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ABSTRACT 
 

Based on the recent dynamic gene therapy proposed by Martinez-Quintanilla 

et al., we have developed a set of ordinary differential equations to model the 

dynamics of various cancerous cells during tumor growth and treatment. We then 

exploited the dependence of certain parameters within the system during therapy to 

devise an optimal control method for treatment. Employing the use of an optimal 

controller allows us to analyze the best possible outcome of the treatment under 

several conditions. In this thesis we will apply an optimal controller to the system 

under various conditions taking specific note of the total tumor burden as a result of 

the treatment and total treatment time. We will then prove that an optimal control 

approach is very helpful and may even be necessary for successful implementation 

of this novel cancer therapy.
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Chapter 1 

 
INTRODUCTION 

 
The field of mathematical biology is quickly gaining popularity among 

researchers in effort to find novel treatments, cures, and solutions to an assortment 

of medical concerns.  The basic procedure of mathematical biology is to first devise a 

mathematical model of the observable organic events based on their biological 

properties.  The models often take the form of a partial differential equation or an 

ordinary differential equation used to represent the dynamical system. Next the 

investigator would attempt to predict the outcome of their model under certain 

biological pressures. Such pressures could range from a variety of different features 

such as treatment schedule, a certain drug efficacy, mass action rate, etc. 

Once a practical model is formulated it can then be manipulated for use in 

several diverse applications.  One popular course of action is to apply some sort of 

control theory to the model to achieve a desired outcome.  The effort to maximize or 

minimize a certain aspect a therapy using the mathematical model is known as 

optimal control. 

Optimal control is very popular among mathematical biologist. It is especially 

useful when trying to optimize some sort of treatment.  The work of Zurakowski and 

Wodarz, seeks to optimize treatment by using optimal control based schedules of 

specific inhibiter application to increase the efficacy of an innovative new treatment 

approach towards cancer [13],[14].  

Castiglione and Piccoli [3] hope to apply the theories of optimal control to 

their model to determine when and to which extent to stimulate the immune 
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system.  Using an optimal control method they can determine when would be the 

best time to administer certain immunotherapeutic agents to elicit a managed 

immune response in the patient [3].  

Mathematical biology and optimal control is not just limited to the medical 

field and medical applications. An example is food production, specifically food 

products that are produced by modern process called bacteria fermentation. Yogurt 

is a popular food produced via bacteria fermentation of lactose to lactic acid in milk. 

 Bacteriophages are type virus that infect and subsequently cause the death 

of bacteria. Employing mathematical biology methods and optimal control theory, 

scientist can use this knowledge as a manipulated variable to control the amount 

and bacteria used during fermentation [8].  Anthrax is used by terrorist all around 

the world to threaten lives in different countries.  Knowledge of bacteriophages and 

application of control can be used to optimally minimize the effect of an anthrax 

breakout.  

In this thesis we intend to apply mathematical biology concepts to a novel 

therapy approach proposed by Martinez-Qunitanilla et al [6][7].  The goal of the 

therapy is to overcome the current challenges faced by scientist and doctors when 

treating cancer, most importantly cancerous cell’s resistance to chemotherapeutic 

drugs. 
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Chapter 2 

 
BIOLOGICAL BACKGROUND 

 
In the most basic sense, many chemotherapeutic agents work by inducing a 

programmed cellular suicide of the cancerous cells.  This process is called apoptosis 

and is the primary mechanism of cell death.  Regulation of the cell population is of 

fundamental importance to muticellular organisms. Not only must redundant cells 

be removed during development, as the organism is created, but controlled cellular 

deletions are needed in order to prevent the proliferation of cells that have acquired 

mutations [4],[5].  

Through various processes many cancerous cells lose their apoptosis triggers 

as the tumor matures. For this reason many late stage cancers are highly resistant to 

chemotherapeutic agents.  Often times after chemotherapy treatment several 

genomically instable, chemotherapy resistant cells remain.  

 

2.1 Chemotherapy Resistance 

Tumor cells are able to achieve states of chemo-resistance via two 

mechanisms: mutation (natural evolution) or transfection of engineered genes. 

Natural mutations occur because cancer cell DNA is in a constant state of flux, 

continually altering the cells phenotype. Widely employed and well characterized 

chemo-resistance genes are variants of dihydrofolate reductase (DHFR) and 

multidrug resistance gene1 (MDR1) [2]. 
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DHFR serves as a catalyst for the reduction of folate to tetrahydrofolate [1]. 

This enzyme, in turn, serves as a cofactor in the production of amino and nucleic 

acids such as purines and thymidine. The chemotherapeutic agent methotrexate 

(MTX) is a compound having a greater affinity to DHFR than folate. Thus, DHFR 

more readily binds to MTX, preventing potential production of tetrahydrofolate and 

subsequent nucleotides. Ideally, methotrexate would display this characteristic for 

all tumor cells; however, DHFR mutants display a lower affinity for the drug, 

enabling them to continue preferential binding to folate. 

Another instance of chemo-resistance is illustrated by MDR1. This gene 

encodes for the membrane bound protein P-glycoprotein (PGP). The role of PGP is a 

facilitator of molecule movement, mediating both extra- and inter-cellular transport. 

PGP effectively acts as a drug pump, decreasing intercellular concentrations of 

drugs, thereby limiting their effectiveness. 

Either of these mutations are considered highly likely to have an established 

presence in cases of advanced colon or pancreatic cancer. For the purposes of our 

model, we assume chemo-resistant mutants constitute a portion of the tumor 

population. The selective pressure initiated by a chemotherapeutic agent favors 

these mutants, as they exhibit greater fitness than their non-mutant counterparts. 

Positive selection for mutants results in a post-treatment population that is devoid 

of chemo-susceptible cells. 
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2.2 Transfected Genes 

In the work of Martinez-Quintanilla et al. [6][7] instances of colon and 

pancreatic carcinoma cell lines are transfected via a plasmid containing one of two 

separate genes encoding either MDR1 or DHFR, combined with a gene encoding 

herpes simplex virus thymidine kinase (HSV-TK). 

We have discussed the implications of MDR1 or DHFR presence in the cell. 

Transfected genes ensure survival of the toxic effects of chemotherapy, resulting in 

the presence of a second subpopulation of cells after treatment. 

The second gene in the plasmid, HSV-TK, encodes an enzyme that converts 

the host to a state of susceptibility to the antiviral drug ganciclovir. Ganciclovir is 

prominent in many anti-cancer gene therapy approaches because it is readily 

incorporated into the DNA of susceptible cells. The compound is directly responsible 

for the formation of double-strand breaks in cell DNA, ultimately triggering 

apoptosis [9]. Furthermore, it diffuses into neighboring cells - intercellular transfer 

occurs through gap junctions (2-4nm apart). This exchange of metabolized 

ganciclovir creates a bystander effect when transfected cells meet chemo-resistant 

mutants at gap junctions, triggering apoptosis in cells not ordinarily targeted by the 

drug.  

The method of anti-cancer gene therapy under consideration occurs in a two-

stage process. The first phase is positive selection for chemo-resistant cells during 

chemotherapy, resulting in an amplified proportion of transfected cells. The 
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population of transfected cells must outnumber that of mutant cells in order to 

ensure an optimal interaction between the species, required for the bystander 

effect. The second phase consists of negative selection phase achieved by injection 

of ganciclovir. Those cells prone to the antiviral drug treatment via transfection or 

bystander effect would undergo triggered apoptosis. 

Experimental anti-cancer gene therapy has been conducted on mice cancer 

cells, both in vitro and in vivo [6][7]. In both instances, cell populations were 

measured post-therapy, indicating a significant decline corresponding to successful 

treatment. However, the complicated dynamics of this process make it difficult to 

guarantee similar success in humans, especially when delivery mechanisms are 

considered. The remainder of this paper serves to demonstrate the necessity of 

dynamic modeling and optimal control techniques in designing a robust treatment 

implementation for human trials. 

 

2.3 The Bystander effect 

The aforementioned bystander effect is the most important part of the 

biological process and is the tool that we wish to manipulate in order optimize 

treatment [6][7]. In the absence of a large enough bystander effect the cells that are 

naturally chemo-resistant would not die out after treatment; however, with an 

efficient bystander effect, the enrichment of the modified cells could completely 

eradicate the tumor after the ganciclovir treatment. 

The bystander effect has the largest impact when there is a high proportion 

of the induced chemo-resistant cells in the tumor at the onset of the ganciclovir 

treatment.  In other words if there is a large proportion of induced chemo-resistant 
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cells vs. other cells in the tumor then there is a high probability that an induced 

chemo-resistant cell can come into contact with another type of cell and exchange 

the metabolized ganciclovir. 

It is known that the process governing the genesis and progression of 

cancers are evolutionary ones in which natural selection acts upon the inherent or 

acquired diversity of various somatic clones [5]. It is this very natural selection 

process that we wish to exploit and optimize to achieve a successful treatment. 

