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NOMENCLATURE

Redox flow battery.
A generic ion-exchange membrane, either an AEM or a CEM.

An anion-exchange membrane in non-alkaline anion form (e.g., con-
taining Cl~ anions).

A cation-exchange membrane in non-acidic form (e.g., containing
Na™ cations).

Flywheel energy storage.

Pumped hydro energy storage.

Compressed air energy storage.

Electrochemical energy storage.

Standard hydrogen electrode.

Hydrogen evolution reaction.

Oxygen evolution reaction.

Tonic mobility [107® m? s™! V1.

Ton-exchange capacity [mmol/g].

Polyether ether ketone.

Quaternized Ammonium Poly(2,6-dimethyl-1,4-phenylene oxide).
Polytetrafluoroethylene.

Degree of substitution value for QN groups.

Real part of the impedance in a Nyquist plot.
Imaginary part of the impedance in a Nyquist plot.

Tonic conductivity [mS/cm].
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R, embrane Overall membrane resistance [(2].

1 Distance between the reference platinum electrodes [cm)].
S Cross-sectional area of the membrane [cm?].

ASR Area-specific resistance [Q cm?].

L Mean membrane thickness [cm].

Molar flux [mol m~2 s™1].

D Diffusion coefficient [m? s™'].
C Concentration [mol LY.
Ca Concentration of protons/hydroxide ions in the bulk phase of the

enrichment side [mol L™1].

Cs Concentration of protons/hydroxide ions in the bulk phase of the
deficiency side [mol L™1].

Ca Concentration of protons/hydroxide ions at the interface between
the membrane and the enrichment side [mol L™1].

C’s Concentration of protons/hydroxide ions at the interface between
the membrane and the deficiency side [mol L™1].

X Position [m].

t Time [s].

K Solubility partition coefficient [-].

P Permeability coefficient [cm? s71].

P Permeance [cm s~ 1.

ng Moles of protons/hydroxide ions in the deficiency side [mol].
A Effective area of the membrane [cm?].

Vg Volume of the deficiency side [cm?].

LISICON Li superionic conductor.
NASICON Na superionic conductor.

E. Activation energy [J].
kg Boltzmann constant [J/K].
T Absolute temperature [K].



ABSTRACT

A high selectivity and a low internal resistance are key performance properties
for ion-exchange membranes in redox flow batteries. Here, the basic zinc-acidic iron
double ion-exchange membrane redox flow battery is described. In order to find the
best combination of an anion-exchange membrane and a cation-exchange membrane for
this design, the H" /OH™ permeabilities and the C1~/Na* conductivities of different
anion-exchange membranes and cation-exchange membranes were characterized and
compared. For the investigated anion-exchange membranes, the H" permeabilities
were found to be in the order of Fumapem® FAA-3 > PTFE-QNPPO > QNPPO >
Fumasep® FAB-PK-130, but the same order (from highest to lowest) is observed for
the Cl~ conductivities. For the investigated cation-exchange membranes, the OH™
permeabilities were found to be in the order of Nafion® NR-212 > Fumasep® FKS-50
> Fumasep® FKE-50, while the same order (from highest to lowest) is observed for
the Na™ conductivities. Hence, the choice for a particular ion-exchange membrane in
the redox flow battery design should be made based on a trade-off between a high

selectivity (low crossover) and a high ion conductivity (low internal resistance).

x1



Chapter 1

INTRODUCTION

The twentieth century saw a steep increase in the use of fossil fuels, due to popu-
lation growth and continuing industrialization. Between 1980 and 2006, the worldwide
annual growth rate was 2%. Nowadays, electric energy demand exceeds 20 x 10°
TWh/year. Moreover it is still growing at approximately 3% per year. The exploita-
tion of these resources in a relatively short amount of time puts a lot of pressure on
the environment. COs emissions need to be drastically reduced in order to restrict
climate change. The continuous exhaustion of the available energy resources can lead
to serious global energy crises. With the growing demand for energy and the increasing
attention to environmental issues in mind, a surge of research effort is directed towards
renewable energies, such as solar and wind power. Currently renewable energies, except
hydropower, provide 4% of electricity production but that number is estimated to grow
by more than 25% by 2030. Major challenges are presented by renewable energies due
to their intermittency character, namely fluctuations in output and unavailability, since
they cannot deliver a regular supply that is easily adjustable to consumption needs.
Furthermore, integration of renewable energies in the design, control and management
of the electric grid can cause problems, like voltage rises, surplus of the generated
power and network load stability problems. Studies have suggested that the grid can
become unstable if power from renewable sources exceeds 20% of the whole generated
power. Therefore, energy storage technologies are indispensable. They can overcome
the supply-demand imbalance as they are capable of accumulating energy during times
when demand is low (peak shaving) and supplying it when demand is high, to ensure

efficient energy handling (load leveling) [1, 2, 3, 4, 5, 6, 7].



1.1 Energy Storage Technologies

Energy storage technologies can be divided into three main categories, namely

flywheel energy storage (FES) and supercapacitors, geological storage technologies and

electrochemical energy storage (ECES) [1]. The performance parameters of the main

energy storage systems are listed in Table 1.1 [3, 4].

Table 1.1: Characteristics of the main energy storage systems.

Energy Storage | Top power | Energy Discharge| Response | Round trip | Capital
Technology [MW] density time [h] | time efficiency cost
[Wh/kg] [$/kWh]
PHES 3,000 0.3 >8 min 70-85 10-350
CAES 300 10-30 0.1-15 min 60 130-550
FES 20 11-30 0.1-1 ms 85 2,400
Supercapacitors 100 10-30 0.25 ms 95 4,600
Lead-acid battery 10-40 25-50 0.1-4 ms 75-85 130
Sodium-sulfur  bat- 34 150-250 1-10 S 85-90 550
tery
Lithium-ion battery 16 100-200 0.1-1 ms 95 600
Redox flow battery 2-100 10-50 1-20 ms 85 900

1.1.1 Flywheel energy storage and supercapacitors

FES and supercapacitors are low-energy, high-power energy systems, mainly

suited for power management (e.g., frequency regulation). Both FES and supercapac-

itors have a high round-trip efficiency, but only for short discharge times. The round

trip efficiency would decrease considerably for longer times due to friction losses for

FES and internal losses for supercapacitors. Therefore, long-term storage with these

technologies is not feasible [1, 3, 4, 7].

1.1.2 Geological storage technologies

Geological storage technologies consist of pumped hydro energy storage (PHES)

and compressed air energy storage (CAES). They are high-energy, high-power systems,

suited for energy management. As they cannot respond to fast power demand, their




usefulness lies in long-time services. However, they need special geological and geo-

graphic requirements, besides the large capital and maintenance costs [1, 3, 4, 7].

