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Abstract
Farmers need accurate estimates of winter cover crop biomass to make informed deci-

sions on termination timing or to estimate potential release of nitrogen from cover

crop residues to subsequent cash crops. Utilizing data from an extensive experiment

across 11 states from 2016 to 2020, this study explores the most reliable predictors

Abbreviations: CGDD, cumulative growing degree days; GLMM, generalized linear mixed effects model; PAR, photosynthetically active radiation.
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for determining cereal rye cover crop biomass at the time of termination. Our find-

ings demonstrate a strong relationship between early-season and late-season cover

crop biomass. Employing a random forest model, we predicted late-season cereal rye

biomass with a margin of error of approximately 1,000 kg ha−1 based on early-season

biomass, growing degree days, cereal rye planting and termination dates, photo-

synthetically active radiation, precipitation, and site coordinates as predictors. Our

results suggest that similar modeling approaches could be combined with remotely

sensed early-season biomass estimations to improve the accuracy of predicting winter

cover crop biomass at termination for decision support tools.

1 INTRODUCTION

Winter cover crops are increasingly being integrated into

crop rotations due to their multifaceted agroecosystem ben-

efits. Winter cover crops can reduce, and in some cases

reverse, the rate of soil erosion (Evans et al., 2020), and

they can also reduce nitrate leaching losses (Thapa, Mirsky,

et al., 2018). Cover crops suppress weeds through biotic com-

petition during growth phase, and physical impedance and

altered surface soil conditions post-termination (Menalled

et al., 2022). Cover crops also improve soil water infiltra-

tion rates (Basche & DeLonge, 2019), thereby increasing soil

water storage to buffer against negative effects of extreme pre-

cipitation events, which are increasing with climate change

(Basche et al., 2016; Gowda et al., 2018). In addition, resid-

ual nitrogen that might otherwise be susceptible to leaching

or denitrification can be scavenged by winter cover crops and

later released for the subsequent cash crop (Alonso-Ayuso

et al., 2018; Thapa, Tully, et al., 2022). However, the effi-

cacy of these benefits is contingent on winter cover crop

biomass accumulation; poorly established cover crops are

less effective at providing these benefits (Finney et al., 2016;

Jian et al., 2020). Conversely, excessively high winter crop

cover biomass can pose substantial management challenges

for farmers (O’Connell et al., 2015).

Decision support tools, such as the “Cover Crop N-

Calculator Tool” (https://covercrop-ncalc.org/), are available

to facilitate farmers in managing cover crop termination and

estimate nitrogen release from cover crop residue (Thapa,

Cabrera, et al., 2022). Models capable of predicting in-season

cover crop biomass accumulation from readily available data

are needed to inform decision support tools for cover crop and

nitrogen management. These tools can assist farmer’s deci-

sions about when to terminate cover crops to prevent excessive

biomass accumulation, and if they can reduce synthetic nitro-

gen fertilizer applications based on whether nitrogen will

be released from the cover crop residue. The potential for

nitrogen release from cereal rye monoculture residue may be

relatively low compared to cover crops mixtures with legumes

with higher aboveground N content and lower C:N ratios

(Thapa, Poffenbarger, et al., 2018; Thapa, Tully, et al., 2022).

However, we still lack accurate models to predict biomass

from cereal rye, which is the most common cover crop species

in the United States (CTIC et al., 2020).

Previous work has found that cereal rye biomass is sensitive

to termination timing, soil nitrogen availability, fall nitro-

gen application rates, general soil fertility, seeding method,

and length of growing season (Mirsky et al., 2017; Ruffo

et al., 2004; Ruis et al., 2019). In this study, we explored how

management and environmental factors can contribute to pre-

dict cereal rye (Secale cereale) cover crop biomass across

35 site-years of data throughout the eastern United States.

Our goals were to identify (1) which covariates best explain

variation in cereal rye cover crop biomass and (2) a mod-

eling approach with high accuracy that can be adapted for

future cover crop management decision support tools. Previ-

ous research has indicated that fall and spring growing degree

days and soil nitrogen availability are key determinants of late-

season cereal rye biomass (Kuo & Jellum, 2000; Mirsky et al.,

2017; Ryan et al., 2011). Despite soil nitrogen availability’s

role in determining late spring cereal rye biomass, it is an

expensive parameter to estimate. We hypothesized that early-

season cereal rye biomass would correlate with late-season

cereal rye biomass well enough to obviate measurement of

soil nitrogen availability for late-season biomass prediction.