By pulsing the chemotherapy treatment we can encourage competition 

between the three cell types at various times. Under the right pulse sequence the 

induced chemo-resistant cell ratio can reach a maximum that will allow for 

successful treatment. The ultimate goal of this thesis is to find that optimal pulse 

sequence and subsequently analyze how treatment outcomes vary subject to this 

optimal control when the system parameters are changed. 
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Chapter 3 

 
THE MODEL 

 
We used a logistic model to convey the dynamics of the system. In a logistic 

model the curve of the tumor size follows a sigmoid pattern with three key phases. 

The first phase is the initial exponential growth of the tumor. During this phase 

there are abundant resources and thus not much competition between cell types for 

each resource.  As a result the tumor can propagate exponentially.  

A linear growth section characterizes the second phase of logistic tumor 

growth. In this section resources are beginning to deplete as more cells are formed. 

As a result the growth starts to become less exponential and becomes more linear 

for a period. 

The third and final phase of tumor growth is the plateau phase.  During this 

phase the tumor cells have propagated so much that the available resources are 

running out. At this point the tumor reaches a size, called the carrying capacity at 

which point there is no more increase in volume, and the curve levels off into a 

plateau [10][11][12].  

As stated previously, a delivery virus must be used in order to transfect the 

cancer cells.  The virus would need to be at least somewhat oncospecific and could 

either be replication competent or non-replication competent.  
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3.1 Non-Replication Competent Delivery Virus  
 
3.1.1 Non-Susceptible Naturally Resistant Cells 
 

The basic model that we created represented the non-replication competent 

situation.  In this case, after the initial virus bolus no more virus are produced.  This 

is done through the use of a replication-defective viral vector.  Theses viral vectors 

are able to penetrate and integrate into host DNA; however, the coding regions 

responsible for reproduction have been deleted.  This means that this type of virus, 

a non-replication competent delivery virus, can infect a host cell but cannot enter 

into the reproductive cycle or lytic cycle to produce any progeny.  Thus, after all of 

the viruses have transfected a cell, there will be no more viral transfection during 

the treatment unless another bolus is administered.  In order to model such 

dynamics we developed a simple set of non-linear differential equations  

 

 (1)

 

 
 
 
 
 

 
 

In this model x, y, and z represent the chemotherapy sensitive, the naturally 

chemotherapy resistant, and the induced chemotherapy resistant cell populations 

respectively.  The individual exponential growth rates of each cell type are 
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represented by r, , and s respectively and their death are represented by dx, dy, and 

dz.  The free virus population is represented by v, which decays exponentially at a 

rate (u+x). Because the virus is non-replication competent there is no growth term 

in the virus equation.  

The previous terms are the general expressions associated with most models 

that reproduce population dynamics. There are several key terms in our model that 

are necessary to show the interaction and dynamics associated with this 

competition-suicide gene therapy.  First there are the chemotherapy treatment 

efficacy terms Cx(t), Cy(t) and Cz(t), which are time-dependent terms that affect the 

growth rate of each cell type. They are modeled as time-dependant terms because 

the chemotherapy can be on or off at various times during the treatment.  

The variable K represents the carrying capacity of the tumor. It is a 

fundamental element of a logistic tumor growth equation and summarizes the cell 

population that the tumor can sustain given the surrounding conditions. The 

variable  is the infection rate or efficacy of the virus.  In this set of equations it 

describes a rate of change from state x to state z.  

Perhaps the most important part of the model for this type of therapy is the 

aforementioned ganciclovir and bystander effects.  Similar to the chemotherapy 

treatment, the ganciclovir treatment is modeled as a time-dependent term denoted 

by the variable g(t). The bystander effect is represented by the variable 

b(z/(x+y+z)) in the model. It is a function of the ratio of the amount of induced or 

transfected chemotherapy resistant over the total amount of cells in the tumor. It 

affects the chemotherapy sensitive cells and the naturally chemotherapy resistant 
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cells as the induced chemotherapy resistant cells share its metabolized ganciclovir 

when it comes into contact with the other cell types.  The probability that such an 

interaction will take places is embedded in the function (z/(x+y+z)). 

 
 
 
 
 

Symbol Definition 

x Chemotherapy Sensitive (Unifected) Cell Population 

y  Naturally Chemo-Resistant Cell Population 

z Induced Chemo-Resistant (Infected) Cell Population 

v Viral Load 

r Chemotherapy Sensitive Cell Growth Rate 

 Natrually Chemo-Resistant Cell Growth Rate 

s Induced Chemo-Resistant Cell Growth Rate 

β Infection Rate (Efficacy) Constant 

Cx 
Time-Dependant Chemotherapy Treatment Effect on 

Chemotherapy Sensitive Cells 

Cy 
Time-Dependant Chemotherapy Treatment Effect on 

Naturally Chemo-Resistant Cells 

Cz 
Time-Dependant Chemotherapy Treatment Effect on 

Induced Chemo-Resistant Cells 

dx Chemotherapy Sensitive Cell Death Rate 

dy Natrually Chemo-Resistant Cell Death Rate 

dz Induced Chemo-Resistant Cell Death Rate 

K Tumor Carrying Capacity 

b 

Induced Chemo-Resistant Population Ratio Dependant 

Bystander Effect 

g Time Dependant Ganciclovir Effect 

u Virus Death Rate 

 
 Table 1 ODE Symbol Definitions.  
 
 
 
3.1.2 Susceptible Naturally Resistant Cells 

 
The previous model showed the case where only the chemotherapy sensitive 

cells were able to be infected by the virus and become induced chemotherapy 
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resistant cells. The following model shows the case where both the chemotherapy 

sensitive and the naturally chemotherapy resistant cells are susceptible to infection 

by the virus.   

 

 
 

 (2)

 

 
 
The model is very similar to the model for the non-susceptible naturally resistant 

cells case, with a few key exceptions. There is now a yv term in the second and 

third states that signify the infection is now infecting the naturally resistant cells 

and turning them into induced chemotherapy resistant cells at a mass action rate 

proportional to . The free virus now decays from the system a little faster as a 

result of the additional mass action term yv from the virus infecting the naturally 

resistant cells.  

 
3.2 Replication Competent Delivery Virus 
 
 The previous models illustrated the case where the delivery virus was 

administered and could not replicate, therefore the virus load decayed naturally due 

to death and as a result of infecting a cell.  Next we observe the case where the virus 

is able to replicate and produce progeny via the lytic cycle.  During viral infection in 

the lytic cycle the free virus attaches on to a susceptible cell and injects its genetic 

information into the cell.  The viral genes then integrate themselves into the genetic 
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information of the cell and assemble into new viruses. After enough viruses have 

been assembled the host cell undergoes a virus induced cell death, the cell lyses and 

all of the free viruses are released.  

3.2.1 Non-Susceptible Naturally Resistant Cells  
 
 The following model depicts the dynamics of the therapy given a replication 

competent delivery virus is used during inoculation and only chemotherapy 

susceptible cells are vulnerable to infection.   

 (3) 
 

 

 

 

This model is similar to the previous non-susceptible naturally resistant cell 

model. The difference though, is that the Induced chemotherapy resistant cells now 

die out faster. They not only die of natural cell death dz they also die out because of 

lysing do to the viral infection, or the lytic rate a.  Also the virus now has a growth 

term, kaz, where k is the burst size, which reflects the amount of free virus that is 

released when the cell lyses.  

3.2.2 Susceptible Naturally Resistant Cells  

The next model also shows the dynamics of therapy given a replication 

competent delivery virus. However, not only are the chemotherapy sensitive cells 
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susceptible, but the naturally chemotherapy resistant cells are also susceptible to 

infection by the virus.  

 

(4) 
 

 

Once again the model is essentially the same as the previous susceptible 

naturally resistant cell model with a few differences. Again the induced 

chemotherapy resistant cells die out faster as a result of the extra death term, a, 

which represents the lytic rate. 

These four models are all very similar however their differences have a large 

effect on the effectiveness of the therapy. In the remainder of this thesis we will 

analyze and try to optimize the therapy with respect to the models that we have 

created.  
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Chapter 4 
 

ANALYSIS 
 

Before beginning any kind of optimal control investigation we must break 

down the different dynamics of the model. It is important to know how the 

dynamics change when certain parameters within the system are altered.  Various 

changes in the parameters will demonstrate the variety of situations that are 

biologically feasible in the system.  Once we have a good feel for how the dynamics 

will change we will have a good idea of how to approach the problem from a control 

standpoint. 

4.1 Chemotherapy Effect 
 
4.1.1 No Chemotherapy Administered 
 

The following plot in figure 1 shows the output of the model when no 

chemotherapy treatment is given.  
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Figure 1 No Chemotherapy.  With no chemotherapy treatment 

administered, (C(t)), the model produces a normal tumor 
growth plot.  The y-axis of the upper part of the plot is cell 
population ratio characterized as the amount of each type of 
cell over the carrying capacity of the tumor.  The y-axis of the 
lower portion of the plot is the tumor size characterized as the 
tumor size as a percent of the total carrying capacity. 
Parameters  values: x0 = 5, y0 = 1, z0 = 0, v0 = 0, and Cx = Cy = Cz 
= 0. 