1.1.3 Electrochemical energy storage technologies

Electrochemical energy storage technologies (ECES) consist of lead-acid bat-
teries, lithium-ion batteries, sodium-based batteries and redox flow batteries (RFBs).
ECES are the solution of choice for short-to-long-time scale, because they have major
advantages like modularity, enabling wide scalability (applications ranging from a few
kWh to several MWh), flexibility, cost and efficiency compared to the other energy
storage technologies. It is clear from Figure 1.1, that ECES can be used in areas of the
power /duration diagram where other energy storage technologies cannot reach. Ad-
ditional advantages are that they can be sited everywhere (unlike PHES and CAES
that have specific geographical and geological requirements) and that they have low

environmental footprints, enabling them to be sited near residential areas [1, 3, 4, 7].

A
1 day -+

\underground)

1 hour <= \
Pb-A \ A-CAES (aboveground)

I mins ==

discharge time (generation)

o ———

Pb-A: lead-acid
Na-S: sodium-sulfur
Li-ion: lithium ion

H2: electrolyzer-fuel cell power

| | | | | | -
I 1 | | | 1

I kW 10kW 0.1 MW I MW 1I0MW 0.1 GW 1 GW

1 secs -

Figure 1.1: Power/duration diagram of energy storage systems.
Reprinted with permission from Renewable and Sustainable Energy Reviews, ref. [3], Copyright 2013, Elsevier Ltd.



1.2 Redox Flow Batteries

RFBs are rechargeable batteries studied in detail in the following sections. First
their operation principle is described, followed by a comparison of the RFB with other
battery technologies, indicating their pros and cons. The importance of ion-exchange
membranes (IEMs) in the RFB is highlighted, with special emphasis on a new double-

membrane triple electrolyte design.

1.2.1 Main features

A RFB refers to an electrochemical system where redox couples, dissolved in the
electrolytes, are used to store and release energy during the charge and discharge cycle
of the battery, respectively. Reversible reduction-oxidation reactions take place in the
two liquid electrolytes, which are separated by an IEM. The IEM is a crucial component
of the RFB as it prevents cross-mixing of the positive and negative electrolytes while at
the same time allowing the transport of ions to complete the circuit during the passage
of current (to maintain electroneutrality). The two electrolytes are stored in separate

tanks and circulated to the RFB by pumps [1, 3, 8.

1.2.2 Comparison of redox flow batteries with the other battery technolo-
gies

RFBs represent the most promising choice for large-scale energy storage for

several reasons, including high efficiency, flexibility, cost, room temperature operation,

extremely long charge/discharge cycle life and safety advantages, compared to the other

ECES.

e Lead-acid batteries have a poor deep discharge performance, strongly affecting
battery life. Furthermore, they cannot store large amounts of energy in a small
volume (low energy density).

e Sodium-sulfur batteries are only operational at high temperatures, while at the
same time there is a potential for fire.

e Lithium-ion batteries have a high energy density but also pose certain safety
issues like potential fires and explosions. Moreover they are expensive to manu-
facture.



The most important advantage of RFBs is surely the ability to separate power and
energy. The power is determined by the number of cells in the stack and the size of
the electrodes, while the energy storage capacity depends on the concentration of the
electroactive species (i.e., the solubility of the ions in the electrolytes) and the vol-
ume of the electrolytes. This is the case since the reactants in RFBs are dissolved in
the electrolytes and stored in external tanks, whereas conventional batteries store the
electrochemical reactants within the electrode itself (e.g., Li-ion batteries) [9]. Thus
capacity is not fixed by cell dimensions, but by the size of the tanks [2]. By simply
increasing the volume of the storage tanks, the energy storage capacity is increased.
Hence, the incremental cost of each additional energy storage capacity unit is lower
compared to other batteries. Since the cost per kWh of the system decreases substan-
tially with increasing storage capacity, the RFB is especially appealing for long-time
storage applications (in excess of 4-6 hours). Thus a RFB can be optimally designed to
provide the specific power and energy requirements for each application. Drawbacks of
RFBs are their small energy density, due to the low metal ion solubilities in the elec-
trolytes, leading to the large electrolyte storage tanks, the necessity of pumping power
to circulate the electrolytes to the cells and the toxicity of some of the electrolytes

employed [1, 3, 4, 5, 9].

1.2.3 Single ion-exchange membrane configuration

Since their invention, RFBs employed a single-IEM configuration. However,
there are some reservations about RFBs with a single-IEM configuration. First of all,
only redox pairs with the same ion charge can be combined, since neither one single
anion-exchange membranes (AEM) nor one single cation-exchange membrane (CEM)
can effectively prevent the mixing of redox pairs with mixed ion charges [10]. Moreover
combinations of two redox couples with a useful voltage and a reasonable solubility
are seriously limited by hydrogen and oxygen evolutions in an aqueous system. Figure
1.2 illustrates the standard potentials versus SHE (standard hydrogen electrode) of

known redox couples in aqueous systems (except the Hy evolution potential that is



the overpotential on carbon electrodes) [11, 12]. The reversible voltage window of

H, evolution : 0, evolution
B = msssssssssssssssssssssssssssss »
32+ Bra/Br
2+ VO3 Mn¥*/Mn2*
Zn“*lZn : e VO, IVO2* i
Crvc: Cu?*/Cu MnO4/MnO;
<5 Cla/CI-
: BrClz/Br : CetiCed
2}
Ti3+ITi2+ s’s\‘ ; — Crs‘ Cl’44 /
§ I'IOH ’Tl Fe3+IFez+ ; \
AW : Co™ICo?*
| | | |
-1.0 -0.5 0.0 0.5 1.0 1.5 2.0

Figure 1.2: Standard potential versus SHE of redox couples in aqueous systems.
Reprinted with permission from Chemical Reviews, ref. [12], Copyright 2011, American Chemical Society.

water electrolysis is limited to 1.23 V, since the same pH has to be maintained in both
negative and positive electrolytes. HER = 0 (hydrogen evolution reaction) versus OER
= +1.23 V (oxygen evolution reaction) at pH = 0 or HER = —0.83 versus OER =
+0.40 V at pH = 14. Figure 1.3 shows the two feasible options, an AEM isolating
a cation-cation negative pair from a cation-cation positive pair (e.g., iron/chromium
RFB) or a CEM isolating an anion-anion negative pair from an anion-anion positive

pair (e.g., bromine/polysulphide RFB ) [10].

NE AEM PE NE PE
+/ +/ j P
+ + Z Z
Nagativa Positive Negative Posilive
alactrolyte alectrolyle electralyte alectrolyte

(a) Single-AEM RFB

(b) Single-CEM RFB

Figure 1.3: Two possibilities for single-IEM RFB configurations.



1.2.4 Double ion-exchange membrane configuration
However, freedom in choosing the redox pairs is nevertheless feasible by employ-

ing a double-IEM configuration as displayed in Figure 1.4.

