5,5^{\prime}$ and 6,6' derivatives are shown in Figures 2.6 and 2.7.



Figure $2.6{ }^{1} \mathrm{H}$ NMR overlay of $\mathbf{B B 3}$ and $\operatorname{Re}(\mathbf{B B 3})(\mathbf{C O})_{3} \mathbf{C l}$ showing the splitting of peaks in the aliphatic region. Residual solvent and water peaks are omitted for clarity.


 peaks in the aliphatic region. Residual solvent and water peaks are omitted for clarity. The signals at 1.05 ppm and 1.64 ppm for the rhenium complex are a result of the splitting of the singlet at 1.24 ppm for the free ligand.

Solid-state structures of the 5,5' and 6,6' derivative are shown in Figure 2.8 and Figure 2.9, respectively. For crystallographic data and key parameters, see Appendix C.


Figure 2.8 Crystal structure of $\mathbf{R e}(\mathbf{B B} 3)(\mathbf{C O})_{\mathbf{3}} \mathbf{C l}$ with $30 \%$ probability ellipsoids. Hatoms and solvent molecules omitted for clarity. (Color legend: purple $=$ Re , lime $=\mathrm{Cl}$, brown $=\mathrm{B}$, olive $=\mathrm{F}$, blue $=\mathrm{N}$, red $=\mathrm{O}$, gray $=\mathrm{C}$.)


Figure 2.9 Crystal structure of $\operatorname{Re}(\mathbf{B B 4})(\mathbf{C O})_{\mathbf{3}} \mathbf{C l}$ with $30 \%$ probability ellipsoids. Hatoms and solvent molecules omitted for clarity. (Color legend: purple $=$ Re, lime $=\mathrm{Cl}$, brown $=\mathrm{B}$, olive $=\mathrm{F}$, blue $=\mathrm{N}$, red $=\mathrm{O}$, gray $=\mathrm{C}$.)

## Chapter 3

## CHARACTERIZATION OF NOVEL RHENIUM COMPLEXES FOR CO $\mathbf{C H}_{2}$ REDUCTION

### 3.1 Introduction

The sole purpose of synthesizing these catalysts was to improve the catalytic ability of the class of rhenium polypyridyl complexes. Typical methods of characterization of carbon dioxide reduction catalysts are via electrochemistry and photochemistry. In this work, electrochemical experiments, such as cyclic voltammetry and controlled potential electrolysis, were used to understand how well these target catalysts convert carbon dioxide to carbon monoxide.

### 3.2 Experimental

### 3.2.1 Theoretical Calculations

Geometry optimizations, frequency calculations, and molecular orbital calculations were performed using the Gaussian09 (G09) program package, ${ }^{74}$ with the Becke three-parameter hybrid exchange and the Lee-Yang-Parr correlation functionals (B3LYP). The 6-31G* basis set was used for $\mathrm{H}, \mathrm{B}, \mathrm{C}, \mathrm{N}, \mathrm{O}$, and F, along with the Stuttgart/Dresden (SDD) energy-consistent pseudopotentials for Re. Crystallographic coordinates were used as starting points for geometry optimizations. All geometry optimizations were performed in $C_{1}$ symmetry with subsequent vibrational frequency analysis to confirm that each stationary point was a minimum on the
potential energy surface. Molecular orbital were visualized using Visual Molecular Dynamics (VMD) software.

### 3.2.2 Electrochemistry

Electrochemistry was performed using either a CHI-620D potentiostat/galvanostat or a CHI-720D bipotentiostat. Cyclic voltammetry was performed using a standard three-electrode configuration. The working electrode was a polished glassy carbon electrode (GCE, 3.0 mm diameter CH Instruments). A piece of platinum wire was used as the counter electrode. All potentials were measured against a silver wire pseudo reference with a ferrocene internal standard and adjusted to saturate calomel electrode (SCE). Unless otherwise stated, the electrolyte was 0.1 M $\mathrm{TBAPF}_{6}$, the sample concentration was 1.0 mM , and all cyclic voltammetric experiments were carried out using a scan rate of $100 \mathrm{mV} / \mathrm{s}$.

Controlled potential electrolysis was performed in a single-compartment cell. The same three-electrode setup was used with a polished glassy carbon disk electrode, a platinum mesh counter electrode, and a $\mathrm{Ag} / \mathrm{AgCl}$ reference electrode $(1.0 \mathrm{M} \mathrm{KCl}$, CH Instruments) or a silver wire pseudo reference. Prior to electrolysis the solution was sparged with $\mathrm{CO}_{2}$ gas for approximately 30 minutes. Once saturated with $\mathrm{CO}_{2}$, the system was sealed and a potential was applied to the stirred solution. Headspace analysis during controlled potential electrolysis was performed using a gas chromatograph (GC, GC-2014 Shimadzu). The GC has two 10 port injection valves, each equipped with a HaySep-T 80/100 column. One injection line further contains a HaySep-D 80/100 column and a flame ionization detector (FID) with a methanizer to quantify CO and methane concentration. The second line leads to a packed MolSieve 5A 60/80 column with a thermal conductivity detector (TCD) to quantify hydrogen
concentration. The carrier gasses were helium (99.999\%) and argon (99.999\%), respectively.

### 3.3 Results and Discussion

### 3.3.1 Electrochemistry

Electrochemical studies of $\operatorname{Re}(\mathbf{B B} 2)(\mathbf{C O})_{3} \mathrm{Cl}, \operatorname{Re}(\mathbf{B B 3})(\mathbf{C O})_{3} \mathbf{C l}$, and
$\operatorname{Re}(\mathbf{B B 4})(\mathbf{C O})_{3} \mathbf{C l}$ have shown that all three complexes have shown catalytic ability for $\mathrm{CO}_{2}$ reduction. A comparison of the initial turnover frequencies for each complex to those previously synthesized by Kubiak ${ }^{70}$ and Lehn ${ }^{65}$ was obtained via Foot-of-theWave Analysis. ${ }^{75,76}$ Cyclic voltammetric studies were performed in acetonitrile $(\mathrm{MeCN})$ to compare with the reference compounds, however only $\mathbf{R e}(\mathbf{B B 2})(\mathbf{C O})_{3} \mathbf{C l}$ was soluble in MeCN. Consequently, the $4,4^{\prime}, 5,5^{\prime}$, and $6,6^{\prime}$ derivatives were studied in DMF as a comparison between the three complexes.

### 3.3.1.1 Electrochemistry in Acetonitrile

The rhenium (I) complex, $\mathbf{R e}(\mathbf{B B} 2)(\mathbf{C O})_{\mathbf{3}} \mathbf{C l}$, has shown interesting electrochemical properties. Cyclic voltammetry studies have been performed and the target catalyst has been compared to the $\mathrm{Re}(\mathrm{bpy})(\mathrm{CO})_{3} \mathrm{Cl}$ catalyst originally synthesized by Lehn and Kubiak. Cyclic voltammograms of the 4,4’ derivative and the reference compounds are shown in Figures 3.1 through 3.4.

 CV was taken while under an atmosphere of nitrogen and the red CV was taken while under an atmosphere of carbon dioxide. Experiment was performed in acetonitrile at a scan rate of $100 \mathrm{mV} / \mathrm{s}$ with a 0.1 M $\mathrm{TBAPF}_{6}$ supporting electrolyte.


Figure 3.2 Cyclic voltammogram of $\operatorname{Re}(\mathrm{bpy})(\mathrm{CO})_{3} \mathrm{Cl}(1 \mathrm{mM}$ in MeCN$)$. The black CV was taken while under an atmosphere of nitrogen and the red CV was taken while under an atmosphere of carbon dioxide. Experiment was performed in acetonitrile at a scan rate of $100 \mathrm{mV} / \mathrm{s}$ with a 0.1 M TBAPF 6 supporting electrolyte.


Figure 3.3 Cyclic voltammogram of $\operatorname{Re}\left(4,4^{\prime}-\mathrm{t} \text {-Butyl-bpy)(CO) }\right)_{3} \mathrm{Cl}(1 \mathrm{mM}$ in MeCN$)$. The black CV was taken while under an atmosphere of nitrogen and the red CV was taken while under an atmosphere of carbon dioxide. Experiment was performed in acetonitrile at a scan rate of $100 \mathrm{mV} / \mathrm{s}$ with a $0.1 \mathrm{M} \mathrm{TBAPF}_{6}$ supporting electrolyte.

 (red), and unsubstituted derivative (blue), and a solution with no catalyst present (blank). Experiments were performed in acetonitrile ( 1 mM in catalyst) under an atmosphere of carbon dioxide at a scan rate of 100 $\mathrm{mV} / \mathrm{s}$ with a $0.1 \mathrm{M} \mathrm{TBAPF}_{6}$ supporting electrolyte.

Cyclic voltammetry performed by Kubiak ${ }^{70}$ with a number of rheniumbipyridine derivatives has shown that typical rhenium bipyridine complexes undergo two reductions. Reversible reduction of the bipyridine ligand occurs between -1.2 V
and -1.6 V and the broad $\mathrm{Re}^{1 / 0}$ redox couple occurs between -1.7 V and -1.9 V . It is also important to note that both waves are identical in size due to the fact that both events are single-electron reductions. In Figure 3.2, cyclic voltammetry of Lehn's catalyst is comparable to those reported by the Kubiak group (Figure 3.3). Two reductions are observed at -1.4 V and -1.8 V , corresponding to the reduction of the ligand and metal center, respectively. In Figure 3.3, cyclic voltammetry of the 4,4'${ }^{\text {t }}$ Butyl-bipyridine derivative shows reductions at -1.5 V and -1.8 V , again corresponding to reduction of the ligand and the metal center, respectively. Under an atmosphere of carbon dioxide a significant catalytic increase for all systems is observed at -2.0 V , indicating $\mathrm{CO}_{2}$ catalysis. Additionally, a third increase in current is observed for both the t-butyl derivative and the unsubstituted derivative that is not mentioned in the literature and is theorized to be the reduction of the complex in dimeric form. The cyclic voltammogram of $\operatorname{Re}(\mathbf{B B 2})(\mathbf{C O})_{\mathbf{3}} \mathbf{C l}$ shown in Figure 3.1 under an atmosphere of nitrogen shows three quasi-reversible reductions at -0.85 V , 1.0 V , and -1.6 V vs. SCE . Based on the work of the Kubiak group, the reduction of the bipyridine backbone for this system is assigned to the redox event at -1.0 V and reduction of the $\operatorname{Re}(\mathrm{I})$ center to $\operatorname{Re}(0)$ occurs at -1.6 V . The reduction couple at -0.85 V must therefore correspond to the simultaneous reduction of the BODIPY moieties. This 2-electron process is confirmed by the fact that the reduction wave is nearly twice as large as the subsequent 1 -electron reductions that follow.

Theoretical calculations were performed for the $\operatorname{Re}(\mathbf{B B 2})(\mathbf{C O})_{3} \mathbf{C l}$ catalyst and show that the first three reductions correspond to ligand-based reductions (Figure 3.5).


Figure 3.5 Theoretical calculations for the frontier molecular orbitals of $\mathbf{R e}(\mathbf{B B} 2)(\mathbf{C O})_{3} \mathbf{C l}$. The LUMO+1 orbital is the next unoccupied orbital after the LUMO. However, these two are considered to be relatively close in energy. Calculations were performed by Daniel A. Lutterman at Oak Ridge National Laboratory.

Even though, based on the calculations, the LUMO is considered to be bipyridine-based indicating that the 2 -electron reduction at -0.85 V is on the bipyridine backbone, the LUMO+1 orbital, which is heavily BODIPY-based, is relatively close in energy and may be reversed in order. Furthermore, four events occur on the return wave of the volatmmogram, which is mostly likely caused by the splitting of the oxidation of the BODIPY chromophores. When the acetonitrile solution was sparged with carbon dioxide, several changes in the cyclic voltammogram were observed. Reduction of the BODIPY moieties under $\mathrm{CO}_{2}$ occurred at -0.75 V , followed by the reduction of the bipyridine base at -0.9 V , and finally, a large catalytic wave peaked at -2.0 V . This last peak is most logically assigned to that of the reduction of $\mathrm{CO}_{2}$ by $\operatorname{Re}(\mathbf{B B 2})(\mathbf{C O})_{3} \mathbf{C l}$. There is also a small redox event that occurs at -1.4 V , which most likely corresponds to the reduction of the metal center prior to the activation of carbon dioxide.

Foot-of-the-Wave Analysis, ${ }^{75,76,77}$ as described by Savéant, conducted for the cyclic voltammetry traces described above was carried out to determine and compare the kinetics of each system. The following equation was used in which the relationship between the current increase and the catalytic rate constant is determined.

$$
\begin{equation*}
\frac{i}{i_{p}^{0}}=\frac{2.24 \sqrt{\frac{R T}{F v}} 2 k C_{A}^{0}}{1+\exp \left[\frac{F}{R T}\left(E-E_{P Q}^{0}\right)\right]} \tag{1}
\end{equation*}
$$

In the equation above, $i$ is the current in the presence of substrate (which is carbon dioxide in this case), $i_{p}^{0}$ is the current in the absence of substrate, $k$ is the second order rate constant, $C_{A}^{0}$ is the concentration of the substrate which is 0.270 M in $\mathrm{MeCN} .{ }^{78} \mathrm{E}$ is the potential at which the current is measured, and $E_{P Q}^{0}$ is the peak potential of the redox couple in the absence of substrate. In other words, $E_{P Q}^{0}$ is the peak potential of the catalytic redox couple under nitrogen. Constructing a plot of $\frac{i}{i_{p}^{0}} v . \frac{1}{1+\exp \left[\frac{F}{R T}\left(E-E_{P Q}^{0}\right)\right]}$ (See Appendix A) yields a linear line with a slope equal to $2.24 \sqrt{\frac{R T}{F v} 2 k C_{A}^{0}}$. Therefore, the second order constant, k , for the system can be calculated. Further implementation of the rate constant gives rise to the second order turnover frequency.

$$
\begin{equation*}
T O F=\frac{k}{1+\exp \left[\frac{F}{R T}\left(E-E_{P Q}^{0}\right)\right]} \tag{2}
\end{equation*}
$$

Analysis of the $\mathbf{R e}(\mathbf{B B 2})(\mathbf{C O})_{3} \mathbf{C l}$ produced a second order rate constant of $3400 \mathrm{M}^{-1} \mathrm{~s}^{-1}$ and a subsequent TOF of $3400 \mathrm{M}^{-1} \mathrm{~s}^{-1}$. The system developed by Lehn gave a rate constant of $1100 \mathrm{M}^{-1} \mathrm{~s}^{-1}$ and a TOF of $1100 \mathrm{M}^{-1} \mathrm{~s}^{-1}$, and the t -Butyl derivative showed an impressive rate constant and TOF of $9 \times 10^{5} \mathrm{M}^{-1} \mathrm{~s}^{-1}$. Based on these results, it is clear that the BB2 framework engenders an enhanced catalysis, as the BODIPY appended catalyst is roughly three times more active than the analogous
unsubstituted complex. This enhancement is presumably due to the steric bulk imparted by the large indacene units, which impedes formation of reduced $\operatorname{Re}^{I}-\operatorname{Re}^{I}$ dimers. Furthermore, recent work has shown that non-innocent ligand reservoirs can significantly alter metal-ligand bonding in fac- $\mathrm{Re}^{\mathrm{l}}(\mathrm{CO})_{3}$ complexes. ${ }^{79}$ As such, the ability of the BODIPY appended ligand of $\operatorname{Re}(\mathbf{B B 2})(\mathbf{C O})_{3} \mathbf{C l}$ to store multiple reducing equivalents during electrocatalysis may manifest in enhanced nucleophilic character at the metal center, while providing an electron reservoir that helps to drive the two electron reduction of $\mathrm{CO}_{2}$ to CO .