 
The plot shows the expected sigmoid growth curve as the tumor size 

increases towards 100 percent of its carrying capacity.  The key aspect of this plot 

that we should note is the particular growth patterns of each type of cell, 

chemotherapy sensitive cells and natural chemotherapy resistant cells.  The 
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chemotherapy sensitive cell ratio quickly increases as the tumor propagates while 

the natural chemotherapy resistant cell ratio rises much more slowly. 

After around day five, the tumor has approached a significant portion of its 

carrying capacity and thus cannot increase much in total size anymore.  At this point 

the chemotherapy sensitive cell ratio begins to decline slightly while the natural 

chemotherapy resistant cell ratio increases slowly. This is due to the fact that since 

the tumor can no longer grow due to lack of resources, the existing chemotherapy 

sensitive cells lose more and more of their apoptosis triggers and become 

chemotherapy resistant.  

4.1.2 Chemotherapy Administered 
 
  After considering the situation where there is no chemotherapy applied in 

the model we show how the model reacts to a chemotherapy treatment.  
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Figure 2 Chemotherapy. Chemotherapy is now administered at day five. 

All axes are the same as the previous figure. Parameter values:  
x0 = 5, y0 = 1, z0 = 0, v0 = 0, and Cx = 0.05 Cy = Cz = 0.95. 

 
 Similar to the figure 1, the total tumor size plot is shows the sigmoid growth 

pattern; however, there are some distinct differences after the initial growth period 

when the chemotherapy is delivered.  

After the chemotherapy is delivered at day five the total tumor size dips a bit 

and then begins to recover. What happens here is that the chemotherapy has begun 

to kill off the chemotherapy sensitive cells and as a result the chemotherapy 

resistant cells now begin to dominate the cell population.  This can be seen in the 

top portion of the plot. 
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 This situation is the very reasons that many late stage cancers cannot be 

treated with chemotherapy and eradicated.  Eventually after enough time the 

majority of the cells in the tumor will become chemotherapy resistant and then 

must be removed surgically. Usually, surgery is impossible because at late stage, the 

cancer has metastasized.  

 This plot demonstrates the need of some sort of intervention to restrict an 

event like this from happening during cancer treatment. Throughout the rest of this 

thesis we intend to introduce a dynamic therapy that can over come this problem 

and show how using an robust optimal control approach can be applied to totally 

eradicate each tumor.  

 
4.2 Fitness: Non-Replication Competent Delivery Virus 
 
 We have verified that our model behaves as we expect with respect to the 

chemotherapy sensitive cells and the natural chemotherapy resistant cells when 

chemotherapy is either administered or not administered. We must now extend the 

analysis of our model to include the delivery virus and in consequence the induced 

chemotherapy resistant cells.  We will start by analyzing the different finesses of 

each type of cell after the tumor is inoculated with a non-replication competent 

delivery virus.  

4.2.1 Natural Chemotherapy Resistant Cells More Fit 
 
 First, we will look at the case where the natural chemotherapy resistant cells 

are able to outcompete the induced chemotherapy resistant cells for resources and 

as a result should thrive after the chemotherapy sensitive cells have been wiped out 

by treatment.   
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Figure 3 No Chemotherapy and Natural Chemotherapy Resistant Cells 

More Fit.  No chemotherapy treatment and now a non-
replication competent delivery virus is added at day five. 
Parameter values: x0 = 5, y0 = 1, z0 = 0, v0 =0, Cx = Cy = Cz = 0,   
= 0.9, and s = 0.7. 

 
 The plots in Figure 3 show a tumor allowed to grow almost until it reaches 

carrying capacity just before day five.  At this point the tumor is approximately 80 

percent chemotherapy sensitive cells and 20 percent natural chemotherapy 

resistant cells.  At day five a virus bolus is given and the chemotherapy sensitive cell 

ratio begins to drop as the cells become infected and turn into induced 

chemotherapy sensitive cells.  The natural chemotherapy resistant cell ratio slightly 

increases as a result and in time the chemotherapy sensitive cell ratio recovers 
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because they are significantly more fit without the introduction of chemotherapy 

treatment.  The Induced chemotherapy resistant cells then die out.  

 
Figure 4 Chemotherapy and Natural Chemotherapy Resistant Cells 

More Fit. Chemotherapy treatment and non-replication 
competent delivery virus are both delivered at day five. 
Parameter values: x0 = 5, y0 = 1, z0 = 0, v0 =0, Cx = 0.05 Cy = Cz = 
0.95,   = 0.9, and s = 0.7. 

 
The plots in figure 4 show a similar situation as figure 3 however, now 

chemotherapy treatment is given at the same time as the virus bolus.  Consequently, 

the chemotherapy sensitive cells totally die out. Because the natural chemotherapy 

resistant cells are more fit than the induced chemotherapy resistant cells, their cell 



22 

ratio slow increases toward carrying capacity. The induced chemotherapy resistant 

cell ratio slowly decreases.    

This result is what we wish to prevent because it will lead to total therapy 

failure as shown later. This happens because we have no way of eliminating the 

natural chemotherapy resistant cells without the presence of a significant amount of 

induced chemotherapy cells, via the bystander effect.  

4.2.2 Induced Chemotherapy Resistant Cells More Fit 

 Next we will consider the condition where the induced chemotherapy cells 

are more fit after chemotherapy is introduced.  In this case we would expect to see 

that after chemotherapy treatment the induced chemotherapy resistant cells would 

thrive and be the prevalent cell type in the tumor.  
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Figure 5 No Chemotherapy and Induced Chemotherapy Resistant Cells 

More Fit.  No chemotherapy treatment and now a non-
replication competent delivery virus is added at day five. 
Parameter values: x0 = 5, y0 = 1, z0 = 0, v0 =0, Cx = Cy = Cz = 0,   
= 0.7, and s = 0.9. 

 
The plots in figure 5 are similar to the plots in figure 3, the tumor is allowed 

to grow approaching carrying capacity then a virus bolus is introduced at day five, 

only this time because the induced chemo therapy resistant cells are more fit, they 

have a higher peak and they die out slower as the chemotherapy sensitive cells 

recover.  
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Figure 6 Chemotherapy and Induced Chemotherapy Resistant Cells 

More Fit. Chemotherapy treatment and non-replication 
competent delivery virus are both delivered at day five. 
Parameter values: x0 = 5, y0 = 1, z0 = 0, v0 =0, Cx = 0.05 Cy = Cz = 
0.95,   = 0.7, and s = 0.9. 

 
 Figure 6 illustrates the effect if the chemotherapy is given at the same time as 

the virus bolus. In these plots, as the chemotherapy sensitive cells die out as a result 

of the chemotherapy treatment, the induced chemotherapy resistant cell ratio grows 

towards carrying capacity and natural chemotherapy resistant cell ratio slowly 

declines.  This is the favorable result of therapy after the chemotherapy is 

administered.  Since we are left with just induced chemotherapy resistant cells, we 

should be able to totally eradicate the tumor after ganciclovir treatment.  
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 Note that in the case where the naturally chemotherapy resistant cells were 

more fit, the outcome would lead to treatment failure if there were no intervention.  

A way that this situation could be modified to lead to successful therapy would be 

through the use of multiple virus boluses.  In figure 3, the induced chemotherapy 

resistant cell ratio increased rapidly at first. This is due to the many free viruses 

around to infect the chemotherapy resistant cells. After the free virus population 

declined the induced chemotherapy cell ratio peaked and then declined as well.  

 We intend to implement an optimal controller to see what would be the 

optimal virus bolus pattern so that we would be able achieve a quick successful 

therapy even in the event that the induced chemotherapy resistant cells are not as 

fit.  

 
4.3 Fitness: Replication Competent Delivery Virus  

In the previous section we examined the dynamics of our model after the 

introduction of a non-replication competent delivery virus. In this section we will 

observe what happens if the delivery virus is able to produce progeny and hence 

create more virus and infect more cells.  

In that we are now dealing with a replication competent virus, a virus that 

has different properties than the non-replication competent form, we elected to 

categorize them into one of two categories, high and low virulence.  A virus with 

high virulence has a high infection rate and a high lytic rate.  It will spread quickly 

throughout the tumor and create a lot of damage to the cells that it infects. The 

downside is that because it spreads so quickly and kills off all the cells that it can 
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infect, it does not allow the induced chemotherapy resistant cells to become 

adequately spread in the tumor.  

A virus with low virulence has a lower infection rate and a lower lytic rate. 

This type of virus spreads slowly and does not do as much damage to the host cell. 

As a result this type of virus enables the induced chemotherapy resistant cells to 

spread throughout, and become the dominant cell type in the tumor. 

 

  Infection Rate (β) Lytic Rate (a) 

High Virulence (Figure 5) 0.0025 0.35 

Very High Virulence (Figure 6) 0.004 0.56 

Low Virulence (Figure7) 0.0018 0.252 

Very Low Virulence (Figure 8)  0.0006 0.084 

 
 Table 2 Infection and Lytic Rates Vs Virulence.  