2 MATERIALS AND METHODS

2.1 Field sites and operations

Cereal rye cover crop biomass data used in the modeling

approach were obtained from a field experiment conducted

on research farms in 11 states between 2016 and 2020 (as out-

lined in Table S1). Cereal rye was planted in 9.1 m by 12.2 m

plots in the late fall of each year, with four or five replicates

per site-year. Management practices (i.e., cereal rye variety,

seeding rates, and methods) specific to each site were based on
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local norms. Biomass samples were collected from two 0.5-

m2 quadrats in each plot at 6 weeks (hereafter referred to as

“early-season biomass”) and 2 weeks (“late-season biomass”)

prior to target dates for soybean planting. Cereal rye vari-

ety, planting date, and early and late-season biomass sampling

dates are summarized across sites and years in Table S2.

2.2 Data assembly and preparation

In addition to early-season biomass, which was hypothesized

to predict winter cover crop growth, weather variables related

to temperature and radiation were used to model late-season

biomass. Minimum and maximum air temperatures (˚C) and

shortwave incoming solar radiation (W m−2) were extracted

for each site-year on a daily basis at a spatial resolution of

0.125˚ by 0.125˚ from the North American Land Data Assim-

ilation System phase 2 dataset (Xia et al., 2012). Cumulative

growing degree days (CGDD) (−4.5˚C base) were calculated

over two time periods, and negative values were omitted (Pes-

sotto et al., 2023). “Early CGDD” and “early precipitation”

were summed between cereal rye planting date and early ter-

mination date (6 weeks prior to soybean planting), and “late

CGDD” and “late precipitation” were summed between early

termination and late termination date. Precipitation data were

extracted from the multi-radar/multi-sensor system (NOAA,

2023). Daily photosynthetically active radiation (PAR) was

calculated from shortwave radiation using the “sw.to.par”

function in the LakeMetabolizer v.1.5.0 R package (Winslow

et al., 2016). The mean of daily PAR was calculated for the

period between early and late cover crop termination dates.

2.3 Statistical analyses

2.3.1 Model selection to evaluate support
for each covariate

All predictor variables, early-season cereal rye biomass,

cereal rye planting date (Julian days), late termination date

(Julian days), mean PAR, and both early and late CGDD, were

standardized by subtracting the mean and dividing by the stan-

dard deviation of each variable (Gelman, 2008).We examined

all candidate predictor variables for collinearity using the vif
function in the car package (v3.0-10) (Fox et al., 2018) and

removed the precipitation variables because of their variance

inflation factor scores > 3 (Zuur et al., 2010). Site location

(which varied occasionally from year to year within states)

was input as a unique categorical variable for each set of field

location coordinates.

We fit a generalized linear mixed effects model (GLMM)

using the glmer function in the lme4 package (Bates et al.,

2015) with a Gaussian error distribution and log link function

Core Ideas
∙ Cereal rye winter cover crop biomass modeled on

data from 35 site-years.

∙ We found a strong relationship between early and

late-season biomass.

∙ Random forest model with early-season biomass

and weather data performed well.

∙ Similar approach could improve decision support

tools for cover crop management.

due to overdispersion in the response variable (late-season

cereal rye cover crop biomass in kg ha−1). We specified

a hierarchical model with random intercepts for each loca-

tion and for blocks (nested under each location) to address

the non-independence of repeated measurements within the

same locations and blocks through time (Pinheiro & Bates,

2000). We fit a “global” model with all covariates that

we hypothesized to be important, including early-season

cereal rye biomass, cereal rye planting date (in Julian days),

late termination date, mean PAR, and both early and late

CGDD. We visually assessed model assumptions of homo-

geneity of variance across groups and normality of fitted

residuals.

2.3.2 Random forest model and validation

To improve the accuracy of predictions, we also fit a ran-

dom forest machine learning model on the dataset using the

randomForest package v. 4.7–11 in R (Breiman, 2001; Liaw

& Wiener, 2002). We specified a random forest model with

the training parameters ntree set to 1000 and mtry set to 2

and included the same covariates as the GLMM, except we

included site latitude and longitude coordinates separately

rather than as categorical locations. Variable importance was

calculated with the randomForest package; variables were

ranked using %IncMSE, the mean decrease in prediction

accuracy on the out of bag samples as each variable is

randomly permuted.

