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Abstract� The classical solutions of the Helmholtz equation resulting from the separation�of�variables

procedure in spherical co�ordinates are frequently used in one way or another to approximate other solutions�

In particular� traces and�or normal derivatives of certain sequences of these spherical�separable solutions are

commonly used as trial� and test�functions in Galerkin procedures for the approximate solution of boundary�

operator problems arising from the reformulation of exterior or interior boundary�value problems and set

on the boundary � of the domain where a solution is wanted� While the completeness properties of these

traces and normal derivatives in the usual Hilbert space L
�
��� are well known� their basis properties are not�

We show that such sequences of traces or normal derivatives of the outgoing spherical�separable solutions

form bases for L
�
��� only when � is a sphere centered at the pole of the spherical solutions� corresponding

results are given for the entire solutions� accounting for the possibility of an interior eigenvalue� We identify

other Hilbert spaces� connected with the far�	eld pattern� for which these functions do provide bases� We

apply the results to discuss some aspects of the Waterman schemes for approximate solution of scattering

problems �the so�called 
T �matrix method��� including the previous article of Kristensson� Ramm� and

Str�om �J� Math� Phys��� ��
���� ���
������ on the convergence of such methods�
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�� Introduction�

Boundary	value problems for the Helmholtz equation

�u� ��u � � �����

in either an interior domain �� in R� or the corresponding exterior domain �� �� R� n �� �with

a radiation condition� are frequently replaced by equivalent boundary	operator problems set on

the boundary � �� ��� � ���� In the construction of approximate solutions for the reformulated

problems� trial and�or test functions are sometimes generated from the traces and normal derivatives

on � of certain countable families of spherical�wave functions � i�e�� those special solutions of �����

that result from separating the variables in spherical co�ordinates� In the analysis and validation

of such approximation schemes� it is frequently enough to know that one or more of these families

of traces and normal derivatives have the properties of linear independence and �completeness
 in

an appropriate Hilbert space of functions de
ned on the boundary �� as usual� by completeness we

mean that the linear span of the family is dense in the Hilbert space� For de
niteness� let us suppose

that the Hilbert space of interest is the familiar space L����� comprising those complex functions

on � with square	integrable moduli� Since the completeness properties of the traces and normal

derivatives of such collections of spherical wave	functions are already fairly well known in the latter

space� in many cases there is no di�culty in verifying the required hypothesis�

However� in other instances one needs to know�or 
nds it convenient to assume�that such a

countable collection of traces or normal derivatives of spherical	separable solutions actually enjoys

the much stronger property of forming a basis for L����� For example� one strategy consists in hy	

pothesizing the required basis property� proving the desired convergence result� and later attempting

to identify domains �� for which the basis property�and so also the convergence proof�holds�

Moreover� it is not uncommon to 
nd unsubstantiated and even erroneous claims arising from

confusion about the basis property in the heuristic sorts of arguments that are sometimes used

to motivate experimentation with one or another algorithm� For example� a number of papers on

the Waterman ���� schemes for approximate solution of problems in obstacle scattering contain

statements that are at best misleading and at worst simply incorrect� owing to tacit claims about

the validity of certain in
nite	series expansions� There� the di�culty sometimes arises also from

confusion about the very meanings of the completeness property and the basis property� it is common

to 
nd the former mistakenly assumed either to imply or to be synonymous with the latter� so that

a number of writers have incorrectly asserted the existence of series representations in terms of

spherical	wave traces or normal derivatives merely on the strength of the completeness property�

In such cases� practically every ensuing �conclusion
 is either incorrect or holds only for certain

geometries� The e�ect of all this has been the propagation of confusion in the literature on �T 	

matrix methods
 to an extent that is now extremely di�cult to overcome�

In any event� a de
nitive statement concerning the basis properties of the traces and normal

derivatives of the spherical	wave functions in L���� has apparently been lacking to this point� In

fact� it seems that the basis questions have been settled only for the simplest case� in which the

underlying domain �� is a ball centered at the pole of the spherical	separable solutions� there� the

traces and normal derivatives form orthogonal families in L����� so that the basis property does turn

out to be implied by the completeness property� Consequently� in view of the previous remarks� it

is not surprising to 
nd that this gap has led to an accumulation of open questions and conjectures

�



about the motivation and heuristic justi
cation� to say nothing of the convergence properties� of

various approximate	solution schemes that employ the spherical	wave functions�

As the 
rst main result of this note� it is proven that certain sequences of traces and normal

derivatives of the outgoing spherical	wave functions form bases for L���� only in the classically well	

known case in which the boundary � is a sphere centered at the pole� the appropriately quali
ed

corresponding assertions for the regular spherical	wave functions are also established� Convergence

proofs that have relied on the basis property in L���� must then be interpreted accordingly� since they

will be known to apply only in the spherical	domain setting� On the other hand� we identify a weaker

sense in which the outgoing functions do form bases� viz �� with respect to an inner product that

is intimately connected with the far	
eld patterns of outgoing solutions of ������ Interspersed with

these results� we remark on a few of their implications for previous work concerning the Waterman

schemes for approximate solution of scattering problems� in ���� and �����
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�� Notations� statement of the main basis result�

This section is devoted to the introduction of some notation� a review of the simplest de
nitions and

results about bases in Hilbert spaces� and a statement of the L����	basis properties that we shall

establish�

Throughout� we suppose �� to be a bounded and connected regularly open subset of R� for

which the corresponding exterior domain �� �� R� n�� is also connected� The common boundary

� �� ��� � ��� we take to be of class C���� and we denote by n the continuous unit	normal


eld for � that is oriented toward the exterior domain ��� We suppose in Sections �� that the

�wavenumber
 parameter � in ����� is complex and nonzero� with nonnegative imaginary part�

however� in Sections � and � we shall require � to be real and positive� The trace and normal

derivative on � of an appropriate function u de
ned either in �� or in �� we indicate by uj� and

u�n� respectively�

To introduce the two families of spherical	separable solutions of ����� that we study here� we

begin by 
xing a point O � �� to serve as the pole of a spherical co�ordinate system for R� � The 
rst

family
�
V �O
lm

�� m � �l� � � � � l� l � �� �� �� � � �
�
comprises outgoing solutions of ����� in R� n fOg

�and so must have singularities at O�� in particular� each function is a solution of ����� in all of

��� As always� a solution u of ����� in an exterior domain is said to be outgoing if it satis
es the

Sommerfeld radiation condition

lim
���

�
�
�e � gradu�O � ��e�� i�u�O � ��e�

�
� � uniformly for �e � !�� �����

with !� denoting throughout the surface of the unit ball in R� � Speci
cally� using the spherical

Hankel functions of the 
rst kind h
���
l � for the indicated pairs �l�m� we set

V �O
lm �x� ��

p
�h

���
l

�
�jx�Oj�bYlm� x�O

jx�Oj
�

for x �� O�

here� the spherical	surface harmonics
� bYlm �� m � �l� � � � � l� l � �� �� �� � � �

�
with bYlm of order

l� are chosen to form a complete and orthonormal set in the usual Hilbert space L��!�� associated

with the Lebesgue measure on the unit sphere� For de
niteness� we take

bYlm��e� ��

�
�l� �

���� � ��m�

�l � jmj�"
�l � jmj�"

� �
�

P
jmj
l �cos��e�

	

�

sinm��e if m 	 �

cosm��e if m � �
whenever �e � !��

with ���e� ��e� indicating the usual spherical co�ordinates of �e relative to a 
xed co�ordinate system

having pole at the origin� Pm
l denotes the associated Legendre function of order m and degree l �on

the cut�
 as it is de
ned in� e�g�� ���� One then checks easily that each bYlm is of unit norm in L��!���

owing to the indicated choice of normalizing coe�cients�

The second family
�
RegV �O

lm

�� m � �l� � � � � l� l � �� �� �� � � �
�

uses instead the spherical

Bessel functions of the 
rst kind jl� and so consists of entire solutions of ������ we put

Reg V �O
lm �x� ��

p
� jl
�
�jx�Oj�bYlm� x�O

jx�Oj
�

for x �� O�

and set the value of RegV �O
lm �O� to ensure continuity at the pole� When we assume that � is real

we shall have RegV �O
lm � ReV �O

lm � since we are using a family of real spherical harmonics�
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We choose once and for all a bijection n �� �
l��n��m��n�

�
carrying the positive integers onto the

set
�
�l�m�

�� m � �l� � � � � l� l � �� �� �� � � �
�
� Throughout�

�
V �O
n

��
n��

then denotes the resultant

single	indexing of the family
�
V �O
lm

�
� i�e�� we set V �O

n �� V �O
l��n�m��n� for each positive integer n� Of

course� we use the same single	index notation for the entire solutions�

For the convenience of the reader� we review the de
nition and most fundamental facts con	

cerning bases in the Hilbert	space setting� we have no need for the more general developments in

a Banach space� One can consult� e�g�� Young ���� or Marti ���� for more details and complete

proofs of the results cited� Throughout�
�
H� � � � � �H

�
denotes a separable complex Hilbert space

that we suppose to be of in
nite dimension� Since there is confusion in some of the literature on

applications concerning the distinction between the completeness and basis properties� we give the

de
nitions of both terms�

De
nitions� Let �fn�
�
n�� be a sequence from H � Then �fn�

�
n�� is complete in H i� its linear span

sp
�
fn
��
n��

��
n NX

j��

cjfj

��� N a positive integer� cj � C for j � �� � � � � N
o

is dense in H � i�e�� i� for any h � H there exists a sequence from sp
�
fn
��
n��

converging to h in the

norm of H � The sequence �fn�
�
n�� is a Schauder basis for H i� there corresponds to each h � H a

unique sequence of scalars
�
#n�h�

��
n��

such that the representation

h �

�X
n��

#n�h�fn

holds with convergence in the norm k � kH �

Alternately� one can characterize a complete sequence as one whose orthogonal complement in

H is the trivial subspace� Henceforth� the term �basis
 shall mean �Schauder basis�
 Obviously�

a basis �fn�
�
n�� for H forms a linearly independent set and is complete in H � However� the basis

property is far stronger than the completeness property� in particular� the examples here will show

that the completeness property does not imply the basis property�

Now let �fn�
�
n�� be a basis for H � One can show that each member of the associated family�

#n

��
n��

of �linear� coe�cient functionals is bounded� it follows that there is a unique sequence

�f�n�
�
n�� in H such that #n�h� � �h� f�n�H for each n and h � H � the representations therefore

appear as

h �

�X
n��

�
h� f�n

�
H
fn for each h � H �

It is easy to see that �fn�
�
n�� and �f�n�

�
n�� form a biorthonormal pair� i�e�� �fm� f

�
n�H � �mn for all

m and n� while it can be shown that �f�n�
�
n�� also comprises a basis for H �

It is also useful to recall the fundamental property of �minimality�
 which is a type of strength	

ening of the property of linear independence�

De
nition� A sequence �fn�
�
n�� from H is minimal in H i�� for each m� fm does not belong to the

closure sp
�
fn
�� n �� m

�
of the linear span of the other elements of the sequence�

It is important to expose the intimate connection between the property of minimality and the

existence of a biorthonormal sequence�

 



Lemma ���� Let �fn�
�
n�� be a sequence from the separable� in�nite�dimensional Hilbert space H �

�i �� �fn�
�
n�� possesses a biorthonormal sequence in H i� it is minimal in H �

�ii �� Let �fn�
�
n�� be minimal in H � There is precisely one biorthonormal sequence for �fn�

�
n��

in H i� �fn�
�
n�� is also complete in H �

Proof � �i�� Let �fn�
�
n�� be minimal in H � Choose any positive integer m� the closed span Mm ��

sp
�
fn
�� n �� m

�
is a proper subspace of H � since it does not contain fm� With Qm denoting

the H	orthoprojector onto the orthogonal complement H � Mm� let f�m ��
��Qmfm

����
H
Qmfm�

Then
�
fn� f

�
m

�
H

� � for n � m� but � � for n �� m� Clearly� this implies the existence of a

biorthonormal sequence for �fn�
�
n�� in H � Conversely� suppose that �fn�

�
n�� has a biorthonormal

sequence �f�n�
�
n�� but is not minimal� so that there is some m and a sequence

�
F
�m�
n

��
n��

from

sp
�
fn
�� n �� m

�
with F

�m�
n � fm in the norm of H as n � �� Then we should 
nd that�

fm� f
�
m

�
H

� limn��

�
F
�m�
n � f�m

�
H

� �� contradicting the equality
�
fm� f

�
m

�
H

� �� We conclude

that the existence of a biorthonormal sequence implies the property of minimality�

�ii�� By the 
rst statement� �fn�
�
n�� possesses a biorthonormal sequence �f�n�

�
n��� Suppose that

�fn�
�
n�� is not complete in H � Then there is a nonzero f�� in the orthogonal complement H �

sp
�
fn
��
n��

� and the sequence �f�n � f�� �
�
n�� is clearly biorthonormal to �fn�

�
n�� and distinct from

�f�n�
�
n��� Conversely� let �fn�

�
n�� be complete in H � If �f��n ��n�� is also biorthonormal to �fn�

�
n���

then we 
nd for each m that
�
fn� f

�
m � f��m

�
H

� � for all n� implying that f�m � f��m �

Lemma ��� implies� in particular� that a basis possesses the property of minimality� it is well

known�and the examples here will show�that minimality is certainly not su�cient to ensure the

basis property� however�

It is easy to check that the image	sequence �Lfn�
�
n�� of a basis �fn�

�
n�� for H under a bijection

L � B�H� �the collection of all bounded linear operators from H to itself� is also a basis� with

biorthonormal sequence �L���f�n�
�
n�� �L� denoting the Hilbert	space adjoint of L�� Bases �fn�

�
n��

and �Lfn�
�
n�� related in this way are said to be equivalent� A basis that is equivalent to an orthonor	

mal basis is termed a Riesz basis �

Our 
rst principal aim is a complete description of the basis properties of the four sequences�
V �O
n�n
��
n��

�
�
V �O
n

��
�

��
n��

�
�
RegV �O

n�n
��
n��

� and
�
RegV �O

n

��
�

��
n��

in the familiar Hilbert space H���� 	�
L����� � � � � ��

�
� comprising those �equivalence classes of� complex measurable functions de
ned 
�	

a�e� and having moduli square	integrable with respect to the Lebesgue measure 
� on �� the inner

product being given by �
f� g

�
�
��

Z
�

f g d
��

throughout� an overbar indicates complex conjugation�

For the latter sequences� we can only rarely assert the lack of the basis property as a consequence

of a lack of the necessary completeness or minimality� To see that this is so� we shall review the