Conrolled-Pontential Electrolysis experiments were performed in order to confirm and quantify the $\mathrm{CO}_{2}$ catalysis that occurs. Experiments were performed in a single-compartment cell where both the anode (Pt mesh) and cathode (Glassy Carbon Disc Electrode) are present. The oxidation of products such as carbon monoxide at the anode were taken into account, and considered to be negligible compared to the quantity of CO produced. Analysis of the headspace verified that carbon dioxide undergoes a two-electron reduction to produce carbon monoxide in this system. However, the catalysis has shown to operate with relatively low faradaic efficiency. This result is due to catalyst deactivation most likely caused by the decomposition of the reduced species at the glassy carbon electrode surface. This phenomenon was analyzed by cyclic voltammetry (Figure 3.6) to confirm the reduced catalytic ability of the system.


Figure 3.6: Cyclic voltammogram of $\mathbf{R e}(\mathbf{B B 2})(\mathbf{C O})_{\mathbf{3}} \mathbf{C l}(1 \mathrm{mM}$ in MeCN$)$ showing $\mathrm{CO}_{2}$ activation before electrolysis (black), followed by suppression of the current enhancement (red) due to catalyst decomposition onto the electrode surface. The GCE electrode was then polished (blue) which revives the catalytic ability of the system. Experiments were performed in acetonitrile under an atmosphere of carbon dioxide at a scan rate of $100 \mathrm{mV} / \mathrm{s}$ with a $0.1 \mathrm{M} \mathrm{TBAPF}_{6}$ supporting electrolyte.

### 3.3.1.2 Electrochemistry in DMF

In order to draw comparison between all three BODIPY derivatives, cyclic voltammetry was performed in DMF and turnover frequencies were determined via

Foot-of-the-Wave analysis. Voltammogram of each BODIPY derivative are shown in
Figures 3.7, 3.8, and 3.9.


Figure 3.7 Cyclic voltammogram of $\mathbf{R e}(\mathbf{B B} 2)(\mathbf{C O})_{3} \mathbf{C l}(1 \mathrm{mM}$ in DMF) under an atmosphere of nitrogen (black) and under an atmosphere of carbon dioxide (red). Experiment was performed in DMF at a scan rate of 100 $\mathrm{mV} / \mathrm{s}$ with a $0.1 \mathrm{M} \mathrm{TBAPF}_{6}$ supporting electrolyte.


Figure 3.8 Cyclic voltammogram of $\mathbf{R e}(\mathbf{B B} 3)(\mathbf{C O})_{\mathbf{3}} \mathbf{C l}(1 \mathrm{mM}$ in DMF) under an atmosphere of nitrogen (black) and under an atmosphere of carbon dioxide (red). Experiment was performed in DMF at a scan rate of 100 $\mathrm{mV} / \mathrm{s}$ with a $0.1 \mathrm{M} \mathrm{TBAPF}_{6}$ supporting electrolyte.


Figure 3.9 Cyclic voltammogram of $\mathbf{R e}(\mathbf{B B} 3)(\mathbf{C O})_{\mathbf{3}} \mathbf{C l}(1 \mathrm{mM}$ in DMF) under an atmosphere of nitrogen (black) and under an atmosphere of carbon dioxide (red). Experiment was performed in DMF at a scan rate of 100 $\mathrm{mV} / \mathrm{s}$ with a $0.1 \mathrm{M} \mathrm{TBAPF}_{6}$ supporting electrolyte.

The CVs recorded in DMF provide more information to help further understand the catalytic processes of these complexes. All three complexes follow the electronic profile laid out in the previous section for $\operatorname{Re}(\mathbf{B B 2})(\mathbf{C O})_{3} \mathbf{C l}$ : simultaneous reduction of the BODIPY chromophores, followed by reduction of the bipyridine backbone, and the $\mathrm{Re}^{\mathrm{I} / 0}$ couple. However, a new feature becomes apparent under
nitrogen around -2.5 V for each complex. An interesting feature occurs for the 6,6’ derivative (Figure 3.9) where two current enhancements are observed at -1.8 V and 2.35 V . The first current enhancement occurs on top of the $\mathrm{Re}^{\mathrm{I}} / \mathrm{Re}^{0}$ couple, and therefore must be the reduction of carbon dioxide by the rhenium(0) radical. The second current enhancement appears to be associated with the redox event at -2.5 V under nitrogen; however no data has been collected to determine the identity of this couple.

The electrochemistry data recorded in DMF was also analyzed using Foot-of-the-Wave. Constructing the same plots for all three derivatives (See Appendix A) allowed for calculation of the rate constants and TOFs associated with catalysis. Analysis of the 4,4' derivative (Figure 3.7) yielded a second order rate constant of $0.015 \mathrm{M}^{-1} \mathrm{~s}^{-1}$ and an initial turnover frequency of $0.015 \mathrm{M}^{-1} \mathrm{~s}^{-1}$. The significant decrease in catalytic activity is most likely due to solvent affects or the reduced solubility of carbon dioxide in DMF. Analysis of the 5,5' derivative (Figure 3.8) produced a second order rate constant of $0.44 \mathrm{M}^{-1} \mathrm{~s}^{-1}$ and an initial turnover frequency of $0.4 \mathrm{M}^{-1} \mathrm{~s}^{-1}$. Foot-of-the-wave was applied to both current enhancements for the $6,6^{\prime}$ derivative (Figure 3.9) with respect to the same $\mathrm{E}_{\mathrm{PQ}}$ of -1.8 V . The first current enhancement produced a second order rate constant of $2.4 \times 10^{5} \mathrm{M}^{-1} \mathrm{~s}^{-1}$ and an initial turnover frequency of $9600 \mathrm{M}^{-1} \mathrm{~s}^{-1}$. The second current enhancement yielded a second order rate constant and initial turnover frequency of $59 \mathrm{M}^{-1} \mathrm{~s}^{-1}$.

As a result of this interesting chemistry, the mechanism of catalysis is more complex than previously anticipated. Due to multiple catalytic enhancements under an atmosphere of carbon dioxide for $\operatorname{Re}(\mathbf{B B 4})(\mathbf{C O})_{\mathbf{3}} \mathbf{C l}$, it is now apparent that the mechanism of catalysis does not occur in the pathway described in Figure 1.4.

Consequently, it would appear that two distinct pathways are taking place simultaneously during catalysis. The most logical explanation for a second enhancement under an atmosphere of carbon dioxide would be as a result of further reduction of the bipyridine backbone. The question that follows this logic is at what point in the catalytic cycle is the ligand reduced again. Figure 3.10 depicts reduction of the rhenium(I) carboxylate complex.









Figure 3.10: Proposed catalytic cycle for the rhenium(I) BODIPY complexes based upon the cyclic voltammetry in DMF. BODIPY substituents are excluded for clarity. Pathway highlighted in blue indicated catalysis based upon the mechanism described in Figure 1.4. The red pathways indicates further reduction of the ligand after formation of the rhenium(I) carboxylate complex.

The pathway highlighted in blue shows the cycle described in Figure 1.4 which is still a possible mechanism. The pathway highlighted in red indicates the reduction
of the bipyridine backbone of the rhenium(I) carboxylate complex to generate the dianionic species. Carbon-oxygen bond cleavage occurs to generate the neutral rhenium(I) tetracarbonyl complex in which the ligand is still reduced. Dissociation of one of the axial carbonyls forms the neutral rhenium(I) tricarbonyl complex which can then re-enter into the catalytic cycle. It is worth noting that a solvent molecule could associate to the complex instead of the chloride ligand, however this ligand dissociates in the next step which means that the identity of the ligand is not important to catalysis. The difference between these two pathways involves the basicity of the anionic carboxylate ligand. A more electron donating metal center would allow for the carboxylate group to be basic enough to proceed with catalysis (blue pathway). Therefore the electron donating ability of the ligand is a pivotal factor of the mechanism. If the ligand is not sufficiently electron donating, further reduction of the ligand is required to increase the basicity of the carboxylate complex.

This mechanism not only explains why we see two enhancements, but also explains the trends we see for the various rhenium(I) complexes described in this discussion. The fact that Kubiak's catalyst (4,4'-di-tert-butyl-bpy) has a ligand reduction that occurs the most negative potential of the set indicates that this ligand is the most electron rich. This implies that less back-bonding occurs with the metal center, allowing for sufficient electron density build up on the carboxylate anion. Following this line of thought explains why we see a large enhancement of the $\mathrm{Re}^{\mathrm{I} / 0}$ couple, and a small secondary enhancement for this complex (Appendix A). The large first enhancement implies that Kubiak's catalyst proceeds primarily through the pathway highlighted in blue in Figure 3.10. Moving to Lehn's catalyst, the same trend is apparent, with the complex readily proceeding via either pathway due to the fact
that the ligand is less electron rich compared to Kubiak's catalyst. (Figure 3.2) When electron withdrawing groups are appended to the bipyridine backbone, such as the BODIPY moieties described in this work, catalysis proceeds primarily through the red pathway of Figure 3.10. This would explain the delayed onset of catalysis for $\operatorname{Re}(\mathbf{B B} 2)(\mathbf{C O})_{\mathbf{3}} \mathbf{C l}$. Moving to $\operatorname{Re}(\mathbf{B B 4})(\mathbf{C O})_{\mathbf{3}} \mathbf{C l}$, the explanation of both current increases can be accounted for. Due to the reduction potentials of the ligand occurring at a more negative potential than for $\mathbf{R e}(\mathbf{B B 2})(\mathbf{C O})_{3} \mathbf{C l}($ about 100 mV$)$,
$\operatorname{Re}(\mathbf{B B 4})(\mathbf{C O})_{3} \mathbf{C l}$ can proceed through the blue pathway, which explains the enhancement at -1.8 V . However, this enhancement is much smaller compared to Kubiak's and Lehn's catalyst due to the electron withdrawing ability of the BODIPY substituents, even when reduced. The second enhancement, which has a similar shape and occurs at a similar potential as for $\operatorname{Re}(\mathbf{B B 2})(\mathbf{C O})_{3} \mathbf{C l}$, is catalysis via the red pathway in Figure 3.10.










Figure 3.11: Mechanism by which further reduction of the ligand occurs upon formation of the rhenium(I) tetracarbonyl complex. The pathway in blue indicates the mechanism put forth in Figure 1.4, whereas as the pathway in red depicts further reduction of the ligand to drive the catalysis. BODIPY substituents are omitted for clarity.

Another possible mechanism was recently proposed by Kubiak, ${ }^{80}$ in which further reduction of the ligand occurs upon generation of the rhenium(I) tetracarbonyl
complex. (Figure 3.11) The original mechanism of carbon dioxide reduction by rhenium bipyridine catalyst raises the question of the driving force behind carbon monoxide dissociation to regenerate the starting catalyst. The fact that the tetracarbonyl complex is a 19-electron complex affords some destabilization to allow for the labilization of one of the carbonyl ligands to generate the 17-electron tricarbonyl complex. However, having an electron deficient ligand can cause stabilization of this intermediate and shut down catalysis via this pathway (blue). If electron deficient ligand are coordinated to the rhenium center, further reduction of the ligand to yield a 20 electron molecule is required to cause enough destabilization to drive the reaction forward to produce the 18 -electron tricarbonyl complex. This explains the different catalytic abilities of the rhenium bipyridine derivatives based upon the electron donating ability of the ligand framework (4,4'-di-tert-butyl-bpy >> bpy $>$ BB4 $>\mathbf{B B 2}$ ) and how that affects the catalytic properties of the rhenium(I) complex.

### 3.4 Conclusions

The conversion of $\mathrm{CO}_{2}$ to CO is a process of potential importance for the storage and distribution of renewable energy resources. In this work, we have developed a set of new electrocatalysts for this reaction. This system is comprised of a $f a c-\operatorname{Re}^{\mathrm{I}}(\mathrm{CO})_{3}$ center supported by a non-innocent bipyridine ligand with appended BODIPY moieties. Electrochemical experiments reveal that $\mathbf{R e}(\mathbf{B B} 2)(\mathbf{C O})_{3} \mathbf{C l}$ in acetonitrile and $\operatorname{Re}(\mathbf{B B 4})(\mathbf{C O})_{3} \mathbf{C l}$ in DMF support rich redox chemistry and can be reduced by up to four electrons at modest potentials, with each BODIPY unit serving as a redox reservoir. The ability of the ligand set to store multiple electron equivalents is manifest in enhanced activity for electrocatalytic $\mathrm{CO}_{2}$ reduction relative to Lehn's
unsubstituted Re-bipyridine homologue $\left(\operatorname{Re}(\mathbf{b p y})(\mathbf{C O})_{3} \mathbf{C l}\right)$. Foot-of-the-wave analysis shows that the rate constant for activation of $\mathrm{CO}_{2}$ by $\mathbf{R e}(\mathbf{B B 2})(\mathbf{C O})_{3} \mathbf{C l}$ in acetonitrile is approximately three times greater than for $\mathbf{R e}(\mathbf{b p y})(\mathbf{C O})_{3} \mathbf{C l}$ at -2.0 V . Foot-of-thewave analysis also shows that the second order rate constant for reduction of carbon dioxide by $\operatorname{Re}(\mathbf{B B 4})(\mathbf{C O})_{3} \mathbf{C l}$ is over one hundred times greater than that of $\mathbf{R e}(\mathbf{b p y})(\mathbf{C O})_{3} \mathbf{C l}$ in $\mathrm{DMF}^{77}$ at -2.0 V as well as a 10 -fold increase in initial turnover frequency It is notable that this enhancement is realized despite the fact that the BODIPY appended complex is reduced at potentials that are roughly 350 mV more positive than the corresponding unsubstituted variant. Additionally, the electron donating ability of the ligand framework to the rhenium center is essential to the mechanism of carbon dioxide reduction catalysis.