The table above shows the different types of viruses and their infection and 

lytic rates that are used in the following figures that show how viruses with 

different virus virulence act on the tumor.  
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4.3.1 High Virulence Delivery Virus 

 
Figure 7 High Virulence Delivery Virus.  A high virulence delivery virus 

is given in bolus form at day five.  Parameter values:  = .0025 
and a = 0.35 

 
 The plots in figure 7 show the dynamics of each cell type when a high 

virulence virus is used.  As expected the virus spread quickly and the induced 

chemotherapy resistant cell ratio increases rapidly and then begins to decline 

slowly while the natural chemotherapy resistant cell ratio steady increases. This 

outcome would lead to treatment failure, as the natural chemotherapy resistant 

cells cannot be removed.  
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 Another key thing to note about these figures is the bystander ratio. This is 

the plot of the ratio of induced chemotherapy resistant cells over the total cell 

population as it changes through time.  This is important because in order for our 

ganciclovir treatment to be successful during the negative selection portion of 

treatment the bystander ratio must be sufficiently high. A declining bystander ratio 

like the one in figure 7 will indicate that the ganciclovir treatment will be less 

effective as time goes on.  

 

 
Figure 8 Very High Virulence Delivery Virus.  A higher virulence 

delivery virus is given in bolus form at day five.  Parameter 
values:  = .004 and a = 0.56 
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 The plots in figure 8 show the dynamics of another high virulence delivery 

virus; however, the delivery virus is even more virulent this time.  The virus quickly 

infects again and the induced chemotherapy cell ratio increases rapidly, but this 

time it declines much faster and the natural resistant chemotherapy cell ratio grows 

faster.  In this figure the bystander ratio rises and falls very quickly indicating that 

there is an even smaller window for successful therapy.  

 
4.3.2 Low Virulence Delivery Virus

 
 

Figure 9 Low Virulence Delivery Virus.  A low virulence delivery virus is 
given in bolus form at day five.  Parameter values:  = .0018 
and a = 0.252. 
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 The dynamics of the system using a low virulence virus is shown in figure 9. 

The most noticeable difference is that this time the virus does not spread as quick 

and the induced chemotherapy resistant cell ratio slowly grows throughout the 

whole tumor.  The natural resistant cell ratio rises initially then slowly declines. 

 The bystander ratio plot indicates that as time goes on successful treatment 

with the ganciclovir becomes more and more likely as the natural chemo resistant 

cells take over and become the most prevailing cells in the tumor.  

 
Figure 10 Very Low Virulence Delivery Virus.  A lower virulence delivery 

virus is given in bolus form at day five.  Parameter values:  = 
.0006 and a = 0..084. 
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Figure 10, shows the dynamics of the system when an even less virulence 

virus is used.  The virus spreads even slower and as a result the induced 

chemotherapy cell ratio grows at a slow rate showing the familiar sigmoid growth 

curve eventually becoming even more prevalent in the tumor. The bystander ratio 

again shows that as time goes on successful ganciclovir treatment becomes more 

and more likely to be successful.  

4.4 Ganciclovir Timing: Treatment Failure vs. Treatment Success  
 

As we have seen in the previous sections the tumor does not propagate in 

any sort of predetermined manner. In fact, there are many factors that determine 

what cell type becomes dominant in the tumor.  There are several ways in which the 

tumor could grow that would lead to treatment failure; however, the aim of the 

treatment is to force the tumor to grow, through the period of positive selection 

followed by negative selection, to achieve treatment success.  

 Even if we manage to achieve the type of growth patterns that we desire 

through the positive selection phase of the treatment, total treatment success is still 

not guaranteed.  Proper timing of the negative selection phase, the ganciclovir 

delivery, is vital. Too early or too late and the treatment may fail.  

 
4.4.1 Treatment Failure 

The following figures show the outcome of treatment for three different 

scenarios when the ganciclovir is administered after a high virulence delivery virus 

has been given, similar to the virus in figure 7. 
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Figure 11 Early Treatment Failure. Treatment failed because ganciclovir 

was administered too early at day seven. Parameter values: x0 
= 5, y0 = 1, z0 = 0, v0 =0, Cx = 0.05 Cy = Cz = 0.95,  = .0025 and a 
= 0.35, g =  0.7 

 
The first scenario as conveyed in figure 11 is the situation where the negative 

selection process what started too early, the ganciclovir was delivered prematurely. 

Here the ganciclovir was administered at day 7 leading to overall treatment failure 

as natural chemotherapy resistant cells grow to become the dominate cell type as a 

result.  

 Treatment has failed in this scenario because the induced chemotherapy 

resistant cells have not been given enough time to spread; therefore, the bystander 
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ratio is not sufficient to produce a bystander effect that would eliminate the natural 

chemotherapy resistant cells.  

 

 
Figure 12 Late Treatment Failure. Treatment failed because ganciclovir 

was administered too late at day 30. Parameter values: x0 = 5, 
y0 = 1, z0 = 0, v0 =0, Cx = 0.05 Cy = Cz = 0.95,  = .0025 and a = 
0.35, g =  0.7 

 
The scenario expressed in figure 12, shows the circumstance where the 

negative selection process was begun too late.  Here the ganciclovir was delivered 

too late which once again led to overall treatment failure as the natural 

chemotherapy resistant cells grow dominant in the tumor.  
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 Treatment has failed in this scenario because the induced chemotherapy 

resistant cells have been allowed to peak and then begin to decline while the natural 

chemotherapy resistant cells have been allowed to continue growing before the 

negative selection process is begun.  
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4.4.2 Treatment Success  
 

The last scenario, articulated in figure 13, is treatment success. Here the 

ganciclovir was delivered at a correct time for treatment success. 

 
Figure 13 Treatment Success. Dynamic therapy treatment was successful 

due to effective gancilovir delivery timing. Parameter values: x0 
= 5, y0 = 1, z0 = 0, v0 =0, Cx = 0.05 Cy = Cz = 0.95,  = .0025 and a 
= 0.35, g =  0.7 

  
 Treatment has been achieved in this scenario because the negative selection 

process was begun during the window of opportunity that ensures successful 

treatment. This window exists around the peak of the bystander ratio plot shown in 
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figure 7. For this particular situation the ganciclovir was delivered at day 15 that 

corresponds to a point just after the peak on the bystander ratio plot from figure 7.  
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Chapter 5 

 
CONTROL ANALYIS 

 
 The proposed dynamic cancer treatment of having a period of positive 

selection followed by a period of negative selection seems straightforward. In fact 

for certain parameters treatment success if often achieved without any problems; 

however, there are many situations where the parameters are such that a solution 

that would yield successful treatment is not trivial.   

 In this case we must consider another approach in attempt to accomplish our 

goal of totally eradicating the tumor.  Most of the parameters that make up the 

system are set by nature and thus out of our control; nevertheless, there are a few 

parameters that we can vary to our benefit.   

 From the small number of parameters that we can control we will select two 

in particular to utilize for our research and analysis in this thesis: 1, when and how 

often the chemotherapy is administered, and for what time duration and 2, when 

and how often the virus boluses are provided. We will exploit these parameters to 

design an optimal controller that will give the best outcome of therapy under any 

given circumstance.  

5.1 Optimal Chemotherapy Control 

 In our previous analysis of the dynamics during treatment we assumed that 

the chemotherapy was given at the same time that the virus bolus was introduced, 

once the tumor reached carrying capacity.  The chemotherapy then continued 

throughout the duration of dynamic therapy, in the course of both the positive and 
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the negative selection periods.  Because the distribution of the chemotherapy is 

something that we can control over time, we begin to wonder if there is another 

method that will yield a superior result. 

 As stated before, one of the key features to the success of the therapy is the 

bystander ratio.  

 

 
We intend to take advance of our ability to change the chemotherapy timing as a 

way tool to design an optimal controller that will maximize our cost function, the 

bystander ratio.  By choosing the bystander ratio as our cost function that we wish 

to maximize we will be able to ensure that we have the best chance of success 

during the negative selection, ganciclovir delivery, phase.  This process is denoted 

by  

 

 
Where C is the chemotherapy that is applied to all of the cells (Cx(t) Cy(t) Cz(t)), 

which we will alter in time to maximize our cost function.  In order to create the 

open loop controller to find the optimal chemotherapy pulse schedule we first 

limited the search space by discretizing the possible switching times.  We set up 10 
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discrete regions where the chemotherapy could be either “on” or “off.” This allowed 

the open loop controller to cycle through 1024 possibilities to find the optimal 

schedule.  

 

 

(A) (B) 
 

Figure 14 No Control. The plots show the situation where the virus is 
administered and no controller applied for the chemotherapy. 
Parameter values: x0 = 90, y0 = 10, z0 = 0, v0 =100, Cx = 0.05 Cy = 
Cz = 0.95,  = .004 and a = 0.2 

 
The plots above, in figure 14, assume that the tumor has been allowed to 

grow sufficiently such that it has reached its maximum carrying capacity when the 

virus is given.  The dynamics of figure 14A show the simple case where the virus is 

provided and allowed to so spread throughout the tumor with no chemotherapy 

treatment present. The dynamics of figure 14B show the complete opposite case 

where the virus is given at the same time that the treatment is began.  