�well	known� completeness properties and describe the �perhaps less	familiar� minimality properties

of each of the four sequences� In preparation� we recall that a complex number � is termed a Dirichlet

�respectively� Neumann� eigenvalue for �� in �� i� there exists a nonzero v � C����� 
 C����

�respectively� C����� 
 C������ such that ��v � �v in �� and vj� � �


respectively� v�n � �

�
� It

is well known that the collection of all Dirichlet �respectively� Neumann� eigenvalues for �� in �� is

�



a countably in
nite and unbounded set of positive �respectively� nonnegative� real numbers without

a limit point�

The following statements are implied by the results of Section ��

Proposition ���� Recall the regularity hypotheses imposed on ��� Let O � ���

�i �� Each of the sequences
�
V �O
n�n
��
n��

and
�
V �O
n

��
�

��
n��

is complete and minimal in H�����

�ii �� The sequence
�
Reg V �O

n�n
��
n��

�


respectively�

�
RegV �O

n

��
�

��
n��

�
is complete in H���� i� ��

is not a Neumann �respectively� Dirichlet� eigenvalue for �� in ���

�iii �� The sequence
�
RegV �O

n�n
��
n��

�


respectively�

�
RegV �O

n

��
�

��
n��

�
is minimal in H���� i� �� is

not a Neumann �respectively� Dirichlet� eigenvalue for �� in ���

When �� is a ball BR�O� of radius R � � centered at O each of the four sequences is orthogonal�

so the basis property in that case depends upon the completeness property and the nonvanishing of

all elements of the sequence� We show that this latter already	familiar case is the only one in which

the sequences form bases� by establishing

Theorem ���� Recall the regularity hypotheses placed on ��� Let O � ���

�i �� The sequences
�
V �O
n�n
��
n��

and
�
V �O
n

��
�

��
n��

are bases for H���� i� �� is a ball centered at

O�
�ii �� Suppose that �� is not a Neumann �respectively� Dirichlet� eigenvalue for �� in ���

the sequence
�
RegV �O

n�n
��
n��



respectively�

�
RegV �O

n

��
�

��
n��

�
is a basis for H���� i� �� is

a ball centered at O�
�iii �� Suppose that �� is a Neumann �respectively� Dirichlet� eigenvalue for �� in ���

�a�� the sequence
�
Reg V �O

n�n
��
n��



respectively�

�
RegV �O

n

��
�

��
n��

�
is not a basis for its

closed span R�I �D�
�

�
� H����



respectively� R�I �D�

�
� H����

�
�

�b�� if �� is a ball centered at O� then precisely one element of the sequence is zero� if

this element is deleted� the remaining sequence is a basis for its closed span�

The proof of Theorem ���� which is surprisingly easy� is given in Section �� following the review

of some necessary preliminaries in Section � and the discussion of the completeness and minimality

properties in Section �� In Section  � we remark on the immediate implications of the general lack of

the basis property for the applicability of the results developed in ���� to the question of convergence

of the 
rst scheme of Waterman ���� for approximate solution of problems of the scattering of

time	harmonic acoustic waves by an obstacle� In contrast to the situation in H����� we show in

Section � that the sequences of traces and normal derivatives of the outgoing spherical	separable

solutions do possess the basis property in certain larger Hilbert spaces that are intimately connected

with the far	
eld patterns of the outgoing solutions of the Helmholtz equation in ��� Finally� in

Section � we point out a connection between the present observations and the second scheme of

Waterman ����� by verifying in the case of an ellipsoidal boundary � the equality QT � �ReQ�

which evidently has been frequently claimed as satis
ed in general by the transition matrix T �

�



�� Background information on solutions of the Helmholtz equation�

Since we rely on them continually in the subsequent developments� we quickly review here without

proof the elementary facts about the structure of solutions of ����� in �� and in ��� their integral

representations� and the associated integral operators in spaces of functions on �� We maintain the

notation of Section � and the regularity conditions imposed there on ��� although for most of the

present section one need not require that �� be connected�

Traces and normal derivatives on �� For an appropriate complex function u de
ned in a one	

sided neighborhood of �� the trace uj� and normal derivative u�n on � are taken in the normal�L�
sense �our terminology�� cf�� e�g�� ����� ���� To recall the de
nitions� for any s � � let Ns � � � R�

be de
ned by Ns�x� �� x � sn�x� for each x � �� Then the regularity of �� implies that there

is some so � � such that Ns��� � �� whenever � 	 s 	 so� Thus� if u is any function de
ned in

�� the composition u �Ns is de
ned on � for all su�ciently small positive s� Now suppose that

u � C����� we say that u has a trace on � in the normal�L� sense i� there exists u
��
�
� H����

such that lims���
��u �Ns � uj�

��
�
� �� in which case u

��
�
is termed the normal�L� trace of u on

�� Similarly� now supposing that u � C������ we say that u has a normal derivative on � in the

normal�L� sense i� there exists u�n � H���� such that lims���
��n � �gradu� �Ns � u�n

��
�
� �� in

which case we call u�n the normal�L� normal derivative of u on �� When u�n exists we say that u is

L��regular at �� it is not di�cult to show that uj� also exists when u�n exists� Obviously� one can

make entirely analogous de
nitions for appropriate functions de
ned in ��� we suppose that this

has been done�

Spaces of regular solutions� We introduce the collection W������� of outgoing solutions of the

Helmholtz equation in �� that are L�	regular at ��

W������� ��
�
u � C�����

�� ����� holds in ��� ����� holds� and u is L�	regular at �
�
�

and its counterpart W������� for ���

W������� ��
�
u � C�����

�� ����� holds in �� and u is L�	regular at �
�
�

For u in either W������� or W������� we refer to uj� and u�n as� respectively� the Dirichlet data

and the Neumann data of u�

Single� and double�layer potentials� We use the fundamental solution for the Helmholtz oper	

ator � � �� that is given by� for each x � R� �

E�
x�y� �� � ei�jy�xj

��jy � xj for y � R� n fxg�

By E�
x �n�y� we mean the normal derivative n�y� � gradE�

x�y� at the point y � �� y �� x� With

E�� we de
ne the single�layer potential V�fhg and the double�layer potential W�fhg with density

h � H���� to be the complex functions in �� 
 �� given by

V�fhg�x� ��
Z
�

E�
xhd
� and W�fhg�x� ��

Z
�

E�
x �nh d
� for x � �� 
���

It is almost always more convenient to work with the restrictions of the potentials to the interior

and exterior domains �� and ��� i�e�� with V
�
� fhg �� V�fhg

���� and W�
� fhg �� W�fhg

����� Then
$



one 
nds that V �
� fhg �W������� for each h � H����� In fact� for any such h it is well known that

we can set

S�h�x� ��

Z
�

E�
xh d
� and D�h�x� ��

Z
�

E�
x �nh d
� for 
�	a�a� x � �

to get elements S�h and D�h of H����� and that the linear operators S�� D� � H���� � H����

thereby de
ned are compact� In this notation� Kersten ���� shows that the traces and normal

derivatives of the exterior and interior single	layer potentials are given by

V �
� fhg

��
�
� S�h and V �

� fhg�n � ��I �D�
��h for each h � H����� �����

here� D�
� denotes the adjoint of D� in H���� while the conjugate L of a linear operator L from

one space of complex functions to another is de
ned by setting Lg �� Lg for g � D�L� ���
g
�� g � D�L� � �so� for example� S�� � S��� On the other hand� the restrictions W�

� fhg do

not possess normal derivatives at � for every h � H����� although they do have traces� which are

given by �again� relying on ���� �

W�
� fhg

��
�
� ��I �D��h for h � H����� �����

For a given h � H���� it is shown further in ���� that W�
� fhg and W�

� fhg either both possess or

both fail to possess a normal	L� normal derivative at �� by de
ning D�T�� to be the linear manifold

of elements of H���� for which these restrictions do have such normal derivatives� we simply set

T�h �� W�
� fhg�n

�
�W�

� fhg�n
�

for every h � D�T���
to get an operator T� �

�D�T�� � H����
� � H���� that is densely de
ned �since D�T�� turns

out to contain C������� � 	 
 � �� and unbounded� but closed� In fact� one can show that the

domain D�T ��� of the adjoint T �� coincides with D�T�� and that T �� � T�� At any rate� the inclusions

W�
� fhg �W������� do hold whenever the density h is chosen from D�T���

The Neumann�to�Dirichlet�data operator for �� and �� With the conditions imposed on

�� and �� we know that the linear operation u �� u�n is bijective from W������� onto H�����

cf � ���� where the result is established by building on the classicial developments in ���� That is�

corresponding to each g � H���� there is precisely one ug � W������� satisfying ������ ������ and

the boundary condition ug �n � g� this just expresses the existence and uniqueness result for the

Neumann�radiation problem with H����	data for the Helmholtz operator in ��� It follows that an

operator A� � H����� H���� is de
ned by setting

A�g �� ug j� for each g � H�����

Thus� A� maps the Neumann data u�n to the corresponding Dirichlet data u
��
�

for each u �
W�������� The operator A� turns out to be compact in H����� while its adjoint is given by

A�� � A�� Further� �i�A� is �strictly dissipative�
 i�e��

Im
�
�A�g� g

�
�
	 � whenever g � H����� g �� �� �����

Then each of A� and A�� is injective and has dense range in H����� We 
nd further that D�T�� �
R�A��� Since it is easy to show that D�T�� is closed under conjugation by checking that it coincides

with D�T��� we conclude that the range R�A�� is also closed under complex conjugation� while the

�



relation A�� � A� implies then that R�A�� � R�A���� Except for the latter argument� a development

of these properties of A� is given in ���� by following a line of reasoning somewhat di�erent from

that traced here�

Integral representations� With an extension of the classical Divergence Theorem to the present

setting in which traces and normal derivatives are taken in the normal	L� sense� one obtains integral

representations of the familiar forms for elements of both W������� and W�������� in terms of

their Dirichlet and Neumann data on �� Thus� for u� �W������� we 
nd the pair of equalities

u��x�
�

�
�

�

�

Z
�

�
E�
xu

��n �E�
x �nu

�j�
�
d
� �

�

�

�
V �
� fu��ng�x��W�

� fu�j�g�x�
�
� x � ��� �����

while for u� � W������� we have

�
u��x�

�
� ��

�

Z
�

�
E�
xu

��n �E�
x �nu

�j�
�
d
� � ��

�

�
V �
� fu��ng�x��W�

� fu�j�g�x�
�
� x � ������ �

The representations here clearly imply that the traces u�j� and u�j� lie in D�T�� whenever u� �
W������� and u� � W�������� Thus� for example� we conclude that E�

y

��
�
� D�T�� for each

y � �� 
���

By using the operator A� we can modify these integral representations to forms that are

sometimes more useful� First� we observe that the solution ug � W������� of the exterior Neu	

mann�radiation problem with data g � H���� has the integral representation

ug�x� �
�

�

Z
�

�
E�
xg �E�

x �nA�g
�
d
� �

�

�

Z
�

�
E�
x �A�E

�
x �n
�
g d
� for each x � ��� �����

the second equality holding in view of the relation A�� � A�� Meanwhile� the solution vf �
W������� of the Dirichlet�radiation problem with data	function f � R�A�� is given by

vf �x� �
�

�

Z
�

�
E�
xA

��
� f �E�

x �nf
�
d
� �

�

�

Z
�

�
A��� E�

x

��
�
�E�

x �n
�
f d
� for each x � ���

�����

since E�
x j� � D�T�� � R�A�� for x � ��� Note that the 
rst integral in ����� is not de
ned if f is not

in R�A��� indeed� the Dirichlet�radiation problem in �� cannot have a solution in W������� unless

the data f belong to R�A��� However� the second integral in ����� makes sense for any f � H����

and we show at the end of this section that it provides a solution of the Dirichlet problem for such

f �

Further� we 
nd� in contrast to the situation forW�������� that each element ofW������� can

always be represented by either an interior single	layer or an interior double	layer potential� In fact�

since A�E
�
x �n � E�

x j� when x � ��� from the integral representation of ��� � for u� � W�������

we obtain both

u��x� � ��

�

Z
�

�
E�
xu

��n �E�
x �nu

�
�
d
� � ��

�

Z
�

E�
x �n
�
A�u

��n � u�
�
d
�� ���$�

and

u��x� � ��

�

Z
�

E�
x

��
�

�
u��n �A��� u�

��
�

�
d
�� for each x � ��� �����

��



Moreover� one can show that� if h � H����


respectively� h � R�A��

�
with V �

� fhg � �


respectively�

W�
� fhg � �

�
� then h � �� That is� the densities 
guring in the representations by interior single	

and double	layer potentials are unique �which need not be the case for representations by exterior

potentials� depending upon whether �� is an interior Dirichlet �respectively� Neumann� eigenvalue��

For example� suppose that h � R�A�� and W�
� fhg � �� Then �I � D��h � � and W�

� fhg�n �

W�
� fhg�n � �� The latter equality implies that W�

� fhg � �� by the uniqueness theorem for the

exterior Neumann�radiation problem �with the normal derivatives taken in the normal L�	sense��

Therefore� also �I � D��h � �� whence h � �� To show that h must vanish if h � H���� and

V �
� fhg � �� one relies on the uniqueness theorem for the exterior Dirichlet�radiation problem with

traces taken in the normal L�	sense� cf � ����

Operator relations� There are important commutation	type relations connecting the operators

S�� D�� and T�� cf �� e�g �� ���� Here� we need to cite several relations of the same sort between

these three operators and A�� Directly from the de
ning property of the operator A� and the trace

and normal	derivative expressions for the exterior layer potentials� we 
nd A�

�
I � D�

�

�
� S� and

A�T� � ��I�D�

���R�A��� One can also show that D�A� � A�D
�
� and T�A� � �I�D�

�� Therefore�

we have A�

�
I �D�

�� �T�
�
�
�
S�� ��I �D��

���R�A�

�
and

�
I �D�� �T�

�
A� � S�� ��I �D�

�� for

any � � C � Now� if Im � �� � and Im � Im�� � �� it is well known that the operators I �D� � �T�
and I �D�

� � �T� are bijective from R�A�� onto H
����� so we obtain the representations

A� �
�
S� � ��I �D��

��
I �D�

� � �T�
���

�
�
I �D� � �T�

����
S� � ��I �D�

��
�
� ������

For the same �� S� � ��I �D�
�� and S� � ��I �D�� are also known to be bijective on H�����

From these relations we can establish a result that is of use in several instances�

Lemma ���� Let � denote any complex number such that Im � �� � and Im � Im�� � �� If u�

denotes any element of W�������� then

u��n �A��� u�
��
�
� ���S� � ��I �D�

��
����

u�
��
�
� �u��n

�
� ������

Proof � Let u� � W�������� From the integral representation in ��� � for u� and the trace and

normal	derivative expressions for the interior layer	potentials� one can easily verify that S�u
��n �

��I �D��u
�
��
�
and �I �D�

��u
��n � T�u

�
��
�
� so�

S� � ��I �D�
��
�
u��n �

�
I �D� � �T�

�
u�
��
�
� �

�
u�
��
�
� �u��n

�
�

while the second expression forA� given in ������ shows that A��� �
�
S����I�D�

��
����

I�D���T�
�
�

Upon combining these� we get �������

We end this section by verifying the earlier claim that the solution vg of the exterior Dirich	

let�radiation problem with data g � H���� is given by the second form appearing in ������

vg�x� �
�

�

Z
�

�
A��� E�

x

��
�
�E�

x �n
�
g d
� for each x � ���

To see this� 
rst let � � C be as in Lemma ���� Then the operator
�
S�� ��I �D�

��
�
is a bijection of

H���� onto itself� and it is easy to check directly that the radiating solution appearing on the right

in

vg�x� �

Z
�

�
E�
x � �E�

x �n
��
S� � ��I �D��

���
g d
�� for each x � ��� ������

has trace vg

��
�
� g� so that ������ is correct� Consequently� by appealing to ������ after noting that

E�
x gives an element of W������� when x � �� and that S� is self	conjugate	adjoint� we 
nd

vg�x� �

Z
�

n�
S� � ��I �D�

��
����

E�
x

��
�
� �E�

x �n
�o

g d
� �
�

�

Z
�

�
A��� E�

x

��
�
�E�

x �n
�
g d
�� x � ���

as claimed�

��



�� Completeness and minimality properties�

In this section� we recall the completeness properties of the four sequences of traces and normal

derivatives of spherical	wave functions and establish their minimality properties� all in H����� In

particular� the results here imply those cited in Proposition ����

Throughout� by R�O and R�
O we denote the radii of� respectively� the inscribed and the circum	

scribed spheres for �� that are centered at O� i�e�� R�O �� minx�� jx�Oj� R�
O �� maxx�� jx�Oj�

We begin with the outgoing solutions� for which we introduce two sequences of fundamental

importance� In Section �� we pointed out that each element of W������� has both an interior

double	layer and an interior single	layer representation� with the required density in each case being

unique� Accordingly� for each positive integer n there are unique elements U�O
n and W �O

n in H����

such that

Reg V �O
n �x� �

i

�
W�

�

�
U�O
n

�
�x� �

i

�
V �
�

�
W �O

n

�
�x� for each x � ��� �����

Explicitly� upon referring to ���$� and ����� we 
nd that

U�O
n � � i�

�

�
RegV �O

n j� �A�RegV
�O
n�n
�

W �O
n � � i�

�

�
A��� Reg V �O

n j� �Reg V �O
n�n
�
��
� for n � �� �� �� � � � �

As in the general case� it is clear that U�O
n � A�W

�O
n � in particular� U�O

n � R�A��� From the latter

representations� we observe that U�O
n is the trace on � of the �total 
eld
 in the time	harmonic

scattering of the incident acoustic wave with complex amplitude � i�
� Reg V �O

n by a hard obstacle

occupying ��� while �W �O
n has the corresponding interpretation as the normal derivative of the

total 
eld in the scattering of the same wave by a soft obstacle in ��� From ������ with ����� and

����� we get

i
��I �D��U

�O
n � i

�S�W
�O
n � RegV �O

n

��
�

i
�T�U

�O
n � � i

��I �D�
��W

�O
n � Reg V �O

n�n

��
� for n � �� �� �� � � � � �����

The functions U�O
n and W �O

n arise quite naturally in other contexts� as well� For example� they

appear in the construction of series expansions of outgoing waves in terms of
�
V �O
n

��
n��

� To see this�

we 
rst recall the well	known expansion of the fundamental solution

E�
x�y� � �i�

�X
l��

lX
m��l

V �O
lm �x�Reg V �O

lm �y�� for � � jy �Oj 	 jx�Oj� �������

which follows from the addition theorems for the spherical Bessel functions and the Legendre polyno	

mials� The convergence properties of the series in ������� and others appearing in the sequel� which

are to be interpreted as limits of the form limN��

PN

m��

Pl

m��l 
lm� follow from the fundamen	

tal and general results on series representations of solutions of the Helmholtz equation in spherical

annuli centered at O � R� �including balls and the complements of the closures of balls� that are

developed in the book of Vekua����� Thus� for 
xed x �� O the function y �� E�
x�y� is a solution of

the Helmholtz equation in the ball Bjx�Oj�O�� and the expansion ������� converges absolutely and

uniformly on every closed subset of the ball� partial derivatives of E�
x of any order may be computed

through term	by	term di�erentiation� each derived series having the same convergence properties as

��



the original� For 
xed x the function y �� E�
x�y� is an outgoing solution of the Helmholtz equation

in the complement of the closure of the ball Bjx�Oj�O� if x �� O or everywhere except at O if

x � O� interchange of x and y on the right in ������� produces a series converging absolutely and

uniformly on every closed subset of the exterior of the ball or point� and all partial derivatives may

be computed term	by	term in the manner already described for the 
rst case�

Owing to the absolute convergence of the series in �������� it may be �unbracketed
 and rear	

ranged �cf�� e�g�� Knopp���� x���� Theorem ��� to yield

E�
x�y� � �i�

�X
n��

V �O
n �x�Reg V �O

n �y�� for � � jy �Oj 	 jx�Oj� �������

recall the single	indexing n �� �
l��n��m��n�

�
already 
xed� This expansion can be used in �����

when jx � Oj � R�
O� the uniform	convergence properties of the series and the boundedness of the

operator A� in H���� permit all the necessary operations to be performed term	by	term� and we

get for the solution ug of the exterior Neumann�radiation problem with H����	data g

ug�x� �

�X
n��

�
g� U�O

n

�
�
V �O
n �x� for jx�Oj � R�

O� �����

Thus� knowledge of the sequence
�
U�O
n

��
n��

permits construction of the coe�cients in the series

expansion for ug in terms of the outgoing spherical	separable solutions� which converges at least

outside the circumscribing sphere centered at the pole O� Similarly� knowledge of
�
W �O

n

��
n��

allows

one to generate the expansion coe�cients for the solution of the exterior Dirichlet�radiation problem

with data in R�A���

Further connections between these sequences are established in

Proposition ���� Recall that the bounded domain �� � R� is regularly open and connected� with

C����regular boundary �� while �� is connected and O � ���

�i �� Each of the sequences
�
V �O
n�n
��
n��

and
�
U�O
n

��
n��

is complete and minimal in H����� the

pair is biorthonormal in H�����

�ii �� Each of the sequences
�
V �O
n

��
�

��
n��

and
�
W �O

n

��
n��

is complete and minimal in H����� the

pair is biorthonormal in H�����

Proof � �i�� Although the completeness of
�
V �O
n �n
��
n��

in H���� is well known �cf�� e�g�� ������ we shall

re	establish the result here to indicate a modi
cation that is necessary for the argument given in ����

If g is a continuous complex function on � such that

�
g� V �O

n�n
�
�
� � for n � �� �� � � � � ��� �

then the reasoning of ���� employing classical results for potentials with continuous densities� shows

that g � �� But essentially the same argument serves to yield the completeness of
�
V �O
n�n
��
n��

in H����� provided one appeals to properties of the layer potentials with densities in H���� and

the uniqueness theorem for the exterior Neumann�radiation problem with data in H����� Thus�

supposing that g � H���� satis
es ��� �� we construct the interior double	layer potential W�
� fgg

with density g� For any x lying in the inscribed ball B
R
�

O

�O� the expansion of E�
x obtained by

switching the arguments x and y in ����� can be di�erentiated term	by	term� inserted into the

de
nition of W�
� fgg�x�� and integrated term	by	term� with ��� �� we get W�

� fgg�x� � �� Since ��

��



is connected� the real	analyticity of W�
� fgg implies that it must therefore vanish in all of ��� We

conclude that g is in R�A�� with W
�
� fgg�n � �� and so also W�

� fgg�n � �� The uniqueness theorem

for the exterior Neumann�radiation problem with data in H���� then says that W�
� fgg vanishes in

all of ��� Therefore� we 
nd that

�g � �I �D��g � ��I �D��g � W�
� fgg

��
�
�W�

� fgg
��
�
� ��

which 
nishes the proof of the completeness of
�
V �O
n�n
��
n��

�

To prove the completeness of
�
U�O
n

��
n��

in H����� suppose that g � H���� with
�
g� U�O

n

�
�
� �

for every n� Then ����� says that ug must vanish outside B
R
�

O

�O�� the real	analyticity of ug then

requires that it vanish in all of �� since the latter is connected� so g � ug�n � ��

The biorthonormality claimed for the pair of sequences is proven by using the cited properties

of A� and Green%s Theorem to transform to integration over the surface of a ball BR�O� and exploit

the orthonormality of the spherical harmonics
�bYlm� in H��!���

�
V �O
lm�n� U

�O
kn

�
�
� � i�

�

Z
�

V �O
lm�n

n
RegV �O

kn �A�Reg V
�O
kn�n

o
d
�

� � i�

�

Z
�

n
V �O
lm�nRegV

�O
kn � V �O

lm Reg V �O
kn�n

o
d
�

� ��i���R�
n
h
����
l ��R�jl��R�� h

���
l ��R�j�l��R�

o
�
�l�m�
�k�n� �

the Wronskian appearing within the braces here has the value i���R�� ������ whence the biorthonor	

mality results� According to Lemma ���� it now follows also that each of the sequences
�
V �O
n�n
��
n��

and
�
U�O
n

��
n��

is minimal in H�����

�ii�� The completeness of
�
V �O
n

��
�

��
n��

in H���� follows directly from that of
�
V �O
n�n
��
n��

and prop	

erties of A�� In fact� if g � H���� and
�
g� V �O

n

��
�

�
�
� � for every n� then

�
A��g� V

�O
n�n
�
�
� � for every

n� since V �O
n

��
�
� A�V

�O
n�n� By statement �i�� we must have A��g � �� so g � �� since A�� is injective�

Next� we show that
�
W �O

n

��
n��

is complete in H����� the argument here requires a somewhat

deeper result� In Section �� we noted that the operator
�
S� � ��I � D�

��
�
is a bijection of H����

onto itself whenever � � C with Im � �� � and Im � Im�� � �� With � denoting any such complex

number� let us take v � RegV �O
n in the statement of Lemma ��� to produce

W �O
n �

i�

�

n
RegV �O

n�n �A��� Reg V �O
n

��
�

o

� �i��S� � ��I �D�
��
���n

Reg V �O
n

��
�
� �Reg V �O

n�n

o
for n � �� �� � � � � �����

The claimed completeness of
�
W �O

n

��
n��

will clearly be implied by ����� and the following statement�

Lemma ���� If � � C with Im � �� � and Im � Im�� � �� then
�
RegV �O

n

��
�
� � Reg V �O

n�n
��
n��

is a

complete sequence in H�����

The proof of Lemma ��� is given following the completion of the proof of Proposition ����

Finally� the biorthonormality of the pair
�
V �O
n

��
�

��
n��

and
�
W �O

n

��
n��

follows from that of the

pair
�
V �O
n�n
��
n��

and
�
U�O
n

��
n��

� since V �O
n

��
�
� A�V

�O
n�n and W �O

n � A��� U�O
n � A��

��U�O
n �

��



Proof of Lemma ���� Fix � � C with Im � �� � and Im � Im�� � �� Suppose that g � H����

satis
es
�
g�RegV �O

n

��
�
� � RegV �O

n�n
�
�
� � for each positive integer n� Construct the corresponding

element v�g � W������� by setting v�g �x� ��
R
�

�
E�
x � �E�

x �n
�
g d
� for x � ��� Choosing any

x with
��x�O�� � R�

O� i�e�� lying outside the ball circumscribing �� and centered at O� we can

insert the expansion of ����� for E�
x�y�� y � �� into the de
nition of v�g and di�erentiate and

integrate term	by	term� with the orthogonality assumption� we 
nd that v�g �x� � �� The real	

analyticity of v�g then implies that v�g vanishes in all of the connected exterior domain ��� Therefore��
S� � ���I �D��

�
g � v�g

��
�
� �� Since S� � ��I �D�� is an isomorphism of H���� when � has the

indicated properties� we conclude that g � ��

Now we turn to the entire solutions� reviewing 
rst their completeness properties� In contrast

to the situation for the outgoing solutions� the value of � is here decisive�

It is convenient to introduce some additional notation� If �� is a Dirichlet �respectively�

Neumann� eigenvalue for �� in ��� by D�����


respectively� N�����

�
we indicate the �
nite	

dimensional� complex	linear space comprising all of the corresponding eigenfunctions in �� with

the zero	function adjoined� if �� is not such an eigenvalue� then D�����


respectively� N�����

�
shall denote simply the trivial subspace� Since we are supposing here that the boundary � is of class

C���� we can appeal to the results on the Dirichlet and oblique	derivative problems in Gilbarg and

Trudinger �$� to conclude that the elements of D����� and N����� are in C
�������� clearly� they

are then L�	regular at �� and so belong to W��������

Proposition ���� Recall that the bounded domain �� � R� is regularly open and connected� with