In addition to the voltammetric analyses, CPE experiments confirm that $\operatorname{Re}(\mathbf{B B} 2)(\mathbf{C O})_{3} \mathbf{C l}$ and is an electrocatalyst for conversion of $\mathrm{CO}_{2}$ to CO . These CPE experiments also reveal that while this system is stable in MeCN solution under electrolysis conditions, the extended $\pi$-systems that comprise the BB2 ligand lead to decomposition of $\operatorname{Re}(\mathbf{B B 2})(\mathbf{C O})_{3} \mathbf{C l}$ onto and passivation of the working electrode surface. When taken together, these findings suggest that this platform might be especially effective as a homogeneous catalyst for $\mathrm{CO}_{2}$ reduction. Moreover, the notable ability of BODIPY ${ }^{81 \cdots 85}$ and other polypyrrole derivatives $86 \cdots 89$ to absorb light throughout the visible region may distinguish $\mathbf{R e}(\mathbf{B B 2})(\mathbf{C O})_{3} \mathbf{C l}$ and similar complexes for the direct photochemical reduction of $\mathrm{CO}_{2}$. It is with this goal in mind that the photophysics and photocatalytic activity of $\mathbf{R e}(\mathbf{B B} 2)(\mathbf{C O})_{3} \mathbf{C l}$ and related platforms are currently being evaluated in our laboratory.

## REFERENCES

${ }^{1}$ Hoffert, M. I.; Caldeira, K.; Jain, A. K.; Haites, E. F.; Harvey, L. D. D.; Potter, S. D.; Schlesinger, M. E.; Schneider, S. H.; Watts, R. G.; Wigley, T. M. L.; Wuebbles, D. J., Energy implications of future stabilization of atmospheric CO2 content. Nature 1998, 395 (6705), 881-884.

2 National Climate Data Center. http://www.ncdc.noaa.gov/indicators/ (Accessed Apr. 11, 2013).

3 Data Distribution Centre. http://www.ipcc-data.org/ddc_co2.html (Accesssed on Apr. 1, 2013).
$4^{\text {Annual Energy Review 2011. US Energy Information Administration, September }}$ 2012.
${ }^{5}$ Lewis, N. S., Powering the Planet. MRS Bulletin 2007, 32 (10), 808-820.
6 World Energy Outlook 2012 Executive Summary. International Energy Agency, March 2013.

7 International Energy Agency. http://www.iea.org/ (Accessed on Mar. 21, 2013).
${ }^{8}$ Carlson, D. E.; Wronski, C. R. Appl. Phys. Lett. 1976, 28, 671.
${ }^{9}$ Chapin, D. M.; Fuller, C. S.; Pearson, G. L. J. Appl. Phys. 1954, 25, 676.
10 Staebler, D. L.; Wronski, C. R. Appl. Phys. Lett. 1977, 31, 292.
11 Gregg, B. A. J. Phys. Chem. B 2003, 107, 4688.
12 Wang, P.; Zakeeruddin, S. M.; Moser, J. E.; Nazeeruddin, M. K.; Sekiguchi, T.; Graetzel, M. Nat. Mater. 2003, 2, 402.

13 Tian, B.; Zheng, X.; Kempa, T. J.; Fang, Y.; Yu, N.; Yu, G.; Huang, J.; Lieber, C. M. Nature (London, U. K.) 2007, 449, 885.

14 Garnett, E.; Yang, P. Nano Lett. 2010, 10, 1082.
15 Anpo, M.; Takeuchi, M. J. Catal. 2003, 216, 505.
16 Barbe, C. J.; Arendse, F.; Comte, P.; Jirousek, M.; Lenzmann, F.; Shklover, V.; Gratzel, M. J. Am. Ceram. Soc. 1997, 80, 3157.

17 Carp, O.; Huisman, C. L.; Reller, A. Prog. Solid State Chem. 2004, 32, 33.
18 Horiuchi, T.; Miura, H.; Sumioka, K.; Uchida, S. J. Am. Chem. Soc. 2004, 126, 12218.

19 Kim, J. Y.; Kim, S. H.; Lee, H.-H.; Lee, K.; Ma, W.; Gong, X.; Heeger, A. J. Adv. Mater. (Weinheim, Ger.) 2006, 18, 572.

20 Mor, G. K.; Shankar, K.; Paulose, M.; Varghese, O. K.; Grimes, C. A. Nano Lett. 2006, 6, 215.

21 Mor, G. K.; Varghese, O. K.; Paulose, M.; Shankar, K.; Grimes, C. A. Sol. Energy Mater. Sol. Cells 2006, 90, 2011.

22 Nazeeruddin, M. K.; Kay, A.; Rodicio, I.; Humphry-Baker, R.; Mueller, E.; Liska, P.; Vlachopoulos, N.; Graetzel, M. J. Am. Chem. Soc. 1993, 115, 6382.

23 O'Regan, B.; Graetzel, M. Nature (London) 1991, 353, 737.
24 Robel, I.; Subramanian, V.; Kuno, M.; Kamat, P. V. J. Am. Chem. Soc. 2006, 128, 2385.

25 Yella, A.; Lee, H.-W.; Tsao, H. N.; Yi, C.; Chandiran, A. K.; Nazeeruddin, M. K.; Diau, E. W.-G.; Yeh, C.-Y.; Zakeeruddin, S. M.; Graetzel, M. Science (Washington, DC, U. S.) 2011, 334, 629.

26 Padhi, A. K.; Nanjundaswamy, K. S.; Goodenough, J. B. J. Electrochem. Soc. 1997, 144, 1188.

27 Mizushima, K.; Jones, P. C.; Wiseman, P. J.; Goodenough, J. B. Mater. Res. Bull. 1980, 15, 783.

28 Kang, B.; Ceder, G. Nature (London, U. K.) 2009, 458, 190.
29 Goodenough, J. B.; Kim, Y. Chem. Mater. 2010, 22, 587.
30 Conway, B. E. J. Electrochem. Soc. 1991, 138, 1539.
31 Che, G.; Lakshmi, B. B.; Fisher, E. R.; Martin, C. R. Nature (London) 1998, 393, 346.

32 Chan, C. K.; Peng, H.; Liu, G.; McIlwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y. Nat. Nanotechnol. 2008, 3, 31.

33 Bruce, P. G.; Scrosati, B.; Tarascon, J.-M. Angew. Chem., Int. Ed. 2008, 47, 2930.
34 Arico, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J.-M.; van, S. W. Nat. Mater. 2005, 4, 366 .
35. Rofer-DePoorter, C. K. Chem. Rev. 2012, 81, 447-474.
36. Vennestrøm, P. N. R.; Osmundsen, C. M.; Christensen, C. H.; Taarning, E. Angew. Chem. Int. Ed. 2011, 50, 10502-10509.
37. T. Takeshita, K. Yamaji Energy Policy 2008, 36, 2773-2784.

38 Takeda, H.; Ishitani, O. Coord. Chem. Rev. 2010, 254, 346.
39 Sutin, N.; Creutz, C.; Fujita, E. Comments Inorg. Chem. 1997, 19, 67.
40 Bazzicalupi, C.; Bencini, A.; Bencini, A.; Bianchi, A.; Corana, F.; Fusi, V.; Giorgi, C.; Paoli, P.; Paoletti, P.; et, a. Inorg. Chem. 1996, 35, 5540.

41 Costamagna, J.; Ferraudi, G.; Canales, J.; Vargas, J. Coord. Chem. Rev. 1996, 148, 221.

42 Fisher, B. J.; Eisenberg, R. J. Am. Chem. Soc. 1980, 102, 7361.

43 Matsuoka, S.; Yamamoto, K.; Ogata, T.; Kusaba, M.; Nakashima, N.; Fujita, E.; Yanagida, S. J. Am. Chem. Soc. 1993, 115, 601.

44 Ogata, T.; Yanagida, S.; Brunschwig, B. S.; Fujita, E. J. Am. Chem. Soc. 1995, 117, 6708.

45 Vigato, P. A.; Tamburini, S.; Fenton, D. E. Coord. Chem. Rev. 1990, 106, 25.
46 DuBois, D. L.; Miedaner, A.; Haltiwanger, R. C. J. Am. Chem. Soc. 1991, 113, 8753.

47 Elek, J.; Nadasdi, L.; Papp, G.; Laurenczy, G.; Joo, F. Appl. Catal., A 2003, 255, 59.

48 Gassner, F.; Leitner, W. J. Chem. Soc., Chem. Commun. 1993, 1465.
49 Laurenczy, G.; Joo, F.; Nadasdi, L. Inorg. Chem. 2000, 39, 5083.
50 Miedaner, A.; Curtis, C. J.; Barkley, R. M.; DuBois, D. L. Inorg. Chem. 1994, 33, 5482.
51. Ishida, H.; Tanaka, K.; Tanaka, T. Organometallics, 1987, 6, 181-186.
52. Nagao, H.; Mizukawa, T.; Tanaka, K. Inorg. Chem. 1994, 33, 3415-3420.
53. Takeuchi, K. J.; Thompson, M. S.; Pipes, D. W.; Meyer, T. J. Inorg. Chem. 1984, 23, 1845-1851.
54. Concepcion, J. J.; Jurss, J. W.; Norris, M. R.; Chen, Z.; Templeton, J. L.; Meyer, T. J. Inorg. Chem. 2010, 49, 1277-1279.
55. Chen, Z.; Chen, C.; Weinberg, D. R.; Kang, P.; Concepcion, J. J.; Harrison, D. P.; Brookhart, M. S.; Meyer, T. J. Chem. Commun. 2011, 47, 12607-12609.
56. Chen, Z.; Concepcion, J. J.; Brennaman, M. K.; Kang, P.; Norris, M. R.; Hoertz, P. G.; Meyer, T. J. Proc. Natl. Acad. Sci. USA 2012, 109, 15606-15611.
57. Sullivan, B. P.; Meyer, T. J., Organometallics 1986, 5, 1500-1502.
58. O'Toole, T. R.; Sullivan, B. P.; Bruce, M. R. M.; Margerum, L. D.; Murray, R. W.; Meyer, T. J. J. Electroanal. Chem. Interfacial Electrochem. 1989, 259, 21739.
59. O'Toole, T. R.; Margerum, L. D.; Westmoreland, T. D.; Vining, W. J.; Murray, R. W.; Meyer, T. J. Chem. Comтии. 1985, 1416-1417.
60. Agarwal, J.; Sanders, B. C.; Fujita, E.; Schaefer, I. I. I. H. F.; Harrop, T. C.; Muckerman, J. T. Chem. Commun. 2012, 48, 6797-6799.
61. Agarwal, J.; Johnson, R. P.; Li, G. J. Phys. Chem. A 2011, 115, 2877-2881.
62. Agarwal, J.; Fujita, E.; Schaefer, H. F.; Muckerman, J. T. J. Am. Chem. Soc. 2012, 134, 5180-5186.
63. Sullivan, B. P.; Meyer, T. J. Organometallics 1986, 5, 1500-1502.
64. Sullivan, B. P.; Meyer, T. J., Chem. Commun 1984, 1244-1245.

65 Hawecker, J.; Lehn, J.-M.; Ziessel, R. Journal of the Chemical Society, Chemical Communications 1984, 0, 328.

66 Kumar, B.; Smieja, J. M.; Kubiak, C. P. J. Phys. Chem. C 2010, 114, 14220.
67 Benson, E. E.; Kubiak, C. P. Chem. Commun. (Cambridge, U. K.) 2012, 48, 7374.
68 Kumar, B.; Smieja, J. M.; Sasayama, A. F.; Kubiak, C. P. Chem. Commun. (Cambridge, U. K.) 2012, 48, 272.

69 Smieja, J. M.; Benson, E. E.; Kumar, B.; Grice, K. A.; Seu, C. S.; Miller, A. J. M.; Mayer, J. M.; Kubiak, C. P. Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 15646.

70 Smieja, J. M.; Kubiak, C. P. Inorg. Chem. 2010, 49, 9283.
71. Rosenthal, J.; Nepomnyashchii, A. B.; Kozhukh, J.; Bard, A. J.; Lippard, S. J., J. Phys. Chem. C 2011, 115, 17993-18001.

72 Uhlich, N. A.; Sommer, P.; Buhr, C.; Schurch, S.; Reymond, J.-L.; Darbre, T. Chem Commun (Camb) 2009, 6237.

73 Tiecco, M.; Testaferri, L.; Tingoli, M.; Chianelli, D.; Montanucci, M. Synthesis 1984, 736.
${ }^{74}$. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision A.1; Gaussian, Inc., Wallingford CT, 2009.

75 Costentin, C.; Drouet, S.; Robert, M.; Saveant, J.-M., Turnover Numbers, Turnover Frequencies, and Overpotential in Molecular Catalysis of Electrochemical Reactions. Cyclic Voltammetry and Preparative-Scale Electrolysis. J. Am. Chem. Soc. 2012, 134 (Copyright (C) 2013 American Chemical Society (ACS). All Rights Reserved.), 11235-11242.

76 Costentin, C.; Drouet, S.; Robert, M.; Saveant, J.-M., Turnover Numbers, Turnover Frequencies, and Overpotential in Molecular Catalysis of Electrochemical Reactions. Cyclic Voltammetry and Preparative-Scale Electrolysis [Erratum to document cited in CA157:116043]. J. Am. Chem. Soc. 2012, 134 (Copyright (C) 2013 American Chemical Society (ACS). All Rights Reserved.), 1994919950.

77 Costentin, C.; Drouet, S.; Robert, M.; Saveant, J.-M., A Local Proton Source Enhances CO2 Electroreduction to CO by a Molecular Fe Catalyst. Science (Washington, DC, U. S.) 2012, 338 (Copyright (C) 2013 American Chemical Society (ACS). All Rights Reserved.), 90-94.

78 Y. Tomita, S. T., O. Koga, and Y. Hori, Electrochemical Reduction of Carbon Dioxide at a Platinum Electrode in Acetonitrile-Water Mixtures. Journal of The Electrochemical Society 200, 147 (11), 4164-4167.
79.Roy, S.; Blane, T.; Lilio, A.; Kubiak, C. P. Inorg. Chim. Acta, 2011, 374, 134-139.