The dataset was randomly partitioned so that the random

forest model was trained on 70% of the total data, and 30%

was withheld and used for model validation. We also used

the same data partition to validate a version of the “global

model” (GLMM) that was refitted to include only the train-

ing data. To assess how model performance varied across

“low” and “high” cover crop biomass values, we evaluated it

separately for “low” biomass observations of 4000 kg ha−1

or less and “high” cereal rye biomass values greater than

4000 kg ha−1.
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F I G U R E 1 Late-season cereal rye biomass by state across all years (a) and late-season vs. early-season cereal rye biomass by state across all

years (b). Arkansas (AR), Delaware (DE), Illinois (IL), Louisiana (LA), Maryland (MD), Minnesota (MN), Missouri (MO), North Carolina (NC),

Nebraska (NE), Texas (TX), and Virginia (VA).

3 RESULTS AND DISCUSSION

Early-season cereal rye biomass had the strongest correla-

tion to late-season cereal rye biomass (0.71), followed by

late CGDD (0.38) (Figure S1). In contrast, mean PAR had

the weakest correlation with late-season biomass (>−0.01)

(Figure S1). Notably, late-season biomass performance var-

ied across states, with generally better biomass production

in Maryland, Louisiana, and Missouri and generally low per-

formance in Minnesota, Arkansas, and Nebraska (Figure 1a).

Interestingly, the relationship between early-season biomass

and late-season biomass varied across states but appeared to

cluster within site-year (Figure 1b), suggesting the impor-

tance of cover crop establishment and early-season biomass

in determining final late-season biomass.

The significant variables in the GLMM with effect size

estimates not overlapping zero were late CGDD, early-season

biomass, mean PAR, and cereal rye planting date (Figure 2a).

After controlling for differences by location in the ran-

dom effects, the GLMM suggested that the fixed effects of

late CGDD, mean, and early-season biomass had positive

effects on late-season cereal rye biomass, whereas increases

in cereal rye planting dates (i.e., later dates) had a neg-

ative effect (Figure 2a). The random forest model ranked

early-season biomass as the most important variable, fol-

lowed by termination date, longitude, and cereal rye planting

date (Figure 2b). Previous studies have also identified the

importance of cereal rye planting and termination dates on

cereal rye biomass (Mirsky et al., 2011; Nord et al., 2011),

and both modeling approaches suggested that there is a

strong relationship between early and late-season cover crop

biomass.

Our results corroborate the strength of the relationship

between early and late-season cereal rye biomass across 35

site-years, thereby extending the geographical range exam-

ined in previous studies (Mirsky et al., 2017). Decision

support tools for farmers could feasibly incorporate algo-

rithms based on estimates of early-season cover crop biomass

from proximal or remote sensing (Jennewein et al., 2022;

Thieme et al., 2023). It is worth noting that the remote-sensing

approaches are currently limited to a ceiling of ∼1900 kg

ha−1 biomass due to the saturation of vegetation index-based

cover crop biomass estimation (Jennewein et al., 2022). In our

dataset, a substantial 207 observations, or 83% of our data,

fell below this biomass threshold. In the future, early-season

biomass estimates could be derived from imagery early in the

spring, before this saturation point, and used in these models

to predict cereal rye biomass accumulation at later termination

dates.

With these high-quality data from a large, replicated study

across many site-years, we achieved moderately accurate pre-

dictions of late-season cereal rye biomass (Figure 2f). For

lower biomass observations, the model tended to overpredict

biomass, and the root mean square error (RMSE) constitutes a

more significant proportion of cereal rye biomass levels com-

pared to high biomass observations. Both the GLMM and

random forest models were validated using a randomly with-

held “test” dataset, which constituted 30% of the original data.
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F I G U R E 2 Variable importance summaries and model performance from the “global” generalized linear mixed effects model (GLMM) and

random forest (RF) models. Effect size estimates from the GLMM, where all covariates were standardized and significant relationships are indicated