C����regular boundary �� while �� is connected and O � ���

�i �� The closed spans in H���� of the traces and normal derivatives on � of the elements of the

sequence
�
Reg V �O

n

��
n��

are given by

sp
�
RegV �O

n j�
��
n��

� R�I �D�

�
� H�����N �I �D�

�

�
�����

and

sp
�
Reg V �O

n�n
��
n��

� R�I �D�
�

�
� H�����N �I �D�

�
� ���$�

�ii �� The null spaces appearing in �i � are also expressed as

N �I �D�
�

�
� N �S�� � �

v�n
�� v � D�����

�
�����

and

N �I �D�

�
� N �T�� � �

vj�
�� v � N�����

�
� ������

�iii �� The sequence
�
RegV �O

n

��
�

��
n��



respectively�

�
Reg V �O

n�n
��
n��

�
is complete in H���� i� �� is

not a Dirichlet �respectively� Neumann� eigenvalue for �� in ���

Proof � �i�� To establish the 
rst equalities in ����� and ���$� we use the following trivial observation

�a proof of which we may omit��

Lemma ���� Let L � B� � B� be a bounded linear operator from the Banach space B� into the

Banach space B�� If
�
fn
��
n��

is a complete sequence in B�� then R�L� � sp
�
Lfn

��
n��

�

Now� the ranges R�I �D�

�
and R�I �D�

�

�
are always closed in H���� �since D� and D�

� are

compact in that space�� Therefore� with Lemma ���� the 
rst equality in ����� follows from the

completeness of
�
U�O
n

��
n��

in H���� and the equalities �I � D��U
�O
n � �i�RegV �O

n

��
�
� n � �� ��

� 



� � � � from ������� the 
rst equality in ���$� follows from the completeness of
�
W �O

n

��
n��

in H����

and the equalities �I � D�
��W

�O
n � i�Reg V �O

n�n of ������� The second equality in ����� will follow

if we show that N �I �D�
�

�
� N �I �D�

�

�
� since the orthogonal complement of the null space of

a bounded operator on a Hilbert space is the closure of the range of its adjoint� Similarly� the

second equality in ���$� will follow by showing that N �I �D�

�
� N �I �D�

�
� But the equal	

ities N �I �D�
�

�
� N �I �D�

�

�
and N �I �D�

�
� N �I �D�

�
will follow from ����� and �������

respectively� For example� since N �I �D�
�

�
is precisely the set of conjugates of the elements of

N �I �D�
�

�
� the equality N �I �D�

�

�
� N �I �D�

�

�
will follow by showing that N �I �D�

�

�
is closed

under conjugation� But it is easy to see that
�
v�n

�� v � D�����
�
is closed under conjugation for

every �pertinent� value of �� for� if �� is not a Dirichlet eigenvalue for �� in ��� then the set is

just the trivial subspace� while if �� is such an eigenvalue� then it is real� whence the claim is true

by the de
nition of D������ Therefore� ����� will indeed imply that N �I �D�
�

�
� N �I �D�

�

�
�

Similarly� the equality N �I �D�

�
� N �I �D�

�
will follow from ������� Thus� the proof of �i� will

be complete once �ii� has been established �without use of �i�"��

�ii�� The 
rst equality in ����� is clearly implied by the operator relation A��I � D�
�� � S� and

the fact that A� is injective� Further� the 
rst equality in ������ will result from the relation

�I � D��
��R�A�� � �A�T�� provided we have shown that N �I �D�

� � R�A�

�
� To verify the

latter inclusion� we observe 
rst from the relation D�A� � A�D
�
� that R�A�

�
is invariant under

D� and� moreover� that the resultant operator D�

��R�A�

�
� R�A�

� � R�A�

�
is compact when

the range R�A�

�
is equipped with the innner product �f� h� �� �

A��� f�A��� h
�
�
� Since R�A�

�
is

then densely �and compactly� imbedded in H����� we infer from Theorem IV of Lax ���� that

N �I �D�

� � R�A�

�
�

The equality of the 
rst and third members of ����� and of ������ is established in ��� for the

classical case� set in C���� Since D� and D�
� are compact in C��� as well as in H����� we can again

appeal to the results of Lax ���� to conclude that the null spaces N �I �D�
�

�
and N �I �D�

�
on

H���� are actually contained in C���� and so rely on ��� to complete the proof of �ii�� However� we

shall supply a direct argument here�

Accordingly� to establish the second equality in ������ suppose 
rst that v is an interior Dirichlet

eigenfunction for ��� Then the integral representation of v reduces to v � ��
�V

�
�

�
v�n
�
� whence

S�v�n � ��v��
�
� �� On the other hand� for f � N �S�� let us construct the interior single	layer w ��

��
�V

�
� ffg� Then w is in D����� and we get w�n � ��

���I�D�
��f � �

��I�D�
��f�

�
��I�D�

��f � f �

since also f � N �I �D�
�

�
�

The proof of the second equality in ������ is analogous� If v is a Neumann eigenfunction for ��
in ��� then its integral representation is just v � �

�W
�
�

�
v
��
�

�
� whence T�v

��
�
� �v�n � �� To prove

the reversed inclusion� let f � N �T�� and form the interior double	layer potential w �� �
�W

�
� ffg�

Then w � N����� and we compute w
��
�
� �

��I � D��f � �
��I � D��f � �

��I � D��f � f � since

f � N �I �D�

�
� as well�

�iii�� This conclusion is an immediate consequence of �i� and �ii��

The minimality properties of the traces and normal derivatives of the sequence of entire solutions

also depend upon the value of �� as the next result shows�

Proposition ���� The sequence
�
RegV �O

n

��
�

��
n��



respectively�

�
Reg V �O

n�n
��
n��

�
is minimal in H����

i� �� is not a Dirichlet �respectively� Neumann� eigenvalue for �� in ��� if �
� is not such an

��



eigenvalue� the corresponding biorthonormal sequence is
�
�i��I �D�

��
��V �O

n�n

��
n��



respectively��

i��I �D��
��V �O

n j�
��
n��

�
�

Proof � We use the characterization of minimality given in Lemma ����i � Consider 
rst the sequence�
Reg V �O

n

��
�

��
n��

� which is� according to ������� just
� i
� �I �D��U

�O
n

��
n��

� Suppose that this se	

quence possesses a biorthonormal sequence
�
wn

��
n��

in H����� Then
�� i

��I �D�
��wn

��
n��

must

be biorthonormal to
�
U�O
n

��
n��

� which we know already to be minimal and complete� with unique

biorthonormal sequence
�
V �O
n�n
��
n��

� Therefore� we must have

i

�

�
I �D�

�

�
wn � V �O

n�n for n � �� �� � � � �

implying� in particular� that the range R�I �D�
�

�
is dense� since this same range is closed� it must

be all of H����� so that the null space N �I �D�
�

�
is the trivial subspace� Therefore� �� is not an

interior Dirichlet eigenvalue for ��� Conversely� assuming that �� is not a Dirichlet eigenvalue for

�� in ��� it is easy to check that
�
�i��I �D�

��
��V �O

n�n

��
n��

is �well	de
ned and� biorthonormal

to
�
RegV �O

n

��
�

��
n��

�and so must be the unique biorthonormal sequence in that case�� so the latter

sequence is minimal in H�����

Next� we turn to
�
Reg V �O

n�n
��
n��

� or� in view of ������� the sequence
�� i

��I �D�
��W

�O
n

��
n��

�

Assume that
�
wn

��
n��

is biorthonormal to the latter sequence in H����� then
� i
� �I �D��wn

��
n��

must be biorthonormal to
�
W �O

n

��
n��

� Reasoning essentially as before� we must have

� i

�

�
I �D�

�
wn � V �O

n

��
�

for n � �� �� � � � �

which shows that the range R�I �D�

�
must be dense in H����� and therefore coincides with H�����

Then N �I �D�

�
� f�g� whence we conclude that �� is not an interior Neumann eigenvalue for ���

completing the proof of the second equivalence in one direction� On the other hand� if �� is not

a Neumann eigenvalue for �� in ��� then the sequence
�
i��I �D��

��V �O
n j�

��
n��

is well	de
ned�

and a simple calculation shows that it is biorthonormal to
�
Reg V �O

n�n
��
n��

�and so is the unique such

sequence�� it follows that
�
RegV �O

n �n
��
n��

is minimal in H���� in that case�

��



�� Proof of Theorem ����

We begin the proof of Theorem ��� by showing how statements �ii� and �iii� of the theorem will

follow from assertion �i� and�or the results of the preceding two sections�

The following statement clearly implies that Theorem ����ii is true if Theorem ����i is true�

Lemma ���� �i �� Suppose that �� is not a Dirichlet eigenvalue for�� in ��� Then
�
RegV �O

n

��
�

��
n��

is a basis for H���� i�
�
V �O
n�n
��
n��

is a basis for H�����

�ii �� Suppose that �� is not a Neumann eigenvalue for �� in ��� Then
�
Reg V �O

n�n
��
n��

is a basis

for H���� i�
�
V �O
n

��
�

��
n��

is a basis for H�����

Proof � �i�� Since �� is not a Dirichlet eigenvalue for �� in ��� the operator I�D�
� is invertible and

the sequence
�
RegV �O

n

��
�

��
n��

is complete and minimal in H����� with the corresponding unique

biorthonormal sequence
�
�i��I �D�

��
��V �O

n�n

��
n��

� It follows that either each of the three sequences�
Reg V �O

n

��
�

��
n��

�
�
�I �D�

��
��V �O

n�n
��
n��

� and
�
V �O
n �n
��
n��

is a basis or none is�

�ii�� Since �� is not a Neumann eigenvalue for �� in ��� the operator I � D� is invertible and

the sequence
�
RegV �O

n �n
��
n��

is complete and minimal in H����� with the corresponding unique

biorthonormal sequence
�
i��I �D��

��V �O
n j�

��
n��

� Therefore� just as in the proof of the 
rst state	

ment� either each of the three sequences
�
RegV �O

n �n
��
n��

�
�
�I �D��

��V �O
n j�

��
n��

� and
�
V �O
n j�

��
n��

is a basis or none is�

Now� considering Theorem ����iii � suppose that �� is a Neumann �respectively� Dirichlet� eigen	

value for �� in ��� We showed in Proposition ��� that the sequence
�
Reg V �O

n�n
��
n��



respectively��

Reg V �O
n

��
�

��
n��

�
is not minimal in H���� in that case� so neither can it be minimal in the Hilbert

space comprising its closed span R�I �D�
�

� 

respectively� R�I �D�

��
�which is� of course� here a

proper subspace of H������ in particular� it cannot then form a basis for that closed span� Thus�

Theorem ����iii�a is correct� Now suppose further that �� is a ball centered at O� In this case� the

sequence in question is orthogonal in H����� whence it is clear that the sequence remaining after

deletion of the zero	elements of
�
Reg V �O

n�n
��
n��



respectively�

�
RegV �O

n

��
�

��
n��

�
will be a basis for

the closed span of the sequence� According to the results on the zeros of the Bessel functions given

in Watson ����� there is precisely one such zero	element in the sequence� This completes the proof

of Theorem ����iii�b�

Finally� we turn to the veri
cation of Theorem ����i � for which we require two further simple

results in preparation� First� it is important to examine the behavior of the series in ������� when

the positions of x and y are switched�

Lemma ���� The in�nite series
P�

n�� RegV
�O
n �y�V �O

n �x� diverges whenever jy�Oj � jx�Oj � ��

Proof � Pick x and y in R� with jy � Oj � jx � Oj� denote by ��x� �x� �x� and ��y� �y� �y� their

spherical co�ordinates in a system with pole at O� For the proof� we show merely that the sequence

of terms of the series in question is not a null sequence� by producing a subsequence that is not

null� The subsequence that we choose is given in terms of the bijection n �� �
l��n��m��n�

�
as�


n
k

�� Reg V �O
n
k

�y�V �O
n
k

�x�
��
k��

� in which
�
nk
��
k��

is the increasing sequence such that m��nk� �

� for each k� Every nonnegative integer appears exactly once in the corresponding subsequence

�$



�
lk �� l��nk�

��
k��

� so that lk � � as k � �� Explicitly� we 
nd 
n
k

�
�

�k � i
�k

�
��� for each

k � �� in which


�k ��
�
�lk � �

�
jl
k

���x�jl
k

���y�Pl
k

�cos�x�Pl
k

�cos�y��


�k ��
�
�lk � �

�
yl
k

���x�jl
k

���y�Pl
k

�cos�x�Pl
k

�cos�y��

with yl denoting the spherical Bessel function of the second kind and order l� The asymptotic

behavior of the Bessel functions J� and Y� for 
xed argument and large positive order can be

determined from their simplest representations� Thus� one 
nds �cf �� e�g �� ���� ���� �

J��z� � �p
���

�
ez
��

��

Y��z� � �
q

�
��

�
ez
��

���
����
��� for z 
xed and � �� through positive values� �����

First� ������ and the bound jPl�x�j � �� holding for every x � ���� �� and every Legendre polynomial

Pl� certainly imply that 
�k � � as k ��� Further� by also using ������ we 
nd that

�
�l � �

�
yl���x�jl���y� � �

�

��x

��y
�x

�l
as l���

We recall the exact values Pl���� � ����l and the asymptotic relation

Pl�cos�� �
r

�

�l sin�
sin

�
��l� ���

�
�
�

�

�
as l ��� uniformly for � 	 � � � � � � �

�with any positive �� from� e�g �� �� �� Now� if �x and �y lie in ��� ��� it is apparent that the se	

quence
����sin���lk � ���x

� � �
�

�
sin
���lk � ���y

� � �
�

������
k��

does not converge to zero and so has a

subsequence with a positive lower bound� the other possible positions of �x and �y can be checked

similarly� By combining these facts� from the decisive hypothesis that �y � �x we see that the se	

quence
�

�k
��
k��

is in fact unbounded� Therefore� the sequence
�

n

k

��
k��

cannot have limit zero�

Let us also check an intuitively apparent geometric fact�

Lemma ���� Recall that �� � R� is �nonvoid� bounded� open� and connected� with �� �� R� n��
also connected� and O � ��� If �� is a ball� suppose that O is not its center� Then there exist

x � �� and y � �� satisfying jy �Oj � jx�Oj�
Proof � The argument uses the continuity of the map x �� jx�Oj and the compactness of �� Let

ymin be a point of � nearest O and ymax a point of � farthest from O� then the radii of the inscribed

and circumscribed spheres for � centered at O are given by R�O � jymin �Oj and R�
O � jymax �Oj�

respectively� Since R�O � R�
O i� �� is a ball centered at O� the hypotheses imply that R�O 	 R�

O�

Thus� setting � ��
�
R�
O � R�O

�
��� it is clear that we can 
nd an x � �� with jymin � xj 	 � and a

y � �� with jymax � yj 	 �� But then x and y possess the required property�

jx�Oj � jx� yminj� jymin �Oj 	 ��R�O � R�
O � � 	 jymax �Oj � jy � ymaxj � jy �Oj�

Proof of Theorem ����i � The su�ciency of the condition follows from a familiar argument� if ��
is a ball centered at O� each of the two sequences in question comprises nonzero elements and is

orthogonal and complete in H����� whence it forms a basis for that space�

��



We shall prove the necessity 
rst for
�
V �O
n�n
��
n��

� Accordingly� let us suppose that this sequence

forms a basis for H����� we shall show that �� must then be a ball centered at O� Under the

assumption� we must have

g �

�X
n��

�
g� U�O

n

�
�
V �O
n�n for every g � H����� �����

In turn� we can use ����� in ����� and� owing to the H����	convergence of the series� operate term	

by	term to get an expansion for the solution ug of the Neumann�radiation problem with data g that

converges throughout ���

ug�x� �
�

�

Z
�

�
E�
x �A�E

�
x �n
�
g d
� �

�X
n��

�
g� U�O

n

�
�

�
�

�

Z
�

�
E�
x �A�E

�
x �n
�
V �O
n�n d
�

�

�

�X
n��

�
g� U�O

n

�
�
V �O
n �x� for x � ��� g � H����� �����

the 
nal equality following from ����� with g replaced by V �O
n�n� In particular� ����� must hold when	

ever we take g � E�
y �n for any y � ��� in which case ug is simply the restriction E�

y

����� Moreover�

for such a choice we can explicitly compute the expansion coe�cients in ������ by remembering that

A�� � A� and A�E
�
y �n � E�

y

��
�
� and using ��� ���

�
E�
y �n� U

�O
n

�
�
� � i�

�

Z
�

E�
y �n
�
Reg V �O

n �A�RegV
�O
n �n
�
d
�

� � i�

�

Z
�

�
E�
y �nReg V

�O
n �E�

y j�RegV �O
n �n
�
d
� � �i�RegV �O

n �y� for y � ���

Therefore� ����� shows that

E�
y�x� � �i�

�X
n��

RegV �O
n �y�V �O

n �x� for every y � �� and x � ��� �����

But this implies that �� is a ball centered at O� for� otherwise we could 
nd a yo � �� and an

xo � �� such that jyo �Oj � jxo �Oj �Lemma ����� contradicting ������ since the series appearing

there would diverge for x � xo and y � yo �Lemma �����

The proof of the necessity for
�
V �O
n

��
�

��
n��

is analogous to that just given for
�
V �O
n �n
��
n��

� Suppose

that the former sequence is a basis for H����� so that we must have

g �

�X
n��

�
g�W �O

n

�
�
V �O
n

��
�

for every g � H�����

Now� we can use such an expansion in ����� and operate term	by	term to get a representation for the

solution vf of the exterior Dirichlet�radiation problem with data f � R�A�

�
converging throughout

���

vf �x� �
�

�

Z
�

�
A��� E�

x

��
�
�E�

x �n
�
f d
� �

�X
n��

�
f�W �O

n

�
�

�
�

�

Z
�

�
A��� E�

x

��
�
�E�

x �n
�
V �O
n d
�

�

�

�X
n��

�
f�W �O

n

�
�
V �O
n �x� for x � ��� f � R�A�

�
� ��� �

��



In particular� ��� � holds whenever we take f � E�
y

��
�
with y � ��� in which case vf is simply the

restriction E�
y

����� Noting that A��� E�
y

��
�
� E�

y �n for such y� the expansion coe�cients in ��� � are

again found to be

�
E�
y

��
�
�W �O

n

�
�
�
�
E�
y

��
�
� A��

��U�O
n

�
�
�
�
E�
y �n� U

�O
n

�
�
� �i�RegV �O

n �y��

Therefore� again we come to ������ which again forces the conclusion that �� is a ball centered at

O�

This 
nishes the proof of �i�� Since we have already indicated how the proofs of statements �ii�

and �iii� follow� the proof of Theorem ��� is complete�

��



	� An application� studying a previous result on T �matrix methods�

Here we point out the implications of Theorem ��� for the previous work of Kristensson� Ramm�

and Str�om ���� on the convergence of certain �T 	matrix methods
 in the approximate solution

of problems of time	harmonic scattering by obstacles� the developments of ���� appear in a more

accessible form in the book of Ramm ��$�� In particular� we want to show that the results of ���� do

not su�ce to substantiate the 
rst method proposed in Waterman �����

We shall begin by establishing the existence and essential mapping property of the �transition

matrix�
 We restrict our attention to the case in which a �sound	hard
 obstacle occupies the closure

of ��� since all of the central points can be made within that setting� other boundary conditions

can be treated in a similar fashion� Let u� be a given incident �eld � by which we mean a solution

of the Helmholtz equation ����� in an open set �� containing the closure of ��� The corresponding

scattered �eld in �� is then the unique element u� � W������� with the Neumann data given by

u��n � �u��n on �� � ���

According to ������ u� has the expansion

u��x� � �
�X
n��

�
u��n� U

�O
n

�
�
V �O
n �x� �

�X
n��

�nV
�O
n �x� �at least� for jx�Oj � R�

O� � ���

in which the scattered��eld expansion coe�cients are given by �n �� ��u��n� U�O
n

�
�
� for brevity�

we are omitting an indication of the dependence of these coe�cients upon the various parameters�

such as the choice of O � ��� Note that the series in � ��� has the convergence and term	by	term

di�erentiability properties recounted in Section ��

From ��� � and ������ it is clear that the incident 
eld u� possesses an expansion

u��x� �

�X
l��

lX
m��l

�lmReg V �O
lm �x� �

�X
n��

�nReg V
�O
n �x� for jx�Oj 	 R�� � ���

for some positive R� � R�O� again� the convergence properties of the series here are just those already

listed in Section �� In the special circumstance in which the incident	
eld domain �� contains the

circumscribing ball B
R
�

O

�O�� i�e�� when R�
O 	 R� �so that the �sources
 of the incident 
eld are

�not too near
 the obstacle�� we shall say that the incident 
eld u� is ����O��regular � Then� for

an ����O�	regular u� we may compute u��n term	by	term from � ��� and 
nd the scattered	
eld

expansion coe�cients expressed as

�n �� ��u��n� U�O
n

�
�
� �

�X
m��

�
Reg V �O

m�n� U
�O
n

�
�
�m� n � �� �� � � � � � ���

The array T �O ��
���Reg V �O

m�n� U
�O
n

�
�

��
m�n��

emerging in this manipulation is generally called the

transition matrix � or T �matrix � since it contains the information necessary to transform the �known�

incident	
eld expansion coe�cients
�
�n
��
n��

into the desired scattered	
eld expansion coe�cients�
�n
��
n��

for any incident 
eld u� satisfying the indicated hypothesis� the array depends on only ���

�� O� and the particular boundary condition characterizing the material of the scattering obstacle�

�More correctly� T �O should be called� say� the �acoustic hard	scattering spherical transition matrix

��



for ��� �� andO�
 but here we shall continue to employ the abbreviated term� since we are examining

just one case and there is no chance of confusion��

Since the T 	matrix T �O serves as a sort of Neumann	Green function� it is clearly worthwhile

to study methods for computing it� Of course� a direct and explicit construction of T �O requires

knowledge of the U�O
n � which are themselves to be found through the solution of �canonical
 Neu	

mann�radiation problems in ��� so that one must resort to an approximation scheme in all but

the simplest geometries� Two schemes are proposed in Waterman ���� which can be regarded as

intended for approximation of T �O� We shall be concerned in this section with just the 
rst of these

and� as noted� with just that for the hard	scattering problem� Waterman%s 
rst algorithm is based

on the relations between the incident	 and scattered	
eld expansion coe�cients and the trace of the

total �eld u� �� u� � u� �de
ned in �� 
 ���� viz ��

�
u�
��
�
� V �O

n�n
�
�
� �i

� �n

�n � i�
�

�
u�
��
�
�Reg V �O

n�n
�
�

���
�� for n � �� �� � � � � � � �

these are derived in ����� and follow readily from the relations ����� and ��� � cited here� cf �� also�

� ���� The strategy aims at exploiting � � �� to generate an approximation to u�
��
�
� which is then

to be used to produce approximations for the desired coe�cients �n on the basis of � � ��� as a

by	product� a 
nite array purporting to be an �approximate T 	matrix
 can be identi
ed� Observe

that the completeness of
�
V �O
n�n
��
n��

in H���� guarantees that u�
��
�
is the unique element of H����

satisfying � � ��� so the corresponding moment problem is in fact uniquely solvable for any �� this

is one of the most attractive features of the approach�

Thus� one begins by selecting in H���� a sequence of trial functions appropriate for construction

of a convergent linear approximation to u�
��
�
� Such a family should be not only linearly independent

but also at least complete in H����� since the collection of total	
eld traces contains all of the U�O
n �

and so is dense in H����� Strangely� Waterman chose the traces
�
Reg V �O

n

��
�

��
n��

to serve as his

sequence of trial functions� even though he apparently knew that this sequence is not complete in

H���� when �� is an interior Dirichlet eigenvalue� In any event� one attempts to produce� at least

for all su�ciently large N � a linear combination



u�
��
�

�
N

��

NX
m��


NmRegV �O
m

��
�

in which the coe�cients are to be determined by the linear system �cf � � � ���

NX
m��

�
Reg V �O

m

��
�
� V �O

n�n
�
�

Nm �

�i

�
�n� n � �� � � � � N � � ���

subsequently� intended approximations
�
�Nn
�N
n��

to the 
rst N scattered	
eld expansion coe�cients

are to be constructed by �cf � � � ���

�Nn ��
i�

�

�

u�
��
�

�
N
�RegV �O

n�n
�
�
�

i�

�

NX
m��

�
RegV �O

m

��
�
�RegV �O

n�n
�
�

Nm� n � �� � � � � N � � ���

��



whence prospective approximations u�N to the scattered 
eld u� in �� are to be generated by

u�N�x� ��

NX
m��

�Nn V
�O
n �x�� for x � ��� � �$�

Based on this motivation� the 
rst Waterman algorithm for the acoustic hard	scattering problem

entails two steps�

�W�I��� establish viability� show that the N �N matrix Q�O
N 
guring in � ���� with elements

Q�O
mn ��

�
Reg V �O

m

��
�
� V �O

n�n
�
�
� � ���

is invertible for all N greater than some N��

�W�I��� establish convergence� show that the resultant sequence
�
u�N
��
N�N

�

constructed

from � �$�� with the coe�cients
�
�Nn
�N
n��

obtained from � ��� and � ��� for N � N��

converges in some manner to the unique solution u� �

When this program goes through� �approximate T 	matrices
 can be identi
ed� That is� when

the inverse
�Q�O

N

���
exists for N � N�� � ��� and � ��� will give

�Nn �

NX
q��

�
�

NX
m��

�Q�O
N

���
qm

�
RegV �O

m

��
�
�RegV �O

n�n
�
�

�
�q � n � �� � � � � N � � ����

displaying the approximate scattered	
eld coe�cients as images of the �
rst N� incident	
eld coef	


cients under the operation of an N � N �N th approximate T 	matrix
 T �O
N � the general element�T �O

N

�
nq

of which appears within the braces in � ����� That is� since it is easy to see that the matrix

RegQ�O
N with elements

�
Reg V �O

m

��
�
�RegV �O

n�n
�
�
is symmetric� we get

T �O
N � �RegQ�O

N

n�Q�O
N

���oT
�
n
��Q�O

N

���
RegQ�O

N

oT
� � ����

the superscript �T
 indicating �transpose�


While the Waterman schemes attracted much numerical experimentation and heuristic argu	

ment� little progress was made in answering the fundamental questions concerning the viability and

convergence of the algorithms� Kristensson� Ramm� and Str�om ���� �cf �� also� the reorganiza	

tion in Ramm ��$�� study one approach to the construction of a convergence proof� through a more

general formulation than that set up in ����� by considering the general exterior Neumann�radiation

problem �not just the scattering problem� and initially permitting more &exibility in the choices

of the trial	 and �radiating	wave� test	function sequences� We shall indicate how this latter for	

mulation does specialize to cover the 
rst Waterman algorithm when the trial and test functions

are constructed appropriately from the spherical	wave functions� but that the convergence theorem

established in ���� does not generally apply to that case� because the hypotheses require at least

that the test	function sequence form a basis �in fact� a Riesz basis� for H�����

We begin by describing the approximation scheme of ����� not in the full generality arranged

there� but just for �a� the special selections of the trial and test functions that lead to the 
rst

��



Waterman algorithm and �b� the acoustic hard	scattering problem� i�e�� with the special Neumann

data corresponding to an incident 
eld� as in � ���� The relations

�
u�
��
�
� V �O

n�n
�
�
� ��u��n� V �O

n

��
�

�
�
� for n � �� �� � � � � � ����

are exploited in ���� for construction of approximations to the trace u�
��
�
of the scattered 
eld� � ����

is simply the form implied by the second Green identity for the radiating solutions u� and V �O
n of

the Helmholtz equation in W�������� with account taken of the Neumann condition � ���� To

proceed parallel to the developments in ����� one chooses
�
RegV �O

n

��
�

��
n��

as trial	function sequence

and seeks to construct an approximation to u�
��
�
in the form



u�
��
�

�
N

��

NX
m��

e�NmRegV �O
m

��
�

in which the coe�cients
�e�Nn �Nn�� are to be determined by a linear system with the same coe�cient

matrix Q�O
N as that in � ��� �cf � � ������

NX
m��

�
RegV �O

m

��
�
� V �O

n�n
�
�
e�Nm � �

NX
m��

�
RegV �O

m�n� V
�O
n

��
�

�
�
�m n � �� � � � � N � � ����

here� in anticipation of a result on continuous dependence on the data� the actual data	function u��n
has been replaced on the right in � ���� by the approximation

PN

m�� �mReg V �O
m�n �as always� we

suppose that u� is ����O�	regular�� Now� another application of Green%s theorem shows that