80 Grice, K. A.; Gu, N. X.; Sampson, M. D.; Kubiak, C. P. Dalton Trans., 2013. In press.
81. Loudet, A.; Burgess, K. Chem. Rev. 2007, 107, 4891-4932.
82. Ziessel, R.; Ulrich, G.; Harriman, A. New J. Chem. 2007, 31, 496-501.
83. Lazarides, T.; McCormick, T. M.; Wilson, K. C.; Lee, S.; McCamant, D. W.; Eisenberg, R. J. Am. Chem. Soc. 2011, 133, 350-364.
84. B. Turfan and E. U. Akkaya, Org. Lett. 2002, 4, 2857-2859.
85. Nepomnyashchii, A. B.; Pistner, A. J.; Bard, A. J.; Rosenthal, J. J. Phys. Chem. C, 2013, 117, 5599-5609.
86. Lee, C. Y.; Hupp, J. T. Langmuir 2010, 26, 3760-3765.
87. Leonardi, M. J.; Topka, M. R.; Dinolfo, P. H. Inorg. Chem. 2012, 51, 13114 13122.
88. Pistner, A. J.; Yap, G. P. A.; Rosenthal, J. J. Phys. Chem. C 2012, 116, 1691816924.
89. Pistner, A. J.; Lutterman, D. A.; Ghidiu, M. J.; Ma, Y. -Z.; Rosenthal, J. J. Am. Chem. Soc. 2013, 135, In press.

## Appendix A

## ELECTROCHEMISTRY



Foot-of-the-Wave Analysis in Acetonitrile.







Foot-of-the-Wave Analysis in DMF








## Appendix B

## NMR SPECTROSCOPY

NMR Methods. All compounds were analyzed is $\mathrm{CD}_{3} \mathrm{Cl}$ for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR except for the 5,5'and 6,6' dicarboxylic acid derivatives, which were analyzed in DMSO-d ${ }^{6}$. All integrated peaks in ${ }^{1} \mathrm{H}$ NMR belong to the target compound, and remaining peaks belong to residual water or solvent.

## ${ }^{1}$ H NMR Spectra










${ }^{13}$ C NMR Spectra







## Appendix C

## CRYSTALLOGRAPHIC DATA

| Key Parameters | $\mathbf{R e}(\mathbf{B B} 2)(\mathbf{C O})_{3} \mathbf{C l}$ |
| :--- | :--- |
| Formula | $\mathrm{C}_{47.5} \mathrm{H}_{51} \mathrm{~B}_{2} \mathrm{Cl}_{2} \mathrm{~F}_{4} \mathrm{~N}_{6} \mathrm{O}_{3} \mathrm{Re}$ |
| $F_{\mathrm{W}}$ | 1108.66 |
| Crystal System | Triclinic |
| Space Group | $\mathrm{P}_{-1}$ |
| $a$ | $14.4395(8) \AA$ |
| $b$ | $16.3930(9) \AA$ |


| $c$ | $22.5783(12) \AA$ |
| :--- | :--- |
| $\alpha$ | $82.748(4)^{\circ}{ }^{\circ}$ |
| $\beta$ | $89.828(4)^{\circ}$ |
| $\gamma$ | $73.525(4)^{\circ}$ |
| $V$ | $5081.0(5) \AA^{3}$ |
| $Z$ | 4 |
| Temp | $200(2) \mathrm{K}$ |
| $D_{\text {calcd }}$ | $1.449 \mathrm{~g} \mathrm{~cm}^{-3}$ |
| $2 \theta$ range | $144.86^{\circ}$ |
| $\mu(\mathrm{Cu} \mathrm{K} \alpha)$ | $6.141 \mathrm{~mm}^{-1}$ |
| Reflections | 49241 |
| Unique | 14814 |
| $R$ (int) | 0.2102 |
| $R_{1}$ | 0.0801 |
| $\mathrm{w} R_{2}$ | 0.1746 |
|  |  |


| Bond Lengths for Re(BB2)(CO) $\mathbf{3} \mathbf{C l}$ <br> Atom1 |  |  |
| :---: | :---: | :---: |
| Atom2 | Length |  |
| Re1 | Cl1 | $2.459(5)$ |
| Re1 | N 1 | $2.13(1)$ |
| Re1 | N 4 | $2.14(1)$ |
| Re1 | C 1 | $1.87(2)$ |
| Re1 | C 2 | $1.86(2)$ |
| Re1 | C 3 | $1.84(2)$ |
| B 1 | F 1 | $1.36(2)$ |
| B 1 | F 2 | $1.43(2)$ |
| B 1 | N 2 | $1.59(2)$ |
| B 1 | N 3 | $1.50(3)$ |
| B 2 | F 3 | $1.38(3)$ |
| B 2 | F 4 | $1.43(2)$ |
| B 2 | N 5 | $1.60(3)$ |
| B 2 | N 6 | $1.48(3)$ |
| N 1 | C 4 | $1.34(2)$ |
| N 1 | C 8 | $1.34(2)$ |
| N 2 | C 10 | $1.40(2)$ |


| N2 | C13 | 1.35(3) |
| :---: | :---: | :---: |
| N3 | C18 | 1.41(2) |
| N3 | C21 | $1.35(2)$ |
| N4 | C26 | $1.35(2)$ |
| N4 | C30 | 1.34(2) |
| N5 | C32 | 1.37(2) |
| N5 | C35 | 1.34(3) |
| N6 | C40 | 1.42(2) |
| N6 | C43 | 1.35(3) |
| O1 | C1 | 1.14(2) |
| O2 | C2 | 1.16(2) |
| O3 | C3 | 1.20(2) |
| C4 | H4 | 0.95(2) |
| C4 | C5 | 1.39(3) |
| C5 | H5 | 0.95(2) |
| C5 | C6 | 1.41(2) |
| C6 | C7 | 1.37(2) |
| C6 | C9 | 1.50(2) |
| C7 | H7 | 0.95(2) |
| C7 | C8 | 1.42(2) |
| C8 | C26 | 1.46(2) |
| C9 | C10 | 1.38(3) |
| C9 | C18 | 1.37(2) |
| C10 | C11 | 1.41(2) |
| C11 | C12 | 1.38(3) |
| C11 | C14 | 1.50(2) |
| C12 | C13 | 1.43(3) |
| C12 | C15 | 1.54(3) |
| C13 | C17 | 1.52(3) |
| C14 | H14A | 0.98(2) |
| C14 | H14B | 0.98(2) |
| C14 | H14C | 0.98(2) |
| C15 | H15A | 0.99(2) |
| C15 | H15B | 0.99(2) |
| C15 | C16 | 1.52(3) |
| C16 | H16A | 0.98(2) |
| C16 | H16B | 0.98(2) |


| C16 | H16C | $0.98(2)$ |
| :---: | :---: | :---: |
| C17 | H17A | $0.98(2)$ |
| C17 | H17B | $0.98(2)$ |
| C17 | H17C | $0.98(2)$ |
| C18 | C19 | $1.41(3)$ |
| C19 | C20 | $1.39(2)$ |
| C19 | C22 | $1.47(3)$ |
| C20 | C21 | $1.39(3)$ |
| C20 | C23 | $1.53(3)$ |
| C21 | C25 | $1.52(2)$ |
| C22 | H22A | $0.98(2)$ |
| C22 | H22B | $0.98(2)$ |
| C22 | H22C | $0.98(2)$ |
| C23 | H23A | $0.99(2)$ |
| C23 | H23B | $0.99(2)$ |
| C23 | C24 | $1.52(2)$ |
| C24 | H24A | $0.98(2)$ |
| C24 | H24B | $0.98(2)$ |
| C24 | H24C | $0.98(2)$ |
| C25 | H25A | $0.98(2)$ |
| C25 | H25B | $0.98(2)$ |
| C25 | H25C | $0.98(2)$ |
| C26 | C27 | $1.39(2)$ |
| C27 | H27 | $0.95(2)$ |
| C27 | C28 | $1.41(2)$ |
| C28 | C29 | $1.36(3)$ |
| C28 | C31 | $1.48(2)$ |
| C29 | H29 | $0.95(2)$ |
| C29 | C30 | $1.38(2)$ |
| C30 | H30 | $0.95(2)$ |
| C31 | C32 | $1.38(3)$ |
| C31 | C40 | $1.39(3)$ |
| C32 | C33 | $1.40(3)$ |
| C33 | C34 | $1.43(3)$ |
| C33 | C36 | $1.50(3)$ |
| C34 | C35 | $1.40(3)$ |
| C34 | C37 | $1.56(4)$ |
|  |  |  |
|  |  |  |


| C35 | C39 | $1.49(3)$ |
| :---: | :---: | :---: |
| C36 | H36A | $0.98(2)$ |
| C36 | H36B | $0.98(2)$ |
| C36 | H36C | $0.98(2)$ |
| C37 | H37C | $0.99(2)$ |
| C37 | H37D | $0.99(3)$ |
| C37 | C38 | $1.51(4)$ |
| C38 | H38A | $0.97(3)$ |
| C38 | H38B | $0.98(3)$ |
| C38 | H38C | $0.99(3)$ |
| C39 | H39A | $0.98(3)$ |
| C39 | H39B | $0.98(3)$ |
| C39 | H39C | $0.98(3)$ |
| C40 | C41 | $1.44(3)$ |
| C41 | C42 | $1.37(3)$ |
| C41 | C44 | $1.48(2)$ |
| C42 | C43 | $1.39(3)$ |
| C42 | C45 | $1.48(3)$ |
| C43 | C47 | $1.48(3)$ |
| C44 | H44A | $0.98(2)$ |
| C44 | H44B | $0.98(2)$ |
| C44 | H44C | $0.98(2)$ |
| C45 | H45A | $0.99(2)$ |
| C45 | H45B | $0.99(3)$ |
| C45 | C46 | $1.59(4)$ |
| C46 | H46A | $0.98(3)$ |
| C46 | H46B | $0.98(3)$ |
| C46 | H46C | $0.98(3)$ |
| C47 | H47A | $0.98(2)$ |
| C47 | H47B | $0.98(2)$ |
| C47 | H47C | $0.98(2)$ |


| Bond Angles for |  |  |  |
| :---: | :---: | :---: | :---: |
| Re(BB2)(CO) $\mathbf{3}_{\mathbf{3}} \mathbf{C l}$ |  |  |  |
| Atom1 | Atom2 | Atom3 | Angle |
| Cl 1 | Re 1 | N 1 | $83.2(4)$ |
| $\mathrm{Cl1}$ | Re 1 | N 4 | $83.1(4)$ |
| Cl 1 | Re1 | C 1 | $95.5(6)$ |


| Cl1 | Re1 | C2 | 175.8(6) |
| :---: | :---: | :---: | :---: |
| Cl1 | Rel | C3 | 91.9(6) |
| N1 | Rel | N4 | $74.2(5)$ |
| N1 | Rel | C1 | 98.5(7) |
| N1 | Rel | C2 | 94.8(7) |
| N1 | Rel | C3 | 172.2(7) |
| N4 | Rel | C1 | 172.7(7) |
| N4 | Rel | C2 | 92.8(7) |
| N4 | Rel | C3 | 99.2(7) |
| C1 | Rel | C2 | 88.5(8) |
| C1 | Rel | C3 | 88.0(8) |
| C2 | Rel | C3 | 89.7(8) |
| F1 | B1 | F2 | 110(2) |
| F1 | B1 | N2 | 107(2) |
| F1 | B1 | N3 | 115(2) |
| F2 | B1 | N2 | 108(1) |
| F2 | B1 | N3 | 112(2) |
| N2 | B1 | N3 | 105(1) |
| F3 | B2 | F4 | 105(2) |
| F3 | B2 | N5 | 110(2) |
| F3 | B2 | N6 | 113(2) |
| F4 | B2 | N5 | 106(2) |
| F4 | B2 | N6 | 111(2) |
| N5 | B2 | N6 | 110(2) |
| Rel | N1 | C4 | 125(1) |
| Rel | N1 | C8 | 118(1) |
| C4 | N1 | C8 | 117(1) |
| B1 | N2 | C10 | 125(1) |
| B1 | N2 | C13 | 126(1) |
| C10 | N2 | C13 | 108(1) |
| B1 | N3 | C18 | 129(1) |
| B1 | N3 | C21 | 125(2) |
| C18 | N3 | C21 | 106(1) |
| Rel | N4 | C26 | 117(1) |
| Re1 | N4 | C30 | 126(1) |
| C26 | N4 | C30 | 117(1) |
| B2 | N5 | C32 | 122(2) |


| B2 | N5 | C35 | 127(2) |
| :---: | :---: | :---: | :---: |
| C32 | N5 | C35 | 111(2) |
| B2 | N6 | C40 | 123(2) |
| B2 | N6 | C43 | 129(2) |
| C40 | N6 | C43 | 108(2) |
| Rel | C1 | O1 | 178(2) |
| Rel | C2 | O2 | 177(2) |
| Rel | C3 | O3 | 175(1) |
| N1 | C4 | H4 | 118(2) |
| N1 | C4 | C5 | 125(2) |
| H4 | C4 | C5 | 118(2) |
| C4 | C5 | H5 | 120(2) |
| C4 | C5 | C6 | 119(2) |
| H5 | C5 | C6 | 120(2) |
| C5 | C6 | C7 | 115(2) |
| C5 | C6 | C9 | 123(2) |
| C7 | C6 | C9 | 122(1) |
| C6 | C7 | H7 | 119(2) |
| C6 | C7 | C8 | 123(1) |
| H7 | C7 | C8 | 118(2) |
| N1 | C8 | C7 | 121(1) |
| N1 | C8 | C26 | 115(1) |
| C7 | C8 | C26 | 125(1) |
| C6 | C9 | C10 | 117(1) |
| C6 | C9 | C18 | 118(1) |
| C10 | C9 | C18 | 125(2) |
| N2 | C10 | C9 | 118(1) |
| N2 | C10 | C11 | 108(1) |
| C9 | C10 | C11 | 134(2) |
| C10 | C11 | C12 | 108(2) |
| C10 | C11 | C14 | 129(2) |
| C12 | C11 | C14 | 123(2) |
| C11 | C12 | C13 | 107(2) |
| C11 | C12 | C15 | 129(2) |
| C13 | C12 | C15 | 123(2) |
| N2 | C13 | C12 | 109(2) |
| N2 | C13 | C17 | 123(2) |