40 

It is clear that the dynamics in figure 14B, where the chemotherapy was 

applied the whole time, offers a better chance for success than the dynamics of 

figure 14A where no chemotherapy treatment was given.  The transfected cells were 

able to gain a slightly higher prevalence, with the chemotherapy treatment present, 

before their population began to die out and the natural resistant cells took over the 

tumor.  This means that the bystander ratio would slightly higher for that case, 

which would give a higher probability for successful therapy when the ganciclovir 

was distributed. 

The next question is if there is a better option that will give a greater chance 

for successful therapy. We believe that some combination of these two will yield the 

best dynamics for successful treatment by means of some form of pulsed 

chemotherapy treatment. By employing a pulsed technique we should be able to 

take advantage of the natural competitive nature of the different type of cells to 

optimize the bystander ratio.   
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Figure 15 Optimal Chemotherapy Control. Parameter values: x0 = 90, y0 = 
10, z0 = 0, v0 =100, Cx = 0.05 Cy = Cz = 0.95, g= 0.7,  = .004 and 
a = 0.2 

 
 The plots in figure 15 show the result of running our optimal chemotherapy 

control on the system.  The system has the same parameters and initial conditions 

as the plots in figure 14.  The only difference is that here the optimal control has 

found that a single pulse from day 5 to 10 would maximize the bystander ratio for 

this particular parameter set and initial conditions.  Also, another function of the 

optimal controller is to apply the ganciclovir treatment at the point when the 

bystander ratio is maximized.  
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Figure 16 Chemotherapy Pulse With No Ganciclovir Treatment. 

Parameter values: x0 = 90, y0 = 10, z0 = 0, v0 =100, Cx = 0.05 Cy = 
Cz = 0.95,  = .004 and a = 0.2 

 
 
 In figure 16 there is a chemotherapy pulse from day 5 to day 10 as in the 

optimal control case, except there is ganciclovir treatment.  Comparing the plots in 

figure 16 with the plots from figure 14, a somewhat linear increase can be noticed in 

the transfected cells during the chemotherapy pulse.  This behavior is exactly what 

allows the bystander ratio to be maximized. 

 During the period of pulsed treatment the dynamics are switched. As a result 

the transfected cells become more fit than the other cells and begin to grow at a 
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faster rate than in the case when there was no chemotherapy given or when 

chemotherapy was administered for the whole time.  

 The dynamic cancer therapy seeks to take advantage of the natural 

competition of the different cell types and with the use of the optimal controller it is 

possible to make a specific cell type more fit during certain periods of time to use as 

an advantage. It is evident from figure 15 that the optimal controller was able to 

achieve successful therapy with the total tumor size decreasing to zero after the 

ganciclovir treatment; however, another important detail of the optimal therapy is 

that the chemotherapy dose is kept to a minimum.  Since treatment with 

chemotherapy often has negative side effects, the fact that this treatment can 

significantly decrease the dose shows great promise in the field of oncology.    
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Figure 17 Chemotherapy Applied and Natural Chemotherapy Resistant 
Cells More Fit. Parameter values: x0 = 90, y0 = 10, z0 = 0, v0 
=100, Cx = 0.05 Cy = Cz = 0.95,  = .0022 and a = 0.11 

  
 
The plots in figure 17 show a different case from the previous figures. Here, 

once again chemotherapy is being applied for the whole time starting when the 

virus is given. In this case however, the natural chemotherapy resistant cells are 

slightly less fit. None the less, they will still become dominant in the long run, as the 

transfected cells peak and then slowly start to decrease while the natural 

chemotherapy resistant cells continually increase.  There is a much bigger window 

for success in this case, although if treatment is given too early there will be a total 

failure because all of the chemotherapy sensitive cells die out early. It turns out that 
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the optimal control solution to this problem is an especially interesting and 

nontrivial one.  

 

 
Figure 18 Optimal Control Solution. Parameter values: x0 = 90, y0 = 10, z0 

= 0, v0 =100, Cx = 0.05 Cy = Cz = 0.95, g= 0.7,  = .0022 and a = 
0.11 

 
 
 
 The plots in figure 18 show the optimal chemotherapy control solution the 

case from figure 17.  The solution is unique in that is requires three small 

chemotherapy pulses followed by a longer chemotherapy pulse and then treatment 

with the ganciclovir.  Administering the chemotherapy in this sequence has some 
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interesting characteristics. Initially, as in figure 17, natural chemotherapy resistant 

cells gained a slight fitness advantage as time continues but this treatment schedule 

prevents them from achieving dominance. This happens because the chemotherapy 

sensitive cells are not killed right away by a large chemotherapy dose. Instead the 

chemotherapy is given in small increments, which suppresses the ability for the 

natural chemotherapy resistant cells to expand. The virus then has more target cells 

available to infect in the long run and is able to spread until the final chemotherapy 

pulse causes the chemotherapy sensitive cell population to crash. 

 
5.2 Virus Bolus Control 

The second method that we wish to exploit in order to control the outcome of 

the therapy is the use of the virus bolus.  In the instances where a non-replication 

competent virus is used the dynamics are altered slightly. Since the virus cannot 

replicate in this situation, the transfected cells often do not become prevalent 

enough just from the initial bolus injection. 
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Figure 19 Virus Bolus Control: Single Virus Bolus. Single virus bolus 
when tumor reaches carrying capacity at day 5 Parameter 
values: x0 = 5, y0 = 1, z0 = 0, v0 =0,  = .004 and a = 0.2 

 
 
 In figure 19 we see the general case, similar to the previous plots of the 

dynamics for a non-replication competent virus.  Here the tumor is allowed to grow 

to carrying capacity and is then subjected to the virus bolus.  After the virus bolus is 

given the induced cell population rises and chemo-sensitive cell population falls as a 

result of infection.  The virus population declines exponentially to zero and the 

induced chemotherapy resistant cells soon follow since there are no more virus 

around to infect the chemotherapy sensitive cells.  
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Figure 20 Virus Bolus Control: Early Ganciclovir Treatment. Parameter 
values: x0 = 5, y0 = 1, z0 = 0, v0 =0, g = 0.7,  = .004 and a = 0.2 

 
  
 Upon treatment of the previously discussed tumor with the ganciclovir, we 

can see that the therapy is not successful in figure 20. It is not complete treatment 

failure since the chemotherapy sensitive cells are able to rebound after the 

ganciclovir treatment.  
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Figure 21 Virus Bolus Control. Chemotherapy is Administered. Parameter 
values: x0 = 5, y0 = 1, z0 = 0, v0 =100, Cx = 0.05 Cy = Cz = 0.95,  = 
.004 and a = 0.2 

 
 
 If instead of treating with the ganciclovir, chemotherapy is provided at the 

same time as the virus the dynamics change significantly.  In figure 21, it can be seen 

that because the chemotherapy is given, the chemotherapy sensitive cells die out 

and as a result the natural chemotherapy resistant cells begin to dominate.  There is 

a very small window around day 10 where treatment with ganciclovir might yield 

successful therapy but if that opportunity is missed then treatment will be a failure 

because the induced chemo therapy resistant cells will die out.  
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Figure 22 Virus Bolus Control: Single Pulse of Chemotherapy. Parameter 

values: x0 = 5, y0 = 1, z0 = 0, v0 =0, Cx = 0.05 Cy = Cz = 0.95,  = 
.004 and a = 0.2 

 
 
 
 As we have learned from the optimal chemotherapy control section, 

continuous application of the chemotherapy is not the most favorable option when 

it comes to controlling the dynamics of the therapy.  In figure 22 a single pulse of 

chemotherapy is administered from around day 20 to day 30.  This alone does not 

lead to successful therapy since the natural chemotherapy resistant cells are still the 
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prevalent cell type in the tumor It does set up a good place to give another virus 

bolus injection, since the previous virus load has depleted and the induced 

chemotherapy resistant cells start to slightly increase again around day 20.  

 
 
 
 

Figure 23 Virus Bolus Control: Two Boluses are Administered. Parameter 
values: x0 = 5, y0 = 1, z0 = 0, v0 =0, Cx = 0.05 Cy = Cz = 0.95,  = 
.004 and a = 0.2 
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 After a second virus bolus is administered at day 15, the chances for 

successful therapy are significantly increased as can be seen in figure 23.  As a result 

of the second virus bolus injection, the induced chemotherapy resistant cells are 

able to spread quickly through the tumor for a short period of time giving rise to a 

period with a high bystander ratio. This situation should be ideal for successful 

therapy. One thing to note is that the chemotherapy sensitive cell population has 

drastically decreased as a result of the chemotherapy and the two bolus injections. 

This means the amount of virus bolus injections that can be provided and give some 

useful result is severely limited because of the decreased prevalence of the 

chemotherapy sensitive cells.  
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Figure 24 Virus Bolus Control: Successful Therapy. Parameter values: x0 
= 5, y0 = 1, z0 = 0, v0 =0, Cx = 0.05 Cy = Cz = 0.95, g= 0.7,  = .004 
and a = 0.2 

 
 
 
 After treatment with ganciclovir at day 18 the total tumor size begins to 

decline rapidly as can be seen in figure 24.  Even though the total tumor burden has 

not decreased by the end of the time window, the only cells that remain are the 

induced chemotherapy resistant cells. This means that the tumor can easily be 

eradicated with more ganciclovir treatment.  Figure 24 was shows a particular 

schedule that works to achieve successful therapy.  It demonstrates how better 
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therapies can be achieved using less intuitive solutions. Through the application of 

an optimal controller, even better solutions can be achieved.  