by *p < 0.05, **p < 0.01, and ***p < 0.001 (a). Variable importance plot from the RF model; %IncMSE is the mean decrease in prediction accuracy

on the out of bag samples as each variable is randomly permuted (b). Model performance as measured by root mean square error (RMSE) and R2

values model prediction on validation observations (n = 75, or 30% of the original dataset) for the GLMM for low biomass observations of 4000 kg

ha−1 or less (c), RF model for low biomass observations of 4000 kg ha−1 or less (d), GLMM for high biomass observations above 4000 kg ha−1 (e),

and RF model for high biomass observations above 4000 kg ha−1 (f). Linear model fits are displayed as blue solid lines with shaded 95% confidence

intervals, and the dashed red line is the 1:1 line (c–f). CGDD, cumulative growing degree days; PAR, photosynthetically active radiation.

The GLMM’s predictions as compared to the observations

had an RMSE of 1,378 kg ha−1 and R2 of 0.28 for low biomass

observations (Figure 2c) and RMSE of 2,336 kg ha−1 and R2

of 0.43 for high biomass observations (Figure 2e), whereas

the random forest model achieved a markedly lower RMSE of

962 kg ha−1 and R2 value of 0.40 for low biomass (Figure 2d)

and an RSME of 1,086 kg ha−1 and R2 value of 0.72 for high

biomass observations (Figure 2f).
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4 CONCLUSION

nTo support the adoption and improve management of win-

ter cover crops, we need to equip farmers with predictive

tools. These tools should facilitate in-season winter cover crop

biomass prediction to optimize management for various goals

such as soil moisture, N availability, and weed suppression.

In this study, we found that late-season cereal rye biomass

could be predicted within approximately 1,000 kg ha−1 with

relatively few data inputs—early-season cereal rye biomass,

cereal rye planting date, termination date, CGDD, precipi-

tation, late PAR, and site coordinates. This level of error is

considerable for sites with low biomass levels. However, the

results are a promising advance for relatively high cereal rye

biomass producing sites, which may be more likely to rely on

decision support tools for agronomic management decisions.

Moreover, we anticipate that integrating more geospatial vari-

ables, such as soil type and remotely sensed normalized

difference vegetation index estimates of early-season cereal

rye biomass, may predict the full range of cereal rye biomass

values more accurately. In the future, similar approaches

can be improved upon using new datasets, particularly with

data on more complex cover crop systems such as cereal-

legume mixtures, which may have greater ecosystem service

benefits.

AU T H O R C O N T R I B U T I O N S
Alexandra Huddell: Conceptualization; formal analysis;

investigation; methodology; software; validation; visualiza-

tion; writing—original draft; writing—review and editing.

Brian Needelman: Conceptualization; funding acquisition;

project administration; resources; supervision; writing—

original draft; writing—review and editing. Eugene P.
Law: Data curation; writing—original draft; writing—review

and editing. Victoria J. Ackroyd: Funding acquisition;

investigation; project administration; writing—review and

editing. Muthukumar V. Bagavathiannan: Investigation;

writing—review and editing. Kevin Bradley: Investigation;

writing—review and editing. Adam S. Davis: Investigation;

writing—review and editing. Jeffery A. Evans: Investiga-

tion; writing—review and editing. Wesley Jay Everman:

Investigation; writing—review and editing. Michael Fless-
ner: Investigation; writing—review and editing. Nicholas
Jordan: Investigation; writing—review and editing. Lau-
ren M. Schwartz-Lazaro: Investigation; writing—review

and editing. Ramon G. Leon: Investigation; writing—review

and editing. John Lindquist: Investigation; writing—review

and editing. Jason K. Norsworthy: Investigation; writing—

review and editing. Lovreet S. Shergill: Investigation;

writing—review and editing. Mark VanGessel: Investiga-

tion; writing—review and editing. Steven B. Mirsky: Fund-

ing acquisition; investigation; supervision; writing—review

and editing.

A C K N O W L E D G M E N T S
This study was made possible by funding from USDA

Area-Wide Pest Management (Project Number 8042-22000-

16600D), USDA Natural Resources Conservation Service

Conservation Innovation Grants (award no. # NR21-13G022),

and Hatch Project (award no. MD-ENST-22008).