| C12 | C13 | C17 | $128(2)$ |
| :---: | :---: | :---: | :---: |
| C11 | C14 | H14A | $110(2)$ |
| C11 | C14 | H14B | $110(2)$ |
| C11 | C14 | H14C | $109(2)$ |
| H14A | C14 | H14B | $109(2)$ |
| H14A | C14 | H14C | $109(2)$ |
| H14B | C14 | H14C | $109(2)$ |
| C12 | C15 | H15A | $110(2)$ |
| C12 | C15 | H15B | $110(2)$ |
| C12 | C15 | C16 | $110(2)$ |
| H15A | C15 | H15B | $108(2)$ |
| H15A | C15 | C16 | $110(2)$ |
| H15B | C15 | C16 | $110(2)$ |
| C15 | C16 | H16A | $110(2)$ |
| C15 | C16 | H16B | $109(2)$ |
| C15 | C16 | H16C | $109(2)$ |
| H16A | C16 | H16B | $110(2)$ |
| H16A | C16 | H16C | $109(2)$ |
| H16B | C16 | H16C | $109(2)$ |
| C13 | C17 | H17A | $109(2)$ |
| C13 | C17 | H17B | $109(2)$ |
| C13 | C17 | H17C | $109(2)$ |
| H17A | C17 | H17B | $110(2)$ |
| H17A | C17 | H17C | $109(2)$ |
| H17B | C17 | H17C | $109(2)$ |
| N3 | C18 | C9 | $117(1)$ |
| N3 | C18 | C19 | $110(1)$ |
| C9 | C18 | C19 | $134(2)$ |
| C18 | C19 | C20 | $105(1)$ |
| C18 | C19 | C22 | $130(2)$ |
| C20 | C19 | C22 | $125(2)$ |
| C19 | C20 | C21 | $108(2)$ |
| C19 | C20 | C23 | $125(2)$ |
| C21 | C20 | C23 | $127(2)$ |
| N3 | C21 | C20 | $111(2)$ |
| N3 | C21 | C25 | $121(2)$ |
| C20 | C21 | C25 | $128(2)$ |
|  |  |  |  |


| C19 | C22 | H22A | $109(2)$ |
| :---: | :---: | :---: | :---: |
| C19 | C22 | H22B | $109(2)$ |
| C19 | C22 | H22C | $110(2)$ |
| H22A | C22 | H22B | $109(2)$ |
| H22A | C22 | H22C | $110(2)$ |
| H22B | C22 | H22C | $109(2)$ |
| C20 | C23 | H23A | $109(2)$ |
| C20 | C23 | H23B | $109(2)$ |
| C20 | C23 | C24 | $112(1)$ |
| H23A | C23 | H23B | $108(2)$ |
| H23A | C23 | C24 | $109(2)$ |
| H23B | C23 | C24 | $109(2)$ |
| C23 | C24 | H24A | $109(2)$ |
| C23 | C24 | H24B | $109(2)$ |
| C23 | C24 | H24C | $109(2)$ |
| H24A | C24 | H24B | $110(2)$ |
| H24A | C24 | H24C | $109(2)$ |
| H24B | C24 | H24C | $109(2)$ |
| C21 | C25 | H25A | $110(2)$ |
| C21 | C25 | H25B | $110(2)$ |
| C21 | C25 | H25C | $109(2)$ |
| H25A | C25 | H25B | $109(2)$ |
| H25A | C25 | H25C | $109(2)$ |
| H25B | C25 | H25C | $109(2)$ |
| N4 | C26 | C8 | $114(1)$ |
| N4 | C26 | C27 | $124(2)$ |
| C8 | C26 | C27 | $122(2)$ |
| C26 | C27 | H27 | $120(2)$ |
| C26 | C27 | C28 | $119(2)$ |
| H27 | C27 | C28 | $120(2)$ |
| C27 | C28 | C29 | $116(2)$ |
| C27 | C28 | C31 | $123(2)$ |
| C29 | C28 | C31 | $121(2)$ |
| C28 | C29 | H29 | $118(2)$ |
| C28 | C29 | C30 | $123(2)$ |
| H29 | C29 | C30 | $118(2)$ |
| N4 | C30 | C29 | $121(2)$ |
|  |  |  |  |


| N4 | C30 | H30 | $119(2)$ |
| :---: | :---: | :---: | :---: |
| C29 | C30 | H30 | $119(2)$ |
| C28 | C31 | C32 | $122(2)$ |
| C28 | C31 | C40 | $115(2)$ |
| C32 | C31 | C40 | $123(2)$ |
| N5 | C32 | C31 | $121(2)$ |
| N5 | C32 | C33 | $108(2)$ |
| C31 | C32 | C33 | $130(2)$ |
| C32 | C33 | C34 | $105(2)$ |
| C32 | C33 | C36 | $132(2)$ |
| C34 | C33 | C36 | $123(2)$ |
| C33 | C34 | C35 | $108(2)$ |
| C33 | C34 | C37 | $126(2)$ |
| C35 | C34 | C37 | $125(2)$ |
| N5 | C35 | C34 | $107(2)$ |
| N5 | C35 | C39 | $125(2)$ |
| C34 | C35 | C39 | $128(2)$ |
| C33 | C36 | H36A | $109(2)$ |
| C33 | C36 | H36B | $110(2)$ |
| C33 | C36 | H36C | $110(2)$ |
| H36A | C36 | H36B | $109(2)$ |
| H36A | C36 | H36C | $109(2)$ |
| H36B | C36 | H36C | $110(2)$ |
| C34 | C37 | H37C | $109(2)$ |
| C34 | C37 | H37D | $109(2)$ |
| C34 | C37 | C38 | $113(2)$ |
| H37C | C37 | H37D | $108(2)$ |
| H37C | C37 | C38 | $109(2)$ |
| H37D | C37 | C38 | $109(2)$ |
| C37 | C38 | H38A | $110(3)$ |
| C37 | C38 | H38B | $109(3)$ |
| C37 | C38 | H38C | $109(3)$ |
| H38A | C38 | H38B | $110(3)$ |
| H38A | C38 | H38C | $110(3)$ |
| H38B | C38 | H38C | $109(3)$ |
| C35 | C39 | H39A | $110(2)$ |
| C35 | C39 | H39B | $109(2)$ |
|  |  |  |  |


| C35 | C39 | H39C | $109(2)$ |
| :---: | :---: | :---: | :---: |
| H39A | C39 | H39B | $110(2)$ |
| H39A | C39 | H39C | $109(2)$ |
| H39B | C39 | H39C | $109(2)$ |
| N6 | C40 | C31 | $120(2)$ |
| N6 | C40 | C41 | $106(2)$ |
| C31 | C40 | C41 | $134(2)$ |
| C40 | C41 | C42 | $107(2)$ |
| C40 | C41 | C44 | $128(2)$ |
| C42 | C41 | C44 | $124(2)$ |
| C41 | C42 | C43 | $109(2)$ |
| C41 | C42 | C45 | $128(2)$ |
| C43 | C42 | C45 | $123(2)$ |
| N6 | C43 | C42 | $110(2)$ |
| N6 | C43 | C47 | $119(2)$ |
| C42 | C43 | C47 | $132(2)$ |
| C41 | C44 | H44A | $109(2)$ |
| C41 | C44 | H44B | $109(2)$ |
| C41 | C44 | H44C | $110(2)$ |
| H44A | C44 | H44B | $109(2)$ |
| H44A | C44 | H44C | $109(2)$ |
| H44B | C44 | H44C | $110(2)$ |
| C42 | C45 | H45A | $109(2)$ |
| C42 | C45 | H45B | $109(2)$ |
| C42 | C45 | C46 | $113(2)$ |
| H45A | C45 | H45B | $108(2)$ |
| H45A | C45 | C46 | $109(2)$ |
| H45B | C45 | C46 | $109(2)$ |
| C45 | C46 | H46A | $109(2)$ |
| C45 | C46 | H46B | $109(2)$ |
| C45 | C46 | H46C | $110(2)$ |
| H46A | C46 | H46B | $109(3)$ |
| H46A | C46 | H46C | $110(3)$ |
| H46B | C46 | H46C | $110(3)$ |
| C43 | C47 | H47A | $109(2)$ |
| C43 | C47 | H47B | $109(2)$ |
| C43 | C47 | H47C | $109(2)$ |
|  |  |  |  |


| H47A | C47 | H47B | $110(2)$ |
| :--- | :--- | :--- | :--- |
| H47A | C47 | H47C | $109(2)$ |
| H47B | C47 | H47C | $110(2)$ |


| Key Parameters | $\mathrm{Re}(\mathbf{B B} 3)(\mathrm{CO})_{3} \mathrm{Cl}$ |
| :--- | :--- |
| Formula | $\mathrm{C}_{49} \mathrm{H}_{54} \mathrm{~B}_{2} \mathrm{Cl}_{3} \mathrm{~F}_{4} \mathrm{~N}_{6} \mathrm{O}_{3} \mathrm{Re}$ |
| $F_{\mathrm{W}}$ | 1165.15 |
| Crystal System | Triclinic |
| Space Group | $\mathrm{P}_{-1}$ |
| $a$ | $13.383(3) \AA$ |
| $b$ | $14.555(3) \AA$ |
| $c$ | $14.563(3) \AA$ |
| $\alpha$ | $88.305(4){ }^{\circ}$ |
| $\beta$ | $81.330(4)^{\circ}$ |
| $\gamma$ | $62.646(4)^{\circ}$ |
| $V$ | $2488.1(5) \AA^{3}$ |
| $Z$ | 2 |
| Temp | $200(2) \mathrm{K}$ |
| $D_{\text {calcd }}$ | 1.555 g cm |
| $2 \theta$ range | $53.16^{\circ}$ |
| $\mu$ (Mo K $\alpha)$ | $2.666 \mathrm{~mm}^{-1}$ |
| Reflections | 27844 |
| Unique | 12260 |
| $R$ (int) | 0.0482 |
| $R_{1}$ | 0.0598 |
| w $R_{2}$ | 0.1336 |


| Bond Lengths for $\mathbf{R e}(\mathbf{B B 3})(\mathbf{C O})_{\mathbf{3}} \mathbf{C l}$ <br> Atom1 |  |  |
| :---: | :---: | :---: |
| Atom2 | Length |  |
| Re | Cl 1 | $2.452(2)$ |
| Re | N 3 | $2.194(7)$ |
| Re | N 4 | $2.188(4)$ |
| Re | C 1 | $1.924(7)$ |
| Re | C 2 | $1.92(1)$ |
| Re | C 3 | $1.937(6)$ |
| B 1 | F 1 | $1.387(8)$ |


| B1 | F2 | 1.39(1) |
| :---: | :---: | :---: |
| B1 | N1 | 1.546(9) |
| B1 | N2 | 1.55(1) |
| B2 | F3 | 1.38(1) |
| B2 | F4 | 1.393(8) |
| B2 | N5 | 1.55(1) |
| B2 | N6 | 1.554(8) |
| N1 | C4 | 1.346(9) |
| N1 | C7 | 1.40(1) |
| N2 | C12 | 1.338(9) |
| N2 | C15 | 1.40(1) |
| N3 | C21 | 1.353(9) |
| N3 | C25 | 1.351(8) |
| N4 | C26 | 1.35(1) |
| N4 | C30 | 1.354(9) |
| N5 | C32 | 1.350(7) |
| N5 | C35 | 1.40(1) |
| N6 | C40 | 1.352(9) |
| N6 | C43 | 1.39(1) |
| C1 | O1 | 1.141(9) |
| C2 | O2 | 1.13(1) |
| C3 | O3 | 1.093(9) |
| C4 | C5 | 1.42(1) |
| C4 | C8 | 1.50(1) |
| C5 | C6 | 1.39(1) |
| C5 | C9 | 1.50(1) |
| C6 | C7 | 1.432(8) |
| C6 | C11 | 1.49(1) |
| C7 | C20 | 1.40(1) |
| C8 | H8A | 0.980(6) |
| C8 | H8B | 0.98(1) |
| C8 | H8C | 0.979(7) |
| C9 | H9A | 0.99(1) |
| C9 | H9B | 0.991(9) |
| C9 | C10 | 1.51(2) |
| C10 | H10A | 0.980(9) |
| C10 | H10B | 0.98(1) |


| C10 | H10C | $0.98(1)$ |
| :---: | :---: | :---: |
| C11 | H11A | $0.979(7)$ |
| C11 | H11B | $0.979(7)$ |
| C11 | H11C | $0.98(1)$ |
| C12 | C13 | $1.39(2)$ |
| C12 | C16 | $1.51(2)$ |
| C13 | C14 | $1.39(1)$ |
| C13 | C17 | $1.80(2)$ |
| C14 | C15 | $1.43(1)$ |
| C14 | C19 | $1.51(2)$ |
| C15 | C20 | $1.392(9)$ |
| C16 | H16A | $0.98(1)$ |
| C16 | H16B | $0.981(9)$ |
| C16 | H16C | $0.98(1)$ |
| C17 | H17A | $0.99(2)$ |
| C17 | H17B | $0.99(1)$ |
| C17 | C18 | $1.34(3)$ |
| C18 | H18A | $0.98(2)$ |
| C18 | H18B | $0.98(2)$ |
| C18 | H18C | $0.98(3)$ |
| C19 | H19A | $0.979(9)$ |
| C19 | H19B | $0.98(1)$ |
| C19 | H19C | $0.98(1)$ |
| C20 | C22 | $1.49(1)$ |
| C21 | H21A | $0.949(6)$ |
| C21 | C22 | $1.39(1)$ |
| C22 | C23 | $1.37(1)$ |
| C23 | H23A | $0.95(1)$ |
| C23 | C24 | $1.39(1)$ |
| C24 | H24A | $0.949(7)$ |
| C24 | C25 | $1.39(1)$ |
| C25 | C26 | $1.47(1)$ |
| C26 | C27 | $1.395(8)$ |
| C27 | H27A | $0.95(1)$ |
| C27 | C28 | $1.39(1)$ |
| C28 | H28A | $0.949(6)$ |
| C28 | C29 | $1.37(1)$ |
|  |  |  |