 Not only chemotherapy pulsing but also bolus injections can be used as a 

very effective method for controlling the dynamics of the various tumor cell growth.  

Using these inputs that we can control to our advantage we were able to show the 

importance of a control approach to the problem of dynamic cancer therapy.  
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Chapter 6 

 
CONCLUSION 

 
 In this thesis we developed a set of ordinary differential equations to model 

the dynamics of various cancer cell types during the course of a novel dynamic 

cancer therapy. We first introduced the new cancer treatment concept, which 

consisted of a period of positive selection from transfection of some of the cancer 

cells via a virus delivery vector and then treatment with the chemotherapy. This was 

followed by a period of negative selection implemented by exposing the remaining 

cells to ganciclovir. Provided there was a sufficient bystander effect between the 

transfected cells and the remaining cells the tumor would be totally eradicated. 

 First we modeled a non-replication competent delivery virus.  These viruses 

when introduced into the system are not able to replicate.  As a result, the growth 

and spread of the transfected cells was severely hindered.  The competition of the 

cell types and their individual finesses were also studied. We modeled both cases: 1 

where the virus could infect only the chemotherapy sensitive cells and 2 where the 

virus could infect both the chemotherapy sensitive cells and the naturally resistant 

cells. We found that when the natural chemotherapy resistant cells were susceptible 

to virus infection, there was a much greater chance for successful therapy.  

 We next studied the case where a replication competent delivery virus was 

used. Using a virus that can replicate and produce more viruses in the system brings 

about new conditions in the system. If the virus is highly virulent it will spread 

quickly but as a result will bring about more damage and cause greater virus 
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induced cell death.  The low virulent virus would proliferate slowly and cause less 

cell damage allowing for significant spread which would yield successful therapy at 

the price of time. It spreads slowly and would take a long time to infect sufficient 

levels of cells to be effected during the negative selection period. For all virulence 

levels, the timing of the negative selection process is crucial. If the ganciclovir is 

administered too early for a slow spreading virus the treatment could fail. For a 

quick spreading virus there is a only a small window of opportunity where the 

bystander effect is large enough to achieve successful therapy after the negative 

selection process has begun. 

The most important analysis of thesis is the control study.  We studied how 

an open loop optimal control analysis can be applied to the replication competent 

delivery virus situation in order to achieve the optimal therapy.  By pulsing the 

chemotherapy treatment we were able to maximize the bystander effect and in turn 

achieve the best chance for successful therapy for various parameters.  We also 

studied the effect of using multiple bolus injections to control the outcome or 

therapy. More work needs to be done to develop an optimal control analysis for the 

bolus injections.  Nevertheless, in both cases therapy proved successful with 

minimal chemotherapy dosage. 

 This type of study shows the importance of using mathematical models to 

study the complex dynamics of biological systems. We have also shown that a 

control analysis can also be used to optimize therapy techniques to ensure the 

highest probability of success. 
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APPENDIX 

 
MATLAB CODE 

 
Optimal Control 
%function [seqoptim,costoptim] = findoptimalsequence(N); 

N = 10; 

NN = 2^N; 

cost1 = 0; 

costold = cost1; 

Tmax = 0; 

for ii = 0:NN-1 

    seq1 = dec2bin(ii,N); 

    [cost1, Tmax1] = PancOptimTest(seq1); 

    if cost1 > costold 

        seqoptim = seq1; 

        costold = cost1; 

        Tmax = Tmax1; 

    end 

end 

costoptim = costold; 

PancPlotOptim(seqoptim, Tmax); 

 
 
 
function [Cost,Tmax] = Pancreaswvcfinal(seq1) 

clc; 

close all; 

tttt=cputime; 

length = max(size(seq1)); 

  

  

% ---------------------------------------------------------

---------------- 

  

%Model Parameter Definitions 

global Tmax seq r e K d n C I lambda delta b s a G t0 t1 t2 

t3 q j Beta p L k f u w Cn Ci Gr XGr YGr ZGr I t4 t5 ti 

interval 

  

seq = seq1; 

q = 1;      % uninfected tumor growth rate 

e = 1;      % B-R exponent 

K = 100;    % B-R carrying capacity [((1-

d/r)^(1/e))*Carrying capacity] 

d = .1;     % natural death rate uninfected tumor 
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n = .0007;    % rate of change to chemoresistant tumor 

C = .95;    % Chemotherapy treatment efficacy  

Cn = 0;     % Chemotherapy treatment efficacy (natural 

chemo resistant) 

Ci = 0;     % Chemotherapy treatment efficacy (induced 

chemo resistant) 

I = 1.1;    % Beta-a ratio 

f = .9;     % growth rate of natural chemo resistant tumor 

cells 

delta =.1;  % death rate of natural chemo resistant tumor 

cells 

b = 1.75;    % death rate due to bystander effect 

j = .9;     % growth rate of induced chemo resisntant tumor 

cells 

a = I*.1;   % deat rate of induced chemo resistant tumor 

cells 

G = .7;     % death rate of  due to ganciclovir (GCV) 

sensitivity 

Beta = I*.002;  % virus mass action rate 

p = .3;     % virus death rate 

L = .00;    % Lytic rate 

k = .5;     % Burst size 

u = .1;     % Chemotherapy efficacy on chemoresistant 

w = .0;     % Chemotherapy efficacy on Induced Resistant 

            % resistant back to sensitive term? 

% ---------------------------------------------------------

---------------- 

for ti = 0:0 

% Treatment Times 

%ti = 15; % Pulse time increment 

t0 = 0; % Chemo treatment beginning time (day) 

t1 = 0; % Chemo treatment end time (day) 

t2 = 0;  % GCV treatment begin time (day) 

t3 = 0;  % GCV treatment end time (day) 

interval = 5; %Fastest switch time in days 

  

% ---------------------------------------------------------

---------------- 

  

% ODE 

%Tr = 100; 

Tr = interval*length; 

sol = ode45(@go, [0.01, Tr], [90 10 0 100]); 

  

ymax=min(sol.y(2,:)); 

zmax=max(sol.y(3,:)); 

[Cost,Tmax] = 
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max(sol.y(3,:)./(sol.y(1,:)+sol.y(2,:)+sol.y(3,:))); 

Tmax = sol.x(Tmax); 

% ---------------------------------------------------------

---------------- 

end 

% Plots 

lw = 2; 

  

  

  

  

% ---------------------------------------------------------

---------------- 

  

% Differntial Equation Functions 

function ddt = go(t,y) 

global seq r e K d n C I lambda delta b s a G t0 t1 t2 t3 q 

j bb Beta p L k f u w GG CCi CCn Cn Ci t4 t5 ti interval 

X = (y(1)); 

Y = (y(2)); 

Z = (y(3)); 

V = (y(4)); 

  

% Floor Functions 

if X < .9 

    r = 0; 

else if X > .9 

        r = q; 

    end 

end 

  

if Y < 1.5 

    lambda = 0; 

else if Y > 1.5 

        lambda = f; 

    end 

end 

  

if Z < .9 

    s = 0; 

else if Z > .9 

        s = j; 

    end 

end 

rn = round(rand); 
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if str2num(seq(ceil(t/interval))) == 1 

  

    CC = C; 

    CCn = Cn; 

    CCi = Ci; 

    GG = 0; 

    bb = 0; 

end 

if str2num(seq(ceil(t/interval))) == 0 

  

    CC = 0; 

    CCn = 0; 

    CCi = 0; 

    GG = 0; 

    bb = 0; 

end 

%R0 = (Beta*r*k*L)/((a+L+GG)*(d+n+CC)*p); 

  

  

% Differential Equations 

ddt = [r*X*(1-CC)*(1 - ((X + Y + Z)^e)/(K^e)) - X*(d + n + 

Beta*V + bb*(Z/(X+Y+Z))) 

    n*X + Y*(1-Cn)*lambda*(1 - ((X + Y + Z)^e)/(K^e)) - 

Y*(delta + bb*(Z/(X+Y+Z))) 

    Beta*X*V + Z*(1-Ci)*s*(1 - ((X + Y + Z)^e)/(K^e)) - 

Z*(a + GG + L) 

    k*a*Z - p*V]; 

 

 
 
 
 
 
 
 
function Pancreaswvcfinal(seq1, Tmax) 

clc; 

close all; 

tttt=cputime; 

length = max(size(seq1)); 

  

  

% ---------------------------------------------------------

---------------- 

  

%Model Parameter Definitions 

global LL ss CGGG CCCC CCC GGG h Tmax seq r e K d n C I 
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lambda delta b s a G t0 t1 t2 t3 q j Beta p L k f u w Cn Ci 

Gr XGr YGr ZGr I t4 t5 ti interval 

  

seq = seq1; 

q = 1;      % uninfected tumor growth rate 

e = 1;      % B-R exponent 

K = 100;    % B-R carrying capacity [((1-

d/r)^(1/e))*Carrying capacity] 

d = .1;     % natural death rate uninfected tumor 

n = .0007;    % rate of change to chemoresistant tumor 

C = .95;    % Chemotherapy treatment efficacy  

Cn = 0;     % Chemotherapy treatment efficacy (natural 

chemo resistant) 

Ci = 0;     % Chemotherapy treatment efficacy (induced 

chemo resistant) 

I = 1.1;    % Beta-a ratio 

f = .9;     % growth rate of natural chemo resistant tumor 

cells 

delta =.1;  % death rate of natural chemo resistant tumor 

cells 

b = 1.75;    % death rate due to bystander effect 

j = .9;     % growth rate of induced chemo resisntant tumor 

cells 

a = I*.1;   % deat rate of induced chemo resistant tumor 

cells 

G = .7;     % death rate of  due to ganciclovir (GCV) 

sensitivity 

Beta = I*.002;  % virus mass action rate 

p = .3;     % virus death rate 

L = .00;    % Lytic rate 

k = .5;     % Burst size 

u = .1;     % Chemotherapy efficacy on chemoresistant 

w = .0;     % Chemotherapy efficacy on Induced Resistant 

            % resistant back to sensitive term? 