NE ' AEM PE
-/ +/
- +
Negative Middle Positive
electrolyte | electrolyte electrolyte

Figure 1.4: Double-IEM with redox pair combinations of mixed ion charges.

It consists of one AEM, one CEM and a middle electrolyte in between. Fur-
thermore, a flexible choice of electrolytes is possible now, such as an acid electrolyte
at one electrode and a base electrolyte at the other electrode, enabling a much larger
reversible voltage window of water electrolysis of 2.06 V. HER = —0.83 V at pH =
14 versus OER = 1.23 V at pH = 0 [10]. One example is the basic zinc-acidic iron
double-IEM RFB, displayed in Figure 1.5, with 1.99 V standard cell voltage. The
redox reactions are the following (discharging reactions proceed from left to right and

the reversed reactions happen for charging).

o At the negative electrode: Zn + 4OH~ «+— Zn(OH);™ + 2e~ (-1.22 V) associated
with a NaOH solution as the negative electrolyte.

e At the positive electrode: Fe3t + e~ +— Fe?* (0.77 V) associated with a HCI

solution as the positive electrolyte.

The middle electrolyte is a NaCl salt solution that ionically connects the negative and

positive electrolytes, in order to maintain the charge balance in each chamber.



Positive
Electrolyte

Negative
Electrolyte

Standard voltage: 1.99 V

Figure 1.5: Zn/Fe double IEM-RFB

Other examples include a ultra-high voltage basic zinc-acidic cerium RFB with
a 3.08 V standard cell voltage, combining the very negative redox potential from
Zn(OH)3™ /Zn in base (-1.21 V) with the very positive redox potential from Ce,0%* /Ce?*+
in acid (+1.87 V) and an ultra-low cost sulfur-iron RFB with 1.22 V standard cell volt-
age, combining the S7~ /S5~ anion redox pair (-0.45 V) with the Fe3* /Fe** cation redox

pair (40.77 V) [10].

Besides the freedom in choosing the redox pairs and the supporting electrolytes,
the double-IEM configuration possesses also a significantly lower overall ion crossover
rate between the negative and positive electrolytes than single-IEM RFBs (i.e., 15-
143 times lower for double-IEM cells), enabling to reduce the thickness of both the
AEM and CEM without compromising the coulombic efficiency. Hence, the middle
electrolyte serves as an ion-crossover buffer while providing the electrolyte continuity

[10].

1.3 Zn/Fe Double Ion-Exchange Membrane Redox Flow Battery
The double-IEM configuration for the Zn/Fe RFB has promising features. How-
ever, there are still some challenges with the Zn/Fe double-IEM RFB that need to be



addressed. There occurs H* crossover from the positive electrolyte through the AEM
to the middle electrolyte, while at the same time OH™ crosses over from the negative
electrolyte through the CEM to the middle electrolyte, leading to the formation of HyO.
This acid-base neutralization has a negative impact on the RFB, leading to a decrease
in cell performance. Moreover the double-IEM configuration has two IEMs and three
electrolytes contributing to the internal resistance, compared to only one IEM and two
electrolytes in a single-IEM configuration. A reduction in internal resistance would
improve the efficiency and the power density drastically. Therefore, the development

of materials like electrodes and IEMs are critical [13].

1.4 Thesis Outline
Ideally, the best performance of the Zn/Fe double-IEM RFB is achieved when

there is no H"/OH™ crossover while at the same time the internal resistance is very
small. However, in reality this is not the case, see Figure 1.6. On top of that, it is
difficult to optimize both criteria at the same time. Decreasing the thickness of the
TEMs reduces the internal resistance on the one hand, but increases H" /OH™ crossover
(i.e., acid-base neutralization) on the other hand. In order to find a good trade-off, the
following data will be gathered in this work.

1. HT crossover rate through AEMs.

2. OH™ crossover rate through CEMs.

3. CI7/Nat conductivities of the AEMs/CEMs.

Chapter 2 gives an overview of the current knowledge about the transport mecha-
nisms of protons and hydroxide ions in aqueous solutions, together with the basics on
IEMs. While the details of the proton transport mechanism are well understood, the
molecular-scale description of hydroxide ion transport is still controversial. Chapter
3 describes the experiments that are conducted in order to get the H" /OH™ perme-
abilities and the C1~/Na' conductivities for different AEMs and CEMs. The results
are discussed in Chapter 4. The conclusion of this work will be given in Chapter 5.

Finally, some promising ideas will be highlighted for future work in Chapter 6.



CEM AEM

OH- H*
H,0

Cl

Figure 1.6: Acid-base neutralization and Cl~/Na™ conductivities in Zn/Fe double-IEM
RFB.
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Chapter 2

BACKGROUND

AEMs allow the selective transport of anions across the membrane, while ide-
ally remaining impermeable to cations, whereas CEMs allow the selective transport of
cations across the membrane, while ideally remaining impermeable to anions. However,
protons and hydroxide ions exhibit an anomalously high mobility in aqueous solutions,
compared to other ions, see Table 2.1 [14]. The ionic mobility of H is about seven

times that of Nat and approximately five times that of K.

Table 2.1: Ionic mobilities in water at 298 K.

u [10® m? 571 V1]
HT 36.23
OH~™ 20.64
Na™ 5.19
K+ 7.62
Cl™ 7.91
Br~ 8.09

AEMs and CEMs swell in aqueous solutions, due to the presence of sorbed
water. As a consequence, proton leakage through the AEM and hydroxide leakage
through CEM occur [15]. Therefore, it is useful to get an understanding of the nature
and transport of the protons and hydroxide ions in aqueous solution through IEMs. In
the case of the protons, the transport mechanism is fairly well understood. Substantial
research has led to a consistent theory, which has become textbook knowledge [14],
described in Section 2.1. However, the situation is much less clear for the transport
mechanism of hydroxide ions, as reported in Section 2.2. At last, Section 2.3 provides

some basic knowledge about IEMs.

11



2.1 Proton Transport Mechanism in Aqueous Solution

The anomalously high mobility of protons in water can be explained by the
“Grotthus Mechanism”, also known as “structural diffusion”, since proton diffusion
occurs via the migration of a structural defect (a topological defect) in the hydrogen-
bonded network, not via migration as an individual proton H*. This proton-hopping
kinetic mechanism involving the rearrangement of bonds in a group of water molecules

[14, 16, 17] is illustrated in Figure 2.1.

et~ g

Figure 2.1: The Grotthus Mechanism in proton diffusion.

Reprinted with permission from ChemPhysChem, ref. [17], Copyright 2006, John Wiley and Sons.

The Grotthus Mechanism was unclear until fairly recently. It is considered
to occur via an intricate interplay between the Eigen cation HzO'-(Hy0)3 or HoOj,
on the one hand and the Zundel cation, [HyO---H---OHy|" or H5O5, on the other
hand [18, 19]. In the Eigen cation, a hydronium core is solvated by accepting three
hydrogen-bonded water molecules, while in the Zundel cation, the proton is shared
equally between two water molecules via an ultrashort, centered hydrogen bond [17],

see Figure 2.2.