| C29 | C30 | $1.380(8)$ |
| :---: | :---: | :---: |
| C29 | C31 | $1.49(1)$ |
| C30 | H30A | $0.949(8)$ |
| C31 | C35 | $1.396(8)$ |
| C31 | C43 | $1.40(1)$ |
| C32 | C33 | $1.42(1)$ |
| C32 | C36 | $1.50(1)$ |
| C33 | C34 | $1.392(9)$ |
| C33 | C37 | $1.504(9)$ |
| C34 | C35 | $1.418(9)$ |
| C34 | C39 | $1.51(1)$ |
| C36 | H36A | $0.979(9)$ |
| C36 | H36B | $0.980(7)$ |
| C36 | H36C | $0.980(7)$ |
| C37 | H37A | $0.990(8)$ |
| C37 | H37B | $0.99(1)$ |
| C37 | C38 | $1.50(1)$ |
| C38 | H38A | $0.980(9)$ |
| C38 | H38B | $0.98(1)$ |
| C38 | H38C | $0.98(1)$ |
| C39 | H39A | $0.980(7)$ |
| C39 | H39B | $0.980(7)$ |
| C39 | H39C | $0.98(1)$ |
| C40 | C41 | $1.40(1)$ |
| C40 | C44 | $1.50(1)$ |
| C41 | C42 | $1.40(1)$ |
| C41 | C45 | $1.51(1)$ |
| C42 | C43 | $1.418(9)$ |
| C42 | C47 | $1.51(1)$ |
| C44 | H44A | $0.98(1)$ |
| C44 | H44B | $0.980(8)$ |
| C44 | H44C | $0.980(8)$ |
| C45 | H45A | $0.99(1)$ |
| C45 | H45B | $0.991(9)$ |
| C45 | C46 | $1.50(2)$ |
| C46 | H46A | $0.98(1)$ |
| C46 | H46B | $0.98(1)$ |
|  |  |  |
| C4 |  |  |
| C3 |  |  |


| C46 | H46C | $0.98(2)$ |
| :---: | :---: | :---: |
| C47 | H47A | $0.980(7)$ |
| C47 | H47B | $0.98(1)$ |
| C47 | H47C | $0.981(7)$ |


| Bond Angles for $\mathbf{R e}(\mathbf{B B 3})(\mathbf{C O})_{\mathbf{3}} \mathbf{C l}$ |  |  |  |
| :---: | :---: | :---: | :---: |
| Atom1 | Atom2 | Atom3 | Angle |
| Cl1 | Re | N3 | $83.4(1)$ |
| Cl1 | Re | N4 | $83.2(1)$ |
| Cl1 | Re | C1 | $93.5(2)$ |
| C11 | Re | C2 | $92.6(2)$ |
| Cl1 | Re | C3 | $178.1(2)$ |
| N3 | Re | N4 | $74.7(2)$ |
| N3 | Re | C1 | $100.5(3)$ |
| N3 | Re | C2 | $172.0(3)$ |
| N3 | Re | C3 | $95.6(3)$ |
| N4 | Re | C1 | $174.5(3)$ |
| N4 | Re | C2 | $98.0(3)$ |
| N4 | Re | C3 | $94.9(3)$ |
| C1 | Re | C2 | $86.6(3)$ |
| C1 | Re | C3 | $88.2(3)$ |
| C2 | Re | C3 | $88.2(3)$ |
| F1 | B1 | F2 | $109.6(6)$ |
| F1 | B1 | N1 | $110.8(6)$ |
| F1 | B1 | N2 | $110.2(6)$ |
| F2 | B1 | N1 | $109.9(6)$ |
| F2 | B1 | N2 | $109.5(6)$ |
| N1 | B1 | N2 | $106.9(6)$ |
| F3 | B2 | F4 | $109.3(6)$ |
| F3 | B2 | N5 | $111.0(6)$ |
| F3 | B2 | N6 | $110.4(6)$ |
| F4 | B2 | N5 | $109.7(6)$ |
| F4 | B2 | N6 | $109.8(6)$ |
| N5 | B2 | N6 | $106.6(6)$ |
| B1 | N1 | C4 | $127.0(6)$ |


| B1 | N 1 | C 7 | $125.4(6)$ |
| :---: | :---: | :---: | :---: |
| C 4 | N 1 | C 7 | $107.5(6)$ |
| B 1 | N 2 | C 12 | $126.7(7)$ |
| B 1 | N 2 | C 15 | $125.3(6)$ |
| C 12 | N 2 | C 15 | $108.0(7)$ |
| Re | N 3 | C 21 | $125.6(4)$ |
| Re | N 3 | C 25 | $116.2(4)$ |
| C 21 | N 3 | C 25 | $118.1(6)$ |
| Re | N 4 | C 26 | $116.7(4)$ |
| Re | N 4 | C 30 | $125.2(4)$ |
| C 26 | N 4 | C 30 | $118.0(5)$ |
| B 2 | N 5 | C 32 | $126.1(6)$ |
| B 2 | N 5 | C 35 | $125.8(6)$ |
| C 32 | N 5 | C 35 | $107.9(6)$ |
| B 2 | N 6 | C 40 | $125.9(6)$ |
| B 2 | N 6 | C 43 | $126.0(6)$ |
| C 40 | N 6 | C 43 | $108.0(6)$ |
| Re | C 1 | O 1 | $177.9(7)$ |
| Re | C 2 | O 2 | $177.9(8)$ |
| Re | C 3 | O 3 | $172.6(8)$ |
| N 1 | C 4 | C 5 | $110.5(7)$ |
| N 1 | C 4 | C 8 | $122.4(7)$ |
| C 5 | C 4 | C 8 | $127.1(7)$ |
| C 4 | C 5 | C 6 | $107.0(7)$ |
| C 4 | C 5 | C 9 | $124.5(7)$ |
| C 6 | C 5 | C 9 | $128.4(7)$ |
| C 5 | C 6 | C 7 | $106.8(7)$ |
| C 5 | C 6 | C 11 | $124.6(7)$ |
| C 7 | C 6 | C 11 | $128.6(7)$ |
| N 1 | C 7 | C 6 | $108.1(6)$ |
| N 1 | C 7 | C 20 | $119.9(6)$ |
| C 6 | C 7 | C 20 | $131.9(7)$ |
| C 4 | C 8 | H 8 A | $109.4(7)$ |
| C 4 | C 8 | H 8 B | $109.5(7)$ |
| C 4 | C 8 | H 8 C | $109.4(7)$ |
| H 8 A | C 8 | H 8 B | $109.6(8)$ |
| H 8 A | C 8 | H 8 C | $109.5(8)$ |
|  |  |  |  |


| H8B | C8 | H8C | $109.5(8)$ |
| :---: | :---: | :---: | :---: |
| C5 | C9 | H9A | $108.8(8)$ |
| C5 | C9 | H9B | $108.8(8)$ |
| C5 | C9 | C10 | $113.6(8)$ |
| H9A | C9 | H9B | $107.7(9)$ |
| H9A | C9 | C10 | $108.8(9)$ |
| H9B | C9 | C10 | $108.9(9)$ |
| C9 | C10 | H10A | $109(1)$ |
| C9 | C10 | H10B | $109(1)$ |
| C9 | C10 | H10C | $109(1)$ |
| H10A | C10 | H10B | $109(1)$ |
| H10A | C10 | H10C | $109(1)$ |
| H10B | C10 | H10C | $110(1)$ |
| C6 | C11 | H11A | $109.5(7)$ |
| C6 | C11 | H11B | $109.5(7)$ |
| C6 | C11 | H11C | $109.4(7)$ |
| H11A | C11 | H11B | $109.5(8)$ |
| H11A | C11 | H11C | $109.4(8)$ |
| H11B | C11 | H11C | $109.5(8)$ |
| N2 | C12 | C13 | $110.5(9)$ |
| N2 | C12 | C16 | $122.8(9)$ |
| C13 | C12 | C16 | $127(1)$ |
| C12 | C13 | C14 | $108(1)$ |
| C12 | C13 | C17 | $122(1)$ |
| C14 | C13 | C17 | $126(1)$ |
| C13 | C14 | C15 | $106.2(8)$ |
| C13 | C14 | C19 | $124.4(9)$ |
| C15 | C14 | C19 | $129.3(9)$ |
| N2 | C15 | C14 | $107.6(7)$ |
| N2 | C15 | C20 | $120.1(7)$ |
| C14 | C15 | C20 | $132.1(8)$ |
| C12 | C16 | H16A | $109.5(9)$ |
| C12 | C16 | H16B | $109.5(9)$ |
| C12 | C16 | H16C | $109.4(9)$ |
| H16A | C16 | H16B | $109(1)$ |
| H16A | C16 | H16C | $109(1)$ |
| H16B | C16 | H16C | $109(1)$ |
|  |  |  |  |
|  |  |  |  |
| C1 |  |  |  |
| C1 |  |  |  |


| C13 | C17 | H17A | $114(1)$ |
| :---: | :---: | :---: | :---: |
| C13 | C17 | H17B | $114(1)$ |
| C13 | C17 | C18 | $85(1)$ |
| H17A | C17 | H17B | $112(1)$ |
| H17A | C17 | C18 | $115(2)$ |
| H17B | C17 | C18 | $114(2)$ |
| C17 | C18 | H18A | $109(2)$ |
| C17 | C18 | H18B | $109(2)$ |
| C17 | C18 | H18C | $109(2)$ |
| H18A | C18 | H18B | $109(2)$ |
| H18A | C18 | H18C | $110(2)$ |
| H18B | C18 | H18C | $110(2)$ |
| C14 | C19 | H19A | $109(1)$ |
| C14 | C19 | H19B | $109(1)$ |
| C14 | C19 | H19C | $109(1)$ |
| H19A | C19 | H19B | $110(1)$ |
| H19A | C19 | H19C | $110(1)$ |
| H19B | C19 | H19C | $110(1)$ |
| C7 | C20 | C15 | $121.9(7)$ |
| C7 | C20 | C22 | $119.2(6)$ |
| C15 | C20 | C22 | $118.7(6)$ |
| N3 | C21 | H21A | $118.4(6)$ |
| N3 | C21 | C22 | $123.1(6)$ |
| H21A | C21 | C22 | $118.5(6)$ |
| C20 | C22 | C21 | $121.5(6)$ |
| C20 | C22 | C23 | $119.9(6)$ |
| C21 | C22 | C23 | $118.6(6)$ |
| C22 | C23 | H23A | $120.3(8)$ |
| C22 | C23 | C24 | $119.3(8)$ |
| H23A | C23 | C24 | $120.4(8)$ |
| C23 | C24 | H24A | $120.3(8)$ |
| C23 | C24 | C25 | $119.4(8)$ |
| H24A | C24 | C25 | $120.3(8)$ |
| N3 | C25 | C24 | $121.6(7)$ |
| N3 | C25 | C26 | $116.2(6)$ |
| C24 | C25 | C26 | $122.2(7)$ |
| N4 | C26 | C25 | $115.9(6)$ |
|  |  |  |  |


| N4 | C26 | C27 | $122.2(6)$ |
| :---: | :---: | :---: | :---: |
| C25 | C26 | C27 | $121.9(6)$ |
| C26 | C27 | H27A | $120.9(7)$ |
| C26 | C27 | C28 | $118.2(7)$ |
| H27A | C27 | C28 | $120.8(7)$ |
| C27 | C28 | H28A | $119.9(7)$ |
| C27 | C28 | C29 | $120.1(7)$ |
| H28A | C28 | C29 | $120.0(7)$ |
| C28 | C29 | C30 | $118.4(7)$ |
| C28 | C29 | C31 | $120.5(6)$ |
| C30 | C29 | C31 | $121.1(6)$ |
| N4 | C30 | C29 | $123.1(6)$ |
| N4 | C30 | H30A | $118.4(6)$ |
| C29 | C30 | H30A | $118.5(7)$ |
| C29 | C31 | C35 | $117.2(6)$ |
| C29 | C31 | C43 | $119.8(6)$ |
| C35 | C31 | C43 | $122.9(7)$ |
| N5 | C32 | C33 | $110.0(6)$ |
| N5 | C32 | C36 | $123.9(6)$ |
| C33 | C32 | C36 | $126.1(7)$ |
| C32 | C33 | C34 | $106.8(6)$ |
| C32 | C33 | C37 | $123.8(7)$ |
| C34 | C33 | C37 | $129.4(7)$ |
| C33 | C34 | C35 | $107.4(6)$ |
| C33 | C34 | C39 | $123.4(7)$ |
| C35 | C34 | C39 | $129.1(7)$ |
| N5 | C35 | C31 | $118.8(6)$ |
| N5 | C35 | C34 | $107.9(6)$ |
| C31 | C35 | C34 | $133.2(7)$ |
| C32 | C36 | H36A | $109.5(7)$ |
| C32 | C36 | H36B | $109.5(7)$ |
| C32 | C36 | H36C | $109.4(7)$ |
| H36A | C36 | H36B | $109.6(8)$ |
| H36A | C36 | H36C | $109.4(8)$ |
| H36B | C36 | H36C | $109.5(8)$ |
| C33 | C37 | H37A | $109.2(7)$ |
| C33 | C37 | H37B | $109.3(7)$ |
|  |  |  |  |


| C33 | C37 | C38 | $111.6(7)$ |
| :---: | :---: | :---: | :---: |
| H37A | C37 | H37B | $108.0(8)$ |
| H37A | C37 | C38 | $109.3(8)$ |
| H37B | C37 | C38 | $109.4(8)$ |
| C37 | C38 | H38A | $109(1)$ |
| C37 | C38 | H38B | $109(1)$ |
| C37 | C38 | H38C | $109(1)$ |
| H38A | C38 | H38B | $109(1)$ |
| H38A | C38 | H38C | $109(1)$ |
| H38B | C38 | H38C | $110(1)$ |
| C34 | C39 | H39A | $109.5(7)$ |
| C34 | C39 | H39B | $109.5(7)$ |
| C34 | C39 | H39C | $109.5(7)$ |
| H39A | C39 | H39B | $109.5(8)$ |
| H39A | C39 | H39C | $109.4(8)$ |
| H39B | C39 | H39C | $109.4(8)$ |
| N6 | C40 | C41 | $110.1(7)$ |
| N6 | C40 | C44 | $122.9(7)$ |
| C41 | C40 | C44 | $127.0(7)$ |
| C40 | C41 | C42 | $106.8(7)$ |
| C40 | C41 | C45 | $126.4(8)$ |
| C42 | C41 | C45 | $126.8(8)$ |
| C41 | C42 | C43 | $106.8(7)$ |
| C41 | C42 | C47 | $124.3(8)$ |
| C43 | C42 | C47 | $128.8(7)$ |
| N6 | C43 | C31 | $119.4(6)$ |
| N6 | C43 | C42 | $108.3(6)$ |
| C31 | C43 | C42 | $132.3(7)$ |
| C40 | C44 | H44A | $109.6(8)$ |
| C40 | C44 | H44B | $109.5(8)$ |
| C40 | C44 | H44C | $109.5(8)$ |
| H44A | C44 | H44B | $109.4(9)$ |
| H44A | C44 | H44C | $109.5(9)$ |
| H44B | C44 | H44C | $109.4(9)$ |
| C41 | C45 | H45A | $108.9(8)$ |
| C41 | C45 | H45B | $108.8(8)$ |
| C41 | C45 | C46 | $113.6(9)$ |
|  |  |  |  |