C O N F L I C T O F I N T E R E S T S T AT E M E N T
The authors declare no conflicts of interest.

D AT A AVA I L A B I L I T Y S T AT E M E N T
The data and code used in this article can be accessed at

the following repository link: https://doi.org/10.5061/dryad.

ngf1vhj1r

O R C I D
Alexandra Huddell https://orcid.org/0000-0002-6289-

6290

Eugene P. Law https://orcid.org/0000-0001-9995-2316

Michael Flessner https://orcid.org/0000-0002-2854-008X

Ramon G. Leon https://orcid.org/0000-0002-1924-3331

Lovreet S. Shergill https://orcid.org/0000-0002-3061-

421X

R E F E R E N C E S
Alonso-Ayuso, M., Quemada, M., Vanclooster, M., Ruiz-Ramos, M.,

Rodriguez, A., & Gabriel, J. L. (2018). Assessing cover crop man-

agement under actual and climate change conditions. Science of
the Total Environment, 621, 1330–1341. https://doi.org/10.1016/j.

scitotenv.2017.10.095

Basche, A. D., & DeLonge, M. S. (2019). Comparing infiltration rates in

soils managed with conventional and alternative farming methods: A

meta-analysis. PLoS One, 14(9), e0215702. https://doi.org/10.1371/

journal.pone.0215702

Basche, A. D., Kaspar, T. C., Archontoulis, S. V., Jaynes, D. B., Sauer,

T. J., Parkin, T. B., & Miguez, F. E. (2016). Soil water improvements

with the long-term use of a winter rye cover crop. Agricultural Water
Management, 172, 40–50. https://doi.org/10.1016/j.agwat.2016.04.

006

Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting lin-

ear mixed-effects models using lme4. Journal of Statistical Software,

67(1), 1–48. https://doi.org/10.18637/jss.v067.i01

Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.

https://doi.org/10.1023/A:1010933404324

CTIC, SARE, & ASTA. (2020). Annual report 2019–2020 national
cover crop survey. Conservation Technology Information Center.

https://www.sare.org/wp-content/uploads/2019-2020-National-

Cover-Crop-Survey.pdf

Evans, D. L., Quinton, J. N., Davies, J. A. C., Zhao, J., & Govers, G.

(2020). Soil lifespans and how they can be extended by land use and

management change. Environmental Research Letters, 15(9), 0940b2.

https://doi.org/10.1088/1748-9326/aba2fd

Finney, D. M., White, C. M., & Kaye, J. P. (2016). Biomass production

and carbon/nitrogen ratio influence ecosystem services from cover

crop mixtures. Agronomy Journal, 108(1), 39–52. https://doi.org/10.

2134/agronj15.0182

Version of Record at: https://doi.org/10.1002/ael2.20121

https://doi.org/10.5061/dryad.ngf1vhj1r
https://doi.org/10.5061/dryad.ngf1vhj1r
https://orcid.org/0000-0002-6289-6290
https://orcid.org/0000-0002-6289-6290
https://orcid.org/0000-0002-6289-6290
https://orcid.org/0000-0001-9995-2316
https://orcid.org/0000-0001-9995-2316
https://orcid.org/0000-0002-2854-008X
https://orcid.org/0000-0002-2854-008X
https://orcid.org/0000-0002-1924-3331
https://orcid.org/0000-0002-1924-3331
https://orcid.org/0000-0002-3061-421X
https://orcid.org/0000-0002-3061-421X
https://orcid.org/0000-0002-3061-421X
https://doi.org/10.1016/j.scitotenv.2017.10.095
https://doi.org/10.1016/j.scitotenv.2017.10.095
https://doi.org/10.1371/journal.pone.0215702
https://doi.org/10.1371/journal.pone.0215702
https://doi.org/10.1016/j.agwat.2016.04.006
https://doi.org/10.1016/j.agwat.2016.04.006
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.1023/A:1010933404324
https://www.sare.org/wp-content/uploads/2019-2020-National-Cover-Crop-Survey.pdf
https://www.sare.org/wp-content/uploads/2019-2020-National-Cover-Crop-Survey.pdf
https://doi.org/10.1088/1748-9326/aba2fd
https://doi.org/10.2134/agronj15.0182
https://doi.org/10.2134/agronj15.0182