Figure 2.2: The Eigen cation and the Zundel cation.

Reprinted with permission from ChemPhysChem, ref. [17], Copyright 2006, John Wiley and Sons.
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The schematic mechanism in Figure 2.3 illustrates the sequence of transitions
from the HoO} to H5O05 to HoO; hydrated complexes (a complete coordination shell
is only shown for one of the first-solvation-shell waters). The rate-determining step
is the hydrogen-bond cleavage of water molecules in the second solvation shell, since
these hydrogen bonds are weaker than the ones in the first solvation shell. Then the
proton migrates to the center of the bond to form a H5O3 cation. A new HqO} cluster
forms as other water molecules become members of the second solvation shell. The
proton transfer is completed as a properly solvated H;O" is located at a new site in
the hydrogen-bond network. Note that the half-life of a solvated molecule during the
proton transfer between two HoO molecoles is of the order of a few ps [14, 19, 20]. For

a more detailed description of these steps, see reference [21].

(a) HyOF complex (b) H503 complex (c) HoOF complex

Figure 2.3: Structural diffusion mechanism: Intricate interplay between the Eigen ion

and the Zundel ion.
Reprinted with permission from ChemPhysChem, ref. [17], Copyright 2006, John Wiley and Sons.

In short, the Grotthus Mechanism is a proton-hopping kinetic mechanism, since
a proton is exchanged between water molecules through hydrogen bonds that form

and break. The simplified mechanism is visualized in Figure 2.4, emphasizing that the

A LR

protons are passed along the hydrogen bonds [22].

i Eiw il L

Figure 2.4: The Grotthus Mechanism.
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At high water contents, the Grotthus Mechanism dominates proton conduction.
In this case, protons are moving faster across the membrane than water. However, at
low water contents, the Vehicle Mechanism is the dominating transport mechanism.
Now the diffusion coefficients of protons and water are similar. As opposed to the
Grotthus Mechanism, bulk diffusion of a proton and its associated water molecules

or “vehicle” in H3O", H505 etc. takes place, while the empty vehicles move in the
opposite direction [22; 23|, as illustrated in Figure 2.5 .

gk ARt i behfab s

Figure 2.5: The Vehicle Mechanism.

2.2 Hydroxide Transport Mechanism in Aqueous Solution

OH™ mobility in aqueous solutions is only 57% of the HT mobility, as illus-
trated in Table 2.1. It would be nice to have a simple model to justify that OH™
moves in aqueous solutions at approximately half the speed of HT. However, while
detailed investigations have led to a clear picture of the proton transport mechanism,
the structural diffusion mechanism of hydroxide ions in aqueous environment is much
less clear. The traditional view is that the mechanism of OH™(aq) can be deduced
from the proton structural diffusion mechanism, by invoking a pseudosymmetry ar-
gument. The underlying idea is that while H3O" can be viewed as a water molecule
with an excess proton, OH™ can be regarded as a water molecule missing a proton
(“a proton-hole”). Assuming similar solvation shell topologies, the OH™ (aq) transport
mechanism is deduced from the H30% (aq) transport mechanism by reversing hydrogen
bond polarities and the directions of the proton transfer, described in detail in reference
[24]. However, as proposed by Tuckerman et al. [21], OH™ ions behave differently from

excess protons in water, contrary to the “proton hole picture”. A complex and rich
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picture for OH™ ion transport is proposed, in which the quantum-mechanical character
of the OH™ ion plays a major role, using powerful simulation techniques as ab initio
molecular dynamics simulations and ab initio path integrals [20]. As this discussion
would lead us to far away from the real purpose of this thesis, the reader is referred
to the references [17, 19, 21, 25, 26] for more information on the proposed OH™ (aq)

transport mechanism.

2.3 Ion-Exchange Membranes
The IEM is one of the key components of RFBs. It allows the transport of ions
to complete the electric circuit while preventing the cross-mixing of the positive and

negative electrolytes. An ideal IEM exhibits the following characteristics [8].

e Good ionic conductivity, required to minimize the losses in voltage efficiency.

e High ion selectivity. The IEM should be permeable to the charge-balancing ions
to complete the current circuit, while preventing the crossover of the active redox
species to allow high coulombic efficiencies.

Excellent chemical, mechanical and thermal stability.

Low cost.

Optimizing the properties of IEMs is challenging, since opposing trends occur. For
instance, increasing the mechanical strength of the IEM by applying a high degree of
cross-linking in the membrane increases the electrical resistance (the ionic conductivity

decreases) [27].

A high selectivity for IEMs is of utmost importance. The selectivity for Cl~
ions over H* ions and Na™ ions over OH™ ions directly affects the current efficiency.
Moreover the selectivity for C1~ and Na™ over multivalent ions delays fouling and in-

creases the lifetime of the membrane [28].

Another important property of an IEM is the ion-exchange capacity (IEC),

which is the number of functional groups per unit mass of polymer [29]. TEC is usually
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expressed in meq/g (milliequivalents/g) or in mmol/g. An equivalent of an ion is de-
fined as the quantity of that ion that contains one mole of charge. So one equivalent of
an ion equals one mole of that ion divided by its valence. Hence, one equivalent of H*
equals one mole of H* [30]. By varying the IEC of the IEM, it is possible to control
both its ion conductivity and water uptake. Again opposing effects occur. Increasing
the IEC enhances the ion conductivity, but at the same time excessive water uptake

and swelling occur, compromising the mechanical properties of the IEM [31].
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Chapter 3
EXPERIMENTAL WORK

This chapter provides detailed information on the experimental work. The first
set of experiments, described in Section 3.1, is conducted to obtain the H* /OH™ perme-
abilities across AEMs/CEMs. The purpose of the second set of experiments, described
in Section 3.2, is to measure the C1~ /Na™ conductivities in AEMs/CEMs. An overview

of the results and a discussion can be found in Chapter 4.

3.1 Determination of Proton and Hydroxide Permeabilities across Ion-
Exchange Membranes
Figure 3.1 illustrates the equipment that is used to determine the H*/OH~
permeabilities across AEMs and CEMs respectively.

Deﬁ;lencv Enrichment
side ide
- Sl

(a) Schematic illustration (b) Actual setup

Figure 3.1: Setup for measuring the H" /OH™ permeabilities.

Figure (a) reprinted with permission from Journal of Power Sources, ref. [32], Copyright 2009, Elsevier Ltd.

The setup consists of an electrochemical cell, two reservoirs and a peristaltic

pump (Cole Parmer, Masterflex® L/S 600 rpm). The ITEM is pressed between two
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solid polytetrafluoroethylene (PTFE) blocks (electrolyte frames) with rubber gaskets
on either side to prevent solution leakage. Eight bolts are torqued to 16 Ibs to keep the
cell together. The electrolyte flows through PTFE-lined rubber tubes (Cole Parmer,
ChemDurance® #16) at a flow rate of 50 ml/min.