| H45A | C45 | H45B | $107.8(9)$ |
| :---: | :---: | :---: | :---: |
| H45A | C45 | C46 | $108.9(9)$ |
| H45B | C45 | C46 | $108.8(9)$ |
| C45 | C46 | H46A | $109(1)$ |
| C45 | C46 | H46B | $109(1)$ |
| C45 | C46 | H46C | $109(1)$ |
| H46A | C46 | H46B | $110(1)$ |
| H46A | C46 | H46C | $109(1)$ |
| H46B | C46 | H46C | $109(1)$ |
| C42 | C47 | H47A | $109.5(7)$ |
| C42 | C47 | H47B | $109.5(7)$ |
| C42 | C47 | H47C | $109.4(7)$ |
| H47A | C47 | H47B | $109.5(8)$ |
| H47A | C47 | H47C | $109.5(8)$ |
| H47B | C47 | H47C | $109.4(8)$ |
| Cl2 | C48 | H48A | $106(1)$ |
| C12 | C48 | H48B | $106(1)$ |
| Cl2 | C48 | C49 | $123(1)$ |
| H48A | C48 | H48B | $106(2)$ |
| H48A | C48 | C49 | $107(2)$ |
| H48B | C48 | C49 | $106(2)$ |
| Cl3 | C49 | C48 | $125(1)$ |
| Cl3 | C49 | H49A | $106(1)$ |
| Cl3 | C49 | H49B | $106(1)$ |
| C48 | C49 | H49A | $106(2)$ |
| C48 | C49 | H49B | $106(2)$ |
| H49A | C49 | H49B | $106(2)$ |
|  |  |  |  |


| Key Parameters | $\mathbf{R e}(\mathbf{B B 4})(\mathbf{C O})_{3} \mathbf{C l}$ |
| :--- | :--- |
| Formula | $\mathrm{C}_{49} \mathrm{H}_{54} \mathrm{~B}_{2} \mathrm{Cl}_{3} \mathrm{~F}_{4} \mathrm{~N}_{6} \mathrm{O}_{3} \mathrm{Re}$ |
| $F_{\mathrm{W}}$ | 1165.15 |
| Crystal System | Orthorhombic |
| Space Group | $\mathrm{Pmn}_{2}$ |
| $a$ | $27.663(4) \AA$ |
| $b$ | $11.5494(15) \AA$ |
| $c$ | $8.0100(10) \AA$ |
| $\alpha$ | $90^{\circ}$ |


| $\beta$ | $90^{\circ}$ |
| :--- | :--- |
| $\gamma$ | $90^{\circ}$ |
| $V$ | $2558.7(6) \AA^{3}$ |
| $Z$ | 2 |
| Temp | $200(2) \mathrm{K}$ |
| $D_{\text {calcd }}$ | $1.512 \mathrm{~g} \mathrm{~cm}^{-3}$ |
| $2 \theta$ range | $53.16^{\circ}$ |
| $\mu(\mathrm{Mo} \mathrm{K} \alpha)$ | $2.592 \mathrm{~mm}^{-1}$ |
| Reflections | 29089 |
| Unique | 6513 |
| $R$ (int) | 0.0716 |
| $R_{1}$ | 0.0390 |
| w $R_{2}$ | 0.0772 |


| Bond Length for $\mathbf{R e}(\mathbf{B B 4})(\mathbf{C O})_{3} \mathbf{C l}$ <br> Atom1 <br> Atom2 <br> Length |  |  |
| :---: | :---: | :---: |
| Re | Cl 1 | $2.481(2)$ |
| Re | N 1 | $2.220(4)$ |
| Re | C 23 | $1.924(5)$ |
| Re | C 24 | $1.916(8)$ |
| Re | N 1 | $2.220(4)$ |
| Re | C 23 | $1.924(5)$ |
| B 1 | F 1 | $1.397(6)$ |
| B 1 | F 2 | $1.383(6)$ |
| B 1 | N 2 | $1.547(7)$ |
| B 1 | N 3 | $1.547(7)$ |
| N 1 | C 1 | $1.355(6)$ |
| N 1 | C 5 | $1.348(6)$ |
| N 2 | C 7 | $1.393(6)$ |
| N 2 | C 10 | $1.353(6)$ |
| N 3 | C 15 | $1.350(6)$ |
| N 3 | C 18 | $1.393(6)$ |
| O 1 | C 23 | $1.143(7)$ |
| O 2 | C 24 | $1.14(1)$ |
| C 1 | C 2 | $1.390(7)$ |
| C 1 | C 1 | $1.473(7)$ |


| C2 | H2A | $0.951(5)$ |
| :---: | :---: | :---: |
| C2 | C3 | $1.389(7)$ |
| C3 | H3A | $0.949(5)$ |
| C3 | C4 | $1.365(8)$ |
| C4 | H4A | $0.950(6)$ |
| C4 | C5 | $1.376(7)$ |
| C5 | C6 | $1.505(7)$ |
| C6 | C7 | $1.399(6)$ |
| C6 | C18 | $1.389(7)$ |
| C7 | C8 | $1.430(7)$ |
| C8 | C9 | $1.402(7)$ |
| C8 | C11 | $1.482(8)$ |
| C9 | C10 | $1.407(8)$ |
| C9 | C12 | $1.492(8)$ |
| C10 | C14 | $1.494(7)$ |
| C11 | H11A | $0.980(7)$ |
| C11 | H11B | $0.981(5)$ |
| C11 | H11C | $0.979(8)$ |
| C12 | H12A | $0.990(6)$ |
| C12 | H12B | $0.990(6)$ |
| C12 | C13 | $1.507(8)$ |
| C13 | H13A | $0.980(6)$ |
| C13 | H13B | $0.980(6)$ |
| C13 | H13C | $0.980(6)$ |
| C14 | H14A | $0.980(6)$ |
| C14 | H14B | $0.981(6)$ |
| C14 | H14C | $0.980(5)$ |
| C15 | C16 | $1.41(1)$ |
| C15 | C19 | $1.490(9)$ |
| C16 | C17 | $1.399(7)$ |
| C16 | C20 | $1.484(8)$ |
| C17 | C18 | $1.431(7)$ |
| C19 | C22 | $1.491(7)$ |
| C19 | H19A | $0.981(8)$ |
| C19 | H19B | $0.980(6)$ |
| C20 | H20A | $0.981(7)$ |
|  |  | $0.991(8)$ |


| C20 | H20B | 0.989(6) |
| :---: | :---: | :---: |
| C20 | C21 | 1.50(1) |
| C21 | H21A | 0.980(8) |
| C21 | H21B | 0.980(9) |
| C21 | H21C | 0.980(9) |
| C22 | H22A | 0.980(6) |
| C22 | H22B | 0.980(5) |
| C22 | H22C | 0.980(6) |
| B1 | F1 | 1.397(6) |
| B1 | F2 | 1.383(6) |
| B1 | N2 | 1.547 (7) |
| B1 | N3 | 1.547 (7) |
| N1 | C1 | $1.355(6)$ |
| N1 | C5 | $1.348(6)$ |
| N2 | C7 | 1.393 (6) |
| N2 | C10 | 1.353(6) |
| N3 | C15 | $1.350(6)$ |
| N3 | C18 | 1.393 (6) |
| C1 | C2 | 1.390 (7) |
| C2 | H2A | 0.951(5) |
| C2 | C3 | $1.389(7)$ |
| C3 | H3A | 0.949(5) |
| C3 | C4 | 1.365(8) |
| C4 | H4A | 0.950(6) |
| C4 | C5 | 1.376 (7) |
| C5 | C6 | $1.505(7)$ |
| C6 | C7 | $1.399(6)$ |
| C6 | C18 | $1.389(7)$ |
| C7 | C8 | $1.430(7)$ |
| C8 | C9 | $1.402(7)$ |
| C8 | C11 | 1.482(8) |
| C9 | C10 | 1.407(8) |
| C9 | C12 | 1.492(8) |
| C10 | C14 | 1.494(7) |
| C11 | H11A | 0.980(7) |
| C11 | H11B | 0.981(5) |
| C11 | H11C | 0.979(8) |


| C12 | H12A | $0.990(6)$ |
| :---: | :---: | :---: |
| C12 | H12B | $0.990(6)$ |
| C12 | C13 | $1.507(8)$ |
| C13 | H13A | $0.980(6)$ |
| C13 | H13B | $0.980(6)$ |
| C13 | H13C | $0.980(6)$ |
| C14 | H14A | $0.980(6)$ |
| C14 | H14B | $0.981(6)$ |
| C14 | H14C | $0.980(5)$ |
| C15 | C16 | $1.41(1)$ |
| C15 | C19 | $1.490(9)$ |
| C16 | C17 | $1.399(7)$ |
| C16 | C20 | $1.484(8)$ |
| C17 | C18 | $1.431(7)$ |
| C17 | C22 | $1.491(7)$ |
| C19 | H19A | $0.981(8)$ |
| C19 | H19B | $0.980(6)$ |
| C19 | H19C | $0.981(7)$ |
| C20 | H20A | $0.991(8)$ |
| C20 | H20B | $0.989(6)$ |
| C20 | C21 | $1.50(1)$ |
| C21 | H21A | $0.980(8)$ |
| C21 | H21B | $0.980(9)$ |
| C21 | H21C | $0.980(9)$ |
| C22 | H22A | $0.980(6)$ |
| C22 | H22B | $0.980(5)$ |
| C22 | H22C | $0.980(6)$ |
| O1 | C23 | $1.143(7)$ |
|  |  |  |


| Bond Angles for |  |  |  |
| :---: | :---: | :---: | :---: |
| Atom1 $(\mathbf{B B} 4)(\mathbf{C O})_{3} \mathrm{Cl}$ |  |  |  |
| Atom1 | Atom2 | Atom3 | Angle |
| $\mathrm{Cl1}$ | Re | N 1 | $84.4(1)$ |
| $\mathrm{Cl1}$ | Re | C 23 | $91.0(2)$ |
| $\mathrm{Cl1}$ | Re | C 24 | $178.6(2)$ |
| Cl 1 | Re | N 1 | $84.4(1)$ |
| $\mathrm{Cl1}$ | Re | C 23 | $91.0(2)$ |
| N 1 | Re | C 23 | $101.1(2)$ |


| N1 | Re | C24 | $96.7(2)$ |
| :---: | :---: | :---: | :---: |
| N 1 | Re | N 1 | $75.1(1)$ |
| N 1 | Re | C 23 | $174.3(2)$ |
| C 23 | Re | C 24 | $87.9(3)$ |
| C 23 | Re | N 1 | $174.3(2)$ |
| C 23 | Re | C 23 | $82.4(2)$ |
| C 24 | Re | N 1 | $96.7(2)$ |
| C 24 | Re | C 23 | $87.9(3)$ |
| N 1 | Re | C 23 | $101.1(2)$ |
| F 1 | B 1 | F 2 | $108.9(4)$ |
| F 1 | B 1 | N 2 | $109.3(4)$ |
| F 1 | B 1 | N 3 | $109.7(4)$ |
| F 2 | B 1 | N 2 | $111.3(4)$ |
| F 2 | B 1 | N 3 | $111.3(4)$ |
| N 2 | B 1 | N 3 | $106.2(4)$ |
| Re | N 1 | C 1 | $114.9(3)$ |
| Re | N 1 | C 5 | $127.7(3)$ |
| C 1 | N 1 | C 5 | $117.4(4)$ |
| B 1 | N 2 | C 7 | $126.1(4)$ |
| B 1 | N 2 | C 10 | $126.0(4)$ |
| C 7 | N 2 | C 10 | $107.8(4)$ |
| B 1 | N 3 | C 15 | $125.6(4)$ |
| B 1 | N 3 | C 18 | $126.1(4)$ |
| C 15 | N 3 | C 18 | $108.1(4)$ |
| N 1 | C 1 | C 2 | $122.1(4)$ |
| N1 | C 1 | C 1 | $117.1(4)$ |
| C 2 | C 1 | C 1 | $120.7(4)$ |
| C 1 | C 2 | H 2 A | $120.4(5)$ |
| C 1 | C 2 | C 3 | $119.0(5)$ |
| H2A | C 2 | C 3 | $120.6(5)$ |
| C2 | C 3 | H 3 A | $120.6(5)$ |
| C 2 | C 3 | C 4 | $118.8(5)$ |
| H3A | C 3 | C 4 | $120.6(5)$ |
| C 3 | C 4 | H 4 A | $120.1(5)$ |
| C 3 | C 4 | C 5 | $119.6(5)$ |
| H 4 A | C 4 | C 5 | $120.3(5)$ |
| N 1 | C 5 | C 4 | $123.0(4)$ |
|  |  |  |  |


| N1 | C5 | C6 | $120.6(4)$ |
| :---: | :---: | :---: | :---: |
| C4 | C5 | C6 | $116.4(4)$ |
| C5 | C6 | C7 | $118.5(4)$ |
| C5 | C6 | C18 | $119.0(4)$ |
| C7 | C6 | C18 | $122.1(4)$ |
| N2 | C7 | C6 | $119.5(4)$ |
| N2 | C7 | C8 | $108.4(4)$ |
| C6 | C7 | C8 | $132.0(4)$ |
| C7 | C8 | C9 | $106.4(4)$ |
| C7 | C8 | C11 | $129.5(4)$ |
| C9 | C8 | C11 | $124.1(5)$ |
| C8 | C9 | C10 | $107.0(4)$ |
| C8 | C9 | C12 | $128.3(5)$ |
| C10 | C9 | C12 | $124.7(5)$ |
| N2 | C10 | C9 | $110.3(4)$ |
| N2 | C10 | C14 | $121.9(4)$ |
| C9 | C10 | C14 | $127.8(5)$ |
| C8 | C11 | H11A | $109.5(5)$ |
| C8 | C11 | H11B | $109.5(5)$ |
| C8 | C11 | H11C | $109.5(5)$ |
| H11A | C11 | H11B | $109.4(6)$ |
| H11A | C11 | H11C | $109.5(6)$ |
| H11B | C11 | H11C | $109.4(6)$ |
| C9 | C12 | H12A | $108.9(5)$ |
| C9 | C12 | H12B | $108.9(5)$ |
| C9 | C12 | C13 | $113.5(5)$ |
| H12A | C12 | H12B | $107.7(5)$ |
| H12A | C12 | C13 | $108.9(5)$ |
| H12B | C12 | C13 | $108.9(5)$ |
| C12 | C13 | H13A | $109.6(5)$ |
| C12 | C13 | H13B | $109.5(5)$ |
| C12 | C13 | H13C | $109.5(5)$ |
| H13A | C13 | H13B | $109.4(6)$ |
| H13A | C13 | H13C | $109.4(6)$ |
| H13B | C13 | H13C | $109.5(6)$ |
| C10 | C14 | H14A | $109.4(5)$ |
| C10 | C14 | H14B | $109.5(5)$ |
|  |  |  |  |