% ---------------------------------------------------------

---------------- 

for ti = 0:0 

% Treatment Times 

%ti = 15; % Pulse time increment 

t0 = 0; % Chemo treatment beginning time (day) 

t1 = 0; % Chemo treatment end time (day) 

t2 = 0;  % GCV treatment begin time (day) 

t3 = 0;  % GCV treatment end time (day) 

interval = 5; %Fastest switch time in days 

  

% ---------------------------------------------------------

---------------- 
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% ODE 

%Tr = 100; 

Tr = interval*length; 

sol = ode45(@go, [0.01, Tr], [90 10 0 100]); 

  

ymax=min(sol.y(2,:)); 

zmax=max(sol.y(3,:)); 

Cost = max(sol.y(3,:)./(sol.y(1,:)+sol.y(2,:)+sol.y(3,:))); 

% ---------------------------------------------------------

---------------- 

end 

% Plots 

lw = 2; 

  

  

Gr = sol.y(1,:)+sol.y(2,:)+sol.y(3,:); 

XGr = sol.y(1,:).*(Gr.^-1); 

YGr = sol.y(2,:).*(Gr.^-1); 

ZGr = sol.y(3,:).*(Gr.^-1); 

  

KXGr = sol.y(1,:)/K; 

KYGr = sol.y(2,:)/K; 

KZGr = sol.y(3,:)/K; 

  

MAXIMUM_NCR = max(KYGr); 

MAXIMUM_ICR = max(KZGr); 

MAXIMUM_BRATIO = max(ZGr); 

  

ss = (Tr/LL):(Tr/LL): (Tr/LL)*LL; 

  

figure; 

subplot(8,1,1:5) 

plot(sol.x, KXGr, '-', 'LineWidth', lw); 

hold all  

plot(sol.x, KYGr, '--', 'LineWidth', lw); 

hold all 

plot(sol.x, KZGr, 'k:', 'LineWidth', lw); 

%xlabel('time'); 

ylabel('Cell Population Ratio'); 

legend('Chemo-Sensitive Cells ', 'Natural Chemo-Resistant 

Cells', 'Induced Chemo-Resistant Cells') 

axis([0 Tr 0 1]) 

title(['Optimal Control']) 

subplot(8,1,6:7) 

plot(sol.x, Gr, '-', 'LineWidth', lw) 

%xlabel('Time') 



63 

ylabel('Tumor Size') 

%axis([0 Tr min(Gr) 100]) 

axis([0 Tr 0 100]) 

subplot(8,1,8) 

plot(ss, CCCC, 'Linewidth', lw) 

%plot(CCC, 'Linewidth', lw) 

axis([0 Tr  0 1]) 

ylabel('Chemo') 

% subplot(8,1,8) 

% plot(ss, CGGG, 'Linewidth', lw) 

% %plot(GGG, 'LineWidth', lw) 

xlabel('Time') 

% ylabel('GCV') 

% axis([0 Tr 0 G+.1]) 

  

  

  

% ---------------------------------------------------------

---------------- 

  

% Differntial Equation Functions 

function ddt = go(t,y) 

global LL ss CGGG CCCC CCC GGG h Tmax seq r e K d n C I 

lambda delta b s a G t0 t1 t2 t3 q j bb Beta p L k f u w GG 

CCi CCn Cn Ci t4 t5 ti interval 

X = (y(1)); 

Y = (y(2)); 

Z = (y(3)); 

V = (y(4)); 

  

% Floor Functions 

if X < .9 

    r = 0; 

else if X > .9 

        r = q; 

    end 

end 

  

if Y < 1.5 

    lambda = 0; 

else if Y > 1.5 

        lambda = f; 

    end 

end 

  

if Z < .9 

    s = 0; 
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else if Z > .9 

        s = j; 

    end 

end 

  

if str2num(seq(ceil(t/interval))) == 1 

  

    CC = C; 

    CCn = Cn; 

    CCi = Ci; 

    GG = 0; 

    bb = 0; 

end 

if str2num(seq(ceil(t/interval))) == 0 

  

    CC = 0; 

    CCn = 0; 

    CCi = 0; 

    GG = 0; 

    bb = 0; 

end 

if t > Tmax 

    CC = 0; 

    CCn = 0; 

    CCi = 0; 

    GG = G; 

    bb = b; 

end 

ONE = ones(1,100); 

h = round(t)+1; 

CCC(h) = CC; 

BCCC = CCC' * ONE; 

CCCC = 

[BCCC(1,:),BCCC(2,:),BCCC(3,:),BCCC(4,:),BCCC(5,:),BCCC(6,:

),BCCC(7,:),BCCC(8,:),BCCC(9,:),BCCC(10,:),BCCC(11,:),BCCC(

12,:),BCCC(13,:),BCCC(14,:),BCCC(15,:),BCCC(16,:),BCCC(17,:

),BCCC(18,:),BCCC(19,:),BCCC(20,:),BCCC(21,:),BCCC(22,:),BC

CC(23,:),BCCC(24,:),BCCC(25,:),BCCC(26,:),BCCC(27,:),BCCC(2

8,:),BCCC(29,:),BCCC(30,:),BCCC(31,:),BCCC(32,:),BCCC(33,:)

,BCCC(34,:),BCCC(35,:),BCCC(36,:),BCCC(37,:),BCCC(38,:),BCC

C(39,:),BCCC(40,:),BCCC(41,:),BCCC(42,:),BCCC(43,:),BCCC(44

,:),BCCC(45,:),BCCC(46,:),BCCC(47,:),BCCC(48,:),BCCC(49,:),

BCCC(50,:),BCCC(51,:)]; 

LL = length(CCCC); 

GGG(h) = GG; 

BGGG = GGG' * ONE; 

CGGG = 
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[BGGG(1,:),BGGG(2,:),BGGG(3,:),BGGG(4,:),BGGG(5,:),BGGG(6,:

),BGGG(7,:),BGGG(8,:),BGGG(9,:),BGGG(10,:),BGGG(11,:),BGGG(

12,:),BGGG(13,:),BGGG(14,:),BGGG(15,:),BGGG(16,:),BGGG(17,:

),BGGG(18,:),BGGG(19,:),BGGG(20,:),BGGG(21,:),BGGG(22,:),BG

GG(23,:),BGGG(24,:),BGGG(25,:),BGGG(26,:),BGGG(27,:),BGGG(2

8,:),BGGG(29,:),BGGG(30,:),BGGG(31,:),BGGG(32,:),BGGG(33,:)

,BGGG(34,:),BGGG(35,:),BGGG(36,:),BGGG(37,:),BGGG(38,:),BGG

G(39,:),BGGG(40,:),BGGG(41,:),BGGG(42,:),BGGG(43,:),BGGG(44

,:),BGGG(45,:),BGGG(46,:),BGGG(47,:),BGGG(48,:),BGGG(49,:),

BGGG(50,:),BGGG(51,:)]; 

  

  

  

  

% Differential Equations 

ddt = [r*X*(1-CC)*(1 - ((X + Y + Z)^e)/(K^e)) - X*(d + n + 

Beta*V + bb*(Z/(X+Y+Z))) 

    n*X + Y*(1-Cn)*lambda*(1 - ((X + Y + Z)^e)/(K^e)) - 

Y*(delta + bb*(Z/(X+Y+Z))) 

    Beta*X*V + Z*(1-Ci)*s*(1 - ((X + Y + Z)^e)/(K^e)) - 

Z*(a + GG + L) 

    k*a*Z - p*V]; 

 
 
 
Virus Bolus  Control 
 
 
function viruscontrol 

clc; 

close all; 

% ---------------------------------------------------------

---------------- 

  