The solution in the right reservoir, the enrichment side (designated with let-
ter A), contains 1.0 mol/L hydrochloric acid (HCI) in case the diffusion coefficient of
protons through AEMs is investigated. For hydroxide ions permeability through CEMs,
a solution containing 1.0 mol/L sodiumhydroxide (NaOH) is used. The left reservoir,
the deficiency side (designated with letter B), is filled with 1.0 mol/L sodiumchloride
(NaCl). Each reservoir contains 250 ml of solution. The Cl~ concentration for the
H* diffusion experiment and the Nat concentration for the OH™ diffusion experiment
are the same in both reservoirs, in order to eliminate the osmosis of the anions and
cations respectively [32]. The IEM was immersed in distilled water before use. The
effective area A of the IEM exposed to the solutions is 18 cm?. 1 ml solution of the
deficiency side was sampled at a regular time interval. Determining the amount of

protons/hydroxide ions crossing over from the enrichment side in function of time was

done by measuring the pH of the sample.

H* crossover of the following AEMs was investigated.

1. Fumapem® FAA-3, a commercial, non-reinforced, alkaline stable AEM (Fu-
matech).

2. Fumasep® FAB-PK-130, a commercial PEEK-reinforced (polyether ether ke-
tone) AEM which is developed for very low proton crossover with high selectivity,
high mechanical stability and high stability in acidic and caustic environments
(Fumatech).

3. QNPPO, DS(x) = 14%, IEC = 1.07 mmol/g, synthesized in the lab, see Fig-
ure 3.2 a. QNPPO stands for Quaternized Ammonium Poly(2,6-dimethyl-1,4-
phenylene oxide) and the DS(x) value indicates the degree of substitution value
for QN groups.
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4. PTFE-QNPPO, a polytetrafluoroethylene (PTFE) pore-filling membrane with
DS(x) = 14%, IEC = 1.04 mmol/g. It was synthesized in the lab, see Figure 3.2
b.

(a) QNPPO (b) pore-filling PTFE-QNPPO with 90% porosity

Figure 3.2: Chemical structures of the AEMs made in the lab.

For the OH™ crossover experiment, the next CEMs were employed.
1. Nafion® NR-212, a commercial CEM (Ion-Power, Inc.).
2. Fumasep® FKE-50, a commercial, non-reinforced CEM (Fumatech).

3. Fumasep® FKS-50, a commercial, non-reinforced CEM (Fumatech).

The TEC values for the commercial AEMs and CEMs are obtained from datasheets
from Fumatech [33] and Ion Power [34]. The IEC values for the lab made AEMs,
QNPPO and PTFE-QNPPO, are computed IEC values. They are listed in Table 3.1.

Table 3.1: TEC of the ion-exchange membranes

AEM IEC [mmol/g]
Fumapem® FAA-3 1.9-2.1
Fumasep® FAB-PK-130 1.0-1.1
QNPPO 1.07
PTFE-QNPPO 1.04
CEM IEC [mmol/g]
Nafion® NR-212 0.95-1.01
Fumasep® FKE-50 >1
Fumasep® FKS-50 >1
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3.2 Ion Conductivities in Ion-Exchange Membranes

For the in-plane ion conductivity measurements, samples of the IEMs of ca. 7
cm X 1 cm are prepared. The thickness is measured at five locations with a digital mi-
crometer (Mitutoyo American Corporation) and then averaged. They were submersed
in 1.0 mol/L NaCl for 24 hours, since the purpose is to measure the Na™/Cl~ conduc-
tivity. After this treatment, the IEMs were repeatedly rinsed in deionized water. It is
crucial that the IEMs are completely clean. As the ion conductivity on the IEMs is
rather low, any presence of dissolved ions (Na™, C17) would influence the measurement

considerably.

In order to determine the in-plane ionic conductivity of the IEM, the membrane
resistance R, emprane 18 calculated using an AC impedance method using four electrodes.
The AC impedance measurements, carried out in the frequency region from 10000 Hz
to 1 Hz, are performed using a computer-controlled impedance gain/phase analyzer
(Solartron Instruments, model 1260) and electrochemical interface (Solartron Instru-
ments, model 1287) measuring system, see Figure 3.3. The settings are specified in
Table 3.2. Nyquist (Z’-Z”) plots were obtained and from the semicircles in the Nyquist
plots, the Ryemprane can be determined for the different ITEMs [35]. The in-plane ionic
conductivity o [mS/cm]| can be calculated from the membrane resistance Ry emprane [€2]
using Equation (3.1)

[

R 3.1
7 RmembraneS ( )

where 1 is the distance between the reference platinum electrodes [cm], 1 cm in this case,

and S is the cross-sectional area of the membrane (thickness x width) [em?] [36, 37].
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(a) 4-pole conductivity meter (b) Solartron Instruments 1260 and 1287

Figure 3.3: Setup to measure the C1~/Na™ conductivity of the ITEMs.

Table 3.2: Settings for the Solartron Instruments 1260 and 1287

Frequency sweep

Initial frequency [Hz] | 10000

Final frequency [Hz| 1

Steps/Decade interval 10

Polarization
DC potential [V] 0
AC amplitude [mV] 5

The area-specific resistance ASR [Q cm?| can subsequently be calculated from
the ionic conductivity o and the mean thickness L [cm]| of the IEM o with Equation
(3.2).

L
ASR == (3.2)
g
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Chapter 4

RESULTS AND DISCUSSION

The HT/OH™ permeabilities and the Cl1~/Na™ conductivities in AEMs/CEMs
are listed in Section 4.1 and Section 4.2. Section 4.3 summarizes and discusses all the

gathered data.

4.1 Proton and Hydroxide Crossover in Ion-Exchange Membranes
The starting point to determine Equation (4.11) for calculating the permeability
of protons and hydroxide ions across AEMs and CEMs respectively, are Fick’s first law

(4.1) and second law (4.2)

J = —Dg—g (4.1)
oC 0*C

where J is the molar flux (i.e., the amount of moles per unit area per unit time)
[mol em™2 s~ '], D is the diffusion coefficient [em? s7!]|, C is the concentration of pro-
tons/hydroxide ions [mol L™, x is the position [cm] and t is the time [s]. Consider the
experimental setup given in Chapter 3, Figure 3.1. Assume the case of steady-state
diffusion, i.e., when there is a steady-state concentration profile across the membrane,
see Figure 4.1. An equilibrium between protons/hydroxide ions is established on both

surfaces of the IEM according to Henry’s law, with a solubility partition coefficient K

given by Equation (4.3)
_Cp _Ch

K= 2B _
Cg Oy

(4.3)

where C4 and C’4 are the concentrations of protons/hydroxide ions in the bulk phase

of the enrichment side and at the interface between the membrane and the enrichment
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C,

oy Cs

Figure 4.1: Concentration profile across the IEM in steady-state.

side respectively, while Cp and C’p are the concentrations of protons/hydroxide ions
in the bulk phase of the deficiency side and at the interface between the membrane
and the deficiency side respectively. Note that the actual transmembrane concentra-

tion difference, C’4 - C’p, is less than the overall concentration difference, C4 - Cp [38].