HUDDELL ET AL. 7 of 8

Fox, J., Weisberg, S., & Price, B. (2018). Companion to applied

regression (3.0-0) [Computer software]. https://r-forge.r-project.org/

projects/car/

Gelman, A. (2008). Scaling regression inputs by dividing by two stan-

dard deviations. Statistics in Medicine, 27(15), 2865–2873. https://

doi.org/10.1002/sim.3107

Gowda, P., Steiner, J. L., Olson, C., Boggess, M., Farrigan, T., & Grusak,

M. A. (2018). Agriculture and rural communities. In D. R. Reidmiller,

C. W. Avery, D. R. Easterling, K. E. Kunkel, K. L. M. Lewis, T. K.

Maycock, & B. C. Stewart (Eds.), Impacts, risks, and adaptation in
the United States: Fourth national climate assessment (Vol 2, pp. 391–

437). U.S. Global Change Research Program. https://doi.org/10.7930/

NCA4.2018.CH10

Jennewein, J. S., Lamb, B. T., Hively, W. D., Thieme, A., Thapa, R.,

Goldsmith, A., & Mirsky, S. B. (2022). Integration of satellite-based

optical and synthetic aperture radar imagery to estimate winter cover

crop performance in cereal grasses. Remote Sensing, 14(9), Article

2077. https://doi.org/10.3390/rs14092077

Jian, J., Du, X., Reiter, M. S., & Stewart, R. D. (2020). A meta-analysis of

global cropland soil carbon changes due to cover cropping. Soil Biol-
ogy and Biochemistry, 143, 107735. https://doi.org/10.1016/j.soilbio.

2020.107735

Kuo, S., & Jellum, E. J. (2000). Long-term winter cover cropping effects

on corn (Zea mays L.) production and soil nitrogen availability. Biol-
ogy and Fertility of Soils, 31(6), 470–477. https://doi.org/10.1007/

s003740000193

Liaw, A., & Wiener, M. (2002). Classification and regression by

randomForest. R News, 2(3), 18–22.

Menalled, U. D., Adeux, G., Cordeau, S., Smith, R. G., Mirsky, S. B.,

& Ryan, M. R. (2022). Cereal rye mulch biomass and crop density

affect weed suppression and community assembly in no-till planted

soybean. Ecosphere, 13(6), e4147. https://doi.org/10.1002/ecs2.4147

Mirsky, S. B., Curran, W. S., Mortenseny, D. M., Ryany, M. R., &

Shumway, D. L. (2011). Timing of cover-crop management effects on

weed suppression in no-till planted soybean using a roller-crimper.

Weed Science, 59(3), 380–389. https://doi.org/10.1614/WS-D-10-

00101.1

Mirsky, S. B., Spargo, J. T., Curran, W. S., Reberg-Horton, S. C., Ryan,

M. R., Schomberg, H. H., & Ackroyd, V. J. (2017). Characterizing

cereal rye biomass and allometric relationships across a range of

fall available nitrogen rates in the eastern United States. Agronomy
Journal, 109(4), 1520–1531. https://doi.org/10.2134/agronj2016.09.

0557

NOAA. (2023). NOAA Multi-Radar/Multi-Sensor System (MRMS).
https://registry.opendata.aws/noaa-mrms-pds

Nord, E. A., Curran, W. S., Mortensen, D. A., Mirsky, S. B., & Jones,

B. P. (2011). Integrating multiple tactics for managing weeds in

high residue no-till soybean. Agronomy Journal, 103(5), 1542–1551.

https://doi.org/10.2134/agronj2011.0024

O’Connell, S., Grossman, J. M., Hoyt, G. D., Shi, W., Bowen, S.,

Marticorena, D. C., Fager, K. L., & Creamer, N. G. (2015). A sur-

vey of cover crop practices and perceptions of sustainable farmers

in North Carolina and the surrounding region. Renewable Agri-
culture and Food Systems, 30(6), 550–562. https://doi.org/10.1017/

S1742170514000398

Pessotto, M. V., Roberts, T. L., Bertucci, M., dos Santos, C., Ross,

J., & Savin, M. (2023). Determining cardinal temperatures for eight

cover crop species. Agrosystems, Geosciences & Environment, 6(3),

e20393. https://doi.org/10.1002/agg2.20393

Pinheiro, J. C., & Bates, D. M. (2000). Linear mixed-effects models:

Basic concepts and examples. In J. Chambers, W. Eddy, W. Hardle,

S. Sheather, & L. Tiemey (Eds.), Mixed-effects models in s and s-plus

(pp. 3–56). Springer.