�
RegV �O

m

��
�
� V �O

n�n
�
�
�
�
RegV �O

m�n� V
�O
n

��
�

�
�
�

�i

�
�mn for m� n � �� �� � � � �

whence a summation yields

NX
m��

�
Reg V �O

m

��
�
� V �O

n�n
�
�
�m �

NX
m��

�
Reg V �O

m�n� V
�O
n

��
�

�
�
�m �

�i

�
�n for n � �� � � � � N � � ����

By addition� from � ���� and � ���� we obtain the system � ��� 
guring in the 
rst Waterman scheme�

with 
Nm identi
ed as e�Nm � �m� That is� the system in � ��� has unique solution i� the same is true

of that in � ����� when the systems are uniquely solvable� their respective solutions are related by


Nn � e�Nn � �n� n � �� � � � � N � Therefore� viability and convergence results for the 
rst Waterman

scheme will indeed follow from corresponding results for the scheme of Kristensson� Ramm� and

Str�om ����� an appropriate statement about continuous dependence on the data in the latter� and

facts about the convergence of the series expansion of the incident 
eld� under the important proviso

that the hypotheses imposed on the trial and test functions in ���� are ful
lled by the appropriate

traces and normal derivatives of the spherical	wave functions�

With this connection established� we can summarize the convergence result of ���� and so verify

that� in view of Theorem ���� the conditions required there are �almost always� too stringent for

application in establishing the viability and convergence of the 
rst Waterman scheme� Theorem IV��

and the succeeding Propositions IV�� and IV�� of Ramm ��$� give conditions su�cient to ensure that

system � ���� have unique solution for all su�ciently large N and the traces of the resultant 
elds

constructed as in � �$� converge in H���� to the trace of the unique solution of the hard	scattering

problem� Speci
cally� the conditions of Theorem IV�� require that
�
V �O
n�n
��
n��

be a Riesz basis for

� 



H����� that
�
Reg V �O

n

��
�

��
n��

be linearly independent and complete in H����� and� in the sense of

the usual order relation for self	adjoint linear operators on the Hilbert space �� of complex sequences

with square	summable moduli� that the Gram matrix of
�
RegV �O

n

��
�

��
n��

be less than or equal to

the product Q�O�Q�O� in which Q�O denotes the in
nite matrix with elements Q�O
mn� as in � ���

�which will induce a bounded linear operator on �� under the other hypotheses imposed�� Meanwhile�

Proposition IV�� of ��$� provides conditions under which one is assured not only of viability and

convergence but also stability of those results under su�ciently small perturbations of the matrices

and the righthand sides of the 
nite	dimensional linear systems� cf � ��$� Proposition IV���� The

su�cient conditions there require that both
�
V �O
n�n
��
n��

and
�
Reg V �O

n

��
�

��
n��

be Riesz bases for H����

and that the in�mum of the set of smallest eigenvalues of the matrices Q�O
N

�Q�O
N � N � N�� be

positive� In any event� in view of the �Riesz	� basis requirements imposed� the present Theorem ���

implies that the su�cient conditions of ���� hold for the 
rst Waterman scheme only when �� is a

ball centered at O and �� is not a Dirichlet eigenvalue for �� in �� �i�e�� in just the setting in which

one can already establish the viability and convergence of the scheme directly from the properties

of the spherical	wave functions��

Therefore� while the analysis of ���� does provide conditions under which some �T 	matrix

schemes
 can be substantiated� these do not include those of Waterman ����� which have evidently

been the ones most frequently implemented numerically�

��



�� Basis results in other spaces� connections with the far�
eld pattern�

From this point on� we require that � be real and positive� Under this hypothesis� there are

still further important connections between the sequences
�
V �O
n�n
��
n��

and
�
U�O
n

��
n��

and between�
V �O
n

��
�

��
n��

and
�
W �O

n

��
n��

� which we explain in this section� It turns out that these sequences do

form orthogonal bases for spaces of distributions on � that are intimately related to the far	
eld

patterns of radiating	wave amplitudes in ��� In these developments� we are led naturally to the

polar decomposition of the far	
eld pattern operators�

As usual� we deal with two cases� the �Neumann
 and the �Dirichlet�


���� The Neumann setting� We introduce the operator B� in H���� as a multiple of the

�imaginary part
 of A��

B� ��
i�

�

�
A� �A��

�
�

Obviously� B� is compact and self	adjoint� it follows also from ����� that B� is positive	de
nite�

i�e�� that
�
B�g� g

�
�
� � for each nonzero g � H����� In particular� B� is injective� so the range

R�B�

�
is dense in H����� From the relation A�� � A� we 
nd that B� is also self	conjugate� i�e��

that B� � B�� so it is clear that R�B�

�
is closed under complex conjugation� The properties of B�

ensure that it has a compact� self	adjoint� injective square root B
�
�
� � i�e�� such that B� � B

�
�
�B

�
�
� � A

surprising mapping property of B� is established in

Proposition ���� Let � be real and positive�

�i �� B� maps each V �O
n�n to the corresponding U�O

n �

B�V
�O
n�n � U�O

n � for n � �� �� �� � � � � �����

�ii ��
�
B

�
�
� V �O

n�n
��
n��

is an orthonormal basis for H�����

Proof � �i�� In general� for g � H���� we compute

B�g �
i�

�

n
A�g �A�g �A��g �A��g

o
� � i�

�

n
Re
�
A��g

��A�

�
Re g

�o
�

in particular� by choosing g � V �O
n�n and recalling that � is now real� we get

B�V
�O
n�n � � i�

�

n
Re
�
V �O
n j�

��A�

�
ReV �O

n�n
�o

� � i�

�

n
Reg V �O

n j� �A�Reg V
�O
n�n

o
� U�O

m �

Finally� we recall that B� is self	conjugate�

�ii�� Since
�
V �O
n�n
��
n��

and
�
U�O
n

��
n��

form a biorthonormal pair in H����� the orthonormality of�
B

�
�
� V �O

n�n
��
n��

in H���� follows directly from the self	adjointness of B
�
�
� and ������

�
B

�
�
� V

�O
m�n� B

�
�
� V

�O
n�n
�
�
�
�
V �O
m�n� B�V

�O
n�n
�
�
�
�
V �O
m�n� U

�O
n

�
�
� �mn for all m� n�

The completeness of
�
B

�
�
� V �O

n�n
��
n��

in H���� is an immediate consequence of the completeness of�
V �O
n�n
��
n��

in H���� and the injectivity of B
�
�
� �

Remark� Generally� we shall use without comment results following by a simple conjugation ar	

gument from those explicitly proven� For example� it is easy to see that
�
B

�
�
� V �O

n�n
��
n��

is also an

orthonormal basis for H�����

��



It is useful to verify that B
�
�
� inherits two more of the properties of B��

Lemma ���� �i �� R�B �
�
�

� � R�A�

�
�

�ii �� B
�
�
� is self�conjugate� i�e�� B

�
�
� � B

�
�
� � In particular� R�B �

�
�

�
is closed under conjugation�

Proof � �i�� Let f � B
�
�
�
ef � R�B �

�
�

�
� We shall show that the interior double	layer W�

� ffg with

density f is the restriction to �� of an entire solution of the Helmholtz equation� i�e�� of a solution

of ����� in all of R� � From this it will follow that W�
� ffg is L�	regular at �� so f � D�T�� and

T�f �� W�
� ffg�n exists� by recalling the characterization D�T�� � R�A�

�
� we will 
nally be able to

conclude that f � R�A�

�
� which will imply that �i� is true� To check that our 
rst assertion here is

correct� we use the expansion of the fundamental solution	value E�
x�y� that is implied by ������� for

x lying in the inscribed ball B
R
�

O

�O� for �� centered at O and y lying outside the ball� along with

the convergence properties of that expansion� to derive

W�
� ffg�x� � �i�

�X
n��

�
f� V �O

n�n
�
�
Reg V �O

n �x� � �i�
�X
n��

� ef�B �
�
� V �O

n�n
�
�
Reg V �O

n �x�� jx�Oj 	 R�O�

�����

Now� since
�
B

�
�
� V �O

n�n
��
n��

is an orthonormal basis forH����� the sequence
�� ef�B �

�
� V �O

n�n
�
�

��
n��

belongs

to ��� we shall show that this implies the convergence of the series in ����� in all of R� to a solution

of ������ To that end� we 
x any positive R and let �R denote the boundary �BR�O� of the ball of

radius R centered at O� the normal derivative on �R of an appropriate function u we indicate by

u�n
R

� Since it is easy to check that jjn�x�j � � and jj�n�x�j � �
� for all n � � and x � �� it follows

that both of fR �� �i�P�
n��

� ef�B �
�
� V �O

n�n
�
�
Reg V �O

n

��
�
R

and gR �� �i�P�
n��

� ef�B �
�
� V �O

n�n
�
�
Reg V �O

n�n
R

converge in L���R�� since each is a series in the orthonormal basis
�
R�� bYn��n�� for L���R� with

coe�cients in ��� Therefore� we can construct a solution wR of the Helmholtz equation in the ball

BR�O� by setting

wR�x� �� ��

�

Z
�
R

�
E�
x gR �E�

x �n
R

fR
�
d
�

R

for jx�Oj 	 R�

Upon inserting the series representations for fR and gR and integrating term	by	term� we get

wR�x� � �i�
�X
n��

� ef�B �
�
� V �O

n�n
�
�

n
��

�

Z
�
R

�
E�
x RegV

�O
n �n

R

�E�
x �n

R

RegV �O
n

�
d
�

R

o
� jx�Oj 	 R�

by using the counterpart of ��� � with �R replacing �� we recognize the expression within the large

brackets as RegV �O
n �x�� so the latter series coincides with that in ����� if jx�Oj 	 R�O� Therefore�

when R is su�ciently large� wR provides an extension of W�
� ffg to the ball BR�O�� Since R was

arbitrary and wR� extends wR if R� � R� the proof of �i� is complete�

�ii�� It is well known that B
�
�
� can be constructed as the strong limit in B�H����

�
of a recursively

de
ned sequence of operators that are polynomials in B�� the details can be found in� e�g �� ����� An

inspection of the development there reveals that the coe�cients of the polynomial operators are all

real� Since B� is self	conjugate� it follows immediately from this observation that B
�
�
� possesses the

same property� It is then clear that f � R�B �
�
�

�
i� f � R�B �

�
�

�
�

The de
nition �
f� g

�N
�
��
�
B

�
�
� f�B

�
�
� g
�
�
� for f � g � L�����

�$



provides an inner product for L����� In view of the compactness of B� in H����� it is clear that

this inner product is strictly weaker than � � � � �� and� denoting by H�
N
��� the completion of the

pre	Hilbert space
�
L����� � � � � �N�

�
� that the natural injection of H���� into H�

N
��� is compact� It

is also useful to introduce the Hilbert space H�
N
��� obtained by equipping R�B �

�
�

�
with the inner

product given by �
f� g

�N
�
��
�
B
� �
�

� f�B
� �
�

� g
�
�
� for f � g � R�B �

�
�

�
�

H�
N
��� can be identi
ed as the antidual of H�

N
���� It is easy to see that in these new structures we

get

Corollary ����
�
V �O
n�n
��
n��

is an orthonormal basis for H�
N
����

�
U�O
n

��
n��

is an orthonormal basis

for H�
N
����

Proof � This follows directly from Proposition ���� the de
nitions of H�
N
��� and H�

N
���� and the

completeness of
�
V �O
n�n
��
n��

in H�����

In passing� let us point out that we can use the latter statement in conjunction with relation

������ to establish another basis property for a certain class of domains ��� Speci
cally� we have a

condition su�cient to imply that the functions in R�B �
�
�

�
can be represented by H�

N
���	convergent

in
nite	series expansions in the elements of the sequence
�
Reg V �O

n

��
�

��
n��

�

Proposition ���� Suppose that R�B �
�
�

�
is invariant under D� and the restriction D�

��R�B �
�
�

�
is

compact when regarded as acting in H�
N
���� these conditions are ful�lled when � is� for example�

ellipsoidal� If �� is not a Dirichlet eigenvalue for �� in ��� then
�
RegV �O

n

��
�

��
n��

is a Riesz basis

for H�
N
����

Proof � Assuming that �� is not a Dirichlet eigenvalue for �� in ��� we know that I � D� is

injective in H����� so the restriction �I � D��
��R�B �

�
�

�
acting in H�

N
��� is also injective� and is

therefore an isomorphism of H�
N
���� under the compactness hypothesis� Since

�
U�O
n

��
n��

is clearly

also an orthonormal basis for H�
N
���� it now follows from ������ that

�
Reg V �O

n

��
�

��
n��

is a Riesz basis

for H�
N
���� Finally� to verify that the hypotheses hold when � is ellipsoidal� consider the condition

R�B �
�
�

�
is invariant under D� and B

� �
�

� D�B
�
�
� � B

�
H����

�
is compact� �C����

the designation �C���� is used here to maintain consistent notation with ���� where the condition is

shown to be implied by the equality

D�B� � B�D
�
�� �C�����

In turn� �C����� is shown in ��� to hold at least whenever � is ellipsoidal� But now it is simple to check

that �C���� implies the compactness of the restriction D�

��R�B �
�
�

�
in H�

N
���� Indeed� suppose that

�C���� holds and let
�
fn
��
n��

be a weakly null sequence from H�
N
���� so that

�
B
� �
�

� fn� B
� �
�

� g
�
�
� �

for every g � R�B �
�
�

�
� it follows� in particular� that

�
B
� �
�

� fn
��
n��

is weakly null in H����� Therefore�

��D�fn
��N
�
�
��B� �

�
� D�fn

��
�
�
���B� �

�
� D�B

�
�
�

�
B
� �
�

� fn
��
�
� � as n���

showing that D�

��R�B �
�
�

�
is compact in H�

N
���� �It is just as easy to verify the reversed implication�

so that the two conditions are in fact equivalent��

We can establish a connection between the inner product � � � � �N� and far	
eld patterns of

elements of W�������� although we do not know now whether the full completion H�
N
��� has

��



an alternate characterization in terms of something that is more readily interpreted physically�

Accordingly� we shall 
rst quickly recall the basic facts about the far	
eld pattern of a radiating

wave� Let u be a solution of ����� in �� that is also outgoing� i�e�� satis
es ������ Then� corresponding

to the 
xed point O� there is a unique complex function uO� de
ned on the unit sphere !� of R�

such that

u
�O � ��e

�
�
ei��

�
uO���e� �O

�
�

��

�
as ���� uniformly for �e � !��

uO� is termed the far��eld pattern of u with respect to O� the pertinent developments can be found

in� e�g�� ���� We de
ne an operator '�O
N

� H����� H��!��� the Neumann far��eld�pattern operator

with respect to O� according to

'�O
N

g �� �ug�
O

�
for g � H�����

i�e�� '�O
N

maps g � H���� to the far	
eld pattern of the corresponding unique ug �W������� with

Neumann data g� To get an integral representation for '�O
N

� we use the obvious formula

uO���e� � lim
���

�
ei��

�

���
u
�O � ��e

�
for each �e � !�

in conjunction with the integral representation in ����� for the solution ug of the exterior Neu	

mann�radiation problem with data g � H���� to write

'�O
N g��e� � � �

��

Z
�

�
e�O�e g � e�O�e �nA�g

�
d
� � � �

��

Z
�

�
e�O�e �A�e

�O
�e �n
�
g d
� for each �e � !��

�����

in which we have employed the notation e�O�e for the complex amplitude of a certain plane wave

propagating in the direction ��e�

e�O�e �y� �� e�i��e��y�O� for y � R� � �e � !��

From the 
rst form in ������ it is clear that '�O
N

is a compact operator� The well	known expansion

of a plane wave in terms of spherical harmonics now takes the particular form

e�O�e �y� �
��p
�

�X
l��

lX
m��l

i�l bYlm��e�Reg V �O
lm �y�� for y � R� � �e � !�� �����

as one can check by using the addition theorems for the spherical Bessel functions and the Legendre

functions� and accounting for the normalizing constants used here� The convergence properties of

the series permit its insertion into ����� and the performance of operations term	by	term to get

'�O
N g��e� �

p
�

�

�X
l��

lX
m��l

�
g� U�O

lm

�
�
i�l�� bYlm��e�

�

p
�

�

�X
l��

lX
m��l

�
B

�
�
� g�B

�
�
� V

�O
lm�n

�
�
i�l�� bYlm��e�

�

p
�

�

�X
l��

lX
m��l

�
g� V �O

lm�n
�N
�
i�l�� bYlm��e� for �e � !�� g � H����� ��� �

��



Clearly� the second equality in ��� � says that '�O
N

has the factorization

'�O
N

�

p
�

�
(�O
N
B

�
�
� � �����

in which the operator (�O
N

� H����� H��!�� is de
ned by

(�O
N g ��

�X
l��

lX
m��l

�
g�B

�
�
� V

�O
lm�n

�
�
i�l�� bYlm for g � H����� �����

and is clearly unitary� i�e�� an isometric isomorphism� in view of the orthonormal bases appearing

for H���� and H��!��� But then� since
�p

���
�
B

�
�
� is self	adjoint� we recognize ����� as giving the

polar decomposition of '�O
N

� We recap this development in

Proposition ���� The polar decomposition of the Neumann far��eld�pattern operator '�O
N

�

H���� � H��!�� is given by ������ in which the unitary operator (�O
N

� H���� � H��!�� is

de�ned by ������

Meanwhile� although ���
p
��'�O

N
� H���� � H��!�� is compact and injective� with dense

range� if we regard this operator instead as densely de
ned in H�
N
���� i�e�� as ���

p
��'�O

N
�
�
L���� �

H�
N
���
�� H��!��� then the third equality in ��� � shows that in this setting we have an isometry

with dense range� once again because of the orthonormal bases appearing �this time for H�
N
��� and

H��!���� and so the operator has extension to a unitary operator taking H�
N
��� onto H��!��� That

is� we compute from either ��� � or �����

��

�

�
'�O
N f�'�O

N g
�
H��	

�
�
�
�
f� g

�N
�

for f and g � L�����

which extends to hold for f and g � H�
N
���� Immediately� we get an expression of a weak sort

of continuous dependence on the data in the exterior Neumann�radiation problem� in the form of

the following characterization of approximation of the far	
eld pattern in H��!��� but expressed in

terms of approximation of the Neumann data on the boundary ��

Proposition ���� Let g � H����� A sequence
�
gn
��
n��

from H���� converges to g in the norm of

H�
N
��� i� the corresponding sequence

�
�ug

n
�
O

�
� '�O

N
gn
��
n��

of far��eld patterns converges to �ug�
O

�

in the norm of H��!���

Remarks� ���� This characterization is used in ��� to show that� for a certain class of shapes

including the ellipsoids� the far	
eld patterns of approximations generated from the secondWaterman

scheme will converge in H��!�� to that of the desired solution�

���� It is also easy to show that the sequence
�
�u�N �

O
�

��
N�N

�

of far	
eld patterns� with each u�N as in

� �$�� will converge to the far	
eld pattern of the scattered 
eld u� i� the sequence
�
��Nn �Nn��

��
N�N

�

of coe�cient sequences �each extended by zero� converges to the sequence
�
�n �� ��u��n� U�O

n ��
��
n��

of expansion coe�cients for u� in the norm of ��� A corresponding statement holds for the more

general exterior Neumann�radiation problem with any data g � H�����

���� The Dirichlet setting� The corresponding developments in the �Dirichlet setting
 are more

delicate� We begin by identifying the counterpart of the operator B�� Since R�A��� � R�A�

�
� we

can de
ne an operator C� �
�R�A�

� � H����
�� H���� densely in H���� by setting

C�f ��
i�

�

�
A��

�� �A���
�
f for each f � R�A�

�
�

��



R�B�

� � R�A�

�
� so it is clear that we can also write

C�f � A��
��B�A

��
� f � A��� B�A

�
�
��f for each f � R�A�

�
�

In the following collection of 
rst properties� we show that C� is symmetric� while its adjoint C�� is

also symmetric and de
ned on all of H����� and is therefore bounded and self	adjoint� That is� C�

is bounded� its bounded extension to all of H���� is its adjoint C�� � C��� � which is self	adjoint�

Lemma ���� �i �� The operator C� is injective� with range

R�C�

�
� R�A��� B�

�
�
n
f � H����

��� A�f � R
�
B�

� o
� R�A����B�

�
�
n
f � H����

��� A��f � R�B�

� o
and inverse given by

C��� f � A��B
��
� A�f � A�B

��
� A��f for each f � R�C�

�
�

�ii �� C� is symmetric� i�e�� C� � C���

�iii �� The adjoint C�� is symmetric with domain D�C��� � H����� so C�� is bounded and self�

adjoint� In fact� the operators A��� B�� A
�
�
��B�� A

��
� B

�
�
� � and A��

��B
�
�
� are all de�ned

on H���� and bounded� with
�
A��� B�

��
and

�
A��

��B�

��
mapping H���� into R�B �

�
�

� �
R�A�

�
� and

C�� � A���
�
A��� B�

��
�
�
A��� B

�
�
�

��
A��� B

�
�
�

��
� A��

���A����B�

��
�
�
A��

��B
�
�
�

��
A��

��B
�
�
�

��
�

�iv �� C� is bounded and essentially self�adjoint� i�e�� its closure C��� � C��� which is� in this case�

its continuous extension to all of H����� is self�adjoint�

Proof � �i�� Either of the alternate characterizations C�f � A��
��B�A

��
� f � A��� B�A

�
�
��f � f �

R�A�

�
� shows that C� is injective� Routine checking will verify the remaining assertions of �i��

�ii�� Let g � D�C�

�
� R�A�

�
� it is easy to see that

�
C�f� g

�
�
�
�
f� C�g

�
�
for every f � D�C���

i�e�� that g � D�C��� and C��g � C�g� Thus� C� � C���

�iii�� Since R�B�

� � R�B �
�
�

� � R�A�

�
� R�A���� each of A��� B�� A

�
�
��B�� A

��
� B

�
�
� � and A��

��B
�
�
�

is de
ned on all of H����� since each is also closed� it is in B�H����
�
� Therefore� we have�

A��� B�

��
�
�
A��� B

�
�
�B

�
�
�

��
� B

�
�
�

�
A��� B

�
�
�

��
� with a similar result for

�
A��

��B�

��
� showing that

each of these operators has range in R�B �
�
�

� � R�A�

�
� which implies that both A���

�
A��� B�

��
and

A��
��
�
A��

��B�

��
are also in B�H����

�
� Moreover� we compute

�
C�f� g

�
�
�
�
A��� B�A

�
�
��f� g

�
�
�
�
A��

��f� �A��� B��
�g
�
�
�
�
f�A��� �A��� B��

�g
�
�

whenever f � D�C�

�
� R�A�

�
and g � H�����

showing that C�� � A���
�
A��� B�

�� � B�H����
�
� Since

A���
�
A��� B�

��
� A���

�
A��� B

�
�
�B

�
�
�

��
�
�
A��� B

�
�
�

��
A��� B

�
�
�

��
�

��



while the latter operator is clearly self	adjoint� we conclude that C�� is self	adjoint� Now the remaining

statements either follow immediately or are proven analogously�

�iv�� These statements follow directly from �ii� and �iii��

Now we can show that the operator C�� performs in the Dirichlet setting the same r)ole as B�

in the Neumann setting�

Proposition ��	� �i �� C�� maps each V �O
n

��
�
to the corresponding W �O

n �

C��V
�O
n

��
�
� W �O

n � for n � �� �� �� � � � � ���$�

�ii �� C�� is injective and positive� and so possesses a self�adjoint� injective square root C��
�
� �

�iii �� Both C�� and C��
�
� are self�conjugate� in particular� their ranges are closed under complex

conjugation�

�iv ��
�
C��

�
�V �O

n

��
�

��
n��

is an orthonormal basis for H�����

Proof � �i�� This follows by direct computation� In fact� we can always write

C��V
�O
n

��
�
� C�V

�O
n

��
�
�

i�

�

n
A��

��V �O
n

��
�
� V �O

n �n

o

�
i�

�

n
A��

���V �O
n

��
�
� V �O

n

��
�

�� �V �O
n�n � V �O

n�n
�o

�
i�

�

n
A��

��ReV �O
n

��
�
�ReV �O

n�n

o
�

by recalling that � is real� we get

C��V
�O
n

��
�
�

i�

�

n
A��

��RegV �O
n

��
�
�RegV �O

n�n

o
�W �O

n � n � �� �� �� � � � �

�ii�� We just showed that the rangeR�C��� contains the span sp
�
W �O

n

��
n��

� which is dense inH�����

since C�� is self	adjoint� it is therefore injective� Meanwhile� the nonnegativity of C�� follows directly

from� say� its representation C�� �
�
A��� B

�
�
�

��
A��� B

�
�
�

��
� i�e�� we have

�
C��f� f

�
�
� � whenever

f � H����� Now the existence of the self	adjoint square root C��
�
� follows� since C�� is injective� C��

�
�

has the same property� �Now it is also clear that
�
C��f� f

�
�
� � only for f � ���

�iii�� The equality C�� � C�� follows directly from any of the representations given for C�� in

Lemma ���� by recalling that B� is self	conjugate and A�� � A�� Then the self	conjugacy of C��
�
�

follows from that of C�� by the same reasoning used in the case of B�� in Lemma ����ii �

�iv�� Statement �i� implies that
�
C��

�
�V �O

n

��
�

��
n��

is orthonormal in H����� while the completeness

of the sequence in H���� follows from that of
�
V �O
n

��
�

��
n��

and the fact that C��
�
� is self	adjoint and

injective�

Now we can summarize for the Dirichlet setting the constructions analogous to those already

described for the far	
eld patterns in the Neumann setting� We begin by introducing the Hilbert

spaces H�
D ��� and H�

D ���� H�
D ��� is the range R�C�� �

�

�
equipped with the inner product � � � � �D�

de
ned by �f� g�D� ��
�
C��

� �
� f� C��

� �
� g
�
�
for f and g � R�C�� �

�

�
� H�

D ��� is the completion of L����

under the inner product � � � � �D� given by �f� g�D� ��
�
C��

�
� f� C��

�
� g
�
�
for f and g � L����� One can

show that H�
D ��� is a realization of the antidual of H�

D ���� Moreover� directly from Proposition �� 

and the completeness of
�
V �O
n

��
�

��
n��

in H���� we get the counterpart of Corollary ����

��



Corollary ����
�
V �O
n

��
�

��
n��

is an orthonormal basis for H�
D ����

�
W �O

n

��
n��

is an orthonormal basis

for H�
D ����

Corresponding to Proposition ���� we obtain a further basis property under appropriate circum	

stances� this time for
�
Reg V �O

n�n
��
n��

in H�
D ���� by combining Corollary ��� and �������

Proposition ���� Suppose that R�C�� �
�

�
is invariant under D�

� and the restriction D�
�

��R�C�� �
�

�
is

compact when regarded as acting in H�
D ���� these conditions are ful�lled when � is� for example�

ellipsoidal� If �� is not a Neumann eigenvalue for �� in ��� then
�
Reg V �O

n�n
��
n��

is a Riesz basis

for H�
D ����

Proof � Suppose that �� is not a Neumann eigenvalue for �� in ��� so that I �D�
� is injective in

H����� The restriction �I �D�
��
��R�C�� �

�

�
is therefore injective in H�

D ���� and so gives an isomor	

phism of the latter space� in view of the compactness hypothesis on the restriction D�
�

��R�C�� �
�

�
�

Now ������ shows that
�
Reg V �O

n�n
��
n��

is a Riesz basis for H�
D ����

Finally� just as in the proof of Proposition ���� one can check that the following condition implies

that R�C�� �
�

�
is invariant under D�

� and the restriction D�
�

��R�C�� �
�

�
is compact in H�

D ����

R�C�� �
�

�
is invariant under D�

� and C��
� �
�D�

�C
�
�

�
� � B�H����

�
is compact �C����

�in fact� the two are equivalent�� We shall sketch a proof of the claim that �C���� holds whenever

� is an ellipsoid� which will complete the proof of the Proposition� We already cited the relation

�C����� as holding for ellipsoidal �� let us show that it implies the equality

D�
�C

�
� � C��D�� �C�����

Suppose then that �C����� is true� Since we noted in Section � that we always have D�A� � A�D
�
��

�C����� implies that now D�A
�
� � A��D

�
� must hold� as well� in view of the de
nition of B�� By

exploiting these relations� we 
nd

D�
�C

�
�f � D�

�C�f � D�
�A

��
� B�A

�
�
��f

� A��� D�B�A
�
�
��f � A��� B�D

�
�A

�
�
��f

� A��� B�A
�
�
��D�f � C�D�f � C��D�f for f � R�A�

�
�

this result then extends to hold on all of H����� i�e�� to give �C������ �And the reversed implication

can be proven in a similar manner� so that �C����� and �C����� are equivalent�� Now one can 
ll

in the reasoning showing that �C����� implies �C����� by following along parallel to the analogous

argument given in ��� for the �Neumann case�
 That is� one 
rst shows that �C���� is equivalent to

the condition that D� is compact when regarded as densely de
ned on L���� � H�
D ��� and mapping

into H�
D ��� and then appeals to results of Lax ���� to show that the latter condition is implied by

�C������

Remark� In ��� it is shown that condition �C����� is equivalent to the symmetry

�
V �O
m�n�RegV

�O
n

��
�

�
�
�
�
V �O
n�n�RegV

�O
m

��
�

�
�

for all m and n � �� �� �� � � � � �C������

a corresponding argument will show that condition �C����� is equivalent to the symmetry

�
V �O
m

��
�
�RegV �O

n�n
�
�
�
�
V �O
n

��
�
�Reg V �O

m�n
�
�

for all m and n � �� �� �� � � � �C������

��



�cf � ������

Just as for the previous case� we de
ne the Dirichlet far��eld�pattern operator '�O
D

� H���� �
H��!�� with respect to O by setting '�O

D
g ��

�
vg

�O
�

for each g � H����� with vg denoting� as usual�

the solution of the exterior Dirichlet�radiation problem for the data g� From the expression given in

������� we compute
�
vg

�O
�

and then appeal to ������ of Lemma ��� to get an integral representation

for the operator '�O
D

�

'�O
D

g��e� � � �

��

Z
�

�
e�O�e � �e�O�e �n

��
S� � ��I �D��

���
g d
�

� � �

��

Z
�

n�
S� � ��I �D�

��
����

e�O�e
��
�
� �e�O�e �n

�o
g d
�

� � �

��

Z
�

�
A��� e�O�e

��
�
� e�O�e �n

�
g d
� for each �e � !�� �����

from the 
rst form in ����� it is clear that '�O
D

is compact� Once again using the expansion �����

for e�O�e � we get

'�O
D g��e� �

p
�

�

�X
l��

lX
m��l

�
g�W �O

lm

�
�
i�l�� bYlm��e�

�

p
�

�

�X
l��

lX
m��l

�
C��

�
� g� C��

�
�V �O

lm

��
�

�
�
i�l�� bYlm��e�

�

p
�

�

�X
l��

lX
m��l

�
g� V �O

lm

��
�

�D
�
i�l�� bYlm��e� for �e � !�� g � H����� ������

The second equality in ������ yields the factorization

'�O
D

�

p
�

�
(�O
D
C��

�
� � ������

with the isometric isomorphism (�O
D

� H����� H��!�� de
ned by

(�O
D g ��

�X
l��

lX
m��l

�
g� C��

�
�V �O

lm

��
�

�
�
i�l�� bYlm for g � H����� ������

Clearly� ������ is the polar decomposition of '�O
D

�

Proposition ��
� Equality ������ gives the polar decomposition of the Dirichlet far��eld�pattern

operator '�O
D

� H���� � H��!��� with the unitary operator (�O
D

� H���� � H��!�� de�ned by

�������

Earlier� we showed directly only that C�� is bounded� but now from ������ and the compactness

of '�O
D

we infer�

Corollary ���� C�� is compact in H�����

Meanwhile� if we regard the operator ���
p
��'�O

D
as ���

p
��'�O

D
�
�
L���� � H�

D ���
� �

H��!��� i�e�� as densely de
ned in H�
D ���� then the third equality in ������ shows that it is an

� 



isometry with dense range� and so has extension to a unitary operator taking H�
D ��� onto H��!���

That is� we have

��

�

�
'�O
D

f�'�O
D
g
�
H��	

�
�
�
�
f� g

�D
�

for f and g � L�����

which extends to hold for f and g � H�
D ���� Consequently� we obtain a characterization of approxi	

mation of the far	
eld pattern in H��!��� expressed in terms of approximation of the Dirichlet data

on the boundary ��

Proposition ���� Let g � H����� A sequence
�
gn
��
n��

from H���� converges to g in the norm of

H�
D ��� i� the corresponding sequence

�
�vg

n
�
O

�
� '�O

D
gn
��
n��

of far��eld patterns converges to �vg�
O

�

in the norm of H��!���

��




� An application� establishing �QT � �ReQ��
In Section  � we remarked on the 
rst algorithm proposed byWaterman ����� here� we comment on

the second scheme suggested there� We continue to suppose that � is now real and positive� For the

most part we restrict attention to the problem of acoustic scattering by a hard obstacle� so that we

deal with the Neumann�radiation problem in �� with special data of the form g � �u��n� where the
incident 
eld u� is again assumed to be ����O�	regular� i�e�� is a solution of ����� in a ball BR

�

�O�

with R� � R�
O�

According to � ����� the 
rst Waterman algorithm proposes the formation of an N � N N th

approximate T 	matrix T �O
N satisfying

Q�O
N

�T �O
N

�T
� �ReQ�O

N � for all su�ciently large N � �����

in which the elements of the N � N matrix Q�O
N are given in � ���� The upshot of the further

heuristic argument in ���� is that� if ����� yields a sequence converging to the transition matrix� then

so also should the prescription

Q�O
N
eT �O
N � �ReQ�O

N � for all su�ciently large N � �������

since it is well known that the actual transition matrix T �O is symmetric� this symmetry can be

easily veri
ed directly from the de
nition given in Section  � by using Green%s Theorem and the

property A�� � A��

T �O
nm �� ��Reg V �O

m�n� U
�O
n

�
�
�

i�

�

Z
�

RegV �O
m�n

n
Reg V �O

n j� �A�Reg V
�O
n�n

o
d
�

�
i�

�

Z
�

n
Reg V �O

m j�RegV �O
n�n �

�
A�Reg V

�O
m�n

�
RegV �O

n�n

o
d
� � ��Reg V �O

n �n� U
�O
m

�
�
� T �O

mn �

More explicitly� the equality in ������� is

NX
j��

�
Reg V �O

m

��
�
� V �O

j �n
�
�

� eT �O
N

�
jn

� ��RegV �O
m

��
�
�Reg V �O

n�n
�
�
� for m� n � �� � � � � N � �������

Thus� based upon ������ the two steps of the second Waterman algorithm for the acoustic

hard	scattering problem� with u� denoting the scattered 
eld corresponding to the ����O�	regular

incident 
eld� comprise

�W�II��� establish viability� this step coincides with �W�I����

�W�II��� establish convergence� show that the sequence
�
*u�N
��
N�N

�

constructed by

*u�N �x� ��

NX
m��

*�Nn V
�O
n �x�� for x � ��� for N � N�� �����

in which the coe�cients
�
*�Nn
�N
n��

are obtained from

*�Nn ��

NX
m��

� eT �O
N

�
nm

�m� for n � �� � � � � N �����

��



�the incident	
eld expansion coe�cients being as in � ����� with eT �O
N determined by

������ converges in some manner to the unique solution u��

Of course� when the scheme is viable� the coe�cients
�
*�Nn
�N
n��

in ����� can be determined

directly from

NX
n��

�
Reg V �O

m

��
�
� V �O

n�n
�
�
*�Nn � �

NX
n��

�
RegV �O

m

��
�
�RegV �O

n�n
�
�
�n� for m� n � �� � � � � N �

We already indicated� in Remark ��� following Proposition ���� the extent to which the scheme

�W�II� is justi
ed in ����

Evidently� the heuristic motivation given in ���� for this second algorithm seems to derive from

a claim that the actual transition matrix T �O satis
es the in
nite system

�X
j��

�
Reg V �O

m

��
�
� V �O

j �n
�
�
T �O
jn � ��RegV �O

m

��
�
�Reg V �O

n�n
�
�
� for m� n � �� �� � � � �

i�e�� recalling the expressions for the T �O
jn � that the relations

�X
j��

�
Reg V �O

m

��
�
� V �O

j �n
�
�

��RegV �O
n�n� U

�O
j

�
�
� ��RegV �O

m

��
�
�RegV �O

n�n
�
�
� for m� n � �� �� � � � �

��� �

hold for the current �� and �� When this is the case� ����� and the succeeding recipe can be viewed

as a formal application of the classical abscnittsmethode for approximate solution of an in
nite

system of linear equations in a space of sequences �or in
nite matrices�� cf �� e�g �� Hellinger and

Toeplitz ��� or Kantorovich and Krylov ���� �in the latter work� the term �reduction of order


is used�� Here� we consider merely the validity of ��� �� in particular� showing that it holds when

the boundary �� is an ellipsoid� The �argument
 of ���� purporting to establish ��� � is completely

formal and constitutes no veri
cation� so it is rather surprising to 
nd that ��� � does turn out to be

true in at least some cases� Nevertheless� the relation has been subsequently cited without question

to such an extent that the impression of its general validity is probably now indelible�

To be sure� the question of the validity of ��� � may be entirely peripheral to a justi
cation

of the second Waterman scheme in some cases� That is� even if ��� � fails for a certain geometry�

one can still study the steps �W�II��� and �W�II��� in their own right� the correctness of ��� � for

some �� just signals that one might approach the examination of the second Waterman scheme in

that instance as an application of the abscnittsmethode� and so constitutes just a small step in a

full program� In fact� the crucial issues would then hinge on the properties of the operator between

appropriate sequence spaces that is induced by the in
nite matrix Q�O� Let us just note here

without proof that one can carry through such an approach successfully for a class of boundaries �

that includes ellipsoids� at least when �� is not an interior Dirichlet eigenvalue for ��� since then

Q�O induces an isomorphism in the sequence space �� admitting application of a Bubnov	Galerkin

scheme that coincides with the abscnittsmethode� We omit this development� since it appears to

a�ord no results beyond those given in ����

Proposition 
��� The relation ��� � holds whenever the collection
�
RegV �O

n

��
�

��
n��

of traces belongs

to the range R�B �
�
�

�
of the square root of the operator B�� This condition obtains when R�B �

�
�

�
is

invariant under D�� and so holds� in particular� when the boundary � is an ellipsoid�

�$



Proof � Since the sequence
�
B

�
�
� V �O

n�n
��
n��

is an orthonormal basis for H����� it is clear that

�
f� g

�
�
�

�X
j��

�
f�B

�
�
� V

�O
j �n
�
�

�
B

�
�
� V

�O
j �n� g

�
�

whenever f � g � H�����

If we also have g � R�B �
�
�

�
� it follows that

�
f� g

�
�
�
�
B

�
�
� f�B

� �
�

� g
�
�
�

�X
j��

�
B

�
�
� f�B

�
�
� V

�O
j �n
�
�

�
B

�
�
� V

�O
j �n� B

� �
�

� g
�
�

�

�X
j��

�
f� U�O

j

�
�

�
V �O
j �n� g

�
�
� for f � H����� g � R�B �

�
�

�
� �����

Now� when we know that each RegV �O
m

��
�
belongs to R�B �

�
�

�
� we can take g � Reg V �O

m

��
�
and

f � �RegV �O
n �n in ����� to get ��� ��

Further� the inclusion
�
RegV �O

n

��
�

��
n��

� R�B �
�
�

�
clearly follows from ������ in case R�B �

�
�

�
is

invariant under D�� Finally� we already indicated that �C����� implies that D� maps R�B �
�
�

�
into

itself and holds when � �� ��� is an ellipsoid�

The counterpart to ��� � for the acoustically soft obstacle� i�e�� for the �Dirichlet setting�
 is

�X
j��

�
RegV �O

m�n� V
�O
j

��
�

�
�

��RegV �O
n

��
�
�W �O

j

�
�
� ��RegV �O

m�n�Reg V
�O
n

��
�

�
�
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�����

which we can establish under an analogous set of conditions�

Proposition 
��� The relation ����� holds whenever the collection
�
RegV �O

n�n
��
n��

of normal deriva�

tives belongs to the range R�C�� �
�

�
of the square root of the operator C��� This condition obtains

whenR�C�� �
�

�
is invariant underD�

�� and so holds� in particular� when the boundary � is an ellipsoid�

Proof � The proof is constructed by following along the argument in the proof of Proposition ����

mutatis mutandis � By recalling that the sequence
�
C��

�
�V �O

n

��
�

��
n��

is an orthonormal basis for

H����� we conclude that
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� f� C��
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�
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�
� V �O

j
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�
� C��

� �
� g
�
�

�

�X
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�
f�W �O

j

�
�

�
V �O
j

��
�
� g
�
�
� for f � H����� g � R�C�� �

�

�
�

If each Reg V �O
m�n belongs to R�C�� �

�

�
� we can take g � Reg V �O

m�n and f � �RegV �O
n

��
�
in the latter

equality to get ������

The inclusion
�
Reg V �O

n�n
��
n��

� R�C�� �
�

�
is implied by ������ if R�C�� �

�

�
is invariant under D�

��

But we already indicated that �C����� implies that D�
� maps R�C�� �

�

�
into itself and holds when �

is an ellipsoid�

Finally� we should also point out that the validity of an appropriate form of the so	called

�Rayleigh hypothesis
 for the given �� will imply ��� � and ������ To explain this just for the

��



Neumann setting� suppose that �� has the property that the expansion � ��� of the scattered 
eld

in fact converges outside the inscribed ball B
R
�

O

�O� whenever the incident 
eld u� is one of the

regular solutions RegV �O
n � evidently� assuming that the term	by	term operations are justi
ed� we

should then also 
nd

�RegV �O
n�n �

�X
j��

��RegV �O
n�n� U

�O
j

�
�
V �O
j �n� for n � �� �� �� � � � �

Of course� we already know the latter expansions to hold in a very weak sense� as the generalized

Fourier expansions of the �RegV �O
n�n in the orthonormal basis

�
V �O
n�n
��
n��

for H�
N
���� if the conver	

gence is actually in H����� the relations ��� � clearly follow from this alternate argument� We can

sketch an analogous derivation for ������ However� it is apparently not known whether there exist

any �� for which the �Rayleigh hypothesis
 in the form used here actually obtains�

��
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