The steady-state assumption is only valid if C4 and Cp are independent of

time. Then Equation (4.4) is valid, so Fick’s first law applies in this case [39].

oC  _9C aC C', = Cl
- D= — —— = =_4£ O 4.4
T 52 0 — e constant 7 (4.4)
c'y - KD P _
J=D AL B _ 7 (Ca = Cp) = 2 (Ca = Cp) = P(Ca = Cp) (4.5)

where P = KD is the permeability coefficient [cm? s7!] and P is the permeance [cm
57!, defined as the ratio of P to L. From Equation 4.5, it is clear that the permeance
of protons/hydroxide ions diffusing through a membrane of a given thickness is given
by the flow rate of protons/hydroxide ions per unit cross-sectional area of membrane
per unit driving force, i.e., the concentration gradient. Note that P is determined here
rather than D since steady-state experiments do not allow to separate P into specific

values for K and D [39, 40].

The value of C4 can be approximately regarded as a constant by employing

a large volume (250 ml) of solution. However, the value of Cp will not remain constant
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over time. Cp is 0 at t = 0 and will gradually increase as protons/hydroxide ions
are permeating from the enrichment side to the deficiency side. Therefore, there is no
constant gradient, so Fick’s first law is not applicable. Since this situation represents

unsteady-state diffusion, Fick’s second law (4.2) should be solved instead.

However, a quasi-steady-state assumption can be made, since the membrane
is so thin that the concentration within it may still be considered approximately lin-

ear, although changing in time, as visualized in Figure 4.2. As the transport rate at

Ca Ca
c, r c,
ﬁ Cq(t,)
o Calty)
Timet, Timet,

Figure 4.2: Approximately linear concentration profile in the quasi-steady-state ap-
proximation.

any time is equal to the steady-state flux at that specific moment time, Fick’s first
law is again applicable. Initially there are no protons/hydroxide ions in the deficiency
side (Cp = 0 at t = 0). So np, the change in moles of protons/hydroxide ions in the
deficiency side [mol], is related to the flux J of protons/hydroxide ions through the
IEM and the effective area A of the membrane [cm?], given by Equation (4.6) [39].

dTLB (t)
dt

—JA (4.6)

Combining Equation (4.6) with Equation (4.5) leads to Equation (4.7)

N

dTLB (t)
g P—
dt L

(Ca — C5(1)) (4.7)
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Equation (4.7) can be changed to Equation (4.9) by assuming that the volume
Vg of the deficiency side [cm?] is a constant. An assumption is also made that P is

independent of concentration [41].

dCs(t) A
%2 T PZ<CA — Cp(t)) (4.8)
dCy(t)  PA

dt (4.9)

Cy—Cp(t) VgL

Given the initial condition Cp = 0 at t = 0, Equation (4.9) can be integrated
and Equation (4.11) is obtained.

“rd(Cy—Cp(t))  PA [
_/o CAA_ Cp(t) VL /o “ (410

Ca_y_ P4,
Ca—Cp Vsl

In ( (4.11)

It can be seen from Equation (4.11) that In(C4/(C4-Cp)) is proportional to the
time t. Now the slope, corresponding to the value of (PA/VgL) can be obtained. Since
A, Vp and L are known values, P can be calculated [32]. Note that P is independent
of the thickness of the IEM.

4.1.1 Proton permeability across anion-exchange membranes

Figure 4.3 shows the plots of In(C4/(C4-Cp)) versus time for the four different
AEMs and these plots are all put together in one plot in Figure 4.4. The proton
permeability for each AEM is determined from the value of the slope (PA/VgL) and
is listed in Table 4.1.

Table 4.1: H™ crossover rates in anion-exchange membranes.

AEMs L [um] | Vg [m]] | A [cm?] | Slope % [min] | Pyt [cm?/s]
Fumapem® FAA-3 35 250 18 0.0091 7.4 x 1076
Fumasep® FAB-PK-130 130 250 18 6 x 1075 1.8 x 1077
QNPPO 35 250 18 0.0003 2.4 x 1077
PTFE-QNPPO 55 250 12.2 0.0005 9.4 x 1077
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Figure 4.3: Plots
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Figure 4.4: Comparison of the H crossover rates in AEMs.

It is clear that the proton permeability across Fumapem® FAA-3 is the largest

one, whereas proton permeabilities across the three other AEMs are substantially
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smaller. The proton permeability of PTFE-QNPPO is slightly higher than that of
QNPPO, with Fumasep® FAB-PK-130 possessing the lowest proton permeability.

4.1.2 Hydroxide permeability across cation-exchange membranes

Plots of In(C4/(C4-Cp)) versus time for the three different CEMs are shown in
Figure 4.5 and Figure 4.6. Table 4.2 lists the values for the hydroxide permeability for
each CEM, obtained from the value (PA/VgL) of the slope.

Table 4.2: OH™ crossover rates in cation-exchange membranes.

PA -
CEMs L [pm] | Vg [ml] | A [em?] | Slope ; [min™'] | Pon. [cm?/s]
Nafion® NR-212 50 250 18 5 x 107° 5.8 x 1078
Fumasep® FKE-50 50 250 18 1 x 1073 1.2 x 1078
Fumasep® FKS-50 50 250 18 2 x 107° 2.3 x 1078
Nafion® NR 212 Fumasep® FKE-50
0.008 0.002
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Figure 4.5: Plots of In(C4/C4-Cg) vs t for different CEMs.
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Figure 4.6: Comparison of the OH™ crossover rates in CEMs.

Among the three CEMs, Nafion® NR-212 has the highest hydroxide permeabil-

ity, whereas Fumasep® FKE-50 has the lowest.

4.2 Ton Conductivities in Ion-Exchange Membranes

The results of the ion conductivity test, described in Section 3.2, are summarized

in Table 4.3. Note that the resistance of deionized water was measured to be 94000 €.

Table 4.3: Cl~/Na*t conductivities in ion-exchange membranes.