Ruffo, M. L., Bullock, D. G., & Bollero, G. A. (2004). Soybean yield as

affected by biomass and nitrogen uptake of cereal rye in winter cover

crop rotations. Agronomy Journal, 96(3), 800–805. https://doi.org/10.

2134/agronj2004.0800

Ruis, S. J., Blanco-Canqui, H., Creech, C. F., Koehler-Cole, K.,

Elmore, R. W., & Francis, C. A. (2019). Cover crop biomass

production in temperate agroecozones. Agronomy Journal,
111(4), 1535–1551. https://doi.org/10.2134/agronj2018.08.

0535

Ryan, M. R., Curran, W. S., Grantham, A. M., Hunsberger, L. K., Mirsky,

S. B., Mortensen, D. A., Nord, E. A., & Wilson, D. O. (2011). Effects

of seeding rate and poultry litter on weed suppression from a rolled

cereal rye cover crop. Weed Science, 59(3), 438–444. https://doi.org/

10.1614/WS-D-10-00180.1

Thapa, R., Cabrera, M., Reberg-Horton, C., Dann, C., Balkcom, K. S.,

Fleisher, D., Gaskin, J., Hitchcock, R., Poncet, A., Schomberg, H.

H., Timlin, D., & Mirsky, S. B. (2022). Modeling surface residue

decomposition and N release using the cover crop nitrogen calculator

(CC-NCALC). Nutrient Cycling in Agroecosystems, 124(1), 81–99.

https://doi.org/10.1007/s10705-022-10223-3

Thapa, R., Mirsky, S. B., & Tully, K. L. (2018). Cover crops reduce

nitrate leaching in agroecosystems:a global meta-analysis. Journal
of Environmental Quality, 47(6), 1400–1411. https://doi.org/10.2134/

jeq2018.03.0107

Thapa, R., Poffenbarger, H., Tully, K. L., Ackroyd, V. J., Kramer, M.,

& Mirsky, S. B. (2018). Biomass production and nitrogen accumula-

tion by hairy vetch–Cereal rye mixtures: A meta-analysis. Agronomy
Journal, 110(4), 1197–1208. https://doi.org/10.2134/agronj2017.09.

0544

Thapa, R., Tully, K. L., Reberg-Horton, C., Cabrera, M., Davis, B.

W., Fleisher, D., Gaskin, J., Hitchcock, R., Poncet, A., Schomberg,

H. H., Seehaver, S. A., Timlin, D., & Mirsky, S. B. (2022). Cover

crop residue decomposition in no-till cropping systems: Insights

from multi-state on-farm litter bag studies. Agriculture, Ecosystems
& Environment, 326, 107823. https://doi.org/10.1016/j.agee.2021.

107823

Thieme, A., Hively, W. D., Gao, F., Jennewein, J., Mirsky, S.,

Soroka, A., Keppler, J., Bradley, D., Skakun, S., & McCarty,

G. W. (2023). Remote sensing evaluation of winter cover crop

springtime performance and the impact of delayed termination.

Agronomy Journal, 115(1), 442–458. https://doi.org/10.1002/agj2.

21207

Winslow, L. A., Zwart, J. A., Batt, R. D., Dugan, H. A., Woolway, R. I.,

Corman, J. R., & Read, J. S. (2016). LakeMetabolizer: An R package

for estimating lake metabolism from free-water oxygen using diverse

statistical models. Inland Waters, 6(4), 622–636.

Xia, Y., Mitchell, K., Ek, M., Sheffield, J., Cosgrove, B., Wood, E.,

Luo, L., Alonge, C., Wei, H., Meng, J., Livneh, B., Lettenmaier,

D., Koren, V., Duan, Q., Mo, K., Fan, Y., & Mocko, D. (2012).