%Model Parameter Definitions 

global LL CCCC CGGG CCC GGG h r e K d n C I lambda delta b 

s a G t0 t1 t2 t3 t4 t5 q j Beta ss CCCC p L k f u w Cn Ci 

Gr XGr YGr ZGr I t V inV 

  

q = 1;      % uninfected tumor growth rate 

e = 3;      % B-R exponent 

K = 100;   % B-R carrying capacity [((1-

d/r)^(1/e))*Carrying capacity] 

d = .1;     % natural death rate uninfected tumor 

n = .0007;    % rate of change to chemoresistant tumor 

C = .95;     % Chemotherapy treatment efficacy  

Cn = 0;   % Chemotherapy treatment efficacy (natural chemo 
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resistant) 

Ci = 0;    % Chemotherapy treatment efficacy (induced chemo 

resistant) 

I = 2;    % rate of change to induced chemo resistant 

f = .9;     % growth rate of natural chemo resistant tumor 

cells 

delta =.1; % death rate of natural chemo resistant tumor 

cells 

b = 1.75;     % death rate due to bystander effect 

L = 0;     % Lytic rate 

j = .9;      % growth rate of induced chemo resisntant 

tumor cells 

a = I*.1;    % deat rate of induced chemo resistant tumor 

cells 

G = .7;     % death rate of  due to ganciclovir (GCV) 

sensitivity 

Beta = I*.002;  % virus mass action rate 

p = .3;     % virus death rate 

  

inCS = 5;  % Initial Chemo Sensitive Cell 

inNCR = 1;  % Initial Natrual Chemo Resistant Cells 

inICR = 0;  % Initia Induced Chemo Resistant Cells 

inV = 100;   % Initial Viral load 

  

y0 = [inCS inNCR inICR]; 

k = .5;     % Burst size 

u = .1;     % Chemotherapy efficacy on chemoresistant 

w = .0;     % Chemotherapy efficacy on Induced Resistant 

            % resistant back to sensitive term? 

% ---------------------------------------------------------

---------------- 

  

% Treatment Times 

t0 = 20;    % Chemo treatment beginning time (day) 

t1 = 30;  % Chemo treatment end time (day) 

t2 = 18;    % GCV treatment begin time (day) 

t3 = 100;  % GCV treatment end time (day) 

t4 = 5;  % Virus Bolus 1 Time 

t5 = 15;  % Virus Bolus 2 Time 

  

% ---------------------------------------------------------

---------------- 

  

% ODE 

Tr = 50; 

tx =  0:.01:Tr; 

Vx1 = inV*exp(-p*(tx-t4)).*(tx>t4); 
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Vx2 = inV*exp(-p*(tx-t5)).*(tx>t5); 

Vx = Vx1 + Vx2; 

  

  

sol = ode23(@go, [0, Tr], y0); 

  

% ---------------------------------------------------------

---------------- 

  

% Plots 

lw = 2; 

  

  

  

 Gr = sol.y(1,:)+sol.y(2,:)+sol.y(3,:); 

 KGr = (sol.y(1,:)+sol.y(2,:)+sol.y(3,:))/K; 

% XGr = sol.y(1,:).*(Gr.^-1); 

% YGr = sol.y(2,:).*(Gr.^-1); 

% ZGr = sol.y(3,:).*(Gr.^-1); 

  

KXGr = sol.y(1,:)/K; 

KYGr = sol.y(2,:)/K; 

KZGr = sol.y(3,:)/K; 

  

ss = (Tr/LL):(Tr/LL): (Tr/LL)*LL; 

  

%Vi = sol.y(4,:)/inV; 

  

figure; 

subplot(7,1,1:4) 

plot(sol.x, KXGr, '-', 'LineWidth', lw); 

hold all  

plot(sol.x, KYGr, '--', 'LineWidth', lw); 

hold all 

plot(sol.x, KZGr, 'k:', 'LineWidth', lw); 

%xlabel('time'); 

ylabel('Cell Population Ratio'); 

legend('Chemo Sensitive', 'Natural Chemo Resistant' , 

'Induced Chemo Resistant') 

axis([0 Tr 0 1]) 

title(['Virus Bolus Control' ]) 

% subplot(5,1,4) 

% plot(sol.x, Vi, '-', 'LineWidth', lw); 

% ylabel('Virus') 

subplot(7,1,5) 

plot(tx,Vx, 'LineWidth', lw) 

ylabel('Virus Bolus') 
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subplot(7,1,6) 

plot(ss, CCCC, 'Linewidth', lw) 

axis([0 Tr  0 1]) 

ylabel('Chemo') 

subplot(7,1,7) 

plot(sol.x, Gr, '-', 'LineWidth', lw) 

xlabel('Time') 

ylabel('Tumor Size') 

axis([0 Tr 0 K]) 

  

  

% ---------------------------------------------------------

---------------- 

  

% Differntial Equation Functions 

function ddt = go(t,y) 

global LL CCCC CGGG CCC GGG h r e K d n C I lambda delta b 

s a G t0 t1 t2 t3 t4 t5 q j bb Beta ss p L k f u w GG CCi 

CCn Cn Ci inV 

X = (y(1)); 

Y = (y(2)); 

Z = (y(3)); 

%V = (y(4)); 

  

% Floor Functions 

if X < .9 

    r = 0; 

else if X > .9 

        r = q; 

    end 

end 

  

if Y < .9 

    lambda = 0; 

else if Y > .9 

        lambda = f; 

    end 

end 

  

if Z < .9 

    s = 0; 

else if Z > .9 

        s = j; 

    end 

end 
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CC = C*(t>t0)*(t<t1); 

CCn = Cn*(t>t0)*(t<t1); 

CCi = Ci*(t>t0)*(t<t1); 

GG = G*(t>t2)*(t<t3); 

bb = b*(t>t2)*(t<t3); 

  

if t < .5; 

h = round(t)+1; 

else if t > .5 

h = round(t)+1; 

    end  

end 

  

  

%plot fix 

ONE = ones(1,100); 

  

CCC(h) = CC; 

BCCC = CCC' * ONE; 

CCCC = 

[BCCC(1,:),BCCC(2,:),BCCC(3,:),BCCC(4,:),BCCC(5,:),BCCC(6,:

),BCCC(7,:),BCCC(8,:),BCCC(9,:),BCCC(10,:),BCCC(11,:),BCCC(

12,:),BCCC(13,:),BCCC(14,:),BCCC(15,:),BCCC(16,:),BCCC(17,:

),BCCC(18,:),BCCC(19,:),BCCC(20,:),BCCC(21,:),BCCC(22,:),BC

CC(23,:),BCCC(24,:),BCCC(25,:),BCCC(26,:),BCCC(27,:),BCCC(2

8,:),BCCC(29,:),BCCC(30,:),BCCC(31,:),BCCC(32,:),BCCC(33,:)

,BCCC(34,:),BCCC(35,:),BCCC(36,:),BCCC(37,:),BCCC(38,:),BCC

C(39,:),BCCC(40,:),BCCC(41,:),BCCC(42,:),BCCC(43,:),BCCC(44

,:),BCCC(45,:),BCCC(46,:),BCCC(47,:),BCCC(48,:),BCCC(49,:),

BCCC(50,:),BCCC(51,:)]; 

LL = length(CCCC); 

GGG(h) = round(GG); 

BGGG = GGG' * ONE; 

CGGG = 

[BGGG(1,:),BGGG(2,:),BGGG(3,:),BGGG(4,:),BGGG(5,:),BGGG(6,:

),BGGG(7,:),BGGG(8,:),BGGG(9,:),BGGG(10,:),BGGG(11,:),BGGG(

12,:),BGGG(13,:),BGGG(14,:),BGGG(15,:),BGGG(16,:),BGGG(17,:

),BGGG(18,:),BGGG(19,:),BGGG(20,:),BGGG(21,:),BGGG(22,:),BG

GG(23,:),BGGG(24,:),BGGG(25,:),BGGG(26,:),BGGG(27,:),BGGG(2

8,:),BGGG(29,:),BGGG(30,:),BGGG(31,:),BGGG(32,:),BGGG(33,:)

,BGGG(34,:),BGGG(35,:),BGGG(36,:),BGGG(37,:),BGGG(38,:),BGG

G(39,:),BGGG(40,:),BGGG(41,:),BGGG(42,:),BGGG(43,:),BGGG(44

,:),BGGG(45,:),BGGG(46,:),BGGG(47,:),BGGG(48,:),BGGG(49,:),

BGGG(50,:),BGGG(51,:)]; 
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%V = inV*exp(-p*(t-t4))*(t>t4); 

V1 = inV*exp(-p*(t-t4)).*(t>t4); 

V2 = inV*exp(-p*(t-t5)).*(t>t5); 

V = V1 + V2; 

  

  

% Differential Equations 

ddt = [r*X*(1-CC)*(1 - ((X + Y + Z)^e)/(K^e)) - X*(d + n + 

Beta*V + GG*bb*(Z/(X+Y+Z))) 

    n*X + Y*(1-Cn)*lambda*(1 - ((X + Y + Z)^e)/(K^e)) - 

Y*(delta +  GG*bb*(Z/(X+Y+Z))) 

    Beta*X*V + Z*(1-Ci)*s*(1 - ((X + Y + Z)^e)/(K^e)) - 

Z*(a + GG)]; 
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