AEMs L [pm] | Chloride conductivity | Area-specific resistance
ONa- [mS/cm] ASR [Q cm?]
Fumapem® FAA-3 35 13 0.27
Fumasep® FAB-PK-130 130 0.8 16.3
QNPPO 45 2.6 1.7
PTFE-QNPPO 30 6.6 0.45
CEMs L [pm] | Chloride conductivity | Area-specific resistance
ocr [mS/cm] ASR [Q cm?]
Nafion® NR-212 50 14.2 0.35
Fumasep® FKE-50 50 4.2 1.2
Fumasep® FKS-50 50 5.3 0.94
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4.3 Discussion

Ideally, an IEM should possess both a low HT /OH™ crossover (i.e., a high se-
lectivity of Cl~/Na™ over Ht/OH™) and a high ionic conductivity (a low ASR). To
compare the investigated IEMs, the experimental data from Tables 4.1, 4.2 and 4.3
are summarized in Table 4.4. A trend between the H" /OH™ crossover and the ionic
conductivity is observed. Fumapem® FAA-3 has by far the highest ionic conductiv-
ity, but also the highest HT crossover of all the considered AEMs. On the contrary,
Fumasep® FAB-PK-130 has the lowest ionic conductivity as well as the lowest H'
crossover. QNPPO and PTFE-QNPPO have moderate values for both of the parame-
ters. The same trend is observed for the CEMs. Nafion® NR-212 has the highest ionic
conductivity, while also having the highest OH™ crossover of the three CEMs. On the
other hand, Fumasep® FKE-50 has the lowest ionic conductivity and the lowest OH™
crossover. Clearly the experimental data shows that a trade-off should be made, since
both a low HT/OH™ crossover (high selectivity) and a high ionic conductivity (low
ASR) cannot be achieved at the same time for the presented IEMs.

The thickness L of IEMs plays an important role in both the ASR and the

ion crossover. First of all, it links both ASR and o, see Equation 3.2.

ASR=L (3.2)

g

Furthermore, it links the permeance P to the permeability P, as given by Equation
4.12. P is also calculated and listed in Table 4.4. Since P contains the thickness L of
the IEM, P is a property for an IEM with a given thickness, not for the IEM itself.

P =

=)

(4.12)
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For any given membrane, the product of P and ASR is irrelevant of membrane thick-
ness, as can be seen by Equation 4.13.
) —

P x ASR = (%) « (& (4.13)

Ly_~f
o o
Therefore, it is instructive to calculate the conductivity /permeability ratio o /P, listed
in Table 4.5. Since the H*/OH™ crossover should be as low as possible and the ionic
conductivity should be as high as possible, the parameter o/P should be as high as
possible for the best performance of an IEM. It is clear that o/P is almost two orders
of magnitude higher for CEMs than for AEMs. This is primarily due to the lower
OH™ crossover in CEMs compared to H crossover in AEMs. The AEMs are thus the

bottleneck for the design of double-IEM RFBs.

Also the influence of the IEC on both parameters should be noted. A high
IEC gives rise to a high ionic conductivity. However, it also enhances the water uptake
of the membrane, increasing the H" /OH™ crossover. The proton permeability and
ionic conductivity of Fumapem® FAA-3 are clearly higher than those of Fumasep®
FAB-PK-130, QNPPO or PTFE-QNPPO, as Fumapem® FAA-3 possesses a higher
IEC.
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Table 4.4: Comparison of the H" /OH™ crossover rates and Cl~/Na™ conductivities in
ion-exchange membranes.

AEMs L IEC Py [cm?/s] | Puy [cm/s] ocr ASR
[um] | [mmol/g] [mS/cm] | [ cm?’]
Fumapem® FAA-3 35 1.9-2.1 7.4 x 1076 2.1 x 1073 13 0.27
Fumasep® FAB-PK-130 | 130 1.0-1.1 1.8 x 1077 1.4 x 107° 0.8 16.3
QNPPO 35 1.07 2.4 x 1077 6.9 x 107° / /
QNPPO 45 1.07 / / 2.6 1.7
PTFE-QNPPO 55 1.04 9.4 x 1077 1.7 x 1074 / /
PTFE-QNPPO 30 1.04 / / 6.6 0.45
CEMs L IEC Pon. [em?2/s] | Pon. [em/s] |  ona+ ASR
[um] | [mmol/g] [mS/cm] | [ cm?]
Nafion® NR-212 50 0.95-1.01 5.8 x 1078 1.2 x 1075 14.2 0.35
Fumasep® FKE-50 50 >1 1.2 x 10-8 2.4 x 1076 4.2 1.2
Fumasep® FKS-50 50 >1 2.3 x 1078 4.6 x 1076 5.3 0.94

Table 4.5: Conductivity /Permeability ratio

AEMs ocr/Put [(mS s)/cm3]
Fumapem® FAA-3 1.8 x 106
Fumasep® FAB-PK-130 4.4 x 108
QNPPO 1.1 x 107
PTFE-QNPPO 7.0 x 108

CEMs Onat /Pon- [(mS s)/cm?3]
Nafion® NR-212 2.4 x 108
Fumasep® FKE-50 3.5 x 108
Fumasep® FKS-50 2.3 x 108
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Chapter 5

CONCLUSION

This thesis focuses on the IEMs of the basic zinc-acidic iron double-IEM RFB.
The advantages from the double-IEM configuration over the single-IEM configuration
are highlighted. Challenges of this Zn/Fe double-IEM RFB are the H /OH™ crossover
and the high internal resistance, caused by the two IEMs and the middle electrolyte,
leading to acid-base neutralization and a decrease in cell performance. An overview
of the current knowledge about proton and hydroxide transport mechanisms in aque-
ous solutions is given. The H*/OH™ crossover and the Cl~/Na™ of several AEMs
(Fumapem® FAA-3, Fumasep® FAB-PK-130, QNPPO, PTFE-QNPPO) and CEMs
(Nafion® NR-212, Fumasep® FKE-50, Fumasep® FKS-50) were measured. A general
trend was observed between the HT/OH™ crossover and the Cl~/Na™ conductivity,
where the H" /OH™ crossover decreases (selectivity increases) as the C1~/Na™ conduc-
tivity decreases (internal resistance increases). Therefore, in the selection of IEMs for
the Zn/Fe RFB, a trade-off between a low H" /OH™ crossover (high selectivity) and
a high ionic conductivity (low internal resistance) should be made. It was also shown
that the conductivity /permeability ratio is almost two orders of magnitude higher for
CEMs than for AEMs. Hence, AEMs are the bottleneck of the double-IEM configura-
tion. Further research should focus on finding IEMs with both a high selectivity and

a low internal resistance to improve the performance of the Zn/Fe double-IEM RFB.
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Chapter 6

FUTURE WORK

6.1 Introduction

Currently the Zn/Fe double-IEM RFB utilizes polymer IEMs owing to their
low electrical resistance and mechanical flexibility. But their main drawback is the
low selectivity and fouling, reducing efficiency and life [42]. HT/OH™ crossover occurs,
which gradually changes the pH values in the anode and cathode compartments while

also leading to acid-base neutralization in the middle compartment.