Continental-scale water and energy flux analysis and validation for

the North American land data assimilation system project phase 2

Version of Record at: https://doi.org/10.1002/ael2.20121

https://r-forge.r-project.org/projects/car/
https://r-forge.r-project.org/projects/car/
https://doi.org/10.1002/sim.3107
https://doi.org/10.1002/sim.3107
https://doi.org/10.7930/NCA4.2018.CH10
https://doi.org/10.7930/NCA4.2018.CH10
https://doi.org/10.3390/rs14092077
https://doi.org/10.1016/j.soilbio.2020.107735
https://doi.org/10.1016/j.soilbio.2020.107735
https://doi.org/10.1007/s003740000193
https://doi.org/10.1007/s003740000193
https://doi.org/10.1002/ecs2.4147
https://doi.org/10.1614/WS-D-10-00101.1
https://doi.org/10.1614/WS-D-10-00101.1
https://doi.org/10.2134/agronj2016.09.0557
https://doi.org/10.2134/agronj2016.09.0557
https://registry.opendata.aws/noaa-mrms-pds
https://doi.org/10.2134/agronj2011.0024
https://doi.org/10.1017/S1742170514000398
https://doi.org/10.1017/S1742170514000398
https://doi.org/10.1002/agg2.20393
https://doi.org/10.2134/agronj2004.0800
https://doi.org/10.2134/agronj2004.0800
https://doi.org/10.2134/agronj2018.08.0535
https://doi.org/10.2134/agronj2018.08.0535
https://doi.org/10.1614/WS-D-10-00180.1
https://doi.org/10.1614/WS-D-10-00180.1
https://doi.org/10.1007/s10705-022-10223-3
https://doi.org/10.2134/jeq2018.03.0107
https://doi.org/10.2134/jeq2018.03.0107
https://doi.org/10.2134/agronj2017.09.0544
https://doi.org/10.2134/agronj2017.09.0544
https://doi.org/10.1016/j.agee.2021.107823
https://doi.org/10.1016/j.agee.2021.107823
https://doi.org/10.1002/agj2.21207
https://doi.org/10.1002/agj2.21207


8 of 8 HUDDELL ET AL.

(NLDAS-2): 1. Intercomparison and application of model products.

Journal of Geophysical Research, 117, D03109. https://doi.org/10.

1029/2011JD016048

Zuur, A. F., Ieno, E. N., & Elphick, C. S. (2010). A protocol for data

exploration to avoid common statistical problems. Methods in Ecol-
ogy and Evolution, 1(1), 3–14. https://doi.org/10.1111/j.2041-210X.

2009.00001.x

S U P P O R T I N G I N F O R M AT I O N
Additional supporting information can be found online in the

Supporting Information section at the end of this article.

How to cite this article: Huddell, A., Needelman, B.,

Law, E. P., Ackroyd, V. J., Bagavathiannan, M. V.,

Bradley, K., Davis, A. S., Evans, J. A., Everman, W.

J., Flessner, M., Jordan, N., Schwartz-Lazaro, L. M.,

Leon, R. G., Lindquist, J., Norsworthy, J. K., Shergill,

L. S., VanGessel, M., & Mirsky, S. B. (2024).

Early-season biomass and weather enable robust

cereal rye cover crop biomass predictions.

Agricultural & Environmental Letters, 9, e20121.

https://doi.org/10.1002/ael2.20121

Version of Record at: https://doi.org/10.1002/ael2.20121

https://doi.org/10.1029/2011JD016048
https://doi.org/10.1029/2011JD016048
https://doi.org/10.1111/j.2041-210X.2009.00001.x
https://doi.org/10.1111/j.2041-210X.2009.00001.x
https://doi.org/10.1002/ael2.20121

	Early-season biomass and weather enable robust cereal rye cover crop biomass predictions
	Abstract
	1 | INTRODUCTION
	2 | MATERIALS AND METHODS
	2.1 | Field sites and operations
	2.2 | Data assembly and preparation
	2.3 | Statistical analyses
	2.3.1 | Model selection to evaluate support for each covariate
	2.3.2 | Random forest model and validation


	3 | RESULTS AND DISCUSSION
	4 | CONCLUSION
	AUTHOR CONTRIBUTIONS
	ACKNOWLEDGMENTS
	CONFLICT OF INTEREST STATEMENT
	DATA AVAILABILITY STATEMENT

	ORCID
	REFERENCES
	SUPPORTING INFORMATION