| C10 | C14 | H14C | $109.5(5)$ |
| :---: | :---: | :---: | :---: |
| H14A | C14 | H14B | $109.5(5)$ |
| H14A | C14 | H14C | $109.5(5)$ |
| H14B | C14 | H14C | $109.4(5)$ |
| N3 | C15 | C16 | $110.0(5)$ |
| N3 | C15 | C19 | $123.1(5)$ |
| C16 | C15 | C19 | $126.8(6)$ |
| C15 | C16 | C17 | $107.1(5)$ |
| C15 | C16 | C20 | $124.9(5)$ |
| C17 | C16 | C20 | $128.0(5)$ |
| C16 | C17 | C18 | $106.5(4)$ |
| C16 | C17 | C22 | $124.7(5)$ |
| C18 | C17 | C22 | $128.7(4)$ |
| N3 | C18 | C6 | $119.7(4)$ |
| N3 | C18 | C17 | $108.3(4)$ |
| C6 | C18 | C17 | $132.0(4)$ |
| C15 | C19 | H19A | $109.5(6)$ |
| C15 | C19 | H19B | $109.5(6)$ |
| C15 | C19 | H19C | $109.5(6)$ |
| H19A | C19 | H19B | $109.4(7)$ |
| H19A | C19 | H19C | $109.5(7)$ |
| H19B | C19 | H19C | $109.4(7)$ |
| C16 | C20 | H20A | $108.7(6)$ |
| C16 | C20 | H20B | $108.8(6)$ |
| C16 | C20 | C21 | $114.0(6)$ |
| H20A | C20 | H20B | $107.7(6)$ |
| H20A | C20 | C21 | $108.7(6)$ |
| H20B | C20 | C21 | $108.7(6)$ |
| C20 | C21 | H21A | $109.4(7)$ |
| C20 | C21 | H21B | $109.4(7)$ |
| C20 | C21 | H21C | $109.5(7)$ |
| H21A | C21 | H21B | $109.5(8)$ |
| H21A | C21 | H21C | $109.4(8)$ |
| H21B | C21 | H21C | $109.5(8)$ |
| C17 | C22 | H22A | $109.5(5)$ |
| C17 | C22 | H22B | $109.5(5)$ |
| C17 | C22 | H22C | $109.5(5)$ |
|  |  |  |  |


| H22A | C22 | H22B | 109.4(5) |
| :---: | :---: | :---: | :---: |
| H22A | C22 | H22C | 109.5(5) |
| H22B | C22 | H22C | 109.5(5) |
| Re | C23 | O1 | 175.1(5) |
| Re | C24 | O2 | 176.9(7) |
| F1 | B1 | F2 | 108.9(4) |
| F1 | B1 | N2 | 109.3(4) |
| F1 | B1 | N3 | 109.7(4) |
| F2 | B1 | N2 | 111.3(4) |
| F2 | B1 | N3 | 111.3(4) |
| N2 | B1 | N3 | 106.2(4) |
| Re | N1 | C1 | 114.9(3) |
| Re | N1 | C5 | 127.7(3) |
| C1 | N1 | C5 | 117.4(4) |
| B1 | N2 | C7 | 126.1(4) |
| B1 | N2 | C10 | 126.0(4) |
| C7 | N2 | C10 | 107.8(4) |
| B1 | N3 | C15 | 125.6(4) |
| B1 | N3 | C18 | 126.1(4) |
| C15 | N3 | C18 | 108.1(4) |
| C1 | C1 | N1 | 117.1(4) |
| C1 | C1 | C2 | 120.7(4) |
| N1 | C1 | C2 | 122.1(4) |
| C1 | C2 | H2A | 120.4(5) |
| C1 | C2 | C3 | 119.0(5) |
| H2A | C2 | C3 | 120.6(5) |
| C2 | C3 | H3A | 120.6(5) |
| C2 | C3 | C4 | 118.8(5) |
| H3A | C3 | C4 | 120.6(5) |
| C3 | C4 | H4A | 120.1(5) |
| C3 | C4 | C5 | 119.6(5) |
| H4A | C4 | C5 | 120.3(5) |
| N1 | C5 | C4 | 123.0(4) |
| N1 | C5 | C6 | 120.6(4) |
| C4 | C5 | C6 | 116.4(4) |
| C5 | C6 | C7 | 118.5(4) |
| C5 | C6 | C18 | 119.0(4) |


| C7 | C6 | C18 | $122.1(4)$ |
| :---: | :---: | :---: | :---: |
| N2 | C7 | C6 | $119.5(4)$ |
| N2 | C7 | C8 | $108.4(4)$ |
| C6 | C7 | C8 | $132.0(4)$ |
| C7 | C8 | C9 | $106.4(4)$ |
| C7 | C8 | C11 | $129.5(4)$ |
| C9 | C8 | C11 | $124.1(5)$ |
| C8 | C9 | C10 | $107.0(4)$ |
| C8 | C9 | C12 | $128.3(5)$ |
| C10 | C9 | C12 | $124.7(5)$ |
| N2 | C10 | C9 | $110.3(4)$ |
| N2 | C10 | C14 | $121.9(4)$ |
| C9 | C10 | C14 | $127.8(5)$ |
| C8 | C11 | H11A | $109.5(5)$ |
| C8 | C11 | H11B | $109.5(5)$ |
| C8 | C11 | H11C | $109.5(5)$ |
| H11A | C11 | H11B | $109.4(6)$ |
| H11A | C11 | H11C | $109.5(6)$ |
| H11B | C11 | H11C | $109.4(6)$ |
| C9 | C12 | H12A | $108.9(5)$ |
| C9 | C12 | H12B | $108.9(5)$ |
| C9 | C12 | C13 | $113.5(5)$ |
| H12A | C12 | H12B | $107.7(5)$ |
| H12A | C12 | C13 | $108.9(5)$ |
| H12B | C12 | C13 | $108.9(5)$ |
| C12 | C13 | H13A | $109.6(5)$ |
| C12 | C13 | H13B | $109.5(5)$ |
| C12 | C13 | H13C | $109.5(5)$ |
| H13A | C13 | H13B | $109.4(6)$ |
| H13A | C13 | H13C | $109.4(6)$ |
| H13B | C13 | H13C | $109.5(6)$ |
| C10 | C14 | H14A | $109.4(5)$ |
| C10 | C14 | H14B | $109.5(5)$ |
| C10 | C14 | H14C | $109.5(5)$ |
| H14A | C14 | H14B | $109.5(5)$ |
| H14A | C14 | H14C | $109.5(5)$ |
| H14B | C14 | H14C | $109.4(5)$ |
|  |  |  |  |


| N3 | C15 | C16 | $110.0(5)$ |
| :---: | :---: | :---: | :---: |
| N3 | C15 | C19 | $123.1(5)$ |
| C16 | C15 | C19 | $126.8(6)$ |
| C15 | C16 | C17 | $107.1(5)$ |
| C15 | C16 | C20 | $124.9(5)$ |
| C17 | C16 | C20 | $128.0(5)$ |
| C16 | C17 | C18 | $106.5(4)$ |
| C16 | C17 | C22 | $124.7(5)$ |
| C18 | C17 | C22 | $128.7(4)$ |
| N3 | C18 | C6 | $119.7(4)$ |
| N3 | C18 | C17 | $108.3(4)$ |
| C6 | C18 | C17 | $132.0(4)$ |
| C15 | C19 | H19A | $109.5(6)$ |
| C15 | C19 | H19B | $109.5(6)$ |
| C15 | C19 | H19C | $109.5(6)$ |
| H19A | C19 | H19B | $109.4(7)$ |
| H19A | C19 | H19C | $109.5(7)$ |
| H19B | C19 | H19C | $109.4(7)$ |
| C16 | C20 | H20A | $108.7(6)$ |
| C16 | C20 | H20B | $108.8(6)$ |
| C16 | C20 | C21 | $114.0(6)$ |
| H20A | C20 | H20B | $107.7(6)$ |
| H20A | C20 | C21 | $108.7(6)$ |
| H20B | C20 | C21 | $108.7(6)$ |
| C20 | C21 | H21A | $109.4(7)$ |
| C20 | C21 | H21B | $109.4(7)$ |
| C20 | C21 | H21C | $109.5(7)$ |
| H21A | C21 | H21B | $109.5(8)$ |
| H21A | C21 | H21C | $109.4(8)$ |
| H21B | C21 | H21C | $109.5(8)$ |
| C17 | C22 | H22A | $109.5(5)$ |
| C17 | C22 | H22B | $109.5(5)$ |
| C17 | C22 | H22C | $109.5(5)$ |
| H22A | C22 | H22B | $109.4(5)$ |
| H22A | C22 | H22C | $109.5(5)$ |
| H22B | C22 | H22C | $109.5(5)$ |
| Re | C23 | O1 | $175.1(5)$ |
|  |  |  |  |


| H25A | C25 | H25B | 109(2) |
| :---: | :---: | :---: | :---: |
| H25A | C25 | C12 | 110(2) |
| H25A | C25 | C25 | 78(2) |
| H25A | C25 | C26 | 147(3) |
| H25A | C25 | H26B | 137(2) |
| H25A | C25 | Cl3 | 103(2) |
| H25B | C25 | C12 | 110(2) |
| H25B | C25 | C25 | 121(2) |
| H25B | C25 | C26 | 92(2) |
| H25B | C25 | H26B | 43(1) |
| H25B | C25 | Cl3 | 112(2) |
| C 2 | C25 | C25 | 122(2) |
| C12 | C25 | C26 | 85(2) |
| C12 | C25 | H26B | 110(2) |
| C12 | C25 | Cl 3 | 7.8(9) |
| C25 | C25 | C26 | 69(2) |
| C25 | C25 | H26B | 92(2) |
| C25 | C25 | C13 | 123(2) |
| C26 | C25 | H26B | 50(2) |
| C26 | C25 | Cl3 | 92(2) |
| H26B | C25 | Cl3 | 117(2) |
| H26A | C26 | H26B | 108(2) |
| H26A | C26 | Cl3 | 110(2) |
| H26A | C26 | C25 | 162(3) |
| H26A | C26 | C26 | 79(2) |
| H26A | C26 | H26A | 31.2(6) |
| H26A | C26 | Cl2 | 98(1) |
| H26B | C26 | Cl 3 | 110(2) |
| H26B | C26 | C25 | 82(2) |
| H26B | C26 | C26 | 113(2) |
| H26B | C26 | H26A | 117(2) |
| H26B | C26 | Cl2 | 114(1) |
| Cl 3 | C26 | C25 | 52(2) |
| Cl 3 | C26 | C26 | 130(2) |
| Cl 3 | C26 | H26A | 127(2) |
| Cl 3 | C26 | Cl 2 | 12.3(7) |
| C25 | C26 | C26 | 111(3) |


| C25 | C26 | H26A | 155(2) |
| :---: | :---: | :---: | :---: |
| C25 | C26 | C12 | 64(2) |
| C26 | C26 | H26A | 48(1) |
| C26 | C26 | C12 | 131(2) |
| H26A | C26 | C12 | 117(1) |
| C26 | H26A | C26 | 53(1) |
| C26 | H26B | C25 | 48(2) |
| C25 | C12 | C26 | 31(1) |
| C26 | C13 | C25 | 35(1) |
| C25 | C25 | C26 | 69(2) |
| C25 | C25 | H26B | 92(2) |
| C25 | C25 | Cl 3 | 123(2) |
| C25 | C25 | H25A | 78(2) |
| C25 | C25 | H25B | 121(2) |
| C25 | C25 | C12 | 122(2) |
| C26 | C25 | H26B | 50(2) |
| C26 | C25 | Cl 3 | 92(2) |
| C26 | C25 | H25A | 147(3) |
| C26 | C25 | H25B | 92(2) |
| C26 | C25 | Cl 2 | 85(2) |
| H26B | C25 | Cl 3 | 117(2) |
| H26B | C25 | H25A | 137(2) |
| H26B | C25 | H25B | 43(1) |
| H26B | C25 | Cl 2 | 110(2) |
| Cl3 | C25 | H25A | 103(2) |
| Cl 3 | C25 | H25B | 112(2) |
| Cl 3 | C25 | Cl 2 | 7.8(9) |
| H25A | C25 | H25B | 109(2) |
| H25A | C25 | Cl 2 | 110(2) |
| H25B | C25 | Cl 2 | 110(2) |
| C25 | C26 | C26 | 111(3) |
| C25 | C26 | H26A | 155(2) |
| C25 | C26 | C12 | 64(2) |
| C25 | C26 | H26A | 162(3) |
| C25 | C26 | H26B | 82(2) |
| C25 | C26 | Cl 3 | 52(2) |
| C26 | C26 | H26A | 48(1) |


| C26 | C26 | Cl2 | 131(2) |
| :---: | :---: | :---: | :---: |
| C26 | C26 | H26A | 79(2) |
| C26 | C26 | H26B | 113(2) |
| C26 | C26 | Cl 3 | 130(2) |
| H26A | C26 | C12 | 117(1) |
| H26A | C26 | H26A | 31.2(6) |
| H26A | C26 | H26B | 117(2) |
| H26A | C26 | Cl 3 | 127(2) |
| C12 | C26 | H26A | 98(1) |
| C 2 | C26 | H26B | 114(1) |
| C12 | C26 | Cl 3 | 12.3(7) |
| H26A | C26 | H26B | 108(2) |
| H26A | C26 | Cl 3 | 110(2) |
| H26B | C26 | Cl 3 | 110(2) |
| C26 | H26A | C26 | 53(1) |
| C25 | H26B | C26 | 48(2) |
| C26 | C12 | C25 | 31(1) |
| C25 | Cl3 | C26 | 35(1) |