To circumvent the HY /JOH™ crossover issue, it is worthwhile to look into alter-
natives to polymer IEMs. Super-selective ceramic membranes are an interesting and
highly promising choice. The focus is on ceramic LISICON/NASICON (Li superionic
conductor/Na superionic conductor) materials. Superionic conductors are also referred
to as “fast ion conductors” or “solid electrolytes” [43]. As the name suggests, these
are highly selective membranes, i.e., they only permit Li*/Na™ ions to pass through

the membrane.

6.2 Super-Selective Ceramic Membranes
6.2.1 Polymeric ion-exchange membranes versus super-selective ceramic
membranes

It is instructive to compare the characteristics from a polymer IEM, for instance

Nafion, with a ceramic LISICON/NASICON membrane [44].

e Nafion shows a high chemical stability, but a low ion selectivity. It does not
inhibit the crossover of H*. The ion conductivity is rather high, approximately
100 mS/cm for protons [45] and 14 mS/cm for Na* ions at room temperature.
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e The water-stable LISICON/NASICON membrane only permits Lit/Na® ions
to pass through, so it effectively inhibits the H™ crossover. However, the ion
conductivity is rather low, approximately 0.1 mS/cm [44, 46|, leading to a low
power density.

The NASICON ceramic membrane is more suited for use in the Zn/Fe RFB, since Na™
is used as a charge carrier instead of Li*. Nasicon is attracting attention because of the
abundant availability of Na™ and because the costs of Li™ are expected to rise strongly
as the resource availability decreases [46]. Since NASICON only permits Na™ to pass
through, the double-IEM configuration, originally introduced to combine redox pairs
with mixed ion charges with flexible choices of electrolytes, could be changed for a
single-IEM configuration, provided NASICON is stable in between an acid electrolyte

and a base electrolyte.

6.2.2 Structure of NASICON materials

It is informative to take a better look at the structure and the conduction path-
way of NASICON materials. Reports of Hong and Goodenough [47, 48] mentioned
NASICONS for the first time in 1976. In search for skeleton structures for fast alkali-
ion transport, the system Naj,,ZrsSi,Ps .01, with 0 < x < 3, was discovered and
analyzed. The NASICON structure consists of linked ZrOg polyhedra connected to
(P/Si)Oy4 tetrahedra. Figure 6.1 shows the conduction channels, which allow the pas-
sage of Na™ [49]. Thanks to their unique structural features, NASICONSs exhibit many
useful properties [43].

e High thermal and chemical stability. Since NASICONs are strong, cova-

lently bonded 3-dimensional frameworks, their melting points are quite high (>
1650 °C).

e Low thermal expansion, attributed to the strongly bonded framework struc-
ture. Also the corner sharing octahedra, rather than edge-sharing, lead to an
open framework with structural holes, providing the octahedra some freedom for
rotational motion.

e Tonic conductivity. The ionic conductivity of a NASICON material depends on
the composition. The maximum conductivity at room temperature, 0.67 mS/cm,
occurs for NagZrySiasPOqy (x = 2) [46].
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Conduction channels

(RSO,

Figure 6.1: The structure of NASICON.

6.2.3 Ionic conductivity in solid electrolytes

The ion conductivity for solid electrolytes depends basically on four factors.
1. The concentration of charge carriers.
2. The temperature of the crystal.

3. The availability of vacant-accessible sites, controlled by the density of defects in
the crystal.

4. The ease with which an ion can jump to another site, controlled by the activation
energy.

The activation energy indicates the free energy barrier an ion has to overcome for a
successful jump between the sites. It is thus the energy to make the ions move. It is
of great importance since the dependence is exponential. The activation energies can

be deduced using the Arrhenius expression, given by Equation (6.1),

) (6.1)
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where o is the ionic conductivity, T is the absolute temperature [K], kp is the Boltz-
mann constant [J/K], E, is the activation energy [J] and A is the pre-exponential factor,
containing all the remaining factors mentioned earlier, i.e., other than the activation

energy, that influence the ionic conductivity.

Ions move through a crystal by hopping from an occupied site to a vacant
site. Hence, defects must be present for ion conductivity to occur. Two types of point
defects are the Schottky defect and the Frenkel defect, see Figure 6.2 [50]. A Schottky
defect is a defect in which a pair of ions, one cation and an anion, are missing in the
crystal, leaving their position vacant. A Frenkel defect occurs when a single ion is

missing from its regular position and is located at an interstitial site in the crystal [43].
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(a) Schottky defect (e.g., NaCl) (b) Frenkel defect (e.g., AgCl)

Figure 6.2: Point defects: The Schottky defect and the Frenkel defect.

There are three different conduction mechanism, using the vacant sites generated
by both the Schottky and Frenkel defects [43, 51].
1. Vacancy migration: Diffusion which occurs between vacancies.
2. Interstitial migration: Diffusion which occurs between interstitials.

3. Interstitialcy mechanism: Diffusion which occurs when an interstitial atom
displaces another atom from its original substitional site.
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6.3 Composite Ceramic Membranes

So the general idea is to replace the double-IEM configuration with polymeric
IEMs with a single-IEM configuration employing a ceramic NASICON membrane.
However, the major concern is the low ionic conductivity of NASICON, approximately
0.1 mS/cm, compared to the ionic conductivities of polymer IEMs, drastically lim-
iting the power density. In order to obtain high current densities, it is necessary to
produce thin components, reducing the resistance. However, the thickness required
for self-supporting ceramic membranes leads to a high resistance and increases the
energy consumption to unacceptable levels. There is a trade-off to make. Reducing
the membrane thickness increases the battery energy and power density (since the cell
resistance decreases), but at the same time lowers the mechanical strength. With the
ionic conductivity o fixed at that value, it can be seen from Equation (3.2) that by
decreasing the thickness of the membrane d, an acceptable area-specific resistance ASR

can be obtained. For instance, to achieve a value of 2 Q cm?

d=ASR x o0 =2 Qcm?® x 0.1 x 10*31 =0.0002 cm = 2 um (6.2)

cm

a thickness of 2 um is required, but this low thickness compromises the mechanical

strength of the membrane considerably.

Both the polymeric IEMs and the ceramic NASICON membranes have their
strengths and weaknesses. By employing a composite membrane, formed by a ceramic
NASICON thin film deposited onto an appropriate polymeric membrane or ceramic
membrane, the advantages of both polymeric IEMs (the mechanical flexibility and the
low electric resistance) and ceramic membranes (the high selectivity, due to the ability

to inhibit H" crossover) can be combined [28, 42].
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6.4 Future Work
In this chapter, the idea of using a composite membrane, where a ceramic NA-
SICON thin film is deposited onto a polymeric membrane or a ceramic membrane, is

proposed. To go further down this road, it is crucial to investigate

1. If the ceramic NASICON membrane is indeed super-selective. In other words,
an experiment needs to be conducted to make sure no H* /OH™ crossover occurs
across the membrane.

2. If the composite membrane is stable for a long time in acid-base aqueous solution.

3. If the mechanical strength of the composite membrane is sufficient.
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